
Implementation of a Polymorphic Functional

Reactive Programming Language with Modal

Types.

Natalia Ixchel Rodas Ralda - nrod@itu.dk
Thor Christian Stenbæk - thcs@itu.dk

Spring 2024

Course Code: KISPECI1SE
https://github.itu.dk/thcs/Thesis-code.git

1

https://github.itu.dk/nrod/research_project.git

Contents

1 Introduction 5

2 Background and Theory 6
2.1 Functional Reactive programming 7
2.2 Expressions and types . 8

2.2.1 Simply Typed Lambda Calculus 9
2.2.2 High-Order Functions . 11

2.3 Rattus . 12
2.3.1 Stream terms and types 15
2.3.2 Recursive functions . 16

2.4 Productivity, Causality and space leaks 16
2.4.1 Causality . 16
2.4.2 Productivity and guarded recursion 17
2.4.3 Space leaks . 18

3 The language 19
3.1 Variables and function declarations 19
3.2 Simple streams and stream manipulation 20
3.3 Sum function and user interaction 21
3.4 Box, unbox, functions and time steps 22
3.5 Showcase of two small games . 23

3.5.1 Rock, Paper, Scissors . 23
3.5.2 Hot potato . 24

4 Project overview and implementation 25
4.1 The abstract syntax . 25

5 Parser 27
5.1 From syntax to abstract syntax 29

5.1.1 Expressions . 29
5.2 Function and operator declarations 30
5.3 Box and unbox . 31
5.4 Examples of functions . 32

6 Type Inference 33
6.1 Type inference for modal types 37

6.1.1 Later Modal ⃝ . 37
6.1.2 Always Modal □ . 38

6.2 Implementation of type inferer 38
6.2.1 Environment, types, and expressions 39
6.2.2 Recursive functions and recursive flag 41
6.2.3 Stable flag for Γ□ . 41
6.2.4 Type variables . 41
6.2.5 Level of binding . 42

2

6.2.6 Set of stables C and isStable flag 42
6.2.7 Lookup function . 42
6.2.8 Unify algorithm . 43
6.2.9 Type instantiation and generalization 44

6.3 Automatic Guarded Recursion and Type Inference 45
6.3.1 Intro to placing Delay and Advance 45
6.3.2 Delay . 46
6.3.3 Placing Adv . 47

6.4 Examples for type inference . 49

7 Interpreter 54
7.1 Values . 55
7.2 Rattus Abstract Machine . 55

7.2.1 Evaluation Semantics . 56
7.2.2 Step Semantic . 57

7.3 Interpreter Implementation . 59
7.3.1 General overview of the interpreter 60

7.4 Interpreter and environment . 60
7.4.1 Evaluating the program 60
7.4.2 Ints, booleans, and tuples 60
7.4.3 Variable introduction and accessing 61
7.4.4 Functions and recursive structures 61
7.4.5 Applying functions . 62
7.4.6 Streams . 62
7.4.7 Box and Unbox . 63
7.4.8 Delay and Advance . 63

7.5 Timesteps and reactivity . 64
7.6 Running Str A → Str B . 66

8 How it all comes together 68

9 Testing and discussion 69
9.1 Causality . 69
9.2 Productivity . 70
9.3 Space leaks . 70

10 Conclusion 71

3

Abstract

Functional reactive programming is proposed to simplify the devel-
opment of reactive programs that require handling of data streams and
dynamic behavior. However, the existing FRP languages have had some
challenges while operating these complex signals and streams, such as the
lack of a sufficiently robust type systems, which can lead to non-casual pro-
grams and implicit data leaks. Additionally, many FRP implementations
are built as libraries within other languages. This means that they have
to work with or adapt to the type system of the host language. This can
cause problems in creating a dedicated FRP-type checker, which can lead
to complications, reduced efficiency, and sometimes, memory leaks. The
goal of this project is to implement a faithful version of the FRP language
called Rattus introduced by Patrick Bahr (Bahr, 2022) that attempts to
deliver an FRP language that uses, extends, and simplifies previous modal
types from FRP calculi, while maintaining productivity, causality, and no
implicit space leak. Moreover, the language should offer native support for
signals, streams, and other FRP constructs. The implementation of the
language includes building a parser, a type-checker, and an interpreter.
This language should perform an advanced type inference for functional
reactive programming in order to handle modal types, thereby avoiding
the need for explicit type annotation by the programmer. This feature is
crucial in enhancing the usability and accessibility of the language. The
language should have reasonable surface syntax supported by the type
system and should use some of the Rattus-specific terms implicitly with-
out the programmer having to explicitly write these. This approach aims
to simplify the language, so the programmer can effectively focus on the
logic of their applications, instead of underlying FRP constructs. More-
over, the development of an interpreter for the language, so that the user
can write and execute FRP programs, will provide insights regarding the
efficiency and practicality of Rattus.

4

1 Introduction

Functional reactive programming (FRP) merges the immutable principles of
functional programming with the handling of data streams from reactive pro-
grams while avoiding shared states. This aims to simplify and optimize the
reactive programs that are used in graphical user interfaces (GUIs), robots, and
other systems that expect external inputs and handle them as data streams that
need to be computed.

Nevertheless, FRP languages present some limitations. For instance, their
type systems often allow non-productive, and non-casual programs. Addition-
ally, a major limitation is the presence of space leaks, caused by retaining old
data. Patrick Bahr et. al proposes to solve these obstacles with Rattus, an
FRP language. Rattus is based on existing FRP calculus, and Bahr simplifies it
and extends it while preserving productivity, causality, and preventing implicit
space leaks.

We created a language based on Rattus, as described in Bahr’s work in [1].
Our language contains a typechecker able to type infer polymorphic types and
incorporates a parser and an interpreter. The language aims to have a syntax
similar to F#, so the final user finds some familiarity with it. However, behind
the curtains, our type checker will implicitly place some expressions that Rattus
introduces to preserve productivity and causality. The language should also be
able to infer the type of any expression, including expressions with modal types,
so the user doesn’t need to annotate them in their language. In summary, our
project aims to bridge the gap between the theory of Rattus and its practical
application in software development.

In this paper, we will describe the research and how it applies to the de-
velopment of our language. The first section covers the theory of FRP and
Rattus’ background. It briefly introduces the concepts and common problems
of FRP and how Rattus proposes to solve these. Additionally, in this section,
we start to discuss and describe the basic and functional expressions, as well
as the types that we use in our program. Then, we describe in more detail
how Rattus works, introducing more expressions and types that we include in
our language. Finally, we explain in detail how Rattus addresses the common
problems of FRP that we introduced before.

The third section describes the scope of our language. First, it describes
the syntax that the language will read from the user and then interpret, based
on the expressions and types we introduced in the previous section. Then it
provides an example of a function that consists of several of our expressions and
describes the results that our language should return. Additionally, we describe
the importance of some of the expressions introduced by Rattus to make our
language work as intended. Finally, we show two examples consisting of simple
games that are built using our expressions and we briefly explain how our lan-

5

guage evaluates them.

In the fourth section, we create a summary of the expressions that we have
been introducing. These terms are going to be used to build the abstract syntax
tree that our type inference and interpreter will read and compute. In the fifth
section, we describe in depth the process of how our language parses the syntax
provided by the user to the abstract syntax tree. Besides explaining how our
parser translates the syntax, we also included several examples to show how the
parser reads different scenarios.

The sixth section explains in depth how the type inference works. It starts
by describing polymorphic types and the type inference algorithm that most ML
programming languages use. In this part, we introduce concepts, algorithms,
and functions that our typechecker applies. Furthermore, it describes how we
will extend these algorithms with the modal types of Rattus. Then, it provides
a detailed explanation of how we brought this theory to a code implementation
that takes an abstract syntax tree and returns the most generalized type for
it. Additionally, it explains how this typechecker also “infers” where to place
two Rattus terms, so the user doesn’t have to include it in their syntax. To
wrap this section, it includes examples that illustrate how this term and type
inference works.

The seventh section explains the interpreter of our language, following a
similar structure as the previous one. First, it describes how the interpreter
evaluates expressions and returns values, introducing the structural operational
semantics on which we base the interpreter. Secondly, it explains how the Rat-
tus interpreter works according to Bahr in [1] and provides some examples.
Then, it continues by explaining in detail how we implemented the theory of
the interpreter to our code, while also showing some examples.

Lastly, we give a small explanation of how all of these comes together in our
code. Then we discuss how the implementation is proven to solve the obstacles
described for FRP. We show how the implementation satisfies causality, produc-
tivity, and is absent of space leaks. We argue that these three common FRP
problems have been solved by Rattus, and therefore they are not present in our
implementation, as it was based on Rattus. This makes our implementation
a functional reactive programming language that inherently avoids space-leaks,
while maintaining causality and productivity.

2 Background and Theory

We introduce a brief description, benefits, and limitations of functional reactive
programs with a short explanation of how Rattus initially approaches common
FRP obstacles. Furthermore, we start to explain the theory behind the expres-
sions and modal types that we use for the implementation of Rattus. We name

6

and describe the basic expressions and types, which can be used for any func-
tional language. Afterward, we go into detail regarding Rattus, how it works,
and the terms and types that we shall add to our collection. Along the way,
we also introduce typing rules for anything we introduce. Lastly, we explain in
detail the problems facing FRP languages and how Rattus solves them.

2.1 Functional Reactive programming

Functional reacting programming (FRP) is a paradigm that combines func-
tional programming with reactive programming. Functional programming is a
paradigm of programming where functions are first-class citizens; it emphasizes
the avoidance of shared states, mutable data, and side effects. Reactive pro-
gramming, on the other hand, is centered around handling asynchronous data
streams and event streams, such as keyboard inputs or mouse clicks; it then
“reacts” to these inputs appropriately. FRP merges these two paradigms, en-
abling reactivity to data streams and events, while adhering to the principles of
functional programming.

Functional reactive programming was originally formulated by Conal Elliot
and Paul Hudak [3] on the ICFP 97 paper Functional Reactive Animation. In
this paper they formulated two important first-class values for FRP: Signals
(behaviors), and events. Signals represent values that will change over time
continuously; such values can change at any point in time, but a signal can
always expect that some value is given at a point in time. A rather mundane
example of a signal is the position of the mouse on a computer screen. When-
ever the signal is accessed, we will get a value associated with the position
of the mouse. Events represent more specific instances that may occur when
something happens. This could be the position of the mouse when the mouse
is being clicked. These two elements are now considered first-class values; this
means that we can use them as parameters and arguments in functions; we can
manipulate and we can even have them return from functions as values.

A straightforward, but naive, representation of signals through time can be
represented as a stream of signals:

data Str A = A ::: (Str A)

Here we have a stream of type Str A. It has a head of type A, as well as a
tail of type Str A. The head represents the current value of the signal, meaning
what value the signal has in the “present”. The tail represents the value of this
signal at a specific point in time in the future. [1]

This naive representation comes with a few concerns, however. Once we have
a representation like this, it’s quite easy to come up with ways of manipulating
streams; you could apply a function to each element of the stream. However,
applying a function in this manner can lead to having built a program that
has present values that depend on future values, namely called: non-causal pro-
grams. This is a common FRP problem. Another frequent problem is implicit

7

space leaks; this means space leaks that are not intended by the programmer
but are a mistake in the implementation of the FRP language. The space leak
is caused because the language retains old data, and this causes the program
to increase its memory usage gradually over its run time; this will eventually
lead the program to run out of resources. These problems are very common and
have been big hurdles in building FRP languages.

In recent FRP proposals, the use of modal types has been suggested to solve
these problems. A modal type can be succinctly defined as a type system based
on modal logic; a form of formal logic that indicates the “mode” or “manner”
in which a statement is true. A new modal FRP language is Rattus, as intro-
duced by Patrick Bahr et al. [1]; Rattus uses the modal type operator ⃝ as
a way to describe the passage of time. What this essentially means is that a
value of type ⃝A will in fact be a value of type A in the next time step. The
utilization of this modal type ⃝ to denote time steps within a type ensures
causality [5]. Given this newly introduced modal type, the stream of signals,
previously defined, ends up looking like this instead:

data Str a = a :::(⃝(Str a))

This way of representing the data of type Str A, allows for the head of the
stream to have type “now” A, defined and accessible in the present, and it
allows for the tail to have the type “later” Str A, which is only accessible in the
future. This modal operator enables guarded recursion for recursive functions;
essentially a “delay” modal is placed just before the recursive call and thereby
“guards” each recursive call until the next time step. This guarantees causality,
since “present” values can no longer depend on future values. It also guarantees
productivity, because each element of a stream will be computed in finite time.
Rattus also prevents implicit space leaks. This is done via an aggressive garbage
collection strategy, where the program effectively forgets values and data that
are older than the present. We cover this in more detail in section 7. We also
go into detail regarding causality, productivity, and space leaks in section 2.4,
after we have introduced the type system of Rattus.

2.2 Expressions and types

In this section, we start to explain the theoretical constructs we need to build
the language. In programming languages, expressions are a value or function
that can be interpreted to create a new value. Expressions are fundamental
for programming languages. In order to start building our language, we need
to define the expressions it will evaluate. Such expressions will be part of the
abstract syntax tree that the parser will build based on the syntax provided by
the user. These expressions have a type, which a type inference function will
infer, then an interpreter will evaluate the abstract syntax tree (AST), which
will return a value to the user. We will discuss these processes more in-depth
in further sections.

8

To initialize our list of expressions, from now on referred to as terms, we
started with integer constants, and primary operators (+, -, *, and /).

terms ::= Integers CstI - Constant
Boolean CstB - Constant
+, -, *, / Prim - Primary operators

For instance, if the user wants to represent a simple addition such as,

20+2

our parser will translate it to a combination of constants and primary oper-
ator represented as abstract syntax. Note that in this language, the term Prim
can, depending on the operator, evaluate integers and booleans, or other terms
that result in integers and booleans when evaluated.

Since our program also handles type inference, we also need a list for types,
similar to our term list. We will initialize it with the types of the values that we
can evaluate at the moment, int and bool. We add more terms and types until
we are able to represent and use our FRP language effectively.

types ::= Int, Bool base types

We can observe that by using these basic expressions, we are not saving the
results in values or using functions. In order to accomplish this, we need to
extend our list of terms. The lambda calculus gives us a language of expressions
in the form of variables and functions [7].

2.2.1 Simply Typed Lambda Calculus

Lamba calculus provides three basic expressions that can be used to write any
computable function [9]. We will add these terms to our list of terms so we can
create more elaborate expressions in our language.

terms ::= x,y,z,... Variables
λx.t Abstraction
t1t2 Application

The term variable refers to a string identifier that will be bound to a value
in an environment. In this paper, when we refer to an environment, or context,
we refer to a map that associates a variable with a value or a type. The term
lambda represents an anonymous function, for instance,

9

fun x → x + 1

Lastly, the term application is used to represent a function applied to another
term, or in other words, a function that takes an argument. To make use of this
expression, we assume that the first term is a function and the second term is
its argument. For instance, if we take our previous function and “apply” it to
a constant number 5, we would get

(fun x → x + 1) 5

The simply typed lambda calculus (STLC) is an extension of the lambda
calculus by introducing types, giving a more structured way to reason about
functions. STLC uses two basic types: a base type that could be int, boolean,
etc., and a function type that describes the type of its argument and the type
of its return value. Since we already have two base types (int, bool), we only
need to add function to our list of types.

types ::= Int, Bool type
τ → τ Function type

To check if a type judgment is valid, STLC uses a type system that consists of
a set of rules that assign a type to an expression or term. These type systems are
useful in programming languages to reduce the possibility of bugs due to typing
errors. STLC consists of the following basic typing rules for the expressions
defined above.

x : τ ∈ Γ

Γ ⊢ x : τ
Var (1)

Γ, x : τ1 ⊢ t : τ2
Γ ⊢ λx : τ1. t : τ1 → τ2

Abs (2)

Γ ⊢ t1 : τ1 → τ2 Γ ⊢ t2 : τ1
Γ ⊢ t1 t2 : τ2

App (3)

The rule for variable 1 is simple, as it states that if we can find that x has
a type τ in the context Γ, then we can assert that Γ entails that x has type
τ . Let’s take as an example: a simple variable named x, and an environment Γ
that maps x to a type int. We can easily look for x in Γ and conclude that it is
of type int.

The rule for abstraction 2 describes a parameter of a known type τ1, which
we will just add to the context of its body t, and then proceed to get its type τ2.
This will provide the type for the abstraction, which will be of a function type
that takes as a parameter the type of x and returns the type of the body t, this
is τ1 → τ2. If we observe the previous example given for abstraction, we can
observe that it takes an argument of type int, which will be added to a constant
number, which can only mean that the function takes and returns a type int,
meaning the function itself would have the type: int → int.

10

Lastly, the rule for application 3, that is a function applied to another term,
implies that the first term must have a function type τ1 → τ2, and the second
term must have the type of the parameter of the first term, τ1. If both of these
premises are proven correct, then we can assert that the application of t1 over
t2 is of type τ2. Let’s take the example defined above for application, which
takes an integer as a parameter and returns another integer, int → int. If we
apply this function to the parameter x, which we can assert is of type int, then
we can conclude that, when evaluated, we will get something of type int.

2.2.2 High-Order Functions

High-Order functions can take other functions as parameters and return func-
tions as results. Functional programs treat functions as first-class citizens, which
means that they can be used as parameters, returned by functions, and saved
as values.

The clearest way of using a function as an argument in another function
is first to save the original function, and then pass the the name of the first
function to the second function. In order to save a variable as a let-binding,
first, we add a Let constructor to our list of terms,

terms ::= Let x = t1 in t2 Let-binding

where the first expression is used as an argument that can be used for the
second expression. After we get the type of the argument t1, similarly to lambda
in 2, we just add t1 : τ1 to the environment of t2, and then we can proceed to
get its type. So, the typing rule looks like this,

Γ ⊢ t1 : τ1 Γ, t1 : τ1 ⊢ t2 : τ2
Γ ⊢ Let t1 : τ1 in t2 : τ2

Let (4)

This now introduces the topic of bound variables and free variables. When
we define a function as above, we should note that the expression t1 defined
inside the let-binding, is only visible in the body of the function, this is known
as a bound variable. If the function uses a variable that was defined outside
the let-binding then it’s known as a free variable. For example x here is a free
variable,

let z = x + 5

But in this example, x is a bound variable

let x = 5 in x + 1

In other words, a variable is bound if it is not free, and a variable is free if
it is found in the set of free variables FV defined recursively as [7]:

11

FV(term) ::= { x } Var x
FV(t1) ∪ FV(t2) App t1 t2
FV(body) - x λx.body

For instance, if we wanted to analyze which are the free variables in the
expression that applies a lambda expression to a variable
((fun z → z) y)

By using the definition of free variables, we get

FV((λz.z)) ∪ FV(Var y) Application

(FV(Var z) - FV(Var z)) ∪ FV(Var y) Lambda

({ z } - { z }) ∪ { y } Variable

∅ ∪ { y }
{ y }

So we can observe that the only free variable on this expression is the variable
y.

2.3 Rattus

Rattus is a modal FRP language that implements the modal FRP calculi devel-
oped by Krishnaswami [4] and Bahr et al [5], yet it features a more flexible type
system [1]. What distinguishes Rattus from others, is its simpler, less restrictive
type system, which enhances its suitability for practical applications. Rattus
employs a modal type system known as Linear Temporal Logic (LTL), which
is commonly used in FRP language proposals. This type system introduces
two modalities: the later modality and the always modality, symbolized by ⃝
(later) and □ (always). The ⃝ modality indicates that the premise is true in
the next timestep, while the □ modality asserts that a premise holds across all
future timesteps [6]. Rattus utilizes these modalities, as defined in Simply Ratt,
to enhance its type system beyond the STLC calculi, applying ⃝ for delayed
computations and □ for computations that are always available [5].

Given a stream of type A, denoted Str A, the head of that stream has type
A and the tail of that stream has type ⃝ A (or ‘later’ A). In Rattus such a
stream can be represented as:
Str a = a :::(⃝(Str a))

Observe that the tail of the stream uses the ⃝ modality, which is introduced
by the term delay. Delay moves the recursive computation one-time step ahead
of the current time; each of these steps in time is represented by a ✓. The
typing rule for delay is as follows:

Γ,✓ ⊢ t : A

Γ ⊢ delay t : ⃝A
(5)

You read the premise of the typing rule as given the context Γ and a step in
time ✓, the term t must have the type A. If this premise holds, we can safely

12

arrive at the conclusion that in the context of Γ, the delay applied to the term
t is of type ⃝ A

Notably, the introduction of the ✓ to the typing context ensures, that not
only can we represent variables and their respective type, but we can also rep-
resent steps in time; the typing context can have multiple ✓s. In a context
with one or more ✓s, all variables that are to the left of a ✓ are one timestep
older than the ones to the right of that ✓. This also means that for every ✓
introduced, we are delaying the computation one-time step further. Most im-
portantly, a term t does not have access to variables in older contexts unless the
variable it is accessing is a time-independent variable. These variables are called
stable types and refer to base types such as Int and Boolean; these are always
accessible irrespective of whichever timestep a term t is in. Other types like the
function types and the modal ⃝ are not considered stable types. A variable can
be accessed in the context if the following rule holds:

Γ′tick − free or A is stable

Γ, x : A,Γ′ ⊢ x : A
(6)

This simple rule can be read as, given a context Γ, a variable x with type
A, and a context Γ′, then the variable x is accessible and is of type A, if either
of the two above premises holds. The first premise denotes that there is no ✓
to the right of the variable, because that would make the variable too old and
therefore should not be accessible. The second premise is that the type A that
x has is a stable type. To illustrate how the rule for accessing variables and the
term delay interacts, we look at a function called constInt that takes an input
and essentially creates an infinite stream of that input.

constInt x = x ::: delay(constInt x)

In the case of this function, the context is changed for any term that is
guarded by delay. Namely, for the terms inside delay, the context has an added
✓. This means that the first premise of the Rattus variable rule cannot be used,
since we cannot access older data, which the x has now become. However, the
second premise might still hold; namely that the x has to be of a stable type. In
this case, the function will type-check, but it will only work for stable types.

Just as we can ‘delay’ a term and effectively look ahead one timestep into
the future, there is also a term that allows us to effectively return to the present:
Adv (advance). Adv is the elimination form of ⃝. When this term is applied,
the variable bindings that were made in the future become out of scope, since
Adv returns us to the present. Notably, this creates an interesting dynamic,
where variables to the right of ✓ go out of scope forever, however, it brings the
variables one ✓ to the left back into scope. This means, that variables that go
out of scope under a delay can be brought into scope again by an Adv. Given
that advance is the elimination form of the rule for ⃝, it should be quite clear
that it is expected to be used on a term t with a type like ⃝ A. Adv also is also
restricted to contexts with a ✓. The typing rule forAdv is:

13

Γ ⊢ t : ⃝A Γ′ tick free

Γ,✓,Γ′ ⊢ adv t : A
(7)

This rule has two premises. The first premise states that the term t exists
and must have the type ⃝ A. The second premise Γ′ is tick-free, meaning there
are no more steps in time after that. The conclusion means that given a context
Γ, a step in time ✓, and then another context Γ′, advancing on a term t is of
type A.

If we consider a simple example program that transforms a stream. The
function inc takes a stream of integers and increments each of the integers by
one:

inc (x:::xs) = (x+1):::Delay(inc Adv(xs))

In cases like this where a function takes a stream and transforms it, we must
use the elimination type of ⃝: Adv. It is used here to convert the type ⃝Str
Int into Str Int, given the prerequisites described in the rule. This is because
the tail of a stream always has type ⃝Str A, as we see in section 2.3.1.

Next, we discuss how to deal with functions and the Box term. Function
types are not considered stable types. The reasoning behind the classification is
that a function can implicitly have temporal values within its closure, and these
values could, of course, have arbitrary types. Since functions are not stable
types, it should be quite clear that we only have access to a function, if there is
no ✓s; meaning the term trying to access a function must also be in the present.
This limits how we can declare and use functions in a big way; if we wanted to
apply a function to values situated in future timesteps, this seems impossible.
The problem is quite evident in the following code example involving a simple
map operation. Here, map takes a function f, a stream x:::xs and creates a new
stream, where f is applied to each of the values.

(a → b) → Str A → Str B
map f (x::xs) = f x :::Delay(map f adv(xs))

This approach might look correct at first glance, but the problem becomes
evident if we remember that f is not a stable type and that delay introduces a
✓ into the context. Clearly, inside the delay, a normal function like a → b is
inaccessible. To solve this particular problem, Rattus applies the modal type
box □ that turns a non-stable type of A into a stable type of □ A. Since we can
”box” any term t, that means that we can also ”box” f, turning it into □(a → b).
We can now effectively have ‘functions’ that are of stable type and therefore can
be accessed at any point in time. The rule for box is:

Γ□ ⊢ t : A

Γ ⊢ box t : □A
(8)

The premise of this uses a new form of context Γ□, we call this the “boxed”
context. The Γ□ context is the present context with all ✓s removed and with

14

only stable types remaining. It essentially ‘flattens’ the context and only keeps
the stable types. The premise is read as if the term t is in a context of only
stable types, then it has type A. The conclusion can then be read as, the term
box applied on t would have the type □A if the premise holds.

However, we are not able to apply a ‘boxed’ function: □(a → b). To apply
a ‘boxed’ function, it is first necessary to eliminate the □ and turn it back into
a regular function like a → b. This is where we introduce the elimination term
for □, namely unbox. The unbox transforms a □A into a A, allowing it to be
used in the present. The rule for unbox is:

Γ ⊢ t : □A

Γ ⊢ unbox t : A
(9)

The premise of this states that given a context it has term t of type □A.
The conclusion can be read as given the same context, if unbox is applied to the
same term t, it will have type A.

Now, if we try to construct the same map function from before with these
new terms, we know that the map function should in fact take a ‘boxed’ func-
tion. In the code example below, f needs to be unboxed, whereas it then can
be applied to x, then f still being a ‘boxed’ function, it can still be used inside
the context of the delay, since it’s still considered stable.

□(a → b) → Str A → Str B
map f (x::xs) = unbox f x ::: delay(map f adv(xs))

We have added the terms described here to our language; we have also
added the modal types described, meaning we are now able to evaluate Rattus
expressions within the language.

2.3.1 Stream terms and types

Other than the terms introduced by STLC and Rattus, we still need a way to
represent streams, their head, and their tail, as the whole point is to deal with
streams. To represent streams of type Str A, we included the term Cons, which
consists of a head and a tail. The head of the stream represents the value in
the present; this means that if we have a stream of type Str A, the head of that
stream must have the type A. The term Tail represents the rest of the stream;
namely the values that we do not have access to, but that we will have access
to in the “future”. In this sense, the tail must apply the later modality, and
therefore the tail of a stream with type Str A must be of type ⃝ Str A. The
stream, head, and tail have the following typing rules:

Γ ⊢ t : Str a

Γ ⊢ Head t : A

Γ ⊢ t : Str a

Γ ⊢ Tail t :: ⃝Str a
(10)

Γ ⊢ s : A Γ ⊢ t : ⃝Str A

Γ ⊢ s :: t : Str A
(11)

15

2.3.2 Recursive functions

Finally, we introduce the term rec to recursive functions. The term Rec takes a
string as an argument, which much like let 4, serves as the name of the recursive
function. Rec works much in the same way as let, in fact, but has the advantage
of being able to be recursively applied to a stream. Rec is given the name
of a string denoted as x in the typing rule of type B, a term s representing
the body of the same type B, and then another term t that represents another
expression (in our case the rest of the program), that results in type A. The first
premise assigns the type B to s, but only in the ‘boxed’ context Γ□ where xRec

is recursively bound with type B. This means that x can appear in s, allowing
for recursive definitions. As noted, x has the recursive flag Rec, whereas the x
in the second premise does not. This allows us to distinguish between, when
a recursive function is called inside itself, and when it is applied outside itself.
Variables denoted with the Rec flag, cannot be type-checked at the time step
they were introduced but must be type-checked at least one time step into the
future. The next premise has a context, where it has access to x with the
assigned type B. The conclusion to the typing rule is that the term s will have
the same type as x ; namely B. Then, s is accessible in t, which has the type A.

Γ□, xRec : B ⊢ s : B Γ, x : B ⊢ t : A

Γ ⊢ let rec (x:B) = s in t : A
(12)

2.4 Productivity, Causality and space leaks

As mentioned earlier, the FRP languages have faced multiple problems, so im-
plementing an FRP language presents special challenges. These problems are
productivity, causality, and implicit space leaks. However, the theory behind
Rattus guarantees that these problems are accounted for and solved accordingly.
In the following sections we discuss what these problems are and how Rattus
solves them, and then after the implementation, we discuss whether we solved
these problems in section 9.

2.4.1 Causality

How causality is ensured is covered extensively by Bahr [1]. The essential idea
is that present values should not be able to depend on future values. Let’s say
that we have a function that essentially returns the tail of a stream like the
tomorrow function:

let tomorrow (x:::xs)= xs;

In this case, it seems like the user can define a “present” value that depends on
a value given in the future, thus making it a non-causal function. However, the
tail of a stream type checks to ⃝ Str A. This means that the value of the tail
of the stream has not arrived yet, and will arrive in the next timestep. This

16

means that the type of the function is:

Str A → ⃝ Str A

The tomorrow function returns something that points to a heap location of a
value that does not exist yet, as “xs” points to a value that has simply not
arrived yet. If we were able to add an Adv in an attempt to get a future value
like this:

let tomorrow (x:::xs)=Adv(xs);

This would not typecheck, given that Adv needs a ✓ in the context. So whereas
a user might be able to write a function that returns ⃝ Str A, they cannot
access values that have not arrived yet.

2.4.2 Productivity and guarded recursion

For functional reactive programs that deal with coinductive types (infinite re-
cursive types or data structures), managing these recursive calls is critical in
ensuring stability and correctness. Guarded recursion is a technique to manage
these recursive calls and how they unfold over time, ensuring that coinductive
types would not run infinitely when evaluated; this is also called productivity.
Typically, guarded recursion refers to recursion executed based on a condition
or guarded by a construct ensuring its safe execution. Such a “guard” construct
typically ensures that each step progresses towards some base case or otherwise
operates within a safe framework that ensures productive behavior; in our case,
a recursive step happens at every time step.

Observe the coinductive type Fix α.A×α, which represents an infinite stream
of A’s. Fix is a term commonly used to represent recursive functions. Each
element in the stream is paired with another stream of A’s; quite obviously this
leads to an infinite structure. A naive implementation of operations on such a
type might attempt to evaluate or manipulate the entire structure all at once,
leading to non-termination, since any operation could never reach the end of the
stream. When such a problem occurs, we say the program is non-productive.
This is the problem that guarded recursion solves; instead of evaluating the
entire structure, only the head of the stream is evaluated, whereas the next
recursive call will be evaluated once some condition is met. In the case of
Rattus and other FRP languages, the condition that guards the recursion is
time passing.

Traditional approaches often introduce a modality similar to Rattus’s ⃝
modality (Delay), which “guards” the recursive part of an infinite structure.
This modality is placed before the recursive call of the coinductive type, meaning
that we would transform Fix α.A× α into Fix α.A×⃝α. This delay modality
⃝ guards and thereby ensures that the recursive part of the coinductive type
is not evaluated before time has passed one timestep. It should be noted that
in this case occurrences of Fix α.A× α are explicitly not typable and the type
system will detect this as an error. For a recursive type to be typable, it must

17

be a guarded recursive type, meaning that while Fix α.A × α is not typable,
Fix α.A×⃝α is typable.

This all means that regular recursion is disallowed and code like the follow-
ing program will not typecheck:

let rec loop x = x:::loop x

Here the unguarded recursive call to the loop does not occur under a delay,
and the type checker would therefore reject it. For this simple program to type
check, it must have a delay. This means that for the following code to type
check, it must have a delay included like this:

let rec loop x = x:::Delay(loop x)

However, this is not the only modality that Rattus needs for guarded recur-
sion to work as intended. The following function that takes a stream, would not
type check:

let rec replicate (x:::xs) = x:::Delay(replicate xs)

As stated earlier, the tail of a stream inherently has the type ⃝ Str a. In
this situation, the tail of a stream must have the Adv annotation, which serves
as the elimination form of ⃝. Because of this, the replicate function must be
written as follows:

let rec replicate (x:::xs) = x:::Delay(replicate Adv(xs))

However, writing code like this is quite tiresome, and in section 6.3.1, we
discuss how to implicitly place Delay and Adv, so the user can write programs
without needing detailed knowledge of the underlying complexities these con-
cepts that Rattus introduces. By making the typechecker handle the insertion
of these constructs, we aim to simplify the development process and make the
language more user-friendly, while still maintaining the necessary safeguards to
ensure productive behavior and stability in functional reactive programming.

2.4.3 Space leaks

An inherent problem in building FRP languages is implicit space leaks. An
implicit space leak is a space leak that is not intended by the programmer but
comes from the implementation of the language itself. The problem is that the
language retains old data, that will grow during run time, until the program
eventually runs out of memory. The problem seems trivial enough, but higher-
order languages can hold references to old data within their closures, which
means the data must remain within memory for as long as the closure might be
evaluated.

18

An example of a potentially leaky function is the constInt :

constInt n = n ::: constInt n; Type: A → Str A

It’s clear that this function is meant to take an integer and produce a stream
of integers, yet its polymorphic nature lets the developer pass anything. This
includes other streams. These streams would grow with each timestep. If we
applied a stream to constInt, we end up with the type Str (Str A). Here is it
obvious that at each time step, it would have to store all previously observed
input values from time step 0 to the last timestep, thus making its memory usage
grow linearly with time. To illustrate this with a concrete example, assume that
leakyConst is fed the stream of numbers 0, 1, 2, . . . as input. Then, the resulting
stream of type Str (Str Int) contains, at each time step n, the same stream
0, 1, 2, This makes it quite clear, that it would need to keep previous old
data in memory, making it leaky.

Rattus solves this by introducing a delay to this function and by the variable
rule 6.

constInt n = n :::Delay(constInt n);

In this situation, the function expects n to be a stable type, meaning you
are not able to pass a stream into constInt because anything but a stable type
cannot be accessed inside the Delay unless it uses Adv, which this does not.

Bahr [1] describes another function that has implicit space leaks. Namely,
the leakyMap.

let leakyMap f=

let rec run (x:::xs) = f x :::Delay(run Addv(xs));

This function is not typable. This is because functions can keep values in
their closures, and in this case is therefore able to retain old data, that would
not be garbage collected in the next time step.

Other than these rules, the interpreter theory also describes an aggressive
garbage collection strategy, where old values are discarded. We elaborate more
on this in section 7, where we go into detail about it.

3 The language

In this section, we are going to showcase some smaller functions and programs
that you can write in this language. The syntax is very reminiscent of the syntax
for F#. We show these and discuss them briefly here in the beginning, before
we show how the parser, typechecker, or interpreter works because we believe
it makes the rest of the paper easier to follow.

3.1 Variables and function declarations

You declare variables and functions in much the same way you do in F#. You
can declare simple variables of type Int or type Bool respectively in the follow-

19

ing way:

let x = 1; Int

let b = true; Bool

You can declare functions. Below we see the id function, that takes an argu-
ment and returns the same argument unaltered. We also see it’s associated type:

let id x = x; ’b → ’b

You can think of ’b as a polymorphic type.

The next function takes an integer, increments it by 1, and then returns it:

let add x = x + 1; Int → Int

You can also declare an anonymous function:

(fun x -> x+1) Int → Int

Notice that none of the functions or variables have type annotation to tell
what type its argument is or which type it even returns, yet we still know the
type. This is because the type system of the language is quite powerful, and the
type checker can infer any typable program. The developer is in fact not even
able to add type annotation. We go into explicit detail about how this works in
section 6.

It is also able to reject the programs it should reject. If we apply the add
function from before with a bool like this, we receive an error:

add true; type error: int and bool

3.2 Simple streams and stream manipulation

Streams and stream manipulation are a big part of the language and its main
purpose for being built. You are able to create a function that takes an argu-
ment and then creates an infinite stream of the argument provided:

let rec constInt n = n ::: constInt n; S’a → Str S’a

Notice here, that the type has an associated “S” with it. We use this “S” in
the language to denote the stable types Bahr introduced [1]. The typechecker
is able to infer that n must be a stable type, given that we also access it on the
right side of “:::”, where the typechecker has placed an implicit Delay ; more on

20

how this works in section 6.3.1. If we apply the constInt to an integer 1, we get
the following type and output:

constInt 1;

Type: Str int

Result: [Int 1; Int 1; Int 1;...]

Another function that results in a stream is from. This function takes an
integer an creates a stream of integers that increment by 1 for each recursive
step:

let rec from n = n:::from (n + 1); Int → Str Int

The result and type of applying this function to an integer 1 is quite obvious:

from 1;

Type: Str int

Result: [Int 1; Int 2; Int 3; Int 4;...]

In addition to these straightforward stream functions, you can also create
more complex ones. For example, the stutter function generates a stream where
each integer appears twice before incrementing, as follows

let rec stutter n = n ::: n ::: stutter (n + 1); Int → Str Int

The result of running this function with a 1 is:

stutter 1;

Type: Str int

Result: [Int 1; Int 1; Int 2; Int 2; Int 3; Int 3;...]

3.3 Sum function and user interaction

The sum function is designed to produce a stream where each element is the
cumulative sum of the elements provided by a stream. The function is defined
recursively as follows:

let rec sum acc (x:::xs) = x + acc ::: sum (x + acc) xs;

In this definition:
- acc is the accumulator that keeps track of the cumulative sum.
- x is the current element of the stream.
- xs is the rest of the stream.

21

It typechecks to the following type: Int → (Str Int → Str Int)

Each element in the resulting stream is the sum of the current element
and the accumulator, followed by the recursive call to sum with the updated
accumulator.

If we initialize the function in the following way, we produce a function with
type (Str Int → Str Int):

sum 0;

Any function that is type inferred to Str A → Str B, requires user input to
function correctly. The language now expects user input via the console. Each
time the user inputs a value the program reacts to the input.

The sum function “reacts” to user input by printing out the head of the
stream at every timestep. Below is an example of user input provided one by
one, and the corresponding output produced by the sum function:

User input: 1 2 3 4 5 6 7 8 9
sum response: Int 1 Int 3 Int 6 Int 10 Int 15 Int 21 Int 28 Int 36 Int 45

Table 1: User input and sum function response

3.4 Box, unbox, functions and time steps

A crucial aspect of Rattus is how functions interact with time steps. Functions
are not classified as stable types and therefore are not accessible in a context
with a ✓. To manage this, we use the concept of boxing and unboxing functions.

Boxing a function encapsulates the function in a way where it becomes a
stable type, allowing it to be safely used in a delayed context. This is achieved
using the Box constructor. Conversely, unboxing is the process of retrieving the
original function from its boxed state using the Unbox constructor.

Consider the following example where we define a boxed function, g, which
negates its input. We also define a function, from, that generates an infinite
stream of integers starting from a given value. Finally, we define a map function
that applies a boxed function to each element of a stream:

let g = Box(fun x -> x * -1);

let rec from n = n:::from (n + 1);

let rec map f (x:::xs) = Unbox(f) x::: map f xs;

map g (from 1);

The inside of map can now typecheck correctly, since f is a stable type. We
then apply the map function to our boxed function g and the stream of integers
from 1. The result of this is exactly what we expect:

Type: Str int

22

Result: [Int -1; Int -2; Int -3;...]

If we do not box the function g, but still try to pass it in the map function like
this:

let g = (fun x -> x * -1);

let rec from n = n:::from (n + 1);

let rec map f (x:::xs) = Unbox(f) x::: map f xs;

map g (from 1);

In this case, the function fails, because it cannot unbox a function that is not
boxed, and the typechecker gives this error:

type error boxed and function

However, when we wholeheartedly ignore the Unbox part of map and write the
map function like this, it luckily also fails:

let g = (fun x -> x * -1);

let rec map f (x:::xs) = f x::: map f xs;

map g (from 1);

The error being:

Non-stable type found in the stable set.

Found a non-stable type in a place where we expect a stable type.

This is, of course, because we are accessing the function f at the right side of :::,
whose context is treated as having a ✓, because of the implicit Delay. Functions
are not stable types and can therefore not be accessed in the future. This shows
that the type inference and the type rules hold for the implementation

3.5 Showcase of two small games

In this subsection, we show off two small programs, that function as games.
This is to show what is possible within the programming language. We have
kept the games as simple as possible for the sake of clarity.

3.5.1 Rock, Paper, Scissors

In this first game, we have rock, paper, scissors.

let rec RPS n = 1:::0:::-1:::RPS n;

let gameLogic = Box (fun r x -> if r==x then 0 else if

r==1 & x==-1 then -1 else if r==0 & x==1 then -1 else if r==-1 & x==0 then -1 else 1);

let rec game gl (r:::rps) (u:::user) = Unbox(gl) r u ::: game gl rps user;

23

let playGame= game gameLogic (RPS 1);"

At first, we define a stream called RPS. This is the stream of either rock, paper,
or scissor represented as 1,0,-1, that the opponent chooses at each timestep.
The second function is the gameLogic, which carries all the game logic. The
third function defines the actual game, which can take a function (gameLogic),
an opponent stream of answers (RPS), and the user stream of answers.

The declaration playGame just declares the game, which will then run the
program and expect user input, when given to the interpreter, since it’s a Str
Int → Str Int. The user can then play the game by either inputting a -1, 0, or
1 into the console. You then receive an output from the program of either -1,
0, or 1. If you receive a 1, it means you won, a zero means it’s a draw and a -1
means you lost.

3.5.2 Hot potato

The second game is hot potato. Essentially in the game, there’s a ”clock” ticking
down. Once it reaches 0, whoever holds it loses. In this game you can either
give a 1 or a 0. The 1 means you hold the potato for another round. The 0
means you pass it along to the other player. You can’t pass it twice in a row.
You win if you don’t hold the potato at the end of the countdown.

let rec hotPotato n = (if n==0 then 1 else 0)

::: if n==0

then hotPotato 5

else hotPotato (n - 1);

let gameLogic = Box (fun prev p u -> if prev==0 & u==0 then -1

else if p==1 & u==1 then -1 else if p==1 & u==0 then 1 else 0);

let rec game gl prev (p::: hp) (u:::ui) = Unbox(gl) prev p u ::: game gl u hp ui;

let runGame= game gameLogic 1 (hotPotato 5)

The first function defines the stream for the ”clock”. Once it reaches 0 it gives
a 1, otherwise it gives a zero. The second function holds the game logic. The
third function is the actual game that takes a boxed function, an integer, and
two streams; one of them being the user input. The last function initializes the
game with the game logic, the previous move (set to 1, so you can pass the
potato), and the stream from hotpotato. The type for runGame is Str Int →
Str Int, which means it runs and takes user input. The program can react and
give you either a 0, meaning nothing happened, 1, meaning the clock reached
0 after you handed it away to your opponent or a -1, which means the clock
reached zero while you held it or you tried to pass it twice in a row.

24

4 Project overview and implementation

The implementation of the programming language is divided into three main
components, which are typical for interpreted languages: the parser, the type-
checker, and the interpreter. In the following sections, we will explore the theory
behind each of these components, their implementation, and key observations.

Before we explore the main components, we will introduce the abstract syn-
tax used to represent programs in the following section. We will then in the
next sections examine the parser in very general terms. Next, we will discuss
the typechecker, focusing on its theory, how it integrates with modal types, and
its implementation. Finally, we will cover the interpreter, its underlying theory,
its functionality with Rattus, and its implementation.

4.1 The abstract syntax

What the parser, typechecker, and interpreter all have in common is access
to the abstract syntax tree. The parser takes the syntax that the human has
written and produces the abstract syntax tree, the type-checker then makes sure
that the abstract syntax tree is typeable and follows all the typing rules; it also
slightly alters it. After this, the interpreter is given the abstract syntax tree and
executes the program that the abstract syntax tree represents. All these parts
are written in F#.

We represented the terms of the STLC, Rattus, and our recursive and Cons
terms by the type expr in F#:

We represented the terms from the STLC as follows:

type expr =

...

| Var of string

| App of expr * expr

| Lambda of string * expr

...

We represented the Rattus terms like the following, which was quite simple,
given that the Rattus terms are only ever applied to one term:

type expr =

...

| Delay of expr

| Adv of expr

| Box of expr

| Unbox of expr

...

25

We represented the terms for streams, their head and tail as:

type expr =

...

| Head of expr

| Tail of expr

| Cons of (expr * expr)

...

We represented the Let and Rec, the variable declarations and recursive
definitions as the following:

type expr =

...

| Let of string * expr * expr

| Rec of string * expr * expr

...

Notice here that the Let and Rec have two expr ’s. One represents its body,
and the last one represents the rest of the program. In this way we effectively
chain Lets and Recs together at the last expr position to create entire programs.

We represented the integers, booleans, and tuples, as well as the primary
operator (+,-, /, *), in the following way:
type expr =

...

| CstI of int

| CstB of bool

| Tuple of expr * expr

| Prim of string * expr * expr

...

We also represented heap locations as an abstract syntax. The parser and
type checker never use it, but the interpreter uses it when dealing with delayed
computations:

type expr =

...

| Loc of string

...

Together the entire expr type looks like this:
type expr = | CstI of int | CstB of bool | Var of string | Let

26

of string * expr * expr | Prim of string * expr * expr | If of expr

* expr * expr | Letfun of string * string * expr * expr | App of expr

* expr | Lambda of string * expr | Delay of expr | Adv of expr | Box

of expr | Unbox of expr | Head of expr | Tail of expr | Cons of (expr

* expr) | Rec of string * expr * expr | Tuple of expr * expr | Loc

of string

5 Parser

Parsers are an important part of any programming language. The role of a
parser is to take the human-written syntax and translate it into an abstract
syntax tree, which can then be executed by some other process like a type-
checker or an interpreter. In the process of parsing syntax, it has to undergo
tokenization, where the syntax is translated into a list of tokens so that the
parser can construct the abstract syntax. The tokenization part of the program
is called a lexer. This is the common and traditional approach for how the to-
kenization process integrates with the rest of the parsing process. However, we
opted for another approach; we implemented an incremental parser that switches
between tokenizating the syntax and consuming the tokens to produce the ab-
stract syntax tree. Essentially, once the parser has enough tokens to deduce the
only possible interpretation of these tokens, then it proceeds to construct this
bit of the abstract syntax. It then goes back to tokenizing again, until a new
interpretation is the only possible one, it then parses this into abstract syntax
and so on. It keeps going like this until there is no more to tokenize.

The parser uses a simple and powerful parser combinator library: FParsec
[10]. FParsec allows any string or set of strings to be parsed into the appro-
priate token. The library allows the developer to define precedence for each
parser combinator; this is incredibly useful because it allows the developer to
create context-sensitive tokens. This flexibility enables the same syntax to have
a diverse set of interpretations based on the surrounding syntactic context. Con-
sider the examples with “X” below. In the first instance, “X” is evaluated as
a variable. In the second instance, “X” is declared as a variable assigned to a
constant. In the third instance, the function myFunction is declared with “X”
as its parameter. In the final instance, “X” is first declared as a function with
the parameter a, and then this function is applied to the integer 5. In this
case, the “a” that the user has defined after “X” is interpreted as a parameter
and not a new variable. This is because the parser is able to deduce from the
surrounding context that “a” is in this instance only able to be a parameter. In
this sense, the “parameter parser” takes precedence over the “variable/function
name” parsers. This ensures that “a” in “X” is not mistaken for a variable or
function name, but is in fact a parameter. The key point is that the surrounding
context determines how “X”, “a” or any name is evaluated.

27

X;

let X=1;,

let myFunction X =

let X a = a + 1; X 5;

We have simplified how the parser works for the sake of clarity, but the
overall structure and idea remain the same. The parser has two main parts: the
declarative part and the expression part. The declarative part processes tokens
one at a time until it determines what the syntax is attempting to declare.
As mentioned earlier, it processes the syntax into a token one at a time, and
it then narrows down the set of possible interpretations; if there is only one
interpretation left, it then proceeds to consume all tokens and create the abstract
syntax, otherwise, it stores the token in short-term memory. This allows it to
distinguish between variables, functions, and recursive functions. For instance,
when encountering a “let” keyword, the parser can initially consider multiple
interpretations, such as a variable, function, or recursive function declaration.
However, with each subsequent token, it can eliminate certain interpretations.

The examples below show how the let keyword is first interpreted and what
possible interpretations are narrowed down. The parser then tokenizes the next
input, further narrowing down possible interpretations, until it only has one
interpretation. Given just the first “let” keyword, it has several options; it
could be either a variable, a function, or a recursive function declaration. In
the code, the options are actually stored as a list of integers representing each
interpretation, but that is off-topic. Given the next word “X”, it can narrow it
down to either being a variable declaration or a function declaration. Finally,
once it parses the “a”, it deduces that the only interpretation is a function. It
then proceeds to construct the abstract syntax.

let...//V ariable, function, recursivefunction

let X...//V ariable, function

let X a...//function

The expression part of the parser operates similarly to the declarative part but
is slightly more advanced. It can temporarily hold previous abstract syntax in
short-term memory. For instance, given the input 5+3;, the parser first recog-
nizes the number 5, eliminates other interpretations, and stores it in memory.
It then identifies the “+” sign, narrows down the interpretation to addition,
and at this point, the parser hasn’t processed the number 3 yet. The parser
then constructs the abstract syntax Prim("+", CstI 5, expression). Here,
“expression” represents a new run of the parser with reset memory and a reset
of possible interpretations. It processes the remaining 3;, resulting in the final
abstract syntax: Prim("+", CstI 5, CstI 3).
Consider another input like f 5 6...;. The parser first processes “f” and then
“5”, recognizing that with “f” in its short-term memory, this should definitely

28

be a function call. At this stage, the parser hasn’t processed “6” or any other
variables. It constructs the abstract syntax App(Var "f", CstI 5) and stores
this in its short-term memory for the next run of the expression parser. When
the parser runs again, it encounters “6” and, with the previous abstract syntax
in memory, determines that “6” is part of the function call. This results in the fi-
nal abstract syntax: App(App(Var "f", CstI 5), CstI 6). If the next token
had been an operator instead of “6,” the parser would have treated the previous
abstract syntax as the first argument of the “Prim” operator from earlier. Were
we to add another number or variable name like “x ” at the end of f 5 6 x;,
it also treats this as part of the function call and retrieves App(App(Var "f",

CstI 5), CstI 6) from the short term memory to construct App(App(App(Var
"f", CstI 5), CstI 6), Var "x").

5.1 From syntax to abstract syntax

The parser is designed to work with a similar syntax as F#. Primarily this was
chosen, as we believe the syntax of F# to be simplistic and easy to pick up. It
also makes it easier for people who know F# to switch to this language.

5.1.1 Expressions

For a simple variable assignment declaration, much like in F#, the syntax is
written as

let X=1;

and gets parsed as abstract syntax into:

Let ("X", CstI 1, Var "X")

It is important to note, that the last part of the Let abstract syntax is Var
“X” because there is nothing else left in the program. In the case, where there
are multiple declarations, they are chained together like the following:

let X=1; let Y=2; let Z=3;

This will result in the following abstract syntax:

Let

("X", CstI 1,

Let ("Y", CstI 2,

Let ("Z", CstI 3, Var "Z")))

Notice here, how the Let ’s are chained together at the last argument. The
last argument of a Let will always lead to the rest of the program, and in the

29

case where there is nothing else to parse, it will just refer to itself via a variable:
Var “Z”.

The parser can encounter and handle a similar syntax, but where one of
them is an expression without a let :

let X=1; 2; let Z=3;

The abstract syntax that is generated from this is quite similar to the pre-
vious abstract syntax. When the parser encounters an expression that does not
have a let associated with it, it treats it as a let and gives it a generic name “it”
similarly to F#:

Let

("X", CstI 1,

Let ("it", CstI 2,

Let ("Z", CstI 3, Var "Z")))

5.2 Function and operator declarations

Functions are defined with the same syntax as F#. The id function is a function
that takes a parameter x and just returns that same x without manipulation:

let id x=x;

This function results in the following abstract syntax:

Let ("id", Lambda ("x", Var "x"), Var "id")

Notice here, that the only difference between a regular variable declaration
and a function declaration is the addition of the Lambda with the parameter.
You are also able to define anonymous functions. An anonymous function that
takes a parameter x and just returns an integer 1 looks like this:

(fun x -> 1);

This will return the following abstract syntax:

Lambda ("a", CstI 1)

Mathematical operations and calculations are defined by the obvious syntax
for the following example expressions:

1+2;

1-2;

1*2;

1/2;

30

This translates into the following context respectively:

Prim("+", CstI 1, CstI 2)

Prim("-", CstI 1, CstI 2)

Prim("*", CstI 1, CstI 2)

Prim("/", CstI 1, CstI 2)

The parser can also parse multiple calculations like this:

1+2+3+4+5;

This translates into the following abstract syntax

Prim("+", CstI 1,

Prim ("+", CstI 2,

Prim ("+", CstI 3,

Prim ("+", CstI 4, CstI 5))))

5.3 Box and unbox

You can use the box and unbox terms in the language too. To use the box and
unbox you can write the following:

Box(x)

Unbox(x)

This results in the following abstract syntax:

Box(Var "x")

Unbox(Var "x")

As noted in 2.3, the box term is primarily introduced to be used on functions.
This must be represented by an anonymous function inside the Box term. In the
following syntax, we declare a boxed function by boxing an anonymous function;
the function takes a parameter and just returns a 1:

Box(fun x -> 1)

This results in the following abstract syntax:

Box (Lambda ("x", CstI 1))

31

5.4 Examples of functions

Here we are going to showcase some examples of functions and how their ab-
stract syntax turns out. We’ll not go into detail about how the parser translates
this, as this is not the main focus of the paper.
The first example is a recursive function called from. It is a pretty simple func-
tion that takes an integer and creates a stream of integers which are increased
by one at every timestep.

let rec from n = n ::: from (n + 1);

This gets translated in the abstract syntax:

Rec

("from",

Lambda

("n", Cons (Var "n", App (Var "from", Prim ("+", Var "n", CstI 1)))),

Var "from")

The second example is a function called sum. This function is pretty simple,
it takes an integer (acc) and a stream of integers. The head of the stream is
produced by the next value in the stream and the integer it was provided. It
then accumulates the value over time:

let rec sum acc (x:::xs) = x + acc ::: sum (x + acc) xs;

This gets translated into the following abstract syntax:

Rec

("sum",

Lambda

("acc",

Lambda

("manualStreamYwCVprzzpbZSMce1",

Let

("x", Head (Var "manualStreamYwCVprzzpbZSMce1"),

Let

("xs", Tail (Var "manualStreamYwCVprzzpbZSMce1"),

Cons

(Prim ("+", Var "x", Var "acc"),

App

(App (Var "sum", Prim ("+", Var "x", Var "acc")),

Var "xs")))))), Var "sum")

32

Notice here, that the stream it takes as a parameter is given a randomized
name that increments. This is just to make sure the user can’t provide a name
that is accidentally the same, it then creates two values inside the function “x”
and “xs” that use the terms Head and Tail on the stream respectively. The “x”
and “xs” variables are then accessible to the rest of the function when dealing
with the type inference and interpreter.

On the last example, we showcase a function representing the classic map
function. This function takes a boxed function and a stream. It then unboxes
the function and applies this function to each of the values of the stream:

let rec map f (x:::xs) = Unbox(f) x ::: map f xs;

This then creates the following abstract syntax tree:

Rec

("map",

Lambda

("f",

Lambda

("manualStreamSrJwVDNZlbPVUau2",

Let

("x", Head (Var "manualStreamSrJwVDNZlbPVUau2"),

Let

("xs", Tail (Var "manualStreamSrJwVDNZlbPVUau2"),

Cons

(App (Unbox (Var "f"), Var "x"),

App (App (Var "map", Var "f"),

Var "xs")))))), Var "map")

6 Type Inference

The type inference algorithm used for F# and other ML programming languages
is the Hindley-Milner algorithm [7]. To start, every term has a type. The basic
types are int, bool, string, etc. It also includes other types like lists and pairs
that are built using type constructors. In addition, it uses type variables that
can be instantiated to any type. The type inference allows a program to infer
the type of a term based on its use. For instance, we can easily infer the type
of a function that adds a variable to a constant integer

let z x = x + 5

int → int

As the parameter x is being added by a primary operator (+), we can safely
infer that x must also be an int which implies that z takes an integer and returns
an integer, int → int. In this environment, the variables x and z can only have
one fixed type, also known as monomorphic type.

33

However, it’s not always that simple to infer a type. For example, we might
also encounter variables that can hold several types in their environment, which
we will refer to as polymorphic types. Let’s consider a function that takes an-
other function as an argument which is applied to a constant integer,

let f g = g 5

(int → α) → α

Here, α is what is known as a type variable. This means that α can represent
different types depending on the context in which the function f is used. For
instance, if we pass a function g that takes an integer and returns a boolean
(e.g., isEven), then we can infer that α is a boolean. The type of f in this case
becomes: (int → bool) → bool. On the other hand, if we use a function
g that takes an integer and returns another integer (e.g., factorial), then α
would be an integer and the type of f would then be (int → int) → int.

In other words, these types (α, β, etc.) can be substituted by a monomorphic
type or another type variable, depending on the environment in which they are
used. This process is known as instatiation. On the contrary, using a type
variable instead of a specific type is known as generalization, which allows us to
have and use these polymorphic types.

In the environment, a polymorphic type is represented by a list of type vari-
ables and a type where these variables occur. This is also referred to as a type
scheme. For the previous example, the type scheme for g would look like:

[α, int → α]

This is also read as, “for all ways to instantiate the type variable α, the type
int → α is possible for g”, or

∀ α. int → α

A monomorphic type t represented by a type scheme would have the form
of ([], t), or ∀().t, where the list of type variables is empty [9].

Let’s analyze a more elaborate example of a function using polymorphic
types, fone, where an anonymous function with an argument h, with another
anonymous function in its body that takes an argument x and finally applies h
to x,

let fone = fun h -> fun x -> h x.

which will result in a type and type scheme as follows

(α → β) → α → β
∀ αβ.(α → β) → α → β

34

where α and β are type variables, which means that fone takes a function
that could take an argument of any type and return something of any type,
which is not necessarily the same as the argument. This is the most general
type for this expression. If we apply a simple alteration to fone, lets call it ftwo,
where the body of the last anonymous function applies h to an application of h
to x,

let ftwo = fun h -> fun x -> h (h x).

this will result in a type and type scheme as follows

(α → α) → α → α
∀ α.(α → α) → α → α

This is because, as we can observe, the application of h x must return the
same type as the argument that h takes. By analyzing these two functions, we
can say that the type scheme, which will be referred to from now on as γ, of
the first function, is more general than the second one, or γ1 < γ2.

To generalize a term to a type scheme, first, it must be possible to assert
that the term has the type β in the context, and then we must make sure that
the type variable α is not free in the type environment. This translates to,

Γ ⊢ t : β α /∈ FV (Γ)

Γ ⊢ t : ∀α.β
Generalization (13)

On the contrary, to instantiate a type scheme, we substitute types for type
variables, also expressed as [τ/α]γ1 where we replace each free occurrence of
α in a type scheme γ1 by τ , resulting in another type scheme γ2. This can
only be done if γ1 is more general than γ2. Note that substitution only affects
free variables, so instantiation acts on free variables, and generalization acts on
bound variables [8].

Γ ⊢ t : σ1 σ1 > σ2

Γ ⊢ t : σ2
Instantiation (14)

The type inference proposed by Damas and Milner [8] stated rules for in-
ferring types for the STLC. The rules for variable, lambda and application,
remains the same as 1, 2, and 3, respectively. However, for let, we must make
some adjustments. When we introduce the parameter of the function into the
environment, we must first generalize its type, then we can proceed to infer the
type of the body of the function. This translates to,

Γ ⊢ t1 : α Γ ∪ {generalize(Γ, α)} ⊢ t2 : β

Γ ⊢ Let t1 in t2 : β
Let (15)

The type inference algorithm applies the unification algorithm of Robinson
[8]. The purpose of the unification is that, given two terms, it tries to find a
substitution that, when applied to terms, makes them equal. In other words,

35

the unification of two terms U(x1, x2) tries to find the most general substitution
V such that x1V = x2V . The algorithm attempts to find the most general
substitution by following the cases described in algorithm [7],

Algorithm 1 Unification algorithm

U(τ1, τ2)
if τ1 = x and τ2 = y, and x = y then

[]
else if τ1 = α and τ2 = β then

[α/β]
else if τ1 = α and τ2 = t1 and α does not occur in t1 then

[τ2 / x]
else if τ1 = α → β and τ2 = δ → ε then

U(α, δ), U(α, ε)
end if

If none of the cases are matched, then the algorithm fails and the type infer-
ence is not possible. Note that given a type variable α and a type t1, we must
check that α does not occur in t1, this is to avoid circular or infinite types [9].
For example, if the type t1 is α, and the type t2 has α → α, then this will fail
as α ̸= α → α.

The Hindley-Milner algorithm uses this unification algorithm to get the most
general type for an expression. The algorithm, referred to as algorithm W, deals
with four cases, one for each term: Variable, Application, Lambda, and Let [7].
The algorithm W, given a context Γ and a term t, will return a substitution S
and a type τ [8]. This substitution, when applied to τ , will instantiate the type
variables in order to get the most general type for the term t.

When any of the conditions mentioned in 2 are not met, then W fails [8].
The case where the term t is a variable simply states that given a type for t,
the result is the instantiation of its type scheme with fresh (new) type variables.
The case for lambda describes the creation of a fresh type variable β for x that
will be added to the environment that we will use to infer its body. This will
give a substitution that will be applied to β, and then used on the resulting
type. The case for application infers the types for both expressions, τ1 and
τ2, respectively, and attempts the unification for τ1 with a new type function
consisting τ2 and a fresh variable β. This unification will create a substitution
V that will be applied to the fresh variable, which is returned for this case. The
last one corresponds to let ; we infer the type for the first expression, then we
proceed to generalize its type, and then add it to the environment. This new
environment will be used to infer the type of the second expression, which will
give us the type that the case will return.

36

Algorithm 2 Algorithm W

W (Γ, t) = (S, τ)
if t is V ariable and its type is ∀α1, αnτ

′ in Γ then
S = [] and τ [βi/αi]τ

′

where the βis are new.
else if t is Lambda λx.e then

let β be a new type variable and
W (Γ

⋃
{x : β}, e) = (S1, τ1)

S = S1 and τ = S1β → τ1
else if t is Application t1t2 then

W (t1,Γ) = (S1, τ1) and W (t2,Γ) = (S2, τ2)
U(S2τ1, τ2 → β) = V
where β is new, then S = V S1S2 and τ = V β

else if t is Let in the form let x = t1 in t2 then
W (Γ, t1) = (S1, τ1)
W (S1Γ

⋃
x : S1Γ(τ1), t1) = (S2, τ2)

then S = S2S1 and τ = τ2
end if

6.1 Type inference for modal types

6.1.1 Later Modal ⃝

Severi [11] proposed a method to infer a temporal modal type • used for delay
operations. She introduces a delay type operator • into the terms of the STLC
where there is a rule for introducing and eliminating the modality. Then she
states a set of constrain typing rules for this version of the STLC that are used
in the unification algorithm. This unify returns a set of solutions, instead of
one. However, for our type inference algorithm, we opted for a simpler solution.
In essence, we kept in mind that we need to infer the types of terms based on
their use. Based on this idea, we attempt to infer the modal type ⃝ of Rattus
based on the type rule for delay and advance.

For delay, as stated on the typing rule 5, we add a step in time to our context
and then infer the type for the delayed term, τ1. As the delay rule specifies that
the type must be of a “later” type, then we just proceed to add the ⃝ modality
to τ .

Similarly, for advance, based on the typing rule 7, we assume time has passed
and we check the type of the advanced term on Γ. If the type of such term is
⃝τ , then we return τ . However, there is the case where the type of this term
is still a type variable α. As we know from 7, the advanced term must be ⃝α,
so we proceed to create a fresh type variable β with the modality ⃝, such that
we get ⃝β, and then perform a unification between α and ⃝β. If the unify
method succeeds, then we can safely infer that advance is of type β.

37

6.1.2 Always Modal □

For stable types, we took a more elaborate approach. As described in rule 6,
we can only read types that are in the present, or if we need to take a look back
in time, then it must be a stable type. But the problem comes when the type
we need is a type variable that is found in another time step since there is no
way to know if it is stable or not. At this point, is not possible to know if a
type variable could be instantiated by a non-stable type in the future, provoking
this to break the rule that states that we can only access stable types when we
take steps in time. To solve it, first, we need to keep track of all the types that
must be stable in order to maintain the rule established by Rattus in rule 6.
Type variables whose type remains unknown, but appear in a context, where
only stable types are allowed are added to a set C. The type variables that are
added in this set C, must have an indicative, or flag, such that it can only be
unified with other stable types. This creates a version of rule 6 to reason about
polymorphic types.

Γ′tick − free or A is stable

Γ, xisStable : A,Γ′ ⊢ xisStable : A
(16)

A similar problem comes when we need to infer the type of a boxed term t,
as we need to create a new context Γ□ with only stable types, according to 8.
This environment should only contain all the stable types of the “main” envi-
ronment at the moment, without any ticks. When we infer the type of t in Γ□,
we need another type of indicative, that will only be active on Γ□, such that,
when we look for the type of a variable during our type inference process, af-
ter we find it, we know that it must be stable, thus should be added to our set C.

Following these rules, we can now safely infer box and unbox. For unbox, we
follow a similar approach as in advance. We infer the type for the term that
we aim to unbox and proceed to pattern match. If the type is □τ , then we just
return the type τ . But, if the type is a type variable α, then we create a new
type variable and add the modal always to it, □β, and then proceed to unify α
and □β. If the unification process succeeds, then we can safely infer that the
unboxed term is of type β.

Similarly to delay, for inferring a boxed term, after collecting our stable types
in Γ□, as described above, we proceed to infer the type τ for term t and we will
just add the modality □ to it, □τ . In addition to this, we will add this □τ to
our set C.

6.2 Implementation of type inferer

Our type inference function inferType was initially based on the typ function
created by Peter Sestoft [9] that he designed for a functional language, following

38

the type inference for ML programs. We adapted some of the functionality and
extended the existing constructs with Rattus terms, but the initial basis for the
implementation and helper functions was based on Peter Sestoft’s work.

The inferType function takes an expression built in an abstract syntax
tree. Then it calls our extended version of typ with an initial empty variable-
type environment Γ, a level of binding 0, and an empty set C for collecting
stable types. We will explain more in detail about these elements. For the type
inference algorithm, we also added cases for the unify algorithm to deal with
modal types.

6.2.1 Environment, types, and expressions

In terms of code, our variable-type environment Γ is represented like this:

type ’v env = ((string * ’v * bool * bool) list) list

Notice that the implementation employs a list of lists. This was done to repre-
sent the number of ✓’s (ticks) in the context. The innermost lists contain the
actual variables in the context, while the separation between these lists signifies
a tick. We are thus able to represent an empty context with no-ticks as the
following:

∅ → [[]] (17)

In this sense, an env that only has a single list within a list is said to be tick-
free. However, if we had a context with some variables with their corresponding
type, and a tick, we represent it as the following:

x:A, y:B,✓, z:C → [[z:C];[x:A,y:B]] (18)

Notice how the inner list in the head of the context, represents the variables
that happened later in time. In other words, a list to the left is more recent
than the one to its right. This example was, of course, just a high-level view
of how we represent ticks in our environment. Our variable in the environment
actually takes four arguments, the first value simply represents the name of
the variable, the second one corresponds to its type scheme, which consists of
typevar list * typ, the third argument is a boolean that marks the variable
as either recursive or not recursive, only used for inferring recursive functions,
and the fourth one is to represent stable types inside a Γ□, as explained in 6.1.2.

For example, if we want to represent a non-recursive, variable x of type int
in an environment where no time has passed, it would look like this,

[[("x",TypeScheme ([], TypI), false, false)]]

If we introduced a ✓ in this context, and then introduced another non-recursive
integer named y, the context would look like this:

[[("y",TypeScheme ([], TypI), false, false)];

39

[("x",TypeScheme ([], TypI), false, false)]]

The types inside the type scheme could be either monomorphic or a type
variable,

type typ =

| TypI (* integers *)

| TypB (* booleans *)

| TypF of typ * typ (* (argumenttype, resulttype) *)

| Circle of typ

| Boxed of typ

| Str of typ

| Tup of typ * typ

| TypV of typevar (* type variable *)

Besides the types that we have added from STLC and Rattus, we have
the Tup which represents a tuple of types, and the TypV which represents
polymorphic types, or type variables, which take a typevar :

type tyvarkind =

| NoLink of string

| LinkTo of typ

and tyvar = (tyvarkind * int * bool) ref

The typevar takes a type tyvarkind indicating if the variable is connected
to another type or not, with LinkTo or NoLink, respectively. It also takes an
integer which represents the level of binding at which the type was introduced.
Lastly, it takes a boolean value used to indicate whether the type variable has
been set as stable, referred to from now on as isStable flag. Note that typevar
is a ref, which allows us to update the values efficiently on all its occurrences.
For instance, if the type variable is in the environment, and in our set C, when
we change any of its values, it will be updated on both places at once.

Lastly, we built a type expr to denote the list of terms that we have been
building upon across the paper. To summarize, it is essentially a combination
of the expressions given by the STLC, functions, constants, primary operators,
stream, and Rattus terms,

type typ =

| CstI of int

| CstB of bool

| Var of string

| Let of string * expr * expr

| Prim of string * expr * expr

| App of expr * expr

| Lambda of string * expr

| Delay of expr

40

| Adv of expr

| Box of expr

| Unbox of expr

| Head of expr

| Tail of expr

| Cons of (expr * expr)

| Rec of string * expr * expr

| Tuple of expr * expr

6.2.2 Recursive functions and recursive flag

The third argument for every variable in the environment corresponds to a
boolean value to distinguish recursive variables in time, previously stated in
2.3.2. The recursive variables are only introduced in the Rec expression, to
infer the type of its first expression, as described in the rule for Rec: 12. The
variables that have this value set to true should only be available to find in
further steps on time, not in the present. This means that our lookup function
will read this flag every time it searches for a variable, and only return a type for
a recursive variable if it is not in the present. To help us visualize it, a recursive
variable should look like this in the environment.

[[...];[("map",TypeScheme (...), true, false)]]

6.2.3 Stable flag for Γ□

The fourth argument that we added to our variables in the environment is an
aid that will help us determine which types should be stable because they were
found in Γ□. First of all, this flag will let our lookup function add a type to
C regardless if it was found in the “present”, or in another step in time. It’s
important to not confuse it with the isStable flag that we assigned for the type
variable, as their purposes differ. This flag on the environment is exclusive for
Γ□, whereas the isStable flag, once is set as true, it won’t be reversed, in order
to keep track of stable type variables. We will discuss more about it below.

6.2.4 Type variables

As mentioned, the type variable consists of a level, a stable flag, and an acyclic
graph structure tyvarkind consisting of nodes, which are built using a union-find
data structure. All nodes that are connected are considered equal and form part
of an equivalence class. Each of these classes contains a node that represents
them all, known as the canonical representative [9].
Our data structure works following three main operations. First, when we create
a fresh type variable, we create a new node NoLink with a one-element equiv-
alence class. Secondly, by unifying two types, we are joining their equivalence
classes into one. Lastly, we find the node that is canonical representative of its

41

class.
Each type variable we have, has either a NoLink, which means this node is the
canonical representative, or LinkTo that is joined to other nodes of the same
equivalence class. To find the canonical representative of a class, we follow each
LinksTo until we reach a NoLink.

6.2.5 Level of binding

The level lvl that the function typ takes, is a solution implemented by Sestof
[9] where he keeps track of the level of binding of the type environment and the
type variables. The outermost level, or our initial state, is zero and increases
each time we enter the right-hand side of a let-binding, which can occur in Let,
Lamda, and Rec in our language. With this level we can easily detect if a
variable is bound, for example, if the level of the type is lower than the current
level, then it is free in this environment, thus it can’t be generalized [9]. It is
also used for the unification process, when it is trying to equate two types, we
take the lowest binding level and set it for both unified types.

6.2.6 Set of stables C and isStable flag

To solve the first problem described in 6.1.2, we included a set to save stable
types C and added the isStable flag to the type variables. Each time we try to
lookup for a type variable in a different step of time that is not present, we add
the resulting type in C.
In the same way, when we need to infer the type of a term that has been boxed
Box(t) after we get a type τ for the term t, then we infer that its type should
be stable, so we add the boxed version of the type, □τ , to C.
When we finish the type inference for the left side of a recursive function, we
check that all the types added to C are in fact stable, or fail otherwise. The
purpose of doing it at this step is to make sure that if the right side of the
function wants to unify a type that is on C, it can only do it with another stable
type. When we check the types in C, if we find types are base (int or bool), or
boxed, then we can remove them from C as we don’t need to keep track of them
in our set, while keeping C as short as possible. When we find a type variable
there, then we change its isStable flag to true and keep it in C.

6.2.7 Lookup function

The lookup function was initially based on Sestof’s proposal for his type in-
ference [9]. It attempts to find the variable’s name in the context and returns
an instantiated version of the type found. However, our version needed some
additional steps for our types.
To begin, we need to distinguish between types that can be found in the present
from the types that can be found in other steps in time. First, non-stable types
can only be found in the present. On the contrary, recursive variables can’t be
found in the present. This means that the lookup function will start by check-
ing that the isRec flag is set to false, returning the value found regardless of the

42

type, or failing otherwise. If the function cannot find the type in the “present”
list, then it will attempt to find it in the next step in time by calling a helper
function. This second function will look for the type recursively in every other
step in time. It starts by checking the isRec flag for the found type, if it is true,
now it will be safely returned. If this flag is false, then it must be a stable type
so we should add it to our set C.

In addition, it can be the case when we are searching for types in a context
Γ□. For this purpose, when the lookup function is in the “present”, it must
also check our fourth flag. If it is true, it can only mean that it was put there
by Γ□, so it must be stable, and thus it should be added to C.

6.2.8 Unify algorithm

We used the unify algorithm 1 and the unify function proposed by Sestof [9] as
a base to solve the type inference for the terms in STLC, however, we extended
the cases to be able to equate tuples, modal types, and streams.
First, we added the case where we need to unify tuple types Tup. Following the
same line for functions, we unify the first elements of both tuples recursively
and then proceed to unify the second elements.

Secondly, to deal with stable types, we need to do an additional check before
equating type variables. Given that a type variable α has a flag stating if it
is stable or not, we need to check it every time we attempt to unify it with
anything else. If it is set to false, then α can be safely equated following our
algorithm rules. But if the flag is set to true, it means that α can only be
unified with another stable type. This means that before proceeding with the
unification, we must verify that the second type is stable, and fail the unification
otherwise.

Thirdly, for the modality type ⃝, as stated in 6.1.1, if an advanced term is
inferred to be a type variable, we need to equate it with a fresh delayed type.
A type variable α can be equated with any non-stable type as long as α does
not occur in it, as specified in the unification algorithm, and its isStable flag
remains false. This same argument stands when unifying a type variable with
a modal type.

Finally, if we are attempting to unify a delayed-type with a non-type variable,
then we can only equate types with the same modality, for instance, a ⃝α can
only by unified with another ⃝β. The same ideas stand for equating Str types.

The table 2 helps us visualize a summary of our final unification algorithm,
based on a table created by Sestof showing the first rules [9]

Note that any case not covered here, will cause the unification to fail. How
the unify method works essentially is that it first tries to find the canonical rep-
resentation of both types, in case they are type variables, and then proceeds to
match the cases accordingly. Then it calls an auxiliary method linkVarToType

which asserts that we don’t have circularity (α does not occur in t1) and checks
the level for both types. Finally, it creates a link to connect the first type with
the second, LinkTo t2, and adds it into the type scheme of the first type, joining

43

type1 type2 Action

int int No action needed
t1 → t2 t3 → t4 Unify t1 with t3 and t2 with t4

α α No action needed
α β Make α equal to β

(t1, t2) (t3, t4) Unify t1 with t3 and t2 with t4
(t1, t2) (t3, t4) Unify t1 with t3 and t2 with t4
αfalse t1 Make αfalse equal to t1, given that α does not occur in t1
αtrue t1 If t1 is stable, make αtrue equal to t1, given that α does not occur in t1
⃝ t1 ⃝ t2 Unify t1 and t2
□ t1 □ t2 Unify t1 and t2
Str t1 Str t2 Unify t1 and t2

Table 2: Unification

its equivalence classes.

6.2.9 Type instantiation and generalization

The generalize function in our type inference takes two arguments: the level
of the environment at the time of the generalization lvl, and a type t, and re-
turns a type scheme. How it works essentially is that it starts by filtering out
the free variables that occur in t that are not free in this environment, which
is done by comparing their binding level. This process results in a list of types
tvs that will be returned in a type-scheme with the type t, as:

TypeScheme[(tvs, t)]

This generalization process is done in two cases in our type inference. The
first is when we try to infer a Let function, according to 15. The second case
is when we want to infer a recursive Rec function. First, we create a fresh
variable for the recursive function x and add it as a recursive variable in the
environment. After inferring a type for this first expression, we create another
environment with x as a non-recursive variable and a generalized type. We shall
use this second environment to evaluate the second expression.

For instantiating a type, the specialize function takes the level lvl of the
environment, and a type scheme, and returns an instantiated type typ. It creates
a substitution list subst with each item on the list tvs of the type scheme, with
creates tuples of a variable and a fresh type variable. Then it uses a helper
function copyType to apply these substitutions of fresh variables to the type t.
This function recursively traverses the type structure, replacing type variables
according to the subst list and copying the other types. In the case that tvs is
empty, then it just returns t. All this process of using these fresh variables is to

44

prevent overwriting the types each time we instantiate them. In other words,
in one application it can be instantiated to int, and in another application, it
can be instantiated to bool. Recall that this specialize function is called each
time we look up a type of a variable.

6.3 Automatic Guarded Recursion and Type Inference

This section deals with the problem of guarded recursion, and how we use the
type checker to implicitly place the Rattus termsDelay and Adv. We discuss how
Rattus solves the problem of guarded recursion in section 2.4.2. Our language
also needs Delay and Adv to function, since it’s based on Rattus. This section
explains how we deduced where to place Delay and Adv, and how the type
checker uses this deduction to slightly alter the program and place the terms in
their appropriate spots.

6.3.1 Intro to placing Delay and Advance

While Delay and Adv solve the problem of guarded recursion, it evidently cre-
ates a new problem: in these cases, the programmer is burdened with having
to control the recursion on their own by writing Delay and Adv at their ap-
propriate spots in the program they are attempting to write. This has the
advantage of making the type inference quite easy, but has the disadvantage of
the programmer having to know the rules for how to use the introduction and
elimination of the modal operator ⃝. This is not ideal. Optimally, we want the
programmer to be able to write type-safe programs, without having to worry
about the rules for guarded recursion. Bahr [1] suggests that the ⃝ modality
should implicitly be inserted in guarded recursive types like Fix α.A×α should
be equivalent to A×⃝(Fix α.A× α).

Traditional approaches have left the handling of recursion control as a bur-
den on the programmer, where the programmer has had to manage and control
recursive calls using certain syntactical constructs such as explicit delay and ad-
vance markers. However, though this is the easiest to implement, it leaves the
programmer with a new level of complexity and makes programs quite error-
prone. Severi (2019) [2] addresses this problem and introduces a novel solution
that shifts the responsibility of recursion control from the programmer to the
compiler. She introduces a silent modal operator, effectively placing the respon-
sibility of recursion outside of syntax. There was certainly some inspiration re-
garding how Severi (2019) [2] gave the responsibility of handling recursion to the
compiler. However, we have different constructs than Severi, and must therefore
approach it slightly differently, but admit that Severi solves the problem very
well given their constructs. We opted to make our typechecker handle the re-
cursion. So while the typechecker is type infering and checking the program, it
also looks out for specific instances and then slightly alters program by adding
Delay and Adv in their appropriate spots.

As stated earlier, regular recursion is not allowed, and when the type system
encounters something that looks like regular recursion, then it fails. In fact,

45

the typechecker can predict this with accuracy, and before we added the imple-
mentation to implicitly place Adv and Delay, it would throw the custom error:
RecursiveFunctionException.

6.3.2 Delay

In the current implementation, when the typechecker is trying to type infer the
tail of a stream with the abstract syntax of Cons(e1, e2), it is attempting to
infer the type of e2 by the rules for tail (10) and Cons (11). In such a situation,
if e2 is inferred to have type ⃝StrA and e1 has the type A, then it typechecks.
This means that everything is fine. However, such a situation does not involve
recursion, and in fact, must look something like this:

xs:⃝StrInt
let rec newStream ys = 1 ::: ys;

newStream xs;

In this case, we have a predefined variable, that has the type ⃝StrInt, it
is then attached as the tail of a stream, with an int 1 as its head. Notice here
that no delay is inserted.

However, other cases fail. In particular, recursive functions that call them-
selves fail. In such cases, we simply wrap e2 from Cons(e1, e2) in a Delay and
then attempt to type infer on this new abstract syntax:

Delay(e2)

This means that an example like this:

let rec from n = n ::: from (n + 1);

Will initially fail within the typechecker, this error is caught by the type-
checker however. It then takes the code to the right of the :::, wraps it in a
Delay like below and attempts to run the program again:

let rec from n = n ::: Delay(from (n + 1));

It will attempt to add a delay at the tail of a Cons that fails to type infer or
fails to follow a typing rule. It then reruns the abstract syntax of the tail, now
packed in a Delay, and attempts to infer the type and check if it follows the
typing rule; if either fails, then the typechecker fails. Note that the typechecker
does not actually interact with the syntax of the program, but only interacts
and transforms the abstract syntax of the program. The above example was to
make it easier to digest. The actual abstract syntax looks like this:

Rec

46

("from",

Lambda

("n", Cons (Var "n", App (Var "from", Prim ("+", Var "n", CstI 1)))),

Var "from")

and is transformed into this:

Rec

("from", delay inserted

Lambda ↓
("n", Cons (Var "n", Delay(App (Var "from", Prim ("+", Var "n", CstI 1))))),

Var "from")

6.3.3 Placing Adv

Advance, as stated earlier, is the elimination form of ⃝. The typing rule for
this also expects the context to have at least one ✓, meaning that when advance
will type check we are looking at least one time step into the future; this means
that adv is always placed inside at least one delay. This is the first observation.
Next, we know that adv should only advance something of type ⃝A. This is
the second observation.

The logic given these observations is quite simple, luckily. There is only
certain terms that can actually give us a ⃝A. Obviously, from the typing rule
of delay we know that once applied to a term t of type A, it gives us ⃝A.
However, delay is now controlled by the typechecker, so we can disregard this
line of thinking entirely. But we have another term that readily gives us a ⃝,
which is the term Tail, that by its typing rule takes a Str A and gives us a ⃝
Str A . The last term that can potentially give us a type ⃝A, is the term Var,
which can have variables of type ⃝A saved in the environment.

If the typechecker encounters a Var term while recursively traveling the ab-
stract syntax tree, it first gets the type that Var represents. It then checks
whether there is a ✓ in the context. If there is no ✓ in the context, it simply
returns the type and does not transform the AST. If it finds a ✓, then it checks
whether the type from Var is of type ⃝A (including ⃝ Str A), if this is the
case, then it wraps the Var in an Adv so it looks like:

Adv(Var "x")

If this succeeds, the typechecker then gives back the type: A (or Str A, if it
was ⃝ Str A). It then also transforms the abstract syntax by placing an Adv
around the Var. There is also another case, if the type is evaluating the term
Tail, and there is a ✓ in the context. In this case, it also wraps the Tail in Adv.
However, this approach is rarely shown due to the less elegant syntax:

let rec map f s = Unbox(f) Head(s) ::: map f Tail(s);

compared to the more readable form:

47

let rec map f (x:::xs) = Unbox(f) x ::: map f xs;

To showcase how this works in greater detail, let’s say that we have a recursive
function that manipulates streams called Inc. The function is quite simple. It
takes the head of a stream, and increments it by 1. The Inc function looks like
this:

let rec inc (x:::xs) = x + 1 ::: inc xs;

This then gets translated into this abstract syntax by the parser:

Rec

("inc",

Lambda

("manualStreamsTEvnywdrLuNlWO1",

Let

("x", Head (Var "manualStreamsTEvnywdrLuNlWO1"),

Let

("xs", Tail (Var "manualStreamsTEvnywdrLuNlWO1"),

Cons (Prim ("+", Var "x", CstI 1), App (Var "inc", Var "xs"))))),

Var "inc")

However, we will only focus on the part of the abstract syntax that deals with
streams, namely the Cons:

Cons (Prim ("+", Var "x", CstI 1), App (Var "inc", Var "xs"))

The following table is a little verbose but shows the steps the typechecker
takes. Nothing happens in step 1, but remark that the typechecker has “x”,
“inc” and “xs” in its environment. In step 2 it infers that the Prim ("+", Var

"x", CstI 1) is a TypI (int), and thereby also infers that “x” is TypI. In step
3 it starts evaluating the tail of the Cons. In step 4 we reach the Var "inc",
which ensures that it fails since recursive functions can only be accessed in a
context with a ✓. In step 5 we add the Delay, thus inserting a ✓. It then tries
to infer App(Var "inc", Var "xs") again; at first this is fine. In step 6 we
reach the Var “xs”, which is inferred to have type ⃝Str TypI (int). Since it has
⃝ and is inside an environment with a ✓, it inserts an Adv, which we see in step
7. In step 7, Adv has been inserted, and it then infers the Adv(Var "xs") to
have type Str(TypI) (Str int). The actual transformation of the AST is done
here, but for the sake of clarity, we have two more steps. In step 8 we try to
infer the entire tail, which ends up having type ⃝Str(TypI), aka ⃝ Str Int. In
step 9 we try to infer the entire Cons, which gives us the type Str(TypI).

48

s AST ticks Type Environment
1 Cons (Prim (”+”,

Var ”x”, CstI 1),
(App (Var ”inc”,
Var ”xs”)))))

[[("inc", TypV, true);

("x", TypV, false); ("xs",

⃝Str(TypV))]]

2 Cons (Prim (”+”,
Var ”x”, CstI 1),
(App (Var ”inc”,
Var ”xs”)))))

TypI [[("inc", TypV, true);

("x", TypI, false); ("xs",

⃝Str(TypI))]]

3 Cons (Prim (”+”,
Var ”x”, CstI 1),
(App (Var ”inc”,
Var ”xs”)))))

[[("inc", TypV, true);

("x", TypI, false); ("xs",

⃝Str(TypI))]]

4 Cons (Prim (”+”,
Var ”x”, CstI 1),
(App (Var ”inc”,
Var ”xs”)))))

Fail [[("inc", TypV, true);

("x", TypI, false); ("xs",

⃝Str(TypI))]]

5 Cons (Prim (”+”,
Var ”x”, CstI 1),
Delay(App (Var ”inc”,
Var ”xs”)))))

✓ [[];[("inc", TypV, true);

("x", TypI, false); ("xs",

⃝Str(TypI))]]

6 Cons (Prim (”+”,
Var ”x”, CstI 1),
Delay(App (Var ”inc”,
Var ”xs”)))))

✓ ⃝Str(TypI)) [[];[("inc", TypV, true);

("x", TypI, false); ("xs",

⃝Str(TypI))]]

7 Cons (Prim (”+”,
Var ”x”, CstI 1),
Delay(App (Var ”inc”,
Adv(Var ”xs”))))))

✓ Str(TypI)) [[];[("inc", TypV, true);

("x", TypI, false); ("xs",

Str(TypI))]]

8 Cons (Prim (”+”,
Var ”x”, CstI 1),
Delay(App (Var ”inc”,
Adv(Var ”xs”))))))

✓ ⃝Str(TypI)) [[];[("inc", TypV, true);

("x", TypI, false); ("xs",

Str(TypI))]]

8 Cons (Prim (”+”,
Var ”x”, CstI 1),
Delay(App (Var ”inc”,
Adv(Var ”xs”))))))

Str(TypI)) [[];[("inc", TypV, true);

("x", TypI, false); ("xs",

Str(TypI))]]

6.4 Examples for type inference

To demonstrate how the complete implementation of the type inference works,
we will show it with an example that is commonly used in our language. The
function constInt is just a simple recursive function that places the same value
recursively in a stream. Even though it is very easy to analyze, it demonstrates
how the type inference works, including how we deal with stable types. By sim-
ple inspection, we can deduce the type of constInt. It takes an argument of any

49

type α and returns a stream of the same type α, so it should look like α → Strα.

Language: let rec constInt n = n ::: constInt n;

This syntax will translate into an initial AST

Rec

("constInt", Lambda ("n", Cons (Var "n",

App (Var "constInt", Var "n"))),

Var "constInt")

We will explain every step of the type inference and present a table for a
better understanding of how the abstract syntax tree, environment, and set of
stables types C change over the process. We will also show the types that the
expression returns when its type inference is finished. The environment shown
in the table represents its result before moving to the next step. For simplicity,
we will only show the type typ of each variable, instead of its type scheme.

We start to run the function inferType that takes the expression and ini-
tializes with an empty environment [[]], level zero, and an empty set of stable
types. This starts with the case for Rec, which will increase the binding level
by one, create a fresh type variable α for “constInt” and add it to the environ-
ment with the isRec flag set to true. Note that even though we are going into a
Γ□, the stable flag is false for constInt. This is because it is a recursive variable.

AST Type Environment C
Rec(“constInt”, Lambda
(”n”,
Cons (Var “n”, App (Var
“constInt”, Var “n”))),
Var “constInt”)

[[("constInt",

(TypV α, false),

true)]]

[]

With this new environment, we will continue to infer the type for the first
expression, which in this case is Lambda. This case acts similarly as it also
increases the level by one, creates a new type variable β for “n”, adds it to the
environment, and afterward uses it to infer the type for its body.

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
App (Var “constInt”,
Var “n”))), Var “constInt”)

[[("constInt",

(TypV α, false),

true); ("n",

(TypV β, false),

false)]]

[]

The body for the Lambda is a Cons term. This case starts by inferring the
type for its head, which is the variable “n”. This means that we will call the

50

lookup function to find the type for “n”, which is found in the present as the
type variable β.

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
App (Var “constInt”,
Var “n”))), Var “constInt”)

TypV β [[("constInt",

(TypV α, false),

true); ("n",

(TypV β, false),

false)]]

[]

Now we can infer the type for the tail of Cons, which is a term App. This
case will attempt to infer the type for the variable “constInt” which will fail, as
we thoroughly described in 6.3.1, and will change the AST to include a Delay,
and then proceed to infer it. Delay will add a step in time, and try to infer
again the App term.

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
Delay(App (Var “constInt”,
Var “n”)))), Var “constInt”)

[[];[("constInt",

(TypV α, false),

true); ("n",

(TypV β, false),

false)]]

[]

The App expression will start by looking up its first term, the variable “con-
stInt”. This time, this will succeed as this variable is in another time step and
is recursive, which results in the type variable α.

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
Delay(App(Var “constInt”,
Var “n”)))), Var “constInt”)

TypV α [[];[("constInt",

(TypV α, false),

true); ("n",

(TypV β, false),

false)]]

[]

Now it will continue with the second term of the application, which is the
variable “n”. The lookup function will find this variable in another time step,
which means that it must be a stable type, adding it to C.

51

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
Delay(App(Var “constInt”,
Var “n”)))), Var ”constInt”)

TypV β [[];[("constInt",

(TypV α, false),

true); ("n",

(TypV β, false),

false)]]

[TypV β]

The expression App can continue and will attempt to unify the type from
its first term with a function type that takes as its first argument the type of
the second term and a type of a fresh type variable γ for the second argument,
TypV β → TypV γ. If the unification is possible, this function type will be
linked to α, and then App will return the type variable γ.

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
Delay(App(Var “constInt”,
Var “n”)))), Var “constInt”)

TypV γ [[];[("constInt",

(TypF(β → γ),
false), true);

("n", (TypV β,
false), false)]]

[TypV

β]

Now we can continue with the term Delay, where we will take the type we
got from inferring App and add a ⃝ modal to it.

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
Delay(App(Var “constInt”,
Var “n”)))), Var “constInt”)

⃝TypV γ [[];[("constInt",

(TypF(β → γ),
false), true);

("n", (TypV β,
false), false)]]

[TypV

β]

After finishing with delay, we can go back to Cons, where now we have the
type for its tail, ⃝γ. As described on 11, if the head is of type A, and the tail
is of type ⃝Str A, then Cons is of type Str A. We can check this by unifying
the type we got from the tail, with a ⃝Str added to the type we got from the
head. This is unify(⃝TypVγ, ⃝Str TypV β). This will add the link to ⃝
Str TypV β for γ. If this unification is possible, then we can infer type Str TypV
β.

52

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
Delay(App(Var “constInt”,
Var “n”)))), Var “constInt”)

Str TypV β [[("constInt",

(TypF(β→
⃝Strβ), false),

true); ("n",

(TypV β, false),

false)]]

[TypV

β]

This result is the type that is inferred for the body of our Lambda expression.
To finish inferring the type for this term, we will return a function type built
with the first argument corresponding to the first expression, and the second
argument as the type we just got from the body.

AST Type Environment C
Rec(“constInt”, Lambda (“n”,
Cons (Var “n”,
Delay(App(Var “constInt”,
Var “n”)))), Var “constInt”)

TypF(TypVβ →
Str TypVβ)

[[("constInt",

(TypF(β→
⃝Strβ), false),

true); ("n",

(TypV β, false),

false)]]

[TypV

β]

Now we can finally continue with our first term Rec. As described in 12,
the type that we get from the first term, should be the same type as the first
argument. This means that the type variable we created for “constInt” should
be the same as the type we got from the first expression, which means that
we can unify them. As we can observe, the type of “constInt” is the same as
the type resulting from the first term. At this point, we will also reduce the
set of stable types. It contains the type variable β, which is only a NoLink at
this point, which means it hasn’t been linked to any non-stable type, so we just
proceed to change its isStable flag to true. Now we should generalize the type
variable of “constInt” and then add it to the environment with its isRec flag set
to false.

AST Type Environment C
Rec(“constInt”,Lambda (“n”,
Cons (Var “n”,
Delay(App(Var “constInt”,
Var “n”)))), Var “constInt”)

[[("constInt",

(TypF(β→
⃝Strβ), false),

false); ("n",

(TypV β, true),

false)]]

[TypV

β]

Lastly, we infer the type of the second argument, which in this case is just
the variable “constInt”, which is β → Str ⃝β.

53

AST Type Environment C
Rec(“constInt”,Lambda (“n”,
Cons (Var “n”,
Delay(App(Var “constInt”,
Var “n”)))), Var “constInt”)

TypF(β→
⃝Strβ)

[[("constInt",

(TypF(β→
⃝Strβ), false),

false); ("n",

(TypV β, true),

false)]]

[TypV

β]

Note that according to our type inference, the type of the argument is the
same type that is in C. This means that when we want to apply this function, the
argument must be a stable type. For instance, a function constInt 1 will type
check, as the type of 1 is int. But if we attempt to type check constInt (fun

x -> 1), when it tries to unify β with δ → int, it will fail with the message
“Stable type error: Tried to match Stable Type: S’b with non-stable type: (’c
→ int)”.

7 Interpreter

An interpreter is essentially a program that takes an input and returns a result.
It’s important to denote the difference between the interpreter language L (the
language that we are using for our version of Rattus) and the implementation
language I (the language that we used to write the interpreter, F#). The pro-
gram in L is a sequence of operations that resembles machine code, which is
why the interpreter is known as an abstract machine [9].

Similar to type inference, the evaluation of expressions can be described
by rules. For this language, we are using the structural operational semantics,
which read similarly to the type system rules. Similarly, it contains zero or more
premises above a horizontal line, and if all premises hold, then the conclusion
must be true [9]. The premises and conclusions consist of judgments, which are
written as ⟨t, ρ⟩ ⇓ ⟨t2, ρ⟩ where the symbol ⇓ reads as evaluates, and the symbol
ρ is the environment of variables with its respective value. In the same way as
in type inference, [t/x]s refers to substituting every occurrence of t with x in
s. We are using the big-step semantic as it directly shows the final values for
the evaluations. The rules for our language are defined as:

ρ(x) = v

⟨x, ρ⟩ ⇓ ⟨v, ρ⟩
Variable (19)

⟨t1, ρ⟩ ⇓ ⟨v1, ρ′⟩ ⟨t2, ρ′⟩ ⇓ ⟨v2, ρ′′⟩
⟨t1 + t2, ρ⟩ ⇓ ⟨v1 + v2, ρ′′⟩

Primary operators (20)

⟨t, ρ⟩ ⇓ ⟨λx.s, ρ′⟩ ⟨t′, ρ′⟩ ⇓ ⟨v, ρ′′⟩ ⟨s[v/x], ρ′′⟩ ⇓ ⟨v′, ρ′′′⟩
⟨t′t, ρ⟩ ⇓ ⟨v′, ρ′′′⟩

Application

(21)

54

⟨λx.t, ρ⟩ ⇓ ⟨λx.t, ρ⟩
Lambda (22)

⟨t1, ρ⟩ ⇓ ⟨v1, ρ′⟩ ⟨t2[v1/x], ρ′⟩ ⇓ ⟨v2, ρ′′⟩
⟨let x = t1 in t2, ρ⟩ ⇓ ⟨v2, ρ′′⟩

Let (23)

7.1 Values

The parser will take the language given by the user, and return the abstract
syntax, which the typechecker then slightly alters, where finally the interpreter
will evaluate recursively to return a value. Since we are working with high-order
functions, an evaluation may return either an integer or another function. A
value of a function is known as a Closure which consists of a name, the function
body, and the environment that contains the types of the free variables at the
point of the evaluation [9].

values ::= Int of int Integer
Closure of string * expr * env Closure

As previously stated in the rules 21 and 22, after the evaluation of the ex-
pression, we get a function value. For instance, for a simple evaluation of an
anonymous function, the parser will return the abstract syntax of a Lambda
term. The interpreter will evaluate the Lambda term and determine that it
should add the expression to the environment and return the non-evaluated
value of the expression,

Language: (fun x -> x + 1)

Abstract syntax: Lambda("x", Prim("+", Var"x", CSTI 1))

Evaluation: Closure("x", Lambda("x", Prim("+", Var"x", CSTI 1)), ["x",

Closure("x", Lambda("x", Prim("+", Var"x", CSTI 1)), []])

In the same way, when the interpreter wants to evaluate an Application as
shown in the rule 21, it evaluates the first term, and as it should be a function,
it matches the return value with a Closure value and fails otherwise.

7.2 Rattus Abstract Machine

This abstract machine must be able to move forward in time, but should also
be absent of space leaks. In order to accomplish this, we must erase all data
from the previous time step each time we move forward. Bahr [1] proposes the
idea of using a store σ that contains up to two separate heaps η, one now heap
where we save delayed operations that we can look for in order to execute in the
present, and a later heap where we save operations that we can use in the next
time step. This means that we can only read from now heap and write on later

55

heap. Each time we advance in time, this now heap gets erased and replaced
by the later heap, leaving a new empty later heap. This prevents the storage
of old data which could lead to implicit space leaks.

Additionally, Bahr [1] proposes to split the abstract machine in two compo-
nents: the evaluation semantics which describes how the terms are evaluated in
a single step of time, and a step semantics that describe how to evaluate the
program over time by taking and constructing streams.

7.2.1 Evaluation Semantics

The evaluation semantics for the terms in our language are similar to 19, 21,
22, and 23, but besides the use of an environment, he proposes the use of the
store σ. This store can consist of a single heap ηL or two heaps ηN and ηL, for
now and later heap respectively, represented as ηN✓ηL.

The heaps are essentially finite maps from heap location l to terms. Each
time we need to create a new heap location, we should call the method alloc
that will return a fresh l for ηL. Recall that we can only write in ηL. This
method is called when we need to delay a term, by placing the delayed term in
the fresh l on ηL, and returning l. In the same line, when we need to advance a
term, we get the term that was delayed and now must be found in the present
ηN and evaluated. This translates to:

⟨t; ηN ⟩ ⇓ ⟨l; η′N ⟩ ⟨η′N (l); η′N✓ηL⟩ ⇓ ⟨v;σ′⟩
⟨adv t; ηN ∪ ηL⟩ ⇓ ⟨v;σ′⟩

Advance (24)

l = alloc(σ)

⟨delay t;σ⟩ ⇓ ⟨l;σ, l 7→ t⟩
Delay (25)

As observed in both of these terms, we should be able to return and get a
value of l, adding it to our list of values. However, the user cannot use or see
this value directly and it doesn’t have a typing rule, it is just used for simplicity
in the abstract machine [1].

Similarly to lambda in the rule 22, to evaluate the term Box, we will not
evaluate the term inside, but return it as a box value, which is constructed
similar to a closure of a function. When we need to unbox it, we will evaluate
the term inside and check that the value is precisely of a box, and then we will
proceed to evaluate it.

⟨Box t, σ⟩ ⇓ ⟨box t, σ⟩
Box (26)

⟨t, σ⟩ ⇓ ⟨box t′, σ′⟩ ⟨t′, σ′⟩ ⇓ ⟨v, σ′′⟩
⟨unbox t, σ⟩ ⇓ ⟨v, σ′′⟩

Unbox (27)

For evaluating the head and tail of Stream, we need to decompose it. We
can do this by using projection functions head and tail that extract the head

56

and tail, respectively, of a stream [1].
head = λx.π1

tail = λx.π2

⟨t;σ⟩ ⇓ ⟨⟨v1, v2⟩;σ′⟩ i ∈ {1, 2}
⟨πi(t);σ⟩ ⇓ ⟨vi;σ′⟩

Head and Tail (28)

This means, if we want to evaluate a head Head(t) or a tail Tail(t), we will
evaluate the expression t which should be a stream. This means we can pattern
match and extract the head or the tail value of the stream and return it.

7.2.2 Step Semantic

The step semantics, represented with
v
=⇒, where v is the output of the expression

in a step in time, describe how to operate the streams of type Str A [1].

⟨t; η✓⟩ ⇓ ⟨v :: l, ηN✓ηL⟩
⟨t; η⟩ v

=⇒ ⟨adv l; ηL⟩
(29)

At each step of time, when we evaluate an expression t with a store that
contains a heap now η and an empty heap later ηL, we expect to get a value of
a stream with a value of type A in its head and a location for a heap in the tail.
Additionally, it contains a store with a heap ηN that has the same values in
η and possibly some additional computations from the evaluation, and ηL that
contains delayed computations for the next step. To get to the next step in time,
we need to advance the location we got from the tail with the new now heap
ηL. Notice how we don’t use the ηN for the next step in time to not save old data.

These operations should return an infinite sequence like [1],

⟨t;∅⟩ v0==⇒ ⟨t1; η1⟩
v1==⇒ ⟨t2; η2⟩...

For instance, if we operate a from n function where we increment n by 1 at
each step of time, starting with n as 1,
Int → Str Int

let rec from n= n:::Delay(from(n+1));

from 1;

Then we should expect to get something like this,

⟨from 1;∅⟩ 1
=⇒ ⟨adv l1; η1 = l1 7→ from(1 + 1)⟩

⟨adv l1 1; η1⟩
2
=⇒ ⟨adv l2; η1 = l2 7→ from(2 + 1)⟩...

As we can observe, at each step in time, we get a value of Int, given that we
are operating a stream of integers. Additionally, we can also observe that the
store, after the first iteration, contains a heap location containing the closure of

57

the recursive function from, put in there by delay, with its environment where
n is incremented by 1, and other values that resulted from evaluating the terms
following the evaluation semantics.

The second case for the step semantics, represented with
v0/v

′
0====⇒, where v0 is

an input that the stream will receive and v′0 is the output of the expression in
a step in time, describes how to operate streams of type Str A → Str B [1].

⟨t; η, l∗ 7→ v :: l∗ 7→ ⟨⟩⟩ ⇓ ⟨v′ :: l; ηN✓ηL, l
∗ 7→ ⟨⟩⟩

⟨t; η⟩ v/v′
===⇒ ⟨adv l; ηL⟩

(30)

We require a dedicated location in the heap l∗ for the input, so it will only
contain the present input and it’s also ready to use for future inputs. It waits
for an input to evaluate the term with a heap η that initially contains the heap
location l∗ that is ready to hold an input. Similarly to 29, this evaluates to a
stream that has a head with a value, that in this case would be of Str B, and a
tail with the location that will be evaluated next. Similarly, it returns a store
with two heaps, ηN and ηL, and we will erase ηN and replace it with ηL, with
the difference that this heap will contain an empty location l∗ that will wait for
the next input.

To illustrate this process, let’s use a sum example, where we have a function
that takes an input and adds it to an accumulator,
Str Int → Str Int

let rec sum acc (x::xs) = x + acc :: Delay((sum (x + acc)) Adv(xs));

sum 0;

This expression would evaluate to,

⟨sum(adv l∗);∅⟩ 2/2
==⇒ ⟨adv l1; η1 = l1 7→ sum, l∗ 7→ ⟨⟩⟩

⟨sum(adv l∗);∅⟩ 10/22
====⇒ ⟨adv l1; η1 = l1 7→ sum, l∗ 7→ ⟨⟩⟩...

It starts by waiting for an input which will be added to l∗ and then it
will evaluate the recursive function sum, which takes and returns a stream of
integers. As the variable acc was initialized with zero, the function will add
the number of the input to it, which in this case is 2. This will return 2 as an
output and then will proceed to advance the tail of the evaluation l1. Similarly,
as the previous example, the store will consist of one heap that will contain the
recursive function, which was put in there by delay, but in this case, it will also
have the reserved heap location l∗ with an empty value, waiting for the next
input. Note that as we did in the previous example, the heap is replaced by ηL,
in this way avoiding implicit space leaks.

58

7.3 Interpreter Implementation

The interpreter also applies the expr abstract syntax tree, with the additional
expression for Loc. It also includes values that consist of integers, functions,
tuples, and values gotten from evaluating Rattus terms.

type value =

...

| Int of int

| Bool of bool

| VTuple of (value * value)

| Closure of (string * expr * intenv<value>)

...

Additionally, the value type holds a few ones that are important for the internal
workings of the interpreter. The stream value, although, not explicitly returned
to the user, comes into play during terms like head and tail, that rely on stream
to produce necessary interpretations. Location takes a string and points to a
location on the heap. We cover the heap in section 7.2, but the heap is essentially
a map of heap locations and their values. Location is intrinsically tied to delayed
computations, as the term Delay in fact returns a Location, without executing
the computation, as described in 7.2.1. Lastly, it holds Empty, which is there
as the placeholder value for l∗ explained by the interpreter rule 30 for programs
of type Str A→ Str B.

type value =

...

| Stream of (value * value)

| Location of string

| Empty

...

The interpreter applies another structure for its context. It applies an en-
vironment that we have called intenv. This environment is to keep track of
variables during run-time. This is a simple Map structure that maps the vari-
able names, saved as strings in the Map to values. The Closure term from before
holds an entire intenv.

type intenv<’x> = Map<string, ’x>

The last structure that the interpreter uses is the store and heap. The
heap is a Map of strings to values. The store employs two heaps and names
them the now heap and the later heap. The later heap is used to store delayed
computations.

type heap = Map<string, value>

type store = { nowHeap: heap; laterHeap: heap }

59

7.3.1 General overview of the interpreter

The interpreter has three main functions, as well as multiple helper functions,
that together allow us to run functional reactive programs created by the parser
and type checker. The first function is the eval function, which runs the abstract
syntax tree, produces output, and produces delayed computations. Essentially,
it evaluates the evaluation semantics described in 7.2.1. The two other functions
handle how delayed computations are interpreted depending on their type, as
described on 7.2.2; RunR runs programs of type Str A → Str A and expects user
input. Essentially RunR runs any program that expects one or more streams as
input. The function runXTimes handles all other forms of programs that deal
with delayed computation and takes a parameter X that is the number of times
it should run delayed computations, before stopping. This is set to 10.000 in
our current implementation for demonstration purposes but can run infinitely.
Both of these functions use eval to first run the initial program produced by
the parser. Then they are given the delayed computations by the evaluation
of the program by eval. The functions then use the eval function again to run
the newly created delayed computations. These then produce their own delayed
computations, which are then run again by eval and so on until an exit condition
is met.

7.4 Interpreter and environment

The interpreter uses an environment-based evaluation approach, which differs
from direct substitution methods. Any branch of the abstract syntax tree is
evaluated into a value, which is then returned, and possibly stored in the envi-
ronment for the rest of the program to access.

7.4.1 Evaluating the program

As stated earlier, the entire evaluation of the abstract syntax tree is done by
the eval function. In this section, we’re going to go through how it works in
detail and how it aligns with the theory provided by section 7.

The eval function applies evalEnv. The evalEnv takes the abstract syntax
tree: expr, an environment: intenv and a heap store store. Eval itself only takes
the expr and the store, but evaluates evalEnv with these and an empty environ-
ment. The evalEnv is a recursive function that continuously calls itself during
evaluation and consistently updates its environment and the store. Finally, each
call of evalEnv will eventually return a value and a new store.

7.4.2 Ints, booleans, and tuples

Integers, Booleans and tuples are quite simple for the interpreter to evaluate.
The abstract syntax for these looks like this:

CstI of int

60

CstB of bool

Tuple of expr * expr

The evaluation of CstI and the CstB are almost self-explanatory and just
return an int and boolean respectively, as well as the store they were passed.
The Tuple takes two expressions. It just evaluates both of these expressions
into their respective values. Then it returns the VTuple value with the values
from the two expressions at the place they were represented in the expr Tuple.

VTuple of (value * value)

7.4.3 Variable introduction and accessing

The variable introduction in the interpreter deals with the abstract syntax:

Let of string * expr * expr

The first argument is the string and represents the name of the variable. The
second argument is an expr the body of the variable, which can be any other
expression. The third argument is also en expr and represents the rest of the
abstract syntax tree; meaning the rest of the program. Firstly, the body of the
variable is evaluated using evalEnv. This then provides a new value and store.
The value is then added to a new environment with the name provided by the
string. The last expr, which represents the rest of the program, is then evaluated
by evalEnv using the new environment and store. Thus, we have successfully
introduced a variable and passed it to the next step in the abstract syntax tree.
The rule for let is described by the interpreter rule 23.

When accessing variables in the interpreter, it deals with the abstract syntax:

Var of string

When this is evaluated by evalEnv, it will look up the given string in the envi-
ronment, that was passed to it. If it finds it, then it simply returns the value
associated with the string, as well as the current store. If it does not find it,
then the program fails, and it simply stops running. See rule 19.

7.4.4 Functions and recursive structures

Functions and recursive functions are not evaluated, but instead defer the eval-
uation until it is applied. There is not much difference between how functions
and recursive functions defer the evaluation. A function is represented as:

Lambda of string * expr

This structure takes a string, which is a name for the parameter of the func-
tion. Next, it takes a expr, whereas a pattern with expr in evalEnv is usually

61

evaluated, in this case, the expr is saved inside a Closure, with it’s current
environment. The Closure is then returned.

In recursive functions, it functions similarly. A recursive function is repre-
sented as this:

Rec of string * expr * expr

This structure takes a string, which is the name of the recursive function. It
then takes the first expr, which is the body of the recursive function. Finally,
it takes another expr, which represents the rest of the program, much like the
Let. When Rec is evaluated, the first expr, meaning the body, is not evaluated,
but instead saved in a Closure with the current environment. It then adds this
Closure to a new environment, with the name given by the string. Then, it
evaluates the last expr with this new environment.

7.4.5 Applying functions

When applying functions, the interpreter has to deal with the abstract syntax:

App of expr * expr

Firstly, it evaluates both of the expr ’s, where they each respectively return a
value and a store. Let’s denote the value returned from the first expression as
val1 and the one from the second as val2. Val1 represents the function that
is being applied to something. In our case, if everything goes correctly, val1
contains a Closure with a function in the form of a Lambda in it. Both the val1
and val2 are then added to a new environment with their respective names.
Finally, the body of the lambda is then evaluated with the new environment.
This allows for both functions and recursive functions to be applied to a value.
See rule the interpreter rule 21.

7.4.6 Streams

When dealing with streams, we, as noted, need something to identify and access
the head and the tail of a stream, as well as representing the stream itself. The
abstract syntax that deals with these are:

Head of expr

Tail of expr

Cons of (expr * expr)

As you can see, both the expr Head and Tail take an expr. The logic behind
this is quite similar and quite simple. Firstly, they evaluate the expression with
the given environment and store. We are then given a value; this value is then
matched with the value Stream: Stream of (value * value). If a stream is not
returned, this results in an error. However, if a stream is returned the Head
will return the value of the stream, whereas the Tail will return the last value
of the stream, which is always the value Location, as the tail is not available

62

yet, before the next time step. For more information on Head and Tail see the
interpreter rule 28. The Cons term is quite simple, as you can see, it takes two
expr. Both of these expr are then evaluated as values. Let’s denote these as
val1 and val2. These values are then added to the value Stream that looks like
Stream of (value * value), and it ends up being represented as:

Stream(Val1, Val2)

7.4.7 Box and Unbox

Box and unbox work similarly to how the lambda works and how it’s applied.
The Box and Unbox has the following abstract syntax:

Box of expr

Unbox of expr

The box takes an expr, and similarly to the Lambda, an expr that is boxed,
is not evaluated. It merely puts the expr into the value Vbox and the current
environment necessary for the expr. It then returns the Vbox value. Remember,
that Vbox is a value that can hold an expression inside of it: VBox of (expr
* intenv⟨value⟩). The unbox also takes an expression. First, it evaluates this
function and checks whether the value returned is a Vbox or not. If not, then
the interpreter throws an error; however, this is unlikely, since the typechecker
should’ve made sure this couldn’t happen. If it finds a Vbox, it then evaluates
what was previously not evaluated, however, this might result in a function,
which is then also not evaluated until it is applied. This follows the interpreter
rule 26 and 27.

7.4.8 Delay and Advance

The part of the abstract that deals with delaying computations is, of course,
the Delay.

Delay of expr

Observe, that Delay takes an expr. However, it does not evaluate this ex-
pression. Instead, it saves the expr in a closure. It then stores the closure with
a new heap location name in the laterHeap. The name of the location is then
stored in the value Location, which is finally returned by Delay. The idea be-
hind this is that the tail of the stream, meaning the part that the delay interacts
with, is only available later, and therefore must be in the later heap, where it is
not accessible. We will access it later, once we have taken one timestep. This
follows the interpreter rule 24 for Delay.

Advance is the elimination form of delay, and as seen earlier it only ever
interacts with the tail of a stream. The abstract syntax is:

Adv of expr

63

Adv takes an expression and expects this expression to be either the expr Loc
of expr or to evaluate to the value Location. Both Loc and Location contain a
string that points to a location on the nowHeap. It then looks up the location
on the nowHeap, given the string either provided. In our implementation, this
either results in a stream or a closure, which then is evaluated to a stream;
meaning that adv always results in the value Stream. See rule 25 for more
details.

7.5 Timesteps and reactivity

It should be clear now that the Delay is the one that delays computations and
puts them into the later heap. Now, as stated earlier in the section, there are
two ways to actually run the interpreter. Firstly, we can run programs that
result in Str A. This is done via the runXTimes function. This function takes
an integer and an expr as parameters; the amount of times it should run the
delayed computations and the abstract syntax tree. It first runs the initial eval
with the initial abstract syntax tree created by the parser and possibly altered by
the typechecker. Once it’s been run, it produces a value and a store containing
a nowHeap and a laterHeap. The later heap should at this moment hold the
delayed computations from the previous run of eval. The value produced by
eval should be a Stream with a head and a tail. The head is added to a list that
accumulates all heads of the produced stream values generated by the program.
The tail is a Location.

We then advance time, where the nowHeap is set as the laterHeap, and the
laterHeap is set to an empty heap. The Location from the tail is then packed
in the expr, so it ends up going from Location(“loc1”) to Adv(Loc(“loc1”)).
Remember that adv looks up the location in the nowHeap, and that time has
advanced, so that the nowHeap is now the previous laterHeap. This means
that Adv can now look up the delayed computation given by the previous tail
and actually evaluate the expression that it finds there. This produces its own
delayed computation, which is then again run in the same manner.

Let’s say we have the following function. The function from produces an
infinite stream of the same argument it was given. However, in each recursive
step, it increments n by 1. Let’s say in this case we call it with an integer 1:

let rec from n = n ::: from (n + 1);

from 1;

In this instance, the from function is applied to integer 1. The interpreter will
first run this simple function with the eval function. After that, it receives a
value in the form of a stream. It should look like this:

Stream(Int 1, Location(”Loc1”))

The head is the present value Int 1 that can be accessed and used. The tail of
the stream has the value Location with some string in it denoting the location

64

of the delayed computation in the laterHeap. It also receives a store. This store
has the nowHeap and the laterHeap. Remember that this is the initial run of
the computation, and therefore at this stage, the nowHeap should be empty and
the laterHeap should hold the delayed computation we receive from the implicit
delay in from; namely the right side of :::, the from (n+1) :

now heap: map []

later heap: map [("loc1", Closure ("loc1", App (Var "constInt" ,

Prim("+", Var "n", CstI 1), intEnv)]

The closure in the laterHeap also carries an environment with it; it requires
this to run the delayed computation. We have denoted it as intEnv in the
section above, but it looks like this:

map

[("from",

Closure

("from",

Lambda

("n", Cons (Var "n", Delay (App (Var "constInt",

Prim("+", Var "n", CstI 1))))), map []));

("n", Int 1)]

The environment inside the closure carries the from function and the variable
n. This environment was saved to the Closure as part of the Delay.

In our current implementation, we add the head of the stream to a list to
merely observe the complete stream at the end of the run time. Time is then
advanced by shifting the laterHeap onto the nowHeap, so they end up looking
like this:

now heap: map [("loc1", Closure ("loc1", App (Var "from", Prim("+",

Var "n", CstI 1)), intEnv)]

later heap: map []

The value from tail is Location(“Loc1”) and is then constructed into the expr
Loc(“Loc1”) and is then packed inside an Adv :

Adv(Loc("Loc1"))

This newly created abstract syntax is then run together with the advanced
store (meaning time passed) on the eval function again:

e = Adv(Loc("Loc1"))

65

s = now heap: map [("loc1", Closure ("loc1", App (Var "from", Prim("+",

Var "n", CstI 1)), intEnv)]

later heap: map []

eval e s

Remember that Adv uses this “loc1” to look into the nowHeap and run that
computation. The evaluation of eval will then again produce a stream value
and a new delayed computation, which will be run again, and so on, eventually
producing a long list of the values created by the program:

[Int 1; Int 2; Int 3; Int 4; Int 5; Int 6; Int 7; Int 8; Int 9; Int 10; Int 11; ...]

7.6 Running Str A → Str B

The language can run functions of type Str A → Str B. This is done via the
RunR functions. It just takes an expr, which is the abstract syntax tree produced
by the parser and type checker. However, this abstract syntax tree has been
manipulated slightly. For each Str A it expects as input, the entire abstract
syntax tree is put inside an App. This means, that the AST is treated as a
function when put inside the App, which it is. The other expr for App is then
Adv(Loc(“-1”)). The Loc(“-1”) is a location in the heap that will never be hit
during string generation for delayed computation and thereby remains “free”.
The Loc(“-1”) signifies the place on the heap, where we can put user input, l∗

as described in rule 30. Here is an overview of how the type affects how the
AST is affected:

Str A = AST

(Str A → Str A) = App(AST, Adv(Loc(“-1”)))

(Str A → Str A → Str A) = App(App(AST, Adv(Loc(“-1”))), Adv(Loc(“-1”)))

Before the function evaluates the new AST, it first asks the user for input
through the console. This input is then stored on the nowHeap on the location
“-1” in the form of a Stream value. The input is the head of the stream,
with the tail pointing to the same “-1” via Location(“-1”) like: Stream(input,
Location(“-1”)). It also adds the value Empty on the “-1” location, though only
on the laterHeap. This decision directly reflects the interpreter rule 30 regarding
programs that end in the type Str A → Str B.

Similarly to the other function, it runs the initial, now manipulated, abstract
syntax tree. This then produces delayed computations, some of which point to
“-1” on the heap. It then advances time, so the nowHeap becomes the later-
Heap and the laterHeap becomes empty; then it runs the eval again with the
delayed computations and so on. The major difference here for user experience

66

is that the program will react and print out, how the user’s input has affected
the program. In the following example, we see the sum function that we have
shown before:

let rec sum acc (x::xs) = x + acc :: Delay((sum (x + acc)) Adv(xs));

This function initially has the type: Int → (StrInt → StrInt). However,
when initialized with 0 like:

sum 0;

it suddenly has the type StrInt → StrInt. Firstly the abstract syntax is
changed from AST to this:

App(AST, Adv(Loc(”-1”)))

This is then run by the runR function that handles user input. The user
can provide input via the console, and this will change the accumulated value.
If we give an input with the int 2, it at first reacts and adds the 2 to the initial
0 value. The store has also been initialized and changed:

s = now heap: map [("-1", Stream (Int 2, Location "-1"))]

later heap: map [

("-1", Empty);

("loc1",

Closure (

"loc1",

App (App (Var "sum", Prim ("+", Var "x", Var "acc")), Adv (Var "xs")),

map [("acc", Int 0);

("manualStreamNRBuleVuAIiWlhq1", Stream (Int 2, Location "-1"));

("sum", Closure ("sum", ..., map []));

("x", Int 2); ("xs", Location "-1")]

)

)

]

The now heap has the stream, that the user initialized with their input of
2. The later heap also has the location “-1”, as well as the closure for delayed
computation of the sum function and its current environment, including “acc”,
the stream we provided, the actual “sum” function and the int “x” that we
provided. The “-1” location is then retrieved from the tail of the stream on the

67

now heap. It then similarly advances time, so that the nowHeap becomes the
later heap, and leaves the later heap empty, except for the fact, that it still has
a place for the location “-1”, but the value is just the value Empty.

The eval function is then run again with the new advanced store (s) and
Adv(Loc(-1)) as input:

eval Adv(Loc(-1)) s

This is how it keeps going, consistently reacting to the user’s input. Below
we show the user input one by one, and what the sum function responds with:

User input: 1 2 3 4 5 6 7 8 9
sum response: Int 1 Int 3 Int 6 Int 10 Int 15 Int 21 Int 28 Int 36 Int 45

8 How it all comes together

As stated at the beginning of section 4, the entire project can be broken into
3 parts: The parser, the type checker, and the interpreter. These parts are
packed inside a small function called rattus. It is essentially one function to
bring them all together: The parser parses the syntax into the abstract syntax.
The type-checker then infers the type of the abstract syntax tree and slightly
alters it by inserting Delay and Adv at their appropriate spots. Then depending
on the type produced by the typechecker, it runs the interpreter in one of its
three modes.

To showcase this, let’s follow the from example. The user will write this
syntax

let rec from n= n ::: from (n + 1);

from 1;

Our function rattus will start running this syntax with the parser, which
will translate to the following abstract syntax tree

Rec

("from",

Lambda

("n", Cons (Var "n", App (Var "from", Prim ("+", Var "n", CstI 1)))),

Let ("it", App (Var "from", CstI 1), Var "it")))

Then, rattus gives this abstract syntax to the type checker, which will add
the missing delay term and will infer that it is of type Str Int. Then, as the
type is Str A and not Str A → Str B, it runs the interpreter in a mode where it
does not require user input, but just runs the program and the following delayed
computations 10.000 times. This will result in a list of integers:

68

[Int 1; Int 2; Int 3; Int 4; Int 5; Int 6; Int 7; Int 8; Int 9; Int 10;

Int 11; Int 12; Int 13; Int 14; Int 15; Int 16; Int 17; Int 18; Int 19;

Int 20; Int 21; Int 22; Int 23; Int 24; Int 25; Int 26; Int 27; Int 28;

Int 29; Int 30; Int 31; Int 32; Int 33; Int 34; Int 35; Int 36; Int 37;

Int 38; Int 39; Int 40; Int 41; Int 42; Int 43; Int 44; Int 45; Int 46;

Int 47; Int 48; Int 49; Int 50; Int 51; Int 52; Int 53; Int 54; Int 55;

Int 56; Int 57; Int 58; Int 59; Int 60; Int 61; Int 62; Int 63; Int 64;

Int 65; Int 66; Int 67; Int 68; Int 69; Int 70; Int 71; Int 72; Int 73;

Int 74; Int 75; Int 76; Int 77; Int 78; Int 79; Int 80; Int 81; Int 82;

Int 83; Int 84; Int 85; Int 86; Int 87; Int 88; Int 89; Int 90; Int 91;

Int 92; Int 93; Int 94; Int 95; Int 96; Int 97; Int 98; Int 99; Int 100;

...]

9 Testing and discussion

As stated earlier, some of the main problems when building FRP languages have
been: causality, productivity, and implicit space leaks. In this paper, we have
implemented a faithful version of Rattus, that reports to have conquered these
problems.

9.1 Causality

If we take a look at the tomorrow function from section 2.4.1, it at first seems
that this breaks causality or that this function would not typecheck.

let tomorrow (x:::xs)= xs;

However, a user is actually able to use this tomorrow function while program-
ming. If we look at the following example, we see an example of the tomorrow
function in use:

let rec from n = n ::: from (n + 1); from 1;

let tomorrow (x:::xs) = xs;

let fromButStartsWithN n = n ::: tomorrow (from 1);

fromButStartsWithN 13;

In this example, we declare the from function we have seen many times now.
We then declare the tomorrow function and then declare a function fromBut-
StartsWithN, that takes an integer as the head of the stream and otherwise
produces the same Stream as from 1.

Type: Str Int

Result: [Int 13; Int 2; Int 3; Int 4; Int 5; Int 6; Int 7; Int 8; Int 9;...

So while you are not able to define present values that depend on future values,
you are still able to manipulate and transform streams in meaningful ways.
Thus, causality is ensured.

69

9.2 Productivity

As described earlier, productivity is ensured via the modal type Delay. This
is implicitly inserted into recursive functions that call themselves at the mo-
ment such a function calls itself, effectively transforming regular recursion into
guarded recursion. This ensures that any stream is evaluated in finite time,
thereby maintaining productivity and preventing non-termination issues associ-
ated with coinductive types.

Through the implicit insertion of Delay and Adv, we have simplified the
development process for programmers, by allowing the users to write recursive
functions without the need to manually manage these modal types. By automat-
ing this aspect within the typechecker, the implementation of guarded recursion
has been simplified, ensuring that programs are productive and stable, as well
as easy to write.

We have tested our implementation with various different programs seen
throughout the entire paper. In all the tested cases, the implicit placement of
Delay and Adv has performed just as intended. The typechecker successfully
prevents non-productve recursion patterns, ensuring that only guarded recursive
functions are allowed.

This approach not only simplifies the syntax that the user has to write, but
it also guarantees the safety and correctness required for functional reactive
programming. The transformation of recursive calls to guarded recursion by
use of the Delay modality ensures that each time step progresses correctly.

9.3 Space leaks

Bahr [1] ensures that Rattus does not have any space leaks if implemented
correctly. It does this via an aggressive garbage collection strategy, where old
data is discarded and thereby not retained for the next time step. This holds
for our implementation as well, and we thereby have no space leaks. Given a
common function like from that we have seen a couple of times by now:

let rec from n = n ::: from (n + 1); from 1;

if we run this for 100 million time steps, it uses no more space than had it run
once. The size of the heap store stays the same during runtime. In the case
of from, both the nowHeap and the laterHeap stay at the size of 1 during the
entire runtime. This is because the values in the nowHeap are discarded at
every timestep and the laterHeap is transferred to the nowHeap just afterward,
leaving the laterHeap empty until the end of the next delayed computation.

However, if we were to try to create a few functions that look like they have
implicit spaceleaks, for instance, these don’t typecheck:

let leakyMap f = let rec run (x:::xs) = f x ::: run xs;;

let rec leakyMap2 f (x:::xs) = f x ::: leakyMap2 f xs;

70

The f is typechecked to be a function type, and given the type system, such
a type cannot be accessed inside a delay and cannot be referenced in recursive
functions. Notably, the following function typechecks:

let rec constInt n = n ::: constInt

Type: (S’c -> Str S’c)

But it does so with the “S” marker that marks the type as Stable; meaning
the function can only take a stable type and return a stream of stable types.
This ensures that you are not able to pass something like a Stream (str) into
the constInt function that would cause a spaceleak.

In conclusion, there are no implicit space leaks in our implementation.

10 Conclusion

In this paper, we covered the theoretical background behind functional reac-
tive programming languages, specifically focusing on modal types and the the-
ory behind Rattus. We then implemented a parser, typechecker, and inter-
preter, which together form an FRP language based on Rattus. We argue that
the language showcases significant advancements in handling data streams and
behaviors without falling into common pitfalls like non-causal programs, non-
productive recursions, and implicit space leaks. By integrating modal types and
the special rules for Rattus with the Hindley-Milner algorithm, we were able
to create a powerful typechecker capable of inferring the type of any writable
program. Thus, ensuring that the programmer will not accidentally write a
program that is either non-causal, non-productive, or has implicit space leaks,
as the typecheker rejects these programs. Additionally, by following the strat-
egy for avoiding implicit space leaks on the interpreter, proposed by Bahr, and
implementing it in our language, we also prevent the user from keeping old and
unnecessary data.

Throughout the paper, we have showcased various programs that typecheck
and run, and various that does not typecheck. Notably, in section 3.5 we show
off two smaller games that showcase the complexity of the language while main-
taining type safety. The typechecker can typecheck and reject various programs;
it is notably able to infer which types are stable types and describe them via
the stable type annotation “S’c” as seen with constInt, where it can correctly
infer the type S’c −→ Str S’c. It can identify and reject quite complex attempts
at creating space leaks, as seen with leakyMap in section 2.4.3. Other than this,
the language hides a lot of complexity from the programmer with the implicit
placing of Delay and Adv, making the language robust and easy to write.

Another achievement is how the typechecker is able to take programs that
would not typecheck, and then insert the introduction and elimination terms

71

for the ⃝ modality, thus removing the burden of handling guarded recursion
from the programmer, and reducing the complexity needed to actually write
programs in an FRP language. Moreover, our approach exemplifies how you
might develop a functional reactive programming language that is more user-
friendly, and therefore is a milestone in making FRP languages more accessible
to developers. We have effectively abstracted guarded recursion management
away from the user, but hope that future work will be able to abstract even more
“difficult” concepts away and make FRP languages even more accessible since
our implementation still needs some esoteric understanding to write programs
effectively.

The true advancement in this field lies in merging the theoretical robustness
of Rattus with the practical implementation of an FRP language, demonstrating
that Bahr’s theoretical framework can be effectively translated into a real-world
language, thereby validating Bahr’s concepts.

Other than the technical achievements described in the paper, our work con-
tributes to the broader understanding and development of FRP languages. By
implementing a concrete example of Rattus, we have offered a pillar of knowl-
edge for further research and development in functional reactive programming.
Our implementation serves as a proof of concept that might lead to future en-
hancements and optimizations in the field of functional reactive programming
based on Rattus or alterations of Rattus.

References

[1] Bahr, P. (2022). Modal FRP for all: Functional reactive programming with-
out space leaks in Haskell. Journal of Functional Programming, 32, E15.
doi:10.1017/S0956796822000132

[2] Severi, P. (2019). A Light Modality for Recursion. Logical Methods in Com-
puter Science Volume 15, Issue 1, 15(1). https://dblp.uni-trier.de/db/
journals/lmcs/lmcs15.html#Severi1

[3] Elliott, C., & Hudak, P. (1997). Functional reactive animation. Proceed-
ings of the Second ACM SIGPLAN International Conference on Functional
Programming - ICFP ’97. https://doi.org/10.1145/258948.258973

[4] Krishnaswami, N. R. (2013). Higher-order functional reactive programming
without spacetime leaks. Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on Functional Programming. https://doi.org/10.1145/
2500365.2500588

[5] Bahr, P., Christian Uldal Graulund, & Rasmus Ejlers Møgelberg. (2019).
Simply RaTT: a fitch-style modal calculus for reactive programming without
space leaks. Proceedings of the ACM on Programming Languages, 3 (ICFP),
1–27. https://doi.org/10.1145/3341713

72

https://dblp.uni-trier.de/db/journals/lmcs/lmcs15.html#Severi1
https://dblp.uni-trier.de/db/journals/lmcs/lmcs15.html#Severi1
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1145/3341713

[6] Graulund, C. U. (2021). Type Theories for Reactive Programming. IT-
Universitetet i København. ITU-DS No. 175

[7] Grant, I. (2011). The Hindley-Milner Type Inference Algorithm.
https://steshaw.org/hm/hindley-milner.pdf

[8] Damas, L. (1982). Principal type-schemes for functional pro-
grams. https://courses.cs.washington.edu/courses/cse503/10wi/

readings/p207-damas.pdf

[9] Sestoft, P., & Hallenberg, N. (2017). Programming language concepts.
Springer.

[10] Tolksdorf, S. (n.d.). FParsec Documentation. FPARSEC documentation.
https://www.quanttec.com/fparsec/2023

[11] Severi, P. (2019). A LIGHT MODALITY FOR RECURSION. Logical
Methods in Computer Science, 15(1), 32. https://doi.org/10.23638/

LMCS-15(1:8)2019

73

https://courses.cs.washington.edu/courses/cse503/10wi/readings/p207-damas.pdf
https://courses.cs.washington.edu/courses/cse503/10wi/readings/p207-damas.pdf
https://www.quanttec.com/fparsec/ 2023
https://doi.org/10.23638/LMCS-15(1:8)2019
https://doi.org/10.23638/LMCS-15(1:8)2019

	Introduction
	Background and Theory
	Functional Reactive programming
	Expressions and types
	Simply Typed Lambda Calculus
	High-Order Functions

	Rattus
	Stream terms and types
	Recursive functions

	Productivity, Causality and space leaks
	Causality
	Productivity and guarded recursion
	Space leaks

	The language
	Variables and function declarations
	Simple streams and stream manipulation
	Sum function and user interaction
	Box, unbox, functions and time steps
	Showcase of two small games
	Rock, Paper, Scissors
	Hot potato

	Project overview and implementation
	The abstract syntax

	Parser
	From syntax to abstract syntax
	Expressions

	Function and operator declarations
	Box and unbox
	Examples of functions

	Type Inference
	Type inference for modal types
	Later Modal
	Always Modal

	Implementation of type inferer
	Environment, types, and expressions
	Recursive functions and recursive flag
	Stable flag for
	Type variables
	Level of binding
	Set of stables C and isStable flag
	Lookup function
	Unify algorithm
	Type instantiation and generalization

	Automatic Guarded Recursion and Type Inference
	Intro to placing Delay and Advance
	Delay
	Placing Adv

	Examples for type inference

	Interpreter
	Values
	Rattus Abstract Machine
	Evaluation Semantics
	Step Semantic

	Interpreter Implementation
	General overview of the interpreter

	Interpreter and environment
	Evaluating the program
	Ints, booleans, and tuples
	Variable introduction and accessing
	Functions and recursive structures
	Applying functions
	Streams
	Box and Unbox
	Delay and Advance

	Timesteps and reactivity
	Running Str A Str B

	How it all comes together
	Testing and discussion
	Causality
	Productivity
	Space leaks

	Conclusion

