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Abstract

Functional Reactive Programming (FRP) is a paradigm, which due to its ability to model

time dependent problem domains has become increasingly popular. A general feature of

functional programming, is the of this ease which Property Based Testing (PBT) can be

applied. In PBT properties of function outputs, which should hold on any given input are

specified. Previously Linear Temporal Logic (LTL) has been used to evaluate outputs,

LTL is a superset of propositional logic and is commonly used in software verification,

which makes it expressive and well understood.

So far testing FRP programs, has been been a challenge because of difficulties in

generating suitable test inputs as well as output. In this thesis I present my tool called

QuickRat, that together with QuickCheck allows for automatic generation of test inputs

for the FRP-language Rattus, which is a Domain Specific Language embedded in Haskell.

I will present this novel ability to generate many streams, which all satisfy a LTL-formulas,

and how it is applied in PBT.
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Problem Statement

For thesis on Property-Based Testing of Reactive Programs

written by Lukas Dannebrog Jensen

supervised by Patrick Bahr

submitted on February 24, 2023

Programming at any levels will inevitably produce some erroneous code. The cost

of programming errors found post-release can be everything from a passenger airplane

crashing to millions of annoying browser reloads. Therefore testing software to find errors

pre-release is hugely important.

In the most common form of testing, called unit testing, the programmer defines

a set of test cases that are then checked. Unfortunately generating suitable test cases

and expected output to check against is laborious, and difficult. property-based testing

(PBT), takes a different approach. In PBT the programmer defines a set of properties,

that specify desired behaviors for many if not all different input values, and then tools

like QuickCheck (Claessen and Hughes, 2000) generate random test cases and checks

fulfillment of the properties. fold(x) = fnew(x)∀x is an example of a property that works

for doing regression testing. QuickCheck is implemented as a Domain Specific Language

(DSL) in Haskell and utilizes Haskell’s type system to come up with suitable test cases.

However, some programming paradigms implemented in specific languages does not have

tools like QuickCheck at hand.

An example of such a language is the functional reactive programming language Rat-

tus (Bahr, 2022). Rattus is also implemented as a DSL in Haskell. In FRP the basic

components are signals. Signals models time-varying values, like prices, physical mea-

surements, disease incidents etc. In functional programming a signal is represented as

function that a takes a time and returns a value, this is an issue because a property on a

signal that holds now, might not hold tomorrow. “Arrowised” FRP languages solves this

by using signal functions instead of signals themselves (Hudak et al., 2003), and there

PBT has been be employed (Perez and Nilsson, 2020). Unfortunately signal functions

quickly leads to reduced code comprehensibility.

The goal for this thesis is to create a prototype for a PBT tool for Rattus, inspired by

the specifications and implementations of QuickCheck in Haskell and the PBT implemen-

tation for an Arrowised language. My deliverables will be a repository with the source

code for the prototype along with the architectural description, key parts of which will

be presented in a thesis document along with examples of usage.



1 Introduction

The repository can be found at https://github.com/LukasWing/QuickRat, while the fol-

lowing thesis contains a presentation of QuickRat and the ideas behind it.

1.1 Motivation

Most people has had an idea for a piece of software at some point. This could be anything

from an egg timer app to a program that plays chess or perhaps one that can tell you

were to find an empty parking slot. Getting such ideas takes only little effort, but it takes

more effort to get it to work once, even more effort to get to work reliably, and even more

so to guarantee for correctness of such programs. On this continuous scale of reliability,

each program ends up at a value determined by the balance between work effort and

correctness. What I will be presented in this thesis is a testing tool called QuickRat,

which in a specific domain of programming, can lower the work effort to make programs

more reliable. Which might move software higher up the reliability scale.

QuickRat is written in the pure functional programming language Haskell and is

intended for testing functions that uses signals as the are defined Functional Reactive

Programming (FRP). FRP is a programming paradigm originally described for animations

(Elliott & Hudak, 1997). In FRP time varying behavior is the primary concern, to model

these behaviors, time dependent functions, called signals. The signature of such functions

are s : R→ C, where time is represented as a real number and C can be any co-domain.

Signals models many aspects of the world well, since so much varies with time, and

therefore implementing functions that take signals as input or returns them as outputs is

of key interest.

Consider for instance a factory with a boilertank, that produces a signal with a pres-

sure sensor reading. For safety reasons we need a function that returns a boolean signal,

to a valve, which can relief the pressure. The signature would be

f : sp → sv where

sp :R→ R+

sv :R→ {0, 1}.

By modelling with signals we get a comprehensible mathematical signatures, which are
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best mapped to code written in FRP.

There exists a variety of FRP libraries/languages, one of which is Rattus (Bahr, 2022),

which I used in this thesis another is Yampa (Hudak et al., 2003), which I will also mention

later on.

Even though signals can be implemented well using FRP, implementation can still

have errors and for a safety critical system such as this, we need reliable code. And to

make reliable code, it is hard to avoid testing. Testing can be done in many ways, if

you see the semantics of a functions as something that takes an input, and then returns

an output, then your natural way to test it would be to define one or more inputs, and

check that the output is equal to the expected. That is called unit testing. In the boiler

example, if the valve act only according to the current reading to determine whether the

valve should be open the unit-testing would suffice. But it might be more suitable to have

a specification such as:

1. If at some point the the pressure gets above some threshold 10 for two consecutive

measurements, then the valve is activated in the following step.

2. Once the valve is activated it is on until the pressure gets below 10.

3. If the pressure never gets above c the valve is never activated.

because such specifications are more focused on temporal properties of f these are very

hard and cumbersome to test with traditional unit testing. But a promising solution is

to use Property Based Testing.

In PBT the tester does not need manually create the entire set of test-cases. Instead

a property that should hold for any outputs from for a subset of possible inputs is given.

For instance a simple property of a sorting functions is that the output is actually sorted,

and another may be that the size is unchanged. Unfortunately both specifying the in-

put and the properties, when input or output are signals, usually takes a lot of work,

because we need to deal with variability over time, rather than static inputs. For so

called Arrowised-FRP there has been made an implementation (Perez & Nilsson, 2020),

that makes property creation on signals easier. These properties are specified in a time-

dependent logic known as Linear Temporal Logic (LTL). LTL is for making formulas, such

that any temporal behavior is either accepted or not, just like formulas in propositional

logic are true or false for any complete value assignment, the only is change is that the

truth assignment varies with time.
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While LTL is shown as promising (O’Connor & Wickström, 2022; Perez & Nils-

son, 2020), extending its use into the process of generating suitable inputs has not been

achieved, neither with Rattus or other FRP libraries. This thesis introduces QuickRat,

which tries to accomplish this.

1.2 Key Ideas

QuickRat consists of three parts, which are sketched as the left hand side of 13.

• A definition of LTL syntax, as a type in Haskell (TPred a).

• A function that from any LTL formula can create a signal acceptor

(mkAcceptor :: TPred a -> Acceptor a).

• A function that for any LTL formula can create a signal generator

(mkTransducer :: TPred a -> Transducer a).

A simple code example which test property 1 and 3 with 100 generated cases is shown in

listing 1 (which is captioned as Figure 1).
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1 f :: Str Int → Str Bool

2 f aStr = ...

3 −−− Testing specification 1 and 3 with helper function .
4 ghci> quickCheck $ ltlProperty

5 f

6 (Atom (>10) ‘And‘ Next (Atom (>10)))
7 (Next (Next (Atom id)))

8 +++ OK, passed 100 tests.

9

10 ghci> quickCheck $ ltlProperty

11 f

12 (Always (Atom (<10)))
13 (Always (Atom not)))

14 +++ OK, passed 100 tests.

15

16 −− Testing specification 3 without ltlProperty
17 prop_f_pBelow10_vAlwaysOff :: Property

18 prop_f_pBelow10_vAlwaysOff =
19 forAll

20 (trans $ mkTransducer $ Always (Atom (<10)))
21 $ accept (mkAcceptor $ Always (Atom not)) . f

22 ghci> quickCheck prop_f_pBelow10_vAlwaysOff

23 +++ OK, passed 100 tests.

24

Figure 1: Property based testing off a pressure valve using QuickRat, using helper and ex-
plicit construction of state machines. All code snippets can found in Core or CoreTest.hs,
where proper import are also given. ’...’ denotes that some code has been left out for
brevity, ’ghci¿’ denotes that what follows is the output of GHC-interactive.

The Atom represents some property of signal output, that is true or false, in this

case the first atom simply represents whether the output is smaller than ten, and the

second atom represents whether output is false. While listing 1 looks simple there are

some caveats. Some caveats stems from the fact, that signals are infinite, where checking

is only done for a finite part, while others stems from input generation being infeasible,

when atoms are only true for a small fraction of tried elements in the streams, I will treat

those caveats in the discussion section.

As presented in the listing my implementation depends on a transducer and an accep-

tor, both of which are state emachines. The acceptor is constructed from an LTL formula

and running it can make it reject or accept any signal which satifies according to the for-

mula, using state machines to solve this is specification problem is just a different way of

making what has previously done (Perez & Nilsson, 2020), the novelty come with how the

acceptor used together with the transducer. The transducer uses the acceptor as a guide

to create signals, for now you may think of the transducer, as something that continues
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to generate elements in signals, where the elements are is approved by the acceptor to

eventually create a signal that will satisfy the original LTL formula. For instance when

running the test for specification 3 the transducer uses an acceptor under the hood to

make sure to only generate signals with f : R → (−∞, 10), this is also reflected in 13

which I encourage again to look at.
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2 Background

2.1 Functional Reactive Programming

FRP is a programming paradigm, where signal is the primary type. Here are some

examples of things that are often modelled with signal in FRP.

1. Animations are pictures that vary with time, to run an animation is supply a signal

with the time (usually every 25’th second) and display the returned picture.

2. User inputs, can be represented as signal that tells which buttons are pressed, by

these in a collection of button Ids.

3. Prices on everything from bitcoins to bacon slices, is representable as signals from

time to some currency of interest.

It is tempting to use signals defined as data Signal a = Time -> a However, for real-

time systems signals raises issues, with both past and future values. The past value

concern is that the system is prone to space leaks, if the signal function should be able

to return all possible measurements until now. For future values the concern is, that

we do not know the measurement in the future, but there is nothing preventing time

arguments where that are larger than the current. The future value concern raises issues

with causality, namely that some value now might depend on a value, that is not available

yet.

Arrowised FRP deals these two concerns, by dealing only with signal indirectly using

so called Monadic Stream Functions as their representatives. This approach protects from

improper use. unfortunately working through such representatives can be quite be quite

which can be appreciated by looking at some basic code snippets from Yampa (Perez &

Nilsson, 2020)2.

1 −− Type definition of Signal Function
2 data SF a b = SF (DTime → a → (b, SF a b))

3 −− Type definition of the Monadic Stream Function
4 newtype MSF m a b

5 −− Function to get a value of type b.
6 step :: Monad m ⇒ MSF m a b → a → m (b, MSF m a b)

7

Figure 2: Examples displaying complexity of MSF (Perez & Nilsson, 2020)
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To be fair, because Monadics Stream Function are instances of Arrow, their exists

combinators and special notation (Paterson, 2001), that alleviates this problem, but there

will be complexity under the hood, that inevitable will show up in development.

A way to deal with this complexity, is to reallow the developer to work with signals

directly, while mitigating prior concerns by the use of a modal type operator O, and a

type system that enforces the correct use of such. (Bahr, 2022) For example consider the

naive and protected implementations and use of a discrete signal function in listing 3.

Note that the notionally continuous Signal a is replaced by a discrete Str a in Rattus,

these formulations are similar but the latter allows us to move focus away from timestep

size and clocks, which is an entire project in itself, it is however important to note that

the head of a stream is the current values, and the tail are values available in only the

future.

1 −− Naive definition
2 data Str a = a ::: Str a

3 currentVal (h ::: _) = h

4 −− Should be impossible for real−time systems.
5 futureVal (h ::: strTail) = currentVal strTail

6

7 −− Rattus’ definition
8 data Str a = a ::: O (Str a)

9 currentVal (h ::: _) = h

10 −− Raise a type error in Haskell
11 futureVal (h ::: delayedStrTail) = currentVal delayedStrTail

12 −− Compiles in Haskell but raises a type error in Rattus.
13 futureVal’ (h ::: delayedStrTail) = currentVal (adv delayedStrTail)

14

15

Figure 3: Example displaying usage of the modal type operator.

The futureVal type error can mitigated since the exists a function adv :: O a -> a

which will convert the delayed stream to regular stream, but the compiler from Rattus,

restricting the use adv. The general principle of these restrictions (Krishnaswami, 2013)

is one of causality and is quite simple: It is allowed to use a delayed value, only in

expressions whose value will be computed in a later time step. futureVal’ fails to follow

this principle, because it tries to acquire a value in a later time step now.

Unfortunately the principle raises a question, how do we then tell the Rattus compiler

that an expression is to be computed in the next time step? The answer is the semantic

inverse of adv and has the according type delay :: a -> O a, to appreciate how they

work together consider the following function, which maps every element of the input to
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the output stream using f.

1 map :: Box (a → b) → Str a → Str b

2 map f (h ::: t) = unbox f h ::: delay (map f (adv t))

3

Figure 4: Map definition in Rattus, the Box denotes that f is time independent and safe
to use in delay

Here adv is used inside the expression whose value will be passed on to delay, and

thereby the causality principle. map also uses the box modality, which marks the inner

function as one that safe to use inside delay, because of its time-independency. In practice

the Rattus compiler is active on functions or modules using Haskell’s compiler directives.

There are more things to the type system of Rattus, one of which is how it prevents

space-leaks, but going into details of such is beyond the scope of this project. Actually

we will deliberately not activate the Rattus compiler, because we generate streams for

testing rather than receiving them in real-time.

2.2 Property Based Testing

Take for instance a function fAvg for making some kind of average between coordinates

og two GPS signals, we expect that it will always return a point in rectangle cornered by

those two. If you were to make unittests you would probably check that all the variables

in listing 5:

1 tAvg1 = isBetween (0,0) (0,1) $ fAvg (0,0) (0,1)

2 tAvg2 = not $ isBetween (0,0) (0,0) $ fAvg (0,0) (0,1)

3 tAvg3 = isBetween (0,0) (1,0) $ fAvg (1,0) (0,0)

4 −− etc.
5

Figure 5: Unit test of a GPS-averager

This leads to large amount of time spent producing arbitrary test cases. In some cases

the actual test cases might be good and covering, however this is rarely the case, and either

way there will inevitably be variability in the quality of such unit tests. Properties are

also closely related to models of the problem domain. For instance the property stated in
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the example, resembles a verbal description of an average much better than all the test

cases.

When testing a property the ideal would be to check that the property holds for all

combinations of inputs, libraries such as SmallCheck (Runciman et al., 2008) does this.

However this is only feasible, in the sense that the running time is realistic, when the size

of the function-domain is very small. As the number of input cases is O(2n) where n is

the input size in bits. So instead of generating values covering the entire function-domain,

the goal is to use random generator that picks values from a distribution, such that all

possible execution paths are hit. Knowing exactly which distribution to pick from is a

science in itself, however you can go a long way by treating each input as isolated, and

let the generator only depend on the type.

2.2.1 QuickCheck

Having defined what properties are and a strategy for asserting them we need an actual

implementation of it conepts. Many programming languages has one or more tools for

performing PBT, examples are FastCheck for JavaScript, FsCheck for F# and JUnit-

QuickCheck for Java, they differ in implementation. But they are all inspired from the

grandfather of PBT QuickCheck (Claessen & Hughes, 2000). Since QuickCheck is written

in and applicable for Haskell, it can take advantage of its type system and pureness. The

pureness guarantees that the output of a function only depends on the input, this increases

the reliability of the tests. The type system for Haskell ait generating test cases of the

correct type, to appreciate this consider listing 6.

1 fAvg (x1, y1) (x2, y2) = ((x1 + x2) / 2, (y1 + y2) / 2)

2 ghci> quickCheck (λp1 p2 → isBetween p1 p2 $ fAvg p1 p2)

3 +++ OK, passed 100 tests.

4

Figure 6: Testing GPS-averager with QuickCheck

The sought property is expressed as the lambda passed to quickCheck. The type of

p1 and p2 is inferred, from the function declaration to have type Num, but to illustrate

how this works, I expand the expression a bit more, and add some type declaration.

14



1 prop_pointsAreBetween :: (Int, Int) → (Int, Int) → Property

2 prop_pointsAreBetween p1 p2 = isBetween p1 p2 $ fAvg p1 p2

3 ghci> quickCheck prop_pointsAreBetween

4 +++ OK, passed 100 tests.

Figure 7: Property Based Testing of fAvg

A property in QuickCheck is implemented as the type Property which at its simplest,

is just a boolean. The data for the 100 inputs were generated based the argument types

for prop_pointsAreBetween. The default behavior is that values are generated using

the function arbitrary :: Gen a. Generating random values within a Haskell function

would break its pureness, but QuickCheck solves this problem by its clever way of using

monads.

2.2.2 The Gen Monad

Since Gen is a Monad, along with many other types it is worthwhile to step back and

go through what a Monad is, this is also worthwile because arrows in AFRP is a more

general abstraction of Monads. Monad is a typeclass defined as in listing 8

1 class Applicative m ⇒ Monad m where

2 return :: a → m a

3 (>>=) :: m a → (a → m b) → m b

4 −− Some methods excluded for brevity
5

Figure 8: Partial definition of the Monad typeclass

Monad models types that has both a context m, and a polymorphic value. There

are two core methods of our concern. return takes a value and wraps it in a minimum

context. In the case of Gen return a is just a generator for values of type a. (>>=) is

also called bind. Bind returns the result of applying the second argument to the value

first monad. Note that while the typeclass definition defines an interface with default

implementation os some methods, the implementation of, return, bind and methods from

Applicative is left for the programmer. There also exists Monad laws such as associativity,

but these are not checked by the compiler. A practical way to use Monads in Haskell is

with the do-notation, which is syntactic sugar for bind-expressions nested in others. You
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can appreciate the do-notation by considering how you would implement a generator for

complex numbers Z. Such an implementation is done in listing 9 using both return and

>>=, and the do-notation.

1 data Z = Z {a::Float, b::Float}

2 genComplex = arbitrary >>= (λa → arbitrary >>= (λb → return Z {a=a, b=b}))
3 genComplex’ = do

4 a ← arbitrary

5 b ← arbitrary

6 return Z {a=a, b=b}
7

Figure 9: Constructing a custom Gen monad with and without do-notation.

I have already given example of how to make Gen Z. Here I will elaborate a bit

more on why that works, and how it can indeed generate random inputs in a pure func-

tional programming language. Consider the following hypothetical impure haskell func-

tion rollDice nSides = randomInt 1 nSides This function would return different

results for identical inputs, which is not pure. But suppose that rollDice was called

from main, where IO is handled, if needed we could just get a list of randombits from IO

and make randomInt that read from it.

1 rollDice ::(Int, [Bool]) → Int

2 rollDice (nSides, randombits) =
3 randomInt randombits 1 nSides

4

Figure 10: Fixing with random bits

But the implementation in listing 10 would only produce identical random num-

bers if called multiple times. To solve the issue we need to return from randomInt,

information on which part randomBits is already used, perhaps by returning a tuple

(aRandomInt, unusedBitList). The type signature gets rather messy, we can prevent

the by instead of returning the actual value could just produce a computation which was

able to generate a random values following some specification.

The type of this computation is called a generator. The generator could then be

called where a random-generator is actually available to be passed as an argument to the

generator, so the arguments sequence of random values can advanced. Listing 11 shows
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the relevant types in QuickCheck for doing just that. Gen a is the type of the generator,

and QCGen is the type of the random-generator that QuickCheck supplies as an argument

for unGen.

Although we will not directly call unGen it is worth noting the seconde integer argur-

ment, which can used to control to size or complexity of the generated values, only some

instances of Arbitrary uses the it, an example is Lists where it controls the length of

the generated lists. In general a failing test case is easier the debug from if the input is

simple, therefore QuickChecks will use increasing sizes.

1 newtype Gen a = MkGen {

2 unGen :: QCGen → Int → a

3 }

4 generate :: Gen a → IO a

5

6 −− Usage example
7 diceRoller :: Int → Gen Int

8 diceRoller nSides = do

9 i ← (arbitrary:: Gen Int)

10 return (i ‘mod‘ nSides + 1)

11 ghci> generate (diceRoller 6)

12 3

13 ghci> generate (diceRoller 6)

14 6

15

Figure 11: Minimum example of Gen usage

In practice we do not need to call generate explicitly as done in listing 11, this done

by the quickCheck which uses a supplied generator for the type, that matches input to

the property that should hold. If have to use a custom generator like in 11 or 9, you need

to pass in the your generator as first argument to the forAll function, like shown in 12.

1 forAll :: (Testable prop) ⇒ Gen a → (a → prop) → Property

2 prop_winner_diceRoll12_alwaysHouse =
3 forAll

4 (diceRoller 12)

5 (λroll → houseWins roll == "House Wins")

6

Figure 12: Using QuickChecks forAll

An important way to reduces input complexity is to shrink test cases. The basic idea is
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automate the error isolation, that a programmer would do, upon finding an error. Consider

an example where a property failed to hold with the input [-1, 2, -1, -2, 2, 3, 4, 2]

then a shrink strategy could be to recursively check whether halves of the array would also

cause the property to not hold. Perhaps the error only occurs if the array contains two

successive negative numbers, and hence succesfull shrinking would reduce the failing case

to [-1,-2]. In general shrinkings are defined by implementing the shrink :: a -> [a]

method, or use forAllWith which in addition to a Gen and a (a -> prop) take a function

a -> [a] which returns a list of simpler inputs from the failing input.

2.3 Linear Temporal Logic

As I mentioned before, the simple way to unit-test is to test for equality, but for property

based testing equality testing is only possible if another semantically equivalent correct

function is already known. Most of the times this is not the case, and then usefull

properties such as: the stream elements will eventually reach a certain value; the next

three elements of the stream is 42; P (x) always holds for the stream elements; any element

the will eventually be followed by an x; x is never followed by y etc. is impossible to

test with only stream equality. To test such we need a language to specify streams in

a flexible way precise enough for testing. One such language is Linear Temporal Logic

(LTL). LTL is best thought of as a time dependent superset of propositional logic, because

it combines logical operators from propositional logic with modalities, that describes

temporal behavior. Consider the following statement in propositional logic; if it rains

today or tomorrow I will bring my raincoat.

p ∨ q =⇒ r where

p : It rains today

q : It rains tomorrow

r : I will bring my raincoat

The downside with such a formula is that it does not express that p and q are related

since they both denote the fact that it rains, just at different times, surely we can fix it a

bit by using predicate logic, but that introduces uneeded flexibility. In LTL the formula

can rewritten so it only uses two atomic statements, at the expense of introducing the
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next operator (X), which can be read as ”in the next time step”.

p ∨Xp =⇒ r where

p : It rains

r : I will bring my raincoat

This is a simple example, an extension that is tougher to crack in propositional logic is, if

it does not rain until the day I go home, I will not bring my raincoat. In LTL this would

be

¬pUh =⇒ ¬r where

p : It rains

h : I go home

r : I will bring my raincoat

where U is read as ”Until”.

LTL models the world much more precise for the same reasons as signal does: Values

of observations almost always depends on time. Atomic propositions like: p, r and h, has

truth values that vary with time. Such atomic propositions are examples of elements in

the set Atoms which the syntax of LTL uses.

2.3.1 Syntax

The syntax of formula in LTL can be defined recursively from the following:

Definition 1. Syntax of LTL

• if p ∈ Atoms ∪ {⊤,⊥} then p is an LTL formula

• if ϕ ψ are LTL formulas then (∼ ϕ), (ψ ∨ ϕ), (Xϕ) and (ψUϕ) are LTL formulas.

Like some subsets of propositional logic operators are adequate, the operators in 1 are

adequate to form a basis for many more operators, some of which will be introduced when

needed. According to 1 ((Xϕ) ∨ ψ) is a formula. However to reduce parentheses yet still

preserve dis-ambiguity the following convention applies: The unary connectives binds the

strongest; followed by the binary connectives. The convention allows for simplifications

such as

((Xϕ) ∨ ψ) ≡ Xϕ ∨ ψ
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2.3.2 Semantics

Formally LTL can verify systems that can be modelled as transitions systems. A transition

system can be represented by a directed graph where each vertex is a state, and each edge

is a transition. Each state can be given to a labelling function L : S → P(Atoms)
which takes a state and returns the set of true propositions p ∈ Atoms for that state.

In the previous example the day is a state, the labeling function returns the set of all

atoms that where true on that day. A path is an infinite sequence of transitions such

as π : s1 → s2 → s3 → s4 → . . . . The infinity requirement of a path leads to the

requirement that no state can ’dead-lock’, because these deadlocks can would produces

finite streams. But as the digraph representation hints such a system can contain many

different paths and π : s1 → s2 → s1 → s2 → . . . could be a different path. Luckily for

us, the paths we describe comes from streams, where each state appears chronologically

and is deterministic, after all a day is always followed by a new one. Hence we only need

to consider a single path. However, we need a definition 2 for deciding whether π satisfies

an LTL-formula, denoted as π ⊨ ϕ, this is in order to obtain a formal semantic which for

example tells whether to wear a rain coat, given an actual weather forecast.

Definition 2. Semantics of LTL. To distinguish temporal operators from propositional

ones, the latter is written in words.

1. π ⊨ ⊤

2. π ⊭ ⊥

3. π ⊨ p iff. p ∈ L(s1)

4. π ⊨∼ ϕ iff. π ⊭ ϕ

5. π ⊨ ϕ ∨ ψ iff. π ⊨ ϕ or π ⊨ ψ

6. π ⊨ Xϕ iff. π2 ⊨ ϕ

7. π ⊨ ϕUψ iff. ∃i ∈ N.πi ⊨ ψ and ∀j.πj ⊨ ϕ and j < i

Consider the following example suppose we have a path κ : 11 → 12 → 13 → . . .

where each state is an integer. We also have a labelling function K(s) = P(q11) =

{{}, {q11}} where q11 is the proposition the state is 11. We then say that κ ⊨ q11 because

q11 ∈ K(1). We could also so ask model the property that the next two states are odd

numbers, by the formula ϕ = qodd∧Xqodd whereK(s) = P(qodd) and qodd is the proposition
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the state is odd. By working our way through the formula with definition 2, we get

κ ⊨ ϕ

⇔ κ ⊨ qodd ∧Xqodd

⇒ κ ⊨ Xqodd

⇔ κ2 ⊨ qodd

⇔ podd ∈ K(2)

which is contradiction because 12 is not an odd number, an hence κ ⊭ ϕ.
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3 Implementation

3.1 Analysis

As mentioned before PBT relies on two core concepts, the ability to generate suitable

input values, and to specify properties. To solve both of these I needed a language

for specification. LTL is has already been used for evaluating Yampa-streams (Perez &

Nilsson, 2020). The syntax described in 3.2 uses theirs, and constructing an evaluator

based on 2 is fairly simple, which I will present in the next section, the general idea is to

make an evaluator function TPred a -> Str a -> Bool, which recursively traverses the

formula, down to the atoms, which serves as basecases.

An aim of QuickRat however, was to not only specify properties but also to generate

streams using LTL. For that stream generation with evalLTL becomes infeasible, just like

guessing a random a password is, instead we would like generate streams where for each

new element guessed, feedback is given on whether the latest element is correct, just like

a Frantz Jäger safe from Berlin can guide Egon (Olsen Banden Movies, 1968). To achieve

this in practice we use two state machines, an acceptor and a transducer. The general

idea is, that the transducer can be created from an acceptor and can be used to make a

Gen (Str a) monad which can produce input for properties.

The success of the implementation therefore relies on three main types, as sketched

in figure 13 and reflected in the next three subsections.
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TPred a

Acceptor a

Transducer a
trans

Gen (Str a)

Bool
accept

Str a

ofAcceptor

Figure 13: Core types in QuickRat, all types parameterized with an a, assumes that a
is an instance of arbitrary, names above arrows are function names, the type accept also
takes a stream argument, which is shown beneath the arrow.

Combining these it should be possible to define a function such as the one shown in

listing 14. The ltlProperty takes the stream function under test, and specification for

both in and output in LTL, and returns a property to test.

1 ltlProperty :: (Str a → Str b) → TPred a → TPred b → Property

2 ltlProperty fUnderTest inputSpec outputSpec =
3 forAll

4 (trans $ mkTransducer inputSpec)

5 $ accept (mkAcceptor outputSpec) . fUnderTest

6

Figure 14: ltlProperty function

While the approach of state machines solves some problems regarding specification

and feasibility there are some caveats to these, which we be elaborated on in the discussion.
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3.2 LTL Syntax

This syntax is modelled in Haskell as the temporal predicate TPred a on stream with

elements of type a, TPred a is a Generalised Algebraic Data Type, where each value

constructor can instanciate a value of its return type, the full implementation and two

examples are shown in listing 15. Consider for example the case

And :: TPred a -> TPred a -> TPred a, the semantics here is that And is a value con-

structor that takes two temporal predicates with type parameter a, and in itself is a tem-

poral predicate with type parameter a. Most important is Atom which takes a predicate

on a. For instance Atom odd corresponds to the statement the first element of the stream

is odd.

1 data TPred a where

2 Tautology :: TPred a

3 Contradiction :: TPred a

4 Atom :: (a → Bool) → TPred a

5 Not :: TPred a → TPred a

6 Or :: TPred a → TPred a → TPred a

7 Until :: TPred a → TPred a → TPred a

8 Imminently :: TPred a → TPred a

9 And :: TPred a → TPred a → TPred a

10 Implies :: TPred a → TPred a → TPred a

11 Always :: TPred a → TPred a

12 Eventually :: TPred a → TPred a

13 After :: Int → TPred a → TPred a

14

15 firstOddSecondEven :: TPred Int

16 firstOddSecondEven = Atom odd ‘And‘ Imminently (Atom odd)

17

18 rainyExample :: TPred DayInfo

19 rainyExample = (Not (Atom isRainyDay) ‘Until‘ Atom goHome) ‘Implies‘ Not (Atom

bringRaincoat)

20

Figure 15: Full syntax of LTL in QuickRat with examples from background section.

There are some slight deviations from the LTL presented earlier, firstly some addi-

tional operators, And have been introduced

• Imminently replaces next, but its semantics remain, it is however important to

note, that as we are working with a stream of discrete elements the Imminently is

concerned with the stream in the next time-step.

• And is just like in propositional logic.
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• Implies is also like in propositional logic.

• Always holds if its argument holds for all tails of the stream.

• Eventually means that its argument will hold for some tail of the stream.

• After takes a count n and a TPred a that should hold in the n’th tail, for instance

After 2 somePred == Imminently (Imminently somePred)).

3.3 Stream Evaluation

Before presenting how the final acceptor-approach works I will present some simpler

stream evaluation cases.

3.3.1 Equality

Because a Str a is infinite, we can never know whether they are truly equal by comparing

values, therefore I implemented a notion of ”probably equal”, using simple approach to

check for equality for elements in a finite part. Doing so requires, that a implements Eq.

1 −− strTake 20 aStr constructs a list from the first 20 elements of aStr .
2 class ProbEq a where

3 (=∼=) :: a → a → Bool

4

5 instance (Eq a) ⇒ ProbEq (Str a) where

6 s1 =∼= s2 = strTake 20 s1 == strTake 20 s2

7

Figure 16: Implementation of probably equal for streams

The implementation of probably equal in listing 16 checks for whether the tip of the

stream are equal, I chose the first only 20 elements for convience of my own debugging, but

ideally this number would be considered depending on the expected behavior, and making

studies to find an generally suitable count is beyond the scope of this thesis. With some

notion of equality we can test an outputted stream against some pre-constructed stream,

and if we do regression testing, we can sensibly test for the property that f produces out

similar to fOld.
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3.3.2 LTL evaluation

With this syntax being defined in listing 15, I wrote an evaluator using for it using 2

2, to aid in debugging the acceptor. Listing 17 shows the most prominent parts of its

implementation.

1 evalLTL’ :: Int → TPred a → Str a → Bool

2 evalLTL’ checksLeft formulae aStr@(h ::: t) = checksLeft ≤ 0

3 || case formulae of

4 Tautology → True

5 Contradiction → False

6 Atom headPred → headPred h

7 Or phi psi → eval phi aStr || eval psi aStr

8 Imminently phi → evalNext phi strTail

9 Until phi psi → eval psi aStr

10 || (eval phi aStr && evalNext (phi ‘Until‘ psi) strTail)

11 −− And, Not, Always, Implies, After and Eventually are excluded for brevity .
12 where

13 evalNext = evalLTL’ (checksLeft - 1)

14 eval = evalLTL’ checksLeft

15 strTail = adv t

16

17 evalLTL :: TPred a → Str a → Bool

18 evalLTL = evalLTL’ 20

19

20

Figure 17: An excerpt of evalLTL which evaluates a stream according to an LTL formula.

Consider the execution in the bottom corresponding to κ ⊨ qodd ∧ Xqodd introduced

earlier with κoddOdd = 1 → 3 → 5 → . . . . For that execution we get True, meaning that

κ does indeed satisfy qodd ∧ Xqodd. Had we instead used κ as the sequence of natural

numbers, we would eventually end up with True && odd 2 which, as expected would

evaluate to false.

So far it all looks good as we looked at an example specified propositions for a fi-

nite tip of the stream only, but for formulas with operators that speak of the entire

stream get issues. For instance consider the formula modelling the liveness property

(Always (Eventually (Atom id))) the execution when supplied with constant inacitve

thread is in listing 18’s bottom, where we get the unexpected result, that there is liveness

for a thread that is never active. evalLTL’ does so because it returns true after having

checked only the first 20 elements of the stream. The reason I chose not to return False

after 20 tests lies in the spirit of testing, where a test passes unless a counterexample

falsifies it, for this example we simply cannot tell for an infinite stream, whether it will
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eventually become active, by only looking at a finite part of it. This leads to the descrip-

tion of the semantics of evalLTL: evalLTL returns False only if the first 20 elements of

the stream makes the formula unsatisifiable by the stream.

1

2 −− strExtend creates a stream from the elements of the arguments, with the last repeated .
3 −− Assuming left to right evaluation .
4 evalLTL (Atom odd ‘And‘ Imminently (Atom odd)) (strExtend [1,3,5,7])

5 ⇝ evalLTL’ 20 (Atom odd ‘And‘ Imminently (Atom odd)) (strExtend [1,3,5,7])

6 ⇝ eval (Atom odd) (strExtend [1,3,5,7])

7 && eval (Imminently (Atom odd)) (strExtend [1,3,5,7])

8 ⇝ odd 1 && eval (Imminently (Atom odd)) (strExtend [1,3,5,7])

9 ⇝ True && eval (Imminently (Atom odd)) (strExtend [1,3,5,7])

10 ⇝ True && eval (Atom odd) (strExtend [3,5,7])

11 ⇝ True && odd 3

12 ⇝ True

13

14 −− Testing of liveness property .
15 evalLTL’ 20 (Always (Eventually (Atom id))) (strExtend [False])

16 ⇝ evalLTL’ 20 (Eventually (Atom id)) (strExtend [False]) && ...

17 ⇝ evalLTL’ 20 (Atom id) (strExtend [False])

18 || evalLTL’ 19 (Eventually (Atom id)) (strExtend [False]) && ...

19 ⇝ False

20 || evalLTL’ 19 (Eventually (Atom id)) (strExtend [False]) && ...

21 ⇝ False || False
22 || evalLTL’ 18 (Eventually (Atom id)) (strExtend [False]) && ...

23 ⇝ ...

24 ⇝ False || False || ...
25 || evalLTL’ 0 (Eventually (Atom id)) (strExtend [False]) && ...

26 ⇝ False || False || ... || True && ...

27 ⇝ True && evalLTL’ 19 (Always (Eventually (Atom id))) (strExtend [False])

28 ...

29 ⇝ True && True && evalLTL’ 18 (Always (Eventually (Atom id))) (strExtend [False])

30 ⇝ True && True && ... && True

31 ⇝ True

32

Figure 18: Evaluation of thread liveness

3.3.3 The acceptor

Because the aim is to construct streams rather than just evaluate, I has to come up

with code that given a head of a stream and the tail, can determine whether a stream is

accepted, rejected or information on the following tail is needed, after several iteration I

chose to use the polymorphic and algebraic type Acceptor a in listing 19.
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1 data Acceptor a = Accept

2 | Reject
3 | NextA (a → Acceptor a)

4

Figure 19: Acceptor datatype

the three value constructors has the following semantics are; Accept represents an

acceptor that has accepted a stream; Reject represents an acceptor that has rejected a

stream or; a NextA which represents an acceptor whose rejection depend on the tail, NextA

can be thought of as a continuation. Whose first element will eventually be passed to a

function of type (a -> Acceptor a). To see how acceptors work consider the following

problem. Suppose we wish to tests whether π ⊨ p ∧Xq p: The head is odd; and q: The

head is even. A truth table for and formula, with some example inputs would

Stream elements p q Xq p ∧Xq

2, 2, 3, . . . F T T F
1, 2, 3, . . . T F T T
1, 3, 8, . . . T F F F

Table 1: Truthtable of LTL-formular satisfaction

If we wish model the formula p∧Xq with an acceptor the atoms and relevant formulas

in are defined in listing 20.
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1 check :: (a → Bool) → (a → Acceptor a)

2 check predicate x = if predicate x then Accept else Reject

3 −− these have type Acceptor Int
4 p = NextA $ check odd

5 q = NextA $ check even

6 pAndXQ = NextA $ λx1 → if odd x1 then q else Reject

7

8 −− the following are all true
9 accept pAndXQ (strExtend [1,2,3])

10 not (accept pAndXQ (strExtend [2,2,3]))

11 not (accept pAndXQ (strExtend [1,3,8]))

12 not (accept pAndXQ (strExtend [2,3,8]))

13

14 evalAcceptor :: Acceptor a → Bool

15 evalAcceptor Accept = True

16 evalAcceptor Reject = False

17 evalAcceptor (NextA _) = True

18

Figure 20: LTL as Acceptor

The acceptor is also equipped with the function:

accept’ :: Int -> Acceptor a -> Str a -> Acceptor a.

This function advances the acceptor whiles reading value from the tip of the stream. It

stops after a number of reads specified by the third parameter. accept’ will produce a

new acceptor, whose subtype can be mapped to a boolean with the evaluation function

evalAcceptor, the mapping is so that Accept and Reject are intuitively to mapped True

and False respectively. Not so intuitively is it, that evalAcceptor NextA returns True,

again the prime argument is the spirit of testing, like for evalLTL. However the separation

of accept’ and the evaluation to boolean, makes it is easy to write a custom evaluation

function, which maps a continuation to false instead.

while declaring acceptors for each is possible, the aim is to use the expressiveness and

conciseness of LTL this is exactly what is done in listing 21
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1 mkAcceptor :: TPred a → Acceptor a

2 mkAcceptor formulae = case formulae of

3 Tautology → Accept

4 Contradiction → Reject

5 Atom headPred → NextA (λh → if headPred h then Accept else Reject)

6 And phi psi → mkAcceptor phi ‘andA‘ mkAcceptor psi

7 Imminently phi → NextA (λ_ → mkAcceptor phi)

8 Until phi psi → mkAcceptor $ psi ‘Or‘ Imminently (phi ‘Until‘ psi)

9 −− Or, Not, Always, Implies, After and Eventually are excluded for brevity .
10

11 andA :: Acceptor a → Acceptor a → Acceptor a

12 andA Reject _ = Reject

13 andA _ Reject = Reject

14 andA Accept aNextA = aNextA

15 andA aNextA Accept = aNextA

16 andA (NextA f1) (NextA f2) = NextA (λx → f1 x ‘andA‘ f2 x)

17

Figure 21: Function to create an acceptor from an LTL-expresssion

There are some important things to note: Imminently is not a recursive call, since it

immediately returns a NextA and because all temporal predicates relies on Imminently

this means that the checksleft is not needed, Imminently serves as the base case for all

temporal evaluations. With this implementation the following property

∀e.∀s.(evalLTL e s = accept (mkAcceptor e) s)

which I used for testing the correctness of QuickRat.

3.4 Stream Generation

A simple way to make random stream is by creating a Str a where each is value is

generated by Gen a. Listing 22 does exactly that by recursively setting the head of the

stream to be an arbitrary value of the type a, where the absence of a stopping condition

demonstrates Haskell’s laziness.
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1 instance (Arbitrary a) ⇒ Arbitrary (Str a) where

2 arbitrary = do

3 x ← arbitrary :: Gen a

4 xs ← arbitrary :: Gen (Str a)

5 return $ x ::: delay xs

6

Figure 22: Arbitrary’s instance definition of Str a

22 can only produce streams of independent values. But such streams, does not

usually model the problem domain well, and furthermore the probability of getting a

stream that satisfies a LTL formula is negligible. Therefore I use a transducer instead,

from the following specification.

• It should be capable of generating values of a specified predicate

• It should be capable of generating a new transducer which can generate the next

value

• An indication of failure, if it fails in generating the above.

The last case, occurs if a given formula is a contradiction or if the atomic predicate is

never satisfied by the generator, the latter will elaborated in the discussion. Through a

handful of iterations, I found that the in listing 23 type alias would suffice.
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1 newtype Transducer a = NextT (Gen (Maybe (a, Transducer a)))

2

3 arbitraryTransducer :: forall a. (Arbitrary a) ⇒ Transducer a

4 arbitraryTransducer = NextT $ do

5 element ← (arbitrary :: Gen a)

6 return (Just (element, arbitraryTransducer))

7

8 instance (Arbitrary a) ⇒ Arbitrary (Transducer a) where

9 arbitrary = return arbitraryTransducer

10

11 trans :: Transducer a → Gen (Str a)

12 trans (NextT aGen) = do

13 aMaybe ← aGen

14 let (value, aTransducer) = fromJust aMaybe −− Will error if no element available
15 rest ← trans aTransducer

16 return $ value ::: delay rest

17

18 transducerOfStr :: Str a → Transducer a

19 transducerOfStr (h ::: t) = NextT $ return $ Just (h, transducerOfStr (adv t))

20

21

Figure 23: Transducer, function for generating a transducer for arbitrary elements and
trans which will produce a stream generator for use with QuickCheck

To appreciate how this works, consider how trans (arbitraryTransducer::Int)

would run, arbitraryTransducer is lazily evaluated, so only in the bind of trans aMaybe

will actually be generated, if aMaybe is a Just the value will be the head of the stream,

and the tail will made by the succeeding and in this case identical transducer. Using

this I rewrote the instance of arbitrary as it is given in listing 23, without changing the

semantics. The listing also showcases a transducer that generates elements equal to those

of an incoming stream.

3.4.1 Generating from LTL

The general strategy for generating is shown from the bottom part of 13 where mkTransducer

takes an LTL-formula and simply returns an transducer built under the restriction im-

posed by the formula, with the acceptor as guideline for this. The ’built under the

restriction’ part is achieved by restrictWith in listing 24.
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1 ofAcceptor :: (Arbitrary a) ⇒ Acceptor a → Transducer a

2 ofAcceptor anAcceptor = arbitraryTransducer ‘restrictWith‘ anAcceptor

3

4 mkTransducer :: (Arbitrary a) ⇒ TPred a → Transducer a

5 mkTransducer = ofAcceptor . mkAcceptor

6

7 restrictWith :: forall a. Show a ⇒ Transducer a → Acceptor a → Transducer a

8 restrictWith _ Reject = rejectTransducer

9 restrictWith aTransducer Accept = aTransducer

10 restrictWith aTransducer (NextA someTest) = rwInner aTransducer someTest

11

12 rwInner :: forall a. Show a ⇒ Transducer a → (a → Acceptor a) → Transducer a

13 rwInner (NextT gen) passTest = NextT $ loop (1000::Int) where

14 loop :: Int → Gen (Maybe (a, Transducer a))

15 loop n = do

16 sz ← getSize

17 value ← if sz < 3 then scale (+3) gen else gen

18 case value of

19 Nothing → return Nothing

20 Just (genVal, xGen) →
21 case passTest genVal of

22 Accept → return $ Just (genVal, xGen)

23 Reject → if n == 0 then return Nothing else loop (n - 1)

24 NextA passTest’ → return $ Just (genVal, rwInner xGen passTest’)

25

Figure 24: Definition of mkTransducer

restrictWith works such that if the the given acceptor is an Accept no restriction

occurs and the given transducer is the return value, this might be the acceptor is con-

structed from an formula which is equivalent to a tautology. Similarly if the acceptor is a

reject a transducer that can only generate nothing is returned. If however the Acceptor

contains a test on an element restriction can occur, which is done using the loop. The

general strategy of the loop is to try generating new values from the generator in the given

transducer, for each new test of a value generated it can either be accepted, rejected or be

a continuation, which are handled ind the last case-expression. If the value is accepted it

will return a value along with a generator for the next value. If it is rejected it will try to

generate a new value for the same test or if it has already tried sufficiently, it will cause

QuickCheck to fail the test. If the result is a continuation the value is also accepted, but

the returned generator is a recursive call to generate the next.

An important caveat of restrictWith is that if the test on a value produced is too

narrow the it can become unlikely that, rwInner will find a match within the hard coded

1000 tries, a way to mitigate this is to use with a guided transducer rather an arbitrary

one, all of this is shown in listing 25.
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1 oddOddGenerator :: Gen (Str Int)

2 oddOddGenerator = trans $ mkTransducer $ Atom odd ‘And‘ Imminently (Atom odd)

3

4 guidedTransducer :: forall a. (Arbitrary a) ⇒ Gen a → Transducer a

5 guidedTransducer aGen = NextT $ do

6 element ← aGen

7 return (Just (element, guidedTransducer))

8

9 threadDucer :: Transducer String

10 threadDucer = guidedTransducer $ oneof $ map return ["t1", "t7", "t33", "t42"]

11

12 willError = trans $ mkTransducer (Always (Atom (=="t42")))
13 willWork = trans $ threadDucer ‘restrictWith‘

14 mkAcceptor (Always (Atom (=="t42")))
15

Figure 25: Examples of use and issue of type multiplicities

There the first transducer will produce an error because it is unlikely that the default

arbitrary of String will produce an exact match, if however I know that the only possibly

values in the actual stream are those in the list, I can use one of QuickChecks combinators

to build a generator, that only produces one of the values. Which is why the last expression

works.
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4 Discussion

4.1 Related Work

To discuss the features of QuickRat, I will present how previous work has treated the

core tasks of generating and evaluating signals. The articles referred to are titled Run-

time verification and validation of functional reactive systems (Perez & Nilsson, 2020)

and Quickstrom: Property-based acceptance testing with ltl specifications (O’Connor &

Wickström, 2022). The former is concerned with signals formulated with Arrowised frp,

which we have already mentioned in the introduction and the latter generates signals to

simulate UI events in web applications and evaluated in an LTL-dialect.

4.1.1 Evaluating signals

In the introduction I have already touched upon how Perez and Nilsson, 2020 evaluates

signals, as QuickRat is heavily inspired by this, and the Syntax of the LTL is nearly

identical. For actually evaluating a signal Perez and Nilsson, 2020 uses

evalT :: TPred a -> SignalSampleStream a -> Bool. QuickStrom takes a slightly

by the expected behavior is defined in an LTL dialect, that adds a couple of additions to

LTL; first Next has been split into required next, weak next and strong next; secondly

always, eventually and until requires and extra integer, that specifies for how many steps

it should check.

Suppose that a tester would like to express the that the GUI should flicker between

dark and light, he would have to formulate this in Specstrom a language which resembles

JavaScript, where it is required that she specifies the duration of Globally and the variant

for next, for this case it would probably suffice to check always for 300 time-steps, and

use the weak variant of next. The distinction between weak and strong next, makes sense

in QuickStrom because of its four-valued, rather our two valued evaluation, that they

adopted from RV-LTL(Bauer et al., 2011), this choice will will be elaborated further in

this section.

4.1.2 Generating signals

Perez and Nilsson, 2020’s solution is somewhat different from ours because the library is

based on continuous streams and uses finite streams for testing as which is reflected in
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listing 26. Therefore, testers must specify a distribution and range for time-sampling, as

well as the length of the finite stream. Time sampling is out of our control as we use

Str’s so the essential part is the first argument of type (Int -> DTime -> Gen a) the

semantics for this function is to return a generator for an element in the stream given

the sample count and time since last sample. Their solution is easy to comprehend, but

passes majority of the work on implementing a suitable generator on to the tester, an

example of which is shown.

1 generateStreamWith :: Arbitrary a

2 ⇒ (Int → DTime → Gen a)

3 → Distribution

4 → Range

5 → Length

6 → Gen (SignalSampleStream a)

7

8 oddOddStream :: Gen (SignalSampleStream Int)

9 oddOddStream = generateStreamWith

10 (\n _ → if n ⇒ 10 && n ≤ 15 then posGen else arbitrary)

11 (DistNormal (0.033, 0.01))

12 (Just 0.031, Just 0.035)

13 (Just 20)

14 where

15 posGen = abs <$> arbitrary

16

Figure 26: Stream generation in Perez and Nilsson, 2020

Quickstrom (O’Connor & Wickström, 2022) solves a similar problems, where it gener-

ates streams of user interactions, which interactions are relevant is specified by the tester,

this could be clicks on buttons a b, notionally a stream of user interaction can be repre-

sented as Str [Bool], where length of the list is the number of interaction specified by

the tester. It is important to note that Perez and Nilsson, 2020 generates these completely

Random, although the mention some approaches in future work.

4.2 Core of QuickRat

At its core QuickRat contains a syntax for LTL and implements two state machines,

whose relation depicted in 13. The basic principal is that an acceptor is created from an

LTL-formula ϕ, which can be used to directly to assert a stream, or the acceptor can be

used as a guide, to a transducer which will generate an arbitrary streams, which satisfies

ϕ. I envision that QuickRat can be used with three different levels complexity, where each
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higher levels have broader pratical usecases.

As the first level consider the properties formulated in Haskell using QuickCheck and

QuickRat in listing 27

1 reactToUser :: Str (Bool,Bool) → Str Bool

2 reactToUser userInput = ...

3

4 prop_0And1Pressed_lightFlickers =
5 ltlProperty

6 reactToUser

7 (Atom fst ‘And‘ Atom snd)

8 $ Atom not ‘And‘ Imminently (Atom id)

9 ‘Or‘ Atom id ‘And‘ Imminently (Atom not)

10

11 messager :: Str Int → Str (Maybe String)

12 messager _ = ...

13

14 prop_fivePositiveValues_emitMessageNext =
15 ltlProperty

16 messager

17 (After 10 (Atom (> 0)) ‘Until‘ After 15 Tautology)

18 $ After 15 (Atom (== Just "Jackpot"))

19

Figure 27: Comparative examples with QuickRat.

the examples show the utility function ltlProperty allows for easy testing of a function

that which takes on stream to produce another, if for instance we would like test functions

that take more arguments such as a

switch’ :: Str a -> Str (Maybe (Str a)) -> Str a, we can do so by doing partial

evaluation such that the the function under test. As a second option we can generate

streams with tuples of multiple elements, one element for each stream, for instance one

might produce a Gen (Str (a, Maybe (Str a))) to test a switch.

The second level of usage is by supplying a custom made generator of type

Gen TypeOfElement and supply it to guidedTransducer instead of mkTransducer, an

example of which is given in listing 24, using guided transducers can narrow the search

space for restriction, but should for the same reason be used with caution. One might

also use evalAcceptorStrict which returns false, rather than true if the finalAcceptor

is of subtype NextA (a -> Acceptor a).

The third level of usage, is to construct acceptor manually and then parse as the second

argument to restrict with, this can be used to specify streams that are not expressible
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in a finite LTL-exression, examples of such streams that exhibit infinite behaviors are

alternating elements or streams that always are increasing.

The three levels demonstrates, that QuickRat that many properties formulated in

LTL can be tested using ltlProperty or by specifying transducers or acceptor to use

with QuickChecks forAll

4.3 Limitations of QuickRat

As I emphasized earlier, many but not all properties can be tested with QuickRat. Prop-

erties that cannot expected to be tested correctly are either due to feasibility issues or/and

liveness/safety issues, which I will discuss thoroughly now.

4.3.1 Expressiveness of LTL

Some streams cannot be uniquely satisfied by an LTL-formula. For instance the stream

of digits in any irrational number such as π = 3 → 1 → 4 → . . . would require an in-

finite formula like Atom (==3) ‘And‘ Imminently (Atom (==1)) ‘And‘ ..., and such

infinite formula cannot be expressed as a TPred on a computer.

4.3.2 Absence of bugs

As it is always the case with PBT as opposed to formal verification, it can be hard to

know whether all cases has been described achieved. This is also the case for QuickRat,

that like all testing can only show the presence of bugs, not their absence.

4.3.3 Feasibility

Consider the code presented in listing 25 how it can become infeasible, that is take more

than 1000 tries to find a suitable candidate for a next element, in the number of tries it
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takes to generate a single suitable entire stream can be modelled by

nt = p−n

nt : average number of total tries

r : probability of getting an accepted value

n : size of the prefix to be evaluated

which is under the crude assumption that r is constant for all elements. I emphasize that

the 1000 tries and the prefix size of 20 which I used in this prototype can be optimised

and preferably be made adjustable depending on the input being generated, after all the

test presented hear usually finish instantly. But as an example of how many tries it take

consider the tests in listing 28

1 testTransducer expected = quickCheck $ forAll

2 (trans $ mkTransducer $ Atom (expected ==))
3 $ evalLTL $ Atom (expected ==))
4 ...

5 testTransducer (True, False, True, False, True, False)

6 ghci> +++ OK, passed 100 tests.

7 testTransducer (True, False, True, False, True, False, True, False)

8 ghci> ∗∗∗ Failed! (after 55 tests) ...

9 testTransducer (True, False, True, False, True, False, True, False, True, False)

10 ghci> ∗∗∗ Failed! (after 2 tests) ...

11

Figure 28: Feasibility issues

where the transducer only generates 55 test cases, when the type multiplicity of the

element is 28 because a suitable element is not found within the allowed 1000 tries. Gen-

eralizing this behavior over types such as strings and integers is hard because p does not

only depend on the multiplicity of the type but also the probability distribution that the

values are drawn from. To mitigate this problem one may make a guided transducer,

allow for more tries or adjust the prefix size of 20. Generalizing this behavior over types

such as strings and integers is hard because p does not only depend on the multiplicity of

the type but also the probability distribution that the values are drawn from.

Another cause of high running times are that logical equivalencies in LTL that has

not been used to reduce computations. For instance if given the formula Not (Not phi)

mkAcceptor does not immediately return phi, but rather calls itself twice. Along the

same the lines, but opposite, Or is defined using De Morgan’s rather by implementing an

acceptor for it, this means that for each Or four TPred as must be evaluated.
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4.3.4 Liveness and safety

I have already hinted that QuickRat introduces a problem of liveness, this is easiest to

consider the case where the user would like to test for liveness of a program that uses to

competing the threads of liveness to hold we expect

Always (Eventually (Atom (=="t1") ‘And‘ Always (Eventually (Atom (=="t2") on

a stream of thread names to be executes is to hold. And indeed it does, but because only

a finite portion of the stream is checked accept will return true for all streams. Generally

the issue is that even though we have not seen an argument to eventually become true,

we cannot exclude that it will become so later.

Safety is a similar problem, with the general issue being that even though, we have

not seen an argument become false we cannot guarantee that it will so, at some point.

Again the scheduler is an example, and a formulation for such could be that even though,

t1 has always become active at any point the checked stream, we do not now whether it

will suddenly stop. For safety a failing test implies a that property does not hold, but not

vice versa, for liveness the implication goes in the opposite direction.

To deal with the issues of liveness and safety QuickStrom used a four valued-evalution,

and for each temporal operator a count limit must be included. For the sake simplicity,

and to align with LTL I have not introduced such a limit. But the syntax of such could

look like \Always 20 (Eventually 3 (Atom (=="t1"))) formula expressing that in the

next 20 time steps there should always be a ”t1” within the three next steps, which

can express some kind of finite liveness. The four values in QuickStrom that replaces

satisfied and not satisfied in LTL are: definitively false, which can be obtained from a

violated safety property; presumptively false, is the result of an unfilled liveness property,

presumptively true is the result of an unfilled safety property and definitively true is the

result of an fullfilled liveness property.(Bauer et al., 2011) All of these four can actually

be mapped on to failing/passing test of evalAcceptor / or evalAcceptorStrict, as long an

formula matches only safety or liveness properties.

4.4 Possible Future Work

As QuickRat is a functioning prototype rather than a highly polished, usability focus

library, this section will focus on the functioning part rather than the latter, even though

the importance of usability is significant.

As noted in the feasibility section, experiments on the running time and could be
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made to make some proper default values for number of tries on each new element, the

prefix size checked, as well giving the ability for the tester adjust these.

Along these lines the size parameter could also be taken more account, as its semantics

matches well with adjusting the checkCount.

At the moment values are picked disregarding previous ones, if not so it could be

possible for restrictWith to an informed search. At the moment if the 1000 tries are used,

the test will fail, a potential improvement could be if it was marked as ’GaveUp’, which

is supported by quickCheck.

Another possible improvement would be to implement a reduction of all LTL-formula

such that the get reduced to easiest computable formula, a big advantage of this is that

contradications can be evaluated in one step.

QuickRat does not implement shrinking, but this could be useful, to see if ’simpler’

version of streams will fail, for instance shrinkings a stream generated from an expression,

could stream with shorter important prefixes or streams that satisfies simpler formulas

which are follows from implication of the original one.

For testing the correctness of QuickRat an instance of Arbitrary could be defined on

TPred a so mkAcceptor could test with the property that

evalLTL expr == accept mkAcceptor.
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5 Conclusion

I have presented QuickRat, a tool that allow for Property Based Testing expressed with

Linear Temporal Logic on streams in the Functional Reactive Programming language

Rattus. Like other libraries has done for Arrowised Functional Reactive Programming

QuickRat implements an formula syntax as a type in Haskell and semantics for whether

a stream satisfies an expression, while making decisions on how to best deal with issues

of safety and liveness, that are inevitable .

The prime novelty of QuickRat, however is for evaluating streams, but generating

streams that fulfill such formulas, by allowing as shown in listing 29

1 ltlProperty :: (Str a → Str b) → TPred a → TPred b → Property

2 ltlProperty fUnderTest inputSpec outputSpec = ...

3 ghci> quickCheck (ltlProperty ... )

4 +++ OK, passed 100 tests

5

Figure 29: Sum up of ltlProperty

It does so by running using two state machines, one which with guess elements arbi-

trarily and then filter according to an acceptor, which is constructed from LTL-formula.

Generating streams are not feasible for all formulas, but still I believe that QuickRat can

make testing of functions that act on streams better. I hope that this thesis will inspire

others or at least myself to create more reliable applications.
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