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Abstract

This thesis presents an implementation of a programming language based on the Async
RaTT calculus the theory of which is defined by Møgelberg and Bahr [2]. The language
has previously been implemented as an embedded language in Haskell but has never been
implemented as a standalone language. The paper describes such a language implementation
with type inference, transpilation to OCaml, and gives several examples of programs written
in Async RaTT. Thorough testing and measurements of memory usage indicates that the
guarantees of no implicit space-leak, causality, and productivity are present.

1 Introduction

Functional Reactive Programming (FRP) is a programming paradigm first described in 1997
[4] which combines functional programming and reactive programming resulting in declarative
programming of reactive systems. These reactive systems in question are high-level abstractions
of computations which use a number of input channels. Such a system could be a robot with
sensors or a graphical user interfaces with input fields.

Among a handful of suggested languages within this paradigm Async RaTT [2] stands out by
having an operational semantics that allows output channels to be dependent on multiple asyn-
chronous input channels. These channels may change at runtime. The operational semantics
have additionally been formally proven. However, the language has prior to this project only
been implemented as an embedded language within Haskell [1].

This paper introduces an implementation of Async RaTT as a standalone programming lan-
guage. In section 2 the basic concepts behind, and features of, the language are explained. This
is followed by a more in-depth showcase of all of the available terms, types, and rules of the
implementation.

Section 3 goes through the implemented language infrastructure, including an introduction of
how one can utilize the implementations for their own use cases.

Section 4 explains how the different types of inference have been implemented. This includes
type-, clock-, and stable type inference.

Section 5 explains the interpreter. This includes explanations of how both the operational and
reactive semantics are implemented, in regards to both the functional implementation and the
data structures.

Finally, section 6 explains how Async RaTT is transpiled to OCaml.

The source code of the implementation can be found at https://github.com/bueskyd/AsyncRaTT.
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2 Language Introduction

Programs written in Async RaTT work by reacting to updates in an environment which, for
example, could be a computer with a clock, keyboard, and console, or a robot with sensors and
actuators. Essentially, a program will wait for these updates, and then produce some effect once
they occur. Both of these actions work on the concept of channels.

Input channels are all the channels from which the program can receive information. These
channels can be either push-only channels on which a program must wait for an update to
occur, buffered-only channels from which the program can always read the newest value, or
push-buffered that combines push-only and buffered-only channels.
As an example, the keyboard of a computer could be modelled as a push channel which produces
a value each time a key is pressed. It could also be buffered if said value is saved such that the
latest value is always accessible. A battery sensor on a robot might be a buffered channel from
which the charge percentage could be read.

Output channels are all the channels on which the program can produce an effect by writing
a value to it. In this implementation these channels can be typed, requiring a certain type of
value, or untyped, in which case the output can handle any type of value.
The console of a computer could be an untyped output channel, and a DC motor of a robot
might be typed strictly require a number describing how fast and in which direction to rotate.

The implementation includes type inference, explained further in section 4. This means that
in most places where a type is needed it can optionally be left out resulting in less verbose source
code without compromising on type safety.

2.1 Program Structure

let fst = \(x,_) -> x;

type 'a option =

| Some of 'a

| None;

type int_option = int option;

type int_tuple = int * int;

let rec key_handle = delay(Some(adv(wait keyboard)) :: key_handle);

console <- None :: key_handle;

Listing 1: Example program

In the concrete syntax of the language implementation you can do three things. Define types
which includes type aliases and algebraic data types (ADTs), define bindings via let-expressions,
and bind signals to output channels. All of these top-level language elements are terminated
with a semicolon.
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As an example the program in listing 1 does the following:

1. Defines a function returning the first element of a pair.

2. Defines the polymorphic algebraic data type ’option’.

3. Defines a type alias for options of integers.

4. Defines a type alias for pairs of integers.

5. Binds the name ’key handle’ to a delayed signal over the keyboard.

6. Binds a signal to the output channel called console.

For a program to actually do anything there must be at least one binding of a signal to an output
channel.

Generally, a program is written by defining some delayed signals by using delay, the signal
construction operator, ::, with the left argument being a value of type 'a, and the right argu-
ment being a delayed signal over values of type 'a.

Such a delayed signal can then be bound to an output channel. The output channel must
be given an initial value. In listing 1 this is done by signal construction. In this case the initial
value is None representing that initially, no key has been pressed.

2.2 Types

The language implementation comes with a handful of built-in types and the mentioned capa-
bility of type definitions. An important note about types in Async RaTT is that some types are
considered to be stable. If a type is stable then values of this type will be allowed to be moved
into the future. The importance and rules of this is explained in further detail in section 4.1.1.
Table 1 gives an overview of what types are available and how they are written in the concrete
syntax.

Name Syntax
Unit unit

Integer int

Boolean bool

String string

Tuple t0 * t1
Function t0 -> t1
Delayed t later

Stable t boxed

Signal t signal

Named name
Named (t0, ..., tn) name

Table 1: Type Overview

The implementation provides a handful of common types namely unit, int, bool, and string.
All of these are considered to be stable types. Naturally, types from the theory of the language
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are also included. Although, they have been given a concrete syntax for the sake of readability
and usability. 'a later is the syntax for the modal type ∃ ‵a, and 'a boxed is the syntax for
the modal type □‵a. The type 'a signal is essentially a recursive type, which could be written
as 'a * 'a signal later.

2.2.1 Built-in ADTs

Two built-in ADTs are provided, namely selection and option.

selection relates to the select term described further in section 2.3.2. It encodes the pos-
sibility that out of two delayed computations one may complete before the other or both may
complete at the same time.

type 'a 'b selection =

| Left of 'a * 'b later

| Rigth of 'a later * 'b

| Both of 'a * 'b;

Listing 2: Definition of selection

option is a common type, representing the possible lack of a value. Similar data types are found
in many languages of differing paradigms including OCaml, F#, C++, Scala, and Haskell. It
is included here, only such that we won’t have to manually implement the definition given in
listing 3 in nearly every file.

type 'a option =

| Some of 'a

| None;

Listing 3: Definition of option

2.2.2 Custom ADTs

The implementation does not limit users to only use the built-in ADTs. New ones can be defined
given a name, a list of constructors, and optionally a number of type variables. The constructor
names must start with a capital letter.

type direction =

| North

| East

| South

| West;

type 'a 'b tuple =

| Tuple of 'a * 'b;
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2.2.3 Type Aliasing

Sometimes types become very long and tedious to write explicitly. Type definitions can be used
to introduce an alias for any type.

type int_tuple = int * int;

type 'a si = 'a signal;

type 'a to_string = 'a -> string;

type str = string;

2.3 Language Terms

2.3.1 Common Functional Language Terms

Async RaTT is a FRP language and incorporates many well known functional language terms.
Some term have in this implementation, been replaced to create a more generally usable language.
For example, natural numbers in Peano representation are replaced by OCaml integers which uses
Two’s component representations. Other terms which are not formally part of Async RaTT have
been added to broaden what can be expressed. For example, the addition of booleans, strings,
and ADTs. The semantics of these added terms are similar to those of other functional languages.

Both a polymorphic equality- and inequality operator are provided available via the syntax
= and !=. Both of these operators result in values of the bool type.

unit : ()
This is just the unit value i.e. a value which can only take one shape. It has the type unit.

boolean : true | false

The common boolean value which can be either true or false and has the type bool. There are
two binary operations on booleans: Conjunction represented by &&, and disjunction represented
by ||.

integer : 0 | 12 | -4

The whole number representation which can be both positive and negative. These have the type
int. A handful of arithmetic binary operators are defined for int:

+,−, /, ∗, <,>,<=, >=

string : "Hello world!"

The representation of text. These have the type string. A single binary operation is defined
for this type, namely concatenation using the ^ operator.

ADT construction : Some 42 | None

Each constructor defined in an ADT definition can be instantiated, given a value of the type
which defines it. For example, the Some constructor of ’a option, defined in listing 3, is defined
with the polymorphic type. So given an int, as in the example above, the type int option is
produced. If the constructor is not defined with any type, no value should be given. This is the
case for the None constructor of ’a option.
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binding : let x : t = e in b

This defines x to be of type t and immutably take on the value produced by evaluating e. x will
then be available during the evaluation of b. The evaluation of b is the result of the entire term.

pattern matching : match e with | a ... -> b ...

This allows evaluation of terms depending on the shape of some term e. If there is only one
alternative the beginning | is optional. An alternative can have multiple patterns separated with
| and ending with an arrow pointing to a term.

It must be possible for every pattern to match e. For example, the type checker will com-
plain if e is of type int while one of the patterns expects it to be a bool or a tuple. Additionally,
every alternative must produce values of the same type, 'a. The type of the entire expression
will then also be 'a.

The version of the implementation described in this paper does not guarantee that pattern
matching is exhaustive. It does however guarantee that all patterns of an alternative contain the
same set of bindings.

let is_zero = \x -> ( match x with

| 0 -> true

| _ -> false

);

let single_digit = \x -> ( match x with

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 -> true

| _ -> false

);

let get = \(opt : 'a option) def -> ( match opt with

| Some x -> x

| None -> def

);

pattern matching with e
always matches

x always matches and binds x to e
i matches if e is an int and i = e
b matches if e is a bool and i = e

(p0, p1) matches if e is a tuple and p0 matches the first element and p1 the second.
p0 :: p1 matches if e is a signal
Name p matches if e is an instance of Name and p matches e’s argument

Table 2: Available patterns

if-then-else : if c then a else b

This term is syntactic sugar for pattern matching on a value of type bool.
It is equivalent to the term match c with | true -> a | false -> b.
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lambda expression : \(x : t) ... -> b

This is the syntax for defining a lambda expression. It can take any number of arguments each
of which can either be explicitly typed by providing t or inferred by leaving it out. Additionally,
x can be a pattern allowing for argument deconstructing.

An important restriction comes from the parser which does not allow b to directly be a pat-
tern matching term. If this is needed it has to be surrounded by parenthesis.

let abs : int -> int = \x -> if x < 0 then -x else x;

let fst = \(x,_) -> x;

let add = \a b -> a + b;

tuple : (a, b)

In this implementation tuples are structures of strictly two elements. If a is of type 'a and b is
of type 'b then the tuple is of type 'a * 'b.

let user : string * int = ("John", 24);

let primes = (17, 13);

application : f x

Function applications work as in most other languages. If f is of type 'a -> 'b and x is of type
'a then the application of f to x gives a value of type 'b. Functions having multiple parameters
are implemented as functions having one parameter and returning new functions. This allows
for partial function applications.

2.3.2 Async RaTT specific terms

The following language constructs are those which make Async RaTT stand out. These relate to
handling delayed computations as well as the unusual scoping rules involving time. The scoping
rules are explained in more detail in section 2.4.

wait c,
k :c

‵a ∈ ∆ c ∈ {p, pb}
Γ ⊢∆ wait k : ‵a later

Some input channels are push channels, meaning that they trigger updates of the program. This
can, for example, be after some amount of time has passed or when a button is pressed. Waiting
is used to acquire a delayed computation which can be evaluated once the channel being waited
on has updated. If the channel produces values of type 'a then waiting for this gives a values of
type 'a later.
This can, for example, be used to write a function that returns a signal and appends some string
to whichever key is pressed on the keyboard:

let rec s = \str -> delay(adv(wait keyboard) ^ str :: sig);

read c,
k :c

‵a ∈ ∆ c ∈ {b, pb}
Γ ⊢∆ read k : ‵a

Some channels are buffered meaning that there is always a value available. This value is accessed
by reading the channel which will immediately fetch the buffered value.

For example, this could be used to write a signal giving the latest keystroke each minute:

let rec s = delay(let w = wait minute in read keyboard :: sig);
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a :: b,
Γ ⊢∆ t1 : ‵a Γ ⊢∆ t2 : ‵a signal later

Γ ⊢∆ t1 :: t2 : ‵a signal
This is the operator used for constructing signals. The left hand argument is of type 'a, the
right hand argument is of type 'a signal later, and the term itself has the type 'a signal.

delay t,
Γ,

√
cl(t),Γ

′ ⊢∆ t : ‵a Γ ⊢∆ cl(t) : Clock

Γ ⊢∆ delay t : ‵a later
This delays the evaluation of t. This requires that t advances on another delayed value. If t has
the type 'a then delay t has the type 'a later. The term t can then be evaluated once the
required data is available. delay introduces a tick in the context, meaning that all binding that
existed before the delay are now considered as such. In practice this results in unstable values
becoming unavailable and values of the type 'a later becoming available via advancing.

adv t,
Γ ⊢∆ t : ‵a later

Γ,
√

cl(v),Γ
′ ⊢∆ adv t : ‵a

This is how a delayed computation is evaluated. This is only allowed inside of a delay as a tick
in the context is required, and t must be of type 'a later. The result of advancing a value of
this type is a value of type 'a.

let rec x : t = e in b,
Γ ⊢∆ a : ‵a Γ, x : ∀ ‵a ⊢∆ b : ‵b

Γ ⊢∆ let rec x = a in b : ‵b

This works the same as other bindings except that x is implicitly given the type ∀ t inside e.
Advancing on x inside e results in a value of type t. This effectively means that recursion is
only available inside a delay which gives the language its productivity guarantee. Advancing x

is done automatically, and there does not exist a concrete syntax for the type ∀ t.

select a b,
Γ ⊢∆ t1 : ‵a later Γ ⊢∆ t2 : ‵b later

Γ,
√

θ1⊔θ2
,Γ′ ⊢∆ select t1 t2 : (‵a, ‵b) selection

If a computation relies on multiple delayed computations synchronization must be used. This is
done by using the select keyword with two delayed computations, a and b. a and b must be
values of the types 'a later and 'b later which will make the entire select term have the
type ('a * 'b) selection. This captures the possibility that one computation is done before
the other or that both are done at the same time. Pattern matching can then be used to express
how to handle each of those cases. It is important to note that select is required to be inside
a delay as this is the only way for a tick to have been introduced into the context.

select can, for example, be used to write a signal that marks the passage of time in a stream
of strings:

let rec keyboard_ticks = delay(match select (wait keyboard) (wait minute) with

| Left(s::ss,_) -> s::keyboard_ticks

| Right(_,_)

| Both(_,_) -> "tick"::keyboard_ticks

);

box t,
Γ□ ⊢∆ t : ‵a

Γ ⊢∆ box t : ‵a boxed
Boxing is the mechanic with which terms that are not inherently stable can be made stable.
Before evaluating the term t the context is stabilized, meaning that all bindings of unstable
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types are no longer in scope. As an example, in the following code snippet the term a is invalid
as f is a function type which is inherently unstable. It is therefore removed from the context
when evaluating box f. In contrast, b is valid as it does not refer to any unstable bindings.

let a =

let f = \i -> i + 1 in

box f;

let b = box (\i -> i + 1);

If the term t has the type 'a then box t has the type 'a boxed indicating that the term can
safely be moved into the future.

unbox t,
Γ ⊢∆ t : ‵a boxed

Γ ⊢∆ unbox t : ‵a
This is the counterpart of boxing a term. The term t is evaluated and is expected to have the
type 'a boxed. Unboxing t will then give a value of type 'a.

never,
Γ ⊢∆ never : ‵a

This is the delayed computation that is never evaluated. This could be used to set an output
channel to an initial value which would then never change. For example, this could be used to
implement the ”Hello World!” program like so:

console <- "Hello world!" :: never;

2.4 Scope rules

The set of variables which are available at any time is called the context. The content of the
context changes in different scenarios. For example, most people who are familiar with func-
tional programming knows that a let-expression, let x = e in b, will add the binding x to
the context in which b is evaluated. This is also the case in Async RaTT. However, there are
a few more rules to keep in mind which exist to ensure the guarantees of the language. This
includes that a program does not contain implicit space-leaks, that it is productive in finite time,
and that computations are causal, i.e. that computations do not require future data to complete.

The most central concept here is that any term of the language exists at some point in time.
As such, a let-expression defines a binding in the context that exists ”now”. When a term is
delayed, let x = e in delay t, the context moves to the next time step and the binding x

which existed ”now” now exists ”before”. If this x is of a stable type, i.e. a type that can
safely be moved into the future, it can still be referenced in t otherwise it will be unavailable.
Additionally, because time has now passed for t any term a of type 'a later can now be made
to produce a value by writing adv a.

To ensure productivity any recursively defined binding only becomes available within its own
definition inside of a delay. Thus, a function such as:

let rec foo =

\i -> foo (i + 1);

does not type check while key_handle in listing 1 does.
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3 Language infrastructure

All the language infrastructure for this project in implemented in OCaml5.1 and is build using
Dune. Additionally, the lexer generator tool ocamllex is used for implementing the lexical
analysis, and the parser generator menhir is used to implement parsing to the abstract syntax
tree. Figure 1 gives an overview of how the different modules of the infrastructure interact.

Figure 1: Language infrastructure

3.1 Channels

As previously mentioned Async RaTT describes programs in some environment, ∆, of input and
output channels. This means that the theory can work for a multitude of environments. Bahr
and Møgelberg [2] gives the examples of a GUI. To encode this in the implementation channels
are described in terms of their types which decouples their concrete implementation from the
language. The remaining modules can then be constructed given a list of concrete channel im-
plementations resulting in a usable language infrastructure.

A concrete implementation of channels is a list of pairs containing a string and one of four
channel constructors. The string is the name of the channel while the channel constructor
carries the information of how the channel behaves. The four constructors are PushChannel,
BufferedChannel, PushBufferedChannel, and OutputChannel. The output channel is defined
by a function for outputting values and optionally the type which it can consume. The other
three are defined by the type of values that they produce, optionally a delay between updates,
the function that actually produces values, and an initial buffer value if the channel is buffered.
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3.2 Program environment

Given a list of channels, as described in section 3.1, the implementation can construct a program
environment module with the following signature:

module type ProgramEnvironment = sig

val is_buffered_channel : string -> bool

val is_push_channel : string -> bool

val input_channel_type : string -> typ

val output_channel_type : string -> typ option

val channel_values : unit -> runtime_value val StringMap.t

val buffer_values : unit -> runtime_value val StringMap.t

val output_channels : (typ option * val (runtime_value -> unit)) StringMap.t

val handle_events : unit -> runtime_value val StringMap.t

val start_channels : unit -> Thread.t list

val buffers : input_channel StringMap.t

end

The first four values are required by the type system implementation such that it can query for
typing information on the available input- and output-channels.

The next five values are required by the interpreter to interact with the environment. buffer values

gives access to the current values of the buffered input channels. output channels gives access
to the output channels. This importantly includes functions with which to actually produce an
output. For example, printing to the console. handle events gets all the updates on the set of
input channels. Finally, start channels starts up a thread to handle each input channel.

The final value, buffers, provides information about buffers and is required by the transpiler
for transpiling Async RaTT buffers to OCaml functions.

The rest of the language infrastructure can then use this module to query and interact with
the implemented environment.

3.2.1 Provided program environment

For the purpose of testing the language implementation a simple environment is designed. This
allows us to write programs that react to, and interact with, the computer. It contains 4 input
channels and 2 output channels. This allows for the environment used for the examples in this
paper.

second is a push input channel which produces a unit value once every second. This en-
ables writing programs that update every second.

minute is a push input channel which produces a unit value once every minute. This en-
ables writing programs that update every minute.

keyboard is a push buffered input channel which produces a string each time a key on the
keyboard is pressed. The string simply contains the character value of the key pressed. This
character values is also saved to a buffer.
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system time is a buffered input channel that contains an integer representing how many sec-
onds have passed since the program was started.

console is an untyped output channel that allows for printing arbitrary values to the console
from which the program was started.

console int is like console except that it requires the given values to be of type int.

Each input channel is handled on a separate thread which makes the system asynchronous.
To avoid race conditions mutual exclusion is used by each thread when writing values to the
data structure keeping track of what values exist in any given time step.

An example of how this environment is implemented, and used to construct language infras-
tructure, can be seen in listing 18.

3.3 Interpreter

The interpreter is the system responsible for evaluating a given abstract syntax tree in the
current environment. Additionally, the interpreter communicates with the program environment
requesting the input channels to be initialized, querying these for values, and writing to output
channels.

3.4 Transpiler

Having to execute programs via an interpreter is not necessarily the best solution for all cases,
as it sacrifices performance for a simple execution pipeline i.e. having no compilation step. To
get around this, the language infrastructure includes the ability to transpile programs written in
Async RaTT into OCaml source code which can then be compiled with a native-code compiler, e.g
ocamlopt. To enable this feature a module containing the program environment implementation
as a string is required. This allows the transpiled program to be bundled with the environment
that it relies upon. In order to transpile an Async RaTT program the -t or --transpile flags
have to be set. How the transpilation is done is explained in detail in section 6.

3.5 Optimization

We have not extensively implemented optimizations. Rather we have attempted two simple
optimizations. The purpose of this is mostly to have the infrastructure in place. Optimization
can be enabled via the -o or --optimize flags. With this enabled the optimizations are applied
on the abstract syntax tree.

3.5.1 Arithmetic Preprocessing

Arithmetic operations consisting exclusively of value literals will be reduced to their result. This
means that a term such as let x = 2 + 2 * 2 in e, will be transformed into let x = 6 in e,
while let x = 2 + y in e would not be transformed as y is not a value literal.

3.5.2 Pattern-matching Reduction

In some cases, it is obvious that an alternative in a match-term will never be matched due to
the shape of the pattern compared to the term being matched on. In these cases we discard that
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alternative. As an example consider the term:

match (1,x) with | (2,x) -> a | (1,2) -> b

Here the first alternative is not viable as 1 = 2 is clearly false. Therefore, it can be discarded
reducing the amount of alternatives that would be checked at runtime.

Additionally, when a term being matched on does not vary, i.e. its value can be determined
at compile time, determining which alternative will be matched also becomes possible. If the
alternative would create bindings and any of these are used in the following term every other al-
ternative is discarded. Otherwise the entire match-term is replaced by the term of the alternative.
Using this, these terms can be reduced such that a term:

match 2 with | 1 -> a | x -> b

can be reduced to just b. While a term:

match 2 with | 1 -> a | x -> x + 1

can be reduced to:

match 2 with | x -> x + 1.

4 Inference

4.1 Type inference

Async RaTT uses a Hindley-Milner type system which is capable of automatically inferring the
most general type of any program without the need for type-annotations. This is implemented
using a map, type_vars, from type variable names to types as the primary data structure:

type_vars : typ StringMap.t

where StringMap.t is defined as:

module StringMap = Map.Make(String)

We have chosen to implement type inference purely functionally using a state monad. This allows
us to ”mutate” type_vars while remaining purely functional.
The type typ represents a type in Async RaTT and is defined as the recursive ADT:

type typ =

| T_Poly of string

| T_Unit

| T_Int

| T_String

| T_Multiplicative of typ * typ

| T_Additive of (string * typ) list

| T_Function of typ * typ

| T_Existential of typ

| T_Universal of typ

| T_Fix of string * typ

| T_Boxed of typ

| T_Named of typ list * string

| T_Bool

| T_Signal of typ
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When a new type variable is created it is inserted in type_vars with the key being its name. In
other words, new type variables map to themselves via their names.
The implementation needs to be able to lookup a type. However, since typ is a recursive ADT it
may contain other instances of typ. Some of these typs may be polymorphic and may therefore
have been unified with other types. This means that simply looking up a type in type_vars

may not result in the correct type. To solve this issue when a type, t, is looked up in type_vars

all type variables, t_0, ..., t_n, in t are replaced by the result of looking up t_0, ..., t_n

in type_vars. For example if looking up type 'a results in 'b * 'c then 'b and 'c are also
looked up in the map. If looking up 'b and 'c results in int and string respectively then the
final result of looking up 'a is int * string.

The implementation needs to ensure that only bindings in the current scope can be accessed. In
most other programming languages scopes can be represented by a binding StringMap.t list

where each StringMap.t represents a scope. In Async RaTT this is complicated by the fact that
bindings declared outside a delay generally cannot be accessed inside a delay. To model this
the implementation of Async RaTT using the following binding:

context : var_env * (var_env option)

where var_env is defined as:

type var_env = binding StringMap.t list

Each map represents a scope allowing the implementation to lookup information about a binding.
When entering a new scope a new map is added to the front of the list. When a scope is exited the
head of the list is removed. This allows for keeping track of available bindings while performing
type inference.
The first var_env in context represents the bindings declared outside a delay. The case when
the var_env option is None represents there being no tick in the context (currently inferring
types outside a delay), while the case when it is Some represents the, i.e. currently inferring
types inside a delay. The var_env inside the option represents all bindings declared inside the
current delay.
The binding type is defined as follows:

type binding = {

typ : typ;

top_level : bool;

declared_in_normal_context : bool;

declared_outside_local_recursive : bool

}

A binding is a record containing a type and three booleans to help determine whether the binding
is available when accessed or if an error should be raised. Here the term ”normal context” refers
to a context that is not stable and does not have a tick.
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4.1.1 Inference of Stable Types

’a : stable ∈ ϕ

ϕ ⊢ ’a : stable ϕ ⊢ unit : stable ϕ ⊢ int : stable ϕ ⊢ bool : stable

ϕ ⊢ string : stable

ϕ ⊢ t1 : stable ϕ ⊢ t2 : stable

ϕ ⊢ t2 ∗ t2 : stable ϕ ⊢ t boxed : stable

∀d ∈ def((t0, ..., tn) name), ϕ ⊢ d : stable

ϕ ⊢ (t0, ..., tn) name : stable

def((t0, ..., tn) name) is the set of types used to define name, with its type variables replaced with t0, ..., tn

Figure 2: Type stability rules

In Async RaTT a binding defined outside a delay can only be accessed inside a delay if the type of
the binding is stable or if it is being advanced on. This means that the types of bindings defined
outside delays and accessed inside delays, but not being advanced on, must be constrained to be
stable. As an example, consider the function, f, shown below.

let f = \x -> delay (

let y = x in

adv (wait keyboard))

The parameter x is accessed inside the delay and must therefore be stable. Otherwise, x may
no longer exist when the delayed computation is advanced. This also means that f cannot be
applied to unstable type.

Inference of stable types is implemented using a set, ϕ, which in the implementation is called
required_stable, of strings representing type variable names. When a binding, x of type t,
defined outside a delay is accessed inside a delay, then t will be marked as being required
to be stable. This also happens if x is defined outside a box and is accessed inside a box, or
if x is defined in a top-level function and is accessed inside a local recursive function. This is
done by first checking if the type could possibly be stable. For example, the type 'a -> 'b

cannot possibly be stable while the type 'a * 'b could potentially be stable. If the type can-
not possibly be stable then type inference fails. Otherwise, all type variables in t are added to
required_stable. After all types have been inferred required_stable contains type variables
that may have been unified with other types. These types may or may not be stable. Therefore,
the type system iterates over ϕ. For each type variable, the final type is looked up in type_vars

and checked to see if it can be stable. If it cannot be stable then type inference will fail. The
reason that the validity of stable types is, for the most part, only checked once type inference has
completed is that the type of a binding may not always be known when it is accessed. Inference
of stable types constraints is, like type inference, implemented completely functionally using a
state monad.

15



This implementation ensures that bindings defined outside delays and accessed inside delays
are constrained to be stable, and that functions whose parameters are constrained to be stable
can only be applied to stable values.

4.2 Clock Inference

adv v : cl(v) v : ∅ adv(wait k) : k read k : ∅ never : θ unbox : θ

(θy ∩ θx = ∅) ∨ (θx = θy)

ξ(θx, θy)

x : θx y : θy ξ(θx, θy)

(x, y) : θx ∪ θy

f : θf a : θa ξ(θf , θa)

f a : θf ∪ θa

a : θa b : θb ξ(θa, θb)

let x = a in b : θa ∪ θb

e0 : θ0 ... en : θn ξ(θ0, θ1) ... ξ(θn−1, θn)

match e0 with p1 → e1, ..., pn → en : θ0 ∪ ... ∪ θn

select a b : cl(a) ∪ cl(b)

Figure 3: Clock inference rules

In order for Async RaTT to ensure productivity, no implicit space leaks, and causality it has to
know what clock each delayed computation depends on. This can be inferred at compile time by
finding all delays in the AST, and finding the clocks that these advance on. The implementation
defines a function, infer_clock, of type 'a term -> clock_result that infers the clock of a
delay. clock_result is an ADT used to determine if all clocks advanced on in a delay are valid.
Its definition is as follows:

type clock_result =

| Single of clock_set

| NoClock

| MultipleClocks

The Single constructor represents the case when a single clock has been inferred. NoClock

represents the case before any adv or select expression is found. MultipleClocks represents
the case when a delay advances on different clocks. If NoClock or MultipleClocks is the result
of inferring the clock of a delay, then clock inference fails, because a delay must advance exactly
one clock.
A clock_set is the representation of a clock at compile time. This data type is defined as:

and clock_set = CS of {

channels : StringSet.t;

variables : StringSet.t

}

Where channels is the set of all channels advanced on that can be inferred at compile time, and
variables is the set of variables whose clock is advanced on. The variables binding is needed
because the clocks of bindings may depend on runtime information. The exact channels in the
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clock can therefore not be determined at compile time.

Because we can only advance on clocks of values of type 'a later the values must be either
wait_k or bindings of type 'a later. In the case of adv wait_k the clock is simply the singleton
clock consisting of k. In the case of advancing a binding, x, as in adv x we add the name of x to
variables. In the following we write cl(a) to represent the clock of the binding a. Note that
in certain situations, it is possible to infer the clock of bindings. For example, the clock of the
expression let x = wait keyboard in adv x is clearly just {keyboard}. However, the imple-
mentation does not infer this for two reasons. Firstly, it should be as clear as possible why the
compiler either fails or succeeds to infer a clock. Partially inferring the clocks of bindings might
cause this to be less clear and therefore make Async RaTT harder to use. Secondly, it would
make the implementation much more complicated. We do not deem the additional complexity
acceptable as this feature would only work in simple cases, and it would increase the risk of bugs.

For clock inference to succeed the clocks that are advanced on, must be equal. We say that
two clocks are equal if they consist of the same set of channels, i.e., for two clocks, θ1 and θ2,
θ1 = θ2 must hold.

When reaching an adv during clock inference we check if the clock advanced on is compati-
ble with the clock inferred so far. For example, consider the expression delay(adv a + adv b)

where a and b are bindings. This delay advances on two different clocks: cl(a) and cl(b).
When iterating through the AST during clock inference we first encounter adv a. Since this is
the first clock advanced on inside the delay we return Single (cl(a)). Then later when reach-
ing adv b we check equality of the clocks cl(a) and cl(b). In this case the clocks are not equal
and we return MultipleClocks. This happens because the exact channels of cl(a) and cl(b)

may not be possible to infer at compile time. Therefore, we must take the safe approach, in
terms of ensuring the guarantees of Async RaTT, and simply assume that they are different. On
the other hand the expression delay(adv a + adv a) will succeed since the delay only advances
the clock cl(a).

The only case in which two advanced clocks are allowed to be different is through the use of
the select term. The select term takes two values of type 'a later as parameters, and ad-
vances either one or both of their clocks depending on which clock has ticked. The clocks are
therefore allowed to be different. The clocks of the given values are combined by set union and
wrapped in Single.

Consider the expression delay(match select a b with ...). This expression advances on
both cl(a) and cl(b) which normally would not type check. However, since select is used the
clocks cl(a) and cl(b) are unioned so the clock of the expression is cl(a) ∪ cl(b).

In short the algorithm for inferring clocks is as follows:

1. Find all delay expressions.

2. Apply infer_clock to each delay expression.

3. Attach the resulting clock to the delay.

The infer_clock function works as follows:

1. Iterate through the given expression.
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2. When a adv t is found compare cl(t) with the result so far:

• If the previous result was NoClock return Single (cl(t)).

• If the previous result was Single c then do one of the following:

– If cl(t) = c then return Single c.

– Otherwise return MultipleClocks.

• If the previous result was MultipleClocks then return MultipleClocks.

3. If the final result is Single c then c is returned. Otherwise, the result is MultipleClocks
or NoClock and clock inference fails.

5 Interpretation

5.1 Description of Runtime Values

Async RaTT uses the ADT shown in listing 4 for representing values at runtime.

type runtime_value =

| Binding_rv of string

| Unit_rv

| Int_rv of int

| Bool_rv of bool

| String_rv of string

| Tuple_rv of runtime_value * runtime_value

| Closure of string * value_env * typed_term

| Construct_rv of string * runtime_value

| Built_in_1 of (runtime_value -> runtime_value)

| Built_in_2 of (runtime_value -> runtime_value -> runtime_value)

| Location of int * clock

| Box of typed_term * value_env

| Signal_rv of runtime_value * runtime_value

| Wait_rv

Listing 4: Representation of runtime values

A binding is represented by its name as a string. This allows for easily looking up the value
of a binding. The representation of a unit value, Unit_rv, does not carry any information as
it is not needed. Integers (Int_rv), booleans (Bool_rv), and strings (String_rv) simply carry
the information which would be expected. Tuples are composed of two arbitrary values and are
therefore represented simply as a pair of two runtime_values. A closure consists of the name
of a parameter (a string), an environment containing free bindings, and a term which is what is
executed when the closure is called. This corresponds to how closures are implemented in other
functional languages. A value_env is a an ADT shown in listing 5 which is mutually recursive
with runtime_value.

and value_env = VE of { vars : (runtime_binding StringMap.t }

Listing 5: Representation of closure environments
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A value_env is simply a wrapper around a map from binding names to the associated data.
When a closure is evaluated (such as when a function is called) a new scope is pushed and all the
bindings in the value_env are declared. After evaluation of the term the scope is then popped
again.

The Construct_rv constructor in runtime_value represents an ADT. The string is the name
of the ADT and the runtime_value is the value given as argument during runtime.

Built in operators like integer addition and boolean conjunction are implemented using the
constructors Built_in_1 and Built_in_2. These are lambda expressions having one and two
runtime_values as parameters respectively. This allows for easy implementation of operators in
Async RaTT that are otherwise built in to OCaml. For example, integer addition is implemented
as the function shown in listing 6.

let add_integers a b =

match a, b with

| Int_rv a, Int_rv b -> Int_rv (a + b)

| _ -> failwith "Not integers"

Listing 6: Representation of closure environments

This function is of type runtime value→ runtime value→ runtime value and can therefore
be wrapped in a Built_in_2.

A Location consists of an integer representing the heap location of a delayed computation
and the clock of the delayed computation. Location values are used to manage delayed com-
putations. This is a major part of the implementation of Async RaTT and is thus described in
both section 5.2 and 5.3.

The Box constructor wraps a term to be evaluated later and a value_env containing free bindings
in the term.

The Signal_rv constructor consists of the head and tail of a signal. Both of these are runtime_values.

The Wait_rv constructor is what is created when the interpreter reaches a Wait value. Wait_rv
does not carry any information as the updated channel is always known when a Wait_rv is
advanced.

5.2 Implementation of Reactive Semantics

5.2.1 Implementation of the Heap

Async RaTT requires a heap for delaying computations into the future. The heap can be in one of
two states: ηL or ηN ⟨κ 7→ v⟩ηL where ηN is called the now heap, ηL is called the later heap, κ is a
channel, and v is a value. The now heap contains delayed computations that are safe to evaluate
because their clocks have received an update. The later heap contains delayed computations that
can only be evaluated in the future once their clocks have ticked. The expressions κ 7→ v means
that the channel κ has received a value v. We model the heap using an algebraic data type:
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type heap =

| OneHeap of delayed IntMap.t

| TwoHeap of {

now : delayed IntMap.t;

update : string * runtime_value;

later : delayed IntMap.t

}

Listing 7: Implementation of the heap

This algebraic data type allows for describing the two states the heap can be in and allows for
easily performing garbage collection and ensuring correctness. In accordance with the theory,
when the heap is a OneHeap it consists only of a map from heap locations to delayed computa-
tions. When the heap is a TwoHeap it consists of a now heap, a later heap, and an update on a
channel. Each integer key in the maps corresponds to a Location created during runtime. The
update binding reflects the channel update κ 7→ v where the string is the name of the channel
and the runtime_value is the value on the channel.

5.2.2 Implementation of Transitions

init
⟨⟨t⟩; ∅⟩ ⇓ι ⟨⟨v1 :: l1, ..., vm :: lm⟩; η⟩

⟨t; ι⟩ x1 7→v1,...,xm 7→vm
============⇒ ⟨x1 7→ l1, ..., xm 7→ lm; η; ι⟩

input
ι′ = ι[κ 7→ v] if κ ∈ dom(ι) otherwise ι′ = ι

⟨N ; η; ι⟩ κ7→v
===⇒ ⟨N ; [η]κ∈⟨κ 7→ v⟩[η]κ/∈; ι

′⟩

output-end
⟨·; ηN ⟨κ 7→ v⟩ηL; ι⟩ ⇒ ⟨·; ηL; ι⟩

output-skip
κ /∈ cl(l) ⟨N ; ηN ⟨κ 7→ v⟩ηL; l⟩

O
=⇒ ⟨N ′; η; ι⟩

⟨x 7→ l, N ; ηN ⟨κ 7→ v⟩ηL; ι⟩
O
=⇒ ⟨x 7→ l, N ′; η; ι⟩

output-compute
κ ∈ cl(l) ⟨adv l; ηN ⟨κ 7→ v⟩ηL⟩ ⇓ι ⟨v′ :: l′;σ⟩ ⟨N ;σ; ι⟩ O

=⇒ ⟨N ′; η; ι⟩

⟨x 7→ l, N ; ηN ⟨κ 7→ v⟩ηL; ι⟩
x 7→v′,O
=====⇒ ⟨x 7→ l′, N ′; η; ι⟩

Figure 4: Reactive semantics from [2]

As described by Bahr and Møgelberg[2] the reactive machine can take three different transitions:
Initialization transitions, input transitions, and output transitions. The reactive semantics of
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these transitions can be seen in figure 4. Input transitions defined by init are denoted using the
shorthand:

⟨t; ι⟩ O
=⇒ ⟨N ; η; ι⟩

Where t is the reactive program, ι is the initial input buffer, O is a sequence that maps output
channels to values, N is a map from output channels to heap locations, and η is the heap.
In our implementation t is a list of top-level declarations, and N is implemented as a map:

outputs : int StringMap.t

Where the keys are output channel names, and the values are heap locations.
We represent ι as a binding, buffers : runtime_value StringMap.t, that maps buffer names
to their newest values.
We implement init by iterating over the list of top-level definitions. Both top-level let-bindings
and output channels have an associated term. Top-level let-bindings are implicitly boxed and the
term is therefore boxed before the binding is bound to it. This also means that top-level bindings
need to be implicitly unboxed when accessed. Output channels need to be initialized and the
associated term is therefore evaluated. The term is always of type 'a signal so the head of
the signal, being immediately available, is written to the output channel and the key-value pair
consisting of the channel name and the location of the tail is added to outputs.
We initialize buffers by querying the initial values of all available buffers from the
ProgramEnvironment.
After the initialization transition, the heap is a one heap where the delayed computations are
the delayed tails of the signals initializing the output channels.

Once an updated value v is received on a channel κ an input transition defined by input is
performed:

⟨N ; η; ι⟩ κ7→v
===⇒ ⟨N ; ηN ⟨κ 7→ v⟩ηL; ι′⟩

An input transition require that the heap starts out as OneHeap and then creates a TwoHeap.
This is done by taking all the key-value pairs in the OneHeap that do not depend on κ and moving
them to the later map in the newly created TwoHeap. The now map in the TwoHeap is initialised
to the map of the old OneHeap. The update binding is initialised to the pair consisting of the
pair (κ, v).
Each input transition also pulls the latest value on all buffered channels and inserts these values
into buffers.

After an input transition one or more output transitions defined by output-skip and output-
compute are performed.

⟨N ; ηN ⟨κ 7→ v⟩ηL; ι⟩
O
=⇒ ⟨N ′; ηL; ι⟩

When performing output transitions, the heap will always be a TwoHeap since they are always
performed after an input transition. To perform an output transition a location depending on κ
and its associated delayed computation is found in the now heap. Since a delayed computation
is a closure all the bindings stored within are declared. Then the computation itself is evaluated.
The bindings from the closures environment are then released to prevent memory leaks. Now the
channel in the outputs map is remapped to the new location of the tail of the resulting signal.
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Finally, the head of the signal is written to the output channel.

After all output transitions for a specific channel update have been performed a garbage col-
lection is done. In correspondence with output-end a garbage collection can be done simply
by creating a new OneHeap and initialising the map within using the later binding in the old
TwoHeap. The old TwoHeap is then released. This is always possible because output transitions
never change a TwoHeap to a OneHeap. Thus garbage collections are performed by the following
simple function:

let collect_garbage (S state) =

match state.heap with

| OneHeap _ -> failwith "Cannot perform a garbage collection on a one heap"

| TwoHeap heap ->

let heap' = OneHeap heap.later in

S { state with heap = heap' }

Where state contains information about bindings, the heap, outputs and buffers.

5.3 Interpretation of Terms

Async RaTT is a functional language and has all the usual terms found in many other functional
languages. These are: let-bindings, functions, lambda expressions, pattern matching, if-then-
else expressions, algebraic data types, and tuples. These constructs work exactly as would be
expected of a functional programming language. The details of how these expressions are eval-
uated will therefore not be discussed. Instead, evaluation of the terms that make Async RaTT
interesting will now be described.

First off is the box keyword which constructs a delayed computation that can be evaluated at any
time in the future. This is implemented by wrapping the term given to box in a Box value. In
addition, boxed values may depend on other bindings which may have been released. Therefore,
Box not only consists of a computation but also an environment containing the bindings and
their values, which were accessible at construction. Put simply, Box values are closures.

5.3.1 unbox

⟨t;σ⟩ ⇓ι ⟨box t′;σ′⟩ ⟨t′;σ′⟩ ⇓ι ⟨v;σ′′⟩
⟨unbox t;σ⟩ ⇓ι ⟨v;σ′′⟩

The unbox keyword takes a boxed term and evaluates it. This can happen both inside and outside
a delay. This functionality is implemented by declaring the bindings stored in the environment
of the boxed value and then evaluating the delayed computation.

The wait keyword constructs a delayed value whose clock contains only the given channel. For
example, wait keyboard is a delayed value that has the clock keyboard. When encountering
a wait keyword the interpreter simply initializes a Wait value and returns it together with the
given clock.
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5.3.2 delay

l = alloc|θ|(σ)

⟨delayθ t;σ⟩ ⇓ι ⟨l; (σ, l 7→ t)⟩

The delay keyword constructs a delayed computation that can be evaluated using adv or select
once a tick on its clock has occurred. The clock is automatically inferred as described in section
4.2. When evaluated it creates a Location value where the stored integer is uniquely generated.
The integer and the computation is inserted into the later heap as a key-value pair.

5.3.3 adv

⟨adv waitκ; ηN ⟨κ 7→ v⟩ηL⟩ ⇓ι ⟨v; ηL⟨κ 7→ v⟩ηL⟩

⟨ηN (l); ηN ⟨κ 7→ v⟩ηL⟩ ⇓ι ⟨w;σ⟩
⟨adv l; ηN ⟨κ 7→ v⟩ηL⟩ ⇓ι ⟨w;σ⟩

The adv keyword advances the clock of a value of type 'a later. When adv is applied to a value
the location of that value is looked up in the heap giving a delayed computation. This delayed
computation is then evaluated and the result of type 'a is returned.

The expression adv wait_k has a special meaning. Instead of returning a Wait value, like
wait_k normally does, the updated value of the channel k is simply looked up and returned.
This is valid because the clock inference ensures that the delayed computation that the adv

resides in can only be advanced once k has a new value.

5.3.4 never

l = alloc∅(σ)

⟨never;σ⟩ ⇓ι ⟨l;σ⟩

The never keyword, like delay, allocates on the heap. However, this location does not have an
associated clock and is thus never advanced.

5.3.5 read

κ ∈ dom(ι)

⟨readκ;σ⟩ ⇓ι ⟨ι(κ);σ)⟩

The read keyword returns the latest value in the given buffer. This is done by simply looking
up the runtime_value of the buffer in buffers.
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5.3.6 select

κ ∈ |cl(v1)| ⟨adv v1; ηN ⟨κ 7→ w⟩ηL⟩ ⇓ι ⟨u1;σ⟩
⟨select v1 v2; ηN ⟨κ 7→ w⟩ηL⟩ ⇓ι ⟨Left(u1, v2);σ

′⟩

κ ∈ |cl(v2)| ⟨adv v2; ηN ⟨κ 7→ w⟩ηL⟩ ⇓ι ⟨u2;σ⟩
⟨select v2 v2; ηN ⟨κ 7→ w⟩ηL⟩ ⇓ι ⟨Right(v1, u2);σ

′⟩

κ ∈ |cl(v1)| ∩ |cl(v2)| ⟨adv v1; ηN ⟨κ 7→ w⟩ηL⟩ ⇓ι ⟨u1;σ⟩ ⟨adv v2;σ⟩ ⇓ ι⟨u2;σ
′⟩

⟨select v1 v2; ηN ⟨κ 7→ w⟩ηL⟩ ⇓ι ⟨Both(u1, u2);σ
′⟩

The final keyword select takes two values and advances one or both of them depending on what
channel has been advanced the current tick. Consider the expression select a b and let the
updated channel be k. If k is in cl(a) but not in cl(b) then a is advanced and Left(adv a, b)

is returned. If k is not in cl(a) but it is in cl(b) then b is advanced and Right(a, adv b) is
returned. If k is in cl(a) and cl(b) then both a and b are advanced and Both(adv a, adv b)

is returned. This ensures that only clocks which have ticked are advanced.

6 Transpilation

The interpreter described in section 5 implements Async RaTT based on the theory in[2]. How-
ever, interpretation comes with the set of problems described in section 3.4. In order to resolve
these issues, transpilation from Async RaTT to OCaml has been implemented. The basic opera-
tion of the transpiler is traversing the AST and translating its components to OCaml compliant
syntax.

Since much of the syntax and semantics of our concrete syntax and OCaml is similar, a large part
of transpilation is trivial. For example, let-bindings, pattern matching, and anonymous func-
tions can be transpiled to OCaml, by outputting the syntax almost as is. The only significant
difference being our usage of a backslash instead of the fun keyword, for anonymous functions.

The parts that require more complex translation, and further explanation, are, once again,
the terms that make Async RaTT special: delay, adv, select, box, unbox, wait, and ::. Note
that the :: operator exists in both OCaml and Async RaTT, but differ semantically between
the languages.

In Async RaTT clocks are sets of channels. We transpile channels to strings, i.e. their names,
and clocks can therefore be transpiled to sets of strings, utilizing the Set module type of OCaml
constructed over the String module. This allows for quick checking of whether a clock contains
an updated channel.

In the following unless stated otherwise an underlined piece of text refers to the result of tran-
spiling an Async RaTT term to OCaml. For example, t refers to the result of transpiling the
Async RaTT term t to OCaml, and cl(v) refers to the result of transpiling the clock of the Async
RaTT value v to OCaml.

Delayed computations consist of a closure and a clock. We transpile the closure to values of type
unit -> 'a and the clock to a StringSet.t resulting in pairs of (unit -> 'a) * StringSet.t.
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This allows for executing the computation once the required data is available. Therefore, an ex-
pression delay t is transpiled to:

((fun () -> t), cl(t))

We need to transpile cl(t), a clock_set, from the Async RaTT AST to a OCaml StringSet.t.
The clock_set type contains two string sets, namely channels and variables. The channels
are transpiled to the expression:

StringSet.of_list [c1;...;cn]

Where ci is a unique string from the channels set, with n elements.

We also need to transpile the variables in the clock_set to OCaml. Since delayed computa-
tions are pairs consisting of a closure and a clock we can get the clock of a delayed computation,
b, at runtime using:

snd b

Since variables is a set we can get all its contained channels at runtime by transpiling it to:

(List.fold_left StringSet.union StringSet.empty [snd b1; ...; snd bn])
Now that we know how to transpile both the channels and the variables of a clock_set we
can transpile the entire clock_set by combining the two results of transpilation:

StringSet.union

(StringSet.of_list [c1;...;cn])
(List.fold_left StringSet.union StringSet.empty [snd b1; ...; snd bn]))

We transpile input channels, k, to a top-level let-binding:

let k_update = ref default value k

Where default value k is a default value of the type of channel k. This allows for both reading
and writing an updated value on the channel k.

adv t advances a delayed computation. Since a delayed computation is a pair
(unit -> 'a) * StringSet.t, an Adv t in the AST can be transpiled to fst (t’) () as this
fetches and invokes the computation in question.

The select keyword advances one of its arguments depending on which clock has ticked. This
is transpiled to lookups in the two sets of strings and a match expression, with three cases. The
match expression computes one or both thunks depending on the matched pattern. For example
the Async RaTT expression select a b is transpiled to:

match

StringSet.mem !updated_channel_name cl(a),
StringSet.mem !updated_channel_name cl(b) with

| true, true -> Both (fst a (), fst b ())

| true, false -> Left (fst a (), b)
| false, true -> Right (a, fst b ())

Where updated_channel_name is the name of the updated channel. The transpiled code per-
forms a lookup of !updated_channel_name in each clock, and advances either a, b, or both
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depending on the result of the lookups.

Because box creates a delayed computation it is simply transpiled to a thunk that evaluates
the given term. That is, a value box t is transpiled to:

(fun () -> t)

Since unbox t evaluates the delayed computation t the term is transpiled to:

(t ())

which evaluates the thunk t.

wait k creates a delayed computation and can therefore be transpiled to values of type
(unit -> 'a) * StringSet.t. In this case the set just contains a single channel, k. For exam-
ple the expression wait k is transpiled to:

(fun () -> !k_update, StringSet.singleton ''k'')

Where k_update gets the most recent value on the channel k. Similarly, the expression wait second

is transpiled to:

(fun () -> !second_update, StringSet.singleton "second")

In order to transpile the :: operator we first need to define the signal type in the transpilation
result. We define it as:

type 'a signal =

| Cons of ('a * ((unit -> 'a signal) * StringSet.t))

That is, an 'a signal consists of a value of type 'a ”now”, and a delayed 'a signal. With
this, an expression a :: b, is transpiled to Cons (a, b).

With all of these translations in place, it is possible to transpile terms of Async RaTT to OCaml
expressions. An example of such a transpilation can be seen in listing 8.

let rec map_0 = fun f_1 -> fun s_2 -> match s_2 with

| Cons (x_3, xs_4) -> Cons (

( (f_1) () ) ( x_3 ),

(

(fun () -> (( ( map_0 ) ( f_1 ) ) ( fst (xs_4) () ))),

(StringSet.union

(StringSet.of_list [])

(List.fold_left StringSet.union StringSet.empty [snd xs_4])

)

)

)

Listing 8: definition of ’map’ from listing 13 transpiled to OCaml
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7 Language guarantees

Figures 5 and 6 show how much memory was allocated to native complied programs written
in Async RaTT throughout a 10-hour execution. Admittedly, we are not intimately familiar
with the details of the OCaml garbage collection systems, but the figures do still suggest that
after a while garbage collection is able to entirely satisfy the memory needs. Therefore, no longer
requiring the kernel to allocate further memory to the process. In short, this suggests the absence
of space-leaks.

Figure 5: Memory allocated, in KB, to running the ’scan’ program from listing 14, as a native
executable, according to smem 2

Figure 6: Memory allocated, in KB, to running the ’switch’ program from listing 16, as a native
executable, according to smem 4

2https://linux.die.net/man/8/smem
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The guarantees of causality and productivity are suggested to be present by our testing suite.
Specifically, tests that attempt to type check invalid programs fail as they should. Listing 9
shows example functions that fail due to being unproductive, while 10 show examples of function
that are not causal, i.e. relies on values from an earlier time step.

let rec func_0 : 'a -> 'a = \x -> func_0 x;

let rec func_1 : int -> int = \i -> if i = 0 then 1 else (func_1 i);

Listing 9: Non-productive recursive functions

let rec func : 'a -> 'a signal later = \x -> delay(x :: func x);

let rec foo = \f ->

let x = box (f 7) in

delay (x :: foo f);

let map = \f ->

let rec run = \(x :: xs) ->

f x :: delay(run (adv xs)) in

run;

Listing 10: Non-causal functions

8 Future work

8.1 Input channels as values

Input channels being just a name, instead of a typed value, in some cases reduces code re-
usability. For example, writing a signal that counts how many times a channel has ticked must
be done for each channel individually. Similarly, writing a signal that reads from a buffered
channel when some push channel updates must be written for each combination needed. This
quickly becomes quite tedious work.
Listing 11 gives an example of a few signals written as they would be, without channels as values,
while listing 12 gives the same signals with channels as values.

4https://linux.die.net/man/8/smem
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let second_count =

let rec aux = \n ->

delay (let x = wait second in n :: aux (n + 1)) in

aux 0;

let minute_count =

let rec aux = \n ->

delay (let x = wait minute in n :: aux (n + 1)) in

aux 0;

let rec key_time =

delay (let x = wait keyboard in (read system_time) :: key_time);

Listing 11: Examples without input channels as values

let count = \channel -> (

let rec aux = \n ->

delay (let x = wait channel in n :: aux (n + 1)) in

aux 0);

let rec bind = \push_c buf_c -> (

delay (let x = wait push_c in (read buf_c) :: bind push_c buf_c)

);

let second_count = count second;

let minute_count = count minute;

let key_time = bind keyboard system_time;

Listing 12: Example with input channels as values

We have done some exploratory work on this feature but did not complete it. It does seem
possible to implement it in a safe fashion, although it is not entirely trivial as the channel types
have to work slightly differently to all other types currently implemented. For example, when
passing a channel to a function expecting a push channel a push buffered channel should be
allowed. This is because a push buffered channel can be used as a push channel.

Furthermore, with channels as values wait would essentially have the type
'a p channel -> 'a later, while read would have the type 'a b channel -> 'a, where p

and b denoted push channels and buffered channels respectively. The abstract syntax should
have a Channel constructor and the lexical analysis would need to be able to query the program
environment for whether a certain string referees to an input channel. This essentially adds
channel names as keywords.

Finally, verifying that this change to the language does not ruin any of the guarantees that
it should provide would be needed.
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8.2 Simultaneous channel updates

The reactive semantics of Async RaTT describe a system in which only one channel can have
an update at a time. As such, when synchronizing two signals of strictly different clocks the
Both case can never be executed. This may come as a surprise to users of the language as two
simultaneous events won’t be registered as occurring at the same time, unless they happen on the
same clock. This can be solved by replacing the update binding in the TwoHeap constructor with
a binding of type string * runtime_value list. This allows for storing updates on multiple
channels simultaneously.

It has not been formally verified that having multiple simultaneous channel updates would keep
the guarantees of the language. However, Async Rattus [1] does support this.

8.3 Nested delays

The typing rules of Async RaTT makes it such that one cannot explicitly write a delay inside the
term of another delay. Defining a binding bound to the result of a delay and then referencing
said binding inside a delay is however allowed. This is reflected in our implementation, but it
might seem weird to anyone not familiar with the formal description of the language, who might
be expecting referential transparency properties from the language. This could be alleviated by a
program transformation step that moves any nested delay terms to bindings outside the parent
delay term.

8.4 Pattern totality checking

The presented version of the language implementation contain pattern matching. However, it
does not perform any checking of whether or not the alternatives cover every possible pattern of
the term being matched on. This is problematic as it allows the user to write partial functions
which will crash at run time.

Adding this feature should be possible considering its inclusion in other functional languages.
One way would be to study and implement the algorithm described by Maranget [6].

9 Related work

In this paper a standalone implementation of Async RaTT is presented. This approach gives a
lot of flexibility, allowing us to build and design the language infrastructure to best support the
theory. This of cause comes with the downside that everything must built manually.

Another approach would be to implement Async RaTT as an embedded language, providing
the implementation with access to the host language’s infrastructure and ecosystem. This was
explored by Houlborg et al.[5] who embedded Async RaTT into Haskell as a compiler plugin.

Using the functional language paradigm as a platform is not the only choice when designing
a reactive language. Oeyen et al.[8] presents the reactive language Haai. A pure reactive pro-
gramming language using ’reactors’ as its unit of computation.
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10 Conclusion

The goal of this project was to implement the Async RaTT language described by Møgelberg and
Bahr [2]. The project has resulted in an adaptable standalone language implementation. The lan-
guage is expanded with features and inference systems broadening what can be expressed. This
includes pattern matching, ADTs, type inference inspired by Algorithm W which is described
and proven by Milner and Damas [7][3], inference of type stability constraints, and inference of
term clocks.
The inference rules of stable types and clocks have been formally defined and implemented.
Our empirical evidence, presented in section 7 in the form of testing and memory measurements,
suggests that the guarantees of Async RaTT are kept by the implementation.
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