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Abstract

Many computer systems are designed to operate continuously; they are reactive in that they

wait for some form of external input and produce an output in response. An imperative

approach often leads to unnatural modeling and the use of complex shared states. Functional

Reactive Programming (FRP) promises to solve this in the functional paradigm by operating on

time-varying values. Various efforts to implement this in practice have been either inefficient

or restrictive for the programmer. In recent years, the ”Modal FRP” family of languages

has appeared. Using modal types, they introduce a temporal aspect into the type system,

allowing both programmer freedom and efficient implementation. One of them, Rattus, allows

manipulating time-varying values with proven operational guarantees. It has a global update

rate at which all the outputs are updated as a function of the inputs. In programs where some

values are updated more frequently than others, this model is unnatural and inefficient. A new

calculus, Async RaTT, allows output values to be recomputed only when the input they rely

on has changed.

This paper introduces the Asynchronous Rattus programming language which implements most

of the Async RaTT calculus. The language is implemented as a package for the Glasgow

Haskell Compiler (GHC). The package includes a plugin for GHC, Haskell types representing

the language primitives, a standard library, and an interface between Haskell and Asynchronous

Rattus. The language allows easy development of reactive applications. This is demonstrated

through useful standard library combinators and example programs.
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1 Introduction

When building a software solution, software engineers employ modeling to understand their appli-

cation and its relation to the real world before it has been built [3, p. 7]. They do so because

building software is expensive, and because any non-trivial application needs to be built with the

surrounding environment in mind. Thus, modeling plays a central role in software engineering.

The Object Oriented Programming paradigm promises to aid this process by allowing a natural

representation of real-world phenomena, but it is not always the best and most natural way to

model these phenomena.

Reactive applications are a class of applications that react to external events. They wait for input

and provide output in response. For such applications, it can be more natural to express the output

as a function of the input than to use Object Oriented or imperative techniques. This is the idea

behind Functional Reactive Programming (FRP), which was introduced by Conal Elliot and Paul

Hudak with the Functional Reactive Animation (FRAN) [1] library for Hugs 1.

FRAN introduces two main concepts, Behaviours and Events. Behaviours are time-varying values,

and Events could be external events such as mouse clicks or keyboard clicks, and internal events

such as predicates being satisfied. Both are first-class values, allowing the programmer to freely

combine and manipulate them. This results in an expressive language where programmers can

easily model complex systems by using primitive values and accompanying combinators. However,

the library suffered from implicit space leaks. A space leak is a condition in which the program holds

on to memory while allocating more, such that it gradually uses more resources. Eventually, the

program halts due to a lack of available resources. An implicit space leak is a space leak caused by

the implementation of the language or library rather than allocations by the user of the language.

Several libraries based on the concepts from FRAN try to mitigate this problem. One of them

is Yampa [2], which belongs to the ”arrowized FRP” family of languages that are structured by

Arrows, which are a generalization of Monads. Yampa only allows signals to be manipulated through

operations on the Signal Function Arrow. This approach reduces the risk of implicitly introducing

space leaks but reduces the simplicity because signals are no longer first-class values.

In recent years, the ”modal FRP” family of languages has appeared. They expand the type system

with a temporal aspect through modal type theory. This allows the programmer full access to

primitives while preventing the implementation issues that plagued FRAN. Rattus [4] is one of the

newest members of the family, and it has been embedded in Haskell to demonstrate that it is useful

in practice. Additionally, it is proven free of implicit space leaks. However, the language has a

core assumption that all input data is updated at the same rate, making it synchronous by nature.

1Hugs is a discontinued Haskell dialect.
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When most of the application’s state needs to be recomputed continuously, this makes sense. But

for applications where inputs are updated at different intervals, we need to recompute every part

of the state even if it the data it relies upon has not changed.

Async RaTT [5] is a calculus that lifts this restriction while retaining Rattus’ guarantees. It allows

recomputing output only when the input it depends on is updated. This works by dividing both

input and output into subsections called channels, and by allowing programs to describe which

output channels depend on which input channels.

This project aims to build a prototype of an asynchronous modal FRP language, based on the

Async RaTT calculus. In addition, we aim to provide a standard library and example programs to

demonstrate that the language is useful in practice.

2 Background

Asynchronous Rattus is built on top of Rattus [4] by implementing most of the Async RaTT [5]

calculus. These languages incorporate the temporal aspect of reactive applications into the language

itself. This section introduces Asynchronous Rattus, how it builds on Async RaTT, and briefly how

the language differs from Rattus.

2.1 A basic Rattus program

Rattus introduces the modal type ⃝, which are delayed computations that will produce a piece

of data once the necessary input is available. The clock of a delayed computation states when

the input data necessary in order to compute its value arrives. The synchronous nature of Rattus

means that all delayed computations have the same clock since all input arrives in the next time

step. A value of type ⃝A means the delayed computation will produce a value of type A in the

next time step. Using this definition, the function below can be interpreted as: ”produce a delayed

computation, that will calculate the sum of two numbers when they become available in the next

time step”.

add :: O Int -> O Int -> O Int

add li lk = delay (adv li + adv lk)

As seen from this example, there is a notion of a global clock that controls ”the next time step”,

in which the entire program state is recomputed. For some applications, such as simulations and

games, this is natural, since there is usually already a notion of a global update rate. In these types
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of applications, it is often necessary to recompute most of the state in each time step. For other

applications, like GUIs, some state should be recomputed more frequently than other, leading to

unnecessary resource consumption. This is seen in the way events are represented in the Haskell

embedding of Rattus; they are Maybe values, containing a value only if the event occurred. But we

still need to calculate the Nothing case when nothing happened.

2.2 Introducing Asynchronous Rattus

We introduce Asynchronous Rattus, a new programming language that aims to implement the

Async RaTT calculus [5] based on Patrick Bahr’s existing embedding of Rattus in Haskell [4].

Asynchronous Rattus is somewhat similar to Rattus, but removes the assumption of a global clock.

To do this, every delayed computation must have its own clock that specifies which input values

allows it to be computed. Moving from the synchronous nature of Rattus to an asynchronous

nature, a new modality ∃⃝ is introduced by Async RaTT. It corresponds to ⃝, but is generalized to

be connected to any clock. The new modality type ∃⃝ means the result of the delayed computation

is available when the necessary input arrives, such that a value of type ∃⃝A means ”the result of

the delayed computation will produce a value of type A when the necessary input arrives”.

Looking back at the example of add, we can conclude that it is not a valid Asynchronous Rattus

program. The replacement of ⃝ with ∃⃝ invalidates this program. Consequently, the function

should now be interpreted as: ”produce a delayed computation that computes the sum of the two

numbers, when the input necessary to compute each of them is provided”. However, unlike in

Rattus, it is not guaranteed that the input necessary to compute the two numbers will arrive at

the same time.

A basic program which is valid in Asynchronous Rattus is the function plusK. It produces a delayed

computation, that will add an integer k to the result of the delayed computation laterI, when a

value arrives at some point in the future.

plusK :: Int -> O Int -> O Int

plusK k laterI = delay (adv laterI + k)

Here, the delayed computation that is produced by the function knows exactly when the value

it’s waiting for will arrive in the future, since it is specified by the clock of the single delayed

computation it gets as an argument. The delayed computation will simply inherit the clock of

laterI.

Being unable to produce delayed computations that depend on more than one delayed computation

would be a severe restriction of the expressiveness of the language. This would mean that a function
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equivalent to add could not be expressed. Asynchronous Rattus features the select primitive from

Async RaTT [5] for this purpose. The following is a simple Asynchronous Rattus program that

creates a delayed computation that produces the maximum of two integers.

maxLater :: O Int -> O Int -> O Int

maxLater first second =

delay (

case select first second of

Both first’ second’ -> max first’ second’

Left first’ _ -> first’

Right _ second’ -> second’

)

The select primitive is used for synchronizing the two delayed computations. It determines

whether the input value that arrived can be used to compute one or both of the delayed com-

putations and provides the computed values. An output for maxLater can be computed when

either of the two given delayed computations can be computed, thus it can be said to have the

union of the clocks of the two delayed computations. When only one input can be computed, it is

used as the maximum value. The select primitive is even more useful when working with streams,

as we shall see in section 2.5.

2.3 Input channels and Clocks

In all the examples, the notion of clocks is mentioned in an abstract manner, but it has not been

properly defined. To do that, input channels must be introduced.

In Asynchronous Rattus, input channels consist of an identifier and a delayed computation produc-

ing values received on that identifier. Other delayed computations build on top of them, such that

they wait for an input to arrive on one of the channels they build on. The set of input channels on

which a given delayed computation waits for input is said to be its clock, and when input arrives

on one of them, the clock is said to ”tick” [5]. The clock of an input channel’s delayed computation

is the singleton set of its identifier.

Async RaTT [5] distinguishes between three different input channels, each with different character-

istics; push-only, buffered-only and buffered-push. The input channels explained above are push-only

input channels, and that is the only form of input channels Asynchronous Rattus implements. Mov-

ing forward, all input channels can be assumed to be push-only input channels.
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2.4 Typing rules

The intuition of Asynchronous Rattus comes from the formal type rules of Async RaTT [5], of

which a subset is seen below.

Γ ⊢∆ θ : Clock Γ ⊢∆ θ′ : Clock

Γ ⊢∆ θ ⊔ θ′ : Clock

Γ ⊢∆ v : ∃⃝A

Γ ⊢∆ cl (v) : Clock

Γ′ tick-free or A stable Γ, x : A,Γ′ ⊢∆

Γ, x : A,Γ′ ⊢∆ x : A

Γ,✓θ ⊢∆ t : A Γ ⊢∆ θ : Clock

Γ ⊢∆ delayθ t : ∃⃝A

Γ ⊢∆ v : ∃⃝A Γ,✓cl(v) ,Γ
′ ⊢∆

Γ,✓cl(v) ,Γ
′ ⊢∆ adv v : A

Γ ⊢∆ v1 : ∃⃝A1 Γ ⊢∆ v2 : ∃⃝A2 ⊢ θ1 ⊔ θ2 = cl (v1) ⊔ cl (v2) Γ,✓θ1⊔θ2 ,Γ
′ ⊢∆

Γ,✓θ1⊔θ2 ,Γ
′ ⊢∆ select v1 v2 : ((A1 × ∃⃝A2) + ( ∃⃝A1 ×A2)) + (A1 ×A2)

Γ□ ⊢∆ t : A

Γ ⊢∆ box t : □A

Γ ⊢∆ t : □A

Γ ⊢∆ unbox t : A

·□ = · (Γ,✓θ )
□ = Γ□ (Γ, x : A)□ =

{
Γ□, x : A if A stable

Γ□ otherwise

Figure 1: A subset of the typing rules from the Async RaTT [5] calculus.

Before any of the typing rules can be interpreted, two concepts have to be introduced; typing

contexts and ticks. A typing context ordinarily keeps track of variables in scope and their types. In

Async RaTT, it is extended with ticks that mark a step into the future. Ticks are introduced into

the typing context by delay, and they indicate which variables are in scope at the current time.

2.4.1 Typing rules for example programs

Going back to the example for plusK, the typing rules can indeed confirm that this is a valid

Asynchronous Rattus program. To type the delayed computation that is produced in plusK to

∃⃝Int, three of the typing rules have to be applied - adv, delay and cl(v). From these rules, we
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can deduce that the delay introduces a tick on the clock of laterI, resulting in a correctly typed

program.

From the typing rules, it also becomes clear that the example for add would never be a valid program

in Asynchronous Rattus. Again, the delayed computation being produced must have the same clock

as the adv within, but which one of them? In either case, delay only introduces one tick, which can

only correspond to the clock of one of the variables into the typing context. Regardless of which

clock is chosen the other adv application will not be typeable under the resulting typing context.

The maxLater function, which also operates on two delayed computations, is well-typed. This is

because it uses select, which means that the clocks of first and second are combined to form a

union clock. This is then the clock for the enclosing delay.

2.4.2 The ”Stable” modality

Given the temporal aspect of Asynchronous Rattus, there is a distinction between two kinds of

types, which is also present in Rattus[4] and Async RaTT [5]; stable and non-stable.

In order for a type to be stable, it must be strict and independent of time. This allows moving it

arbitrarily far into the future with no risk of space leaks. Hence, stable types will be in scope even

when there is a tick in the typing context. In Rattus[4] as well as in the Async RaTT [5] calculus,

the Haskell primitives Int, Bool and the like are considered stable types. Note that Haskell Strings

are not stable since they are lazy character lists.

Non-stable types are either non-strict or time-dependent, i.e. have ∃⃝ in them. Furthermore,

functions are also considered non-stable types, since it is possible that they have types in their

closure that are time-dependent. Non-stable types to the left of a tick cannot be accessed. The

reason is that non-stable types could be dependent on variables that are defined in an earlier time

step, which is indicated by everything in the typing context to the left of a tick. This would lead to

implicit space leaks since the data defined in an earlier typing context must reside in memory until a

given delayed computation or function needs it. There is no guarantee that a delayed computation

will receive the value it’s missing or that the given function is called in the foreseeable future, which

means that resource consumption will rise over time, such that the application eventually runs out

of memory.

However, not allowing functions to be used for more than one time step is quite restrictive. Rattus[4],

and the Async RaTT calculus[5], lift this restriction by introducing the Box modality. The box

primitive introduces the Box modality under the special typing rule that the term it is applied to

must be typeable under a stable context. Thus, any type A can be moved into the future as long

as it can be guaranteed it does not contain any temporal aspect. Bahr [4] has proved, that this
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typing rule ensures that moving the type A into the future will not create an implicit space leak.

Hence, box allows preserving non-stable types across the passage of time. In the future, the boxed

type of A can be unboxed and freely used. This is especially useful for functions.

2.5 Streams

As mentioned, the core abstraction in FRP is that of signals, or streams as it is called in Rattus [4].

Essentially, streams represent time-varying values, and they are present in most FRP languages.

Rattus and FRAN, have them as first-class values that can be freely composed and manipulated.

In Asynchronous Rattus streams are represented as they are in Rattus[4], but of course with asyn-

chronous delayed computations. The Haskell data type is defined as follows:2

data Str a = !a ::: !(O (Str a))

A stream consists of two components; a current value of the given stream and a delayed computation

that produces a new stream. This new stream then has the next value and the next delayed

computation. To see how we can work with streams Asynchronous Rattus, consider how the

maxLater function can be extended to work on streams:

maxStr :: O (Stream Int) -> O (Stream Int) -> O (Stream Int)

maxStr as bs = delay (

case select as bs of

Both (a ::: as’) (b ::: bs’) -> max a b ::: maxStr as’ bs’

Left (a ::: as’) bs’ -> a ::: maxStr as’ bs’

Right as’ (b ::: bs’) -> b ::: maxStr as’ bs’

)

We construct a delayed computation in which we select over the two streams. If a value of both

streams can be computed, we compute the maximum of them. Otherwise, we pick the value that

arrived as the maximum. The tail of the stream is a delayed computation obtained by a recursive

call. To examine a slightly more advanced use case of streams, suppose we are building a simple

input field. We want to be able to enter text and clear it by pressing the left mouse button. We

represent the keyboard input as a delayed stream of characters, such that the text can be built up

as the user types. 3

2In fact it has an additional type parameter, as we shall see in section 3.2
3As seen in the code for this example (located in examples/textwriter/src/TextField.hs), we cannot actually

use lazy lists, but must use strict lists from the standard library.
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text :: [Char] -> O (Stream Char) -> Stream [Char]

text initial keyboardInput = initial ::: delay (

let (char ::: chars) = adv keyboardInput

in text (initial ++ [char]) chars

)

It takes an initial list of characters and a delayed stream of characters and produces a stream where

the incoming characters are continuously appended to the list, building up a string. In order to

build on the text that has already been written, it is passed as an argument in the recursive call.

To finalize the input field, we need to be able to reset the text in response to a mouse click. To do

that, we use the select primitive to synchronize the text stream and mouse input.

resettableText :: Stream (List Char) -> Box (O Input) -> Stream (List Char)

resettableText (txt ::: txts) mouseClick = txt ::: delay (

case select txts (unbox mouseClick) of

Left txts’ _ -> resettableText txts’ mouseClick

Right txts’ _ -> resettableText (text kb) mouseClick

Both _ _ -> resettableText (text kb) mouseClick

)

When only the clock of the text stream ticks, the new text stream is used to call recursively.

However, when we receive a mouse click, the text stream is reconstructed such that it is empty

again. The same thing happens if both streams tick at the same time. The representation of the

mouse click might seem odd at first as delayed computations usually cannot be boxed. In fact the

only delayed computations that can be boxed are input channels. It is necessary for mouseClick to

be boxed otherwise we could not use it under the scope of delay. Section 3.5 goes into more detail

about input channels.

3 Analysis

In order to implement the Async RaTT calculus [5], we choose to build upon the existing embed-

ding of Rattus in Haskell. Reusing the embedded implementation means that we do not need to

implement Asynchronous Rattus from scratch, as it allows the reuse of logic from Rattus. It also

means that the language can be used with the large Haskell ecosystem. Hence, we have implemented

Asynchronous Rattus as a package for the Glasgow Haskell Compiler.
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When designing Asynchronous Rattus, we had the following design goals in mind.

1. Provide the Async RaTT guarantees of causality, productivity and freedom of implicit space

leaks.

2. Shield the programmer from dealing with clocks.

3. Provide a good interface between Haskell and Asynchronous Rattus.

We attempt to have our implementation provide the guarantees of Async RaTT by reusing and

adapting the scope rules of Rattus. Except for the new select operator, the scope rules of Async

RaTT is a subset of Rattus’ scope rules, meaning that the Async RaTT guarantees should hold

when using the modified scope rules of Rattus. select has the same scoping rules as adv, so

we conjecture it does not break the guarantees. We shield the programmer from using clocks,

since manually handling clocks is error-prone and makes programs more complicated. To shield the

programmer from clocks, we infer all clocks automatically using a combination of static analysis and

run-time checks. Ensuring a good interface between Asynchronous Rattus and Haskell is important

in order to make the language useful in practice. This is implemented in the Channel library, which

provides an API such that Haskell code can safely interact with Asynchronous Rattus code.

3.1 Components of the implementation

The implementation consists of several parts. The Asynchronous Rattus primitives are implemented

as plain Haskell code. The custom scope rules, the clock inference algorithm, and the pushing of

input values through the system are implemented in the compiler plugin. The interface between

Haskell and Asynchronous Rattus, the Channel API, is implemented as a Haskell library. Lastly,

we have developed a small standard library to demonstrate the usefulness of the language.

All of the components are bundled in a single Haskell package.

3.2 Primitives and their representation

We have already seen that Asynchronous Rattus primitives look like normal Haskell functions to

the programmer. As seen from the typing rules, delay x produces a value of type ∃⃝A, given that

x types to A under a typing context with a tick on the clock of the delay. In Async RaTT, values of

this type are described as: ”a pair consisting of a clock θ and a computation that can be executed

to return data of type A” [5]. Thus we need to decide on a representation for clocks and for delayed

computations.
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Recall that a clock represents the set of input channels for which a delayed computation is waiting

for input. The representation of an input channel is quite arbitrary; there just needs to be a way to

distinguish them from each other, so that we can know which input channel received input. Thus

we choose simple integers to identify input channels. A natural representation of a clock is then a

Haskell Set of integers:

type InputChannelIdentifier = Int

type Clock = Set InputChannelIdentifier

This is a simple representation of clocks that makes them easy to manipulate.

In order to represent computations, it seems natural to use functions that accept the newly available

input data as an argument. However, it is unclear which type the argument should have. This type

constrains what can be put into an input channel, so we want to offer the programmer the most

flexible type possible.

The simplest solution is to provide a type that can wrap the primitive types as well as some common

use cases like tuples. If this data structure were sophisticated enough, it might be able to encode

all possible values that programmers would want to provide as input on input channels. However,

it seems quite restrictive and cumbersome to work with.

Another solution is to let the input value be an additional type parameter. This is a quite general

approach, which allows the programmer to supply their own type for input. It has the drawback that

the signatures become more complicated, and that all input must be of the same type. Furthermore,

all types deriving from delayed computations must be parameterized as well, or hard code the input

types they support.

A third solution is to somehow convert arbitrary types into a common type when inserting it into the

input channel and converting it back once the value has been received. Since there is an identifier

for each channel, this identifier could be linked to the type of values in that channel. However, we

do not see any way to implement this in a type-safe manner.

Asynchronous Rattus implements the second solution, such that delayed computations are param-

eterized by the type of the input value they accept. Thus, a value of type ∃⃝A in Async RaTT is

implemented as follows in Asynchronous Rattus:

type InputValue a = (InputChannelIdentifier, a)

data O v a = Delay Clock (InputValue v -> a)

Along with the value, the function receives the identifier of the input channel so delayed computa-
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tions know which input channel the input value came from. This type has information about which

input channels it is legal to provide input on, and it has a stored computation which computes

a value of type A given a new value on one of those input channels. From this representation of

∃⃝A, it is quite easy to implement adv and select. To implement adv, we simply accept a delayed

computation and an InputValue which we use to compute a result of the delayed computation.

adv :: O v a -> InputValue v -> a

adv (Delay cl f) inpVal@(chId, _) | chId ‘elem‘ cl = f inpVal

adv (Delay cl _) (chId, _) = error "Async Rattus internal error"

The function could be shorter and faster if it did not check that the provided input value matches

the clock. This should never happen, but we choose to be cautious. This check makes sure that

input on an input channel that is not in the clock of the delayed computation fails rather than

producing the wrong results.

The implementation of select should take an InputValue and two delayed computations, and

then determine if one or two of the computations can be executed given the input value. This can

be determined by inspecting the clocks of the two delayed computations. We then need a data type

to represent the return type of the select primitive. According to the Async RaTT typing rules

from Figure 1, it should be one of three things, depending on which values are available; both the

obtained values, the obtained value of the first delayed computation along with the second delayed

computation, or vice versa. Thus we can implement select as follows:

data Select v a b = Left !a !(O v b) | Right !(O v a) !b | Both !a !b

select :: O v a -> O v b -> InputValue v -> Select v a b

select a@(Delay clA inpFA) b@(Delay clB inpFB) inputValue@(chId, _)

| chId ‘elem‘ clA && chId ‘elem‘ clB = Both (inpFA inputValue) (inpFB

inputValue)

| chId ‘elem‘ clA = Left (inpFA inputValue) b

| chId ‘elem‘ clB = Right a (inpFB inputValue)

| otherwise = error "Tick did not come on correct input channels"

We provide the received input to those computations that can use it. In this case, we choose the

cautious approach as well.

The primitives presented so far are not the ones that programmers use, however. Recall that a core

abstraction in FRP is that of time-varying values, meaning that programmers should be concerned
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with the relationship between time-varying values instead of the concrete value. We also see this in

Async RaTT, where the adv and select primitives do not accept arguments; the values are passed

implicitly. Thus, the two primitive implementations are instead used behind the scenes as will be

described in section 3.3.4. The actual primitives that library clients use are the following:

asyncRattusError = error "Did you forget to mark this as an Async Rattus module?"

delay :: a -> O v a

delay _ = asyncRattusError

adv :: O v a -> a

adv _ = asyncRattusError

select :: O v a -> O v b -> Select v a b

select _ _ = asyncRattusError

These functions obviously do not do anything useful. Instead, they are replaced with the more

useful primitives shown above. The variants of adv and select which accept values are named

adv’ and select’, respectively.

There is an additional primitive which is part of the Async RaTT calculus, and which surprisingly

turns out to be useful in practice - the never primitive. In Asynchronous Rattus, it is the only way

to create a delayed computation that does not expect input on any channel, which means it can

never be computed. It is defined simply as:

never :: O v a

never = Delay empty (error "Trying to adv on the ’never’ delayed computation")

Here, ”empty” is the empty set, and the computation will cause a runtime error if ever executed.

This is fine since it should never be executed. As we will see in section 3.5, this primitive is used

to implement some functionality in the standard library for Asynchronous Rattus.

The Asynchronous Rattus primitives presented so far are the foundation of the language. While

they can be used manually, they do not allow the abstraction of time-varying values. They force

the programmer to calculate clocks, and they allow programs with space leaks. This is remedied

by the GHC plugin.

14



3.3 The GHC plugin

Figure 2: Simplified GHC compilation phases, with phases added by the Asynchronous Rattus
compiler plugin in bold. Those phases which are additionally italicized have not been modified,
or have been modified minimally from the Rattus implementation. Inspired by a similar figure by
Bahr [4].

GHC compiles source code in multiple phases, or passes, as seen in Figure 2. It can also be seen that

there are multiple representations of the code from the source code all the way to the executable.

The GHC Plugin API allows manipulating representations of the code at different stages of the

compilation.

At the type-checking stage, we reuse the stability check from the Rattus source code, which imple-

ments custom rules for determining whether a type is a member of the Stable type class.

Then we do a pass on the typed Haskell AST where the scope rules of Asynchronous Rattus are

checked. Asynchronous Rattus has the same scoping rules as Rattus [4], but with the addition of

the select primitive. The scope checking pass has been extended to support this.

Next, the AST is desugared into Haskell Core, which is a much simpler representation of the AST

with only the most basic constructs. Here, we perform the single-tick transformation from Rattus

[4, p. 19], which has been adapted to support select. We also reuse the strictness pass from

Rattus [4, p. 34] to ensure eager evaluation when necessary.

In the next pass, we do two things; we check that clocks within a delay are compatible with each

other, and we double-check the scope and primitive rules. The clock compatibility check is a core
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part of our clock inference algorithm, and it allows a simpler implementation of the code generation

pass that follows. The double-checking of scope rules is largely inherited from Rattus. Our reason

for redoing the scope check is the same as Bahr’s [4]; because the Core representation is much simpler

to work with than the Typed Haskell AST, it is easier to catch any bugs in the implementation of

the scope check on the Typed Haskell AST.

Finally, we transform the Core AST. This pass implements two features of Asynchronous Rattus;

automatic calculation of clocks at runtime, and hiding the input values being pushed around in the

system from the programmer, allowing them to reason about time-varying values instead.

3.3.1 Enforcing scope rules

Checking that programs conform to the Async RaTT scope rules happens on the typed Haskell

AST. Our approach stems from the observation that if the select primitive is checked the same

way that adv is, we can check the scope rules of Async RaTT the same way it is implemented for

Rattus. This allows the reuse of the scope-checking logic from Rattus with only minor modifications

to support select. In this pass, we verify all typing rules of Async RaTT, except that the clocks

within a delay are compatible. That check is deferred for the simpler Core representation.

3.3.2 Single-tick and strictness

We retain Rattus’ single-tick and strictness passes, which make transformations to prevent implicit

space leaks. The single-tick transformation is a technique used by Bahr [4] to allow using adv

on expressions of type ∃⃝, rather than just variables. We have extended this to include select.

The strictness transformation is unchanged from the Rattus implementation. It transforms the

AST such that arguments of lambda functions and variables bound in let-expressions are evaluated

eagerly.

3.3.3 Clock compatibility check

The purpose of the clock compatibility check is to identify delayed computations that have subex-

pressions with incompatible clocks. As we saw from the typing rules, all occurrences of adv and

select in a given delay must require the same clock. We ensure this with symbolic or static clocks,

as opposed to concrete or dynamic clocks. Recall that in the Async RaTT calculus [5], we must delay

with respect to a clock. This clock should be the same as that of all applications of adv/select in-

side the delayed computation. Thus, a term that will type correctly can be: delaycl(x)⊔cl(y)(selectxy).

At compile time, we read this as ”the union clock of the variables x and y”. Crucially, this is a
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legitimate symbolic clock, even though we do not know what that clock will be at run time. At

run time, clocks are necessary to determine which of the two delayed computations, or both, can

produce a new value. This corresponds to the cl(v) operation, that is ”look up the actual clock of

this value”, and it is implemented by simply saving the clock as part of the delayed computation.

Asynchronous Rattus keeps track of symbolic clocks simply as a set of variables that adv or select

is called on. This corresponds to the clock of the variable that adv is called on, or the union of the

clocks of the two variables select is called on.

To check that no subexpressions of a delay have incompatible clocks, we find all applications of

adv or select in the delay. From each application, we calculate its symbolic clock, which is simply

a singleton set for adv and a set of the two variables for select. For each delay, there must be

exactly 1 unique clock in its argument; if there are none, the clock of the delayed computation must

be ∅, meaning that we might as well use never. We disallow such a delayed computation since it is

most likely a programming error. If there are multiple distinct clocks, they are incompatible. This

allows multiple occurrences of adv, as long as it is called on the same variable each time, and the

same for select as long as the same two variables are used. It also allows adv x and select x x

to coexist within a delayed computation (though this is hardly useful).

As mentioned, this pass also double-checks the scope rules of Async RaTT. We retain this check

to catch any errors in the scope checking pass on the Typed Haskell AST, since the Core AST is

simpler to work with. We check the scoping rules for the primitives, we check that adv and select

are only used within delay, and we reject nested delays. We reject nested delays because we have

not prioritized implementing support for them.

3.3.4 AST Transformations

We transform the AST for 2 reasons: to generate code that computes clocks of delayed computa-

tions, and to pass input values through the delayed computations in the emerging dataflow graph.

Passing input values around in the system only requires that we change the three programmer-

exposed primitives delay, adv and select to their internal counterparts which facilitate passing

values: Delay, adv’ and select’. Given that compilation has not failed yet, we know that all

occurrences of adv and select are nested below a delay. This allows a simpler implementation

where it is not necessary to handle errors, for instance adv and select appearing outside a delay.

Thus, the AST is recursively traversed until a term is met, in which delay is applied. Such a term

could be the right-hand side of the plusK example given earlier:

delay (adv laterI + k)
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We want to transform this term into the following:

Delay (clock?) (\inputValue -> adv’ laterI inputValue + k)

As seen, the inputValue is received as an argument to a lambda function, and passed to the

delayed computation laterI using the adv’ function, which actually implements advancing, as

shown in section section 3.2. Asynchronous Rattus implements this by generating a new variable,

and substituting all occurrences of adv or select with their internal counterparts. This is sufficient

to pass around input values implicitly.

The clock of the delayed computation cannot be computed statically, since the clock of the delayed

computation for a given variable can vary at runtime. However, the symbolic clock can be computed

statically. Since clock compatibility has been verified, we can calculate the symbolic clock of

the delayed computation from any application of a primitive. Thus we know the set of variables

from which we should obtain the concrete clock. As mentioned, we store the clock of a delayed

computation within the delayed computation itself, so we just need to extract it. This is done with

the following simple function:

extractClock :: O v a -> Clock

extractClock (Delay cl _) = cl

This function can then be used to calculate clocks at run time. Thus the transformed code for the

plusK example will be as follows:

Delay (extractClock laterI) (\inputValue -> adv’ laterI inputValue + k)

Since this delayed computation just waits for a value to arrive, and then does something to it,

it will have the same exact clock as the value it is waiting for. For terms involving select, it

is not as simple. In that case, both dynamic clocks must be extracted, and a set union must be

performed. Reconsider the maxLater example. After the transformation pass, the code would have

been transformed to the equivalent of the following.
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maxLater :: O Int -> O Int -> O Int

maxLater first second =

Delay (union (extractClock first) (extractClock second)) (\inputValue ->

case select first second inputValue of

Both first’ second’ -> max first’ second’

Left first’ _ -> first’

Right _ second’ -> second’

)

Here, union is Haskell’s union operator for the set datatype, which is part of the standard library.

All programmer-exposed primitives have been replaced with their internal counterparts since they

cannot be executed. Also, there is now a mechanism for computing and storing run-time clocks.

Thus this implementation can run in practice.

It has still not been clarified how clocks and delayed computations are created in the first place.

So far, it has only been shown how new delayed computations can be derived from existing delayed

computations. This issue is handled by the Channel API.

3.4 Channel API

The Channel API is the component of Asynchronous Rattus which lets Haskell and Asynchronous

Rattus code interact with each other. It implements the abstraction of input channels and output

channels from Async RaTT [5] such that Haskell code can provide input on input channels and get

output from output channels. For Asynchronous Rattus code, the primary goal with the interface is

to declare and obtain input channels from which streams and other logic can be built. For Haskell

code, the primary goal is to provide input and get output. When providing input, it is helpful to

use meaningful names (as opposed to input channel identifiers, which are just integers). It must

also be possible to determine whether a given delayed computation is waiting for input on a given

input channel, so that Haskell code can know which delayed computations can produce new output

for newly obtained input.

In order to keep the API as simple as possible, input channels are boxed delayed computations that

produce values of the same type as the input values, that is they have type Box (O v v). They are

boxed because input channels can be boxed under the Async RaTT [5] typing rules, but we have

represented them as regular delayed computations, which cannot be boxed. Since they are boxed

initially, there is no need for Asynchronous Rattus code to box them, thus there is no need for

Asynchronous Rattus to treat them differently. Input channels emit the value which is provided on
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their associated input channel identifier. Asynchronous Rattus code can build on them by unboxing

them and treating them like any other delayed computations. The Async RaTT concept of output

channels is simply any delayed computation in Asynchronous Rattus. A crude way to get output

an output channel would be to use adv’ directly, but it requires that we know in advance the legal

input channels for the delayed computation, or an exception will be raised. Thus we check that the

input channel is legal to provide input on before calling adv’. We also provide a way to query the

clock of a delayed computation.

These functions do not expose the input channel identifiers to the programmer. Rather, each

channel is given a name when the Asynchronous Rattus code declares the input channels, and a

bidirectional mapping between names and input channels is stored in the closure of the functions

used by the Haskell code. This ensures that programmers never see the input channel identifiers,

only the names assigned to the channels.

3.5 Standard library

The final component that Asynchronous Rattus offers is its standard library written in the language

itself. The main purpose of the standard library is to provide programmers with tools that ease

the process of working with the first-class values of Asynchronous Rattus, such as ∃⃝ and streams.

Additionally, it demonstrates the practical usefulness of the language. It consists of three modules;

Later, Stream, and Strict.

The Later module offers utility functions to interact with delayed computations. The most notable

function is selectMany, which internally calls the function selectMany’.

selectMany :: List (O v a) -> O v (List (Int :* a))

selectMany = selectMany’ 0

{-# ANN selectMany’ AllowRecursion #-}

selectMany’ :: Int -> List (O v a) -> O v (List (Int :* a))

selectMany’ _ Nil = never

selectMany’ _ (x :! Nil) = delay ((0 :* adv x) :! Nil)

selectMany’ n (x :! y :! Nil) =

delay (

case select x y of

Both a b -> (n :* a) :! (n+1 :* b) :! Nil

Left a lb -> singleton (n :* a)

Right la b -> singleton (n+1 :* b)
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)

selectMany’ n (x :! xs) =

let xs’ = selectMany’ (n+1) xs in

delay (

case select x xs’ of

Both a b -> (n :* a) :! b

Left a lb -> singleton (n :* a)

Right la b -> b

)

Given a list of delayed computations, it is possible to create a delayed computation whose result is

a list of strict pairs, constructed with the binary infix operator :*. These pairs correspond to the

indices of the delayed computations that have been computed and their result. The name comes

from the fact that select is applied to all delayed computations in the input list. selectMany’ has

three base cases. For empty lists, no meaningful output can ever be computed, thus the primitive

never is returned. If the input list contains a single delayed computation, it is possible to use adv

on the given delayed computation and return the result. The third is the same as the second but

where two delayed computations could be computed when the input was received, so select is used

to synchronize the delayed computations. If more than two delayed computations are given, the list

of delayed computations is synchronized recursively. The AllowRecursion annotation is necessary

because Asynchronous Rattus ordinarily only allows recursion under delay. This is because Async

RaTT uses guarded recursion [5] such that each computation provably terminates. Additionally, the

strict versions of lists and tuples from the Strict module are used instead of the lazy counterparts.

When working with streams, programmers need to be able to compose and manipulate them as

they wish. Hence, the Stream module provides utility functions like the ones Haskell provides for

operating on lists. That is, utility functions such as map, filter, and zip.

The Strict module contains strict versions of well-known data types in Haskell such as List, Maybe

and tuples. Using lazy data types can lead to implicit space leaks, which is why Asynchronous

Rattus will generate warnings whenever lazy types are used. Additionally, lazy types are non-

stable. Hence, strict types are desirable in Asynchronous Rattus because they are stable and do

not introduce implicit space leaks. Furthermore, utility functions for each of the strict types are

available.
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4 Testing

As described in section section 3.1, Asynchronous Rattus consists of multiple components: the

compiler plugin, the channel API, and the standard library. The channel API and standard library

can be tested with a standard unit test framework. However, there exists no tooling to test compiler

plugins to our knowledge. To test the compiler plugin, we use two Haskell annotations to gain

complete control over the compiler phases.

4.1 Compiler plugin

To test that only valid programs can compile, we simply check that a suite of valid programs all can

compile. However, to test that specific functions should not be able to compile, we use annotations

to mark that a given function is expected to fail. The two annotations ExpectScopeError and

ExpectClockErrormark that a function is expected to produce an error in either the scope checking

phase or the clock compatibility phase, respectively. We never expect failure in other phases. The

annotations can be used via the GHC ANN pragma.

There are two reasons we want to be able to differentiate between errors in the two phases, rather

than just expecting a failure somewhere in the compilation pipeline. The first is that it allows us

to test each phase in isolation. The second is that there are dependencies between compilation

phases, which means that it can be unsafe to attempt to continue compilation after a phase has

failed. That is, each compiler phase has assumptions about the types of programs it operates

on, because it expects earlier phases to have caused compilation to fail if errors occurred. Thus,

allowing compilation to proceed to subsequent phases after an expected error has occurred cannot

be allowed since it may lead to uncaught errors in subsequent phases. However, GHC provides no

way to skip later compilation passes without failing the entire test suite. With the two annotations,

the Core passes can simply be disabled if type-checking errors are expected, and the final AST

transformation can be disabled if Core errors are expected.

This approach to testing the compilation phases allows the tests to be integrated with Cabal’s

testing framework. Thus they can be run alongside the unit tests described in section 4.2. An

example of a test suite could be the following ill-typed programs, that we want to ensure cannot

compile.

{-# ANN intPlusOne ExpectTcError #-}

intPlusOne :: O v Int -> Int

intPlusOne laterI = adv laterI + 1
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{-# ANN incompatibleAdv ExpectCoreError #-}

incompatibleAdv :: O v Int -> O v Int -> O v Int

incompatibleAdv li lk = delay (adv li + adv lk)

Here, the validity of the two programs is tested. intPlusOne is expected to fail during scope-

checking because adv is used without an enclosing delay. When the plugin detects the error,

it considers the binding to be successfully compiled, skips the rest of the compilation and starts

compiling the program incompatibleAdv. This program is expected to fail during the clock com-

patibility check. Evidently, this is the add function we introduced earlier. No scoping rules are

violated, but as mentioned earlier the clock of the delayed computation that is being produced

cannot be uniquely determined on compile time. Hence, this program fails and the test successfully

ends. Ultimately, running this test suite results in success with no unintended behavior.

This approach is used to implement the testing of the two compiler phases. The illTyped.hs and

wellTyped.hs test suites test ill-typed and well-typed programs, respectively.

4.2 Runtime, Channel API & the standard library

Given the testing of the compiler plugin as described in the previous section, we can be reasonably

confident that programs can be compiled if, and only if, they are valid. However, we have not yet

presented tests of any runtime behavior. This can be done using a standard unit testing framework,

since now we need to test program output, not whether it compiles or not. There are no frameworks

for testing either Asynchronous Rattus or Rattus code, so we use the Haskell unit testing framework

HUnit. It allows declaring simple test cases, which is all we need.

In order to test the primitives, we avoid depending on any other Asynchronous Rattus library, and

we test that values are propagated correctly. Tests of the Channel API verify that the generated

inputMaybe and depends functions work correctly. We can then use the Channel API when testing

the Later and Stream libraries. Finally, the Strict library is tested as a regular Haskell library.

With these tests, we can be reasonably confident that the primitives, the Channel API, and the

standard library work as intended at runtime. Thus, we can now be confident that Asynchronous

Rattus works as intended.

5 Discussion

Asynchronous Rattus enables us to write reactive programs with ease. Because of the asynchronous

nature, we can build isolated components that declare which inputs they depend on to generate a
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stream or a delayed computation. We have built a simple spreadsheet application to demonstrate

how Asynchronous Rattus can be used to write a simple reactive application. The sheet has four

input cells and two output cells. The output cells each compute the sum of two input cells with

overlap as shown in Figure 3.

Figure 3: A mini spreadsheet. A1, A2, B1 and B2 are input cells. C1 and A3 are output channels.
The coloring signifies which input channels each output channel calculates the sum of.

The input cells are labeled A1, A2, B1 and B2, while the output cells are C1 and A3. C1 computes

the sum of A1 and B1, while A3 computes the sum of A1 and A2. That is, C1 and A3 will be

recomputed each time input arrives on either of their input channels. Additionally, no output

channel depends on B2.

To showcase the application, we have implemented a small parser that allows us to interact with

the input cell. The result of a couple of interactions can be seen below.

> cabal run

(0 :* 0)

> A1 = 10

(10 :* 10)

> B2 = 40

That cell does not affect the output cells

> B1 = 40

(50 :* 10)

Figure 4: Interaction with our small spreadsheet application. The output cells are represented as a
strict pair (type from Strict) with C1 being the left and A3 being the right

The output streams have an initial value of 0. Then a value arrives in A1, which both C1 and A3 is
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dependent on, causing them to recompute. A value arrives in B2, but as stated in Figure 4 neither

C1 nor A3 depends on B2. Thus, no computations are needed at all. Lastly, a value arrives on B1.

C1 is the only output channel that depends on B1 allowing us to only recompute C1.

From this application and its example in Figure 4, we see the benefits of the resulting language

Asynchronous Rattus. First of all, one of the goals was to lift the restriction of a global clock.

Each delayed computation can have its own clock, which is illustrated clearly by the example.

Here, C1 and A3 share the input channel A1, however they each depend another input channel

besides A1. Thus, Asynchronous Rattus is able to determine precisely which output channels needs

to be recomputed whenever an input arrives at one of the input channels, removing unnecessary

computations. Secondly, from the source code in Sheet we see that we never specify any of these

clocks. They are handled by Asynchronous Rattus behind the scenes allowing us to focus on

building the application by reasoning about the relationship between time-varying values. That

is, we specify the relationship between a certain output channel and the input channels it needs

to depend on. Lastly, Asynchronous Rattus offers all its primitives as first class values, which we

take advantage of. This allows us to create this simple application where the core logic can be

defined with under 10 lines of code. Asynchronous Rattus has allowed writing this program such

that the components are easy to reason about, can be composed and can be reused. Expanding

this application with further functionality, e.g. new output cells, would be quite simple thanks to

the flexibility and abstraction level offered by Asynchronous Rattus.

5.1 Limitations

As mentioned in section 3.1, the core of Asynchronous Rattus is implemented as a compiler plugin

for the GHC compiler. This approach has a lot of benefits, such as utilizing the GHC compiler to

compile programs into efficient machine code, and not needing to write a compiler from scratch.

However, by creating a compiler for Asynchronous Rattus you would have full control over the com-

piler. Using a purpose-built compiler could potentially reduce the amount of subtle and unexpected

bugs resulting from relying on the internals of GHC. Such a bug was discovered shortly before the

project deadline.

Whenever Asynchronous Rattus determines clocks statically and generates code to resolve them

dynamically, as described in section 3.3.3 and section 3.3.4, it requires access to a specific type class

variable. This is no problem for the language itself, since this is always available for Asynchronous

Rattus. However, the problem can arise when compiling an application that does not use this type

class constraint. In this case, the type class variable will not be available during the compilation

process, causing the compilation to fail unexpectedly. It is possible to circumvent this by using
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a dummy function that forces the GHC compiler to load this type class variable as well. We see

this as a minor inconvenience that does not affect overall usefulness of the language prototype.

Nonetheless, it demonstrates the brittleness of the current approach which may be solved with a

custom compiler. You would gain full control at the cost of losing the Haskell ecosystem, which is

available when Asynchronous Rattus is implemented as a compiler plugin.

Given our testing, described in section 4, we are confident that we have shown that Asynchronous

Rattus works as intended. However, it is uncertain how well it scales with increased load. Since the

aim of this project was to implement a prototype, there has been no intention to include this form

of testing. Nevertheless, you could imagine scenarios that might be troublesome for Asynchronous

Rattus. What happens if some excessive amount of input arrives on an input channel (i.e. a

sensor that is in an erroneous state) in a short time frame? At the moment, this would force

re-computations for each input, but another solution could be to discard or limit the input in

some way. Furthermore, since there is no relationship between output channels, parallelism should

be an interesting topic in Asynchronous Rattus. In either case, having testing suite specifically

for performance would be desirable. This testing suite could also increase our confidence that

Asynchronous Rattus is free from implicit space leaks.

6 Future work

The Asynchronous Rattus language provides a foundation on which reactive applications can be

built. As mentioned, there has not been much focus on ensuring that Asynchronous Rattus is

performant enough for production use. Investigating and possibly improving the performance of

Asynchronous Rattus would help the language mature.

Another area of work is the type of input that is currently used. Currently, the user has to

use a single type as input to all input channels. We find it most useful to define an algebraic

datatype that can hold any type that must be given as input, and pattern match on the correct

case in Asynchronous Rattus code. This approach works, but it is inconvenient and it will become

unmaintainable in large applications. Given that we have an identifier for each input channel, we

should be able to connect the type of values on an input channel to the identifier. This would mean

that input channels could produce values of any type. Thus there would be no need for an algebraic

wrapper type leading to simpler code. It would also mean that we could get rid of the extra type

parameter on delayed computations, which is necessary in the current solution. This extra type

parameter can be hidden by using type aliases, except when developing libraries that must work

with all input types. We believe that removing the need for the type parameter in the first place

would make the language easier to use and more practical.
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7 Conclusion

Asynchronous Rattus successfully implements an asynchronous modal FRP language. This means

that it provides access to primitives while using an asynchronous update model. Its semantics

follows the those of Async RaTT quite closely, but with minor modifications.

The language shields the programmer from clocks. It does so by virtue of a novel clock inference

algorithm that detects clock inconsistencies and calculates clocks dynamically at runtime. Further-

more, the abstraction of time-varying values is implemented by streams. This is made possible by

the AST transformations that handle input value propagation behind the scenes.

The interface between Haskell and Asynchronous Rattus works well. Programmers use meaningful

identifiers for input channels and the API provides a safe way for programmers to interact with

input channels and output channels.

The implementation is easily available as a Haskell package. The core language, the compiler plugin,

and the provided libraries have been tested such that we are confident that Asynchronous Rattus

works as intended. Asynchronous Rattus aims to provide the guarantees of Async RaTT by reusing

the working implementation from Rattus, but we have neither proven nor tested it.

It has been demonstrated that Asynchronous Rattus is useful for developing reactive programs, and

the standard library provides a useful starting point for doing so. This means that developers now

have a tool for developing reactive applications that are asynchronous in nature while staying in

the functional paradigm.
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9 Appendix

The code for the project is available on GitHub at https://github.com/GregersSR/Asynchron

ous-Rattus.

Additionally, it can be found in the appendix of the project submission.
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