
Property-Based Testing for Functional

Reactive Programming in Async Rattus

using Linear Temporal Logic

Thesis – KISPECI1SE

Christian Emil Nielsen, Mathias Faber Kristiansen

{cemn,matkr}@itu.dk

Supervisor: Patrick Bahr

June 2025

Abstract

Bugs in software are inevitable, and testing is an important tool to determine
if programs satisfies their specification. Reactive programs are programs that
react to input from their environment, such as graphical user interfaces. Async
Rattus, a domain specific language embedded in Haskell, is a functional reactive
programming language for building asynchronous reactive programs. The lan-
guage introduces a signal data structure, for modeling asynchronous streams of
time-varying values. These pose challenges in testing due to the number of pos-
sible sequences in which signals can produce values when combined in parallel,
thereby rendering example based testing impractical. Property-based testing,
where predicates are tested on arbitrarily generated inputs, may be useful in
solving these challenges. Moreover, reasoning about signals requires a specifi-
cation language that can express temporal behaviour of signals. There are cur-
rently no testing libraries that suggest a practical approach to test Async Rattus
programs. To this end, we present PropRatt, a proof-of-concept property-based
testing library. The library provides: (1) a specification language based on
linear temporal logic for expressing temporal predicates; (2) a type to model
Async Rattus program executions over time; and (3) arbitrary signal genera-
tors. QuickCheck, a property based testing library for Haskell, is leveraged to
combine these components to form and check properties. We demonstrate the
utility of PropRatt through a case study of testing a graphical user interface,
in which we suggest how the strategy for generating signals can be modified
to better model specific domains. Finally, we discuss limitations such as the
inability of testing certain properties in finite time.

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Scope and delimitations . 4

2 Background 5
2.1 Functional Reactive Programming 5
2.2 Property-Based Testing . 6

2.2.1 QuickCheck . 6
2.3 Async Rattus . 7
2.4 Linear Temporal Logic . 10

2.4.1 Syntax . 11
2.4.2 Safety and Liveness Properties 11

2.5 Domain Specific Languages . 12
2.5.1 Degree of embedding . 12
2.5.2 Generalized algebraic data types 13

2.6 Type Level Programming . 14

3 Design 16
3.1 Shallow or deep embedding . 16
3.2 Comparing multiple signals . 16
3.3 Modelling signals in parallel . 17
3.4 Relative temporal order of values 17
3.5 Shrinking . 18

4 Implementation 19
4.1 Specification language . 20
4.2 Modelling system state as a type 24

4.2.1 Heterogenous lists . 24
4.2.2 Value definition . 26

4.3 Evaluation semantics . 28
4.3.1 Scope check . 31

4.4 Constructing a model instance 33
4.4.1 Flatten . 34
4.4.2 Prepend . 36

4.5 Arbitrary Signals . 38
4.5.1 Heterogenous List generator 40

4.6 Shrinking signals . 43
4.6.1 Adaptive evaluation . 47

5 Case Study: Testing a timer application 51

2

6 Discussion 57
6.1 Related work . 57
6.2 Limitations . 57

6.2.1 Dynamic signal combinators 57
6.2.2 Liveness properties . 60
6.2.3 Absence of bugs . 60

6.3 Future work . 60

7 Conclusion 61

3

1 Introduction

This section presents the motivation for this project, as well as it outlines the
scope and delimitations.

1.1 Motivation

Testing is an important tool to determine if systems live up to their specification.
This is especially important in safety critical systems, where the risk of system
failures is unacceptable. One class of programs that are relevant to test, are re-
active programs. These programs are designed to react upon inputs from their
environment during execution, such as Graphical user interface (GUI). Func-
tional reactive programming (FRP) is a paradigm for writing reactive systems
declaratively, by treating time-varying values as first-class entities. By mod-
eling the input as streams of time-varying values, FRP provides an intuitive
abstraction for reactive programming.

Async Rattus is a FRP language that presents these streams as signals. In
contrast to synchronous FRP systems, where all signals advance in lockstep,
signals in Async Rattus produce values independently of each other, which
resembles asynchronous behavior [1]. This aspect of the language introduces
complexity in reasoning about program correctness, as it requires a model of
how multiple signals produce values in parallel over time.

An effective approach to verifying correctness of Async Rattus programs
must therefore:

• Incorporate a specification language that can reason about signals using
temporal predicates.

• Model a potentially-infinite execution in fixed, bounded time, such that a
representative subset of possible program interleavings can be tested.

1.2 Scope and delimitations

The work presented in this thesis explores the feasibility of property-based test-
ing for Async Rattus. Our focus is on testing signals that evolve asynchronously
when combined with other signals. Specifically, we aim to test the combinator
functions of the AsyncRattus.Signal module, by reasoning about the correct-
ness of inputs compared to outputs for these [2]. Some of these combinators
return signals wrapped in computational contexts (such as the IO type). We
deliberately exclude all these signal functions from this testing library at its
current point of implementation.

4

2 Background

The following sections highlight key concepts and domains that underpin this
thesis.

2.1 Functional Reactive Programming

FRP is a programming model that facilities writing reactive programs in a func-
tional style. Reactive programs are programs that must react to external input
from their environment. Examples of these include GUI and programs that’s
must react to hardware sensor readings. The key concept behind FRP is to
model said input as data streams which can then be composed using declara-
tive combinators from the functional programming paradigm. Given that any
changes in state propagate predictably through the system, the resulting pro-
grams are easier to reason about.

Early approaches to FRP distinguished between two kinds of data streams,
namely behaviours and events. The former modelling continous time-varying
values and the latter modelling events as a sequence of event occurrences. Con-
ceptually, a behaviour can be thought of as a function from time to values. His-
torically, an efficient implementation of behaviours has proven to be difficult.
A naive implementation would require a behaviour to retain all values from the
past, leading to implicit space leaks [3]. Moreover, continuous semantics de-
mand frequent sampling of signals, incurring unnecessary computational costs.
To address these limitations, many modern FRP systems adopt a discrete-time
model. In such systems, updates to values are triggered exclusively by discrete
events, enabling computations to be deferred until change is required [4].

More recent FRP implementations have unified behaviours and events into
a new abstraction called a signal, which encapsulates both current state and
the potential for discrete updates over time [4]. Signals simplify the model by
always maintaining a current value that may change in response to events, ef-
fectively merging the continuous and discrete semantics into a single construct.
We have described how continuously sampling a value of a signal can be in-
efficient. This is also called a pull-based (demand-driven) system. Instead,
the use of signals support a push-based (data-driven), wherein values are only
recomputed on discrete events. The choice between push- and pull-based evalua-
tion strategies significantly impacts the performance and responsiveness of FRP
systems. The pull-based model, while conceptually aligned with functional pro-
gramming’s lazy semantics, can be inefficient in reactive contexts that require
constant monitoring of dynamic inputs [5].

Recent research has explored the use of type systems to express and enforce
temporal constraints. In particular, modal type operators have been introduced
to annotate values with temporal information, enabling the compiler to stati-
cally verify properties such as causality, productivity, and memory safety [1].
These techniques allow FRP implementations to maintain strong operational

5

guarantees without sacrificing expressiveness or introducing significant syntac-
tic complexity [3].

2.2 Property-Based Testing

Property-based testing (PBT) is a testing methodology in which one formu-
lates logical properties that are tested against arbitrarily generated inputs. The
properties are a higher-level abstraction compared to example-based testing, al-
lowing them to align with the specification of the program. This methodology
is especially useful when working with units under test that contain complex
input domains, creating a combinatorial problem that is impractical to craft
test input manually.

When a test fails, the PBT framework initiates a process known as shrinking.
Shrinking refers to the systematic reduction of the failing input to simpler forms,
based on a predefined strategy that is suitable for the input type. The goal is
to identify the minimal input that still reproduces the failure, referred to as
the smallest possible counterexample. Having small counterexamples helps the
developer in finding the underlying issue by pinpointing the exact input that
causes the test to fail. Note that the definition of “small” is type-dependent.
For instance, in the case of a list of numbers, smaller could refer to a shorter
list, but it may also involve replacing values with smaller values according to
their natural ordering.

2.2.1 QuickCheck

QuickCheck is a testing library for Haskell that implements PBT [6]. At its
core, QuickCheck takes user defined properties and tests these over a series of
arbitrarily generated inputs. For example, consider the property of reversing a
list twice, which should be equal to the original list:

1 prop_reverse :: [Int] -> Bool

2 prop_reverse xs = reverse (reverse xs) == xs

When executing the test, QuickCheck generates 100 arbitrary [Int] inputs,
and the framework checks that the property defined holds for all these cases.
To generate and shrink inputs, QuickCheck uses the Arbitrary typeclass:

1 class Arbitrary a where

2 arbitrary :: Gen a

3 shrink :: a -> [a]

The arbitrary function returns a Gen a type to generate arbitrary values of
type a. The Gen type implements the Monad, Applicative, and Functor type-
classes, which makes it easy to compose simple generators into more complex
ones. This composability allows users to define generators that are not only syn-
tactically convenient, but also encoding domain-specific invariants of the type

6

in the generation and shrinking implementation. For instance, to generate a
pair of a bounded integer and a corresponding list of that many elements:

1 genBoundedList :: Gen (Int, [Bool])

2 genBoundedList = do

3 n <- (choose (1, 10) :: Gen Int)

4 bs <- (vectorOf n arbitrary :: Gen Bool)

5 return (n, bs)

Using Haskell do notation provides a convenient and succinct syntax to com-
pose multiple dependent computations in a sequential, easy to read manner.

2.3 Async Rattus

Async Rattus is an Embedded domain specific language (eDSL) for FRP within
Haskell. The languages uses modal types to express and enforce when computa-
tions occur [1]. Its type system tracks temporal behavior by assigning modalities
that distinguish immediate values from those arriving at future time steps. This
system introduces, for example, the ”later” modality (denoted as) to defer
computations to future timesteps, and the ”box” modality (denoted as □) to
preserve data for later use. These modalities are crucial not only for expressing
temporal constraints at the type level, but also for efficient memory manage-
ment. By clearly defining which values are required immediately and which
are postponed, the system enables the garbage collector to be more aggressive.
Specifically, it only needs to retain the present value and the associated de-
ferred computation encapsulated by the modality, thereby freeing memory
associated with data that is no longer necessary. This design promotes both
correctness and efficiency, making Async Rattus particularly suited for building
responsive and resource-aware reactive systems.

The modal type system of Async Rattus delivers essential guarantees for
reactive software. Productivity follows from its design: Each discrete step in
time produces a result, preventing the system from degrading performance over
time. Causality is enforced at the type level by prohibiting any dependency on
values that arise in the future, such that any value produced at a given time
step is derived solely from current or past values. In Async Rattus, whenever
we defer a computation with the modality, the computation of this future
value is not yet calculated and is instead linked to a specific clock. The clock is
a set of channels, and whenever a program receives input data on one of these
channels, a value is produced.

The primary data type of the language is a signal. The signal data type,
is the Async Rattus implementation of FRP data streams. A signal is imple-
mented as a recursive data type where each element is accompanied by a delayed
computation representing the next value:

7

Signal Type Definition

1 data Sig a = a ::: O (Sig a)

Figure 1: Async Rattus signal type definition. ::: denotes infix construction,
and the O operator corresponds to the later modality.

The head of the signal is available immediately, while the tail is a delayed
computation of type O (Sig a). Crucially, this delay is not arbitrary. Its
execution is controlled by the clock, tied to the later modality and inferred
by the type system. Each delay is essentially a promise that the associated
computation will occur once an input is received on a channel within that clock.
In other words, the delayed computation is calculated, turning it into a present
value. We call this a tick of a clock, denoted as ✓cl.

To illustrate, consider the following example. Assume that a button in a GUI
produces the next value of a signal. The delayed computation of this signal has
the clock channel x. Whenever the button is pressed, a value is produced for
the channel x. This action turns the delayed computation of the signal, into a
value in the present. This mechanism distinguishes Async Rattus from purely
synchronous systems. In the synchronous counterpart language, Rattus, every
element of a data stream is produced in relation to one global clock [3].

To highlight this difference, we use the zip function as an example. The zip
function, takes two data streams as input, and produces a single stream output,
that consists of pairs of values from the original two data streams, as shown in
Table 2.3.

Time step xs ys zip xs ys

t1 1 ’a’ (1, ’a’)
t2 2 ’b’ (2, ’b’)
t3 3 ’c’ (3, ’c’)
t4 4 ’d’ (4, ’d’)

Table 1: Example trace of zipping two streams.

In contrast, Async Rattus allows signals to be associated with independent
clocks. When multiple signals are composed to a single signal, using a combi-
nator function such as zip, the function must carefully coordinate their clocks.
If only one of the clocks tick, then only that signal produces a new value, and
its new value is combined with the most recent value of the other signal. This
can lead to pairings where one element remains unchanged over multiple time
steps, highlighted in Table 2.3.

8

Time step xs ys zip xs ys

t1 1 ’a’ (1, ’a’)
t2 ’b’ (1, ’b’)
t3 2 ’c’ (2, ’c’)
t4 3 (3, ’c’)
t5 4 (4, ’c’)
t6 ’d’ (4, ’d’)

Table 2: Example trace of zipping two asynchronously ticking signals.

The primitives delay and adv (advance) are operations used to manage de-
ferred computations. The delay keyword acts as the constructor for the later
modality, deferring the evaluation of a computation until the associated clock
ticks. Conversely, the adv keyword serves as the eliminator for later, retrieving
the value when the clock permits its evaluation. These operations are restricted
by the typing rules of the language, which dictate that an advance only can be
used in the scope of a delay. This means that we cannot use a future value in the
present, and the type checker thereby enforces the temporal order and preserves
causality. For example, an attempt to prematurely use a delayed value in the
present violates the temporal order, and will be rejected at compile time:

1 -- Not allowed: advancing a delayed value too early

2 subtractOne :: O Int -> Int

3 subtractOne x = adv x - 1

Subtracting 1 from a value guarded by the modality is not possible in
the current time step. The value doesn’t exist yet, and consequently will not
compile. Instead, we need to make use of the delay primitive:

1 subtractOne :: O Int -> O Int

2 subtractOne x = delay (adv x - 1)

The function must return an argument of type O Int, as the program must
wait upon the integer input to arrive and only then subtract 1. Similar care has
to be taken when we attempt to define a higher-order function on signals:

1 map :: (a -> b) -> Sig a -> Sig b

2 map f (x ::: xs) = f x ::: delay (map f (adv xs))

Note that map requires that the function is available for application at any
point in the future. This makes it possible to define a higher-order function that
builds a chain of references to values of prior time steps, causing an implicit space
leak. It is therefore important that values that must be moved to the future, are
time-invariant and always accessible. We refer to values of these types as stable.
In Async Rattus, non-stable types can be made stable using the box modality

9

□ [1]. Box must be applied to the function type, to correctly implement the
map function.

1 map :: Box (a -> b) -> Sig a -> Sig b

2 map f (x ::: xs) = unbox f x ::: delay (map f (adv xs))

Using box here ensures that the function has no temporal dependencies.
Consequently, the box modality must be eliminated using unbox before it can
be applied.

2.4 Linear Temporal Logic

To reason about signals, we cannot solely use propositional logic. Given that the
values a signal produces are inherently time-dependent, we need a way to express
and verify properties over time, not just at a single instant. Propositional
logic cannot quantify when a statement should hold, so it fails to capture how
predicates evolve over time. Consider the following example:

p⇒ q where

p : The patient takes their medication

q : The patient’s symptoms improve

This fails to express when the symptoms will improve, or for how long the
patient must take the medication. Instead, we need a temporal logic let us say
quantify when the statements should hold, and how their notion of truth behaves
dynamically over time. Linear temporal logic (LTL) extends propositional logic
by introducing temporal connectives that allow one to specify how propositional
statements evolve over time. Using LTL connective X (Next), the prior example
can be refined as follows:

p⇒ X q

p : The patient takes their medication

X q : The patient’s symptoms improve the next day

The time frame in which they can expect improvement is now explicit and
clear. For the same reason, this demonstrates how LTL is also a suitable logic for
reasoning about signals, as it can express properties that describe how signals
evolve over time.

10

2.4.1 Syntax

LTL introduces the following temporal connectives [7] 1:

• X ϕ (“neXt”)
ϕ holds at the next state.
Example: X p means “p holds in the next state.”

• F ϕ (“Eventually”)
ϕ holds at some future state.
Example: F q means “q will eventually hold.”

• G ϕ (“Globally”)
ϕ holds at all future states.
Example: Gp means “p always holds.”

• ϕ U ψ (“Until”)
ϕ must hold continuously until ψ becomes true, and ψ must eventually
hold.
Example: pU q means “p holds until q holds, and q eventually holds.”

Using these temporal operators, provides a syntax for reasoning about the
state of a program over time.

2.4.2 Safety and Liveness Properties

Using LTL to define properties gives rise to two classes of properties: safety
and liveness properties. The distinction between these are important when
implementing LTL as a means of testing reactive systems, as liveness properties
inherently cannot be checked in finite time.

Safety properties assert that something bad never happens. These properties
are violated by a finite prefix of an execution, meaning that once violated, no
continuation of the execution can make the property hold again. The example
introduced previously,

p⇒ X q

is a safety property, because a counterexample can be found in a finite prefix of
an execution, and from that point on the property can never become true again.

Liveness properties assert that something good eventually happens. Unlike
safety properties, liveness properties cannot be refuted by any finite execution
prefix, because the “good” event might still occur in the future. If we modify
the previous example to use F (eventually) instead of X (next), we obtain a
liveness property:

p⇒ F q

1ϕ and ψ denotes LTL formulas.

11

Where q now expresses that the patient’s symptoms eventually improve. This
is impossible to check in finite time, given that even if the symptoms haven’t
improved, it is possible they may do so tomorrow.

The distinction between safety and liveness properties are important because
it highlights an inherent limitation when logic is applied in finite-time reasoning.
We elaborate further on the relevance in 6.2.

2.5 Domain Specific Languages

A Domain specific language (DSL) is a language tailored to express and solve
problems in a specific domain. It provides a higher level of abstraction that
closely mirrors the problem space, improving both the clarity of code and the
safety of domain-specific computations [8]. An eDSL is a DSL implemented
within a general-purpose host language. The advantage of this approach is that
all of the tooling and ecosystem surrounding the host language can be reused,
instead of making it up from scratch. By virtue of being limited in scope, a
DSL can include domain specific rules in the language in ways a general-purpose
language cannot. PBT frameworks often incorperate their own eDSL in their
host language to express properties. For instance, QuickCheck contains a notion
of explicit universal quantification (∀), implication (⇒) and conjunction (∧):

1 prop_dsl =

2 forAll (choose (0, 100)) $ \n ->

3 (n >= 50 ==> even n) .&&. (n <= 100)

By embedding this logic into the host language, all of the benefits from the
host language are still present, all while using a notation that is highly expressive
within the domain of property-based testing.

2.5.1 Degree of embedding

Embedding a DSL involves choosing a strategy for how tightly the DSL is in-
tegrated with its host language. A common approach is to deeply embed the
DSL. In this strategy, the structure of the DSL is explicitly represented by data
types in the host language, such that the structure of the data type defines an
Abstract syntax tree (AST) of the language.

In contrast, shallow embedding maps DSL constructs directly to the host-
language. This approach results in more concise code, simpler interfaces, and
better reuse of the host language features. However, this integration can make it
difficult to enforce domain-specific constraints, as the structure of the statements
cannot be inspected. Selecting between shallow and deep embedding involves
balancing ease of implementation with the need for flexibility in the interpreter.
In many cases, the most effective solution is a hybrid design, leveraging the
benefits given from the host language, while preserving the structure that a
deep embedding provides [8].

12

2.5.2 Generalized algebraic data types

Generalized algebraic data types (GADTs) extend Haskell’s Algebraic data
types (ADTs) by allowing constructors to specify their type. In a conventional
ADTs, all constructors of a data type must return the same type, limiting how
much can be expressed in the type system. By contrast, this extension lifts
that restriction, enabling type annotations on a per-constructor basis. This
additional flexibility allows for encoding richer invariants directly in the type
declarations. It is especially useful for modeling data structures whose valid
forms vary depending on type-level information. For instance, consider the
canonical example of a simple expression language that supports integer and
boolean literals, along with addition and equality:

1 -- ADT

2 data Expr

3 = LitInt Int

4 | LitBool Bool

5 | Add Expr Expr

In this ADT version, nothing prevents the construction of a nonsensical
expression such as Add (LitBool True) (LitInt 5).

1 -- GADT

2 {-# LANGUAGE GADTs #-}

3 data Expr a where

4 LitInt :: Int -> Expr Int

5 LitBool :: Bool -> Expr Bool

6 Add :: Expr Int -> Expr Int -> Expr Int

7 Eq :: Expr Int -> Expr Int -> Expr Bool

By defining the Expr type using the GADT syntax, the type parameter
a tracks the type of value that an expression produces. The Add constructor
ensures it only operates on integer expressions and produces an integer, while
Eq enforces comparison between integer expressions and returns a boolean. Ill-
typed expressions like Add (LitBool True) (LitInt 5) are now ruled out by
the type system at compile time.

13

Using a GADT to create an eDSL, the language can be effectively illustrated
as an ASTs. The term abstract in AST reflects the fact that the concrete
syntactic details of the language are omitted, and only the structure necessary
to evaluate the language remains. For example, the prior expression type can
be represented as an AST, where each constructor corresponds to a node in the
tree. The constructor Add x y represents addition of the two child nodes in the
tree. Leaf nodes such as LitInt n represent integer literals (see Figure 2).

Eq

Add

LitInt 3 LitInt 5

LitInt 8

Figure 2: Tree represen-
tation of a value of type
Expr Bool

Up to this point we have worked with literals and
constants, which is of limited use when making a spec-
ification language given that the values cannot be sub-
stituted upon evaluation. To represent variables, we
can extend the Expr a type to include the construc-
tor:

1 Var :: String -> Expr a

We can now make an expression that references
variables by name, storing values for these in a
seperate data structure. We call this data struc-
ture an environment. The environment can be be
thought of a mapping from variables to their cor-
responding values. To evaluate an expression like
Add (Var "x") (LitInt 2), we would need to look
up the value of x in the environment.

The representation of Expr is useful because it de-
fines a structure that can be evaluated in a principled
manner. The same expression can be evaluated on
separate environments, and each node can carry its
own evaluation semantics, possibly changing the state of the environment. They
are also composeable, any AST can be a subtree to larger more complex tree.

2.6 Type Level Programming

We define type level programming (TLP) as a set of techniques that encode
logic in the type system, thereby catching violations of the type at compile-
time rather than runtime. The key benefits of this approach, as relevant to this
thesis, include:

1. Encoding domain invariants: Capturing domain rules at the type level
effectively unifies the understanding of the domain with the implementa-
tion.

2. Enabling complex types: Richer types can be achieved by lifting logic to
the type level, which may lead to a more natural model of the domain.

14

To illustrate these ideas, consider a function that retrieves the head element
of a list. In a conventional list type, this operation is inherently partial due to
the potentially-empty list, and consequently may throw an error at run time:

Working with Non-Empty Lists

1 -- Defines a NonEmpty list

2 data NonEmpty a = a :| [a]

3

4 -- Get the head of a list (may throw runtime error!)

5 head :: [a] -> a

6 head (x : _) = x

7

8 -- Get the head of a NonEmpty

9 headNE :: NonEmpty a -> a

10 headNE (x :| _) = x

Figure 3: Using NonEmpty to enable safe head access

While the example is rather trivial, it effectively illustrates that by narrowing
the domain of a function with a stronger argument, we can sift out nonsensical
programs before they are ever run. We implement and expand further on TLP
and the corresponding Haskell constructs as they become relevant in Section
4.2.

15

3 Design

This section clarifies the design choices made during the creation of PropRatt.
Implementations of these decisions will be elaborated upon in Section 4.

3.1 Shallow or deep embedding

In designing PropRatt as an eDSL, we face a choice between a shallow and
deep embedding. A shallow embedding could expose users directly to Async
Rattus’s primitives, requiring manual management of delay, adv, and clock co-
ordination strategies. We prefer to express high-level abstractions directly in
the DSL, as this improves the readability of specifications and avoids the confu-
sion of encoding abstract specifications of a program through detailed low-level
implementations. Therefore, we choose to adopt a deep embedding, encapsu-
lating all clock coordination, deferred computation, and concurrency within the
evaluation of the DSL. This approach preserves the expressive power needed
to articulate high-level specifications while shielding users from implementation
complexity.

3.2 Comparing multiple signals

PropRatt must support testing of signal combinators by enabling direct com-
parison of values produced by signals. To illustrate the need for this capability,
consider the prefix-sum example. Given a finite sequence a1, a2, . . . , an of nat-
ural numbers, the prefix-sum s is defined by

sk =

k∑
i=1

ai

so that each value of the signal s accumulates all numbers from previous time
steps. One property to reason about the correctness of such signal, could be
that s grows strictly monotonically:

Always
(
p < Next p

)
,

where p denotes the signal’s value at the current timestep, and Next p refers to
its value in the next time step. This predicate is not possible exclusively using
LTL. Since this property refers directly to values of different time steps, the
specification language must contain constructs to compare values across time.

Expanding the prefix-sum example we could write a more specific property
that compares values from different signals. We want to be able to observe how
signal values evolve in relation to each other, to ensure that the output values
change correctly and occur precisely at the intended time steps. This allows
us to reason about the correctness of combinator functions by comparing signal
values of the input, with signal values of the output.

A specification could be expressed as:

16

It should always be true that, the next value of the output signal should be
equal to the sum of the current element of the output signal and the next value
of the input signal.

The specification language should have syntax to express:

G
(
X q = q +X p

)
where p is the current value of the input signal,

and q is the current value of the output signal.

Because we deeply embed the language, we need to provide explicit language
constructs that allow users to select and manipulate individual signals within
the state of the test. This allows us to compare the values produced by the
original signal to the values produced by the output signal at each discrete time
step throughout the evaluation of the test.

3.3 Modelling signals in parallel

To effectively test Async Rattus programs, we must model the state of an exe-
cution in a way that captures the asynchronous nature of signals. As illustrated
in Table 2.3 and discussed in Section 2.3, recall that signals in Async Rattus
do not produce values in lock-step. That is, each signal may emit a value at
different points in logical time, depending on the clock to which its delayed
computation is tied. The state of the test framework must therefore support
some mechanism that advances the state of the program under test, where each
signal may or may not produce a new value. Effectively allowing for simulation
of scenarios where multiple clocks may tick simultaneously or independently.

This suggests that the advancement of signals and the generation of their
clocks cannot be completely arbitrary, as this could result in signals never pro-
ducing values, or always producing values, resulting in a poor test coverage.
Intuitively we may assume that allowing all signals under test an equal chance
of ticking at any given time seems reasonable, as it would be maximally fair
to all signals. But it might lead to interleavings of signals that don’t accu-
rate reflect how the system would act, as the frequency in which signals ticks
largely depends on the domain. We work with this assumption throughout our
implementation, but reflect on this design point further in Sections 5 and 6.3.

3.4 Relative temporal order of values

A signal always holds a current value, but this value may persist across multiple
time steps of the program, if no new value is produced by its associated deferred
computation. That is, a signal may continue to carry the same value infinitely
often if its clock does not tick. This leads to an important requirement for
testing: the ability to query whether a value produced by a signal was produced
at the current timestep, or whether it was carried over from a prior one.

17

We want to be able to specify if a signal carries a value from its prior time
step, ie. stutters. To express the property of stuttering, the specification lan-
guage must have a notion of a tick (✓), where ✓cl(a) denotes a tick of clock a.
Using this notation, we can formulate a property as follows:

Let a and b be signals, and a1 and b1 be clocks tied to each signals’
delayed computation2. Then,

G
(
X (✓cl(a1) ∧ ¬✓cl(b1)) → (b = X b)

)
can be read as: “It should always be true that, if in the next time step a

produces a value and b does not, then the current value of signal b is equal to the
next value of signal b.” This temporal predicate effectively conveys whether b is
a stuttering of a. To support the evaluation of such properties, the framework
must maintain some notion of whether each value in a signal was produced in
the current time step or carried over from a prior timestep.

3.5 Shrinking

QuickCheck implements shrinking functionality for base types, to find small-
est possible counterexamples when a test fails. To leverage QuickCheck when
testing signals in Async Rattus, we must create a custom implementation and
shrinking strategy. To illustrate how shrinking of a signal should work, assume
we wish to test, that the values produced by the signal of type Sig Int are
strictly smaller than three:

1 -- Pseudo syntax

2 inputSignal = (0 ::: 2 ::: 4 ::: never) :: Sig Int

The result of shrinking a signal that fails this property should be the signal
containing only one element of the value 3:

1 -- Pseudo syntax

2 shrunkSignal = (3 ::: never) :: Sig Int

2This is a simplification because all delayed computations may have distinct clocks.

18

4 Implementation

PropRatt enables PBT of signal combinators in Async Rattus with the following
components:

• A declarative specification language to write temporal predicates.

• A stateful model that abstracts parallel signal execution.

• Arbitrary typeclass instances for the signal type.

The temporal predicates are evaluated with a model of program behavior in
its environment. The signals in the model can be generated arbitrarily, supplied
by the user, or composed from both sources. This flexibility enables users to
generate input signals, pass them to the function under test, and integrate the
function’s output to the model. In the temporal predicate, users are then able
to refer to the values produced by signals in the model. Users can also advance
the state of the model by using the LTL inspired temporal constructs of the
specification language, thereby allowing users to reason about how multiple
signals behave over time.

In the following sections, we explain how the key components of PropRatt
work together to form a QuickCheck property. Along the way, we present the
rationale behind important implementation choices. To motivate and illustrate
these components, we use the zip function as a recurring example. The type
signature of the function is defined in Figure 4.

Zip type signature

zip :: (Stable a, Stable b) => Sig a -> Sig b -> Sig (a :* b)

Figure 4: The zip function returns a pair of values, one from each input signal,
at every time step. The types must be stable such that they can be moved safely
to the future. :* denotes a strict pair constructor.

For the purpose of this example, assume that the inputs to zip are signals of type
Sig Int and Sig Char. The output will be a signal of type (Int :* Char),
as illustrated in the sample trace execution of Table 2.3. To test the behavior
of zip, we want to assert that the output at each time step reflects the corre-
sponding values from the two input signals. This property can be expressed in
the following pseudo-temporal logic syntax:

G
(
fst zs = xs ∧ snd zs = ys

)

where xs and ys are the input signals, and zs is the result of zip xs ys.

19

This specification reads: “It is always the case that the first value of the zipped
signal equals the value from the first signal, and the second value equals the
value from the second signal.” The first step towards testing this property of
zip is to transcribe the above pseudo-syntax to a real specification language.

4.1 Specification language

To express temporal predicates, we introduce the semantics of our specification
language. The types Pred, Expr and Lookup, illustrated in Figure 5 defines the
DSL constructs in its entirety.

Specification language

1 data Pred (ts :: [Type]) (t :: Type) where

2 Tautology :: Pred ts t

3 Contradiction :: Pred ts t

4 Now :: Expr ts Bool -> Pred ts Bool

5 Not :: Pred ts t -> Pred ts t

6 And :: Pred ts t -> Pred ts t -> Pred ts t

7 Or :: Pred ts t -> Pred ts t -> Pred ts t

8 Until :: Pred ts t -> Pred ts t -> Pred ts t

9 Next :: Pred ts t -> Pred ts t

10 Implies :: Pred ts t -> Pred ts t -> Pred ts t

11 Always :: Pred ts t -> Pred ts t

12 Eventually :: Pred ts t -> Pred ts t

13 After :: Int -> Pred ts t -> Pred ts t

14 Release :: Pred ts t -> Pred ts t -> Pred ts t

15

16 data Expr (ts :: [Type]) (t :: Type) where

17 Pure :: t -> Expr ts t

18 Apply :: Expr ts (t -> r) -> Expr ts t -> Expr ts r

19 Index :: Lookup ts t -> Expr ts t

20 Ticked :: Lookup ts t -> Expr ts Bool

21

22 data Lookup (ts :: [Type]) (t :: Type) where

23 Previous :: Lookup ts t -> Lookup ts t

24 Prior :: Int -> Lookup ts t -> Lookup ts t

25 First :: Lookup (Value t ': x) t

26 Second :: Lookup (x1 ': Value t ': x2) t

27 Third :: Lookup (x1 ': x2 ': Value t ': x3) t

28 Fourth :: Lookup (x1 ': x2 ': x3 ': Value t ': x4) t

29 -- etc. We support up to index Ninth

Figure 5: Pred, Expr and Lookup GADTs. These represent all the language
constructs available in the specification language. Each type respects the types
of the signals being referred to (tracked by the ts :: [Type] parameter) and
the return type t :: Type. The return type of Now is constrained to be Bool,
such that any evaluation of an expression returns true/false.

At a high level overview, the types achieve the following:

20

• Pred combines propositional logic connectives (e.g., And, Not, Implies)
with temporal operators from LTL, such as Next, Until, Always, and
Eventually.

• Expr encodes compound expressions (arithmetic, comparison, and func-
tion application) using values from the model.

• Lookup provides type safe indexing to retrieve values produced by signals
in the model.

The Now constructor reflects an expression that should be evaluated in the
current timestep. An Expr is a potentially compound statement that compares
values from signals of potentially different types by accessing the current state
of the system using the Lookup type. Using the presented language constructs
of the specification language, we can now express the predicate introduced in
Section 4.

Verbose representation of a specification

1 Always $

2 Now $

3 (Apply

4 (Apply (Pure (==))

5 (Apply (Pure fst') (Index First)))

6 (Index Second))

7 `And`

8 Now $

9 (Apply

10 (Apply (Pure (==))

11 (Apply (Pure snd') (Index First)))

12 (Index Third))

Figure 6: By nesting Apply nodes and lifting functions such as (==) and fst'

to the context of an Expr, the language supports function application entirely
within the specification.

In Figure 6 the Pure constructor lifts functions to the context of the expres-
sion being evaluated. By writing Index First, the value of the first signal is
in the model is retreived in a type-safe manner using the Lookup type. While
the specification is correct, it is also extremely verbose to the point where it is
impractical to write. It would be better if we instead are able to inject idiomatic
Haskell code that represents the function application we are trying to achieve.
To this end, we implement typeclasses for the Expr type.

21

Applicative functor instance for Expr

1 instance Functor (Expr ts) where

2 fmap :: (t -> r) -> Expr ts t -> Expr ts r

3 fmap f (Pure x) = Pure (f x)

4 fmap f (Apply g x) = Apply (fmap (f .) g) x

5 fmap f (Index lu) = Apply (Pure f) (Index lu)

6 fmap f (Ticked lu) = Apply (Pure f) (Ticked lu)

7

8 instance Applicative (Expr ts) where

9 pure :: t -> Expr ts t

10 pure = Pure

11 (<*>) :: Expr ts (t -> r) -> Expr ts t -> Expr ts r

12 Pure f <*> x = fmap f x

13 Apply f g <*> x = Apply (Apply f g) x

14 (<*>) _ _ = error "Expr: unsupported constructor for application."

Figure 7: Applicative and functor instances for Expr.

The implementation of applicative and functor type allows native Haskell
functions to be lifted into the embedded language. We can now construct ex-
pressions compositionally using familiar idioms such as (<$>) (fmap) and (<*>)

(sequence), instead of introducing new syntax. The applicative instance defines
how function application is encoded as a nested tree of Apply nodes. When <*>

is used on an Apply, the implementation nests constructions of an Apply node:

1 Apply (Apply f g) x

And applying a function to a value stored in a Ticked or Index node results in
a new Apply node:

1 fmap f (Ticked lu) = Apply (Pure f) (Ticked lu)

We can now apply the functions fst' and snd' which extracts the values
from a pair. The predicate from Figure 6 is now more concise and readable, see
Figure 8.

Zip predicate

1 Always $

2 Now ((fst' <$> (Index First)) |==| (Index Second)

3 `And`

4 Now ((snd' <$> (Index First)) |==| (Index Third)

Figure 8: Zip predicate from Figure 6
transcribed to our specification language.

Note that the constructors may not be of same type, making it impossible to

22

make an Eq instance for Expr. Instead, we compare values using the applicative
style:

1 (|==|) :: (Applicative f, Eq t) => f t -> f t -> f Bool

2 x |==| y = (==) <$> x <*> y

Now that we are able to express predicates in our language, we need to
compose signals under test into some state, such that we can access the values
when evaluating. For this particular example, we need to have the First,
Second and Third signal available to interact with using the Lookup language
constructs. For this we turn to the implementation of the system state.

23

4.2 Modelling system state as a type

One might initially assume that an Async Rattus program can simply be mod-
eled as a list of signals [Sig a]. Then, an evaluator function could be written
for the specification:

1 evaluate :: Pred ts t -> [Sig a] -> Bool

This representation is insufficient because the evaluator would have no way to
advance all signals in a way that mimics how signals behave when they produce
values in parallel. A more appropriate type would be Sig [a], representing a
signal that in each time step yields a list of values produced by a list of signals
[Sig a]. A value of the type Sig [a] could then be constructed as follows:

1 flatten :: [Sig a] -> Sig [a]

Here, the resulting signal produces a list where the n’th value in Sig [a]

corresponds to the value produced by the nth signal of [Sig a], as illustrated
in Table 3.

Time Sig a1 Sig a2 Sig a3 flatten [s1, s2, s3]

t0 a0 a10 a20 [a0, a10, a20]
t1 a1 a11 a21 [a1, a11, a21]
t2 a2 a12 a22 [a2, a12, a22]
...

...
...

...
...

Table 3: Illustration of flatten :: [Sig a] -> Sig [a]. Each row corre-
sponds to a time step, and each column represents a constituent signal. The
output signal produced by flatten is shown on the right.

This remains too restrictive: all signals must have the same type, namely
a. We therefore need a data structure that can represent a list of signals of
different types.

4.2.1 Heterogenous lists

A heterogeneous list (HList) is a special kind of list in which the values can
have different types. While a regular list contains terms (or values) of a specific
type, an HList carries a type-level list that describes the type of each individual
value.

To define such structure, we use the DataKinds language extension that
promotes data constructors to the type level. For instance, the cons operator :
is lifted to ':, such that we can construct a type-level list. To understand how
this works, it’s helpful to understand the idea of a kind.

24

In Haskell, a kind classifies types in much the same way that a type classifies
values. For example, the list type constructor [] has kind Type -> Type, which
means it takes a type, such as Int, and produces a new type [Int]. On the
other hand, a value constructor like True corresponds to a single type Bool,
and therefore has kind Type. When list constructors are promoted as shown
previously, they become kind-polymorphic. This enables us to create type-level
lists of types such as '[Int, Maybe Int, Char].

HList type definition

1 {-# LANGUAGE DataKinds #-}

2 {-# LANGUAGE GADTs #-}

3

4 data HList :: [Type] -> Type where

5 HNil :: HList '[]

6 HCons :: !x -> !(HList xs) -> HList (x ': xs)

7

8 infixr 5 %:

9 (%:) :: x -> HList xs -> HList (x ': xs)

10 (%:) = HCons

Figure 9: HList definition, where '[] and ': are promoted type-level list con-
structors for the empty list and list construction, respectively.

Using the definition in Figure 9, we can construct a list of different types and
enjoy the benefits that come with type-safety. Consider the example of zipping
two signals, introduced in Section 4. In this case we must be able to hold three
signals of types (Int :* Char), Int, and Char in our model. An HList can
effectively model this list of different types:

1 ((1 :* 'a') :% 1 :% 'a' :% HNil) :: HList '[(Int :* Char), Int, Char]

Any function that operates on an HList must do so in a type-safe manner.
For instance the function first (HCons h _) = hmust be explicitly annotated
with the type signature first :: HList (a ': _) -> a to help the compiler
infer the return type of the function. This approach quickly breaks down in
attempts to generalize the function, as shown in Figure 10. The challenge lies
in the implication of a run-time term to a type that must be checked at compile-
time. Instead, we would like a function from a type to a (run-time) term. We
expand on this idea and implement it using a type class in Section 4.4.1.

25

Index function

1 -- Returns the n'th element of the list.

2 index :: HList (a ': as) -> Int -> ???

Figure 10: The index function illustrates the need for functions from types to
terms, as the Int argument determines which type to extract from the HList.
The Int argument is only known at run-time, therefore the compiler cant infer
the return type of the function at compile time.

Using the data type definitions introduced up to this point, we are able to
express the type Sig (HList (a ': as) as the state signal of our test.

4.2.2 Value definition

Recall the notion of a stuttering, introduced in Section 3.4. To improve the
specification we have worked on up to this point, we may wish to express that
zip also exhibits this stuttering behaviour, written in a temporal predicate in
Figure 11.

Stuttering predicate

1 Always $ Next (

2 (Not (Now (Ticked Second))

3 `And`

4 (Now (Ticked Third)))

5 `Implies`

6 (Now ((fst' <$> Index First) |==|

7 (fst' <$> Index (Previous First))))

8)

Figure 11: A predicate that the output of zip stutters, where First is the output
of zip, and Second and Third are input signals in the model.

To express this, we need to have notion of whether a signal produced its value
in the current timestep, or carried it over from a prior timestep. We use the
Ticked constructor to express this, along with Previous. These constructors
introduces two additional requirements to the model:

1. We must retain a history of values produced for all signals.

2. There must be a way to distinguishing new and carried-over values.

To accommodate these requirements, we define the Value data type illus-
trated in Figure 12. This type implements a flag that conveys if the value was
produced in the current timestep, alongside a list of values that a signal has
produced.

26

Value definition

1 {-# LANGUAGE GADTs #-}

2 import AsyncRattus.Strict

3

4 newtype HasTicked = HasTicked Bool deriving Show

5 data Value a where

6 Current :: !HasTicked -> !(List a) -> Value a

Figure 12: Value definition, where List is a strict variant of a list, imported
from AsyncRattus.Strict.

Using Value, we can define the type of the model as shown in Figure 13.
This structure sufficiently models the state of execution of an Async Rattus
program, providing the context in which predicates are evaluated. As seen in
Table 4, the model carries a flag and a history of values produced by the signal
up to a given state.

State type definition

1 newtype State ts t = Sig (HList (Value t ': ts))

Figure 13: The type encapsulating signals in a state of the test. This type is a
signal, that at each time step holds an HList of values.

Table 4 illustrates an example of the data type, holding two signals of dif-
ferent types. While the signal of characters produces a value in every timestep,
the signal of integers, carries over its former value in time step t1. This is a
visual representation of adding the two input signals from Table 2.3, to a State

data structure.

Time Sig s1
t0 [(T, [1]) %: (T, [’a’]) %: HNil]

t1 [(F, [1]) %: (T, [’b’, ’a’]) %: HNil]

t2 [(T, [2, 1]) %: (T, [’c’, ’b’, ’a’]) %: HNil]
...

...

Table 4: Visual representation of a sample value of type
Sig (HList '[Value Int, Value Char]). Each row corresponds to a
discrete time step, and each cell displays the current value of the signal at that
time. %: denotes infix HList construction, T denotes that the latest value of a
list was produced within the current time step and F denotes the latest value
was carried over from the prior time-step.

27

4.3 Evaluation semantics

We now turn to the implementation details of the evaluation of the language.
This section describes how the specification language introduced in Section 4.1
is evaluated, when tested over a state of the type introduced in Section 4.2.

Temporal predicate evluation function

1 evaluate' :: (Ord t) => Int -> Pred ts t -> Sig (HList ts) -> Bool

2 evaluate' timestepsLeft formulae sig@(x ::: Delay cl f) =

3 if IntSet.null cl

4 then evaluateSingle timestepsLeft formulae sig

5 else timestepsLeft <= 0 || case formulae of

6 Tautology -> True

7 Contradiction -> False

8 Now expr ->

9 case evalExpr expr x of

10 Pure b -> b

11 _ -> error "Unexpected error during evaluation."

12 Not phi -> not (eval phi sig)

13 And phi psi -> eval phi sig && eval psi sig

14 Or phi psi -> eval phi sig || eval psi sig

15 Until phi psi -> eval psi sig ||

16 (eval phi sig &&

17 evaluateNext (phi `Until` psi) advance)

18 Next phi -> evaluateNext phi advance

19 Implies phi psi -> not (eval phi sig && not (eval psi sig))

20 Always phi -> eval phi sig &&

21 evaluateNext (Always phi) advance

22 Eventually phi -> (eval phi sig ||

23 evaluateNext (Eventually phi) advance) &&

24 not (timestepsLeft == 1 &&

25 not (eval phi sig))

26 Release phi psi -> (eval psi sig && eval phi sig) ||

27 (eval psi sig &&

28 evaluateNext (phi `Until` psi) advance)

29 After n phi -> if n <= 0

30 then eval phi sig

31 else evaluateNext (After (n - 1) phi) sig

32 where

33 evaluateNext = evaluate' (timestepsLeft - 1)

34 eval = evaluate' timestepsLeft

35 advance = f (InputValue (IntSet.findMin cl) ())

Figure 14: Evaluator function for Pred does post-order traversal of the data
structure, returning the result if the predicate is false or has evaluated all time
steps left. Constructors such as Next and Always advance the system state
using LTL semantics.

To produce counterexamples in finite time, the evaluation of the predicates
are bound by the Int argument, specifying how many discrete time steps that
should be checked. The temporal operators evaluates the expression by using
the Haskell primitive boolean operators, recursively evaluating and advancing

28

the state of the Sig (HList (Value t': ts)) argument according to their
semantics. The anonymous advance function defined in the where clause (line
35) forces the delayed computation by emulating a tick on the smallest channel
of the clock of the state signal. This approach to advancing the state ensures the
model gives all signal an equal probability of producing a value, and the intuition
behind why we advance on the smallest channel is elaborated in Section 27. The
conditional logic on lines 3-5 are specific to shrinking and consequently explained
in Section 4.6.

The Now constructor calls the evalExpr evaluator function, and returns the
boolean value produced by the Expr context. The semantics of the temporal
operators differ slightly from those outlined in 2.4. This is due to the inherent
constraint of having to check a property in finite time. For instance, the until
semantics Until p q holds if q or p holds currently or in future steps. This is
a ”weak” until, as it does not promise the arrival of q. We defer discussion of
this limitation to Section 6.2.2.

Expr evaluation function

1 evalExpr :: Expr ts t -> HList ts -> Expr ts t

2 evalExpr (Pure x) _ = pure x

3 evalExpr (Apply f x) hls = (($) <$> evalExpr f hls) <*> evalExpr x hls

4 evalExpr (Index lu) hls =

5 case evalLookup lu hls of

6 Just' (Current _ (h :! _)) -> pure h

7 Just' (Current _ Nil) -> error "History not found for signal."

8 Nothing' -> error "Signal not found."

9 evalExpr (Ticked lu) hls = pure (evalTicked lu hls)

Figure 15: Evaluation of Expr

The evalExpr function interprets an Expr ts t against a snapshot of the
state at a current point in time. Line 3 of Figure 15 recursively evaluates the
apply nodes, ”fmapping” function application and sequencing another recursive
call on the argument to the apply node. Eventually, the recursive calls folds
down to a single pure Expr ts t, that can be returned. Line 4 looks up the
head of the current history for the specified signal, where empty histories throw
runtime errors. These branches should be unreachable, as we implement checks
to prevent these in Section 4.3.1. Finally, Ticked lu uses a helper function
evalTicked that returns a boolean value, wrapping this in an Expr context.
The evalLookup function interprets a Lookup ts t against the snapshot of the
state, provided by the Expr.

29

Lookup evaluation

1 evalLookup :: Lookup ts t -> HList ts -> Maybe' (Value t)

2 evalLookup lu hls = case lu of

3 Previous lu' ->

4 case evalLookup lu' hls of

5 Just' (Current b history) ->

6 case history of

7 _ :! xs -> Just' (Current b xs)

8 Nil -> Nothing'

9 Nothing' -> Nothing'

10 Prior n lu' -> case evalLookup lu' hls of

11 Just' v -> nthPrevious n v

12 Nothing' -> Nothing'

13 First -> Just' (first hls)

14 Second -> Just' (second hls)

15 Third -> Just' (third hls)

16 -- ...

17 Ninth -> Just' (ninth hls)

18

19 nthPrevious :: Int -> Value t -> Maybe' (Value t)

20 nthPrevious n curr@(Current b history)

21 | n <= 0 = Just' curr

22 | otherwise =

23 case history of

24 _ :! xs -> nthPrevious (n - 1) (Current b xs)

25 Nil -> Nothing'

26

27

Figure 16: Lookup evaluation function. The return type Maybe' (Value t)

signals that the value may not exist. Maybe' is strict variant of Maybe.

The evalLookup function implements the functions for accessing values in
the state signal. First corresponds to accessing the value at the first index of
the HList at this timestep, and so on. At last, we also introduce the evaluator
function for extracting the HasTicked value from a signal in the state. This is
shown in Figure 17.

30

Ticked evaluation

1 evalTicked :: Lookup ts t -> HList ts -> Bool

2 evalTicked lu hls = case lu of

3 Previous _ -> errorTickedPast

4 Prior _ _ -> errorTickedPast

5 First -> extract $ first hls

6 Second -> extract $ second hls

7 Third -> extract $ third hls

8 Fourth -> extract $ fourth hls

9 Fifth -> extract $ fifth hls

10 Sixth -> extract $ sixth hls

11 Seventh -> extract $ seventh hls

12 Eighth -> extract $ eighth hls

13 Ninth -> extract $ ninth hls

14 where

15 errorTickedPast = error

16 "Cannot check if signal has ticked in the past."

17 extract (Current (HasTicked b) _) = b

Figure 17: Ticked evaluation function. Returns a boolean, indicating whether
the specified signal has produced a value in the current timestep.

We haven’t experienced a need for keeping historical HasTicked values in
our data type and we therefore throw an error if we try to access a past value
of HasTicked using Previous or Prior. In all other cases, the value is decon-
structed to extract the boolean flag of HasTicked of the Value.

4.3.1 Scope check

An attentive reader might have noticed that it’s possible to inspect the past
before the model has taken enough steps to make that past available. Consider
the following example:

1 Always (Now (Previous (Index First) |==| (Index First)))

This formula tries to compare the current and previous values of the first
signal right from the very beginning. But at the first time step, the past doesn’t
exist yet! This is precisely why the functions evalExpr and evalTicked are
partial: they may encounter expressions that refer to undefined past values,
especially during the early steps of evaluation. The constructors Previous and
Prior could have alternatively been implemented purely in terms of the future,
which aligns more closely with LTL semantics. That is, instead of looking into
the past as we do, we could instead advance the state for this branch of the
AST by implementing an operator like NextValue in the Lookup type:

1 Always (Now ((Index First) |==| NextValue (Index First)))

31

We choose to implement Previous and Prior as it offers a language that is
closer to the specification of certain signal combinators of Async Rattus. This
approach emerges from our approach of examining Async Rattus combinator
functions, to define a language. For instance, the signal combinator buffer of
Async Rattus, takes a signal as input, and returns the same signal, but always
one time step behind the original signal:

1 -- Buffer takes an initial value and a signal as input and returns a signal

2 -- that is always one tick behind the input signal.

3 buffer :: Stable a => a -> Sig a -> Sig a

4 buffer x (y ::: ys) = x ::: delay (buffer y (adv ys))

buffer suggests we should be able compare the value of the buffered signal
with the previous value of the input signal. To ensure predicates are well-
formed, we require that all uses of Previous or Prior occur within the scope of
a sufficient number of Next constructors. This guarantees that enough time has
passed for the historical references to be valid. This rule is enforced by invoking
checkScope prior to property evaluation.

32

Lookup evaluation

1 checkScope :: Pred ts t -> Bool

2 checkScope p = checkPred p 0

3

4 checkPred :: Pred ts t -> Int -> Bool

5 checkPred predicate scope =

6 valid scope &&

7 case predicate of

8 Tautology -> valid scope

9 Contradiction -> valid scope

10 Now expr -> valid (checkExpr expr scope)

11 Not p -> checkPred p scope

12 And p1 p2 -> checkPred p1 scope && checkPred p2 scope

13 Or p1 p2 -> checkPred p1 scope || checkPred p2 scope

14 Until p1 p2 -> checkPred p1 scope && checkPred p2 scope

15 Next p -> checkPred p (scope + 1)

16 Implies p1 p2 -> checkPred p1 scope && checkPred p2 scope

17 Release p1 p2 -> checkPred p1 scope && checkPred p2 scope

18 Always p -> checkPred p scope

19 Eventually p -> checkPred p scope

20 After n p -> checkPred p (scope + n)

21 where

22 valid s = s >= 0

23

24 checkExpr :: Expr ts t -> Int -> Int

25 checkExpr expr scope =

26 case expr of

27 Pure _ -> scope

28 Apply fun arg -> min (checkExpr fun scope) (checkExpr arg scope)

29 Index lu -> checkLookup lu scope

30 Ticked lu -> checkLookup lu scope

31

32 checkLookup :: Lookup ts t -> Int -> Int

33 checkLookup lu scope =

34 case lu of

35 Previous lu' -> checkLookup lu' (scope - 1)

36 Prior n lu' -> checkLookup lu' (scope - n)

37 _ -> scope

Figure 18: Functions to check that that Previous and Prior constructors are
always used in the scope sufficient amount of Next operators to avoid looking
too far into the past.

This function performs a traversal of the predicate, passing an integer argu-
ment to indicate if any subtree of the AST has a Previous outside the scope of
a Next. These functions could possibly be lifted to the type system as well in
future.

4.4 Constructing a model instance

In the previous sections, we introduced the language constructs, data structures
and evaluation logic. To be able to make a QuickCheck property, we still lack

33

the ability to:

• Generate arbitrary signals, and

• Use these signals to make an instance of the model

The functions described in this section enable us to construct signals of the
State type defined in Section 4.2. In doing so, we must employ some type-level
programming to work with the model.

4.4.1 Flatten

We want to implement a convenience function that returns a State. Semanti-
cally it should work as flatten described in 4.2, but lifted with HLists to the
following type signature:

flatten :: HList (Sig a ': as) -> Sig (HList (Value a ': as)).

Flatten 19 is implemented as a multi-parameter typeclass with a single func-
tion, as shown in Figure 19.

Flatten typeclass

1 class Flatten sigs vals | sigs -> vals where

2 flatten :: HList sigs -> Sig (HList vals)

Figure 19: Flatten typeclass.

Because we work with an HList, we can’t expect the compiler to infer the
return type without guidance. Therefore, using the functional dependency from
sigs to vals, we promise that the sigs type uniquely determines vals. This
constraint is needed to ensure GHC that there exists a mapping from the sup-
plied types of the HList, and it can safely try to resolve instances when given a
HList sigs. Using typeclasses in this way can be thought of as implementing
a function from a type to a term. For each type in the HList, the compiler is
able to resolve which instance that should be used for a supplied type, mapping
it to a term of a different type.

34

Recursive case instance flatten

1 -- Type constraints omitted for brevity.

2 instance Flatten (Sig a ': as) (Value a ': bs) where

3 flatten :: HList (Sig a : as) -> Sig (HList (Value a : bs))

4 flatten (HCons h t) = prepend h (flatten t)

5

6 prepend :: Sig t -> Sig (HList ts) -> Sig (HList (Value t ': ts))

7 prepend _ _ = -- Omitted for brevity

Figure 20: Recursive flatten instance traverses the HList argument, prepending
the signal to a flattened state signal structure. See Figure 22 for implementation
of prepend.

Prepend takes a signal and a state signal, and merges them into a new
version of the state signal. The state signal passed to prepend in this instance,
is a recursive call to flatten itself. This essentially means recursively traversing
all input signals in the HList and prepending each one to the system state. We
must also provide a base case for when the HList is empty, as shown in Figure
21.

Base case instance flatten

1 instance Flatten '[] '[] where

2 flatten :: HList '[] -> Sig (HList '[])

3 flatten HNil = emptySig

4

5 emptySig :: Sig (HList '[])

6 emptySig = -- Omitted for brevity

Figure 21: Base case for the flatten instance, returns an empty
Sig (HList '[]), ensuring that recursive calls to flatten (and prepend) type
checks.

Given that prepend expects as first argument a value of type Sig a, we
must ensure that any elements of the HList passed to flatten, exclusively holds
signals. To ensure that each signal can be integrated into the state signal, it
must be possible to traverse the type-level list of types and ensure the compiler
that we have an instance of flatten, capable of managing this type. To achieve
this, we apply the Flatten constraint in the instance for the non-empty HLists.
This makes sure that the compiler is informed that every element of the HList
can be flattened and prepended to the state signal. Additional constraints of
Stable a => and Falsify bs => are needed for the instance too. The need for
these arises from the implementation of prepend and are therefore introduced
in the following section.

35

4.4.2 Prepend

The prepend function handles the logic of adding a new signal to the state
signal. The first element of the new signal x is wrapped in the Value type, and
added as the first element of the HList y, creating the new HList of the first
time step of the state signal. As signals always produce a value in their first
timestep, we default the value of HasTicked to True. The list is constructed as
a strict list, using the :! constructor.

Prepend function

1 prepend :: Sig t -> Sig (HList ts) -> Sig (HList (Value t ': ts))

2 prepend (x ::: xs) (y ::: ys) =

3 HCons (Current (HasTicked True) (x :! Nil)) y :::

4 prependAwait (x :! Nil) xs y ys

Figure 22: Implementation of prepend.

prependAwait represent all the recursive calls of prepend. Instead of ad-
vancing a single signal using adv, we instead make use of the Async Rattus
select [1]. The select operator handles the advancement when combining
two delayed computations, comparing the clocks of the two, and returning ei-
ther that, the first, the second or both delayed computations produced a new
value.

PrependAwait

1 prependAwait :: List t -> O (Sig t) -> hls -> O (Sig hls)

2 -> O (Sig (HList (Value t ': ts)))

3 prependAwait x xs y ys = delay (

4 case select xs ys of

5 Fst (x' ::: xs') ys' ->

6 (Current (HasTicked True) (x' :! x) %: toFalse y) :::

7 prependAwait (x' :! x) xs' y ys'

8 Snd xs' (y' ::: ys') ->

9 (Current (HasTicked False) x %: y') :::

10 prependAwait x xs' y' ys'

11 Both (x' ::: xs') (y' ::: ys') ->

12 (Current (HasTicked True) (x' :! x) %: y') :::

13 prependAwait (x' :! x) xs' y' ys')

Figure 23: Implementation of prependAwait.

In the first case of the select, only the new signal produced a new value.
Therefore we add the value produced, and set the HasTicked value to True.
As none of the signals within the state signal produces a new value in this
timestep, we must carry over the value(s) from the former time step and set all
the HasTicked values of these to False. The toFalse function recursively goes

36

through the HList of values and modifies only the HasTicked value within the
Value type. We once again write this as a new typeclass.

Falsify

1 class Falsify ts where

2 toFalse :: HList ts -> HList ts

3

4 instance Falsify '[] where

5 toFalse :: HList '[] -> HList '[]

6 toFalse _ = HNil

7

8 instance (Falsify ts) => Falsify (Value t ': ts) where

9 toFalse :: HList (Value t : ts) -> HList (Value t : ts)

10 toFalse (HCons (Current _ x) t) =

11 Current (HasTicked False) x %: toFalse t

Figure 24: Implementation of Falsify typeclass and toFalse instances

In the second case of the select, only the state signal produces a new value.
That is, at least one of the signals represented in the state signal has produced
a new value in the current timestep, while the new signal does not. In this case,
we carry over the former value of the new signal and set the HasTicked value
to False.

The Both case resembles the case where both the new signal and the state
signal produces a new value. When a value is produced in one of the three
cases, a delayed computation is added to this value to continue the signal struc-
ture of the new state signal. This delayed computation is a recursive call to
prependAwait, handling the next time step of the new state signal, based on
when the next values are produced. For the prepend and prependAwait func-
tions, we implement them with the following constraints:

(Stable t, Stable (HList ts), Falsify ts)

The stable constraints are needed, because we potentially move values from
a current time step into future time steps. This happens in the case where the
new signal doesn’t update, or the state signal doesn’t update. Therefore, we
have the constraint on both a single value t and HList ts, such that we know
the types are stable and safe to move into the future. Finally, we can use flatten
and prepend to initialize our test state, as shown in Figure 25.

37

Property-based test of zip

1 prop_zip :: Property

2 prop_zip = forAll genDouble $ \(ints, chars) ->

3 let zipped = zip ints chars

4 state = prepend zipped

5 $ prepend ints

6 $ flatten (HCons chars HNil)

7 predicate = Always $

8 Now ((fst' <$> (Index First)) |==| (Index Second))

9 `And`

10 (Now ((snd' <$> (Index First)) |==| (Index Third)))

11 result = evaluate predicate state

12 in result

13 where

14 genDouble = do

15 ints <- (arbitrary :: Gen (Sig Int))

16 chars <- (arbitrary :: Gen (Sig Char))

17 return (ints, chars)

Figure 25: Flatten and prepend calls can be chained to produce a state for the
test. In this example, a state signal with 3 signals, corresponding to the state
signal of the example introduced in Section 4.

All that is left to do is to generate arbitrary signals that can be passed as
arguments to the property.

4.5 Arbitrary Signals

To leverage QuickCheck to test signals, we must extend its generator framework
to support the Sig a type. We do this by implementing the Arbitrary instance
for signals, see Figure 26.

Arbitrary Instance for Sig a

1 instance (Arbitrary a) => Arbitrary (Sig a) where

2 arbitrary :: Gen (Sig a)

3 arbitrary = arbitrarySig 100

Figure 26: Limiting signals to length 100 for bounded testing.

Here, we generate signals of length 100. The default of 100 signal values
provides a balance between covering a wide range of asynchronous behaviors,
while maintaining practical test performance.

38

Signal Generator

1 arbitrarySig :: (Arbitrary a) => Int -> Gen (Sig a)

2 arbitrarySig n = do

3 if n <= 0

4 then error "Cannot create empty signals"

5 else

6 go n

7 where

8 go 1 = do

9 x <- arbitrary

10 return (x ::: never)

11 go m = do

12 x <- arbitrary

13 len <- chooseInt (1, 3)

14 cl <- genClock len

15 xs <- go (m - 1)

16 let later = Delay cl (_ -> xs)

17 return (x ::: later)

Figure 27: Line 16 constructs a delayed computation of type O (Sig a) that is
tied to the generated clock cl. The unused argument in the lambda function
(_ -> xs) represents the value that would have arrived externally as input on
one of the channels of the clock. Instead, the function returns the recursive call
to generate the tail of the signal. genClock is defined in Figure 28.

In each recursive case of the function, an element x is generated with arbitrary
and a clock cl is generated using genClock. The arbitrary keyword here is in-
herited from QuickCheck and can safely be used since the constraint (Arbitrary a) =>

promises a derives an arbitrary instance.

39

Clock generator

1 genClock :: Int -> Gen Clock

2 genClock n = case n of

3 1 -> do

4 x <- chooseInt (1,3)

5 return (IntSet.fromList [x])

6 2 -> frequency [

7 (1, return (IntSet.fromList [1,2])),

8 (1, return (IntSet.fromList [1,3])),

9 (1, return (IntSet.fromList [2,3]))

10]

11 3 -> return (IntSet.fromList [1,2,3])

12 _ -> error "Partial function doesnt support n > 3"

Figure 28: Clock generator strategy. The function genClock n returns a Clock

containing n channels. For n = 1, it selects one channel at random from {1,
2, 3}. For n = 2, it selects two distinct channels with equal probability for all
possible pairs. For n = 3, it returns all three channels. The function is partial
and raises an error if n > 3.

The clock for each delayed computation is represented by a set of integers. To
simulate asynchronous behavior, we arbitrarily assign each delayed computation
a clock drawn from subsets of {1, 2, 3}. During evaluation of the model, we then
advance the system state by selecting the smallest clock from the union of all
delayed computations’ clocks. This strategy is used in the evaluator illustrated
in Figure 14. This rule makes it possible to produce both synchronous ticks,
where signal updates at the same time, but also asynchronous sequences in
which some signals wait multiple time steps before advancing.

4.5.1 Heterogenous List generator

As presented in Figure 25, the test state is initialized by passing in an HList

of signals. Doing so required quite some boilerplate using flatten and prepend.
Using the arbitrary signal generator, introduced in section 4.5, we can now sim-
plify the manual work needed to initiate such tests, by implementing a generator
of type Gen (HList (Sig a ': as)).

40

HList generator instances

1 class HListGen (ts :: [Type]) where

2 generateHList :: Gen (HList (Map Sig ts))

3

4 instance HListGen '[] where

5 generateHList = return HNil

6

7 instance (Arbitrary (Sig t), HListGen ts) => HListGen (t ': ts) where

8 generateHList = do

9 x <- arbitrary

10 xs <- generateHList @ts

11 return (x %: xs)

Figure 29: Recursively generating arbitrary signals for each type in the type
list.

For each element of the input list of types, we use arbitrary to generate
the signal, which is safe to do by using the constraint Arbitrary (Sig t). By
leveraging Haskell type families, users can declare the element type they wish to
generate, and the type family implementation is then able to resolve this at the
type level to its corresponding signal type. This enables the compiler to select
the correct generator instance for that specific signal type, while simplifying
how we generate signals. We implement a type-level map function so that the
type of our HList is HList (Map Sig ts). The Map type family applies the
Sig constructor to each element of the type list, and ensures that we generate
signals of that type.

HList generator

1 type family Map (f :: Type -> Type) (xs :: [Type]) :: [Type] where

2 Map f '[] = '[]

3 Map f (x ': xs) = f x ': Map f xs

Figure 30: Using type families, we can apply functions at the type-level.

While this would work, the type of the generator would have to be annotated
explicitly in the test. It also lacks any way to generating an HList with a
single signal, because the type parameter [Type] says it must be a list of types.
Instead, the type applied should be kind-polymorphic.

41

ToList typeclass

1 type family ToList (a :: k) :: [Type] where

2 ToList (a :: [Type]) = a

3 ToList (a :: Type) = '[a]

Figure 31: The ToList type family is a type level function that turns a type
parameter a of some kind k to a list of types. By pattern matching on the
type of a, we can create a singleton type-level list if a has kind Type, otherwise
if the kind is already [Type], return a. This functionality is enabled by the
PolyKinds pragma, which allows for polymorphism on kind level.

We can now leverage HListGen, Map and ToList to assemble a single conve-
nience function to generate multiple signals.

generateSignals function

1 generateSignals :: forall a. HListGen (ToList a) =>

2 Gen (HList (Map Sig (ToList a)))

3 generateSignals = generateHList @(ToList a)

Figure 32: The TypeApplications pragma provides a particularly succinct syn-
tax to apply the type parameters directly to generateHList using @, removing
the need to supply any values for type inference.

Final zip property

1 prop_zip :: Property

2 prop_zip = forAll (generateSignals @[Int, Char]) $ \signals ->

3 let zipped = zip (first signals) (second signals)

4 state = prepend zipped $ flatten signals

5 predicate = Always $

6 Now ((fst' <$> (Index First)) |==| (Index Second))

7 `And`

8 (Now ((snd' <$> (Index First)) |==| (Index Third)))

9 result = evaluate predicate state

10 in result

Figure 33: The zip property in its final form

This implementation now allows us to call a single function to generate an
HList of signals, directly supplying the types to generate with a particularly
succinct syntax, as seen in Figure 33. The only piece of the puzzle left is to
define a shrinking strategy.

42

4.6 Shrinking signals

Since the signal data structure in our implementation closely resembles a list,
we draw significant inspiration from QuickCheck’s shrinking strategy for lists,
rather than reinventing the wheel [6]. However, because signals are by definition
non-empty and involve time-dependent computations, we must adapt the stan-
dard approach to account for these properties. To do this, we convert signals
into a shrinkable signal structure, that keeps both values and the clocks tied to
each time steps’ delayed computation with the type:

type TSig a = [(a, IntSet.IntSet)]

This allows us to reuse large parts of the shrink implementation for lists.
We avoid shrinking the clocks of each time steps delayed computation, as the
shrunken signals should reflect the same clock strategy as introduced in Section
4.5. We can now take the signal provided to the shrink function, turn it into a
TSig a, shrink it, and convert it back into a Sig a, using the values and clocks
saved in the structure. To achieve this, we define following functions:

Conversion functions to and from TSig

fromTSig :: TSig a -> Sig a

fromTSig [] = error "Testable signals are non-empty"

fromTSig [(x, _)] = x ::: never

fromTSig ((x, cl) : xs) =

if IntSet.null cl

then x ::: never

else x ::: Delay cl (_ -> fromTSig xs)

toTSig :: Sig a -> TSig a

toTSig (x ::: (Delay cl f)) =

if IntSet.null cl

then [(x, IntSet.empty)]

else (x, cl) : toTSig (f (InputValue (IntSet.findMin cl) ()))

Now that we’re able to convert signals into our desired data type, we turn to
the design and implementation of the corresponding shrink function of Figure
34.

43

shrinkSignal function

shrinkSignal :: (a -> [a]) -> Sig a -> [TSig a]

shrinkSignal shr sig@(_ ::: (Delay cly _)) =

if IntSet.null cly

then shrinkOne testableSignal shr

else concat [removes k n testableSignal

| k <- takeWhile (>0) (iterate (`div`2) n)]

++ shrinkOne testableSignal shr

where

n = sigLength sig

testableSignal = toTSig sig

Figure 34: The shrinkSignal implementation, given a shrinking function and a
signal, to create a list of shrink candidates of type [TSig a]

The shrinking strategy of shrinkSignal is split into two steps:

• Segment removals

• Value shrinking

The first step removes (initially large) contiguous segments of progressively
smaller sizes. The removes function decomposes the input list into pairs of
prefix and suffix sublists, each removing a contiguous segment. The prefix and
suffix are then concatenated to produce combinations with removed segments.
This process is recursively applied to the sublists, with the (++) operator used
to reconstruct simplified versions of the original list. In doing so, removes

produces a list of shrink candidates.

Removing segments

removes :: Int -> Int -> TSig a -> [TSig a]

removes k n tupleLs =

if k >= n

then []

else let xs1 = take k tupleLs

xs2 = drop k tupleLs

in xs1 : xs2 : map (xs1 ++) (removes k (n-k) xs2)

Figure 35: Removes produces the combinations of prefixes and suffixes, remov-
ing a segment of size k. Argument n is the length of the supplied list.

QuickChecks implementation of shrinking defines the smallest counterexam-
ple as the empty list [6]. As signals always has at least one element, we define
the smallest possible counterexample of a signal to be one element.

To illustrate the shrinking process, we use the following example:

44

Test predicate

inputSignal = (0 ::: 2 ::: 4 ::: never) :: Sig Int

predicate = Always $ Now ((Index First) < (Pure 3))

Figure 36: A Sig Int and a predicate to test that values are strictly smaller
than 3. The syntax is pseudo code, not displaying the clocks of each delayed
computation.

Following the logic of the shrinkSignal function, the first iteration of the
shrink produces the segment removals. The result of removing these yields the
lists:

1 [[0], [2,4], [0,2], [0,4]]

This list is converted to signals and fed back to the test, continuing the
iterative approach of shrinking. However, we also want to shrink individual
values, to find smaller counterexamples. For instance, the smallest possible
counterexample in this example must be the signal of one element with the
value 3. This values is not present in the signal, and to find this smallest
counterexample, we must shrink values too. We implement the shrinking of
individual elements in the shrinkOne function.

shrinkOne function

shrinkOne :: TSig a -> (a -> [a]) -> [TSig a]

shrinkOne [] _ = error "Testable signals are non-empty"

shrinkOne [(x, cl)] shr = [[(x', cl)] | x' <- shr x]

shrinkOne ((x, cl) : xs) shr = [(x', cl) : xs

| x' <- shr x] ++

[(x, cl) : xs'

| xs' <- shrinkOne xs shr]

Figure 37: Shrinking individual elements of the TSig type.

The function (a -> [a]) provided to shrinkOne, represents a shrink value
for a single element. We leverage the QuickCheck implementation of shrinking
individual values of base types. The first iteration of shrinking the signal from
Figure 36 is illustrated in 38.

Example use of shrinkSignal

[[0],[2,4],[0,2],[0,4],[0,0,4],[0,1,4],[0,2,0],[0,2,2],[0,2,3]]

Figure 38: First iteration of shrinking the signal presented in Figure 36

45

These new candidates are then converted into signals, and evaluated against
the property of the test case. QuickCheck applies this evaluation iteratively,
traversing the list of shrunken signals from left to right and breaking out as soon
as it encounters a signal that violates the predicate. This strategy, combined
with the strategy of adding the smallest shrunken signal leftmost in the list,
makes the shrinker efficient, by being able to break out early on small failing
counterexamples. For the example property in 36, QuickCheck will catch the
first failing case of this shrink iteration as [2,4]. This is converted into a signal,
and is tested against the property continuing the same shrinking procedure, and
this cycle repeats until no further reduction is possible or until the shrunken
signals no longer fail the property. Each of the iterations of shrinking this
example, is illustrated in Figure 39.

> Shrinking signal of values [0,2,4]

Shrink iteration 1, candidate [0,2,4]:

[

[0], → Passed

[2,4], → Failed

... (unused shrink values ommited from example)

]

Shrink iteration 2, candidate [2,4]:

[

[2], → Passed

[4], → Failed

... (unused shrink values ommited from example)

]

Shrink iteration 3, candidate [4]:

[

[0], → Passed

[2], → Passed

[3], → Failed

]

Shrink iteration 4, candidate [3]: (No failing cases for this iteration)

[

[0] → Passed

[2] → Passed

]

*** Failed! Falsified (after 1 test and 3 shrinks):

[3]

Figure 39: All shrinking iterations for the signal when testing the predicate from
Figure 36.

Smaller counterexamples are found in the first three iterations of shrinking.
As the fourth iteration only produces new signals that pass the test, we avoid
further shrinking of the candidates. Figure 39 demonstrates the shrink iterations

46

that QuickCheck performs internally to minimize a failing signal. In typical
usage, users are shown only the final output, indicating the test failure and the
smallest counterexample.

As users may produce multiple signals for testing using the generateHList
function (see Figure 29), we likewise provide a shrinker for this type, imple-
mented with a typeclass to accommodate HLists.

ShrinkHList typeclass

class ShrinkHList as where

shrinkHls :: HList as -> [HList as]

instance ShrinkHList '[] where

shrinkHls _ = []

instance (Arbitrary a, ShrinkHList as) => ShrinkHList (a ': as) where

shrinkHls (HCons x xs) =

[HCons x' xs | x' <- shrink x] ++

[HCons x xs' | xs' <- shrinkHls xs] ++

[HCons x' xs' | x' <- shrink x, xs' <- shrinkHls xs]

Figure 40: Typeclass and instances for traversing an HList and shrink each
signal within.

We use list comprehensions to define three complementary shrinking strate-
gies, each producing a list of HLists. The three strategies involve:

• Shrinking only the head signal.

• Shrinking only the tail signals.

• Shrinking both head and tail signals.

By combining these, we generate shrinks that explore signals that are ad-
vanced independently from each-other.

4.6.1 Adaptive evaluation

The evaluator introduced in Section 4.1 runs tests over a default of 100 time
steps. However, this number must always be less than or equal to the length
of the state signal. If the number of time steps remains fixed, this can lead to
a type of out-of-bound error. There are two main situations where this may
occur:

• Shrunken signals: during test case shrinking, a generated signal may be
shortened to be shorter than the fixed number of time steps evaluated.

• Predicate requirements: some properties might implicitly or explicitly re-
quire a minimum number of steps (e.g., temporal operators like “next”).

47

To avoid these issues, the number of time steps should either adapt to the
signal length or ensure that all generated signals are always long enough to
support the required evaluation.

minSigLengthForPred function

minSigLengthForPred :: Pred ts t -> Int -> Int

minSigLengthForPred predicate acc =

case predicate of

Not p -> minSigLengthForPred p acc

And p1 p2 -> minSigLengthForPred p1 acc `max`

minSigLengthForPred p2 acc

Or p1 p2 -> minSigLengthForPred p1 acc `max`

minSigLengthForPred p2 acc

Until p1 p2 -> minSigLengthForPred p1 acc `max`

minSigLengthForPred p2 acc

Next p -> minSigLengthForPred p (acc + 1)

Implies p1 p2 -> minSigLengthForPred p1 acc `max`

minSigLengthForPred p2 acc

Release p1 p2 -> minSigLengthForPred p1 acc `max`

minSigLengthForPred p2 acc

Always p -> minSigLengthForPred p acc

Eventually p -> minSigLengthForPred p acc

After n p -> minSigLengthForPred p (acc + n)

_ -> acc

Figure 41: This function traverses a predicate, and returns the amount of time
steps needed to evaluate this predicate once.

To check the number of time steps needed to check a given Pred ts t, we
traverse the predicate, using the minSigLengthForPred function in Figure 41.
Using an accumulating argument, we increment at each Next operator and add
the integer provided to each After operator if any are present. Note that when
writing predicates, we can use Next or After in different branches of the AST.

Predicate using two time steps

predicate = Always (

Next ((Now (Index First)) |==| (Now (Index (Previous First)

`And`

Next ((Now (Index Second)) |==| (Now (Index (Previous Second))

)

Figure 42: A predicate, using the Next operator twice, but as they are in dif-
ferent scopes, only two time steps are needed to evaluate.

For instance, in Figure 42, Next is used in two different branches of the
AST, namely the left-side and the right-side of the And operator. As these are
in different scopes of the predicate, we only need one additional time step to

48

test the predicate once. In other words, the smallest possible signal that fails
this property must have a minimum of two time steps. We implement this tak-
ing the `max` of each branch, representing the maximum amount of time steps
needed to evaluate each branch of the predicate. When the value returned by
minSigLengthForPred exceeds the number of time steps in the state signal,
we choose to pass this test by default. If we allowed these signals to fail, the
implementation of shrink would continue reducing them, never finding a valid
counterexample, but simply chasing smaller and smaller, untestable inputs. By
defaulting signals of too few time steps as passing, we ensure that shrinking stops
at the shortest signal that still meets the length requirement and genuinely fails
the predicate. This produces the minimal counterexample, reflecting the actual
cause of the failing test.

Additionally, we implement a function to evaluate a single timestep, without
advancing on the delayed computation of the state signal. For instance, assume
that the state signal has only two time steps, at the current state in the process
of shrinking, and that the predicate under test is the one described in Figure
42. The evaluator now adapts to only evaluate two time steps, as we don’t have
anymore available in the state signal. Evaluating Always would advance on the
state signal twice. However, we also express that we want to use a Next value
within the predicate. This means that the evaluator will incorrectly try and
advance on the state signal thrice. Therefore, we implement evaluateSingle
as shown in Figure 43, to avoid advancement on a delayed computation, that
never emits new values.

49

evaluateSingle

evaluateSingle :: (Ord t) => Int -> Pred ts t -> Sig (HList ts) -> Bool

evaluateSingle timestepsLeft formulae sig@(x ::: _) =

timestepsLeft <= 0 || case formulae of

Tautology -> True

Contradiction -> False

Now expr ->

case evalExpr expr x of

Pure b -> b

_ -> error "Unexpected error during evaluation."

Not phi -> not (eval phi sig)

And phi psi -> eval phi sig && eval psi sig

Or phi psi -> eval phi sig || eval psi sig

Until phi psi -> eval psi sig || eval phi sig

Next _ -> True

Implies phi psi -> not (eval phi sig && not (eval psi sig))

Always phi -> eval phi sig

Eventually phi -> eval phi sig

Release _ _ -> True

After _ _ -> True

where

eval = evaluateSingle timestepsLeft

Figure 43: A function evaluating a single timestep. Exclusively used for
shrunken signals, when the state signal no longer has delayed computations
to advance on. Cases that normally advanced this state, is defaulted to return
True or only evaluate in the current timestep.

Returning a default True or evaluating parts of the proposition, without
advancing the state, stems from the same reason as mentioned earlier in this
section. If we cannot find a counterexample in this evaluation, the test must
pass, such that the shrinking mechanism provides the correct smallest possible
counterexample.

50

5 Case Study: Testing a timer application

In this case study, we showcase PropRatt’s capabilities by testing a real-world
reactive application: an externally sourced GUI timer [9].

When the timer is initiated, a counter starts at 0 and increments once per
second. A duration may be set by the user at any time using a slider in the
GUI, and when the counter hits this value, it must stop incrementing. The user
may also reset the counter by pressing a button. The counter will then start
counting from 0 again. The program includes a signal that emits the timer’s
current second count at fixed intervals. We denote this as the counter signal.
The full specification for the program is formally defined in [10].

Timer source code

everySecondSig :: O (Sig ())

everySecondSig = Delay (IntSet.fromList [2]) (_ -> () ::: everySecondSig)

nats :: O (Sig ()) -> (Int :* Int) -> Sig (Int :* Int)

nats later (n :* max) = stop

(box (\ (n' :* max') -> n' >= max'))

(scanAwait (box (\ (n' :* max') _ -> (n' + 1) :* max'))

(n :* max) later)

resetTuple :: (Int :* Int) -> (Int :* Int)

resetTuple (_ :* max) = (0 :* max)

setMax :: Int -> (Int :* Int) -> (Int :* Int)

setMax max' (n :* _) = ((min n max') :* max')

timerState :: Sig () -> Sig Int -> Sig (Int :* Int)

timerState (_ ::: rr) sliderSig@(_ ::: ss) =

let resetSig = mapAwait (box (\ _ -> resetTuple)) rr

currentMax = current sliderSig

setMaxSig = mapAwait (box setMax) ss

inputSig = interleave (box (.)) resetSig setMaxSig

inputSig' = mapAwait (box ((nats everySecondSig) .)) inputSig

counterSig =

switchR ((nats everySecondSig) (0 :* currentMax)) inputSig'

in counterSig

Figure 44: The composition of signals produces the timerState signal, that
contains a pair of the current timer value and the max duration value. This is
the core logic of the timer example.

We use the implementation from the source that creates the counter signal
[9]. However, to fit this into our model, we must modify the implementation of
the signal, that produces values every second. We create this with a fixed clock
channel of 2. This channel ensures that the everySecondSig signal ticks at a
fixed rate, allowing other signals to tick at the same time and in between the
intervals of this signal ticking. The user input signals are arbitrarily generated,

51

using the same strategies as presented in Section 4.5. The generated signals are
passed as arguments to the timerState function and the result is prepended to
the state signal of the test.

Up to this point, we have worked under the assumption that all signals in
a test should have en equal probability of producing a value at any given time
step. When applied to this example, the rate at which the reset signal produces
a value, would possibly be more often than the use case in practice. This could
yield a timer signal that never reaches its max duration, rendering any property
involving the max duration futile.

In our tests, we want as much as possible to mimic a sample execution
of the program, where the user may not reset as often as the counter signal
produces values. We want to allow the timer signal to tick more often than the
reset signal, and we therefore introduce a weighted arbitrary generator. This
generator is implemented much like in section 4.5. The difference here is the
strategy for generating clocks. We now generate clock channels that, with a
higher frequency, emits the clock channel 3. When using the strategy of always
advancing on the smallest clock during execution, introduced in Section 4, we
are now able to simulate that users less often interacts with the reset button.

Weighted clock channel generator

genClockChannelWeighted :: Gen Int

genClockChannelWeighted = frequency [(1, pure 1),

(1, pure 2),

(50, pure 3)]

Figure 45: Generator with higher frequency of channel 3 simulates fewer signal
updates because the evaluation semantics shown in Figure 14 selects the smallest
channel to advance in a given clock.

We leverage QuickChecks frequency combinator to specify that 3 is gener-
ated with a higher probablity of 1 and 2. Additionally, the slider signal handling
the maximum value that the counter can increment to, must not be entirely arbi-
trarily generated. As QuickCheck generates both positive and negative integers,
we need to constrain this, as we don’t want the maximum value of the timer to
be a negative integer.

52

Constructing the slider and reset signal

genPair = do

slider <- (arbitrarySigWith 100 (chooseInt (0, 100)) :: Gen (Sig Int))

reset <- (arbitrarySigWeighted 100 :: Gen (Sig (())))

return (reset, slider)

Figure 46: Arbitrary generation of slider and reset signals, using a custom range
of integers and a weighted clock channel strategy.

The setup for all tests will be structured as shown in Figure 47.

Setup for timer testing

prop_?? :: Property

prop_?? = forAllShrink genPair shrink $ \(reset, slider) ->

let counterSig = timerState reset slider

state = prepend counterSig $ prepend reset

$ singletonH slider

predicate = ??

result = evaluate predicate state

in counterexample (show state) result

where

genPair = do

slider <- (arbitrarySigWith 100 (chooseInt (0, 100))) :: Gen (Sig Int)

reset <- (arbitrarySigWeighted 100 :: Gen (Sig (())))

return (reset, slider)

Figure 47: Setup for testing timer example. singletonH is a utility function to
produce a singleton HList of a single signal.

The timerState function returns a signal of pairs, representing the counter
and the max value. The leftmost value of the pair corresponds to the timer,
incrementing at fixed intervals, and the rightmost value corresponds to the
maximum value of the timer. With this setup, we test the following properties:

Property: State is correctly initiated At first, we examine a simple spec-
ification of the program. For the timer to work as intended, it must be initiated
correctly.

53

Initial state is correct

1 predicate = Now ((fst' <$> (Index First)) |==| (Pure 0))

2 `And`

3 (Now ((snd' <$> (Index First)) |==| (Index Third)))

Figure 48: The initial state of the timer program must have the counter signal
start at 0 while the maximum of the pair signal is the same as the maximum
set by default in the maximum signal.

The timer should always start its counter at 0, and the pair signal at first
index of the state, should reflect this, as well as it should reflect the default max-
imum value. This property should hold for all timer programs, and represents
a basic functional property based test of the program.

Property: Counter Never Exceeds Maximum Value The intended be-
havior of the timer is that the counter signal must stop counting, as soon as it
hits the maximum value. Therefore, it must be true for all programs, that the
counter signal is equal to or smaller than the maximum signal. We express this
with the following predicate:

Counter Never Exceeds Maximum

1 predicate = Always $

2 Now ((fst' <$> Index First)

3 |<=|

4 (snd' <$> Index First))

Figure 49: A predicate expressing the property that the counter never should
exceed the maximum value set by the slider.

This property works on the timer state signal exclusively, and verifies that
the first value of the pair, namely the counter signal value is always smaller than
or equal to the second value of the pair.

Property: Counter is strictly monotonically increasing The timer should
always be monotonically increasing. In other words, the counter must continu-
ously increment or stop once the maximum value has been reached. We express
this in the following property:

54

Strictly monotonically increasing

1 Always $

2 Next $

3 Implies

4 (

5 (Now (Ticked First)) `And` ((Not (Now (Ticked Second))

6 `And`

7 (Not (Now (Ticked Third)))))

8)

9 (

10 Now(

11 ((fst' <$> (Index First))

12 |>|

13 (fst' <$> (Index (Previous First)))))

14)

Figure 50: A more complex specification, expressing that the counter signal
always strictly monotonically increases its value.

This property asserts that if the counter signal is the only signal that ticks
in a given timestep, then its current value must be strictly greater than its value
in the previous timestep. In the cases, where the maximum or the reset signal
produces a value, the counter signal must use its previous value, when it hasn’t
produced a new value itself. This is the intended behavior, when maximum or
reset is interacted with at time steps, where the counter signal doesn’t advance.
These properties tested some of the basic properties, ensuring that the behavior
of the timer works as intended. Now lets examine a property that could find
more subtle bugs, caused if concurrent interactions aren’t handled properly.

Property: Concurrent interaction with reset and maximum value up-
dates accordingly We now investigate a more complex scenario involving
concurrent signal interactions. The timer’s logic must correctly handle con-
current inputs, like updating the maximum and resetting the timer, without
violating its invariants. To capture this, we express the following property:

55

Concurrent events should be handled correctly

1 Always $

2 Implies

3 (

4 (Now ((Ticked Second)))

5 `And`

6 (Now ((Ticked Third)))

7)

8 (

9 (Now (((Index Third)) |==| (snd' <$> Index First)))

10 `And`

11 (Now ((Pure 0) |==| (fst' <$> Index First))))

12)

Figure 51: Testing concurrent user interactions.

This property states that, if both the second and third signal updates, repre-
senting the interaction with the reset and maximum value, then it implies that
the maximum value has been updated, as well as the counter value has been set
to 0. If not implemented correctly, concurrency issues like this can be difficult
to catch.

All of the properties presented here are tested, yielding no counterexamples.
Although these results increase our confidence in the correctness of the timer
GUI application, they do not amount to a formal proof of correctness. Never-
theless, the specification language is sufficient in expressing and evaluating the
properties we wish to write.

56

6 Discussion

6.1 Related work

While PropRatt is unique in the way it enables testing of asynchronous behaviors
in Async Rattus, similar approaches has been used to test other FRP languages.

QuickStrom, another temporal specification language, also builds on LTL for
PBT [11]. For instance, splitting the Next operator into Required Next, Weak
Next and Strong Next. It builds upon RV-LTL which extends predicates from
returning true/false, to a logic that has four values [12]. This logic determines
whether predicates are presumptively or definitely true/false. Assume that a
predicate evaluates to true, but only because no counterexample is found in
finite time, then this logic would define it as presumptively true instead. To
control this behavior, QuickStrom requires the user to specify the exact number
of time steps to be checked. We have had similar considerations in designing
PropRatt, to be more expressive about why a predicate holds true, but these
have been left for future work of the framework.

Not unlike PropRatt, both Yampa and QuickStrom leverage QuickCheck to
generate input streams for testing [13] [11]. However, these frameworks operate
in purely synchronous settings and users explicitly choose strategies, such as
defining length and distribution of the generated data. In contrast, PropRatt
is specifically designed for asynchronous FRP, with a focus on reasoning about
how signals evolve in parallel with one another over time.

QuickRat is a PBT framework for testing Rattus [3]. While having differ-
ent design choices of implementation, its builds on some of the same concepts
as Yampa and QuickStrom [13] [11]. QuickRat aims at testing synchronous
Streams in Rattus, where one global clock determines when streams emits val-
ues. Here, two state machines are presented to be used for generating arbitrary
signals using LTL predicates. This differs from our implementation, as we ar-
bitrarily generate our input based on types provided by the user, rather than
specifically generating them for a use case specified by the LTL predicate.

6.2 Limitations

We now discuss the limitations we have found in our approach.

6.2.1 Dynamic signal combinators

Signal combinators that dynamically switch to another signal at runtime are
particularly tricky to test. To effectively test these, we must be able to get
answers to the following questions:

• Did the switch happen at the correct time?

• Are the values resulting from the switch correct?

57

Figure 52 shows the jump signal combinator, which is an example of such
a function. At the moment the signal ”jumps”, one may wish to test that
the jumped signal equals the signal bound in the boxed function argument
Box (a -> Maybe' (Sig a)). Arbitrarily generating a signal in a pure func-
tion presents its own host of challenges, but we would also have to predict when
the boxed function returns the Just' constructor.

Jump defintion

1 jump :: Box (a -> Maybe' (Sig a)) -> Sig a -> Sig a

2 jump f (x ::: xs) = case unbox f x of

3 Just' xs' -> xs'

4 Nothing' -> x ::: delay (jump f (adv xs))

Figure 52: Jump signal combinator function implementation from the
AsyncRattus.Signal module. Jump dynamically switches to the signal bound
in the function argument if the functions holds.

It is tempting to add the signal that the function returns to the state signal as
well, but this could cause prematurely advancements on a signal that normally
wouldn’t advance until returned by the function. This limitation can be worked
around by returning a constant signal in the boxed function, see Figure 53. By
knowing the values produced by the signal that is jumped to, the instant in
which it jumps can be predicted, and it can be tested that signal is constant
from that point on. While this solves the problem, it is not very intuitive nor
elegant.

Jump property

1 prop_jump :: Property

2 prop_jump = forAllShrink (generateSignals @Int) shrinkHls $ \intSignals ->

3 let jumpFunc = box (\n -> if n > 10

4 then Just' (const 1)

5 else Nothing')

6 jumpSig = jump jumpFunc (first intSignals)

7 state = prepend jumpSig $ flatten intSignals

8 predicate = Always $

9 Now ((Index First) |==| (Index Second))

10 `Or`

11 (Always $ Now ((Index First) |==| (Pure 1)))

12 result = evaluate predicate state

13 in result

Figure 53: Jumped signal should switch once the boxed predicate function re-
turns Just'.

Similar challenges are found in signal combinators that takes functions as
arguments, guarded by the later modality. Such example is switchS, see 54. Here

58

the function argument guarded by the later modality presents the problem of
having to know when the delayed computation arrives, which is tricky to predict
because it is tied to the smallest clock strategy. A value of type O (a -> Sig a)

can be produced as follows:

Delay (IntSet.fromList [1,2,3]) (_ a -> const a),

where the signal produced by the function is a constant of the argument
supplied. Because the clock channels are known ahead of time, the DSL could
possibly be extended to include a construct that allows users to express a state-
ment that is evaluated once the delayed computation ticks. It is however not
desirable to expose the internal primitives of Async Rattus needed to construct
a O (a -> Sig a) that arrives at a specific channel, as the level of abstraction
is too low (see Section 3.1).

SwitchS defintion

1 switchS :: Stable a => Sig a -> O (a -> Sig a) -> Sig a

2 switchS (x ::: xs) d = x ::: delay (case select xs d of

3 Fst xs' d' -> switchS xs' d'

4 Snd _ f -> f x

5 Both _ f -> f x)

Figure 54: SwitchS definition from AsyncRattus.Signal module. SwitchS
switches once, where the switched signal may depend on the last value of the
first signal.

The later modality introduces another problem, wherein if the user wishes
to prepend a later signal O (Sig a), to fit the state abstraction from Section
4.2, the delayed computation must be constructed as a signal that contains an
arbitrary ”dummy” value (because signals always carry a current value, see 1.
Figure 55 shows how this is achieved. This yields another awkward DSL rule
where values of type O (Sig a) must be referenced in the specification under
the Next constructor to advance the signal once to avoid using the dummy value
in the test.

PrependLater definition

1 prependLater :: (Stable t, Stable (HList ts), Falsify ts) =>

2 O (Sig t) -> Sig (HList ts) -> Sig (HList (Value t ': ts))

3 prependLater xs (y ::: ys) =

4 HCons (Current (HasTicked False) Nil) y ::: prependAwait Nil xs y ys

Figure 55: To construct a signal from O (Sig a), the head of the signal must
be a dummy value that must be discarded in the test.

59

6.2.2 Liveness properties

As discussed in Section 2.4.2, liveness properties, by definition, require infinite
execution traces. This is because any finite counterexample to a liveness prop-
erty can always be refuted by a later time stepwhere the property might hold.
As illustrated in Figure 14, the evaluation semantics for liveness operators de-
fault to true if no counterexample is found within a bounded execution, since all
evaluations are inherently limited to finite traces. This limitation significantly
limits the practical applicability of many LTL operators.

6.2.3 Absence of bugs

PBT reveals bugs if they are present, but cannot prove their absence. This is
also the case for PropRatt.

6.3 Future work

To enrich the DSL we could distiguinish between safety and liveness properties
by introducing new type definitions for these, parsing a Pred 5 to be either a
SafetyPred or LivenessPred. These types could be constructed via. smart
constructors that identify which temporal operators are used and returning the
corresponding type. Upon evaluation of a liveness predicate, the user could be
informed of the limitations such that they can act accordingly.

Another possible improvement is to allow users to configure or influence
the clock strategy. This might involve making several clock generators that
can be combined to specify signals that tick at different rates relative to each
other. Exposing this control requires intuitive abstraction, such as the following
suggestions:

• Policy-based configuration, where users select from predefined signal up-
date strategies (e.g., uniform, weighted, probabilistic, domain-specific pre-
sets).

• Declarative signal properties, where signals are annotated with metadata
(e.g., ”high frequency”, ”rarely ticks”), and DSL evaluates accordingly.

The challenge lies in how to make such an interface without forcing users to
reason about low-level clock management. Providing an interface at too low a
level introduces complexity and undermines the abstraction at which properties
are written currently.

60

7 Conclusion

In this thesis, we introduced PropRatt, a specification language and model to
facilitate the testing of Async Rattus. PropRatt is implemented as an eDSL,
allowing users to express temporal predicates over signals. The LTL-inspired
specification language enables the ability to reason about correctness of Async
Rattus programs. To achieve this, we introduce a model that effectively reflects
how signals of different types behave during an Async Rattus program execu-
tion. The model is realized using type-level programming techniques enabled by
several Haskell language extensions. We leverage property based testing with
QuickCheck, to arbitrarily generate inputs, in order to evaluate predicates over a
large set of signal interleavings. We implement shrinking strategies for key data
types, to shrink to smallest counterexamples, upon test case failure. Through
the testing of a GUI application, we demonstate how to use the library in prac-
tice. The case study reveals situations that raise questions about whether our
strategies accurately capture user interactions across all domains. We suggest
different approaches, that might be useful for specific domains. We discuss lim-
itations of the approach, including the inability to check liveness properties in
finite time. Additionally we discuss limitations of not supporting certain combi-
nator functions, specifically when they dynamically switch behavior over time,
which the current design of the model cannot elegantly encapsulate.

61

Acronyms

ADT Algebraic data type. 13

AST Abstract syntax tree. 12, 14, 31

DSL Domain specific language. 12

eDSL Embedded domain specific language. 7, 12, 14, 16, 61

FRP Functional reactive programming. 4, 5, 7

GADT Generalized algebraic data type. 13, 14, 20

GUI Graphical user interface. 4, 5, 8, 51, 56, 61

LTL Linear temporal logic. 10, 11, 16, 21, 57

PBT Property-based testing. 6, 12, 19, 57, 60

62

References

[1] R. G. Bahr P., Houlborg E. (2023) Asynchronous rattus: A functional
reactive programming language with multiple clocks. Accessed: 2025-06-01.
[Online]. Available: https://hackage.haskell.org/package/AsyncRattus-0.
2.0.2/src/docs/paper.pdf

[2] P. Bahr, “Asyncrattus: A functional reactive programming
language,” 2020, accessed: 2025-05-15. Specific reference to
src/AsyncRattus/Signal.hs. [Online]. Available: https://github.com/
pa-ba/AsyncRattus

[3] L. D. Jensen, “Property based testing of functional reactive programs using
linear temporal logic,” Master’s Thesis, IT University of Copenhagen,
February 2023, accessed: 2025-06-01. [Online]. Available: https:
//bahr.io/students/Property%20Based%20Testing%20of%20Functional%
20Reactive%20Programs%20using%20Linear%20Temporal%20Logic.pdf

[4] E. Czaplicki and S. Chong, “Asynchronous functional reactive pro-
gramming for guis,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’13. New York, NY, USA: Association for Computing Ma-
chinery, 2013, p. 411–422, accessed: 2025-06-01. [Online]. Available:
https://doi.org/10.1145/2491956.2462161

[5] C. Elliott, “Push-pull functional reactive programming,” 2009, pp.
25–36, accessed: 2025-06-01. [Online]. Available: https://doi.org/10.1145/
1596638.1596643

[6] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for
random testing of haskell programs,” SIGPLAN Not., vol. 35, no. 9,
p. 268–279, Sep. 2000, accessed: 2025-06-01. [Online]. Available:
https://doi.org/10.1145/357766.351266

[7] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reason-
ing about Systems, 2nd ed. Cambridge, UK: Cambridge University Press,
2004, accessed: 2025-06-01.

[8] E. A. Josef Svenningsson. (2015) Combining deep and shallow
embedding of domain-specific languages. Accessed: 2025-05-12.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1477842415000500#ab0005

[9] H. A. Bahr P., Disch J. (2024) Functional reactive gui programming
with modal types. Accessed: 2025-06-01. [Online]. Available: https:
//bahr.io/pubs/files/widgetrattus-paper.pdf

[10] E. Kiss. (2018) 7guis: A gui programming benchmark. Accessed:
2025-05-26. [Online]. Available: https://eugenkiss.github.io/7guis/tasks

63

https://hackage.haskell.org/package/AsyncRattus-0.2.0.2/src/docs/paper.pdf
https://hackage.haskell.org/package/AsyncRattus-0.2.0.2/src/docs/paper.pdf
https://github.com/pa-ba/AsyncRattus
https://github.com/pa-ba/AsyncRattus
https://bahr.io/students/Property%20Based%20Testing%20of%20Functional%20Reactive%20Programs%20using%20Linear%20Temporal%20Logic.pdf
https://bahr.io/students/Property%20Based%20Testing%20of%20Functional%20Reactive%20Programs%20using%20Linear%20Temporal%20Logic.pdf
https://bahr.io/students/Property%20Based%20Testing%20of%20Functional%20Reactive%20Programs%20using%20Linear%20Temporal%20Logic.pdf
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/357766.351266
https://www.sciencedirect.com/science/article/pii/S1477842415000500#ab0005
https://www.sciencedirect.com/science/article/pii/S1477842415000500#ab0005
https://bahr.io/pubs/files/widgetrattus-paper.pdf
https://bahr.io/pubs/files/widgetrattus-paper.pdf
https://eugenkiss.github.io/7guis/tasks

[11] W. O. O’Connor L. (2022) Quickstrom: property-based acceptance
testing with ltl specifications. Accessed: 2025-05-29. [Online]. Available:
https://dl.acm.org/doi/10.1145/3519939.3523728

[12] S. C. Bauer A., Leucker M. (2011) Runtime verification for ltl
and tltl. acm transactions in software engineering methodology 20,
4, article 14. Accessed: 2025-05-29. [Online]. Available: https:
//doi.org/10.1145/2000799.2000800

[13] N. H. Perez I. (2020) Runtime verification and validation of functional
reactive systems. Accessed: 2025-05-29. [Online]. Available: https://www.
cambridge.org/core/journals/journal-of-functional-programming/article/
runtime-verification-and-validation-of-functional-reactive-systems/
875DE7B51D38C418739B441874EB23D2

64

https://dl.acm.org/doi/10.1145/3519939.3523728
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/runtime-verification-and-validation-of-functional-reactive-systems/875DE7B51D38C418739B441874EB23D2
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/runtime-verification-and-validation-of-functional-reactive-systems/875DE7B51D38C418739B441874EB23D2
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/runtime-verification-and-validation-of-functional-reactive-systems/875DE7B51D38C418739B441874EB23D2
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/runtime-verification-and-validation-of-functional-reactive-systems/875DE7B51D38C418739B441874EB23D2

	Introduction
	Motivation
	Scope and delimitations

	Background
	Functional Reactive Programming
	Property-Based Testing
	QuickCheck

	Async Rattus
	Linear Temporal Logic
	Syntax
	Safety and Liveness Properties

	Domain Specific Languages
	Degree of embedding
	Generalized algebraic data types

	Type Level Programming

	Design
	Shallow or deep embedding
	Comparing multiple signals
	Modelling signals in parallel
	Relative temporal order of values
	Shrinking

	Implementation
	Specification language
	Modelling system state as a type
	Heterogenous lists
	Value definition

	Evaluation semantics
	Scope check

	Constructing a model instance
	Flatten
	Prepend

	Arbitrary Signals
	Heterogenous List generator

	Shrinking signals
	Adaptive evaluation

	Case Study: Testing a timer application
	Discussion
	Related work
	Limitations
	Dynamic signal combinators
	Liveness properties
	Absence of bugs

	Future work

	Conclusion

