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Abstract
This thesis presents ComRaTT, the first implementation of a subset of Async RaTT
that compiles directly to WebAssembly. Async RaTT is a functional reactive program0
ming (FRP) language that uses modal types to allow different input channels to
activate parts of a program independently. We develop a compiler that transforms
ComRaTT programs into WebAssembly bytecode through multiple compilation passes,
implementing essential features including signals, the stable modality, the later modal0
ity for delayed computations, clock tracking, and a reactive runtime system with custom
heap management.

The main contribution is demonstrating the feasibility of compiling modal FRP
languages to low0level bytecode while preserving reactive semantics. This represents a
first step toward a complete implementation, with further work necessary to implement
garbage collection, to incorporate more functional programming constructs, and to
ensure that all well0typed programs produce valid WebAssembly code. ComRaTT
serves as a proof0of0concept that reveals both the potential and challenges of targeting
WebAssembly for functional reactive programming.
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Introduction
This thesis explores compiling Async RaTT [3] to WebAssembly. Async RaTT is
a functional reactive programming (FRP) language that uses modal types to track
when values are available and which input channels can trigger computations. Unlike
traditional FRP with global clocks, Async RaTT allows different inputs to activate
parts of a program independently.

We present ComRaTT, a language that implements a subset of Async RaTT and
compiles directly to WebAssembly bytecode. The goal is to see whether we can bring
the reactive semantics of Async RaTT to WebAssembly platforms while working within
the constraints of a stack0based virtual machine.

This work builds on a research project we completed in the fall of 2024 [18], but
represents a substantial evolution. We introduce modal types with a bidirectional
type checker, implement a proper reactive runtime system with heap management for
delayed computations, and move from generating WebAssembly text format to binary
format. In addition the implementation uses Rust instead of OCaml.

Compiling (a subset of) Async RaTT to WebAssembly is not a trivial endeavor. Func0
tional language features like closures and higher0order functions d not map naturally
to WebAssembly’s stack machine. The reactive semantics require managing delayed
computations across input events, which means we need custom memory layouts and a
runtime that can activate the right computations when inputs arrive. WebAssembly’s
current limitations around garbage collection make this even more difficult.

Given these challenges, we narrowed the scope of the compiler significantly. ComRaTT
focuses on the core reactive features including signals, the stable modality, the later
modality, clock tracking, and basic functional constructs. We skipped many standard
language features like polymorphism, pattern matching, and rich data types.

The result is ComRaTT, a language that compiles reactive programs with modal types
into executable WebAssembly bytecode. Our implementation handles the essential
reactive constructs—signals, modalities, and clock dependencies—proving that Async
RaTT’s core concepts can be realized on WebAssembly platforms. While this initial
version establishes the foundational compilation techniques, it also identifies key areas
for future development: implementing automatic memory management, expanding the
supported language features, and resolving remaining compilation edge cases.
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Chapter 1

Asynchronous Functional Reactive Pro/
gramming
This chapter provides the background concepts needed to understand ComRaTT, our
implementation of a subset of Async RaTT. We introduce functional reactive program0
ming and examine the core calculus of Async RaTT by Bahr and Møgelberg [3].

1.1 Functional Reactive Programming
Functional reactive programming is a programming paradigm focused on modeling
time0varying values and reactive behaviors in a functional setting. In FRP, these time0
varying values are represented as signals, which model events within a program. Signals
can be transformed with functional combinators to build computational graphs. For
discrete FRP languages, time progresses in discrete steps called ticks, meaning the
system only executes the program when input data is available. A reactive program is
thus a function from input signals to output signals.

As outlined by Holmgaard and Sattar Atta [18], the FRP paradigm has seen several
implementations and variations over the years. Fran [12] introduced FRP for animation,
using continuous time0varying values. Yampa [19] built on these ideas, providing an
arrow0based framework for hybrid systems. Elm [9] brought FRP to web development,
though later versions moved away from classical FRP concepts. ReactiveML [26]
explored synchronous programming concepts similar to FRP but with an ML0style
approach.

Modal FRP is a family of languages [3, 24, 25] where modal types are used to ensure
several key properties: causality, productivity, and absence of space leaks. In the liter0
ature, these modal types are presented as the modal type constructors ○ (later), which
refers to values that are available at a later, global timestep; □ (stable), which refers
to values that are always available; and a guarded fixed point operator with the type
(○ 𝐴 → 𝐴) → 𝐴, which allows guarded recursion.

Given these modal type constructors, we can define the concept of a signal as a value
available now, along with a delayed computation to produce a new value at a later
timestep: Sig 𝐴 = 𝐴 × ○ (Sig 𝐴), where the head is now and the tail is later.

Types without modal type constructors represent values currently available regardless
of their origin and are considered stable. Stable values are either primitive values (i.e.
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types that are neither □ nor ○) that can be used immediately, or boxed (□) values
that require unboxing to retrieve their inner value. However, the inner value of a boxed
binding itself may not be immediately available—for instance, if we have a value of type
□(○ ℤ), the ○ ℤ value after unboxing will not yield a value now. Values of type later
cannot be immediately forced to produce a value within the program, but instead rely
on being activated by a tick in the program’s runtime environment. These temporal
distinctions form the foundation for Async RaTT’s approach to reactive programming.

1.2 Async RaTT
Async RaTT [3] extends the modal type constructors with concrete language constructs
for asynchronous functional reactive programming. The core calculus provides delay
to introduce the later modality ∃ , adv to eliminate later types in specific contexts, box
for the stable modality □, and unbox for stable elimination. The language also includes
a guarded fixed point operator fix, that enables recursive definitions while maintaining
productivity guarantees. The ∀  modality is used to restrict fixed points to only unfold
in the future.

Using the surface language of Async RaTT [3, section 3], we can explore an example
map program presented by Bahr and Møgelberg [3, section 3.1]:

𝑚𝑎𝑝 : □ (𝐴 → 𝐵) → Sig 𝐴 → Sig 𝐵
𝑚𝑎𝑝 𝑓 (𝑥 :: 𝑥𝑠) = unbox 𝑓𝑥 :: delay (𝑚𝑎𝑝 𝑓 (adv 𝑥𝑠))

This top0level declaration receives a boxed function 𝑓 and a signal of type Sig 𝐴,
producing a new signal of type Sig 𝐵. The transformation occurs by applying the boxed
function to the head and recursively to the tail. Because the function 𝑓 is boxed, we
must unbox 𝑓 before applying it to 𝑥. Signals are constructed and eliminated with the
infix operator and pattern ‘::’, where the left side is the current value of the signal, and
the right side is the value of the signal at a later timestep. We can immediately apply
the unboxed function 𝑓 to the current signal value 𝑥 to compute the new signal head.
To understand how the tail is computed along with the recursive call to 𝑚𝑎𝑝, we must
examine how the program desugars into the core Async RaTT calculus as shown by
Bahr and Møgelberg [3, section 3.5].

𝑚𝑎𝑝 = fix 𝑟.𝜆𝑓.𝜆𝑠.let 𝑥 = 𝜋1(out 𝑠) in let 𝑥𝑠 = 𝜋2(out 𝑠)

in into(𝑢𝑛𝑏𝑜𝑥 𝑓 𝑥, delaycl(𝑥𝑠)(adv 𝑟 𝑓 (adv 𝑥𝑠)))

The top0level definition of 𝑚𝑎𝑝 desugars to a lambda abstraction using the fixed point
constructor, providing us with 𝑟, which guards recursion on a future timestep. The
type of 𝑟 is ∀ , which must be eliminated through adv. The tail of the signal calls this
recursive binding 𝑟 under a cl(𝑥𝑠) tick through adv 𝑟 in the delay body. To ensure
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guarded recursion, recursive calls must occur under a tick, as we need to eliminate the
∀  modality.

This example demonstrates how Async RaTT’s temporal constructs work, but the
language’s key innovation lies in replacing global clocks with input channels. We can
see this in the desugared form where delaycl(𝑥𝑠) explicitly states which clock governs the
delayed computation. This clock0based approach enables the asynchronous behavior,
where different parts of a program can be activated independently by different input
sources, that distinguishes Async RaTT from traditional FRP systems.

1.3 Input channels and clocks
In Async RaTT [3], the notion of a global clock is replaced with discrete input channels
𝜅, and delayed computations (values of type later) are associated with individual clocks
𝜃.

Async RaTT has three kinds of input channels, push-only channels 𝑝, buffered-only
channels 𝑏, and buffered-push channels 𝑏𝑝. The channel kinds that are push refer to the
fact that an active input will activate downstream computations of dependants. The
buffered channels will persist their latest value, such that the values can be accessed
by a read expression in programs regardless of what the active input channel is. An
example of a buffered0only input channel is a current time channel, such a channel can
be read at any point by the program.

A clock consists of a set of input channels, marking a delayed computation to be
resumable by any active input channel 𝜅 ∈ 𝜃. This aspect of Async RaTT is what
makes it “asynchronous”—inputs can activate parts of the program independently of
each other, allowing efficient resumption of delayed computations. The property of
independent handling of input data gives rise to a new property, signal independence,
which Async RaTT [3, section 4.4.4] ensures. The outputs 𝑥𝑖 of Async RaTT programs
will have clock cl(𝑥𝑖) consisting of input channels which may dynamically update at
runtime.

Figure 1.1 depicts how Async RaTT tracks input channels throughout a program. The
program receives input on channels shown on the left: 𝜅1, 𝜅2, 𝜅3. The middle nodes
form the computation graph that transforms the input signals. Each clock shown inside
the nodes represents a union of input channels. For example, the clock 𝜃1 = {𝜅1} ⊔
{𝜅2} means that the underlying delayed computation can be resumed by either input
channel 𝜅1 or 𝜅2 becoming active.
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𝜃1

𝜃2

𝜃3

𝜃4

cl(𝑥1) = {𝜅1, 𝜅2}

cl(𝑥2) = {𝜅2, 𝜅3}

𝜅1

𝜅2

𝜅3

{𝜅1}

{𝜅1}
⊔ {𝜅2}

{𝜅2}

{𝜅3}

𝜃1 ⊔ 𝜃2

𝜃3 ⊔ 𝜃4

𝑥1

𝑥2

Figure 1.1: Input channel tracking across an Async RaTT program.

On the right0hand side, the resulting outputs 𝑥1, 𝑥2 contain all the upstream channels
they depend on. The computation graph clearly demonstrates signal independence in
the sense that input channel 𝜅1 will cause 𝑥1 to update because 𝜅1 ∈ cl(𝑥1), but not
𝑥2 because 𝜅1 ∉ cl(𝑥2). Conversely, 𝜅2 will cause both 𝑥1 and 𝑥2 to update due to the
overlap in their clocks: 𝜅2 ∈ cl(𝑥1) and 𝜅2 ∈ cl(𝑥2).
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Chapter 2

WebAssembly
In this chapter, we provide background information on WebAssembly (WASM). We
start by giving a brief overview of what WebAssembly is before we cover the relevant
concepts of the WebAssembly specification [28].

2.1 Overview
WebAssembly [28] is a compact binary instruction format meant to be a compilation
target for high0level languages, run by a stack0based virtual machine (VM). Browsers
and existing JavaScript VMs can implement the machine and embed WASM, making it
a viable alternative and/or supplement to JavaScript in web applications. The specifi0
cation describes a sandboxed execution environment that isolates modules, the WASM
unit of deployment, from their host environment and provides security properties¹.

WASM features a human0readable textual representation WebAssembly Text Format
(WAT) [28, chapter 6] for experimentation and debugging purposes. The WAT repre0
sentation is a higher level representation of the WebAssembly Binary Format, which is
a byte0encoded instruction sequence containing metadata. The compiler presented by
our former work [18] targets WAT directly.

WASM’s close connection to browsers and web programming makes it a good fit
for Async RaTT, since asynchronous input processing, reactive semantics, as well as
guarantees of productivity, causality, and (runtime) space leak freedom map well to
and complement the stateful Document Object Model of the web. Websites running
on resource constrained environments (smartphones, basic laptops, or tablets) benefit
from preserving memory and executing lower0level code that take up less compute.
Prior work exists in the space of GUI programming with Async RaTT through the
Async Rattus [2] extension Widget Rattus [10], though those GUIs are outside the
context of the web.

2.2 Relevant WASM concepts
When using WASM as a compilation target, it is necessary to understand the instruc0
tion set exposed by the specification and how a WASM program is structured. To this
end, we will briefly describe how WASM instructions are defined, followed by explaining
the concept and structure of modules in WASM.

¹https://webassembly.org/docs/security/, accessed 14/05/2025
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2.2.1 Core instruction set
WASM has a core instruction set [28, section 2.4] covering operations for arithmetic,
reading and writing memory, comparison, conditionals, calling functions, etc. These
instructions are stack machine instructions, operating with an implicit operand
stack. WASM instructions may consume (pop) and/or produce (push) values on the
underlying machine’s operand stack. Some instructions may require static immediate
arguments in addition to consuming values from the operand stack.

A list of example instructions from the WASM spec can be seen in Equation (2.1),
with the name of the opcode on the left, followed by static immediate, followed by the
expected stack shape, and the resulting stack after execution.

nop [⋅] → [⋅]
i32.add [i32; i32 ⋅] → [i32 ⋅]
i32.wrap_i64 [i64 ⋅] → [i32 ⋅]
f32.div [f32; f32 ⋅] → [f32 ⋅]
i64.const ℤ [⋅] → [i64 ⋅]
i32.store ℎ {offset, align} [i32; i32 ⋅] → [⋅]

(2.1)

We can construct a small example program, providing a trace of the operand stack.
The program adds two 640bit numbers and casts the result to a 320bit number:
[i64.const 38; i64.const 4; i64.add; i32.wrap_i64]. The stack will look as follows:

⋅ ⇝ [ ]
i64.const 38 ⇝ [38i64]
i64.const 4 ⇝ [4i64; 38i64]

i64.add ⇝ [42i64]
i32.wrap_i64 ⇝ [42i32]

The intermediary stacks are manipulated according to the instruction’s specification.
This is the basis for how WASM instructions interact, and the operational semantics
are very thoroughly described in the WASM Specification [28] and formally verified by
Watt et al. [34].

2.2.2 Feature extending proposals
The WASM instruction set is constantly evolving and being extended by so0called
proposals. Proposals are needed for major changes like adding new instructions or
changing semantics. Proposals are integrated through a standardization process², and

²https://github.com/WebAssembly/meetings/blob/main/process/phases.md, accessed 14/05/2025
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the support status of different features can be tracked at https://webassembly.org/
features/.

When considering opting in to a proposal, it is relevant to also assess its maturity,
since support for the proposal may be lacking in browsers and WASM runtimes.
Many proposals that were initially left out of the core WASM spec have already
been standardized, with the March 2025 release of the WASM 2.0 spec adding even
more³. Noteworthy features that started as proposals are garbage collection4, multiple
memories5, and tail call 6.

We will make use of the multiple memories proposal in this project, as we want to
segregate parts of a program’s memory heap. The multiple memory proposal allows
disjoint heaps that can be accessed and modified independently of each other. The tail
call proposal is relevant for functional programming languages in general, which is why
we will rely on it preemptively.

2.2.3 Embedding in a host environment
WASM is designed to be used in the context of a host environment—a VM that
implements the semantics of the specification [28, section 1.2.1]. Having multiple
implementations means that WASM binaries are portable across environments and
gives way to using the same WASM binary in a browser as well as in a command
line interface program. A WASM binary can import and export definitions to the host
environment, allowing a foreign function interface between host and program, which
is how portability is accomplished, as each environment must provide a program with
functionality that affects the world outside the WASM virtual machine.

All modern browsers include a full WASM VM using different implementations. There
are also a handful of WASM runtimes decoupled from browsers, including wasmtime
[33], wasmer [32], wasm3 [31], and many more.

2.2.4 Phases
There are three phases to running a WASM module according to the specification
[28], validation, instantiation, and execution. The validation phase assesses the well0
formedness of the module by type checking its contents. The instantiation phase handles
initialization of tables and memories, ensures that imports match type declarations,
initializes global variables and memory data segments, populates table elements, and
finds and executes a start function. Finally, the execution phase begins when a function

³https://webassembly.org/news/20250030200wasm02.0/, accessed 15/05/2025
4https://github.com/WebAssembly/gc, accessed 14/05/2025
5https://github.com/WebAssembly/multi0memory/, accessed 14/05/2025
6https://github.com/WebAssembly/tail0call/, accessed 14/05/2025
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is called, either the start function (via the instantiation phase) or an export (via the
host environment).

Errors can occur in all three of these phases when attempting to execute a WASM
program. Because of the strongly typed nature of WASM, the validation phase is able
to pick up a lot of early errors, however runtime traps can still occur. The instructions
in Equation (2.1) all include some contract for the implicit operand stack, which allows
static checks of the program under validation.

2.2.5 Sections
A WASM module has, potentially empty, groupings of definitions (also referred to as
sections) for different concepts like type signatures, functions, memory regions, global
variables, and others. These sections must follow a specific order to preserve the validity
of a module. The way a module is structured is thoroughly specified in the WASM
specification [28, section 5.5.2].

A module consists of the sections seen in Figure 2.1, each of which has an explicit order
(ID) and its own indexing space. This means that all types can be indexed by 0…𝑛 with
𝑛 + 1 being the number of types. Similarly, 𝑚 + 1 functions can be indexed by 0…𝑚.
The indices are disjoint, so at index 𝑖 = 0, function𝑖 and type𝑖 are valid references to
different entities in the module even though the same accessor 𝑖 is used.

ID Section name
0 Custom
1 Type
2 Import
3 Function
4 Table
5 Memory
6 Global
7 Export
8 Start
9 Element

10 Code
11 Data
12 Data count

Figure 2.1: Table of all WASM module sections, in order.
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A high level description of the sections that are relevant for ComRaTT follow below.
Each will have a small WAT example to go with it. The examples will omit the
obligatory module declaration. The sections we have omitted are simply not of relevance
for ComRaTT programs.

While WebAssembly definitions are referenced by index based on the order of their
declaration, when dealing with WAT, each definition can optionally be given a name
to be used instead of an index. This principle also extends to local variables and
parameters within function definitions. The examples we will show below will all use
a name for the definition. It is valid to refer to either the index or the name when
writing WAT code. In WASM binary format, the names are simply debug information,
meaning types (and any other entity in a module) are referenced by index only in code.

2.2.6 Type section
Type signatures in WASM have multiple purposes. Their main purpose is to provide
static validation information for programs. An example is the use of a type index in the
static immediate argument(s) to the return_call_indirect {tbl_idx} {typ_idx} and
call_indirect {typ_idx} instructions. Providing a type statically allows the WASM
validation phase to discern what stack obligations a function call puts on the operand
stack, and what is left on the stack after the function call.

Types are defined in the module with the type constructor seen in Listing 2.1.

1 (type (func (param i32 i32) (result i32)))

2 (type $test (func (param $x i32) (result i32)))

Listing 2.1: Two type definitions within a WASM module

The first definition is an unnamed type, index 0 describing a function that transforms
the stack [i32; i32 ⋅] → [i32 ⋅]. Below type 0, is the named $test type at type index 1,
which types a function that transforms the stack by [i32 ⋅] → [i32 ⋅].

2.2.7 Function section
Function definitions declare their parameters by type and optionally one or more return
types. Local variables must be declared at the beginning of the function body. Functions
can call themselves recursively and each other in a mutually recursive manner by
default. Listing 2.2 shows an example of a single function definition.
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1 (func $add (param $x i32) (param $y i32) (result i32)

2   local.get $x

3   local.get $y

4   i32.add

5 )

Listing 2.2: A WASM module with a function definition

Similarly to types, the function $add has the function index 0 given by the order it
appears in. Calling the $add function can be done with the call instruction call $add
or call 0.

2.2.8 Table section
Tables are an array0like, resizable structure that store objects of WASM reference types
funcref, or references to values in the host environment externref [28, section 2.5.4].
Tables of funcref are especially relevant for ComRaTT because they allow the use of
call_indirect instructions, which can be called with a table index and accompanying
type, essentially enabling function pointers and thus help treat functions as first0class
citizens.

Tables are declared with an optional name, an initial/minimum size, an optional
maximum size and the type of their contents.

1 (table $functions 0 128 funcref)

2 (table 10 funcref)

Listing 2.3: A WASM module with two table definitions

Listing 2.3 shows a named funcref table $functions (table index 0), with an initial
size of 0 and a maximum size of 128, and an unnamed, unbounded funcref table (table
index 1) of initial size 10.

2.2.9 Element section
To statically initialize entries in a WASM table, the Element section must be used.
This section contains a mapping from table indices to function indices.

The table in Listing 2.4 will contain function $id in the $fns table at index 0. This
means that the table will conceptually have the following shape [0 ⋅]. Having a table
allows for indirect calls to functions in the table when the function type is known
statically. call_indirect $fns (type $id#typ) if the stack has shape [2i32; 0i32 ⋅]
where the first value on the stack corresponds to the function argument $x = 2 followed
by the index 0 of the function in the table $fns. We can thus call functions through
tables if we know the function index and type index the call refers to.
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1 (table $fns funcref)

2 (elem $fns (i32.const 0) $id)

3

4 (type $id#typ (func (param $x i32) (result i32)))

5 (func $id (param $x i32) (result i32)

6   local.get $x

7 )

Listing 2.4: A WASM module populating two elements into a table

The WASM virtual machine will ensure that the type index provided statically matches
the type of the function extracted from a function table at runtime. This is because
funcref tables contain references to a heterogenous set of functions, requiring such
runtime checks.

2.2.10 Memory section
WASM memories [28, section 2.5.5] are resizable linear arrays of raw uninterpreted
bytes, just like a regular program heap. They can be both imported and exported
allowing for sharing of data between WASM modules and host environments. They are
declared with an initial size and an optional maximum size. The sizing arguments are
given in pages of 64KiB.

The initial release of WASM only supported a single memory region but the now0
standardized multiple memories proposal changes this. See Listing 2.5 for an example
module containing two memory regions: one unnamed with a minimum page size of
1 (~64KiB) and maximum page size of 4 (~256KiB) and a named, unbounded region
with a minimum page size of 1 (~64KiB).

1 (memory 1 4)

2 (memory $heap 1)

Listing 2.5: A WASM module with two memory regions

The heaps in Listing 2.5 can be read from and written to using the static immediate
arguments in the relevant instructions touching memory. For example the i32.load h
{offset, align} instruction takes an optional heap specifier that defaults to memory
index 0. To load a value from the $heap heap, we can issue the following instruction
i32.load (memory $heap) offset=0 align=2 (i32.const 0), which loads the memory
at index 0 of $heap.
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2.2.11 Global section
Global definitions are globally accessible variables that are optionally mutable. List0
ing 2.6 shows two named global variables of type i32 initialized to 0, one immutable
and one mutable.

1 (global $state (i32) (i32.const 0))

2 (global $mut_state (mut i32) (i32.const 0))

Listing 2.6: A WASM module with two global variables

Globals can be optionally exported such that the host environment is able to access
them.

2.2.12 Import section
If a WASM program depends on foreign functions provided by the host environment,
such functions need to be declared as imports. The name of an import consists of the
name of a module and the name of an entity within the module providing function
namespacing for any imported functions. All typed imported entities must explicitly
state their types, such that they can be used in module validation. For example, an
imported function also should provide its parameters and return type.

Valid import definitions are functions, tables, memories and globals. Listing 2.7 declares
two imports from two separate modules: one of a function and one of a memory region.

1
(import "some_module" "test_function" (func $test (param i32) (result
i32)))

2 (import "other_module" "heap" (memory 0))

Listing 2.7: A WASM module with two imports

Anything imported in a WASM module can be used as if it was locally declared, but
is initialized and passed to the WASM module at runtime.

2.2.13 Export section
To allow the host environment to interact with the WASM program, functions within
the module can be exported (after instantiation). An export declaration consists of a
name and a descriptor (type of definition and name/index), see Listing 2.8. The WASM
definitions valid for export are functions, tables, memories and globals.
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1 (export "test" (func $test))

2 (export "heap" (memory 0))

3 (export "functions" (table $functions))

4 (export "state" (global $state))

Listing 2.8: A WASM module with four exports

These will be available by their explicitly given name in the host environment.

2.3 Functional source vs. imperative stack machine
The imperative, stack0based execution model of WASM is fundamentally different from
the pure, declarative, functional nature of Async RaTT. Language features such as
partial application and implicit arguments are not directly supported in WASM.

WASM programs must be structured as top0level function definitions that can only
access their parameters, local variables and global variables. Additionally, functions
cannot nest, conflicting with the use of lambda abstractions (anonymous functions)
which are a staple of the functional paradigm.

Furthermore, a WASM function must forward declare all of its local variables, which
means any temporary or intermediary variables must be known up front and declared
for them to be used in a function’s body.

This means that a compiler for a high0level language targeting WASM must address
these differences appropriately to generate code. The techniques used to bridge the gap
are covered in detail throughout Chapter 4 Compiling ComRaTT (p. 29).

17 / 83



Chapter 3

The ComRaTT language
ComRaTT is an implementation of a subset of Async RaTT as a language that targets
WebAssembly. In this chapter, we will provide descriptions and definitions of the
language, forming the conceptual building blocks used throughout the thesis to explain
the work we have done.

The chapter will present the syntax and the type system for ComRaTT followed by
the language semantics of ComRaTT. We will be selecting parts of Async RaTT [3]
that are essential for us to include in a functional reactive programming language. At
the end, we will showcase an example program.

3.1 Language syntax
Async RaTT [3] presents a rich core calculus with many powerful features and concepts,
but to keep ComRaTT small and minimal, we have picked out parts of Async RaTT
that we found to be most essential.

The basic expression language of ComRaTT contains lambda abstractions, function
application, let0bindings, and conditionals. It supports integer literals, boolean literals,
and basic binary operations as well as tuples. This gives enough expressivity without
overwhelming the implementation with features such as custom algebraic data types,
parametric polymorphism, and lists. The first iteration of the language is described in
Holmgaard and Sattar Atta [18], from which some of these core elements have been
brought over.

Most importantly, ComRaTT supports the later (○) modality introduction form delay
and elimination form advance for delimiting and handling ticks, along with box and
unbox for stable values that may persist across time. These give us the fundamental
ability to describe values as being available “now” versus values available “later”, as
well as values that are available “forever” [3].

The grammar of ComRaTT is provided in Figure 3.1, where both the core expression
syntax and the FRP constructs reside side by side. An important detail to point out
is the fact that we provide explicit clocks in the syntax for delay. ComRaTT does not
fully infer clocks the same way Async Rattus [5] or the assumed Async RaTT surface
language [3, section 3] does, which means that we need to provide annotations for type
checking.
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Channel 𝜅 ∈ 𝑥
Toplevel T ⩴ chan 𝜅 : 𝑡;

| 𝑥 : 𝑡 def 𝑥 𝑥∗ = 𝑒;
| 𝑥 ← 𝑒;

Type 𝑡 ⩴ () | ℤ | 𝔹 | 𝑡 → 𝑡 | ○ 𝑡 | □ 𝑡 | Sig 𝑡
Expression 𝑒 ⩴ 𝑣 | (𝑒(,𝑒′)∗) | 𝑒 . int | 𝑒 𝑒′ | 𝑒 ⊕ 𝑒′ | fun 𝑥∗ → 𝑒

| let 𝑥 = 𝑒 in 𝑒′ | if 𝑒 then 𝑒1 else 𝑒2 | delay {𝜃} 𝑒
| advance 𝑥 | wait var | box 𝑒 | unbox 𝑒 | never

Value 𝑣 ⩴ ℤ | 𝑥 | true | false | ()
Clock expression 𝜃 ⩴ cl(𝑥) | cl(wait 𝑥) | 𝜃 ⊔ 𝜃
Binary operator ⊕ ⩴ :: | + | * | / | - | = | < | <= | > | >= | <>

Figure 3.1: Syntax of the ComRaTT source language.

A ComRaTT program is made up of many top0level definitions, consisting of channel
definitions, function declarations, and output declarations. It is not necessary for a user
to explicitly define an entry0point for a program; instead, a program’s outputs dictate
what part(s) of the program can be executed.

1 chan some_channel : int; // unused channel

2

3 just_two : Sig int

4 def just_two = 2 :: never;

5

6 print <- just_two;

Listing 3.1: A simple ComRaTT program printing “2” once.

Programs must specify what channels they use, and for each channel, the type of values
it produces. It is then the runtime system’s responsibility to ensure that the channels
and their types are valid and possible to provide.

An output definition contains a single expression which should have type O Sig t
(later signal of type t), though we should also be able to support outputs of type Sig
t (signal of type t). The code in Listing 3.1 shows such a simple example program.
The just_two function declaration defines a signal producing the value 2, and a later
computation that will never be executed.

3.2 Type system
Whereas the initial version of ComRaTT [18] implements a Hindley–Milner style type
system with principal inference based on Sestoft [29], ComRaTT now uses a bidirec0
tional type system that expects explicit type declarations for every top0level function
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definition. This can be seen in the grammar, Figure 3.1, as well as in Listing 3.1 where
the type of just_two is explicitly stated as Sig int.

Adding clocks to ComRaTT meant we had to consider how typing rules would be
adjusted. We have been adamant about not inferring clocks in ComRaTT to reduce
complexity of implementing the compiler, which led us to exploring alternative type
systems that would give us the possibility to type check terms in addition to inferring
types. Bidirectional typing, as presented by Dunfield and Krishnaswami [11], proved
to be an extensible way for us to balance type inference and type checking.

It is important to point out that we do not propose that ComRaTT’s type system is
sound nor complete. As the Async RaTT type system [3, section 2] is provably sound,
we are more interested in the entire “vertical slice” of a working, but not perfect,
compiler being feasible. The vertical slice we are referring to is everything required to
compile a ComRaTT program that uses the central constructs of Async RaTT, namely
signals, delayed computations, clocks, input channels, and a reactive runtime to tie
everything together.

The initial design of the bidirectional type system is based loosely on the work of Ethan
Smith [7], where Hindley0Milner is utilized for inference, using constraint solving in
a bottom0up fashion. The type system consists of rules that can make use of both
modes as seen in Figure 3.2. The typing rules marked with ↑ are inference rules
utilizing Hindley0Milner, while rules marked with ↓ are checking rules, expecting a type
annotation. In these rules, the type judgements are split into inference judgements;
Γ ⊢ 𝑒 ⇒ 𝜏  read as “the type of 𝑒 can be inferred to 𝜏  under context Γ”, and checking
judgements, Γ ⊢ 𝑒 ⇐ 𝜏  read as “the type of 𝑒 can be checked to have type 𝜏  in context
Γ”, as explained by Christiansen [8].
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Unit ↑
Γ ⊢Δ () ⇒ Unit

𝑛 ∈ ℤ Int ↑
Γ ⊢Δ 𝑛 ⇒ ℤ

𝑏 ∈ {true, false} Bool ↑
Γ ⊢Δ 𝑏 ⇒ 𝔹

✓𝜃 ∉ Γ′ or 𝜏 stable Var† ↑
Γ, 𝑥 : 𝜏, Γ′ ⊢Δ 𝑥 ⇒ 𝜏

Γ ⊢Δ 𝑥 ⇒ ○ 𝜏 ClockCl† ↑
Γ ⊢Δ cl(𝑥) ⇒ Clock

Γ ⊢Δ Γ ⊢Δ 𝜃 ⇒ Clock ✓𝜃 ∉ Γ ClockTick† ↑
Γ, ✓𝜃 ⊢Δ

Γ ⊢Δ 𝜃 ⇒ Clock Γ ⊢Δ 𝜃′ ⇒ Clock ClockUnion† ↑
Γ ⊢Δ 𝜃 ⊔ 𝜃′ ⇒ Clock

Γ ⊢Δ 𝑒1 ⇒ 𝜏1 … 𝑒𝑛 ⇒ 𝜏𝑛 𝑛 ≥ 2 Tuple ↑
Γ ⊢Δ (𝑒1, …, 𝑒𝑛) ⇒ (𝜏1, …, 𝜏𝑛)

Γ ⊢Δ 𝑒 ⇒ (𝜏1, …, 𝜏𝑛) 1 ≤ 𝑖 ≤ 𝑛 Access ↑
Γ ⊢Δ 𝑒.𝑖 ⇒ 𝜏𝑖

Γ ⊢Δ 𝑒val ⇒ 𝜏 Γ ⊢Δ 𝑒later ⇒ ○ Sig 𝜏 Sig ↑
Γ ⊢Δ 𝑒val :: 𝑒later ⇒ Sig  𝜏

Γ ⊢Δ 𝑒1 ⇐ 𝔹 Γ ⊢Δ 𝑒2 ⇒ 𝜏 Γ ⊢Δ 𝑒3 ⇒ 𝜏 ′ 𝜏 = 𝜏 ′
If ↑

Γ ⊢Δ if 𝑒1 then 𝑒2 else 𝑒3 ⇒ 𝜏

Γ ⊢Δ 𝑒1 ⇒ 𝜏1 Γ, 𝑥 : 𝜏1 ⊢Δ 𝑒2 ⇒ 𝜏2 Let ↑
Γ ⊢Δ let 𝑥 = 𝑒1 in 𝑒2 ⇒ 𝜏2

Γ, ✓𝜃 ⊢Δ 𝑒 ⇒ 𝜏 Γ ⊢Δ 𝜃 : Clock Delay† ↑
Γ ⊢Δ delay {𝜃} 𝑒 ⇒ ○ 𝜏

Γ ⊢ 𝑥 ⇒ ○ 𝜏 Advance† ↑
Γ, ✓cl(𝑥), Γ′ ⊢Δ advance 𝑥 ⇒ 𝜏

𝜅 : 𝜏 ∈ Δ Wait† ↑
Γ ⊢Δ wait 𝜅 ⇒ ○ 𝜏

Γ ⊢Δ 𝑒1 ⇒ 𝜏 Γ ⊢Δ 𝑒2 ⇒ 𝜏 Γ ⊢Δ 𝑒1 ⊕ 𝑒2 ⇒ 𝜏 ′
BinOp ↑

Γ ⊢Δ 𝑒1 ⊕ 𝑒2 ⇒ 𝜏 ′

Γ, 𝑥1 : 𝜏1 … 𝑥𝑛 : 𝜏𝑛 ⊢Δ 𝑒 ⇒ 𝜏 Lam ↑
Γ ⊢Δ fun (𝑥1, …, 𝑥𝑛) → 𝑒 ⇒ 𝜏1 → … → 𝜏𝑛 → 𝜏

Γ ⊢Δ 𝑒1 ⇒ 𝜏1 → 𝜏2 Γ ⊢Δ 𝑒2 ⇐ 𝜏1 App ↑
Γ ⊢Δ 𝑒1 𝑒2 ⇒ 𝜏2

Γ□ ⊢Δ 𝑒 ⇒ 𝜏 Box† ↑
Γ ⊢Δ box  𝑒 ⇒ □ 𝜏

Γ ⊢Δ 𝑒 ⇒ □ 𝜏 Unbox† ↑
Γ ⊢Δ unbox  𝑒 ⇒ 𝜏

Γ, 𝑥 : 𝜏1 ⊢Δ 𝑒 ⇐ 𝜏2 Lam ↓
Γ ⊢Δ fun (𝑥) → 𝑒 ⇐ 𝜏1 → 𝜏2

Γ ⊢Δ 𝑒 ⇒ 𝜏 Output ↓
Γ ⊢Δ 𝑥 ← 𝑒 ⇐ ○ 𝜏

𝜏 = … → 𝜏𝑟 or 𝜏𝑟 Γ, 𝑓 : 𝜏, 𝑥1 : 𝜏1, …, 𝑥𝑛 : 𝜏𝑛 ⊢Δ 𝑒 ⇒ 𝜏 ′ 𝜏𝑟 = 𝜏 ′
FunDef ↓

Γ ⊢Δ def 𝑓 (𝑥1, …, 𝑥𝑛) : 𝜏 = 𝑒 ⇐ 𝜏
Figure 3.2: Bidirectional Type Inference Rules.

Similarly to [3], we make use of the context Δ to be the reactive context containing the
input channels for the program. Rules additionally marked with a dagger †, are ported
over from the Async RaTT Type system [3, section 2].

21 / 83



Compiled Async RaTT Chapter 3. The ComRaTT language

Figure 3.2 covers a fair share of the rules from Async RaTT [3], where the main
differences include fewer rules and lifting some restrictions. We do not restrict lambda
abstractions to be outside of ticks—which according to Bahr [1] should not cause
space leaks. Furthermore, we only allow input channels in the context to be push-only
channels, explaining why we do not inspect the channel type for wait and entirely
leave out read. The language design and type system naturally define a conceptual
starting point for programs to be type checked: the top0level function definitions. These
definitions are used to provide cross0program (global) type annotations for functions
and start off the local Hindley0Milner constraint solving on a per0function granularity.

ComRaTT has no explicit fixpoint construct, it is expected that the host machine
implicitly boxes top0level definitions and unboxes them implicitly once the top0level
definitions are applied as functions as described by Async RaTT [3, section 3.5].
ComRaTT ensures that the body of top0level function definitions only access local
variables or boxed parameters, similarly to how the fixed point operator in Async RaTT
would behave.

The main advantage we found using bidirectional typing is that rules are syntax0
directed, providing more algorithmic definitions when compared to the typing rules of
the original ComRaTT type system [18]. This aspect of bidirectional typing is explained
further by Dunfield and Krishnaswami [11].

3.3 Semantics
Well0typed ComRaTT programs are not executable on their own; they must be
executed within the context of a runtime. When the runtime executes a program, it
must obey the operational semantics of ComRaTT seen in Figure 3.3, which is based
on Holmgaard and Sattar Atta [18] and Bahr and Møgelberg [3]. As ComRaTT is
an implementation of Async RaTT with concessions made for the breadth of imple0
mentation, the semantics are mostly that of Async RaTT, with some restrictions and
omissions. The rules marked with a dagger (†) in Figure 3.3 are more or less identical
to their counterparts in Async RaTT [3].

Similarly to Async RaTT [3], ComRaTT uses locations ℓ to keep track of delayed
computations. Each delayed computation consists of a clock (set of input channels) and
a heap0allocated thunk. The location’s clock is what enables the runtime to resume
a computation if it matches the active input channel. The operational semantic rules
E-Delay, E-Adv, Wait, E-Adv-Wait, and E-Never describe how delayed computations
are handled. A user of ComRaTT may “suspend” a computation 𝑒 with the delay
construct, given a clock 𝜃. This allocates a location ℓ and wraps the computation in
a thunk 𝜆.𝑒. Resumed computations will be able to advance locations that match the
current active clock, essentially forcing active thunks wherever it is required.
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E-Value†

⟨𝑣; 𝜎⟩ ⇓ ⟨𝑣; 𝜎⟩
⟨𝑒1; 𝜎⟩ ⇓ ⟨𝑣1; 𝜎′⟩ ⟨𝑒2[𝑣1/𝑥]; 𝜎′⟩ ⇓ ⟨𝑣2; 𝜎″⟩E-Let†

⟨let 𝑥 = 𝑒1 in 𝑒2; 𝜎⟩ ⇓ ⟨𝑣2; 𝜎″⟩

⟨𝑒1; 𝜎⟩ ⇓ (𝜆(𝑥1, …, 𝑥𝑛−1).𝑒; 𝜎1) ⟨𝑒𝑖; 𝜎𝑖−1⟩ ⇓ ⟨𝑣𝑖; 𝜎𝑖⟩
⟨𝑒[𝑣𝑖/𝑥𝑖−1]; 𝜎𝑛⟩ ⇓ ⟨𝑣′; 𝜎′⟩ 𝑖 ∈ {2..𝑛}

E-App
⟨𝑒1(𝑒2, …, 𝑒𝑛); 𝜎⟩ ⇓ ⟨𝑣′; 𝜎′⟩

⟨𝑒1; 𝜎⟩ ⇓ ⟨𝑣1; 𝜎′⟩ ⟨𝑒2; 𝜎′⟩ ⇓ ⟨𝑣2; 𝜎″⟩
⊕ ∈ {+, ∗, −, =, <>, <, ≤, >, ≥, &&, ||}E0BinOp

⟨𝑒1 ⊕ 𝑒2; 𝜎⟩ ⇓ ⟨𝑣1 ⊕ 𝑣2; 𝜎″⟩

⟨𝑒1; 𝜎⟩ ⇓ ⟨true; 𝜎′⟩
⟨𝑒2; 𝜎′⟩ ⇓ ⟨𝑣; 𝜎″⟩E0If0True

⟨if 𝑒1 then 𝑒2 else 𝑒3; 𝜎⟩ ⇓ ⟨𝑣; 𝜎″⟩

⟨𝑒1; 𝜎⟩ ⇓ ⟨false; 𝜎′⟩
⟨𝑒3; 𝜎′⟩ ⇓ ⟨𝑣; 𝜎″⟩E0If0False

⟨if 𝑒1 then 𝑒2 else 𝑒3; 𝜎⟩ ⇓ ⟨𝑣; 𝜎″⟩

ℓ = alloc(𝜃, 𝜎)E-Delay†

⟨delay 𝜃 𝑒; 𝜎⟩ ⇓ ⟨ℓ; 𝜎, ℓ ↦ 𝜆.𝑒⟩

ℓ = alloc(∅, 𝜎)E-Never†

⟨never; 𝜎⟩ ⇓ ⟨ℓ; 𝜎⟩

⟨𝜂𝑁(ℓ); 𝜂𝑁⟨𝜅 ↦ 𝑣⟩ 𝜂𝐿⟩ ⇓ ⟨𝑤; 𝜎⟩E-Adv†

⟨advance ℓ; 𝜂𝑁⟨𝜅 ↦ 𝑣⟩ 𝜂𝐿⟩ ⇓ ⟨𝑤; 𝜎⟩

E0Wait
⟨wait 𝜅; 𝜎⟩ ⇓ ⟨wait_rt 𝜅; 𝜎⟩

⟨𝑥; 𝜂𝑁⟨𝜅 ↦ 𝑣⟩ 𝜂𝐿⟩ ⇓ ⟨wait_rt 𝜅; 𝜂𝑁⟨𝜅 ↦ 𝑣⟩ 𝜂𝐿⟩E0Adv0Wait
⟨advance 𝑥; 𝜂𝑁⟨𝜅 ↦ 𝑣⟩ 𝜂𝐿⟩ ⇓ ⟨𝑣; 𝜂𝑁⟨𝜅 ↦ 𝑣⟩ 𝜂𝐿⟩

Figure 3.3: Big0step operational semantics of ComRaTT.

There is no effective use or interrogation of the clocks (𝜃) on locations in the semantics,
Figure 3.3. In Async RaTT [3], the select combinator is the only language primitive
that is interested in the clocks at runtime. For ComRaTT, it is the runtime system,
described in Section 3.4 Reactive semantics (p. 24), that makes use of clocks attached
to each location.

Exactly like in Bahr and Møgelberg [3], part of the program’s heap can be filtered off
to represent all of the delayed computations that have a clock containing the input
channel 𝜅.
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Heap𝜅 = {𝜂 ∈ Heap | ∀ℓ ∈ dom(𝜂) . 𝜅 ∈ cl(ℓ)}

Heap entries under Heap𝜅 are executable whenever an input channel is active. When
data from the active input 𝜅 is requested in a program, the wait_rt construct will act as
a marker for the runtime system to retrieve the data. Advancing a name that evaluates
to a wait𝜅 should immediately retrieve the active input value for channel 𝜅.

We borrow the store representation 𝜎 of Async RaTT [3, section 4.1], which specifies
that 𝜎 can take two forms, either a single0heap store 𝜂𝐿 or a two0heap store 𝜂𝐿⟨𝜅 ↦
𝑣⟩ 𝜂𝑁 . The two0heap representation is a virtual grouping and does not impose any direct
requirements on the runtime system’s underlying representation other than being able
to address parts of the heap that is “now” (𝜂𝑁) and “later” (𝜂𝐿) under an active input
channel tick carrying a value, 𝜅 ↦ 𝑣.

New allocations using the alloc(𝜃, 𝑒) function (provided by the runtime) are expected
to allocate the expression 𝑒 under a thunk, 𝜆.𝑒, for the resulting location ℓ to be a valid
delayed computation. Adding allocated delayed computations to the heap, regardless
of the kind of heap, is done by extending the store with (𝜎; ℓ ↦ 𝜆.𝑒) with the constraint
that ℓ ∉ dom(𝜎).

3.4 Reactive semantics
Similarly to Async RaTT [3], ComRaTT programs need to interact within an environ0
ment. We define the reactive semantics of ComRaTT programs in Figure 3.4, where the
reactive semantics are mostly identical to that of Async RaTT, with minor differences
to address the restricted subset of the language we are working within.

𝑒 ⇓ ⟨⟨ℓ1, …ℓ𝑛⟩; 𝜂⟩
init

𝑒 ⟹ ⟨𝑥1 ↦ ℓ1, …, 𝑥𝑛 ↦ ℓ𝑛; 𝜂⟩

input
⟨𝑁; 𝜂⟩ ⟹

𝑘↦𝑣
⟨𝑁; [𝜂]𝑘∈⟨𝑘 ↦ 𝑣⟩[𝜂]𝑘∉⟩

output0end
⟨⋅; 𝜂𝑁⟨𝑘 ↦ 𝑣⟩ 𝜂𝐿⟩ ⟹ ⟨⋅; 𝜂𝐿⟩

𝜅 ∉ cl(ℓ) ⟨𝑁; 𝜂𝑁⟨𝑘 ↦ 𝑣⟩ 𝜂𝐿⟩ ⟹
𝑂

⟨𝑁 ′; 𝜂⟩
output0skip

⟨𝑥 ↦ ℓ, 𝑁; 𝜂𝑁⟨𝑘 ↦ 𝑣⟩ 𝜂𝐿⟩ ⟹
𝑂

⟨𝑥 ↦ ℓ, 𝑁 ′; 𝜂⟩

𝜅 ∈ cl(ℓ) ⟨advance ℓ; 𝜂𝑁⟨𝑘 ↦ 𝑣⟩ 𝜂𝐿⟩ ⇓ ⟨𝑣′ :: ℓ′; 𝜎⟩ ⟨𝑁; 𝜎⟩ ⟹
𝑂

⟨𝑁 ′; 𝜂⟩
output0compute

⟨𝑥 ↦ ℓ, 𝑁; 𝜂𝑁⟨𝑘 ↦ 𝑣⟩ 𝜂𝐿⟩ ⟹
𝑥↦𝑣′,𝑂

⟨𝑥 ↦ ℓ′, 𝑁 ′; 𝜂⟩

Figure 3.4: ComRaTT Reactive semantics, similar to Async RaTT [3].
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The main differences between ComRaTT and Async RaTT when it comes to reactive
semantics, is the fact that we do not include an input buffer. This means that in
ComRaTT the state of the reactive runtime will be either of shape 𝑒 or of shape
⟨𝑁, 𝜎⟩ neither of which include an input buffer 𝜄 containing input values that are
buffered across input ticks. Furthermore, ComRaTT only allows delayed computations
when initializing outputs, whereas Async RaTT allows the use of signals directly. So a
program 𝑒 will evaluate to a series of locations ℓ𝑖 rather than a series of signals 𝑣𝑖 :: ℓ𝑖.
This only changes the fact that we do not allow start0values for outputs of programs
at initialization.

Async RaTT [3, section 4.2] describes a program as being a pair of Δ, a context
containing available input channels, and Γout, a context containing output channels. The
pair Δ ⇒ Γout is a reactive interface that a program must implement. Thus the 𝑒 form
is a reactive program implementing the interface Δ ⇒ Γout, where the output interface
Γout = 𝑥1 : 𝐴1, …, 𝑥𝑛 : 𝐴𝑛, equivalent to all the output channels of the program. For the
form ⟨𝑁, 𝜎⟩, 𝑁  is a mapping from outputs to locations 𝑥1 ↦ ℓ1, …, 𝑥𝑛 ↦ ℓ𝑛 where 𝑥𝑖 ∈
dom (Γout). The forms do not deviate at all from Async RaTT [3], we simply omit the
input buffer.

ComRaTT programs start their lifecycle at init, where each declared output 𝑥𝑖 will be
associated with a delayed computation ℓ𝑖. When an input is received in the runtime,
the heap is split into two, just as in Async RaTT [3, section 4.2]. The left0side of the
heap contains delayed computations that match the active input channel, wheres the
right0side contains delayed computations which are unaffected and to be executed later.

When executing the output0* transitions, we iterate through all delayed computations
in 𝜂𝑁  (the now heap). Delayed computation clocks 𝜃 = cl(ℓ) are interrogated sequen0
tially through output0compute when 𝜅 ∈ 𝜃. Outputs that do not contain the input
channel in their clocks will transition through output0skip when 𝜅 ∉ 𝜃.

At the output0end transition ComRaTT can collect garbage by removing 𝜂𝑁  from
the heap, transitioning back to a single heap 𝜂𝐿, similarly to Async RaTT [3, section
4.2]. The runtime repeats execution of input/output transitions indefinitely

3.5 Example program
To showcase how a ComRaTT program looks like and how it is type checked and
executed, we present the program in Listing 3.2. This program is expected to react
to keyboard presses and print back the value from the input channel. The program is
somewhat trivial, but it will take us through the interesting parts of the ComRaTT
language design.
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1 chan keyboard : int;

2

3 kb : O Sig int

4 def kb =

5   let key = wait keyboard in

6   delay {cl(key)} (

7     advance key :: kb

8   );

9

10 print <- kb;

Listing 3.2: A ComRaTT program reacting to keyboard input by immediately printing.

The program contains a single input, keyboard producing integers, and a single output
using the print output. Both input and output need to be supported by the underlying
runtime. We define a function kb which has the type O Sig int (later signal producing
integers) that binds key to the delayed computation wait keyboard.

This is a computation that has an implicit clock, cl(wait keyboard). kb returns a delayed
computation constructed by delay, whose inner value is a signal (constructed with ::)
consisting of advance key as the head and kb as the tail. The return value assumes the
clock of key, and the head of the signal is the runtime value of the keyboard input at the
time of resuming the delayed computation. The tail is recursive, referencing kb itself,
creating an infinite stream. The runtime manages extracting the head of the signal and
printing it with the print output. We can type the kb top0level function by applying
the rules of our type system starting from the initial top0level declaration rule.

keyboard : ℤ ∈ Δ3)
Γ ⊢Δ wait keyboard ⇒ ○ ℤ

Γ ⊢Δ key ⇒ ○ ℤ5)
Γ ⊢Δ cl(key) : Clock

Γ ⊢Δ key ⇒ ○ ℤ7)
Γ, ✓cl(key) ⊢Δ adv key Γ ⊢Δ kb ⇒ ○ Sig ℤ6)

Γ, ✓cl(key) ⊢Δ adv key :: kb ⇒ ○ Sig ℤ4)
Γ, key : ○ ℤ ⊢Δ delay {cl(key)} adv key :: kb ⇒ ○ Sig ℤ2)

Γ, kb : ○ Sig ℤ ⊢Δ let key = wait keyboard in delay {cl(key)} adv key :: kb ⇐ ○ Sig ℤ1)
Γ ⊢Δ def kb () = let key = wait keyboard in delay {cl(key)} adv key :: kb ⇐ ○ Sig ℤ

Figure 3.5: Typing derivation for the example program in Listing 3.2.

In Figure 3.5, the derivation tree from recursively applying the typing rules from
Figure 3.2 is shown. To present the tree, we will be referring to the labels at the left
side of each rule for each step, explaining the tree bottom0up. We have omitted the
outer0most leaf rules that would terminate variable bindings, and used adv in place of
advance for brevity. Rule application is done under the assumption that the context Δ
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has keyboard : ℤ as the only input channel.
Step 1) uses the FunDef ↓ rule, which expects a top0level function definition. The
contents of the function is a let0binding.
Step 2) uses the Let ↑ rule, consisting of two parts, the right0hand side of the binding
and the body expression of the binding.
Step 3) uses the Wait† ↑ rule to the right0hand side of the let binding, this expression
is a wait expression that terminates this part of the tree.
Step 4) uses the Delay† ↑ rule to the body of the let expression. Here we must consider
the clock of the delay expression and the body of the delay must be checked under a
tick in its context.
Step 5) uses the ClockCl† ↑ rule to establish that the key binding is a delayed compu0
tation (thus containing a clock).
Step 6) uses the Sig ↑ rule, expecting a value of type 𝜏  as the head and a value of type
○ Sig 𝜏  as its tail. The Sig type is recursive which is why we refer to kb in the tail.
Step 7) uses the Advance† ↑ rule, under the tick cl(key), resulting in advancing the key
variable

To execute the program in Listing 3.2, we construct a reactive ComRaTT program
instance with the following parameters
• Δ = key : ℤ (shortened for brevity)
• Γout print : Sig ℤ
• 𝑒 = kb
• 𝜂 = ∅

We can evaluate the program starting with init.

kb ⇓ ⟨ℓ1; 𝜂⟩, key ∈ cl(ℓ1) ⇝ ⟨𝑥1 ↦ ℓ1; 𝜂⟩

We have evaluated kb to a location (a delayed computation of type later signal of
integers) that is assigned to the only output 𝑥1. We then assume an input is received,
the number 65 (ASCII code for the letter “A”) is received on input key, meaning we
must apply input

⟨𝑥1 ↦ ℓ1; 𝜂⟩ ⟹
key ↦ 65

⟨𝑥1 ↦ ℓ1; [⟨𝑥1 ↦ ℓ1⟩]𝑁⟨key ↦ 65⟩ [∅]𝐿⟩

The runtime will filter out all locations that contain key in their clock and put them in
the now heap on the left side. Since it is the only location in our program, the later heap
is empty. Processing the input is done by output0compute, as the map of output
channels only contain ℓ1, which has key ∈ cl(ℓ1).
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⟨advance ℓ1; [⟨𝑥1 ↦ ℓ1⟩]𝑁⟨key ↦ 65⟩ [∅]𝐿⟩ ⇓ ⟨𝑣1 :: ℓ2; [⟨𝑥1 ↦ ℓ1⟩]𝑁⟨key ↦ 65⟩ [∅]𝐿⟩

⇝ ⟨𝑥1 ↦ ℓ2; 𝜂⟩

As there are no more locations in the now heap, we will finish the computation
loop by output0end, which clears out the now heap (garbage collection) and puts
the program’s reactive state into waiting for inputs. For larger programs, many more
outputs could be processed, and the input channel would dictate which heap locations
are considered active.
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Chapter 4

Compiling ComRaTT
This chapter covers the compilation of ComRaTT programs to WASM and the steps
required to get there. Going from ComRaTT source code, as seen in Figure 3.1, to
WASM bytecode requires careful planning for us to adhere to the semantics of the
language while distilling the programs into WASM instructions.

The binaries resulting from compiling ComRaTT programs are meant to be executed
in the context of a runtime. This section will make small references to that fact, but
an explanation of the reactive runtime system is found in Chapter 5 Implementing the
Reactive Semantics (p. 48).

The general WASM compilation process described in this chapter borrows many
techniques and implementation details from our prior research project [18]. We have
introduced new compilation techniques and methods, and switched the host language
from OCaml to Rust.

We will cover the compiler’s path from source code to a WASM binary, including
descriptions of the methods and tools we use and the program transformation passes
required to compile to WASM bytecode.

4.1 Methods & tools
Our initial research project [18] has provided a foundation for compiling a simple
functional programming language to WASM. We will be basing the work in this chapter
on the findings from that project. Most important are the program transformations we
have made, which play a vital role in allowing us to compile ComRaTT to WASM.

Several CLI tools have been helpful in implementing and debugging the WASM code
generation. Most of these come from The WebAssembly Binary Toolkit [30]. Noteworthy
tools from this toolkit include wasm-objdump for dumping and inspecting a WASM
binary, wat2wasm/wasm2wat for converting WAT to WASM and vice versa, wasm-interp
for interpreting a WASM binary, and wasm-validate for validating a WASM binary.

4.2 Lexing and parsing
Whereas the ComRaTT compiler in our previous work [18] featured an LR(1) parser
generated with OCaml’s menhir, we now use the Rust crate pest7 which uses parsing

7https://docs.rs/pest/latest/pest/, accessed 14/05/2025
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expression grammars (PEG) [15] combined with Pratt parsing [27]. The main reason
for using PEG is to ensure determinism and thus avoid any ambiguous parsing. PEG
parsers do not allow backtracking, and the order that rules appear in alternatives is
the order the rules are tried in. PEG parsing works well with Pratt parsing to allow
succinctly defining operators and their precedence, which is the reason we use both
techniques.

The choice of parsing library was influenced only by the perceived ease of use as well as
the out0of0the0box error reporting ability. We briefly tried out the parser combinator
library winnow8 but found it difficult to generate clear error messages. The focus of this
thesis lies entirely elsewhere, and considerations about the parser, parsing performance,
and errors being reported did not weigh heavily in our decision making.

The grammar for the parser is found in Appendix A1 Grammar (p. 67). Note that there
is no separate lexer specification given that the parser is based on PEG [15], which does
not require a lexical analysis phase. The implementation of the parser is very similar to
the syntax in Figure 3.1. The difference in the PEG implementation is that we ensure a
certain shape for parts of the language that require operator precedence; these include
expressions, clock expressions, and types. The pest library expects the shape of such
rules to be
prefix* ~ primary ~ postfix* ~ (infix ~ prefix* ~ primary ~ postfix*)*
in order for the rule to be eligible for Pratt parsing. The Pratt parser receives parsed
tokens and applies simple precedence tables for the different kinds of operators we
support. That means we have one Pratt parser for expressions (with binary operators
+, -, etc.), one for clock expressions (with binary operator U), and one for types (with
operators ->, O, and Sig, etc.).

4.3 Typing ComRaTT programs
Type inference in ComRaTT uses a bidirectional type checker with a constraint0based
Hindley0Milner algorithm as described in Figure 3.2. The typing judgments translate
directly into Rust pattern matching, which we demonstrate using the delay expression
rule.

Γ, ✓𝜃 ⊢Δ 𝑒 ⇒ 𝜏 Γ ⊢Δ 𝜃 : Clock Delay† ↑
Γ ⊢Δ delay {𝜃} 𝑒 ⇒ ○ 𝜏

Figure 4.1: The delay type judgement.

The delay typing judgement seen in Figure 4.1, which is used to type the expression
delay {cl(_)} e, can be implemented in our compiler via pattern matching. The
resulting type of the expression is expected to be ○ 𝜏  by extending the context with

8https://docs.rs/winnow/latest/winnow/, accessed 13/05/2025
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clock cl(_) and inferring the type of e under that tick. In this case cl(_) is a symbolic
clock expression, and not a concrete clock, meaning the clock itself is evaluated at
runtime and is simply passed on to the typed expression when constructing the ○ 𝜏
type. In Listing 4.1 the construction of ○ 𝜏  with the clock cl(_) can be seen at the
highlighted line 11.

1 Expr::Delay(e, clock) => {

2     // Introduce a tick given the clock

3     let context = context.promote_tick(&clock);

4     // Call recursively, propagate constraints

5     let (ty, type_output) = self.infer(context, *e);

6     (

7         Type::TLater(ty.clone().b(), clock.clone()),

8         TypeOutput::new(

9             type_output.constraints,

10             TypedExpr::TLam(Vec::new(), type_output.texp.b(),

11                 Type::TLater(ty.clone().b(), clock.clone()),

12                 Some(clock)),

13         ),

14     )

15 }

Listing 4.1: Rust translation of the delay judgement in Figure 4.1

The promote_tick() operation extends the typing context to reflect that we are now
under a tick, allowing variables—bound before the tick—to be advanced with advance
expressions. The resulting TLater type captures both the delayed value type and its
clock dependency. The rest of the type judgements from Figure 3.2 are implemented in
a similar fashion, with exception of the checking rules which will, in addition to inferring
recursively, constrain the resulting type to be equivalent to some given expected type.

Type inference completes before compilation passes, ensuring all subsequent transfor0
mations operate on well0typed expressions. The Async RaTT core calculus type system
[3, section 2] does not present inference of clocks, though the Async Rattus Haskell
plugin [5], and the transpiled Async RaTT implementation by Berg and Jäpelt [6] both
infer clocks. We do not infer clocks in ComRaTT.
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4.4 From WAT to WASM binary format
Whereas we originally generated WAT strings in our research project [18], ComRaTT
targets the WASM binary format directly. We utilize the Rust crate wasm_encoder9

that provides an abstraction layer for encoding WASM. The wasm_encoder library does
not require using a specialized WASM0focused abstract syntax or an SSA IR, it instead
directly writes WASM instructions to byte buffers. Because mature tools for converting
between WAT and WASM exist, there was very little reason for us to look elsewhere
for alternatives with higher abstraction levels10.

What we gain from wasm_encoder is mostly a simplified API to generate syntactically
sound operations. Though, we do not have any kind of type safety guarantees in terms
of the generated WASM output using the library.

1 (func

2   i32.const 33

3   i32.load offset=4 align=2

4   i32.popcnt

5 )

Listing 4.1: Simple WAT function counting the number of one bits in a value loaded
from the heap at index 37.

Instead of concatenating strings together to generate the WAT code in Listing 4.1, we
can construct a function with the same operations using the API from the wasm_encoder
library as seen in Listing 4.2.

1 let mut func = Function::new(vec![]);

2 func.instructions()

3   .i32_const(33)

4   .i32_load(MemArg {

5     offset: FUNCTION_INDEX_OFFSET,

6     align: WASM_ALIGNMENT_SIZE,

7     memory_index: 0,

8   })

9   .i32_popcnt()

10   .end();

Listing 4.2: Generating instructions for the function in Listing 4.1 using wasm_encoder

9https://docs.rs/wasm0encoder/latest/wasm_encoder/, accessed 14/05/2025
10Alternatives include binaryen, walrus, and waffle, llvm, all accessed 15/05/2025
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This abstraction allowed us to move fast and not worry about well0formedness of our
individual instructions and constantly looking up WAT syntax. Having editor sugges0
tions for WASM operations and typed arguments for each operator saved us a lot
of time.

4.5 Passes and transformations
Before generating code, the typed ComRaTT abstract syntax tree undergoes several
transformation steps. These transformations are also referred to as “compilation
passes”. Besides the new Consecutive lambda elimination and ANF conversion, all of
them also exist in Holmgaard and Sattar Atta [18].

Figure 4.2 illustrates the pipeline of passes and transformation steps including code
generation.

Partial application
elimination

Consecutive
application
elimination

Consecutive lambda
elimination

Lambda liftANF conversionCode generation

Figure 4.2: Visualization of the compilation pipeline after parsing and typechecking.

4.5.1 Partial application elimination / 𝜂/expansion
The 𝜂0expansion pass serves the purpose of bridging the gap between functional
programming and WASM by transforming partial function application to function
application without leftover arguments.

As an example, this pass transforms Listing 4.3 into Listing 4.4.

1 main : int

2 def main =

3   let add = fun x -> fun y -> x+y in

4   let add2 = add 2 in add2 40;

Listing 4.3: ComRaTT code example with a partial application
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1 main : int

2 def main =

3   let add = fun x -> fun y -> x+y in

4   let add2 = fun #part_elim_lam1 -> add 2 #part_elim_lam1 in add2 40;

Listing 4.4: ComRaTT code example in Listing 4.3 with partial application eliminated

The code in Listing 4.3 partially applies the add function in the let add2 = add 2
in .. binding. Through 𝜂0expansion, we explicitly declare a function wrapping add 2
such that the second argument is explicit, as seen in Listing 4.4.

4.5.2 Consecutive application elimination
ComRaTT supports functions applied to multiple arguments at once. This pass col0
lapses application expressions where the function being applied is also an application,
i.e., the form ((f x) y) z, to accommodate the non0functional nature of WASM. The
code in Listing 4.5 transforms into the code in Listing 4.6 with this pass.

1 main : int

2 def main =

3   let add_three = fun x y z -> x+y+z in

4   ((add_three 37) 3) 2;

Listing 4.5: ComRaTT code example with consecutive applications

1 main : int

2 def main =

3   let add_three = fun x y z -> x+y+z in

4   add_three 37 3 2;

Listing 4.6: ComRaTT code example in Listing 4.5 with consecutive applications
eliminated

Instead of partial application (which could lead to 𝜂0expansion and closure allocation),
we consolidate the applications such that add_three is applied directly to the multiple
arguments 37 3 2 at once. This gives us a single function call to add_three.

4.5.3 Consecutive lambda elimination
This pass merges consecutive lambdas, so that e.g. fun x -> fun y -> x + y becomes
fun x y -> x + y in cases where a closure is not required and no partial application
takes place in the nested lambdas. We do this transformation to reduce the amount of
lifted lambdas, and thus also the amount of closures in a program.
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4.5.4 Lambda lifting
As outlined in Section 2.2.7 Function section (p. 13), the WASM specification declares
functions within a module as top0level functions. These functions are not able to nest,
meaning any nested functions in ComRaTT must be moved to the top. This can be done
by a technique called lambda lifting. Jones et al. [23] describes the process of lambda
lifting as a way to produce ‘supercombinators’, which have the exact same properties as
top0level functions, namely that they contain no free variables, they contain no nested
lambdas, and they can have zero or more arguments.

Lambda lifting will recursively lift all nested lambdas from a function definition, leaving
behind only supercombinators that are easily compiled to WASM.

To lift all lambdas, we start by going through every top0level definition, traversing
through definition bodies, and lifting any nested lambdas to the top level. When a
function definition (fun .. -> ..) is encountered in a top0level definition, a handful of
steps are taken to lift the lambda. First, the free variables of the function are collected
and combined with the existing function arguments. The function is then removed
and declared as a top0level definition, leaving behind a call0site in its place. This call0
site will be partially applied, fixing all variables that were free variables under the
function scope.

To see this in action, we will consider a ComRaTT function definition add5

1 add5 : int -> int

2 def add5 =

3   let value = 5 in

4   fun x -> x + value;

We lambda lift the function found at the return position by first identifying its free
variables, which consist only of the value variable in fun x -> x + value.

1 #lambda_1 : int -> int -> int

2 def #lambda_1 value x = x + value;

3

4 add5 : int -> int

5 def add5 =

6   let value = 5 in

7   #lambda_1 value;

After lifting to #lambda_1, the function is replaced by a call to the lifted lambda,
#lambda_1 value, a partially applied function that is semantically identical to the
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original lambda. Notice that the explicit value argument in #lambda_1 affects the type
of the #lambda_1 top0level definition accordingly by adding int -> ... to the type.

The program left after the transformation is more appropriate for compiling WASM
code from, as we do not have to consider any high0level language constructs in a
definition body that do not have equivalent low0level WASM constructs.

4.5.5 A/normalization
The final transformation before generating WASM code is converting the AST to A0
normal form (ANF). In the research project [18], we considered A0normalization to
help bridge the gap between the functional nature of Async RaTT and the sequential
nature of WASM, but did not implement it.

When prototyping A0normalization in ComRaTT, we very quickly found that it was
a useful intermediate representation for our compiler. With ANF, all intermediary
computations are named and linearized. Such direct style forces the order of interme0
diary computation to match that of imperative machine code/bytecode Flanagan et al.
[13]. To show what ANF looks like, we can consider the expression f 1 2, which will
be transformed into a form where all intermediary partial applications are explicitly
bound in what could be considered a natural order for most target machines:

1 let x0 = f 1 in

2 let x1 = x0 2 in

3 x1

Here the intermediary f 1 application is bound to x0, which is a partially applied
function used in x1 for the full function application. This order of bindings matches
the order we would like to generate code in, as it is linear and all required intermediary
calculations are bound to an explicit variable before we need to use them.

There is no canonical ANF definition, although the literature Flanagan et al. [13] does
provide a starting point for A0normalization. ComRaTT generates WASM bytecode
directly from its ANF representation.

In ComRaTT ANF, expressions are delineated into two categories. We have either
“atomic expressions” or “complex expressions”. In our ANF representation, atomic
expressions consist of constants, binding names, lambda abstractions, and wait expres0
sions. Complex expressions compose atomic expressions to form if expressions, function
application, primary operations, tuple introduction, and tuple elimination. Let bindings
in ANF can bind either category of expressions.
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𝖠𝗇𝖿𝖤𝗑𝗉𝗋 𝑒 ⩴ AExpr
| CExpr
| let 𝑥 = 𝑒 in 𝑒′ let binding

𝖠𝖤𝗑𝗉𝗋 𝑎 ⩴ 𝑣 constant
| 𝜆𝑥.𝑒 closure
| 𝜆○𝑥.𝑒 later closure
| wait var wait expression

𝖢𝖤𝗑𝗉𝗋 𝑐 ⩴ 𝑎 ⊕ 𝑎′ binary operation
| 𝑎 𝑎′ function application
| (𝑎(,𝑎′)∗) tuple introduction
| 𝑎 . ℤ tuple elimination
| if 𝑎 then 𝑒1 else 𝑒2 conditional

Value 𝑣 ⩴ ℤ | 𝑥 | true | false | ()
⊕ ⩴ + | ∗ | / | − | = | <

| ≤ | > | ≥ | <>
Figure 4.3: Syntax of the A0normalized ComRaTT source language.

ComRaTT’s ANF syntax is seen in Figure 4.3, where the two expression categories are
atomic expressions AExpr, and complex expressions CExpr, composed together by let
expressions through the AnfExpr construct.

In ComRaTT ANF, there are two ways to construct lambdas (or technically closures
at this point). Normal lambdas (𝜆) represent the kind of lambdas used for higher0order
functions, and later lambdas (𝜆○) provide more explicit code paths in code generation
for how delayed computations are handled. The ANF conversion pass picks out partially
applied lifted lambdas (as the lifted lambdas are applied to any free variables after
lifting) and converts them to the ANF closure representations. The ComRaTT ANF
representation is mostly similar to the syntax in Figure 3.1 for the rest of the language
constructs.

4.6 Structure of a ComRaTT WASM binary
Our research project [18] presented ComRaTT with 640bit integers, 320bit booleans
and unit values and no pointers. There was three memory regions, one for stable types
as well as two separate “now” and “later” heaps.

We will now be presenting ComRaTT with changes made to the representations and
module structure. ComRaTT binaries follow the ordering of section within a module
as seen in Figure 2.1.

4.6.1 Value representation
ComRaTT features two primitive types, boolean and integers. All values and pointers
are represented by 320bit integers to simplify compilation, as dealing with uniformly0
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sized heap allocations is more or less trivial compared to heterogenous sizes. In practice,
this means using the WASM value type i32, which aligns well with memory regions
being 320bit in WASM (without a 640bit memory proposal enabled).

4.6.2 Memory regions
ComRaTT features two memory regions. This decision was a step towards introducing a
garbage collector (GC) into the runtime system. Because of implementation complexity,
a GC for ComRaTT has not been implemented, see Section 6.7 Garbage collection (p.
55) for our GC considerations and plans.

One memory region, referred to as the shared heap, is for storing heap allocated values
(tuples) and closures produced by delayed computations and higher0order functions.
A closure is represented in WASM memory by 2 ⋅ 4 + 𝑛 ⋅ 4 bytes. The first 2 ⋅ 4 bytes
reserve two i32 fields, one for a function table index (function pointer) and one for
the number of arguments left to be applied in the closure. The remaining 𝑛 ⋅ 4 bytes
contain parameters required to call the underlying function, again as all ComRaTT
values are represented by 320bit integers, we can use a uniform 40byte length for every
parameter. These last 𝑛 ⋅ 4 bytes can be considered the closure environment.

Fun index Args left Arg n-1 Arg ... Arg 0

i32·ni32i32

Figure 4.4: Illustration of how closures are represented in memory.

In Figure 4.4 an illustration of the described layout is depicted. The first box repre0
sents the function pointer, second box is the number of arguments remaining in the
environment before the closure is fully applied and callable, followed by 𝑛 arguments.
It’s important to point out here that the arguments are in reverse order. This is a simple
decision that allows us to use the “args left” value as the offset into the 𝑛 arguments
when populating arguments. If, for example, we have a closure with an environment
size 𝑛 = 2, and 1 argument left to be applied, we can calculate where we should put
the last argument before executing the closure, saving us a i32 field containing the size
of the closure.

The other memory region, referred to as the location heap, handles fixed size data by
storing pairs of 320bit values: a pointer to a closure in the shared heap and a clock.
Each input channel in ComRaTT is represented as an i32 that is a power of two, so
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for 𝜅𝑖,  1 ≤ 𝑖 ≤ 32, a channel will have a distinct value 2𝑖−1. A clock is represented by
packing bits in an i32 using logical OR on all the input channels in the clock. This way
ComRaTT supports up to 32 individual input channels. Checking whether a delayed
computation depends on a specific input channel is handled by logical AND. Thus if
an input channel 𝜅2 is active, all delayed computations with clocks 𝜃 ∧ 𝜅2 > 1 will be
eligible for resumption. This would result in the following:

0110 𝜃
∧ 0010 𝜅2

0010 = 2

which marks the delayed computation 𝜃 as resumable.

Closure ptr Clock

i32 i32

Figure 4.5: Illustration of how locations are represented in memory.

Figure 4.5 shows the layout of the location heap. Every entry is uniformly sized, with
a repeating pattern of closure pointer followed by clock.

To relate the two heaps together, Figure 4.6 shows the interconnectedness between
them. The heap state is based on calling kb from the code in Listing 3.2. We see
two closures in the shared heap: one wrapping function 6 with no arguments and one
wrapping function 7 with a single argument: 0. The 0 (last) argument of the second
closure in the shared heap is a pointer to location 0—hence the arrow pointing back to
the location heap. This represents the recursive call to kb.
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0 1 8 1

6 0 7 0 0

[0..3] [4..7] [8..11] [12..15] [16..19]Memory byte
index

Shared
heap

Location
heap

Figure 4.6: Illustration of how the heaps are connected.

Both heaps are 320bit as this is the WASM default¹¹. We saw no reason to change this
given that we have no use for +4GB of memory or wider pointers for this proof of
concept. Most browsers and runtimes do support 640bit memory though¹².

4.6.3 Statically pre/generated code
All ComRaTT WASM binaries contain four statically generated functions, which are
briefly described below.

malloc allocates space in the shared heap by incrementing a global variable containing
the next free index in the shared heap and returning the old value. Since closures
and general values can have varying sizes, this function is parameterized over an i32
representing the size of the allocation.

location_malloc does the same for the location heap but does not take take an
argument since locations are fixed in size.

clock_of looks up the clock of a location at runtime by taking a pointer to it and
returning the clock part.

location_dispatch takes a location pointer and calls the program0dependant pre0
generated dispatch function with the closure pointer extracted. See Section 4.6.5
Program0dependent pre0generated code (p. 41) for details on dispatch.

Furthermore all top level ComRaTT functions have an extra local variable dupi32
added during compilation. This variable is used to store the pointer from calling malloc,

¹¹https://webassembly.org/docs/portability/, accessed 16/05/2025
¹²https://webassembly.org/features/, accessed 16/05/2025
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since it is needed multiple times when writing to memory and WASM has no instruction
for duplication, meaning that the pointer will be gone after the first write to memory.

See Section 4.8 Compiled example program (p. 46) for a detailed WASM example that
also shows these four functions.

4.6.4 Foreign function interface (FFI) functions
Each binary also imports two FFI functions which are to be supplied by the host
environment and used for interacting with it: wait (equivalent to the wait_rt construct
from Figure 3.3) and set_output_to_location. See Chapter 5 Implementing the
Reactive Semantics (p. 48) for more information on the details of these functions.

4.6.5 Program/dependent pre/generated code
The binaries always contain the two functions: dispatch and init, the contents of
which is generated at compile time based on the concrete ComRaTT program.

A WASM call instruction takes a function index as an immediate value encoded in the
instruction itself. To achieve the function pointer0like behavior needed in ComRaTT
closures, the call_indirect instruction proves useful, as it can take a numerical
function table index as an argument on the stack instead of as an immediate argument.
call_indirect still requires the type index of the function to be called as an immediate
argument though, meaning that there is no way to look the type index up at WASM
runtime.

dispatch solves this problem by providing a compile0time generated switch statement
that has cases for all relevant functions in the module. dispatch takes a pointer to
a closure, unpacks the function pointer part and then switches on that. Each case
puts the relevant arguments of the function to be called on the stack and executes a
call_indirect with the correct type index before returning.

init is the entry point from the perspective of the runtime, see Chapter 5 Implementing
the Reactive Semantics (p. 48) for more details on the implementation of that. Delayed
computations in ComRaTT are closures (locations) that wrap top level functions. If
a top level function e.g. contains a delay it will allocate a closure and a location.
The return value of calling the function will be a pointer to the location, to be used
by the runtime. The body of init is generated to contain a sequence of calls to top
level functions that return location pointers followed by a call to the FFI function
set_output_to_location that pass these pointers to the runtime. See Chapter 5
Implementing the Reactive Semantics (p. 48) for a more detailed description of this
procedure. init is generated based on the functions used in output channels. The state
shown previously in Figure 4.6 is based on calling init.
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Section 4.8 Compiled example program (p. 46) goes in depth with a compiled example
and thus also shows examples of dispatch and init.

4.6.6 Debug info with custom sections
ComRaTT uses WASM custom sections to attach debug information to symbols,
meaning that e.g. names are preserved when converting WASM to WAT. This has been
a useful aid during development.

Listing 4.7 shows the WAT0translated partial output of a given program and Listing 4.8
shows the same output where custom sections have not been used to attach debug
information. The snippets show type declarations but the concept applies to functions,
variables etc.

1 (module

2   (type $wait (func (param i32) (result i32)))

3   (type $set_output_to_location (func (param i32 i32) (result i32)))

4   (type $malloc (func (param i32) (result i32)))

5   (type $location_malloc (func (result i32)))

6   (type $clock_of (func (param i32) (result i32)))

7   (type $add (func (param i32 i32) (result i32)))

8   (type $main (func (result i32)))

9   (type $dispatch (func (param i32) (result i32)))

10   (type $location_dispatch (func (param i32) (result i32)))

11   (type $init (func))

12   ...

13 )

Listing 4.7: Partial WAT0translated output showing type declarations with debug
information
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1 (module

2   (type (;0;) (func (param i32) (result i32)))

3   (type (;1;) (func (param i32 i32) (result i32)))

4   (type (;2;) (func (param i32) (result i32)))

5   (type (;3;) (func (result i32)))

6   (type (;4;) (func (param i32) (result i32)))

7   (type (;5;) (func (param i32 i32) (result i32)))

8   (type (;6;) (func (result i32)))

9   (type (;7;) (func (param i32) (result i32)))

10   (type (;8;) (func (param i32) (result i32)))

11   (type (;9;) (func))

12   ...

13 )

Listing 4.8: Partial WAT0translated output showing type declarations without debug
information

4.7 Code generation
Apart from generating WASM bytecode instead of a WAT string, code generation
is not fundamentally different from Holmgaard and Sattar Atta [18]. Appendix A2
Compilation schemes (p. 71) shows compilation schemes for the entire ANF syntax
whereas this section will focus on compilation of delayed computations.

Like in Holmgaard and Sattar Atta [18] we use the syntax seen in Compilation
Scheme (4.1, example) meaning that compiling the AExpr 𝑒 results in 𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟺𝟸.
A mono-spaced font is used for WASM instructions whereas a regular font is used for
necessary pseudocode and recursive compilation.

AExpr[[𝑒]] = 𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟺𝟸 (4.1, example)

In the following sections we use natural language names for the WASM instructions.
Immediate arguments are provided to instructions like call FUNCTION_INDEX and are
also mono-spaced.

All load and store instructions take a memarg consisting of an offset and an alignment.
The alignment will always be 2 and is thus omitted for the sake of brevity. The offset
is the offset from the base pointer provided to the load/store instruction i.e.
i32.const 4
i32.load offset=4
loads from index 8 in memory. Load and store also take an immediate argument
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representing the index of the memory section to be used e.g. i32.store 0 and i32.load
1. The shared heap has index 0 and the location heap has index 1.

Calls to malloc will be presented as malloc(size) and represents the following sequence
of instructions

1 i32.const size 

2 call MALLOC_FUNCTION_INDEX

Similarly, calls to gen_clock_of(clock) is shorthand for a sequence of instructions that
is generated based on the concrete ClockExprs given. In summary, the code generated
is a sequence of i32.const and i32.or instructions that will leave the correctly repre0
sented clock on the stack.

Throughout the schemes we will also use various names like WORDSIZE and
INDEX_OF_TOPLEVEL. These represent constants, pseudocode or some value that is
available at the given point in the compilation that is also not relevant to fletch out
the origin of.

4.7.1 Compiling delayed computations (AExpr::LaterClosure)
Compilation Scheme (4.2, delayed computation) below concerns delayed computations
and require a detailed explanation, which will follow below.

Several invariants are assumed when generating code from a delayed computation.
These are
• The expression is a LaterClosure (𝜆○) which should have an application immedi0

ately inside the body
• The function being applied should be a top level function
• The arguments given in the application are the arguments to populate the closure

with
• The function is being fully applied

The code in Compilation Scheme (4.2, delayed computation) starts by allocating
a closure large enough for the arguments provided in the application. The pointer
for the new allocation is stored in dupi32 and put on the stack immediately again
with local.tee. Then the new allocation is populated with the index of the top
level function, 0 arity (since it is being fully applied) and the arguments (the loop).
A new location is allocated and populated with the closure pointer and the WASM
representation of the clock. Finally the pointer to the location is returned.

When allocating locations, like when allocating closures, we also need the pointer on the
stack several times. We cannot use the dupi32 variable as it already holds the pointer
for the closure at this point. Instead we can take advantage of the fact that locations
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are fixed in size and thus we can subtract from the address of the next free location
to get the current locations address. See the last 8 lines of Compilation Scheme (4.2,
delayed computation) for an example of this, where subtracting 8 and 4 from the
address of the next free location produce the function pointer and clock parts of the
current location, respectively.

if function = Expr::App(AExpr::Var(app_name, _var_ty), app_args, _app_ty)

i.e. an application of a toplevel function name then

AExpr[[LaterClosure(function, clock, lambda_type)]]
=

𝚖𝚊𝚕𝚕𝚘𝚌((𝟸+𝚊𝚛𝚒𝚝𝚢)*𝚆𝙾𝚁𝙳𝚂𝙸𝚉𝙴)

𝚕𝚘𝚌𝚊𝚕.𝚝𝚎𝚎 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝚃𝙾𝙿𝙻𝙴𝚅𝙴𝙻

𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟶
𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟶
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟺

𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎
AExpr[[arg]]
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟸+𝙸𝙽𝙳𝙴𝚇(𝚊𝚛𝚐) }}

}
}}

for arg in app_args

𝚌𝚊𝚕𝚕 𝙻𝙾𝙲𝙰𝚃𝙸𝙾𝙽_𝙼𝙰𝙻𝙻𝙾𝙲_𝙸𝙽𝙳𝙴𝚇

𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎

𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟷 𝚘𝚏𝚏𝚜𝚎𝚝=𝟶
𝚐𝚕𝚘𝚋𝚊𝚕.𝚐𝚎𝚝 𝟷

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟺
𝚒𝟹𝟸.𝚜𝚞𝚋

𝚐𝚎𝚗_𝚌𝚕𝚘𝚌𝚔_𝚘𝚏(𝚌𝚕𝚘𝚌𝚔)

𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟷 𝚘𝚏𝚏𝚜𝚎𝚝=𝟶
𝚐𝚕𝚘𝚋𝚊𝚕.𝚐𝚎𝚝 𝟷

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟾
𝚒𝟹𝟸.𝚜𝚞𝚋

(4.2, delayed computation)
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4.8 Compiled example program
To make the compiled output legible, it is run through wasm2wat¹³ and displayed as
WAT.

Considering the example program in Listing 3.2 again. It defines a single input channel
keyboard, a function kb and finally an output to the channel print that depend on the
delayed computation kb.

kb defines an infinite stream of keyboard inputs, represented as an asynchronously
delayed signal of integers.

Listing 4.9 shows the code generated for the kb function converted to WAT. It omits
everything else as we want to focus on the handling of delayed computations. The
entirety of the code is viewable in Appendix A3 sigrec WAT code (p. 77).

The code contains three functions: kb, #lambda_1 and #lambda_2.

kb contains delayed computations and thus its body is concerned with allocating in the
shared and location heaps.

#lambda_1 and #lambda_2 are the lambda lifted closures for the wait and delay
expressions respectively. These are the top level functions being pointed to by the
allocations made in kb.

The former pushes the 320bit integer constant 1 representing the first (and in this case
only) input channel after which the FFI function wait is called. At runtime this will
produce the actual value from the keyboard input channel.

The latter is the closure representing the delayed signal and thus more complex. It takes
a single argument key which is a pointer to the location representing #lambda_1. This
pointer is pushed on the stack and dispatched via location_dispatch resulting in the
keycode from the keyboard input channel being left on the stack, after which it is stored
in tmp0. Then a tuple (signal) is allocated by pushing 8 and calling malloc. The tuple
pointer returned is stored in dupi32 and put on the stack again. The keycode value is
fetched from tmp0 and stored in the first part of the tuple allocation, representing the
head of the signal. The pointer to the tuple is pushed on the stack again, after which
kb is called leaving a new pointer to a location representing #lambda_2 itself on the
stack, which is stored in the second part of the tuple. This second part represents the
recursive tail of the signal. Finally the pointer to the tuple is returned, to be used in
init and by the runtime.

¹³wasm2wat --enable-multiple-memories --enable-tail-call
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1 (module

2   (func $kb (type $kb) (result i32)

3     (local $key i32) (local $dupi32 i32)

4     i32.const 8

5     call $malloc

6     local.tee $dupi32

7     i32.const 6

8     i32.store

9     local.get $dupi32

10     i32.const 0

11     i32.store offset=4

12     local.get $dupi32

13     drop

14     call $location_malloc

15     local.get $dupi32

16     i32.store 1

17     global.get 1

18     i32.const 4

19     i32.sub

20     i32.const 1

21     i32.store 1

22     global.get 1

23     i32.const 8

24     i32.sub

25     local.set $key

26     i32.const 12

27     call $malloc

28     local.tee $dupi32

29     i32.const 7

30     i32.store

31     local.get $dupi32

32     i32.const 0

33     i32.store offset=4

34     local.get $dupi32

35     local.get $key

36     i32.store offset=8

37     local.get $dupi32

38     drop

39     call $location_malloc

40     local.get $dupi32

41     i32.store 1

42     global.get 1

43     i32.const 4

44     i32.sub

45     local.get $key

46     i32.const 4

47     call_indirect (type $clock_of)

48     i32.store 1

49     global.get 1

50     i32.const 8

51     i32.sub)

52

53
  (func $#lambda_1 (type $#lambda_1)
(result i32)

54     (local $dupi32 i32)

55     i32.const 1

56     call $wait)

57

58
  (func $#lambda_2 (type $#lambda_2)

(param $key i32) (result i32)

59
    (local $tmp_0 i32) (local $dupi32

i32)

60     local.get $key

61     i32.const 9

62
    call_indirect (type

$location_dispatch)

63     local.set $tmp_0

64     i32.const 8

65     call $malloc

66     local.set $dupi32

67     local.get $dupi32

68     local.get $tmp_0

69     i32.store

70     local.get $dupi32

71     call $kb

72     i32.store offset=4

73     local.get $dupi32)

74   )

Listing 4.9: WASM output from compil0
ing Listing 3.2, converted to WAT via

wasm2wat
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Chapter 5

Implementing the Reactive Semantics
In this chapter, we go over the implementation of ComRaTT’s reactive semantics, also
called the runtime. We start by covering the methods and tools used for the implemen0
tation before describing how state is represented and FFI functions are implemented.
Then we discuss how the implementation is mapped to the transitions of the reactive
semantics in Figure 3.4, describe implemented input and output channels, and finally
present the execution of an example program.

5.1 Methods & tools
The implementation of the runtime uses the Rust crate wasmtime14 to programmatically
create and manipulate a host environment in which we embed ComRaTT WASM
modules.

5.2 Implementing the runtime
The runtime is activated by the --run flag to the ComRaTT binary. This flag instan0
tiates the runtime by providing the bytes representing the generated WASM module
as well as collections of input and output channel names. Instantiation of the runtime
also covers configuring the host environment and instantiating the WASM module.

5.2.1 Representation of internal state
The runtime keeps internal state to aid execution. Specifically, it maps indices for
output channels15 to a list of location pointers, representing all the delayed computa0
tions that output to the channel.

Furthermore, a mapping between input channels and the newest value received is kept.
This implementation detail technically buffers the values despite ComRaTT only being
concerned with push0only input channels—see Section 6.2 Async RaTT features (p.
53) for more details on this.

5.2.2 FFI functions
As described in Section 4.6.4 Foreign function interface (FFI) functions (p. 41),
ComRaTT WASM modules import two functions from the host environment: wait
and set_output_to_location.

14https://docs.rs/wasmtime/latest/wasmtime/, accessed 19/05/2025
15Output channels are named in ComRaTT source programs but referred to by index in WASM.
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wait takes the index of an input channel and looks up the value received on the given
channel in the internal state of the runtime.

set_output_to_location takes the index of an output channel and a location pointer.
It is implemented by looking up the list of pointers associated with the output channel
index and inserting the location pointer.

5.2.3 init transition
The execution of the reactive loop in the runtime starts by extracting the generated
init function from the WASM module and calling it to populate the internal runtime
state with pointers to the delayed computations depended on by output channels—
corresponding to the init transition of the reactive semantics.

5.2.4 input transition
The reactive loop uses a multi0producer single consumer (MPSC) channel to listen
for events from input channel implementations. The loop uses asynchronous language
features of Rust to achieve concurrency16. Such an event is associated with a specific
input channel 𝜅, and the runtime proceeds by updating the stored value 𝑣 of 𝜅 and
then looking up all output channels depending on delayed computations with clocks
containing the given channel 𝜅 ∈ cl(ℓ), equivalent to Heap𝜅.

5.2.5 output/skip and output/compute transitions
All delayed computations relevant for the current input are executed sequentially via
FFI calls to location_dispatch. The ordering of these executions is decided by the
order that they appear in the program, grouped by a static output order defined by
the runtime.

Since output channels are restricted to depend on delayed signals, execution of locations
results in the allocation of signals (in the form of tuples) where the first element is
the value produced for the output channel and the second is the tail of the signal,
represented by a pointer to a new location. The returned value is a pointer to the tuple
representing the signal.

The runtime accesses the WASM memory regions and uses the returned pointer to
index and pick out the signal head to be output and the signal tail for updating the
location that the output depends on, before looping again.

These actions combined represent the transition output0compute. The output0
skip transition is also implemented implicitly by virtue of the fact that only locations
relevant for the current input channel 𝜅 are executed.

16Technically, the third0party library tokio is involved because Rust does not provide a runtime for
asynchronous programming.
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5.2.6 output/end
ComRaTT does not implement garbage collection and thus does not implement the
output0end transition. The heaps will exhaust system memory (or the maximum 4GB
supported by default) as no maximum size is set for the WASM memory regions. See
Section 6.7 Garbage collection (p. 55) for a discussion of ideas for implementing garbage
collection.

5.2.7 Supported input and output channels
ComRaTT supports a single keyboard input channel as well as two output channels
print and print_ascii. See descriptions of each below.

5.2.7.1 keyboard input
Captures a single character from standard input, represented by its ASCII key code.

5.2.7.2 print output channel
Prints the raw 320bit integer to standard output.

5.2.7.3 print_ascii output channel
Prints the ASCII representation of a 320bit integer to standard output.

5.3 Demo program
This section demonstrates running the program in Listing 3.2, which is also found at
the source folder path examples/sigrec-report.cml.

Run17 the example with

./𝚌𝚘𝚖𝚛𝚊𝚝𝚝 --𝚛𝚞𝚗 𝚎𝚡𝚊𝚖𝚙𝚕𝚎𝚜/𝚜𝚒𝚐𝚛𝚎𝚌-𝚛𝚎𝚙𝚘𝚛𝚝.𝚌𝚖𝚕

Initially the program being run as well as the representation after each pass will be
shown. See this output in Appendix A4 Program representation output (p. 83).

After that, a list of output channels used by the program as well as the contents of
each heap is shown—see Figure 5.1. Note that the shared heap is represented with each
individual memory cell while the indices for the location heap are for each [ pointer |
clock] pair. To simplify the representation, elements in each heap are shown as 320bit
integers instead of the 4 ⋅ 80bit cells they are made of. Likewise, the indices are scaled
by 4 and 8 accordingly so that pointers make sense.

The shared heap consists of two allocations: one at indices 00 and 04 representing a
closure for the function with index 6 with no arguments remaining to be applied and no
arguments populated, and one at indices 08, 12, 16 representing a closure for function

17Assuming the existence of a comratt binary. Alternatively
cargo run -- --run examples/sigrec-report.cml with a Rust toolchain
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7 with 0 arguments still to be applied and a single argument populated: the (location)
pointer 0.

In the location heap, we also see two allocations: the location at index 00 points to the
closure at index 00 in the shared heap and has the clock represented by 1, while the
location at index 08 points to the closure at index 8 and also has the clock represented
by 1.

Figure 5.1: A list of output channels and the contents of each heap shown after
initialization of the runtime

Pressing a button on the keyboard results in a tick (for this example, we use CTRL+a to
produce the ASCII code 1). This outputs the key code and the heap contents, shown
in Figure 5.2.

The shared heap has been expanded with indices 20 to 44. Indices 20 and 24 are the
head and tail of the signal (tuple) produced by the tick where index 20 has the ASCII
code 1 and index 24 has the pointer to the location starting at index 24. Indices 28
to 44 represent a repetition of the pattern initially seen in Figure 5.1 representing the
recursive call to kb, where the only difference is the argument to the second closure
now being the pointer 16.

Two new locations have also been allocated, the first pointing to the closure at index
28 and the second pointing to the closure at index 36 while both still have clock 1.
Again a repetition of the already observed pattern, with updated pointer addresses.

Producing more ticks will repeat the patterns already observed.
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Figure 5.2: Output from the runtime after a tick produced by pressing CTRL+a, it shows
the ASCII code and heap contents
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Chapter 6

Limitations and future work
While ComRaTT modestly implements the core ideas of Async RaTT, it is by no
means a feature0complete language. This chapter addresses the functional limitations
of ComRaTT and in some cases concrete directions for future work.

6.1 General functional programming features
Although ComRaTT is a functional programming language, it lacks some of the features
one expects from a well0founded functional language. There is no type polymorphism18,
nor pattern matching, unions, records, boolean operators, or a rich library of built0in
data types like strings or chars. Section 7.1 Evolution of project focus (p. 58) goes into
detail about the reasons for the lack of these features.

6.2 Async RaTT features
ComRaTT implements essential parts of Async RaTT like signals, the stable modality,
the later modality, clock tracking, allocating delayed computations, as well as a runtime
needed for execution, but it does not implement the select construct. This construct is
needed for synchronizing two delayed values and combining clocks (⊔ operator), which
are important for dynamic dataflow graphs.

Furthermore, input channels in ComRaTT are limited to being push-only and thus
not buffered-push or buffered-only. For that reason, we also do not implement read
for reading the buffered value of a channel. From an implementation standpoint,
implementing buffered and buffered0push inputs would not impose many challenges,
though it would have taken time away from other parts of the implementation, so this
limitation arises purely from constraining the scope.

6.3 Narrow slice
The primary goal of ComRaTT is to validate the feasibility of generating low0level
bytecode from high0level asynchronous modal FRP. While working towards that goal,
we reduced the generality of the compilation pipeline. As a result, certain sections of
the compiler expects very specific shapes of expressions, particularly for higher0order
functions and delayed computations.

18Technically never is implemented to be polymorphic, but the type system is generally monomorphic
since we do not provide a way to give type variables (or omit type signatures for functions) in the
syntax.
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We do think it is possible to regain generality in the compiler if more time and effort
is put into untangling the ComRaTT compilation pipeline.

Furthermore, output channels are restricted to expressions of type O Sig A, which is
limited compared to the syntax presented by Bahr and Møgelberg [3]. Allowing for Sig
A would not require substantial changes to the compiler.

6.4 WASM bugs
Some valid ComRaTT programs produce invalid WASM code. A subset of these issues
stem from the fact that our pipeline lost generalization while we attempted to properly
handle delayed computations, as described in Section 6.3 Narrow slice (p. 53).

Examples of this are the programs presented in Section 4.5 Passes and transformations
(p. 33). Compiling the example from Listing 4.3 will produce WASM code that attempts
to declare the closure represented by add, by issuing a call instruction to a top level
function without setting up the stack correctly with arguments first.

6.5 Representation limitations
Because of how dispatch is generated, functions in ComRaTT are limited to always
returning precisely one i32. Given that every ComRaTT value is represented by i32,
the type does not present an issue. Instead, it is the missing possibility of dispatching
functions with no or multiple return values.

An example is the FFI function set_output_to_location, which has a return value
even though it is never used. A method for circumventing this could be to maintain
state in the compilation pipeline that knows about the types of functions and thus
could insert the correct type index in call0sites. There could, however, still be problems
with tracking types in relation to partial application.

Adding to that, representing numbers with i32 and using 320bit memory regions implies
obvious restrictions on the implementation. Numbers are limited in their size and
programs are limited to using at most 4GB of memory. Changing this could be done
in different ways and should not be challenging. One way is to make memory regions
640bit and represent all pointers with 640bit integers. ComRaTT could be extended to
allow users to explicitly choose between 320bit and 640bit integers when working with
whole numbers or everything could be represented by 640bit integers, depending on the
goals of the language.

6.6 Example limited program
Listing 6.1 shows a ComRaTT adaptation of the scan function presented by Bahr and
Møgelberg [3, section 3.1]. There are notable differences because ComRaTT does not
have polymorphism nor a way to constrain types to be stable.
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1 scan : □ (int -> int -> int) -> int -> Sig int -> Sig int
2 def scan f acc siga =

3     let a = siga.0 in

4     let as = siga.1 in

5     let acc_prim = (unbox f) a acc in

6     acc_prim :: (delay {cl(as)} (scan f acc_prim (advance as)))

7 ;

Listing 6.1: ComRaTT source program implementing scan from Bahr and Møgelberg [3]

The function type checks and is supported by the pipeline up until it fails in code
generation because of how we handle boxed closures in the runtime. The compiler
attempts unboxing f within a closure, which is not supported as closures expect only
top0level definitions as function pointers. To remedy this, we would have to either
special case how we unbox functions, or make closure conversion more general, to handle
this without special cases.

6.7 Garbage collection
The version of ComRaTT we have presented in this paper does not feature a garbage
collector. We have described how the reactive semantics in Section 3.4 Reactive
semantics (p. 24) allow for efficient garbage collection of the 𝜂𝑁  heap through the
output0end transition. In practice, the virtual splitting of heaps into 𝜂𝑁  and 𝜂𝐿 is not
a constant time operation and requires traversal of the program heap to partition what
can be kept and what can be removed. As such, garbage collection leaves the heap in
a fragmented shape, so we decided to look for other viable options.

The heap structure defined in Section 4.6.2 Memory regions (p. 38), where we have a
shared heap and a location heap, was designed with the intention of allowing efficient
manipulation of location entries. Since we define the location heap as uniformly sized
sequences of 2 ⋅ 4 bytes, we can swap entries as we wish. This gives way to a strategy
of deleting 𝜂𝑁  and defragmenting the location heap, which we will describe now.

In Figure 6.1, the shared heap and location heap of a program containing four delayed
computations and input channels 𝜅1, 𝜅2 are given. 𝜅2 is the active input channel of
the program, and we have transitioned through all of the output0* transitions but
output0end from Figure 3.4.

Collecting garbage at the output0end transition is accomplished by taking
all active delayed computations 𝜂𝑁  and removing them from the store,
⟨⋅; 𝜂𝑁⟨𝑘 ↦ 𝑣⟩ 𝜂𝐿⟩ ⟹ ⟨⋅; 𝜂𝐿⟩. The active location heap entries in Figure 6.1, those
marked with striped boxes, are eligible for garbage collection.
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Shared heap
0 8 16 24 32 40 48 56

𝜆.𝑒1 𝜆.𝑒2 𝜆.𝑒3 𝜆.𝑒4 ⋅

Location heap
0 16 32 48

en
d

63

⟨⤑ 0, {𝜅1}⟩ ⟨⤑ 8, {𝜅2}⟩ ⟨⤑ 24, {𝜅1}⟩ ⟨⤑ 32, {𝜅2}⟩
Figure 6.1: Heaps of a program with active input 𝜅2 before output0end garbage

collection.

The current pointer for the next memory allocation offset is at byte 64 in the location
heap, marked with the end label. A single pass over the location heap is enough for
collecting and defragmenting the heap given the following algorithm:

1. Prepare location traversal from both ends at the heap, moving 2 ⋅ 4 bytes at a time.
left starting at location 0 and right starting at location 𝚎𝚗𝚍.

2. Traverse left until it meets a location 𝑖 such that 𝜅active ∈ 𝜃𝑖
a. Traverse right until it meets a location 𝑗 such that 𝜅active ∉ 𝜃𝑗
b. swap location 𝑖 with location 𝑗.

3. Repeat 2. until 𝑖 = 𝑗
4. Reset heap location allocation offset 𝚎𝚗𝚍 = 𝑖.

To showcase how the location heap collection looks, we will iterate through the
algorithm in Figure 6.2, where 𝜅active ≡ 𝜅2. We start with subfigure I), where we have
set left to location offset 0 and right to the location of end. We progress left to
the next location, 𝑖, and meet a clock where 𝜅2 ∈ 𝜃𝑖, which prompts us to move right
towards left until it meets a location 𝑗 such that 𝜅2 ∈ 𝜃𝑗 as depicted in subfigure II).
We then swap 𝑖 and 𝑗, and move left until we either find another location 𝑖 where
𝜅2 ∈ 𝜃𝑖 or 𝚕𝚎𝚏𝚝 = 𝚛𝚒𝚐𝚑𝚝, the latter of which is the case in subfigure III). At the end of
the algorithm, we update end to the location of left/right, leaving behind a collected
location heap.

The algorithm is not sufficient for garbage collection on its own. As we are updating
the indices of locations, we need to adjust any of the swapped locations 𝑗 to point to 𝑖
in the shared heap as well as the data structure(s) in the runtime that map outputs to
locations. This could require introducing indirection layers such that location references
are stable and more bookkeeping to defragment the indirection layers.
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  I) ⟨⤑ 0, {𝜅1}⟩ ⟨⤑ 8, {𝜅2}⟩ ⟨⤑ 24, {𝜅1}⟩ ⟨⤑ 32, {𝜅2}⟩
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 II) ⟨⤑ 0, {𝜅1}⟩ ⟨⤑ 8, {𝜅2}⟩ ⟨⤑ 24, {𝜅1}⟩ ⟨⤑ 32, {𝜅2}⟩
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end

32 48 64

III) ⟨⤑ 0, {𝜅1}⟩ ⟨⤑ 24, {𝜅1}⟩ ⟨⤑ 8, {𝜅2}⟩ ⟨⤑ 32, {𝜅2}⟩
Figure 6.2: Running conceptual GC algorithm on the location heap of Figure 6.1.

The bigger issue is handling transitive dependencies between locations and heap data.
When we remove a location during garbage collection, we need to figure out what other
locations and heap objects become unreachable as a result. This means implementing
a proper marking phase that follows location pointers to the shared heap to identify
which allocated elements are still reachable from the locations we are keeping. Any
location that does not get marked during this traversal becomes garbage. But getting
this right requires coordinating the location heap cleanup with the shared heap cleanup,
and we need to make sure we do not accidentally follow stale pointers or miss valid
references.

Finally, there is the question of when to actually run garbage collection. Running
at every output0end transition means that we pause everything and run collection
constantly. Delaying/grouping collection over multiple input/output phases would
amortize the cost of garbage collection, but increase implementation complexity. The
upcoming WebAssembly GC proposal might help handling stable values, but using the
GC would require restructuring the heap layout and code generation.

6.8 ComRaTT on the web
The runtime we have presented in this paper does not currently run on the web, but
could easily be translated to a JavaScript implementation. ComRaTT’s compilation
target, WASM, is well equipped for the web, giving us the building blocks required to
run graphical programs within a browser. The required next steps to accomplish this
include defining inputs and outputs for web interaction, and integrating a JavaScript
runtime with such primitives.
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Chapter 7

Reflections
7.1 Evolution of project focus
We left off our preliminary research project [18] with identifying several limitations and
future work candidates to potentially be part of the scope of this thesis, such as pattern
matching, polymorhpism, and algebraic data types.

At that point we knew that heap allocating closures was one of the first steps to take
towards implementing the reactive semantics and properly support the later modality
and signals, giving way for causality and productivity. This, however, proved to be a
bigger challenge than anticipated. Ultimately, achieving the main goal of supporting
the modal types and reactive semantics became the sole focus, reducing the priority
of features like polymorphism, built0in data types and GC. Specifically supporting
programs like the one presented in Listing 3.2 that use the core ideas of Async RaTT
was not straightforward while simultaneously attempting to keep regressions out of the
pipeline and losing generality.

For those reasons, some of the points mentioned as limitations in the research project
[18] have been repeated here.

7.2 Alternative compilation target
The decision to compile directly to WASM forced us to think very carefully about
how the language should be structured and what restrictions we had to impose on
ComRaTT programs. During implementation, it was clear that we could have moved
faster if we did not have to generate WASM directly from our language, as many design
decisions were made based on how the stack machine of WASM was designed. This
means, for example, that closures had to fit a certain shape for allocation on the heap
and that we were unable to provide a garbage collection strategy for the language.

We would have liked to explore the possibility of targeting our own custom stack
machine that would give us more control over the execution environment. Implementing
a virtual stack machine could trivially be done in any language that has WebAssembly
as a compilation target, such as Rust or Zig, providing us with an abstraction over
WASM while keeping the portability and (some of the) performance benefits. We
believe that using an intermediary stack machine would establish a better foundation
for exploring practical limitations and implementation requirements than targeting
WASM directly, mainly because a reference implementation of compiled Async RaTT
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does not exist yet. Iterating at a higher abstraction level is beneficial for trying out
things like garbage collection, compiler optimization passes, and the like.

Furthermore, a reference stack machine implementation is a way to establish an oracle
for the operational semantics, similarly to how an interpreter can be a reference
implementation for a programming language. As for performance, we cannot expect a
virtual stack machine running on top of WebAssembly to have identical performance
to directly targeting WebAssembly.

Given that the project set out to evaluate the feasibility of compiling an implementation
of Async RaTT to WASM, it would not have been within the scope of the project to
sidestep WASM with an intermediary stack machine.

7.3 Unit testing
Unit testing enabled us to iterate on different parts of the compiler with some level of
certainty that we were not breaking underlying functionality and behavior. For example,
when we transitioned from Hindley0Milner based type inference to the bidirectional
type checker, our existing suite of tests allowed us to sanity check the results of the
compiler, increasing confidence in and stability of the compiler.

Our testing approach had some limitations. We wanted to be able to express tests at
a higher level than providing and comparing abstract syntax trees before and after a
transformation. We also wanted to reuse the same test cases across different parts of
the compiler transformations, which was not straightforward without substantial test
infrastructure.

Additionally, our tests primarily verified compiler output rather than actual program
execution—adding automated WebAssembly runtime tests would have caught issues
in the generated code that only manifest during execution. Automated testing of
reactive behavior in programs would have been particularly valuable for validating
temporal semantics and ensuring that clock tracking worked correctly in practice. This
would have required setting up a WebAssembly execution environment and testing
framework, but could have provided stronger guarantees about the correctness of our
implementation.
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Chapter 8

Conclusion
This thesis has presented ComRaTT, the first implementation of a subset of Async
RaTT [3] that compiles directly to a low0level machine language (WebAssembly [28]).
Building on our prior research project [18], we have demonstrated the feasibility of
targeting WASM as a compilation output for an asynchronous functional reactive
programming language with modal types.

Our main contribution lies in successfully implementing the core reactive semantics of
Async RaTT, including signal handling, the stable modality, the later modality, clock
tracking, and heap0allocated delayed computations, all within the constraints of the
WebAssembly stack machine. While previous work in functional reactive programming
has focused on interpreters or higher0level compilation targets, ComRaTT represents
the first direct code generation approach for Async RaTT to WebAssembly.

The implementation demonstrates both achievements and limitations. Our compilation
pipeline transforms high0level functional constructs through multiple passes, includ0
ing 𝜂0expansion, consecutive application elimination, consecutive lambda elimination,
lambda lifting, and A0normalization, to produce WASM bytecode. But due to unre0
solved issues in our compilation pipeline, some ComRaTT programs generate invalid
WASM.

We have developed a working reactive runtime system that implements key aspects
of Async RaTT’s operational semantics, managing delayed computations through a
custom heap structure segregated into shared and location heaps. However, the techni0
cal challenges encountered proved more substantial than anticipated. Targeting WASM
directly forced difficult design decisions that limited the language’s expressivity and
led to a brittle implementation. Most notably, we were unable to implement garbage
collection, meaning programs will exhaust memory over time.

ComRaTT serves primarily as a proof0of0concept that demonstrates the potential and
the challenges of compiling asynchronous modal FRP languages to WebAssembly.
Future work would benefit from addressing the garbage collection challenge and
reconsidering whether an intermediary virtual machine might provide a more practical
foundation for such implementations.
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Acknowledgement of generative AI use
In accordance with ITU’s guidelines for use of generative AI in projects and theses [17],
this section declares how we have used generative AI for this thesis.

We have used the AI models Claude 3.5 Haiku19 and Claude 3.7 Sonnet20 by Anthropic
for small parts of the implementation of this project. The use was conducted through
the AI model integration in the text editor Zed²¹.

Specifically we have used it for generating abstract syntax trees in relation to unit tests,
where this would have been cumbersome to do manually. In some cases the output
from the model has been correct and as such has been used directly and in other cases
it has been necessary to manually modify the output slightly or re0prompt to have it
altered.

We have used prompts similar to “Given our AST definition … generate the AST of
a primitive expression that adds the variable ‘x’ to the 3rd element of the tuple (42,
true, 40)”.

Furthermore, the cover0page mascot was generated using generative AI (OpenAI’s
ChatGPT image mode).

BOTTOM TEXT

19https://www.anthropic.com/claude/haiku, accessed 13/05/2025
20https://www.anthropic.com/claude/sonnet, accessed 13/05/2025
²¹https://zed.dev/, accessed 13/05/2025
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Appendix
A1 Grammar
1 program = _{ SOI ~ toplevel* ~ EOI }

2

3 toplevel = _{

4     (function_def | channel_def | output_def) ~ ";"

5 }

6

7 function_args = { identifier* }

8

9 function_def = {

10
    identifier ~ ":" ~ type_expr ~ "def" ~ identifier ~

function_args ~ "=" ~ expr

11 }

12 channel_def  = { "chan" ~ identifier ~ ":" ~ type_expr }

13 output_def   = { identifier ~ "<-" ~ expr }

14

15 // Types

16
type_expr  =  { type_prefix* ~ type_primary ~ (type_infix ~
type_prefix* ~ type_primary)* }

17 type_infix = _{ arrow }

18

19 type_prefix = _{ later | signal | box_type }

20 later       =  { "O" }

21 signal      =  { "Sig" }

22 box_type    =  { "Box" | "□" }
23

24
type_primary = _{ int_type | bool_type | unit_type |
parenthesis_or_tuple_type }

25 int_type     =  { "int" }

26 bool_type    =  { "bool" }

27 unit_type    =  { "()" }

28 arrow        =  { "->" }

29
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30 parenthesis_or_tuple_type = {

31     "(" ~ type_expr ~ ("*" ~ type_expr)* ~ ")"

32 }

33

34 tuple_access = { primary ~ ("." ~ integer)* }

35 term         = { tuple_access+ }

36 expr         = { (term ~ (infix ~ term)*) }

37

38 clock_union = { "U" | "⊔" }
39 clock_wait  = { "wait" ~ (!"cl(") ~ identifier }

40
clock_base  = { "cl(" ~ (clock_wait | identifier) ~ ")" | "(" ~
clock_base ~ ")" }

41 clock_expr  = { clock_base ~ (clock_union ~ clock_base)* }

42

43 let_expr     = { "let" ~ identifier ~ "=" ~ expr ~ "in" ~ expr }

44 fun_expr     = { "fun" ~ function_args ~ "->" ~ expr }

45 if_expr      = { "if" ~ expr ~ "then" ~ expr ~ "else" ~ expr }

46 delay_expr   = { "delay" ~ "{" ~ clock_expr ~ "}" ~ expr }

47 advance_expr = { "advance" ~ identifier }

48 wait_expr    = { "wait" ~ identifier }

49 box_expr     = { "box" ~ expr }

50 unbox_expr   = { "unbox" ~ expr }

51

52 primary = _{

53     let_expr

54   | fun_expr

55   | if_expr

56   | delay_expr

57   | advance_expr

58   | wait_expr

59   | parenthesis_or_tuple

60   | integer

61   | true_lit

62   | false_lit
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63   | unit_lit

64   | identifier

65   | box_expr

66   | unbox_expr

67 }

68

69 parenthesis_or_tuple = {

70     "(" ~ expr ~ ("," ~ expr)* ~ ")"

71 }

72

73 infix = _{

74     sig_cons

75   | equality_op

76   | relational_op

77   | add_op

78   | mul_op

79 }

80

81 sig_cons      = { "::" }

82 equality_op   = { "<>" | "=" }

83 relational_op = { "<=" | ">=" | "<" | ">" }

84 add_op        = { "+" | "-" }

85 mul_op        = { "*" | "/" }

86

87 // Terminals

88
identifier = @{ !keyword ~ (ASCII_ALPHA | "_") ~
(ASCII_ALPHANUMERIC | "_")* }

89 integer    = @{ "-"? ~ ("0" | ASCII_NONZERO_DIGIT ~ ASCII_DIGIT*) }

90 true_lit   =  { "true" }

91 false_lit  =  { "false" }

92 unit_lit   =  { "()" }

93

94 keyword = _{

95     "def"
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96   | "let"

97   | "in"

98   | "if"

99   | "then"

100   | "else"

101   | "fun"

102   | "chan"

103   | "delay"

104   | "advance"

105   | "wait"

106   | "true"

107   | "false"

108   | "box"

109   | "unbox"

110   | "Box"

111   | "Sig"

112   | "O"

113 }

114

115 WHITESPACE = _{ " " | "\t" | "\r" | "\n" }

116 COMMENT    = _{

117     "/*" ~ (!"*/" ~ ANY)* ~ "*/"

118   | "//" ~ (!("\n") ~ ANY)*

119 }

PEG parser grammar pest.lang

70 / 83



Compiled Async RaTT Appendix

A2 Compilation schemes

A2.1 Code generation for AExpr

AExpr[[Const(CINt(n), _ty)]]
=

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝚗
(int constant)

AExpr[[Const(CBool(b), _ty)]]
=

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 if b then 𝟷 else 𝟶
(boolean constant)

AExpr[[Const(CUnit), _ty)]]
=

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 -𝟷
(unit constant)

AExpr[[Const(CLaterUnit), _ty)]]
=

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 -𝟷
(laterunit constant)

AExpr[[Const(Never), _ty)]]
=

𝚌𝚊𝚕𝚕 𝙻𝙾𝙲𝙰𝚃𝙸𝙾𝙽_𝙼𝙰𝙻𝙻𝙾𝙲_𝙸𝙽𝙳𝙴𝚇
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 -𝟺𝟸
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟷 𝚘𝚏𝚏𝚜𝚎𝚝=𝟶
𝚐𝚕𝚘𝚋𝚊𝚕.𝚐𝚎𝚝 𝟷
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟺
𝚒𝟹𝟸.𝚜𝚞𝚋
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟶
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟷 𝚘𝚏𝚏𝚜𝚎𝚝=𝟶
𝚐𝚕𝚘𝚋𝚊𝚕.𝚐𝚎𝚝 𝟷
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟾
𝚒𝟹𝟸.𝚜𝚞𝚋

(never constant)

71 / 83



Compiled Async RaTT Appendix

AExpr[[Wait(channel_name, _ty)]]
=

𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚌𝚑𝚊𝚗𝚗𝚎𝚕(𝚌𝚑𝚊𝚗𝚗𝚎𝚕_𝚗𝚊𝚖𝚎)
𝚌𝚊𝚕𝚕 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝚆𝙰𝙸𝚃_𝙵𝙵𝙸_𝙵𝚄𝙽𝙲𝚃𝙸𝙾𝙽

(wait expression)

AExpr[[Var(name, _ty)]]
=

if name is a local variable then
𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚟𝚊𝚛

else if name is toplevel function then
𝚌𝚊𝚕𝚕 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚝𝚘𝚙𝚕𝚎𝚟𝚎𝚕_𝚏𝚞𝚗𝚌𝚝𝚒𝚘𝚗

else panic

(var expression)

if function = CExpr::App(AExpr::Var(app_name, _var_ty), app_args, _app_ty)
i.e. an application of a name

AExpr[[Closure(lambda_args, function, _lambda_type)]]
=

𝚖𝚊𝚕𝚕𝚘𝚌((𝟸+𝚊𝚛𝚒𝚝𝚢)*𝚆𝙾𝚁𝙳𝚂𝙸𝚉𝙴)
𝚕𝚘𝚌𝚊𝚕.𝚝𝚎𝚎 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝚃𝙾𝙿𝙻𝙴𝚅𝙴𝙻
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟶
𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝙻𝙰𝙼𝙱𝙳𝙰_𝙰𝚁𝙶𝚂_𝙻𝙴𝙽𝙶𝚃𝙷
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟺
𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎
AExpr[[arg]]
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟸+𝙸𝙽𝙳𝙴𝚇(𝚊𝚛𝚐) }}

}
}}

for arg in app_args

𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎

(closure expression)
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A2.2 Code generation for CExpr

CExpr[[Prim(op, left, right,  ty)]]
=

AExpr[[left]]
AExpr[[right]]
B[[op, ty]]

(primitive expression)

where

B[[+, TInt]] = 𝚒𝟹𝟸.𝚊𝚍𝚍
B[[-, TInt]] = 𝚒𝟹𝟸.𝚜𝚞𝚋
B[[*, TInt]] = 𝚒𝟹𝟸.𝚖𝚞𝚕
B[[/, TInt]] = 𝚒𝟹𝟸.𝚍𝚒𝚟
B[[=, TBool]] = 𝚒𝟹𝟸.𝚎𝚚
B[[<, TBool]] = 𝚒𝟹𝟸.𝚕𝚝_𝚜
B[[<=, TBool]] = 𝚒𝟹𝟸.𝚕𝚎_𝚜
B[[>, TBool]] = 𝚒𝟹𝟸.𝚐𝚝_𝚜
B[[>=, TBool]] = 𝚒𝟹𝟸.𝚐𝚎_𝚜
B[[<>, TBool]] = 𝚒𝟹𝟸.𝚗𝚎
B[[_, _]] = panic
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CExpr[[App(f, args, _ty)]]
=

if f is a local variable representing a HOF pointer then

𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝙻𝙾𝙲𝙰𝙻
𝚒𝟹𝟸.𝚕𝚘𝚊𝚍 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟺
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟷
𝚒𝟹𝟸.𝚜𝚞𝚋
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟺
𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝙻𝙾𝙲𝙰𝙻
𝚒𝟹𝟸.𝚕𝚘𝚊𝚍 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟺
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝟺
𝚒𝟹𝟸.𝚖𝚞𝚕
𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝙻𝙾𝙲𝙰𝙻
𝚒𝟹𝟸.𝚊𝚍𝚍
AExpr[[arg]]
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝟾

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

for arg in args

else if f is a local variable representing a pointer then
𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝙻𝙾𝙲𝙰𝙻

AExpr[[arg]]
}}
}
}}

for arg in args

if local is of type later then
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝙻𝙾𝙲𝙰𝚃𝙸𝙾𝙽_𝙳𝙸𝚂𝙿𝙰𝚃𝙲𝙷
𝚌𝚊𝚕𝚕_𝚒𝚗𝚍𝚒𝚛𝚎𝚌𝚝

else
𝚒𝟹𝟸.𝚌𝚘𝚗𝚜𝚝 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝙳𝙸𝚂𝙿𝙰𝚃𝙲𝙷
𝚌𝚊𝚕𝚕_𝚒𝚗𝚍𝚒𝚛𝚎𝚌𝚝

else if f is a top level function then
AExpr[[arg]]} for arg in args
𝚌𝚊𝚕𝚕 𝙸𝙽𝙳𝙴𝚇_𝙾𝙵_𝙵𝚄𝙽𝙲𝚃𝙸𝙾𝙽

else panic

(application expression)
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CExpr[[IfThenElse(condition, then_branch, else_branch, ty)]]
=

AExpr[[condition]]
𝚒𝚏
AnfExpr[[then_branch]]
𝚎𝚕𝚜𝚎
AnfExpr[[else_branch]]
𝚎𝚗𝚍

(conditional expression)

CExpr[[Tuple(expressions, _ty)]]
=

𝚖𝚊𝚕𝚕𝚘𝚌(𝚝𝚞𝚙𝚕𝚎_𝚕𝚎𝚗𝚐𝚝𝚑 * 𝚆𝙾𝚁𝙳𝚂𝙸𝚉𝙴)
𝚕𝚘𝚌𝚊𝚕.𝚜𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎

𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎
𝙰𝙴𝚡𝚙𝚛[[𝚎]]
𝚒𝟹𝟸.𝚜𝚝𝚘𝚛𝚎 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝚆𝙾𝚁𝙳𝚂𝙸𝚉𝙴*𝙸𝙽𝙳𝙴𝚇(𝚎)}}

}
}}

for e in expressions

𝚕𝚘𝚌𝚊𝚕.𝚐𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚍𝚞𝚙𝚒𝟹𝟸_𝚟𝚊𝚛𝚒𝚊𝚋𝚕𝚎

(tuple expression)

CExpr[[Access(expr, index, _ty)]]
=

AExpr[[expr]]
𝚒𝟹𝟸.𝚕𝚘𝚊𝚍 𝟶 𝚘𝚏𝚏𝚜𝚎𝚝=𝚒𝚗𝚍𝚎𝚡*𝚆𝙾𝚁𝙳𝚂𝙸𝚉𝙴

(access expression)
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A2.3 Code generation for AnfExpr

AnfExpr[[AExpr(a)]]
=

AExpr[[a]]
(ANF atomic expression)

AnfExpr[[CExpr(c)]]
=

CExpr[[c]]
(ANF complex expression)

AnfExpr[[Let(name, _ty, rhs, body)]]
=

AnfExpr[[rhs]]
𝚕𝚘𝚌𝚊𝚕.𝚜𝚎𝚝 𝚒𝚗𝚍𝚎𝚡_𝚘𝚏_𝚗𝚊𝚖𝚎
AnfExpr[[body]]

(ANF let expression)
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A3 sigrec WAT code
1  (module

2   (type $wait (func (param i32) (result i32)))

3
  (type $set_output_to_location (func (param i32 i32) (result

i32)))

4   (type $malloc (func (param i32) (result i32)))

5   (type $location_malloc (func (result i32)))

6   (type $clock_of (func (param i32) (result i32)))

7   (type $kb (func (result i32)))

8   (type $#lambda_1 (func (result i32)))

9   (type $#lambda_2 (func (param i32) (result i32)))

10   (type $dispatch (func (param i32) (result i32)))

11   (type $location_dispatch (func (param i32) (result i32)))

12   (type $init (func))

13   (import "ffi" "wait" (func $wait (type $wait)))

14
  (import "ffi" "set_output_to_location" (func

$set_output_to_location (type $set_output_to_location)))

15   (func $malloc (type $wait) (param $size i32) (result i32)

16     (local $old i32)

17     global.get 0

18     local.tee $old

19     local.get $size

20     i32.add

21     global.set 0

22     local.get $old)

23   (func $location_malloc (type $location_malloc) (result i32)

24     (local $old i32)

25     global.get 1

26     local.tee $old

27     i32.const 8

28     i32.add

29     global.set 1

30     local.get $old)

31
  (func $clock_of (type $wait) (param $location_ptr i32) (result

i32)
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32     local.get $location_ptr

33     i32.load 1 offset=4)

34   (func $kb (type $kb) (result i32)

35     (local $key i32) (local $dupi32 i32)

36     i32.const 8

37     call $malloc

38     local.tee $dupi32

39     i32.const 6

40     i32.store

41     local.get $dupi32

42     i32.const 0

43     i32.store offset=4

44     local.get $dupi32

45     drop

46     call $location_malloc

47     local.get $dupi32

48     i32.store 1

49     global.get 1

50     i32.const 4

51     i32.sub

52     i32.const 1

53     i32.store 1

54     global.get 1

55     i32.const 8

56     i32.sub

57     local.set $key

58     i32.const 12

59     call $malloc

60     local.tee $dupi32

61     i32.const 7

62     i32.store

63     local.get $dupi32

64     i32.const 0

65     i32.store offset=4
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66     local.get $dupi32

67     local.get $key

68     i32.store offset=8

69     local.get $dupi32

70     drop

71     call $location_malloc

72     local.get $dupi32

73     i32.store 1

74     global.get 1

75     i32.const 4

76     i32.sub

77     local.get $key

78     i32.const 4

79     call_indirect (type $clock_of)

80     i32.store 1

81     global.get 1

82     i32.const 8

83     i32.sub)

84   (func $#lambda_1 (type $#lambda_1) (result i32)

85     (local $dupi32 i32)

86     i32.const 1

87     call $wait)

88   (func $#lambda_2 (type $#lambda_2) (param $key i32) (result i32)

89     (local $tmp_0 i32) (local $dupi32 i32)

90     local.get $key

91     i32.const 9

92     call_indirect (type $location_dispatch)

93     local.set $tmp_0

94     i32.const 8

95     call $malloc

96     local.set $dupi32

97     local.get $dupi32

98     local.get $tmp_0

99     i32.store
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100     local.get $dupi32

101     call $kb

102     i32.store offset=4

103     local.get $dupi32)

104   (func $dispatch (type $dispatch) (param i32) (result i32)

105     (local i32)

106     block  ;; label = @1

107       block  ;; label = @2

108         block  ;; label = @3

109           block  ;; label = @4

110             block  ;; label = @5

111               block  ;; label = @6

112                 block  ;; label = @7

113                   block  ;; label = @8

114                     block  ;; label = @9

115                       local.get 0

116                       i32.load

117
                      br_table 0 (;@9;) 1 (;@8;) 2 (;@7;) 3 (;@6;)

4 (;@5;) 5 (;@4;) 6 (;@3;) 7 (;@2;) 8 (;@1;)

118                     end

119                     local.get 0

120                     i32.load offset=8

121                     i32.const 0

122                     return_call_indirect (type $wait)

123                   end

124                   local.get 0

125                   i32.load offset=12

126                   local.get 0

127                   i32.load offset=8

128                   i32.const 1

129
                  return_call_indirect (type

$set_output_to_location)

130                 end

131                 local.get 0
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132                 i32.load offset=8

133                 i32.const 2

134                 return_call_indirect (type $malloc)

135               end

136               i32.const 3

137               return_call_indirect (type $location_malloc)

138             end

139             local.get 0

140             i32.load offset=8

141             i32.const 4

142             return_call_indirect (type $clock_of)

143           end

144           i32.const 5

145           return_call_indirect (type $kb)

146         end

147         i32.const 6

148         return_call_indirect (type $#lambda_1)

149       end

150       local.get 0

151       i32.load offset=8

152       i32.const 7

153       return_call_indirect (type $#lambda_2)

154     end

155     unreachable)

156
  (func $location_dispatch (type $location_dispatch) (param i32)

(result i32)

157     local.get 0

158     i32.load 1

159     i32.const 8

160     return_call_indirect (type $dispatch))

161   (func $init (type $init)

162     i32.const 0

163     call $kb

164     call $set_output_to_location

81 / 83



Compiled Async RaTT Appendix

165     drop)

166   (table (;0;) 128 funcref)

167   (memory (;0;) 1)

168   (memory (;1;) 1)

169   (global (;0;) (mut i32) (i32.const 0))

170   (global (;1;) (mut i32) (i32.const 0))

171   (export "heap" (memory 0))

172   (export "location" (memory 1))

173   (export "table" (table 0))

174   (export "malloc" (func $malloc))

175   (export "location_malloc" (func $location_malloc))

176   (export "clock_of" (func $clock_of))

177   (export "kb" (func $kb))

178   (export "#lambda_1" (func $#lambda_1))

179   (export "#lambda_2" (func $#lambda_2))

180   (export "dispatch" (func $dispatch))

181   (export "location_dispatch" (func $location_dispatch))

182   (export "init" (func $init))

183
  (elem (;0;) (i32.const 0) func $wait $set_output_to_location

$malloc $location_malloc $clock_of $kb $#lambda_1 $#lambda_2
$dispatch $location_dispatch $init)

184   (@custom "name" "..Debug info..")

185 ) 

Full output from WAT converting the result of compiling Listing 3.2
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A4 Program representation output

The output printed initially when running Listing 3.2. It shows the program as well as
representations of it after each pass. 83 / 83
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