
Implementation of Push-Pull based FRP

in Widget Rattus

IT University of Copenhagen

2nd June, 2025

Lasse Faurby Klausen lakl@itu.dk

Philip Flyvholm phif@itu.dk

Supervisor Patrick Bahr

Course code KISPECI1SE

Project code S25KISPECI1SE863

Abstract

Functional Reactive Programming (FRP) offers an expressive paradigm for building

and interacting with reactive systems, using continuous and discrete values to model

change over time. In recent years, several FRP languages have introduced modal

types that prevent FRP programs from having implicit space leaks. Traditional FRP

implementations rely on either push- or pull-based evaluation, each with distinct

trade-offs in performance and applicability.

In this paper, we explore the suitability of a hybrid push-pull evaluation model

for FRP, leveraging the advantages of both approaches. We explore implementing

a push-pull model in Widget Rattus, which is a push-based modal FRP language

for GUI programming embedded in Haskell. Additionally, we propose and evaluate

several refinements to the push-pull model. Our findings are demonstrated through

two case studies.

Contents

1 Introduction 1

2 Background 2
2.1 Functional Reactive Programming . 2
2.2 Push-Pull Based FRP . 3
2.3 Introduction to Widget Rattus . 4
2.4 Clocks and Delayed Computations . 4
2.5 Stable Types and Box Modality . 7
2.6 Continuous Types . 7
2.7 Widgets and Channels in WidgetRattus . 9

3 Simple Push-Pull in Widget Rattus 12
3.1 Events . 12
3.2 Behaviours . 14
3.3 Push-Pull GUI Widgets . 20

4 Case Study: A Simple Timer GUI 23
4.1 Improving the Timer Example . 25

5 Refining Push-Pull in Widget Rattus 27
5.1 Stopping a Behaviour . 27
5.2 Filtering of Events . 30
5.3 Integral and Derivative . 34
5.4 Avoiding the C Monad . 40
5.5 Optimizing With the Haskell Compiler . 42

6 Related Work 43

7 Conclusion and Future Work 44

References 45

Appendix 47

1 Introduction

Traditionally graphical user interfaces (GUIs) rely on an imperative programming model built
upon shared mutable state and callback-driven architectures. While efficient, it can be hard
to reason about elements such as: mutable state, higher-order functions and concurrency.
Functional Reactive Programming (FRP) [1] has emerged as an alternative paradigm for
building dynamic and reactive systems using time-varying values, known as behaviours or
signals. Generally FRP can be divided into two evaluation models: push-based (also known
as data-driven) and pull-based (also known as demand-driven). Traditionally, many FRP
implementations have used pull-based sampling [5] due to:

• Pull-based sampling fits well with the common functional programming style of recur-
sive traversal with parameters.

• Since behaviours might change continuously, idling until the next discrete change is not
possible, and therefore pull-based sampling is necessary.

However using pull-based sampling is very inefficient, due to it recomputing values, even
when no input change has happened. Another problem with pull-based sampling is that it
imposes latency between each pull, which is not ideal in an interactive GUI scenario.

A typically way to evaluate reactive systems, such as GUIs, is using push-based evaluation.
At the occurrence of an event, such as a mouse click or keyboard press, the system will react
to this event and update the GUI with minimal latency. Such a modern GUI framework
is Widget Rattus [21], an FRP language built as an extension of Async Rattus [20]. Wid-
get Rattus is implemented as an embedded language in Haskell and employs a push-based
evaluation. Accordingly, throughout this paper, we use Haskell syntax.

Elliot [5] demonstrates that it is possible to get the efficiency and minimal latency from push-
based evaluation, and the simple functional programming style and applicability to sample
continuous behaviours from pull-based evaluation. This hybrid approach ensures values are
recomputed only when their discrete or continuous inputs change, and immediately when
such changes occur.

In this paper, we set out to explore the suitability of implementing such a push-pull based
FRP system for GUI programming using Widget Rattus and explore possible improvements
to the proposed system. In short, this paper makes the following contributions:

1. We provide an overview of the key background concepts (Section 2)

2. We implement a simple push-pull based FRP in Widget Rattus with continuous and
discrete values. Additionally, we update the widget library in Widget Rattus to utilize
the push-pull model. (Section 3)

3. We present two case studies to demonstrate the use of our push-pull model. (Section 4)

4. We refine our initial push-pull model with five improvements and reflect on their impact.
(Section 5)

5. We compare our push-pull model with related works (Section 6)

1

2 Background

In this section we will go over the core concepts related to Functional Reactive Programming,
such as push- and pull-based evaluation, and the hybrid approach of push-pull based FRP
that Elliot [5] suggests. We will present the FRP language Widget Rattus, and outline its
core fundamental principles and demonstrate how to construct simple examples using it.

2.1 Functional Reactive Programming

Functional Reactive Programming is a programming paradigm for working with reactive
programming in functional languages. Systems using reactive programming have ongoing
interactions with the environment. This could be by receiving input, modifying the internal
state and producing output. Typically, such systems include GUIs, web frameworks and
robotics, since these types of systems generally receive input and must react accordingly.

FRP was introduced by Elliot and Hudak in their work Functional Reactive Animation [1],
originally presented as a collection of data types and functions to compose interactive multi-
media animations. The core abstractions they introduced were:

• Behaviours: Time-varying values representing continuous change over time, where
discretization happens automatically during rendering. Originally, a Behaviour a was
defined as a function from time to a value of type a, called a time function, as such:

type Behaviour a = Time → a

• Events: Streams of discrete occurrences at specific points in time. Originally, an
Event a was defined as a list of timestamped values of type a, as such:

type Event a = [(Time, a)]

By treating behaviours and events as first-class, composable abstractions, FRP enables the
composition of dynamic and reactive systems [5]. Implementations of FRP are generally
divided into two variants: push-based and pull-based.

In push-based FRP, the system reacts to incoming values or events as they are pushed from
sources, such as GUIs or external data feeds. This approach is typically used in systems that
listen for user input, e.g. button clicks or data sources that update periodically. Push-based
FRP has the disadvantage that computation only occurs when new input is received, which
can pose a problem if there is a lack of input. A simple example of this problem would be
a clock in a UI, that shows the current time. To achieve this, we have to push the current
time to the renderer constantly to make sure that the time is updated.

In contrast, in pull-based FRP, the system waits for the result to be demanded, and the
result is thereby only computed when needed. This approach fits more naturally with the
functional paradigm, since values can be evaluated lazily and only when used. However, using
pull-based FRP can impose a significant latency due to the delay between the occurrence of
an event, and the result being computed because of the sample interval between each pull.

2

2.2 Push-Pull Based FRP

Ideally, we would like to have an FRP system that combines the responsiveness of push-based
evaluation and the on-demand computation of pull-based evaluation. Such a hybrid approach
is presented by Elliot [5], which extends the previously mentioned events and behaviours.
In this hybrid approach, events represent discrete values and uses push-based evaluation,
while behaviours represent continuous time-varying values using both push- and pull-based
evaluation. Having both behaviours and events allows the system to handle both discrete
and continuous values, making it suitable for interactive applications, such as GUIs.

At the core of his approach are reactive values, which represent values that may change over
time in response to future events. These are used to implement push-functionality, where
updates happen through a stream of future discrete changes. Reactive values are defined
recursively, meaning they contain a current value and a future reactive value. Reactive
values are defined in the Reactive data type as such:

data Reactive a = a ‘Stepper‘ Event a

The stepper function defines a reactive value which remains constant between discrete changes.
Here, the a (on the left side of Stepper) is the current value and Event a represents potential
future updates. In this formulation, the Event captures discrete changes that may occur at
future points in time. Events are defined using future values, Future a, which contains a
value of type a and an associated time, T̂ , at which the future value occurs. The Future and
Event types are defined as follows:

newtype Future a = Fut (T̂ , a)

newtype Event a = Ev (Future (Reactive a))

The Behaviour type is defined as a reactive time function. Because of the semantics of
reactive values defined earlier, then the Behaviour type supports push-functionality [5].

type Behaviour a = Reactive (Time → a)

The pull-functionality of behaviours are based on time functions which can simply be rep-
resented as functions, i.e. Time → a. However, Elliot [5] notes that certain optimizations
are prevented due to functions being opaque at run-time. Such as differentiating between
constant functions and time-varying functions. To enable this, a Fun t a type is proposed to
split the time function into a constant and time-varying case. The types of Behaviour and
Fun are therefore defined as follows:

type Behaviour a = Reactive (Fun Time a)

data Fun t a = K a | Fun (t → a)

Using the definitions formulated by Elliot, we can now represent discrete values with the
type Event and continuous values with the type Behaviour. Given the reactive nature of
behaviours, it is possible to push new values, while still being able to pull the current value
by evaluating the Fun type.

3

Having reactive values that depend on time requires that time is defined. Elliott presents
relative and absolute time semantics, both of which can be used in the system with different
implementation details.

Relative time is defined as the time relative to the current time. This is useful if you have
to run another event after a specific amount of time. However, it increases the complexity
to compare two events and determine when both events have occurred, since time is relative
to their respective reference points. Given the events have the same reference points then
you can easily determine the order of events. However, this becomes more challenging if they
do not share the same reference points, since now we also need to determine which reference
point occurred first.

Absolute time is defined as a fixed global reference point, such as global timestamps. This
is useful if you want to run an event at a specific time. Given two events you can determine
the order of events based on their respective timestamps. The problem with this approach is
that you have to keep track of a global reference point.

2.3 Introduction to Widget Rattus

This and the following subsections regarding Widget Rattus, relies on examples from the
respective paper [21].

Widget Rattus is an extension of the Async Rattus language [20], a shallowly embedded
language in Haskell, provided as a plugin, based on the Async Ratt calculus [19, 25]. This
language introduces signals, which are a stream of discrete values based on modal types. In
the following sections we will introduce these concepts in depth.

There are two major differences between Haskell and Widget Rattus. Firstly, Widget Rattus
is eagerly evaluated, in contrast to Haskell that uses lazy evaluation by default. With eager
evaluation the value is computed when available, while lazy evaluation computes the value
when needed. The reason for this choice is to prevent space leaks, since we do not store
already evaluated computations, while still allowing signals to be directly manipulated [20].

Secondly, Widget Rattus introduces two type modalities, ⃝ and □, also called the later and
box modalities. The later modality expresses the passage of time at the type level [15]. This
makes it possible to differentiate between the type a, which is available now, and the type
⃝a which is available in the future. The box modality ensures that types can be safely and
efficiently moved across time. These modalities and the type system will be described in
more detail in the following sections. Selected typing rules for the Widget Rattus language1

can be seen in Figure 1.

2.4 Clocks and Delayed Computations

In Widget Rattus, the later modality ⃝ is used to represent values which are available in
the future. A value of type ⃝A represents a delayed computation that produces a value of
type A, at some point in the future. An exception to Widget Rattus’ eager evaluation, is the

1The typing rules are based on [21, 20], however the typing rule for delay are incorrect in both of these
papers. We have revised it and instead use the correct rule defined in [19].

4

Γ,✓θ ⊢ t :: A

Γ ⊢ delayθ t :: ⃝A

✓ ̸∈ Γ′ or A stable

Γ, x :: A,Γ′ ⊢ x :: A

Γ ⊢ t :: □A

Γ ⊢ unbox t :: A

Γ□ ⊢ t :: A

Γ ⊢ box t :: □A

Γ ⊢ s :: ⃝A Γ ⊢ t :: ⃝B ✓ ̸∈ Γ′

Γ,✓cl(s)∪cl(t),Γ
′ ⊢ select s t :: SelectAB

Γ ⊢ t :: ⃝A ✓ ̸∈ Γ′

Γ,✓cl(t),Γ
′ ⊢ adv t :: A

Γ ⊢ never :: ⃝A Γ ⊢ chan :: C(ChanA)

Γ ⊢ t :: ChanA

Γ ⊢ wait t :: ⃝A

where ·□ = · (Γ,✓θ)
□ = Γ□ (Γ, x :: A)□ =

{
Γ□, x :: A if A stable

Γ□ otherwise

Figure 1: Select typing rules for Widget Rattus

later modalities, which are evaluated lazily. This is required to compute the value when the
delayed computation is needed, and not before. Widget Rattus uses this type modality to
implement signals as such:

data Sig a = a ::: ⃝ (Sig a)

These signals can easily be manipulated using pattern matching or recursions. We have to
ensure productivity of recursive functions, i.e. ensure the the program does not hang or enter
an infinite loop. Therefore it is required that the recursive calls are guarded by a delay in
Widget Rattus, as seen in Figure 1. A concrete example of this is shown later in this section.

Bahr et. al. [20] presents a combinator library for creating and interacting with signals. The
combinator library presented will be used as the base for our implementation.

In Widget Rattus [21] each delayed computations has a local clock, due to the asynchronous
nature of FRP systems. A clock θ is a set of input channels, and when the clock receives
data on one of the channels, we call this a tick on the clock θ. These temporal dependencies
are kept track of with the ✓θ token as seen in the typing rules in Figure 1. Input channels
could be button presses or text field changes, with the values referred to as input values.

Concretely this is implemented such that an element of type ⃝a consists of a pair (θ, f)
which is the local clock θ and a delayed computation f . When the clock θ ticks, f computes
a value of type a. Accessing the delayed value is possible with the adv :: ⃝a → a (advance)
function, which takes a delayed computation and returns the value produced. We can also
construct a value of type ⃝a by using the function delay :: Clock → a → ⃝a. This is
however, an oversimplification, since adv and delay have to follow the typing rules presented
in Figure 1. These typing rules specify that given a value t and its associated clock θt, then
delaying t must occur before a tick on the clock θt, while advancing must occur after a tick
on θt.

5

increment :: ⃝Int → ⃝Int

increment x = delay(adv x+ 1)

Above is an example of a function, increment x, using these concepts. It takes a delayed
integer and increments it. Due to the typing rules of delay and adv, seen in Figure 1, we
can not delay without advancing, and vice versa. Since x is a delayed computation of type
⃝Int, increment x will only produce a result when x is evaluated in a future time step. Let
us look at advancing and delaying multiple integers. If we were to add two delayed integers,
then we would assume it would look like this:

add :: ⃝Int → ⃝Int → ⃝Int

add x y = delay (adv x+ adv y)

However, this would only work, if the two delayed integers x and y are guaranteed to arrive
at the same time. This would mean using a global clock, which would be highly inefficient in
e.g. GUIs and concurrent systems. The global clock would need to run as fast as the fastest
input signal, to ensure that the GUI application shows the correct output. Widget Rattus
fixes this by implementing dynamic local clocks [20], however this removes the guarantee that
the clocks of x and y tick at the same time. To process more than one delayed computation,
Widget Rattus implements a select primitive, as seen below, which handles the problem of
multiple local clocks by forming a union of two clocks θ and θ′, denoted as θ⊔ θ′, which ticks
whenever θ or θ′ ticks.

data Select a b = Fst a (⃝b) | Snd (⃝a) b |Both a b

Given two delayed computations x :: ⃝A and y :: ⃝B, then the primitive select x y returns
a value of type Select A B, i.e. a constructor Fst A (⃝B), Snd (⃝A) B or Both A B
depending on if the value of x arrives before, after or at the same time as y, respectively.

Another use case of the select primitive is to implement a combinator that allows us to switch
from one signal to another signal:

switch :: Sig a → ⃝(Sig a) → Sig a

switch (x ::: xs) d = x ::: delay (case select xs d of

Fst xs′ d′ → switch xs′ d′

Snd d′ → d′

Both xs′ d′ → d′)

The switch xs ys function produces a signal that first behaves like xs, until ys arrives where
it will behave like ys.

6

2.5 Stable Types and Box Modality

In Widget Rattus, there is a concept of time-dependent and time-independent data. An
example of time-dependent data is delayed computations of type ⃝A, since they arrive in
the future and thereby contain temporal dependencies. Such data requires the system to keep
its computational values in memory, until the computation that references it is performed.
If there is no system to restrict which values are kept in memory, then they may cause
space-leaks.

To prevent this stable types are introduced. Widget Rattus restricts the programmers to only
move data across time steps if they are a stable type. All types that can not carry temporal
dependencies, such as Int and Bool, are stable, while types of the form ⃝A and A → B
are not stable. Delayed computations are per definition time-dependent, and are therefore
not stable. Since functions can contain references to arbitrary time-dependent data in their
closure, functions are time-dependent as well. All base types like Int and Bool are stable.
All algebraic data types and record types, that only contain stable types, are also stable.

Let’s look at an example with time-dependent data. The following definition would fail with
the Widget Rattus plugin, due to the variable scoping rules.

mapLaterBad :: (a → b) → ⃝a → ⃝b

mapLaterBad f x = delay (f (adv(x))

These rules specify that types inside of a delay scope must be stable types. Therefore the
function f is no longer in scope, since the type (a → b) is not stable.

Widget Rattus provides the box modality□ to turn a non-stable type A into a stable type□A,
with some restrictions. Boxing of a type can be done using the box t primitive, which enforces
restrictions to make sure that the boxed values are actually time-independent. Similarly to
the delay primitive, box evaluates its arguments lazily, such that its argument t is only
evaluated when the boxed value is forced using unbox.

Given the box modality, we can fix the mapLater function by requiring a boxed type for f ,
and then unboxing the value of f in the scope of delay. This can be seen below:

mapLater :: □(a → b) → ⃝a → ⃝b

mapLater f x = delay (unbox f (adv(x))

2.6 Continuous Types

Generally programs with signals of basic types are based on a linear structure, which means
each value comes directly after each other. An example of this is with the signal of type
Sig Int. This signals has the form v0 ::: (θ0, f0), where v0 is an integer, and f0 is a delayed
computation that produces a new signal of the form v1 ::: (θ1, f1) when a tick occurs on
the clock θ0. This means that given ticking of the clocks, then the signal produces a linear
sequence of values v0, v1, ..., vi, triggered by the corresponding clocks.

7

Now imagine we have a signal of type Sig (Sig Int), which will have the form:

Sig (Sig Int) = (v0 ::: (θ0, f0))︸ ︷︷ ︸
inner signal

::: (θ1, f1)︸ ︷︷ ︸
outer signal

This means that the clock of the signal is θ0 ⊔ θ1 i.e. either the inner or outer signal can
tick. This means that the produced output of this signal is a tree-shaped structure. This,
however, introduces a problem of updating the signal, when the inner signal ticks, because
then the outer signals has to update its current value as well.

This is one of the problems Widget Rattus tries to solve, since GUI programs generally have
a tree-shaped structure. An example of this is if we had a Widget type, that could describe
a GUI widget, then we could represent the whole GUI as a signal with the type Sig Widget.
Since widgets might recursively contain other widgets, then representing GUIs would be in
the form of a tree-shaped structure. For example, we could define two widgets, Label and
LabelList. Label defines a simple label that takes a signal of text and LabelList takes a
signal consisting of list of labels, as well as a signal of a colour.

data Label = Label (Sig Text)

data LabelList = LabelList (Sig Colour) (Sig (List Label))

The LabelList widget describes the colour of the container, but also a signal of a list of labels.
These labels also consist of signals and therefore the language needs to handle nested signals
as well.

To solve this problem of updating signals in a tree-shaped structure, Widget Rattus introduces
continuous types [21], which are types of values that can be updated over time.

A continuous type A has two functions defined. The clock function clock :: A → Clock and
the update function update :: InputV alue → A → A. Given we have a continuous type A,
the value v of type A can be updated with update i v when we receive an input value i on a
channel c ∈ clock(v).

With signals of type Sig A, where A is continuous, it has the form v0 ::: (θ0, f0). The clock
for this signal, is the union of clock(v0) with θ0 i.e. clock(v0) ⊔ θ0. When updating the
signal the result depends on which clock ticks. If we receive an input value i on a channel
c ∈ clock(v0) ⊔ θ0 then it could either be the clock of A ticking or the clock of the signal
ticking. The signal gets updated depending on the channel c, with the following cases:

• If c ∈ θ0, then it is the clock of the signal ticking. The signal is updated by computing
the delayed computation f0 resulting in a signal of the form: v1 ::: (θ1, f1).

• If c /∈ θ0, then it is the clock of A ticking. The signal is updated with update i v0 :::
(θ0, f0).

Any basic type or stable type is a continuous type, since these types are time-independent.
Continuous types are closed under product, sum and recursive types, however unlike stable
types, continuous types are also closed under forming signal types. For example, if A is a
continuous type then Sig A is also continuous.

8

2.7 Widgets and Channels in WidgetRattus

Widget Rattus uses Monomer [14], a GUI library for writing user interfaces in Haskell.
Monomer works by representing GUIs as models, generally one top-level model calledAppModel,
with widgets (or GUI components) containing the structure of the program. The GUI is then
updated via events from button presses, input changes, etc. A new app model is rendered
based on the occurrences of events.

Widgets must be able to produce data obtained from user interaction. Such an interaction
could be keyboard input, mouse clicks, etc. To do this, Widget Rattus introduces two new
primitives, chan and wait, to construct and interact with channels. This can also be seen
in Figure 1. Data produced by widgets are used in channels, where chan creates a new
channel of type Chan A that can send data of type A. This is an effectful operation, as it
allocates a fresh channel, which is indicated with the use of the C monad. The C monad
allows executions of a set of effectful operations such as creating channels and getting the
current time. To evaluate the C monad in a delayed context, one can use the function
delayC :: ⃝ (C a) → ⃝ a, provided by Widget Rattus.

Since we do not know when a channel receives data, we need to delay computations based
on data from channels. To achieve this, the function wait :: Chan A → ⃝A can be used.
These delayed computations will produce a value of type A when a value has been sent on
the channel Chan A.

data SimpleButton = SimpleButton (Sig Text) (Chan ())
mkSimpleButton :: C SimpleButton
mkSimpleButton = do c ← chan

return (SimpleButtion (const "OK") c)

Above is a simplified example to show a use case of widgets using channels. We define a
simple button which displays a constant signal of the text ”OK”. On each button press, the
assigned channel receives a unit value.

To display different types in widgets, Widget Rattus has implemented the Displayable type-
class. This is used to define the display function, which is used to convert a datatype into a
text representation.

class (Stable a) ⇒ Displayable a where
display :: a → Text

Using this Displayable typeclass Widget Rattus defines a more abstract button which can
display any Displayable type and not only of type Text. In Widget Rattus each GUI element
has their own uniquely defined data-structure. For example, Button consists of two fields
btnContent, which is a signal of the button’s content and btnClick, an input channel triggered
by clicking the button.

data Button where
Button :: Displayable a

⇒ {btnContent :: Sig a, btnClick :: Chan ()} → Button

Widget Rattus generalizes widget construction via the IsWidget typeclass. Given an instance
of IsWidget on a type A, it is possible to convert a value of type A into a Monomer widget.

9

This is done by defining the mkWidgetNode function which given a value of type A converts
it to a WidgetNode type from Monomer.

class (Continuous a) ⇒ IsWidget a where
mkWidgetNode :: a → Monomer.WidgetNode AppModel AppEvent

With the IsWidget typeclass, it is now possible to define a button instance as follows:

instance IsWidget Button where
mkWidgetNode Button {btnContent = (val ::: _), btnClick = click} =

Monomer.button (display val) (AppEvent click ())

This definition renders a Monomer button where the current value of the signal is displayed
using the display function and an AppEvent. The AppEvent data type contains data about
both the channel associated with the button, and the value it would produce when the button
is pressed. See below for the reference of the AppEvent definition:

data AppEvent where
AppEvent :: Chan a → a → AppEvent

Disch et al. [21] also presents a combinator library for building widgets and running applica-
tions. The library provides combinators for creating widgets, including buttons and sliders,
using the corresponding mkButton and mkSlider functions.

The mkButton function is implemented as follows:

mkButton :: Displayable a ⇒ Sig a → C Button
mkButton t = do c ← chan

return Button {btnContent = t, btnClick = c}

This function constructs a Button with the signal t assigned and allocates a new channel
using the chan function.

It is then possible to listens for events on these widgets using the corresponding provided
functions such as btnOnClickSig and sldCurr. These functions return signals that tick when
the associated events are triggered.

The btnOnClickSig is defined by waiting for the btnClick channel to produce a value using
the wait function. This is converted to a signal using the mkSig function, which recursively
converts a boxed delayed computation into signal.

For reference these implementations can be found below:

mkSig :: □ (⃝ a) → ⃝(Sig a)
mkSig b = delay (adv (unbox b) ::: mkSig b)

btnOnClick :: Button → □ (⃝ ())
btnOnClick btn =

let ch = btnClick btn
in box (wait ch)

btnOnClickSig :: Button → Sig ()
btnOnClickSig b = mkSig (btnOnClick b)

10

An example use case of this library can be seen in Figure 2 of a simple counter GUI. Widget
Rattus provides example GUIs for a set of Kiss’ 7GUIs [12]. All following GUI examples
presented will also be from 7GUIs, to make it easier to compare a push-pull based approach
with Widget Rattus’ push-based approach. Our push-pull examples of the GUIs can all be
seen in Appendix D.

In this example, the mkButton and mkLabel functions are used for creating a button and a
label. Pressing the button increments the value displayed on the label. The btnOnClickSig
function produces a signal that ticks on each button click, which accumulates the count by
incrementing it with each tick using the scanAwait function. The scanAwait function is
similar to the scan function in the Haskell base library [23], which applies a given function f
to a signal.

These two widgets are then displayed in a vertical stack using the mkConstV Stack function.

The runApplication function starts the GUI application using Widget Rattus, which renders
the widget given. This function sets up a Monomer application with a builder capable of
rendering the current model via the mkWidgetNode implementations for each IsWidget
instance. An event handler is also defined to process incoming events and update the widgets
accordingly.

counter :: C VStack
counter = do

btn ← mkButton (const "Increment")
let clicks = btnOnClickSig btn
let counts = scanAwait (box(λn () → n + 1)) 0 clicks
lbl ← mkLabel counts
mkConstVStack (lbl :* btn)

main :: IO()
main = runApplication counter

Figure 2: Counter GUI implementation

11

3 Simple Push-Pull in Widget Rattus

In this section we will show an initial implementation of push- and pull-functionality in an
FRP language. In section 4 we will do a case study on a GUI example using this library we
have created. In section 5 we will refine this simple push-pull model with more advanced
concepts.

We have chosen to work in Widget Rattus, due to it providing first-class support for both
later modality and stable types, making it a suitable language for us to explore and implement
push-pull based FRP.

Our approach is inspired by the semantics presented by Elliot in his work on push-pull FRP
[5]. We implement these semantics using type representations for events and behaviours as
abstractions over the Sig type already defined in Widget Rattus. Behaviours will provide
both push- and pull-functionality, while events only provide push-functionality. We will
implement corresponding combinator libraries for the types, which we will explore in more
detail in the following sections. Since Widget Rattus is strictly evaluated language, it is
important that we define the push-pull model based on this. This can be done in Haskell
using the ! operator [22]. Widget Rattus also provides a strict version of Maybe, defined as
Maybe′, as well as the :* infix operator for making strict pairs.

3.1 Events

To implement the event semantics described in section 2.2, we start by defining an event type
from Elliot’s definition:

newtype Event a = Ev (Future (Reactive a))

An event contains a future reactive value using the Future type. This type simply defines
that the value will be available in the future. In Widget Rattus, the ⃝ modality has a similar
purpose of defining delayed computations.

The Reactive type models discrete value changes and is structurally similar to the Sig type
used in Widget Rattus:

data Reactive a = a ’Stepper’ Future (Reactive a)

data Sig a = a ::: !(⃝ (Sig a))

Given this similarity we can use Sig in place of Reactive in the event data constructor. We
can represent future values using the ⃝ modality. We decided to use the name Ev instead
of Event for the type in the implementation:

newtype Ev a = Ev(⃝(Sig a))

An event is just a delayed signal, with the key difference being that, unlike regular signals,
events do not assume an initial value is available. This aligns with the intuition of e.g., a
keyboard press event; no value is present until a key is actually pressed.

Delaying the signal, allows us to ”wait” for the event to occur. Once this value is available,
the rest of the stream is represented by delayed signals ⃝(Sig a). This means, that future
occurrences of the event is also not known in advance.

12

Making Ev a continuous is fairly straightforward given that a continuous instance requires
a clock function, for when the type updates, and an update function for updating the value.
An event is simply a delayed computation, which has the form (θ0, f0), where θ0 is the clock
and f0 is a delayed computation that produces a signal. The clock of an event is therefore
θ0. The update function is not directly the f0 function, since this returns a signal of the form
v1 ::: (θ1, f1). Since we need to return the same form, we can ignore v1 and simply return
(θ1, f1).

We have implemented an event library with a set of combinators for interacting events. The
event library is shown in Figure 3

map :: □(a → b) → Ev a → Ev b

stepper :: a → Ev a → Beh a

trigger :: Stable b ⇒ □(a → b → c) → Ev a → Beh b → Ev (Maybe′ c)

interleave :: □(a → a → a) → Ev a → Ev a → Ev a

scan :: Stable b ⇒ □(b → a → b) → b → Ev a → Ev b

Figure 3: Event library

A common interaction would be to map an event with a function. The map combinator is
fairly straightforward to implement as seen below:

map :: □ (a → b) → Ev a → Ev b
map f (Ev sig) = Ev (aux f sig)

where
aux :: □ (a → b) → ⃝(Sig a) → ⃝(Sig b)
aux f xs = delay (let (x ::: xs’) = adv xs in unbox f x ::: aux f xs’)

The primary challenge of implementing map, is mapping in a delayed context. This is achieved
by advancing the delayed signal xs, which has type ⃝ Sig a. When advancing, it is crucial to
ensure that the event stream is in a delayed computation, to maintain the correct semantics
of the language. To avoid repeatedly wrapping and unwrapping the result with the Ev type,
we introduce an auxiliary function which maps directly on the underlying signal. This can,
however, be simplified by using the existing signal combinator library as such:

map :: □ (a → b) → Ev a → Ev b
map f (Ev sig) = Ev (Signal.mapAwait f sig)

In the above case we use the mapAwait function, which maps a delayed signal. To keep the
code snippets readable and concise, we will utilize functions from the existing library in the
future.

The map combinator can be used by giving a boxed function f and an event Ev a. For
example incrementing a stream of natural numbers (nat) as such:

map (box (λx → x+1) nat

13

In situations where data is collected from several independent sources, such as multiple sensors
operating, it could be useful to combine these event streams into a single stream. This is
possible by using the interleave function. Consider having two event streams e1 and e2 and
interleaving them, then a new event stream e3 is created. When either e1 or e2 ticks, then e3
ticks with the produced value. An important consideration arises in cases where two events
occur at exactly the same time. In these scenarios, a user-defined function is required to
determine how the values should be merged.

interleave :: □ (a → a → a) → Ev a → Ev a → Ev a
interleave f (Ev xs) (Ev ys) = Ev (Signal.interleave f xs ys)

An example of a use case for the interleave function could be merging two integer events,
using the addition operator, like so:

x: 1 2 4 5 6 7 ...
y: 8 6 0 4 ...

interleave (box(+)) x y: 1 10 6 4 5 10 7 ...

Lastly a scan function similar to scanl [23] in Haskell is implemented for events. Given an
initial value v and an event e1, then a new event e2 is created. When e1 ticks then e2 ticks
as well with a value produced by a binary operator of the accumulator and the current value
of e1.

scan :: (Stable b) ⇒ □ (b → a → b) → b → Ev a → Ev b
scan f acc (Ev as) = Ev $ delay (Signal.scan f acc (adv as))

An example of a use case for the scan function could be to create an event stream that
increments a number each time an event, ev, ticks.

scan (box (λn _ → n + 1)) 0 ev: 1 2 3 4 5 6...

The stepper and trigger combinators use behaviours, and thus will be implemented in the
next section, after the Beh type has been defined.

3.2 Behaviours

A behaviour should have both push- and pull-functionality, meaning that a new value can be
pushed, like signals and events, as well as having the ability to always pull the current value.
These values are time-varying values, and therefore pulling current value requires the current
time. As described by Elliot, we can optimize the pull-functionality by supporting constant
values as well. These values are always the same no matter the time.

To implement the pull-functionality we introduce the Fun a type, where a is the type of the
values produced and is defined as follows:

data Fun a = K !a | Fun !(□ (Time → a))

The type is pretty similar to the type defined by Elliot; it contains a constant case K a and
a time-varying case Fun □(Time → a). In contrast to Elliot, we decided to remove the type
parameter for time and instead hardcode it to be the Time type defined in Widget Rattus.
Time is a strict version of UTCTime [18] defined in Haskell. UTC time is a global reference
point, and therefore we use absolute time in our implementation.

14

We might require the type a to be stable, therefore we box the entire function Time → a. If
the function is not boxed then we would not be able to guarantee that the result of type a is
stable.

The Fun a type is continuous given a is continuous. We can prove this since, in the K
case we simply have constant a, i.e. it updates when a updates. In the time-varying Fun
case, the function is boxed, and therefore stable. As previous mentioned, all stable types are
continuous as well.

To simplify the use of the Fun type we have created two functions, apply and mapF , as seen
below. The apply function was presented in Elliot’s paper and simplifies accessing the value
of Fun types by treating both the constant and time-varying case the same way, i.e. using a
function of type Time → a [5]. The mapF function is used for mapping Fun types, which is
useful for applying a function on a Fun type without applying time.

apply :: Fun a → (Time → a)
apply (K a) = (λ_ → a)
apply (Fun f) = unbox f

mapF :: □ (a → b) → Fun a → Fun b
mapF f (K a) = K (unbox f a)
mapF f (Fun t) = Fun (box (unbox f . unbox t))

After introducing the Fun a type, we can define a behaviour as a signal of Fun a, as
seen below. The Fun a type enables pull-functionality by representing behaviours as either
constant values or as time functions. This allows the system to evaluate the current value at
any given moment, by applying the time function when needed. Since the behaviour type is
implemented as a signal, this also enables push-functionality. Therefore, combining the Fun
type and signals enables both push- and pull-functionality. Our definition is very similar to
Elliot’s, as seen in section 2.2, with the differences being that it uses the Sig type instead of
Reactive, for similar reasons as events. The type can be seen here:

newtype Beh a = Beh (Sig (Fun a))

Given a continuous type a, then Beh a is also continuous since it is equivalent to Sig (Fun a).
Both signals and Fun a are continuous when a is continuous.

Given this definition of Beh we can create the simplest behaviour, the Time Behaviour. This
behaviour returns the current time by simply using the Fun type with the identity function.

timeBehaviour :: Beh Time
timeBehaviour = Beh (Fun (box id) ::: never)

We can define the future values as never, which is presented in Widget Rattus as a way of
saying that a signal never ticks again. Using this function we can always pull the current
value of the behaviour and get the current time.

To generalize this concept of behaviours that only support pull-functionality of constant
values, we created the const function. This function produces constant behaviours that
never tick, by assigning never as the later value:

const :: a → Beh a
const x = Beh (K x ::: never)

15

To safely access time, we need to use the C monad, due to the time function having side-
effects. One such case is with the elapsedT ime function, which returns a behaviour based on
a start time. At each pull we get the difference between the current time and the start time.

elapsedTime :: C (Beh NominalDiffTime)
elapsedTime = do

startTime ← time
return $
Beh (Fun (box (λcurrentTime → diffTime currentTime startTime)) ::: never)

From the definition of Beh we can create an initial behaviour combinator library as seen in
Figure 4.

const :: Fun a → Beh a

constK :: a → Beh a

map :: □(a → b) → Beh a → Beh b

zipWith :: (Stable a, Stable b) ⇒ □(a → b → c) → Beh a → Beh b → Beh c

zipWith3 :: (Stable a, Stable b, Stable c) ⇒
□(a → b → c → d) → Beh a → Beh b → Beh c → Beh d

switch :: Beh a → ⃝(Beh a) → Beh a

switchS :: (Stable a) ⇒ Beh a → ⃝(a → Beh a) → Beh a

switchR :: (Stable a) ⇒ Beh a → Ev (a → Beh a) → Beh a

timeBehaviour :: Beh Time

elapsedT ime :: C (Beh NominalDiffT ime)

withT ime :: ⃝(Time → a) → ⃝a

Figure 4: Behaviour library

Mapping of behaviours is similar to mapping of events and signals, as seen below. The map
function simply applies a function f using the mapF function on the current value of type
Fun.

map :: □ (a → b) → Beh a → Beh b
map f (Beh sig) = Beh $ Signal.map (box (λa → mapF f a)) sig

In some cases it would be useful to combine two behaviours. For example, to create a
behaviour of the sum of two behaviours’ values. This can be solved using the zipWith f a b
combinator, which applies a zip function f on the behaviours a and b. The implementation
of zipWith for behaviours is similar to the implementation of zipWith for signals in Widget
Rattus, with the major difference being that behaviours use the Fun type for the current
value. To zip two values of the Fun type, then we use an auxiliary function app x y which
takes two Fun types and for each combinator zips them together using the function f , given
by the zipWith function.

16

zipWith :: (Stable a, Stable b) ⇒ □ (a → b → c) → Beh a → Beh b → Beh c
zipWith f (Beh (x ::: xs)) (Beh (y ::: ys)) =

Beh $ app x y
::: delay

(let (Beh rest) =
(case select xs ys of

Fst xs’ lys → zipWith f (Beh xs’) (Beh (y ::: lys))
Snd lxs ys’ → zipWith f (Beh (x ::: lxs)) (Beh ys’)
Both xs’ ys’ → zipWith f (Beh xs’) (Beh ys’)

)
in rest

)
where
app :: Fun a → Fun b → Fun c
app (K x’) (K y’) = K (unbox f x’ y’)
app (Fun x’) (Fun y’) = Fun (box (λt → unbox f (unbox x’ t) (unbox y’ t)))
app (Fun x’) (K y’) = Fun (box (λt → unbox f (unbox x’ t) y’))
app (K x’) (Fun y’) = Fun (box (unbox f x’ . unbox y’))

The Stable constraints are necessary in zipWith, since values of type Fun a or Fun b have to
be moved into the future (whenever only one of the behaviours ticks). Due to this behaviour,
the box modality is needed in the definition of Fun. The function f is also boxed due to the
delayed context. If we omitted the box modality, the function would not be in scope in the
delayed context.

A variant of the zipWith function for three behaviours is also available, called zipWith3.
This variant firstly zips behaviours a and b. The result of this zip is then zipped with the c
behaviour. The zipWith3 function is useful for creating behaviours that are similar to if-else
statements, since a becomes the condition, b is the true case and c is the false case.

zipWith3 :: forall a b c d. (Stable a, Stable b, Stable c) ⇒
□ (a → b → c → d) → Beh a → Beh b → Beh c → Beh d

zipWith3 f as bs cs = zipWith (box (λf’ x → unbox f’ x)) cds cs
where
cds :: Beh (□ (c → d))
cds = zipWith (box (λa b → box (λc → unbox f a b c))) as bs

Consider the scenario, where we have a behaviour y, which is in a delayed context, meaning
that is is not currently available. Instead of waiting for the behaviour to arrive, we would
instead want to use an initial behaviour x, until the behaviour y arrives. Once y arrives it
will take over. In Widget Rattus, this is done with signals using the switch function. Using
the switch function provided for signals, we can create a switch function for behaviours as
well, as seen below:

switch :: Beh a → ⃝(Beh a) → Beh a
switch (Beh s) d = Beh $ Signal.switch s $ mapLater (box (λ(Beh a) → a)) d

This makes it possible to achieve the example described above simply by writing switch x y.

This switch function is a bit limiting in it is functionality since it does not support creating
behaviours based on the previous state, and only allows switching once. In Widget Rattus,
these limitations are removed using the switchS and switchR functions.

17

The switchS function is a stateful switch function, which means that it allows switching from
an initial behaviour b1 to a future behaviour b2. The b2 behaviour is produced depending on
the current value of b1.

An example use case of switchS is seen below. Here we use switchS to return a behaviour
that shows the current time, until the clickEv ticks. When this event ticks it switches over
to a constant behaviour which stores the current time.

stopWatch :: Beh Time
stopWatch = switchS timeBehaviour

(box (delay (λa → let _ = adv (unbox clickEv) in const a))

Similarly to switch, we can create the switchS function for behaviours based on the imple-
mentation of switchS for signals. The implementation can be seen below:

switchS :: (Stable a) ⇒ Beh a → ⃝(a → Beh a) → Beh a
switchS (Beh s) d =

Beh $
Signal.switchS s $

withTime $
mapLater (box (λf a t → let (Beh s’) = f (apply t a) in s’)) d

The withT ime function, used within the switchS function, is a helper function for getting the
current time at a point in the future. It applies the current time to a delayed computation. It
takes a delayed value of type ⃝(Time → a) and produces a delayed result of type ⃝a. This
is done by advancing the delayed function, retrieving the current time from the C monad,
and applying the time to the function. The use of delayC eliminates the C monad, yielding
a delayed value.

withTime :: ⃝(Time → a) → O a
withTime delayed =

delayC $ delay (let f = adv delayed in do f <$> time)

The switchR function is a recursive version of the switchS function. Instead of taking an
argument of type ⃝(a → Beh a), it takes an event of type Ev (a → Beh a). This means that
every time the event produces a new function, a new behaviour is computed and switched to.

switchR :: (Stable a) ⇒ Beh a → Ev (a → Beh a) → Beh a
switchR beh (Ev steps) =

switchS beh (delay (let step ::: steps’ = adv steps in
(λx → switchR (step x) (Ev steps’))))

Now that the type Beh is defined, we can finish implementing our event combinators, that
use behaviours.

Events are generally used for discrete values at some point in the future, and are therefore
useful for button presses, input changes, etc. Due to the discrete nature of events, only push-
functionality is needed. However this makes it challenging to get the value after it has ticked.
For example, if you have a keyboard press event, and you want to access it at a later time,
you would need pull-functionality. This is solved using the stepper function which converts
an event into a behaviour. Since event values are discrete then we can convert the event into
a behaviour made up of constant values.

18

Due to events being delayed computations, we do not have an initial value for the behaviour.
We solve this by assigning an initial value when creating a behaviour. Alternatively we could
return a delayed behaviour. However this would not make sense in our implementation, since
our combinators do not produce any delayed behaviours.

stepper :: (Stable a) ⇒ a → Ev a → Beh a
stepper initial (Ev ev) = Beh (K initial ::: Signal.mapAwait (box K) ev)

Using the trigger function, it is possible to sample the current value from a behaviour each
time an event ticks. In this context, we are working with the select function, which allows
us to distinguish whether it is the event, the behaviour, or both that have ticked. In the
case where the behaviour ticks, we do not want to produce a value. However, due to signals
having to produce a value at every tick of its clock, then we also have to produce a value to
the output. Therefore we can make use of the Maybe′ type and return Nothing′. As a result
of this our return type is Ev (Maybe′ c). Since the values are discrete, we represent them as
an event as well. We will explain this problem more and improve the solution in section 5.2.
The implementation of trigger is as follows:

trigger :: (Stable b) ⇒ □ (a → b → c) → Ev a → Beh b → Ev (Maybe’ c)
trigger f (Ev event) (Beh behaviour) = Ev (trig f event behaviour)

where
trig :: (Stable b) ⇒ □ (a → b → c) → ⃝(Sig a) → Sig (Fun b) → ⃝(Sig (Maybe’ c))
trig f’ as (b ::: bs) =

withTime $
delay

(let d = select as bs
in (λt →

(case d of
Fst (a’ ::: as’) bs’ →

Just’ (unbox f’ a’ (apply b t))
::: trig f’ as’ (b ::: bs’)

Snd as’ bs’ →
Nothing’ ::: trig f’ as’ bs’

Both (a’ ::: as’) (b’ ::: bs’) →
Just’ (unbox f’ a’ (apply b’ t))
::: trig f’ as’ (b’ ::: bs’)

)
)

)

Consider the following example: Given a behaviour beh, that contains the current time, and
a button which emits an event ev on button click. If we want to sample the current time at
the moment the button is clicked, we can use the trigger function to sample the behaviour
in response to the event. This is shown in the example:

lastClickTime :: Ev Time = trigger (box (λ_ t) → t) ev beh

For an alternative example see Figure 5 for a more visual approach of the trigger function.
Here we see how the event ticks at different times (e.g. every time you click on a button) and
the value on the behaviour is sampled.

19

Figure 5: A visual example of the trigger function. The y axis is an arbitrary value that
the behaviour produces, and the x axis is the time passed. The behaviour consists of two
functions. The initial function is a time-varying sinus curve, while after ticking it becomes a
constant function.

3.3 Push-Pull GUI Widgets

As previously mentioned Widget Rattus provides a library for creating and updating widgets
using signals. Since this library uses signals, it only supports push-functionality. Our goal
is to make it support push- and pull-functionality by using behaviours and events instead of
signals.

A path we explored was to update the underlying data structures of widgets from Widget
Rattus to use behaviours and events directly, instead of signals. For example, updating the
Button widget would look like the following:

data Button’ where
Button’ :: (Displayable a) ⇒
{btnContent :: !(Beh a), btnClick :: !(Chan ())} → Button’

In Widgets Rattus, updates to the GUI are handled via the continuous instances of widgets.
Continuous types define when a value is updated, which optimally should lead to a re-render
of the value. This leads to a problem with the current definition of the continuous instance
for the behaviour type, since it is defined by the signals instance of continuous. Since signals
are push-based, that means that we are only notified about updates of behaviours when a
new value is pushed, and thus ignoring the pull-functionality.

Because of this problem, we need to introduce some kind of pull-sampling to re-render the
values in the GUI, which Elliot [5] also noted as the need for behaviours to be discretized
when rendered. Using pull-sampling, we sample the value of a behaviour at a fixed interval.
This approach, however, increases the latency between value updates and renders. Therefore,
we need to minimize the sampling interval while still avoiding unnecessary re-computations
of the same value. We will explain the implementation of the pull-sampling functionality
later.

20

First we tried to implement the pull-sampling directly in the continuous instance of the
behaviour type. However, this would not be ideal if you use behaviours outside of widgets.
Since we want our push-pull implementation to be used generally, and not only in the context
of widgets in Widget Rattus, we want the user to have the freedom of choosing their own
pull-sampling method instead of us building it directly into the continuous instance of a
behaviour.

Therefore we need to discretize outside of the continuous instance of behaviours. To achieve
this, we suggest modifying only the widget library functions such as mkButton, mkSlider,
etc., so these functions take a behaviour or an event as input parameter and internally dis-
cretize to convert the behaviours into signals and construct the signal-based widgets. The
helper functions like btnOnClick would then convert the resulting signals and delayed compu-
tations back into behaviours and events. The resulting behaviours would then be represented
as discrete. The fully updated widget library can be seen in Figure 6.

mkButton :: (Displayable a) ⇒ Beh a → C Button

btnOnClickEv :: Button → Ev ()

mkTextF ield :: Text → C TextF ield

textF ieldOnInput :: TextF ield → Ev Text

textF ieldContent :: TextF ield → Beh Text

mkLabel :: (Displayable a) ⇒ Beh a → C Label

mkConstText :: String → Beh Text

mkHStack :: (IsWidget a) ⇒ Beh (List a) → CHStack

mkConstHStack :: (Widgets ws) ⇒ ws → C HStack

mkV Stack :: (IsWidget a) ⇒ Beh (List a) → C V Stack

mkConstV Stack :: (Widgets ws) ⇒ ws → C V Stack

mkTextDropdown :: Beh (List Text) → Text → C TextDropdown

textDropdownCurrent :: TextDropdown → Beh Text

mkPopup :: Ev Bool → Beh Widget → C Popup

mkSlider :: Int → Beh Int → Beh Int → C Slider

sliderOnChange :: Slider → Ev Int

sliderCurrent :: Slider → Beh Int

mkProgressBar :: Beh Int → Beh Int → Beh Int → C Slider

runApplication :: (IsWidget a) ⇒ C a → IO ()

Figure 6: The updated GUI library. Notice the type Widgets, which is essentially a list of
the Widget type.

21

The pull-sampling functionality has been implemented in the discretize function given below,
which is part of the behaviour combinator library. This function takes a behaviour and
converts it into a discrete signal using pull-sampling. The C monad is required since we need
the time to compute the initial value of the behaviour.

The discretize functions works by recursively calling itself either when the behaviour ticks
or when our sample interval ticks. Thereby both push- and pull-functionality is preserved.
The function has been optimized further by having a case for constant cases. When a value
is constant, then we can guarantee that the next update will be when a new value is pushed
onto the behaviour, since the current value will not change.

discretize :: Beh a → C (Sig a)
discretize (Beh sig) = time >>= (pure . discr sig)

where
discr :: Sig (Fun a) → Time → Sig a
discr (K x ::: xs) _ = x ::: withTime (delay (discr (adv xs)))
discr (Fun f ::: xs) t =

let cur = unbox f t
rest =
withTime $

delay
(case select xs sampleInterval of

Fst x _ → discr x
Snd beh’ _ → discr (Fun f ::: beh’)
Both x _ → discr x

)
in (cur ::: rest)

Now that we have implemented a function for enabling pull-sampling, we can update the
widget creation functions, mkButton, mkSlider, etc. to discretize the given behaviours and
use them as signal based widgets in Widget Rattus. As an example, let’s look at the updated
mkButton function as seen below. The function allocates a channel using the chan function
like the previous signal-based version, but now it also discretizes the given behaviour. The
resulting channel and signal are then passed to the Button data structure.

mkButton :: (Displayable a) ⇒ Beh a → C Button
mkButton t = do

c ← chan
t’ ← discretize t
return Button {btnContent = t’, btnClick = c}

Since events are discrete by nature, they do not need to be discretized like behaviours. To
ease the use of creating events based on produced values from channels, we created a mkEv
function similar to mkSig. This function recursively converts a box delayed computation
into an event stream

mkEv :: □ (⃝ a) → Ev a
mkEv a =

Ev (delay (adv (unbox a) ::: mkSig a))

An example use case for events in the context of widgets is listening to button press events.
In our GUI library we include a btnOnClickEv function that given a Button widget returns
an Ev () type for button clicks. This is done by waiting for the channel btnClick b, of a

22

button b, to produce a value using the wait function. We must box it before passing it into
the mkEv function. The btnOnClickEv function can be seen below:

btnOnClickEv :: Button → Ev ()
btnOnClickEv b =

let ch = btnClick b
in mkEv (box (wait ch))

We continue this pattern of updating the widget library, so all functions that creates widgets
now take behaviours and events, and discretizes them into signals used by Widget Rattus.

updatedCounter :: C VStack
updatedCounter = do

btn ← mkButton $ mkConstText "Increment"
let clicks = btnOnClickEv btn
let counts = scan (box (λn _ → n + 1 :: Int)) 0 clicks

lbl ← mkLabel $ stepper 0 counts
mkConstVStack (lbl :* btn)

main :: IO()
main = runApplication updatedCounter

Figure 7: Counter GUI implementation using Events and Behaviours

The previously mentioned counter example seen in Figure 2 which used signals, can now be
updated to use events and behaviours as seen in Figure 7. The new implementation is fairly
similar to the previous implementation with some minor changes. Firstly, the clicks variable
is now of type Ev () instead of ⃝(Sig ()) meaning that it is also now delayed by default. This
means that the scanAwait function is replaced with a similar scan function that requires an
event instead of a delayed signal. Secondly, the label created uses a stepped version of the
counts variable to convert it from an Ev Int type to Beh Int type. Lastly, we use a new
utility method mkConstText which simply creates a behaviour with constant text.

Due to the discrete nature of the counter example, updating the example to use behaviours
and events does not affect the implementation that much nor make it more efficient. In the
following section we will give an example of a continuous use case.

4 Case Study: A Simple Timer GUI

In this section we will look at a more interesting example that uses continuous data. It
includes a simple timer, where a user can reset the timer using a button. We’ll then expand
the example with more complex features, such as, stopping the timer when it reaches a
user-defined maximum value. The timer GUIs are shown in Figure 8

The core idea of this example is a resettable timer, which counts up until a user presses the
reset button. This will produce a reset event, which captures the time of the press. The time
is stored and later used to compute the elapsed time by comparing it to the current time.

23

(a) Simple Timer GUI (b) Improved Timer GUI

Figure 8: Example Timer GUIs

window :: C VStack
window = do

resetBtn ← mkButton $ mkConstText "Reset timer"
let resetTrigger = btnOnClickEv resetBtn

startTime ← time
let resetTime = Event.stepper startTime

(Event.trigger (box (λ_ t → t)) resetTrigger timeBehaviour)

let timer = zipWith (box diffTime) timeBehaviour resetTime

text ← mkLabel (Behaviour.map
(box (λt → "Current: " <> toText (floor $ toRational t))) timer)

mkConstVStack $ text :* resetBtn

main :: IO()
main = runApplication’ window

Figure 9: The implementation of our simple timer example.

To sample the time at which the reset event occurs, we use the trigger function2. An example
of this can be seen below, where trigger samples the value of the timeBehaviour, when the
eventTrigger event ticks.

Event.trigger (box (λ_ t → t)) resetTrigger timeBehaviour

We want a behaviour which tracks the most recent reset time. This can be done using the
stepper function, given an initial start time and our sampled times using the above code.

With this behaviour in place, we can compute the elapsed time since the last reset by applying
the diffTime function to the current time and the last reset time. We can achieve this by using
the zipWith function over the two behaviours, resulting in a new behaviour that represents
the timers value in seconds. The implementation of the example is given in Figure 9.

2This and following examples, use a revised version of the trigger function: trigger :: (Stable b)⇒ □(a→
b→ c)→ Ev a→ Beh b→ Ev c. This will be explained in detail in section 5.

24

4.1 Improving the Timer Example

Now we want to introduce a timer example with more features. This timer should stop
counting when it reaches a user-defined maximum value. The timer should start again, when
the maximum value is changed or the timer is reset by the user.

The timer example shown in Figure 10 assumes that we have an implementation of a stopWith
function, for stopping a behaviour and choosing the value after stopping it. How we created
this function is described in section 5.1.

Just like in the simple timer example, we have a reset button with a corresponding event
reference: resetTrigger. In addition to this, we create a slider which changes a maximum
value, providing a maxBeh behaviour and maxChangeEv event. This behaviour and event
are useful for retrieving the current value and also listening for changes in the value.

To combine resetTrigger and maxChangeEv into one event, that determines when a reset
should occur, we use the interleave function. Whenever the combined event ticks, we reset
our timer and change the maximum value to the selected value.

To do this we use the trigger function like earlier, but with a new timeWithMax behaviour.
We need to be able to access both the current time and maximum value, which we can get
from the timeBehaviour and maxBeh behaviours respectively. We use zipWith to zip the
values of the two behaviours, into one behaviour with a tuple of (time, max).

Using the trigger function on the interleaved events and the timeWithMax behaviour, we
sample a tuple of type (time, max) every time the interleaved events ticks. Using these values,
we can now produce a new behaviour, that should count up to the max value. We create
a function timeFrom, which constructs a behaviour that computes the time passed since a
start time. When the elapsed time has reached a maximum value it stops using the stopWith
function. It uses a function intToNominal to convert an Int to a NominalDiffT ime. The
function can be seen below:

timeFrom :: Int → Time → Beh NominalDiffTime
timeFrom max startTime =

stopWith
(box (λt → if t >= intToNominal max then Just’ (intToNominal max) else Nothing’))
(map (box (‘diffTime‘ startTime)) timeBehaviour)

We can also use the timeFrom function to create our initial behaviour that counts up when
opening the application. To switch between this initial behaviour and subsequent behaviours,
triggered either by the reset button or changing the max slider, we use the switchR function.
The full example can be seen in Figure 10.

25

nominalToInt :: NominalDiffTime → Int
nominalToInt x = floor $ toRational x

intToNominal :: Int → NominalDiffTime
intToNominal x = fromInteger (toInteger x)

timeFrom :: Int → Time → Beh NominalDiffTime
timeFrom max startTime =

stopWith
(box (λt → if t >= intToNominal max then Just’ (intToNominal max) else Nothing’))
(map (box (‘diffTime‘ startTime)) timeBehaviour)

window :: C VStack
window = do

let initialMax = 5

resetBtn ← mkButton $ mkConstText "Reset timer"
let resetTrigger = btnOnClickEv resetBtn

maxSlider ← mkSlider initialMax (constK 1) (constK 100)
let maxBeh = sldCurr maxSlider
let maxChangeEv =
map (box (Prelude.const ())) $ sliderOnChange maxSlider

startTime ← time
let timeWithMax = zipWith (box (:*)) timeBehaviour maxBeh
let timer =
trigger (box (λ_ (t :* max) _ → timeFrom max t))

(interleave (box (λ_ _ → ())) resetTrigger maxChangeEv)
timeWithMax

let timer’ = switchR (timeFrom initialMax startTime) timer

text ← mkLabel (map (box (λt → "Current: " <> toText (nominalToInt t))) timer’)
maxText ← mkLabel (map (box (λmax → "Max: " <> toText max)) maxBeh)
mkConstVStack $ maxSlider :* maxText :* text :* resetBtn

main :: IO()
main = runApplication window

Figure 10: The implementation of our advanced timer example.

Utilizing both push- and pull-functionality for the timer example, over only push-functionality
has the benefit of not having to propagate a value every second to update the timer, instead
we can pull the time when needed. We can still utilize the push-functionality by pushing
events from buttons and sliders to trigger an update with minimal latency.

26

5 Refining Push-Pull in Widget Rattus

The current implementation provides all the core features of push-pull based functional re-
active programming. In addition to the core features, there are four possible ideas which we
refine our current implementation with. In the following section we will show how we have
implemented the following ideas and reflect on their applicability:

• Allow stopping of behaviours

• Filtering of events

• Implementing integral and derivative functions on behaviours

• Demonstrating a possible way of avoid the use of the C monad

• Optimizing the combinator libraries using Haskell compiler

5.1 Stopping a Behaviour

There are many cases where it would be useful to stop a behaviour. In section 4.1 we want
a timer to stop updating, when it reaches a maximum value.

In Widget Rattus they stop a signal using the stop and jump functions. Stopping works by
checking the value x on a given signal x ::: xs at every tick. If the predicate applied with x is
true, then they return const x, which stops future ticks of the signal. Otherwise they return
the signal without modification. The implementation from Widget Rattus can be seen below:

jump :: □ (a → Maybe’ (Sig a)) → Sig a → Sig a
jump f (x ::: xs) = case unbox f x of

Just’ xs’ → xs’
Nothing’ → x ::: delay (jump f (adv xs))

stop :: □ (a → Bool) → Sig a → Sig a
stop p = jump (box (λ x → if unbox p x then Just’ (const x) else Nothing’))

This implementation would not work in our push-pull based approach. The reason for this
is, that the jump function only checks the predicate every time a new value is pushed on
the signal. This would work for events, but not for behaviours where the pull-functionality
is also used. Imagine the timeBehaviour from earlier, it is simply a identity function that
will never tick. This means that there would not be pushed a new value on it. The predicate
would only check on the initial value of the behaviour, and then never check again.

A possible solution could be to replace the Fun type when a predicate is true, and thereby
mimic the semantics of jump with only the pull-functionality. Our first attempt of adding
the stop functionality, was to add a Switch constructor to the Fun type. This constructor
would contain a function outputting either a value of type a or a new behaviour to switch
to, depending on the time.

data Fun a =
K a |
Fun (□ (Time → a)) |
Switch (□ (Time → Either’ a (Sig (Fun a))))

27

As seen in the implementation above, we use the type Sig(Fun a) instead of Beh a to avoid
circular dependency. We also used the Either′ type to reflect that the Switch statement
could either be a value a or a new signal of type Sig(Fun a). The Either′ type is a strict
version of the Either type provided by Haskell.

Below is a simplified example of the Switch constructor. In this example the behaviour
counts to five and then switches over to a constant behaviour when it reaches five.

countToFive :: Time → Either’ a (Sig (Fun a))
countToFive t = if t > 5 then Right’ (K 5) else Left’ t

countToFiveBeh = Beh (Switch (□ countToFive ::: never)

Due to the new Switch case, we ran into some problems in the apply function. The purpose
of apply is to generalize time functions, by returning a function of the type Time → a.
Implementing apply for both K a and Fun □(Time → a) is pretty straightforward. However,
introducing the Switch (Time → Either′ a (Sig (Fun a))) constructor complicates this, since
the apply function might end up in unbounded recursion unless we restrict it. An example
of this problem would be if the Fun type returned a Switch case, which would then be
recursively evaluated, resulting in a new Switch case. This could continue for an unknown
amount of time, potentially resulting in a stack overflow. A possible fix would be to run
the recursive cases of apply in a delayed context to stop the evaluation, however this would
eliminate the purpose of apply. Our attempt of this idea can be seen below.

-- Would not compile, due to recursive use of apply.
apply :: Fun a → Time → a
apply (K a) = Prelude.const a
apply (Fun f) = unbox f
apply (Switch f) = λt →

case unbox f t of
Left’ a → a
Right’ (a ::: as) → apply a t

Due to the increasing levels of complexity and the problems mentioned previously, we decided
to focus on a more simple approach. Instead of having a Switch constructor in the Fun type,
we instead modify the Fun constructor to have type □(Time → (a :*Bool)) as seen below.
With this boolean embedded in the result, we can check if the behaviour is supposed to be
stopped, and thus return a constant value instead of the function.

data Fun a where
K :: !a → Fun a
Fun :: !(□ (Time → (a :* Bool))) → Fun a

With this new Fun type in place, we can implement the stop function. The stop function
essentially changes the existing function to include the predicate logic, which handles the stop
boolean. Since we sample at an interval, we can not ensure to stop at the exact correct value
we intend to. The stopWith helper function is similar to the stop function, and is created
to counter this problem. It uses a Maybe′ instead of a Bool in the predicate, which allows
us to modify the final value. This is useful for rounding down the emitted value or similar
purposes. The stop and stopWith functions can be seen below. The implementation details
have been omitted from stopWith, since it is almost identical to stop.

28

stop :: □ (a → Bool) → Beh a → Beh a
stop p (Beh b) = Beh (run b)

where
run (K x ::: xs) =

K x ::: if unbox p x then never else delay (run (adv xs))
run (Fun f ::: xs) =

Fun (box (λt →
let (a :* b) = unbox f t
in (a :* (unbox p a || b)))) ::: delay (run (adv xs))

stopWith :: □ (a → Maybe’ a) → Beh a → Beh a
...

Going back to the previous countToF iveBeh example, it would look like the following with
the stopWith function and the timeBehaviour behaviour:

countToFive :: a → Maybe’ a
countToFive t = if t > 5 then Just’ 5 else Nothing’

countToFiveBeh = stopWith (box countToFive) timeBehaviour

Compared to the previous version of countToF iveBeh, this version adds stopping functional-
ity to an already defined behaviour. While the Switch example had the stopping functionality
as part of the behaviour.

Now that the predicate logic is included in the Fun constructor, we need a way to actually
check the predicate at runtime. To solve this we added a check in the discretize function
which can be seen below. We simply check if the behaviour is supposed to stop according to
the boolean logic. If this is the case, we handle it by stopping pull-sampling and wait for the
behaviour to tick. If the behaviour is not supposed to stop, we handle it like we normally
would in discretize.

discretize :: Beh a → C (Sig a)
discretize (Beh sig) = time >>= (pure . discr sig)

where
discr :: Sig (Fun a) → Time → Sig a
discr (K x ::: xs) _ = x ::: withTime (delay (discr (adv xs)))
discr (Fun f ::: xs) t =

let (cur :* b) = unbox f t
rest =
if b

then withTime $ delay (discr (adv xs))
else
withTime $

delay
(case select xs sampleInterval of

Fst x _ → discr x
Snd beh’ _ → discr (Fun f ::: beh’)
Both x _ → discr x

)
in (cur ::: rest)

29

This refinement improves behaviours by adding stop functionality, which is a necessity for
implementing the previously mentioned timer example. This comes with the cost of modifying
the resulting Fun type to include a boolean value.

Since we can only stop a behaviour through our pull-sampling function discretize, this limits
the usability of behaviours in external contexts. If a programmer wants to implement their
own pull-sampling method, they must also support the stop functionality.

Since this stop functionality is a necessity of our examples, we have adopted this functionality
in our final implementation, however in a different variation as mentioned in section 5.3.

5.2 Filtering of Events

Consider the scenario, where you listen for keyboard inputs, but you are only interested in
keyboard inputs that produce numbers. In this scenario, a way to filter events based on a
predicate would be helpful. However in the current implementation of events, there is no
straightforward way of filtering events. As previously observed by Bahr et. al. [20], the Sig
type does not support a filter function such as filter :: □(a → Bool) → Sig a → Sig a, since
a signal has to produce a value of type a at every tick. This problem extends to the Ev type,
since it is based on the Sig type. A proposed solution is to use the Maybe′ constructor to
return Ev (Maybe′ a) when filtering as such:

filter :: □ (a → Bool) → Ev a → Ev (Maybe’ a)
filter p = map (box (λx → if unbox p x then Just’ x else Nothing’))

While this is useable it is also not optimal, since programs that work with events of type
Ev (Maybe′ a) would now need to check for Nothing′ at every tick. To solve this we
extend the definition of the Ev type to contain a dense (EvDense) and sparse (EvSparse)
case as seen below. Given an event is using the EvDense case, then we assume that all
values are valid and we can re-use the existing Ev type and the current combinators without
modifications. If however an event is using the EvSparse case, then we can not assume that
all values are valid, and have to check in the combinators if it is the Nothing′ case, since the
type of EvSparse will be ⃝(Sig (Maybe′ a)).

data Ev a
= EvDense (⃝ (Sig a))
| EvSparse (⃝ (Sig (Maybe’ a)))

Given this change to the definition of Ev we set out to update the combinators for events
to support both cases. Since both EvDense and EvSparse are cases of Ev, then it is
only necessary to update the function bodies and not the function signatures. If a function
previously returned an Ev, then it should now return either an EvDense or EvSparse,
depending on the function semantics. In most cases, functions return the same type as their
input. However, filtering and triggering do not always produce a valid value, and therefore
return sparse outputs. A list of updated outputs types can be seen in Table 1.

30

Function Outputs
mkEv EvDense

filterMap EvSparse
filter EvSparse
trigger EvSparse
map Same as input
scan Same as input

interleave Depends on input

Table 1: A list of functions that return events and the type of constructor they output.

When updating the combinator we need to handle both the dense and sparse cases. An
example of this is the map function:

map :: □ (a → b) → Ev a → Ev b
map f (EvDense sig) = EvDense (Signal.mapAwait f sig)
map f (EvSparse sig) =

EvSparse (Signal.mapAwait f’ sig)
where f’ = box (fmap (unbox f))

The dense case in the map function stays the same, however, an extra sparse case is added.
In this case, we have to map on the Maybe′ type as well.

In some cases we have to make a choice on how to handle Nothing′ cases. Some functions,
such as, stepper requires a valid value to be given at every tick, since it returns a behaviour.
A solution to this is to repeat the previous last valid value, if a non-valid value is produced.
A valid value in this case would be all values from EvDense case and all Just′ values from
the EvSparse case. This is a bit inefficient, since it would be preferred to only produce a
new value when it is a new valid value, however as previously mentioned this is an unsolved
problem. The following is a version of the stepper function that uses the proposed solution.

stepper :: (Stable a) ⇒ a → Ev a → Beh a
stepper initial ev =

Beh (K initial ::: delay (adv (aux initial ev)))
where
aux :: (Stable a) ⇒ a → Ev a → ⃝(Sig (Fun a))
aux _ (EvDense ev) = stepperDense ev
aux initial (EvSparse ev) = stepperSparse initial ev

stepperDense :: (Stable a) ⇒ ⃝(Sig a) → ⃝(Sig (Fun a))
stepperDense ev =

delay (let (x ::: xs) = adv ev in K x ::: delay (adv (stepperDense xs)))

stepperSparse :: (Stable a) ⇒ a → ⃝(Sig (Maybe’ a)) → ⃝(Sig (Fun a))
stepperSparse initial ev =

delay
(let (x ::: xs) = adv ev

in case x of
Just’ x’ →

K x’ ::: delay (adv (stepperSparse x’ xs))
Nothing’ → K initial ::: delay (adv (stepperSparse initial xs))

)

31

The introduction of two event data constructors increase the complexity of interleave, as
seen below, since the function requires a case for all event pair combinations. The return
type of interleave f x y depends on the input types x and y. If both inputs are EvDense,
the result is EvDense. In all other cases the result is EvSparse.

If both events are dense, then we can do the same as the previous implementation of
interleave. If both events are sparse, additional pattern matching is needed after the
select xs ys call. The Fst and Snd branches of the select statement behave as before.
However, if both events tick simultaneously (Both), we must consider their values:

1. If both values are Just′, they are combined using the provided operator into a new
Just′ value.

2. If only one is Just′, that value becomes the result.

3. If both are Nothing′, the result is Nothing′.

Lastly, there are the mixed case, where one is dense and the other is sparse. These cases
are handled by converting the dense case into a sparse case of Just′ values. This adds some
overhead since the dense case has to be converted. However, we determine that the advantage
of readability outweighs the disadvantage in the context of this project. For a more efficient
implementation the last two cases could be implemented similar to the two sparse case with
only checking the sparse event for Nothing′. The code can be seen below:

interleave :: □ (a → a → a) → Ev a → Ev a → Ev a
interleave f (EvDense xs) (EvDense ys) = EvDense (Signal.interleave f xs ys)
interleave f (EvSparse xs) (EvSparse ys) = EvSparse (aux f xs ys)

where
aux f xs ys =

delay
(case select xs ys of

Fst (x ::: xs’) ys’ → (x ::: aux f xs’ ys’)
Snd xs’ (y ::: ys’) → (y ::: aux f xs’ ys’)
Both (Just’ x ::: xs’) (Just’ y ::: ys’) →
Just’ (unbox f x y) ::: aux f xs’ ys’

Both (Just’ x ::: xs’) (Nothing’ ::: ys’) → Just’ x ::: aux f xs’ ys’
Both (Nothing’ ::: xs’) (Just’ y ::: ys’) → Just’ y ::: aux f xs’ ys’
Both (_ ::: xs’) (_ ::: ys’) → Nothing’ ::: aux f xs’ ys’

)
interleave f (EvSparse xs) (EvDense ys) =

interleave f (EvSparse xs) (EvSparse (Signal.mapAwait (box Just’) ys))
interleave f (EvDense xs) (EvSparse ys) =

Event.interleave f (EvSparse(Signal.mapAwait (box Just’) xs)) (EvSparse ys)

A function that can be improved by changing the type signature is the trigger function.
Recall that the trigger function samples a behaviour based on the updates of an event.
Previously it returned an Ev (Maybe′ a), however, now it is possible to simply return Ev a,
since the returned event is sparse. Once again the dense case works similarly as the previous
implementation of trigger. In the sparse case some extra pattern matching is needed, such
that if either the Fst or Both case is reached in the select statement, then we have to check
if the current value of the event is Nothing′. If the value is Nothing′ then we produce a
Nothing′ value, otherwise we produce a Just′ value with the given combination operator

32

applied on the current event and behaviour values. See below for the implementation.

trigger :: (Stable b) ⇒ □ (a → b → c) → Ev a → Beh b → Ev c
trigger f event behaviour = EvSparse (trig f event behaviour)

where
trig :: (Stable b) ⇒ □ (a → b → c) → Ev a → Beh b → ⃝(Sig (Maybe’ c))
trig f’ (EvDense as) (Beh (b ::: bs)) =

...
trig f’ (EvSparse as) (Beh (b ::: bs)) =

withTime $
delay

(let choice = select as bs in
(λt → case choice of

Fst (a’ ::: as’) bs’ →
let rest = trig f’ (EvSparse as’) (Beh (b ::: bs’))
in fmap (λa’’ → unbox f’ a’’ (apply b t)) a’ ::: rest

Snd as’ bs’ → Nothing’ ::: trig f’ (EvSparse as’) (Beh bs’)
Both (a’ ::: as’) (b’ ::: bs’) →
let rest = trig f’ (EvSparse as’) (Beh (b’ ::: bs’))
in fmap (λa’’ → unbox f’ a’’ (apply b’ t)) a’ ::: rest

)
)

After updating all the combinators to use the dense and sparse versions of events, we can
now implement a function to actually filter the events, which can be seen below. The filter
function should always return a EvSparse, since we filter out values. If the values are
already Nothing′ then Nothing′ is returned, while if the value x is valid and it fulfils the
given predicate, then we return Just′ x

filter :: □ (a → Bool) → Ev a → Ev a
filter f (EvDense ev) =

EvSparse (aux f ev)
where
aux :: □ (a → Bool) → ⃝(Sig a) → ⃝(Sig (Maybe’ a))
aux f ev =

(delay
(let (x ::: xs) = adv ev

rest = aux f xs
in (if unbox f x then Just’ x else Nothing’) ::: rest

)
)

filter f (EvSparse ev) =
EvSparse (aux f ev)
where
aux :: □ (a → Bool) → ⃝(Sig (Maybe’ a)) → ⃝(Sig (Maybe’ a))
aux f ev = (

delay
(let (x ::: xs) = adv ev

rest = aux f xs
in case x of

Just’ x’ → (if unbox f x’ then Just’ x’ else Nothing’) ::: rest
_ → Nothing’ ::: rest

)
)

33

With filtering implemented it is now possible to implement the example from the beginning
of the section. Given an event stream of keyboard inputs called keyboardPresses, then we
use the filter function to filter the stream with the isDigit function as the predicate. The
isDigit function is a built-in function in Haskell that returns True if the input is a number.
Filtering the event is done as follows:

numberKeys = filter (box isDigit) keyboardPresses

The refinement of supporting filtering of events is generally useful as it reduces complexity
for the programmers using the library, since they do not have to handle invalid values. The
trade-off for this is that it can lead to code explosion in our combinators, due to the Ev type
having both an EvDense and EvSparse constructors. One such case is in the interleave
function, which went from one case to four cases with the introduction of these constructors.

We have chosen to adopt the filtering functionality in our final implementation, since it en-
ables programmers to focus on the logic that is relevant to them and making our combinators
handle invalid inputs.

5.3 Integral and Derivative

Previously Bahr and Møgelberg [19] have proposed integral and derivative combinators using
signals. The implementation of integral works by using simple approximation by sampling
the value of the underlying signal each time the sample channel produces a value. The area
of the rectangle formed by the current value and the time passed since last sample is then
added. This can be optimized when the value of the underlying signal is 0. If this is the case,
the value of the integral will not change, and we simply wait for the underlying signal to tick
again.

Similarly to the integral function, a derivative functions was also implemented to return the
derivative of a given signal. The implementation of derivative works by sampling the value of
the underlying signal and finding the difference over time from the previously sampled valued.
If the computed derivative is 0, then no further sampling is performed until the underlying
signal ticks. As soon as it does, we emulate that the sample has ticked, and provide an update
of the derivative, taking time into account.

Based on the ideas by Bahr and Møgelberg a similar version can be implemented that supports
both push- and pull-functionality using behaviours. Most parts of the implementation can
stay the same due to behaviours being built on top of signals.

Initial support for pull-based functionality is illustrated in Figure 11, which shows the core
idea behind our first implementation of the integral function. When a pull or push event
occurs, we compute the difference between the current time and the last push.

To do this, we return a behaviour constructed with the Fun constructor. This allows the
current value to be computed dynamically when a pull occurs, using the time difference and
the latest available signal value.

34

Figure 11: Illustration of our initial integral function on the timeBehaviour. It calculates
the integral based on the time at a pull, with the time from the last push. The illustration
contains two pulls, with the values x0 and x1 and the corresponding delta times dt0 and dt1.
The integral at the second pull in this example would be dt1 · x1, since it does not know the
value or time of the previous pull.

Similar changes are made to the derivative function, which now calculates the rate of change
since last push. Both functions handle the constant and time-varying cases slightly differently,
which will be explained in depth later. The integral and derivative functions can be seen in
Figure 12, and the helper functions they use can be found in Appendix B.

When using behaviours with our combinator library, in most cases the behaviour gets passed
into the discretize function, which handles sampling. Therefore to avoid re-sampling we
did not implement sampling as part of the integral and derivative functions as Bahr and
Møgelberg did [19].

With the current versions of integral and derivative, we always calculate the value based on
the last push, since there currently is no reference to when the previous pull was nor the value
returned from the previous pull. This is generally a good thing, since storing all previous pull
values in the hope that it will be used in the future is not ideal. However, in some cases, such
as in the integral and derivate functions, using information from the last pull would result in
calculating a more precise result.

To achieve this, our idea is to update the Fun constructor with an internal state, that will
enable us to store the last pull value and timestamp. Since this state should persist into the
future, it must be stable. By storing the last pull value and timestamp, we can calculate only
the difference since the last pull, avoiding unnecessary re-computation.

Currently the function returned by the Fun constructor outputs a pair (a, Bool). One way
of including the state in the Fun constructor would be to simply add a state value to the
result of the returned function, i.e. returning (a, s, Bool).

Since stopping is handled by converting the current value into a K constructor, then the state
will not be preserved after stopping the behaviour. This means that we could simply represent
the state and boolean together using the Maybe′ type. Thereby returning (a, Maybe′ s).

35

integral :: Float → Beh Float → C (Beh Float)
integral cur (Beh s) = time >>= (λt → pure (Beh (int cur s t)))

where
int :: Float → Sig (Fun Float) → Time → Sig (Fun Float)
int cur (x ::: xs) t =

let curF =
case x of

K 0 → K cur
x → Fun $ box (λt’ → calcIntegral cur x t t’ :* False)

rest =
withTime

(delay (λt’ → int (calcIntegral cur x t t’) (adv xs) t’))
in curF ::: rest

derivative :: Beh Float → C (Beh Float)
derivative (Beh (x ::: xs)) =

time >>= (λt → pure (Beh (der (apply x t) (x ::: xs) t)))
where
der :: Float → Sig (Fun Float) → Time → Sig (Fun Float)
der last (x ::: xs) t =

let curF =
case x of

K a → calcDerivative (a - last) t (a == last)
x → calcDerivative (apply x t - last) t False

rest =
withTime

(delay (λt’ → der (apply x t’) (adv xs) t’))
in (curF ::: rest)

Figure 12: Our initial implementation of integral and derivative.

36

This design preserves support for stopping behaviours, while allowing us to keep an internal
state.

There result is then a Fun constructor that accepts an initial state and a boxed function
that uses this state along with the current time to compute the output.

data Fun a where
K :: !a → Fun a
Fun :: (Stable s) ⇒ !s → !(□ (s → Time → (a :* Maybe’ s))) → Fun a

This change to the Fun type requires all functions making use of the Fun type to be updated
to correctly pass the state. This is particularly important in the discretize function which
must pass forward the updated state every time discretize samples the behaviour.

discretize :: Beh a → C (Sig a)
discretize (Beh sig) = time >>= (pure . discr sig)

where
discr :: Sig (Fun a) → Time → Sig a
discr (K x ::: xs) _ = x ::: (withTime $ delay (discr (adv xs)))
discr (Fun s f ::: xs) t =

let (cur :* s’) = unbox f s t
rest =
case s’ of

Just’ s’’ →
withTime $

delay
(case select xs sampleInterval of

Fst x _ → discr x
Snd beh’ _ → discr (Fun s’’ f ::: beh’)
Both x _ → discr x

)
Nothing’ → withTime $ delay (discr (adv xs))

in (cur ::: rest)

In the updated version of discretize seen above, the Nothing′ case represents the stopping
of the behaviour and was previously the True case in the previous implementation.

Having updated the Fun type and discretize function to support internal states, it is now
possible to optimize the integral and derivative functions making use of state. To illustrate
how the integral function would approximate the integral, see Figure 13.

The updated integral function, seen in Figure 14, now utilizes the state in the pull case, to
only estimate the new area since last pull. The implementation distinguishes between the
two Fun type cases:

37

Figure 13: Updated integral function, that makes use of the new state in the pull case. The
illustrations contains two pulls, with the values x0 and x1 and the corresponding delta times
dt0 and dt1. The integral at the second pull in this example would be dt0 · x0 + dt1 · x1.

• Constant K case: On every pull the integral is calculated based on the time passed
since last push and the constant value. If the constant value is 0, then we return a
constant K case with the value provided by the function and wait for the behaviour to
tick until we calculate the integral of the newly-pushed value.

• Time-varying Fun case: On each pull, the Fun constructor maintains a state of the
form (v, t, s), representing the last integral value v, the last pull timestamp t, and the
state of the underlying Fun type s. Using this, we can calculate the integral of the
behaviour since the last pull, denoted as v′. The state is then updated to (v′, t′, s′),
which corresponds to the new integral value, the new timestamp and the new underlying
state. This approach enables us to calculate the integral based on the most recent pull
rather than the the most recent push, improving accuracy for pull-based evaluation.

In the updated derivative function, seen in Figure 14, we now utilize the state to estimate
the rate of change since the last pull, instead of the last push. The implementation, which
can be seen below, distinguishes between two cases:

• Constant K case: On the first pull we return the difference from the previous value
to the new constant value. Since the value is now constant, all subsequent pulls would
have a rate of change of 0. To optimize this, we stop pull sampling when the rate of
change is 0, until a new value is pushed. This is achieved by setting the state to be
Nothing′.

• Time-varying Fun case: Similarly to the Fun case in the integral function, the
derivative function utilizes state to calculate the rate of change between each pull.

After implementing the integral and derivative functions with behaviours, we create two
tests for assessing the correctness of the functions. Both tests can be found in Appendix A.
From these tests we can conclude that there is some variability in the results. Our imple-
mentations use simple approximation and also only sample every 20 millisecond. Lowering
the sample interval would improve the result, however you will get diminishing returns the
faster you sample, while reducing performance due to increasing renders of the GUI.

38

integral :: Float → Beh Float → C (Beh Float)
integral cur (Beh s) = time >>= (λt → pure (Beh (int cur s t)))

where
int :: Float → Sig (Fun Float) → Time → Sig (Fun Float)
int cur (K a ::: xs) t =

let rest = withTime $ delay
(λt’ → int (calcIntegral cur a t t’) (adv xs) t’)

curF =
case a of

0 → K cur
a → Fun () $ box (λs t’ → calcIntegral cur a t t’ :* Just’ s)

in curF ::: rest
int cur (Fun s f ::: xs) t =

let rest = withTime $ delay (λt’ →
let (v :* _) = unbox f s t’
in int (calcIntegral cur v t t’) (adv xs) t’

)
curF =
Fun (cur :* t :* s)

(box(λ(last :* t :* s) t’ →
let (v :* s’) = unbox f s t’
in case s’ of

Just’ s’’ →
let v’ = calcIntegral last v t t’
in v’ :* Just’ (v’ :* t’ :* s’’)

_ → calcIntegral v v t t’ :* Nothing’
))

in curF ::: rest

derivative :: Beh Float → C (Beh Float)
derivative (Beh (x ::: xs)) = time >>= (λt → pure (Beh (der (apply x t) (x ::: xs) t)))

where
der :: Float → Sig (Fun Float) → Time → Sig (Fun Float)
der last (Fun s f ::: xs) t =

let rest = withTime $ delay
(λt’ → let (v :* _) = unbox f s t’ in der v (adv xs) t’)

curF =
Fun (last :* t :* s) $

box(λ(last :* t :* s) t’ →
let (v :* s’) = unbox f s t
in calcDerivative v last t t’ :* fmap (λs’’ → v :* t’ :* s’’) s’

)
in curF ::: rest

der last (K x ::: xs) t =
let rest = withTime (delay (der x (adv xs)))

curF = Fun (last :* t) $ box
(λ(last :* t) t’ →

if x /= last
then calcDerivative x last t t’ :* Just’ (x :* t’)
else 0 :* Nothing’

)
in curF ::: rest

Figure 14: The final version of our integral and derivative function, utilizing push- and pull-
functionality to calculate a more precise result.

39

The implementations of the integral and derivative functions demonstrates how the use of
an internal state can optimize such functions by utilizing the push- and pull-functionality of
behaviours. However, similarly to the refinement of the stopping functionality in section 5.1,
this limits the usability of behaviours in external contexts, since state needs to be handled
as part of the pull-sampling. Since our implementation of state can replace the previously
embedded boolean, while still maintaining the stopping functionality, we have chosen to adopt
this in the final implementation. While state has few use cases in our functions, we include
it to highlight the possible optimizations of utilizing a push-pull based model.

5.4 Avoiding the C Monad

One of the challenges we have run into is the use of the C monad, which gives us access to
the current time. While it is definitely useful in some cases, it can also make things more
complicated, especially when we try to combine different behaviours or reason about them
more abstractly. So, we started exploring whether we could avoid using C altogether by
restructuring our definitions of behaviours and events.

The idea was to make time an explicit argument, i.e. Time → Sig (Fun a), This would enable
writing simpler types like elapsedT ime :: Beh Time instead of elapsedT ime :: C (Beh Time).
This would make it easier to define combinators without having to work in a monadic context.

To try this out, we introduced a simplified behaviour type, and an updated behaviour type,
where the initial time is provided:

type SBeh a = Sig (Fun a)
newtype Beh’ a = Beh’ (Time → SBeh a)

Only the initial time needs to be provided, since we previously defined the withT ime function,
which can be used to provide the current time in a delayed context.

This way, a behaviour is just a function from time to an SBeh, and we hoped this would let
us avoid C entirely. Using the newly defined behaviour type we can update the elapsedT ime
function to return a behaviour which takes a start time as an argument. This is in contrast
to the old implementation which uses the C monad to get the start time.

-- Old implementation
elapsedTime :: C (Beh NominalDiffTime)
elapsedTime = do

startTime ← time
return (Beh (
Fun () (box (λs currentTime → diffTime currentTime startTime :* Just’ s))
::: never))

-- New implementation
elapsedTime :: Beh NominalDiffTime
elapsedTime = Beh (

λstartTime →
Fun () (box (λs currentTime → diffTime currentTime startTime :* Just’ s))
::: never)

40

This proves that we can create behaviours that require a time without using the C monad.
Updating the functions to avoid the the use of C monad can be split up into two groups:

• Functions returning a behaviour: Functions such as map, elapsedT ime or similar
return a new behaviour based on the arguments provided. Since these functions return
a new behaviour, then the current time is given from the time parameter when defining
the behaviour. An example of this can be seen below with the map function which
returns a new behaviour with time passed on to the original behaviour.

map :: □ (a → b) → Beh’ a → Beh’ b
map f (Beh’ as) =
Beh’ (λt → Signal.map (box (λa → mapF f a)) (as t)

• Functions evaluating a behaviour: Functions such as discretize, trigger or similar
evaluate a behaviour to produce another type. To do so, they require the current time to
evaluate the behaviour into a SBeh type. As a result, these functions generally require
the C monad. This is fine for the discretize function since it already uses the C monad.
However, the trigger as previously defined, did not require the use of C before. This
was possible under the old definition of Beh, since we could unpack the signal without
requiring a time parameter, unlike with Beh’ where we require a time parameter. This
means we have to get the current time in the trigger function. There are generally two
ways of getting the current time. The first way is to use the C monad to get the time.
Alternatively, one could get the time in a delayed context using the withTime function,
however this would require to make Beh’ stable, which is not possible with the current
definition. Therefore the only possible way of getting the time is with the C monad.
The updated trigger function is defined as follows:

trigger :: (Stable b) ⇒ □ (a → b → c) → Ev a → Beh’ b → C (Ev c)
trigger f e (Beh’ b) = do
t ← time
let b’ = b t
return $ EvSparse (trig f e b’)
where

trig :: (Stable b) ⇒ □ (a → b → c) → Ev a → SBeh b → ⃝(Sig (Maybe’ c))
trig f’ ev (b ::: bs) =
...

A problem we encounter when avoiding the C monad is that we still require SBeh a and
Beh′ a to be continuous. The old definition of Beh a was continuous due to the underlying
signal in the type definition. Specifically, since Sig (Fun a) is continuous, then Beh a would
also be continuous.

Proving Beh′ a is continuous is a bit more challenging, due to the use of the function Time →
SBeh a in the type definition. Functions generally are not continuous, since they are harder
to argue for when an update occurs.

A possible workaround would be to unsafely retrieve the current time t and apply it to the
behaviour Beh′ a. This yields a value of type SBeh a, which is continuous and can therefore
be updated. However, using this approach raises the concern regarding the correctness of
this simple behaviour SBeh. Since the behaviour is being evaluated using the current time

41

in an uncontrolled manner, we can not guarantee that the resulting SBeh truly corresponds
to the intended time context.

In other words, even though the resulting value is continuous and usable, it might not be
the correct value. So even though this is a possible workaround, we believe that more work
should be done to validate whether avoiding the C monad gives a greater benefit than the
drawbacks presented. Due to this, we have not chosen to adopt the Beh′ type in our final
implementation.

5.5 Optimizing With the Haskell Compiler

One of the advantages of using Haskell for this implementation is that it supports Rewrite
rules [24]. This functionality gives fine-tuned control over how expressions are optimized by
the compiler, which can improve performance by avoiding unnecessary intermediate struc-
tures.

For example, consider an optimization for the map function: mapping a behaviour first with
a function f and then with a function g is equivalent to mapping it once with the composition
f ◦g. With rewrite rules, we can detect such patterns and replace them with a single mapping
operation.

Defining rewrite rules is done using the {#- RULES #-} pragma and the map example
explained above is defined as follows:

{-# NOINLINE [1] map #-}

{-# RULES
"map/map" forall f g xs.

map f (map g xs) = map (box (unbox f . unbox g)) xs
#-}

The Haskell compiler optimizes calls to small functions by replacing the call with the func-
tion’s body. This concept in generally referred to as ”inlining”.

In the example above, we also use the {#- NOINLINE #-} pragma to prevent the map
function from being inlined too early for the rules defined to be fired. If we omitted this
pragma, then there would be a possibility that the optimizer would inline the function before
applying the rule.

Widget Rattus already defined some rewrite rules for the signal combinator library, such as
optimizing the map and const functions. Based on this, we have defined similar rewrite rules
for behaviours and events, but have additionally defined rules for the filter functionality as
well. All rewrite rules can be seen in Appendix C

42

6 Related Work

Functional Reactive Programming offers a high-level paradigm for building reactive systems,
which has been explored in many ways since its original introduction by Elliot and Hudak [1].
Numerous FRP systems have since emerged, which can be split up into two evaluation ap-
proaches: push- and pull-based.

Previous related works have primarily focused on push-based FRP approaches. However, to
get the advantages of both approaches, a push-pull approach was proposed by Elliott [5].
To our knowledge there has not recently been any notable implementations of Elliot’s push-
pull model. Elliott highlights Lula-FRP, which shares many conceptual similarities with the
semantics of push-pull based FRP. Nevertheless, Lula-FRP is purely pull-based, making it
susceptible to pull-sampling latency issues. The most comparable implementation to a push-
pull based approach is Reflex-FRP [13]. Reflex introduces distinct abstractions: behaviour
(pull), event (push), and dynamic (push-pull). The dynamic type in Reflex combines the
characteristics of behaviours and events, effectively serving as a tuple that integrates both
push- and pull-based functionalities.

The use of modal types in FRP has recently attracted attention due to its potential to
address the issues in traditional FRP, such as space-time leaks and causality [15, 6, 11, 17, 9,
7]. These issues arise from the high-level abstractions of FRP, which, while powerful, make it
challenging to predict and manage resource usage in programs written in this paradigm. To
mitigate these challenges, FRP languages require well-defined implementation strategies that
eliminate space-time leaks [10]. Widget Rattus [21] is based on such an FRP language, called
Async Rattus. Async Rattus implements calculus based on Async RaTT, which presents the
later (⃝) and box (□), as well as stable types and signals. All Async RaTT programs are
casual, productive and do not have space leaks.

Widget Rattus differentiates from Async Rattus by focusing on GUI programming using
FRP and incorporates two notable extensions: first-class channels and continuous types.
Besides Widget Rattus there is a long history of using the FRP paradigm to implement GUI
frameworks in functional languages [17, 6, 2, 4, 3, 17]. One such language is the Elm language
[8], which was initially implemented as an embedded language in Haskell for FRP-based GUI
programming, but has since abandoned this paradigm in favour of the Elm Architecture.

43

7 Conclusion and Future Work

In this thesis, we present an implementation of Elliot’s proposed push-pull based FRP ap-
proach [5], combining the efficiency of push-based evaluation, with the applicability of pull-
based semantics. This push-pull model is implemented in the Widget Rattus language [21].
We define new event and behaviour abstractions, along with combinators that allow pro-
grammers to compose applications utilizing these benefits.

Existing GUI widgets from Widget Rattus were extended to support events and behaviours,
using a discretization strategy to convert behaviours into signals. Through GUI examples,
we demonstrate the benefits of this hybrid model for handling both continuous and discrete
time-varying data. We demonstrate a set of refinements which can be used for improving
implementations of push-pull models in FRP.

This work shows the possibilities of a push-pull based model in a practical GUI framework.
However there still remains areas for future work, including:

• Avoiding the C monad: As previously mentioned in section 5.4, we explored the pos-
sibility of avoiding the C monad. However, due to the current definition of Continuous
it would be beneficial to research this refinement more.

• Further research on utilizing the internal state of behaviours: In section 5.3,
we introduced an internal state to the time function. We believe that there could po-
tentially be more applications for optimizing behaviours by incorporating and utilizing
an internal state.

• Improving pull-support in GUI updates: Currently, using behaviours in Widget
Rattus’ GUI library requires external discretization. Ideally, widgets would support
native continuous rendering. Furthermore, nested widgets could be updated directly,
rather than recreating the full widget tree at each render, to improve runtime efficiency.

• Make box, delay and adv implicit: At the moment, you have to explicitly box,
delay and adv which can result in cumbersome and hard to read code. A possible
solution would be to use bidirectional type checking [16] to extend the compiler to
insert these functions.

44

References

[1] Conal Elliott and Paul Hudak. “Functional reactive animation”. In: Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming, ICFP
’97. New York, NY, USA: ACM, 1997, pp. 263–273. isbn: 0-89791-918-1.

[2] M. Sage. “FranTk - a declarative GUI language for Haskell”. In: Proceedings of the
International Conference on Functional Programming (ICFP). 2000.

[3] A. Courtney and C. Elliott. “Genuinely functional user interfaces”. In: Proceedings of
the Haskell Workshop. 2001.

[4] H. Nilsson, A. Courtney, and J. Peterson. “Functional reactive programming, contin-
ued”. In: Proceedings of the Workshop on Haskell. 2002.

[5] Conal M. Elliott. “Push-pull functional reactive programming”. In: Proceedings of the
2nd ACM SIGPLAN symposium on Haskell. Haskell ’09. New York, NY, USA: Associ-
ation for Computing Machinery, 2009, pp. 25–36. doi: 10.1145/1596638.1596643.

[6] Heinrich Apfelmus. Reactive banana. 2011. url: https://hackage.haskell.org
/package/reactive-banana.

[7] Alan Jeffrey. “LTL Types FRP: Linear-Time Temporal Logic Propositions as Types,
Proofs as Functional Reactive Programs”. In: Proceedings of the Sixth Workshop on
Programming Languages Meets Program Verification. Ed. by Koen Claessen and Nikhil
Swamy. PLPV 2012. Philadelphia: ACM, 2012, pp. 49–60. isbn: 978-1-4503-1125-0.

[8] E. Czaplicki and S. Chong. “Asynchronous functional reactive programming for GUIs”.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). 2013.

[9] Wolfgang Jeltsch. “Temporal Logic with “Until”, Functional Reactive Programming
with Processes, and Concrete Process Categories”. In: Proceedings of the 7th Workshop
on Programming Languages Meets Program Verification. PLPV ’13. New York: ACM,
2013, pp. 69–78. isbn: 978-1-4503-1860-0.

[10] Neel R. Krishnaswami. “Higher-Order Functional Reactive ProgrammingWithout Space-
Time Leaks”. In: Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming. ICFP ’13. Boston: ACM, 2013, pp. 221–232. isbn: 978-1-
4503-2326-0.

[11] Andrew Cave et al. “Fair Reactive Programming”. In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’14.
San Diego: ACM, 2014, pp. 361–372. isbn: 978-1-4503-2544-8.

[12] Eugen Kiss. 7GUIs: A GUI Programming Benchmark. https://eugenkiss.githu
b.io/7guis/. Accessed: 2025-05-12. 2014.

[13] Obsidian Systems. Reflex: Functional Reactive Programming for Haskell. https://r
eflex-frp.org. Accessed: 2024-12-07. 2016.

[14] F. Vallarino. Monomer. Accessed: 2025-04-15. 2018. url: https://hackage.hask
ell.org/package/monomer.

45

https://doi.org/10.1145/1596638.1596643
https://hackage.haskell.org/package/reactive-banana
https://hackage.haskell.org/package/reactive-banana
https://eugenkiss.github.io/7guis/
https://eugenkiss.github.io/7guis/
https://reflex-frp.org
https://reflex-frp.org
https://hackage.haskell.org/package/monomer
https://hackage.haskell.org/package/monomer

[15] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. “Diamonds are
not forever: liveness in reactive programming with guarded recursion”. In: Proceedings
of the ACM on Programming Languages 5.POPL (2021), pp. 1–28.

[16] Jana Dunfield and Neel Krishnaswami. “Bidirectional Typing”. In: ACM Comput. Surv.
54.5 (May 2021). issn: 0360-0300. doi: 10.1145/3450952. url: https://doi.or
g/10.1145/3450952.

[17] Christian Uldal Graulund, Dmitri Szamozvancev, and Neel Krishnaswami. “Adjoint
reactive GUI programming”. In: Foundations of Software Science and Computation
Structures (FoSSaCS). 2021, pp. 289–309.

[18] The Haskell Time Library Maintainers. Data.Time.Clock - Time library for Haskell.
Accessed: 2025-05-06. 2021. url: https://hackage.haskell.org/package/ti
me-1.14/docs/Data-Time-Clock.html#g:3.

[19] Patrick Bahr and Rasmus Ejlers Møgelberg. “Asynchronous Modal FRP”. In: Proc.
ACM Program. Lang. 7.ICFP (Aug. 2023). doi: 10.1145/3607847. url: https:
//doi.org/10.1145/3607847.

[20] Patrick Bahr, Emil Houlborg, and Gregers Thomas Skat Rørdam. “Asynchronous Re-
active Programming with Modal Types in Haskell”. In: Practical Aspects of Declarative
Languages: 26th International Symposium, PADL 2024, London, UK, January 15–16,
2024, Proceedings. Vol. 13825. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer-Verlag, 2024, pp. 18–36. doi: 10.1007/978-3-031-52038-9_2.

[21] Jean-Claude Disch, Asger Heegaard, and Patrick Bahr. “Functional Reactive GUI Pro-
gramming with Modal Types”. Submitted for peer review November 2024. Copenhagen,
Denmark, 2024.

[22] The GHC Team. Strictness: The Strict Language Extension. Accessed: 2024-12-12.
Glasgow Haskell Compiler (GHC), 2024. url: https://ghc.gitlab.haskell
.org/ghc/doc/users_guide/exts/strict.html.

[23] The GHC Team. Prelude - scanl. Accessed: 2025-05-06. 2024. url: https://hackag
e.haskell.org/package/base-4.21.0.0/docs/Prelude.html#v:scanl.

[24] The GHC Team. GHC User’s Guide: Rewrite Rules. Accessed: 2025-05-16. Glasgow
Haskell Compiler. 2025. url: https://ghc.gitlab.haskell.org/ghc/doc/us
ers_guide/exts/rewrite_rules.html.

[25] WidgetRattus. [Online; accessed 24. May 2025]. May 2025. url: https://hackage
.haskell.org/package/WidgetRattus.

46

https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://hackage.haskell.org/package/time-1.14/docs/Data-Time-Clock.html#g:3
https://hackage.haskell.org/package/time-1.14/docs/Data-Time-Clock.html#g:3
https://doi.org/10.1145/3607847
https://doi.org/10.1145/3607847
https://doi.org/10.1145/3607847
https://doi.org/10.1007/978-3-031-52038-9_2
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/strict.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/strict.html
https://hackage.haskell.org/package/base-4.21.0.0/docs/Prelude.html#v:scanl
https://hackage.haskell.org/package/base-4.21.0.0/docs/Prelude.html#v:scanl
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/rewrite_rules.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/rewrite_rules.html
https://hackage.haskell.org/package/WidgetRattus
https://hackage.haskell.org/package/WidgetRattus

Appendix

A Integral and derivative test

Content of IntegralTests.hs:

module Main where

import WidgetRattus
import WidgetRattus.Widgets
import WidgetRattus.Behaviour

import Prelude hiding (const, filter, getLine, map, null, putStrLn, zip, zipWith)

integralTests :: C VStack
integralTests = do

time ← elapsedTime
time’ ← integral 0 (WidgetRattus.Behaviour.map (box realToFrac) time)
derivativeTime ← derivative time’

let shouldBe =
WidgetRattus.Behaviour.map

(box (λt → fromRational ((toRational t)ˆ2)/2)) time
originalLbl ←
mkLabel (WidgetRattus.Behaviour.map

(box (λt → "Input (Time): " <> toText t)) time)
resultLbl ←
mkLabel (WidgetRattus.Behaviour.map

(box (λt → "Result (Integral): " <> toText t)) time’)
shouldLbl ←
mkLabel (WidgetRattus.Behaviour.map

(box (λt → "Should be: " <> toText t)) shouldBe)

-- Re-derivative
derivativeLbl ←
mkLabel (WidgetRattus.Behaviour.map

(box (λt → "Integral → Derivative: " <> toText t)) derivativeTime)
-- UI
mkConstVStack $ originalLbl :* resultLbl :* shouldLbl :* derivativeLbl

main :: IO()
main = runApplication integralTests

Content of DerivativeTests.hs:

module Main where

import WidgetRattus
import WidgetRattus.Widgets
import WidgetRattus.Behaviour
import Prelude hiding (const, filter, getLine, map, null, putStrLn, zip, zipWith)

derivativeTests :: C VStack
derivativeTests = do

time ← elapsedTime
time’ ← derivative (WidgetRattus.Behaviour.map (box realToFrac) time)

47

let shouldBe = constK 1
originalLbl ← mkLabel time
resultLbl ← mkLabel (WidgetRattus.Behaviour.map (box toText) time’)

shouldLbl ← mkLabel (WidgetRattus.Behaviour.map (box toText) shouldBe)

let constantTest :: (Beh Float) = constK 514
constantTest’ ← derivative constantTest
constantResultLbl ← mkLabel (WidgetRattus.Behaviour.map (box toText) constantTest’)
constantShouldLbl ← mkLabel (WidgetRattus.Behaviour.map (box toText) (constK 0))

-- UI
mkConstVStack $
originalLbl :* resultLbl :* shouldLbl :* constantResultLbl :* constantShouldLbl

main :: IO()
main = runApplication derivativeTests

48

B Integral and Derivative helper functions

Part of Behaviour.hs:

getDiff :: Time → Time → Float
getDiff t’ t = fromRational (toRational (diffTime t’ t))

Initial version:

calcIntegral :: Float → Fun Float → Time → Time → Float
calcIntegral cur a t t’ = cur + apply a t’ * getDiff t’ t

calcDerivative :: Float → Time → Bool → Fun Float
calcDerivative a t b = Fun $ box (λt’ → a / getDiff t’ t :* b)

Final version:

calcIntegral :: Float → Float → Time → Time → Float
calcIntegral cur a t t’ = cur + a * getDiff t’ t

calcDerivative :: Float → Float → Time → Time → Float
calcDerivative a b t t’ = (a - b) / getDiff t’ t

49

C Rewrite rules for behaviours and events

Rewrite rules for behaviours:

{-# NOINLINE [1] map #-}

{-# NOINLINE [1] const #-}

{-# NOINLINE [1] constK #-}

{-# NOINLINE [1] switch #-}

{-# RULES
"beh.map/beh.map" forall f g xs.

WidgetRattus.Behaviour.map f (WidgetRattus.Behaviour.map g xs) =
WidgetRattus.Behaviour.map (box (unbox f . unbox g)) xs

"beh.constK/beh.map" forall (f :: (Stable b) ⇒ □ (a → b)) x.
WidgetRattus.Behaviour.map f (constK x) =
let x’ = unbox f x in constK x’

"beh.const/beh.switch" forall x xs.
switch (const x) xs =
Beh (x ::: delay (unwrap (adv xs)))

"beh.constK/beh.switch" forall x xs.
switch (constK x) xs =
Beh (K x ::: delay (unwrap (adv xs)))

#-}

Rewrite rules for Events:

{-# NOINLINE [1] map #-}

{-# NOINLINE [1] filter #-}

{-# RULES
"ev.map/ev.map" forall f g xs.

map f (map g xs) =
map (box (unbox f . unbox g)) xs

"ev.map/ev.filter" forall f g xs.
map f (filter g xs) =
filterMap (box (λx → if unbox g x then Just’ (unbox f x) else Nothing’)) xs

"ev.filter/ev.map" forall f g xs.
filter f (map g xs) =
filterMap (box (λx → if (unbox f . unbox g) x then Just’ $ unbox g x else Nothing’)) xs

"ev.filter/ev.filter" forall f g xs.
filter f (filter g xs) =
filterMap (box (λx → if unbox f x && unbox g x then Just’ x else Nothing’)) xs

#-}

50

D 7GUIs code examples

D.1 Calculator

module Main where

import WidgetRattus
import WidgetRattus.Widgets
import WidgetRattus.Behaviour
import WidgetRattus.Event
nums :: List Int
nums = [0 .. 9]

data Op = Plus | Minus | Equals | Reset

compute :: (Int :* Op :* Bool → Maybe’ (Int :* Op) → Int :* Op :* Bool)
compute (n :* op :* _) Nothing’ = n :* op :* False
compute _ (Just’ (_ :* Reset)) = 0 :* Reset :* True
compute (n :* Plus :* _) (Just’ (m :* op)) = (n + m) :* op :* True
compute (n :* Minus :* _) (Just’ (m :* op)) = (n - m) :* op :* True
compute (_ :* Equals :* _) (Just’ (m :* op)) = m :* op :* True
compute (_ :* Reset :* _) (Just’ (m :* op)) = m :* op :* True

calculatorExample :: C VStack
calculatorExample = do

-- Buttons
numBtns :: List Button ←
mapM (mkButton . constK) nums

let [b0, b1, b2, b3, b4, b5, b6, b7, b8, b9] = numBtns
resetBut ← mkButton (mkConstText "C")
addBut ← mkButton (mkConstText "+")
subBut ← mkButton (mkConstText "-")
eqBut ← mkButton (mkConstText "=")

let numClicks :: List (Ev (Int → Int)) =
zipWith’ (λb n → WidgetRattus.Event.map (box (λ_ x → x * 10 + n))

(btnOnClickEv b)) numBtns nums

let resetEv :: Ev (Int → Int) =
WidgetRattus.Event.map (box (λ_ _ → 0)) $

interleaveAll (box (λa _ → a)) $
map’ btnOnClickEv [addBut, subBut, eqBut, resetBut]

let evList = resetEv :! numClicks :: List (Ev (Int → Int))
let combinedEvs = interleaveAll (box (λa _ → a)) evList

constructed)
let numberEv :: Ev Int =

scan (box (λa f → f a)) 0 combinedEvs

let opEv :: Ev Op =
interleaveAll (box (λa _ → a)) $
map’

(λ(op :* btn) → WidgetRattus.Event.map (box (λ_ → op)) (btnOnClickEv btn))
[Plus :* addBut, Minus :* subBut, Equals :* eqBut, Reset :* resetBut]

51

let operand :: Ev (Maybe’ (Int :* Op)) =
triggerM (box (λop n → Just’ (n :* op))) opEv (stepper 0 (buffer 0 numberEv))

let resultEv :: Ev (Int :* Op :* Bool) =
scan (box compute) (0 :* Plus :* True) operand

let displayBeh :: Beh Int =
WidgetRattus.Behaviour.zipWith (box (λ(n :* _ :* b) m → if b then n else m))

(WidgetRattus.Event.stepper (0 :* Plus :* False) resultEv)
(WidgetRattus.Event.stepper 0 numberEv)

-- UI
result ← mkLabel displayBeh
operators ← mkConstVStack (resetBut :* addBut :* subBut :* eqBut)
row1 ← mkConstHStack (b7 :* b8 :* b9)
row2 ← mkConstHStack (b4 :* b5 :* b6)
row3 ← mkConstHStack (b1 :* b2 :* b3)

numbers ← mkConstVStack (row1 :* row2 :* row3 :* b0)

input ← mkConstHStack (numbers :* operators)
mkConstVStack (result :* input)

main :: IO()
main = runApplication calculatorExample

D.2 Counter

module Main where
import WidgetRattus
import WidgetRattus.Widgets
import WidgetRattus.Event
import Prelude hiding (const, filter, getLine, map, null, putStrLn, zip, zipWith)
counterAndTimer :: C VStack
counterAndTimer = do

-- Button
counterBtn ← mkButton $ mkConstText "Increment"
let counterEv = scan (box (λn _ → n + 1 :: Int)) 0 $ btnOnClickEv counterBtn

-- UI
lbl ← mkLabel $ stepper 0 counterEv
mkConstVStack $ lbl :* counterBtn

main :: IO()
main = runApplication counterAndTimer

D.3 Stopwatch

module Main where

import WidgetRattus
import WidgetRattus.Signal (Sig ((:::)))
import WidgetRattus.Widgets
import WidgetRattus.Behaviour

52

import WidgetRattus.Event
import Prelude hiding (const, filter, getLine, map, null, putStrLn, zip, zipWith)

elapsedTime’ :: C (NominalDiffTime → Beh NominalDiffTime)
elapsedTime’ =

do
startTime ← time
return (λf → Beh (Fun ()

(box (λ_ currentTime → (f + diffTime currentTime startTime) :* Just’ ())) ::: never))

timerExample :: C VStack
timerExample = do

-- Time
startElapsedTime ← elapsedTime

-- Buttons
startBtn ← mkButton (mkConstText "Start")
let startEv = btnOnClick startBtn
stopBtn ← mkButton (mkConstText "Stop")
let stopEv = btnOnClick stopBtn

let startTime :: Ev (NominalDiffTime → Beh NominalDiffTime) =
mkEv’ (box (delay (let _ = adv (unbox startEv) in elapsedTime’)))

let stopTime :: Ev (NominalDiffTime → Beh NominalDiffTime) =
mkEv (box (delay (let _ = adv (unbox stopEv) in constK)))

let combinedInput = WidgetRattus.Event.interleave (box (λx _ → x)) startTime stopTime
let stopWatchSig = switchR (constK 0) combinedInput

-- UI
timeLabName ← mkLabel (mkConstText "Current Time:")
swLabName ← mkLabel (mkConstText "Elapsed Time:")

timeLab ← mkLabel startElapsedTime
stopWatchLab ← mkLabel stopWatchSig

time ← mkConstHStack (timeLabName :* timeLab)
sw ← mkConstHStack (swLabName :* stopWatchLab)
buttons ← mkConstHStack (startBtn :* stopBtn)
mkConstVStack (time :* sw :* buttons)

main :: IO()
main = runApplication timerExample

D.4 Temperature Converter

import WidgetRattus
import Prelude hiding (map, const, zipWith, zip, filter, getLine, putStrLn,null)
import Data.Text hiding (zipWith, filter, map, all)
import Data.Text.Read
import WidgetRattus.Widgets
import WidgetRattus.Behaviour
import WidgetRattus.Event

celsiusToFahrenheit :: Int → Int

53

celsiusToFahrenheit t = t * 9 ‘div‘ 5 + 32

fahrenheitToCelsius :: Int → Int
fahrenheitToCelsius t = (t - 32) * 5 ‘div‘ 9

isNumber :: Text → Maybe’ Int
isNumber "" = Just’ 0
isNumber t =

case signed decimal t of
Right (t’, "") → Just’ t’
_ → Nothing’

window :: C HStack
window = do

-- TextFields
tfF1 ← mkTextField "32"
tfC1 ← mkTextField "0"

let fEvent = WidgetRattus.Event.filterMap (box isNumber) (textFieldOnInput tfF1)
let cEvent = WidgetRattus.Event.filterMap (box isNumber) (textFieldOnInput tfC1)

let convertFtoC = WidgetRattus.Event.map (box fahrenheitToCelsius) fEvent
let convertCtoF = WidgetRattus.Event.map (box celsiusToFahrenheit) cEvent

let c = stepper 0 (interleave (box (λx _ → x)) cEvent convertFtoC)
let f = stepper 32 (interleave (box (λx _ → x)) fEvent convertCtoF)

tfF2 ← setInputBehTF tfF1 (WidgetRattus.Behaviour.map (box toText) f)
tfC2 ← setInputBehTF tfC1 (WidgetRattus.Behaviour.map (box toText) c)

-- UI
fLabel ← mkLabel $ mkConstText "Fahrenheit"
cLabel ← mkLabel $ mkConstText "Celsius"

fStack ← mkConstVStack (tfF2 :* fLabel)
cStack ← mkConstVStack (tfC2 :* cLabel)
mkConstHStack (fStack :* cStack)

main :: IO()
main = runApplication window

D.5 Timer

module Main where
import WidgetRattus.Widgets
import WidgetRattus
import WidgetRattus.Behaviour
import WidgetRattus.Event

nominalToInt :: NominalDiffTime → Int
nominalToInt x = floor $ toRational x

intToNominal :: Int → NominalDiffTime
intToNominal x = fromInteger (toInteger x)

54

timeFrom :: Int → Time → Beh NominalDiffTime
timeFrom max startTime =

stopWith (box (λt → if t >= intToNominal max then Just’ (intToNominal max) else Nothing’))
(WidgetRattus.Behaviour.map (box (‘diffTime‘ startTime)) timeBehaviour)

window :: C VStack
window = do

let initialMax = 5
-- Reset button
resetBtn ← mkButton $ mkConstText "Reset timer"
let resetTrigger = btnOnClickEv resetBtn

-- Slider
maxSlider ← mkSlider initialMax (constK 1) (constK 100)
let maxBeh = sliderCurrent maxSlider
let maxChangeEv = WidgetRattus.Event.map (box (Prelude.const ())) $

sliderOnChange maxSlider

startTime ← time
let timeWithMax = WidgetRattus.Behaviour.zipWith (box (:*)) timeBehaviour maxBeh
let timer = WidgetRattus.Event.trigger
(box (λ_ (t :* max) _ → timeFrom max t))
(WidgetRattus.Event.interleave (box (λ_ _ → ())) resetTrigger maxChangeEv) timeWithMax

let timer’ = switchR (timeFrom initialMax startTime) timer

text ← mkLabel
(WidgetRattus.Behaviour.map (box (λt → "Current: " <> toText (nominalToInt t))) timer’)

maxText ← mkLabel
(WidgetRattus.Behaviour.map (box (λmax → "Max: " <> toText max)) maxBeh)

mkConstVStack $ maxSlider :* maxText :* text :* resetBtn

main :: IO()
main = runApplication window

55

