
Asynchronous FRP for Implementing

GUIs
STADS code: KISPECI1SE

Jean-Claude S. Disch
jdis@itu.dk

Asger L. Heegaard
ahee@itu.dk

Supervisor: Patrick Bahr
paba@itu.dk

June 3rd 2024

1

Abstract

Interactive applications with Graphical User Interfaces (GUIs) are fundamen-
tal to modern software systems. GUIs demand efficient management of asyn-
chronous operations to provide seamless user experiences. Traditional impera-
tive programming languages often face challenges in handling concurrency, such
as race conditions and deadlocks. Functional Reactive Programming (FRP) of-
fers a robust alternative. Async Rattus [2], a research language embedded
in Haskell, leverages FRP principles and presents a way to avoid space leaks,
preserve causality and ensure productivity, while addressing these concurrency
issues.

This thesis investigates the implementation and effectiveness of Async Rattus
for developing GUIs. We explore the language’s core concepts and sophisticated
type system designed to manage asynchronous operations through modal types.
A comparative study with other declarative frameworks, specifically React and
Monomer, highlights the similarities and differences of using Async Rattus for
GUI development.

Given the absence of an existing GUI library for Async Rattus, we develop a
new library and evaluate its performance using the 7GUIs: A GUI Program-
ming Benchmark [8]. Our implementation demonstrates how Async Rattus can
handle typical concurrency-related tasks and showcases its potential for build-
ing interactive applications. The findings contribute to a deeper understanding
of Async Rattus’ capabilities in GUI development. We conclude that Async
Rattus can compactly write performant GUIs of some complexity. However,
reasoning about data flow in Async Rattus GUIs is harder than model based
declarative frameworks like Monomer and React.

2

Contents

1 Introduction 4

2 GUI Frameworks 5
2.1 React . 5
2.2 Monomer . 7

2.2.1 Comparison . 9

3 Background 10
3.1 Functional Reactive Programming . 10
3.2 Async Rattus . 11

3.2.1 Introduction to Async Rattus 11
3.2.2 Later modality and clocks . 11
3.2.3 The Box Modality and Stable Types 14
3.2.4 Signals . 15

4 Design and Implementation 18

5 Case Studies 22
5.1 Counter . 22
5.2 Temperature Converter . 23
5.3 Flight Booker . 26
5.4 Timer . 28
5.5 Calculator . 33

6 Discussion 39
6.1 Challenges and Alternative Solutions 39
6.2 Working with Async Rattus . 39
6.3 Qualitative vs. Quantitative Metrics 40
6.4 Limitations and Areas for Improvement 40
6.5 The Complexities of a Research Language 41
6.6 Future Research . 42

7 Conclusion 43

3

1 Introduction

Interactive applications, especially those withGraphical User Interfaces (GUIs), form
a cornerstone of contemporary software systems. The user experience these applica-
tions provide relies on robust asynchronous programming paradigms, that manage
concurrent tasks effectively. Traditional development of such applications often em-
ploys imperative programming languages. Imperative languages, while powerful, can
be prone to errors and challenging to manage due to the complexity of shared state
management [2].

Developing interactive applications with imperative languages frequently involves
handling issues such as race conditions, deadlocks, and other concurrency-related
bugs[2]. These challenges necessitate advanced approaches to manage concurrency
and synchronization Effectively. Functional Reactive Programming (FRP) has emerged
as a promising paradigm to address these issues, offering a declarative and robust
approach to handle asynchronous operations.

This thesis explores the implementation and effectiveness of Async Rattus, a func-
tional programming language embedded in Haskell, proposed by Bahr, Houlborg,
and Rørdam (2023) [2]. This investigation will utilize an experimental extension of
Async Rattus that provides utilities for handling user input. Async Rattus leverages
a sophisticated type system and specialized modal types to manage asynchronous
operations, aiming to avoid the pitfalls of concurrency and synchronization in inter-
active applications[2].

Our objective is to investigate the core concepts and type system of Async Rattus
to demonstrate its utility in creating GUIs. This exploration involves a comparison
between existing frameworks for GUI development, focusing on React, a widely-used
JavaScript library, and Monomer, a Haskell-based GUI library. React and Monomer
will be used when discussing the implementation of the Async Rattus GUI library.

Given that Async Rattus is a research language with no existing GUI library, this the-
sis aims to showcase how such a library can be implemented. The Async Rattus GUI
library is built using Monomer’s infrastructure. We will demonstrate the library’s
effectiveness in handling typical concurrency-related tasks essential for creating in-
teractive applications. Our approach includes solving some of the GUIs presented in
the 7GUIs: A GUI Programming Benchmark [8], using the challenges presented by
the benchmarks to form the features of the Async Rattus GUI library.

By the end of this thesis, we aim to provide a comprehensive evaluation of Async
Rattus for GUI development. This includes offering valuable insights into the pro-
gramming language’s strengths and limitations, and comparing GUI development in
Async Rattus to React and Monomer.

4

2 GUI Frameworks

Before investigating the intricacies of FRP and Async Rattus, this thesis will exam-
ine two frameworks that exemplify diverse approaches to GUI development: React
and Monomer. To articulate the differences and capabilities of React and Monomer,
we will reference 7GUIs: A GUI Programming Benchmark [8]. Specifically, our dis-
cussion will be anchored by an in-depth look at the benchmark’s first challenge which
is an incrementing counter [8] as showcased in Figure 1.

Figure 1: Image of the counter Benchmark from
7GUIs: A GUI Programming Benchmark [8].

React is a declarative JavaScript library widely recognized for its efficiency and flex-
ibility in building interactive GUIs[11]. Developed by Facebook, React has become
a cornerstone in web development, offering a component-based architecture that
emphasizes reusability and the reactive updating of the GUI in response to data
changes[11].

Monomer is a Haskell-based library that, similarly to React, is inherently declarative.
Monomer leverages Haskell’s powerful type system and functional purity, providing
a robust framework for constructing GUIs in a purely functional language [14].

2.1 React

React provides a novel programming model centered around a declarative approach
to GUI development. At its core, React abstracts away direct manipulation of the
Document Object Model (DOM), instead favoring a component-based architecture
[9]. The DOM is a structured representation of the HTML elements comprising
a webpage’s GUI [9]. The DOM constructs a tree-like data structure where each
node corresponds to a GUI element within the webpage [9]. This design promotes
reusability and encapsulation, allowing developers to think about GUIs in isolated,
manageable pieces.

React’s efficiency in rendering and updating the GUI stems from its use of a virtual
DOM, a lightweight representation of the actual DOM [9]. This approach enables
React to minimize direct interactions with the browser’s DOM, addressing perfor-
mance bottlenecks and enhancing the user experience[9].

In React, each component maintains its state and properties. The state represents
data that can change over time, influencing how the component is rendered and be-
haves [9]. Properties (props) are immutable data passed to a component, defining
how that component should appear or behave [10].

5

React’s declarative approach allows developers to focus on defining what the UI
should look like for a given state, rather than how to update the UI when the state
changes. This means developers describe the desired outcome, and React takes care
of the details of updating the DOM to match the current state. For example, if
a component’s state changes, React will automatically re-render the component to
reflect those changes. To exemplify some of the core functionalites of React, consider
the following counter component:

1 function Counter () {

2 const [count , setCount] = useState (0);

3
4 function incrementCount = {

5 setCount(prevCount => prevCount + 1);

6 };

7
8 return (

9 <div >

10 <p>Count: {count}</p>

11 <button onClick ={ incrementCount}>Increment </button >

12 </div >

13);

14 }

Note that boilerplate code such as import statements has been removed. A key
concept within the React framework are hooks. React hooks allow functional com-
ponents to manage state and access other React features [11]. The useState hook,
as seen in the above code, initializes and manages the components’ state:

1 const [count , setCount] = useState (0);

The useState hook returns a pair: the current state value count, and a function that
updates it setCount. Whenever setCount is called, React will re-render the compo-
nent with the updated count value. setCount can be called directly to update the
state, or as can be see in the above code, can be passed a function to determine the
new state based on the previous state.

Additionally, React utilizes callback functions to manage responses to user interac-
tions. In React callback functions are passed to functions or components and used
for handling events and effects. For example, a user action could affect a button
component and trigger a callback function which only then returns a result. In the
above code, the incrementCount function exemplifies this:

1 const incrementCount = () => {

2 setCount(prevCount => prevCount + 1);

3 };

Within the component’s return statement, the onClick attribute of the button is set
to the incrementCount callback function.

1 <button onClick ={ incrementCount}>Increment </button >

By tying the incrementCount function to the onClick button event, React ensures
that clicking the button calls the incrementCount function. This function in turn
calls the setCount setter function, which updates the current state based on the
previous state.

6

2.2 Monomer

Monomer is a GUI library for writing native Haskell applications using pure func-
tional code. Monomer is inspired by the Elm architecture, keeping the application
state in a model that can be updated by user generated events [4][14]. Monomer
aims to be an accessible and extensible library for writing GUIs [14].

In Monomer each part of the GUI, for example a button or textfield, is called a
widget. Similarly to React, Monomer keeps every GUI element in a tree structure
[14]. Unlike React which utilizes css to define its GUI layout, the placement of GUI
elements in Monomer applications is determined by their position in the tree. So
some care has to be taken by the programmer to ensure that the layout is as ex-
pected when constructing the tree [13].

Below is one possible Monomer implementation of the Counter GUI, where the type
annotations for the buildUI and handleEvent functions have been left out for the
sake of brevity. This version is made using lenses as it improves readability. A lens
is a first class citizen that can be used to reference subparts of a data type[1]. One
example is the 2 lens which focuses on the second part of a pair[1]. Monomer also
provides widgets that do not require the use of lenses [13].

1 newtype AppModel =

2 AppModel {

3 _clickCount :: Int

4 } deriving (Eq , Show)

5
6 data AppEvent =

7 AppInit | AppIncrease

8 deriving (Eq , Show)

9
10 makeLenses 'AppModel
11
12 buildUI wenv model = widgetTree where

13 widgetTree = hstack [

14 label $ "Click count: " <> showt (model ^. clickCount),

15 button "Increase count" AppIncrease

16] `styleBasic ` [padding 10]

17
18 handleEvent wenv node model evt = case evt of

19 AppInit -> []

20 AppIncrease -> [Model (model & clickCount +~ 1)]

21
22 main :: IO ()

23 main = do

24 startApp model handleEvent buildUI config

25 where

26 config = [

27 appWindowTitle "Benchmark 01 - Counter",

28 appWindowIcon "./ assets/images/icon.png",

29 appTheme darkTheme ,

30 appFontDef "Regular" "./ assets/fonts/Roboto -Regular.ttf",

31 appInitEvent AppInit

32]

33 model = AppModel 0

In Monomer applications, all mutable state is described in a Model data type [13].
Parts of the Model can then be passed to a widget’s constructor to create stateful
GUI elements. In the example above this Model is called AppModel and it contains
a single integer value clickcount. clickcount represents the number of times the

7

button widget gets pressed. The clickcount variable is passed as input to the label
constructor, in order to make a label that displays the value.

Monomer uses events whenever information needs to be passed between widgets. For
this purpose, Monomer uses an algebraic data type, representing the different events
that the application’s event handler can respond to[13]. The counter example uses
the type AppEvent to contain the events that the application will handle.

The AppEvent type only specifies which events can occur and what information they
carry, it does not define any functionality, nor determine when the events are created.
The counter GUI defines two events as part of the AppEvent type. AppInit for when
the application launches and AppIncrease for whenever the button is pressed.

The functionality of events is described in an event handler, such as the handleEvent
function above. The event handler must take as input a value e of the AppEvent
type [13]. handleEvent matches each part of the AppEvent type to the desired func-
tionality. In the case of the AppIncrease event, this means fetching the current value
of clickCount. Then incrementing it and updating the model with the new state.

Monomer’s events and event handlers are one part of how it adheres to the Elm archi-
tecture [4][14]. User input is translated into events by widgets and the event handler
uses this information to update the state of the application [13]. The second part
of the Elm architecture, displaying the program state to the user, is handled by the
buildUI function. The buildUI function constructs the widgetTree to be displayed.
buildUI is called whenever an event changes the state of the program’s model [13].

The buildUI function takes an AppModel as input and constructs a widgetTree com-
posed of a number of widgetNodes each of which are a GUI element [13]. These
widgetNodes are constructed by passing pieces of the AppModel and AppEvent types
to widget constructors [13]. For example the button constructor take as input an
event to raise whenever the button is pressed. In the counter GUI a button for incre-
menting the counter is constructed by passing the AppIncrease event to the button
constructor.

Once state, layout, and events are defined, Monomer GUIs are created by calling the
startApp function. The startApp function takes several inputs[13]:

• A model describing the initial state of the GUI.

• An event handler that describes how the model is updated in response to user
generated events.

• A function to build the GUI based on the current state of the model.

• Configuration options for things like window size and title.

When the model, events, event handler and buildUI function are defined the counter
GUI can be started with a call to the startApp function. It receives four arguments:
An Appmodel, the handleEvent function, the buildUI function and config which is
defined during the call itself. See line 22 and onwards in the code above.

8

2.2.1 Comparison

React and Monomer take similar approaches to GUI development. They both lever-
age the advantages of the declarative programming paradigm and both use a tree
structure to represent the GUI elements.

Similarly to React, Monomer’s widgetTree is optimized not to recalculate the entire
GUI in response to every single user input [15]. Monomer applications always call a
builder function, like buildUI in the example, in response to user input that changes
the AppModel. This creates a new widgetTree that can be recursively merged with
the existing widgetTree [15].

Still there are notable distinctions between the two, React uses imperative tools such
as callbacks, whereas Monomer prioritizes pure functional code. It is also worth
noting that React distributes the functionality of events among individual GUI el-
ements, whereas Monomer applications describe all event functionality in a single
event handler. The React and Monomer frameworks will be used for comparison
with the Async Rattus GUI library in section 6.

With a fundamental understanding of React’s and Monomer’s approaches to GUI
development, we now delve into the realm of FRP. This exploration will investigate
core FRP principles necessary to understand Async Rattus and our GUI library.

9

3 Background

In this section we investigate the foundational principles of Functional Reactive Pro-
gramming (FRP). The FRP paradigm describes pivotal concepts, notably signals
and events, for handling asynchronous data flows using functional programming.

Being able to manage time-varying information smoothly across time is essential
for building any GUI. Often when working with GUIs, one part of the GUI needs to
affect another. This is exemplified by the counter GUI, where a label needs to change
in response to a button press. FRP presents ways to manage these time dependent
variables in functional code, by utilizing signals and events.

3.1 Functional Reactive Programming

Elliott & Hudak (1997) first introduced FRP, as a tool for making reactive ani-
mations using functional programming [5]. In their paper, Elliot & Hudak (1997)
introduced two important concepts for managing time dependent values; behaviours
and events[5].

Behaviours are time-varying values central to the FRP framework. Semantically an
α−behaviour is a function from time to α [5]. As such an α−behaviour associates
each point in time with a value of type α. An event represents an occurrence at a
singular point in time. Semantically an α−event is a non-strict time-value pair[5].

In their paper, Elliot & Hudak (1997) introduce the semantics of behaviours and
events, along with functions and combinators to manipulate them[5]. Using these
functions, FRP can be used to model complex time dependent applications using
functional programming.

This could for example be used to model the counter GUI. Such an application
would consist of a button and a label to represent the number of times the button
was clicked. The label is best represented by an Int−Behaviour since it has a value
at all times that should be displayed to the user. On the other hand, the button
should produce an Event whenever clicked, that changes the current value of the
Int−Behaviour.

The button is unlikely to be clicked continuously, and therefore is not well repre-
sented by a behaviour, since it does not need a value at all points in time. But at
some point in time, when it gets clicked, an event associated with that particular
point in time should be created.

The concepts and semantics introduced by Elliot & Hudak (1997) provide a concep-
tual way to integrate time flow into functional programming. Unfortunately they
also introduce a number of issues that must be considered when making concrete
implementations.

The ability to look up the value of a behaviour at any time gives vast flexibility when
using them. However, this will be prone to implicit space leaks when every past point
in time has to be associated with a stored value. Additionally the semantics pre-
sented by Elliot & Hudak (1997) do not follow temporal causality. This is because
the semantics do not prevent looking up future values.

10

Therefore concretising the abstract semantics of Elliot & Hudak (1997) is no simple
task. This has led to several implementations of FRP’s core ideas in fields ranging
from user interfaces through simulation to robotics [6]. This thesis will present how
one such implementation, Async Rattus, can be used for the purpose of constructing
GUIs. Note that the following section makes extensive reference to the Async Rattus
paper [2], as well as the Async Rattus hackage page [7] and individual references will
therefore not be provided throughout the section.

3.2 Async Rattus

Async Rattus is an FRP language using modal logic to represent time dependent val-
ues. In Async Rattus time varying values are called signals rather than behaviours
and that terminology will be used from this point onwards. Async Rattus is a Haskell
embedded language built on the Async RaTT framework [2].

Async RaTT uses modal types to ensure causality, meaning that any output pro-
duced by a reactive program, only depends on previously received or current input[3].
Further, Async RaTT uses aggressive garbage collection between time steps[3]. This
prevents data from being kept in memory longer than necessary, therefore Async
RaTT prevents implicit space leaks[3]. Async RaTT also has the property of pro-
ductivity, so every recursive call produces a value[3]. Hence ensuring that each com-
putational step terminates [3]. Since Async Rattus is built on the Async RaTT
framework, it also has these properties.

3.2.1 Introduction to Async Rattus

As described by Bahr, Houlborg & Rørdam (2023), Async Rattus is shallowly em-
bedded in Haskell. Hence Haskell’s extensive library ecosystem is fully available
and compatible with Async Rattus. This provides the programmer with access to
Haskell’s rich tool set. However, Async Rattus differs from Haskell in two major ways:

The first difference, is that Async Rattus is eagerly evaluated. The choice to evaluate
eagerly is an important part of how Async Rattus prevents implicit space leaks in an
asynchronous environment. Haskell is more error prone to issues such as space leaks
due to its lazy evaluation.

The second fundamental difference introduced by Async Rattus is an extension of
the type system. Async Rattus introduces two modalities; ⃝ and □ called the later
and box modalities. The later modality ⃝ represents values that will be available in
a future time step. While the box modality □ is used for computations that remain
stable across time steps and can be forced when needed. To better describe the
advantages of Async Rattus, these modalities will be expanded on below.

3.2.2 Later modality and clocks

The later modality ⃝ indicates values that are not immediately available but ex-
pected in the future, contingent on some event. Thus a value of type ⃝a represents a
delayed computation that will produce a value of type a in the future. This modality
is vital for asynchronous computations where the exact timing of values is unknown,
and their arrival may be scattered over time.

11

The later modality in Async Rattus is intrinsically linked with the concept of clocks.
Any value v of type ⃝a consists of a pair such that v = (θ, f). Where θ is a clock
and f is some computation that will produce a value of type a when executed. The
computation f remains dormant until the clock θ ticks, signaling the occurrence of
the anticipated event. This mechanism ensures that delayed computations adhere to
temporal causality. Values are computed only when their time comes, according to
the ticking of their associated clocks.

Functions such as cl :: ⃝a → Clock and adv :: ⃝a → a are pivotal, as they allow
the extraction of a clock θ from a delayed value (θ, f) and the advancement of the
computation f to produce a value of type a, respectively. To create a delayed value,
one can use the delay function. Conceptually delay can be described as a function
delay :: Clock → a → ⃝a, which takes a clock θ and a value and returns a computa-
tion f that will yield the value once the clock ticks. This conceptual representation
suffices for the moment, but will be specified when presenting the typing rules for
adv and delay.

An illustrative example of the interplay between the later modality and clocks is the
following increment function [2]:

incr :: O Int -> O Int

incr x = delay (adv x + 1)

In this function, incr delays the increment operation until the clock associated with
x ticks. This schedules the increment to happen in the future, thereby preserving
the order of operations and the causality of the system.

Clocks are the backbone of Async Rattus’s ability to manage asynchronicity. They
allow the language to control when computations happen, ensuring that programs
behave predictably even in the face of concurrent and delayed operations. The later
modality, combined with the clock system, provides a powerful abstraction for pro-
grammers to handle values that unfold over time.

By integrating clocks and the later modality into the type system, Async Rattus can
uphold the causality principle essential for correct program behavior. To illustrate
this, consider the below example of a function for eliminating the later modality that
is not causal and therefore does not typecheck:

incorrectAdv :: O Int -> Int

incorrectAdv x = adv x

In the above example, the incorrectAdv function tries to use the adv function to ex-
tract a future value x of type ⃝Int without ensuring the associated clock has ticked.
This operation defies Async Rattus’ typing rules, as it attempts to access a future
value prematurely, disregarding the causality and synchronization requirements de-
termined by the language’s type system. This results in the incorrectAdv function
not typechecking. This is caused by the typing rule for the adv function[2]. Typing
rules in Async Rattus use ✓θ to signify a tick on some clock θ. In Async Rattus, a
context Γ consists of variable bindings as well as ticks. An example could be:

12

x :: Int ✓θ y :: Int z :: Text ✓θ′

Here the ticks represent the passage of time according to the clocks θ and θ′. The
value x will be available one time step before the values y and z. With this in mind,
here is the typing rule for adv :

Γ ⊢ x :: ⃝A ✓ ̸∈ Γ′

Γ,✓cl(x),Γ′ ⊢ adv x :: A

This rule states: Let Γ be a context with variable x of type ⃝A. If Γ is to the left of
a tick ✓cl(x) for the clock associated with x, then it is safe to ’advance’ x using the
adv function. Consequently adv can be used as an eliminator for the later modality,
given the context Γ. The presence of the tick ✓cl(x) in the typing rule signifies that
the clock cl(x) has responded to an event making the value of x presently available.
The constraint on the resulting context Γ′ means that calling adv must produce a
new tick free context by carrying out the delayed computation. The adv function
serves to advance the state of a delayed computation, effectively ’unlocking’ the value
it contains once the corresponding clock has ticked.

Where adv is used for eliminating the later modality and executing delayed compu-
tations in response to events, the delay function is used to construct delayed compu-
tations. To safely construct a delayed computation one needs to associate it with a
clock to signify when it will execute, therefore the delay function has the following
typing rule [2]:

Γ,✓cl(x) ⊢ x :: A

Γ ⊢ delaycl(x)x :: ⃝A

In this rule, if the context Γ produces a value x of type A after a tick on the clock
associated with x, then delay (x) will have type ⃝A in the context Γ. The presence
of the tick, ✓cl(x), denotes the passage of one time step according to the clock cl(x),
ensuring that the delay respects the flow of time and the causality of the system.
Then, Γ ⊢ delaycl(x)x :: ⃝A indicates that in the context Γ, the delayed value x will
be of type ⃝A.

The delay function introduced above is used to postpone a computation until a cer-
tain point in the future, determined by the ticking of a clock. For this reason the
hypothesis of the typing rule requires the presence of a tick on some clock θ, since
this will be the prompt for the execution of the delayed computation.

Similarly to the incorrectAdv function showcased above, consider the below example
of a function which incorrectly tries to use the delay function. Note how unlike the
notation in the typing rule, the clock is not explicitly described when using the delay
function, this will be the case going forward.

incorrectDelay :: Int -> O Int

incorrectDelay x = delay x

In this example, incorrectDelay tries to delay an integer x without specifying when
the computation will occur. However, as stated the delay function requires more
than just a value to delay - it also requires a clock that dictates the timing of the
delayed computation. The above function will thus result in a type error because

13

the type system cannot determine when the delayed computation should occur.

Together, adv and delay enable precise control over when computations are carried
out in Async Rattus. This ensures that values are only accessed or modified at ap-
propriate times, often in response to user generated input. This careful management
of time-dependent computations is critical for preventing the premature use of val-
ues that have yet to be determined. An example of utilising delay and adv correctly
could be:

doubleLater :: O Int -> O Int

doubleLater x = delay (2 * adv x)

In this example, doubleLater takes a delayed integer and returns a new delayed
integer that is twice the original value. This exemplifies how delay and adv are used
to manage the time-varying aspects of computations within Async Rattus. As is the
case in the above example, delay and adv will often be used in conjunction. This is
because delay’s typing rule ensures that there will be a tick on an associated clock,
whereas adv produces a value from a delayed computation in response to a tick on
the associated clock.

3.2.3 The Box Modality and Stable Types

The box modality, denoted by □, complements the later modality in Async Rattus
by providing a mechanism for managing time-independent computations. A boxed
type, is a thunk that can be evaluated at any time, either now or in the future.
Therefore a value of type □a can be forced at any time using the unbox function, to
produce a value of type a:

unbox :: Box a → a

As such unbox serves as the eliminator of the box modality. Examples of how to use
the box modality and the unbox function will be presented in Section 3.2.4.

General values in Async Rattus can contain references to time-dependent data, such
as delayed computations stored in the heap. This could cause issues if references
are kept after the time dependent data has been altered or deleted. To prevent this,
Async Rattus does not keep arbitrary data across time steps. There are some types
that cannot contain references to time-dependent data, in Async Rattus these are
called stable types.

Stable types form a core part of the Async Rattus type system. They include base
types like Int and Bool, which do not carry any temporal dependency and can, there-
fore, be referenced safely at any point in a program’s execution. General function
types are notably not stable by default, additionally any value of type ⃝a, is by
definition time dependent and therefore not stable. To keep such types across time
steps we need the box modality □, whose typing rules ensure that □a is kept in a
stable context. Stable types are thus crucial for ensuring that certain values remain
constant and unaffected by the flow of time within an asynchronous system. In the
Async Rattus paper [2], this is formalized by the following type rule:

14

Γ□ ⊢ x :: A

Γ ⊢ box x :: □A

This rule stipulates that if a value x is of a type A in the context Γ□, then box x has
type □A within the context Γ. Here Γ□ is the context derived from Γ by removing
all values that are not stable as well as ticks ✓θ on any clock θ.

The rule’s premise is that x will be stable when it occurs in a context without time-
dependent values or ticks on any clock. This allows it to be treated as a stable type.

The later ⃝ and box □ modalities in Async Rattus are used for distinguishing
between time-dependent and time-independent computations, enabling robust asyn-
chronous programming. The later modality facilitates deferring computations un-
til specified events occur. The box modality ensures that stable values are kept
across time steps, while allowing aggressive garbage collection, which prevents space
leaks[3]. Together, these modalities enhance Async Rattus’s ability to model asyn-
chronous systems, making it a powerful tool for FRP.

3.2.4 Signals

The later and box modalities described above are a central part of the functions used
to construct and manipulate signals in Async Rattus. With these concepts in place it
is now possible to describe the higher order Async Rattus functions for manipulating
user input. First and foremost, signals in Async Rattus can be constructed using the
following definition [2]:

data Sig a = a ::: (⃝(Sig a))

As such, signals are recursively defined as a value of type a coupled with a delayed
computation producing a new value of type Sig a. In addition to the constructor,
Async Rattus has numerous functions that can be used to manipulate the values of
signals. One example is the map function, that applies a function f to all current
and future values of a signal [2]:

map :: □(a → b) → Sig a → Sig b

map f (x ::: xs) = unbox f x ::: delay (map f (adv xs))

Here, map takes a function f of type □(a → b) and a signal of type Sig a. The boxed
function f is time-independent due to the □ modality, ensuring that f is stable. This
is crucial because f will be used to transform all future values carried by the signal
stream xs. Had the function instead been defined as [2]:

mapX :: (a → b) → Sig a → Sig b

mapX f (x ::: xs) = f x ::: delay (mapX f (adv xs))

The highlighted reference to f would be out of scope. The closure of f may contain
time dependent data, so it cannot simply be postponed to a future time step without
causing potential space leaks. Therefore any function that is not guarded by the box
operator will be garbage collected between time steps and the definition of mapX
will not pass the type checker.

15

Note how, in the definition of map, the function f cannot be applied directly due
to the box operator. While a function is guarded by box the computation will not
be carried out. To force the computation we can use the unbox function [2]. This
eliminates the □ modality, hence allowing us to apply f to the current value.

The recursive part of the definition, delay (map f (adv xs)), exemplifies how to work
with the ⃝ modality. The expression adv xs will advance the signal xs to its next
state, eliminating the ⃝ modality and allowing access to the signal’s next value.
The map function will then be recursively called on this advanced signal. The delay
function ensures that the entire computation is deferred until the next tick of the
signal’s clock, which is required by the typing rule of adv.

This use of adv and delay is necessary for maintaining the causality of the program,
while ensuring that each recursive call is productive. As the recursive call map f (adv
xs) only occurs once those future values are actually available.

Asynchronous environments also demand the ability to manage concurrent events.
Therefore the capacity to effectively handle simultaneous input is essential. For this
purpose Async Rattus provides the Select primitive, defined by the following typing
rule[2]:

Γ ⊢ s :: ⃝A Γ ⊢ t :: ⃝B ✓ ̸∈ Γ′

Γ,✓cl(s)⊔cl(t),Γ′ ⊢ select s t :: Select A B

Given a context Γ with two different delayed computations s :: ⃝(A) and t :: ⃝(B).
When Γ is to the left of a tick on the union clock cl(s) ⊔ cl(t), it results in a new
tick-free context Γ′ wherein select s t has type Select A B. The union clock is defined
as the clock that ticks whenever cl(s) or cl(t) ticks. The type for Select A B is defined
below [2]:

data Select a b = Fst a (⃝b) | Snd (⃝a) b | Both a b

By returning Fst, Snd or Both Select identifies which part of the union clock has pro-
duced a tick, and returns the corresponding value. Thus any delayed computations
with potential overlap can be managed without causing any data races or similar
issues.

Since Select concerns itself with delayed computations in general rather than signals,
Async Rattus utilises select to define functions that handle cases where two signals
might tick at the same time. One example of such is the switch function which is
implemented as follows [2]:

switch :: Sig a → ⃝(Sig a) → Sig a

switch (x ::: xs) d = x ::: delay (case select xs d of

Fst xs′ d′ → switch xs′ d′

Snd d′ → d′

Both d′ → d′)

The switch function allows dynamic behavior in asynchronous programming by cre-
ating a signal whose behaviour changes in response to clock ticks. Initially, the signal

16

xs dictates the output. However, when the delayed signal d ticks, switch transitions
the output to follow d. Thus the behaviour of signals can be changed dynamically
during program execution. select ensures that even if both xs and d tick simultane-
ously, the output will properly transition to follow the behaviour of d

The select and switch functions in Async Rattus provide a powerful mechanism for
managing concurrent events in an asynchronous environment. They allow for com-
plex behaviors based on multiple sources of input, and to dynamically switch the
behaviours of signals based on these inputs. This is vital in a GUI context where
events such as clicks and keystrokes might arrive simultaneously.

In summary, Async Rattus implements the concept of FRP with a focus on type
safety. The typing rules of the Async RaTT framework that Async Rattus imple-
ments ensure that Async Rattus programs are causal, free of implicit space leaks, and
that every recursive call is productive. In addition to this, Async Rattus provides
the programmer with a number of powerful tools for handling concurrent input and
manipulating signals. Async Rattus also allows dynamically changing signal func-
tionality during program execution.

By combining the capabilities provided by Async Rattus with the GUI framework
Monomer, the next section will cover a library implementation for constructing com-
pact GUIs.

17

4 Design and Implementation

In this section, an FRP library implemented in the Haskell embedded language Async
Rattus will be presented. While Async Rattus provides powerful tools for type safety
in asynchronous environments, it currently does not have any tools for constructing
GUIs. For that purpose we have written an Async Rattus library that leverages
Monomer’s ability to construct GUIs. We will present the overall programming model
of our library, and provide a high-level perspective alongside examples throughout
the section. As previously stated, the 7GUIs: A GUI Programming Benchmark [8]
were utilised as a starting point for the GUI library we have implemented. In Section
5 the benchmarks themselves will be covered in detail during our case studies. Note
that we only showcase and discuss the implementation of the first four of the seven
benchmarks. The source code for these four benchmarks can be found in Appendix 2.

Throughout the implementation of the GUI library there will be extensive reference
to Async Rattus functions that manipulate signals. Not all of these have been covered
in detail throughout Section 3 due to space limitations, but an overview of them can
be seen in Table 1:

Function Name Type Description
const a → Sig a Constructs a constant signal that never updates.
map □(a → b) → Sig a → Sig b Applies a boxed function to all current and future

values of a signal, creating a new signal.
mapAwait □(a → b) → ⃝(Sig a) → ⃝(Sig b) Applies a boxed function to a delayed signal, creating

a new delayed signal.
scan □(b → a → b) → b → Sig a → Sig b Accumulates results over time by applying a binary

function to a signal and an initial value.
scanAwait □(b → a → b) → b → ⃝(Sig a) → Sig b Similar to scan, but works on a delayed signal
interleave □(a → a → a) → ⃝(Sig a) → ⃝(Sig a) → ⃝(Sig a) Combines two signals such that the resulting signal

ticks whenever either input signal ticks, applying a
function if both tick simultaneously.

stop* □(a → Bool) → Sig a → Sig a Stops the progression of a signal when a condition is
met.

addInputSigTF* TextField → ⃝(Sig Text) → TextField Interleaves a signal with the contents of a textfield,
allowing it to update its display based on the signal.

switch Sig a → ⃝(Sig a) → Sig a Creates a signal that switches its behavior based on
a delayed signal.

switchS Sig a → ⃝(a → Sig a) → Sig a Like switch but the second signal can depend on the
final value of the first signal

switchB* ⃝(Sig (a → a)) → □(a → Sig a) → a → Sig a Variant of switchS that switches signal behaviour
whenever the delayed input signal ticks

zipWith □(a → b → c) → Sig a → Sig b → Sig c Combines two signals by applying a function to their
current values whenever either ticks.

buffer* a → Sig a → Sig a Creates a signal that is always one tick behind the
input signal.

triggerStable* □(a → b → c) → c → ⃝(Sig a) → Sig b → Sig c Creates a signal that updates based on a function
applied to two input signals, but only changes its
value when the delayed signal ticks.

Table 1: Async Rattus library functions
(Functions marked with ∗ were developed over the course of this project)

This is only meant to provide a quick overview, more detailed explanations of relevant
signal functions will be provided in the following sections. A number of the functions
in the table above are not part of the Async Rattus library, but have been developed
throughout this project.

18

To effectively grasp the structure of our Async Rattus GUI library, it is crucial to rec-
ognize how it incorporates the Monomer library. As described previously Monomer
GUIs are constructed by calling the startApp function. Our GUI library uses the
function runApplication to call Monomer’s startApp function which renders the GUI.

Like Monomer, elements in our GUI library are called widgets and the GUI is repre-
sented as a tree structure. Conceptually speaking, widgets are simply GUI elements
that are defined as unique data structures. A button for example consists of two
fields: a signal of text btnContent and an input channel btnClick. A button is thus
a widget and can be defined as follows:

data Button where

Button :: Displayable a, Stable a) =>

{btnContent :: !(Sig a), btnClick :: !(Chan ())} -> Button

btnContent represents the value displayed on the button. Note that bang is used to
force the compiler to evaluate the arguments eagerly, since Async Rattus uses eager
evaluation. The channel is Async Rattus’ way of handling user input. Any widget
that takes user input needs to instantiate a channel of the corresponding type. In
the case of a button this is a channel of type unit, since the click event does not
carry any data.

Channels are defined by the following constructor[7]:

chan :: C (Chan a)

chan is a function with a side effect. The function produces a new channel and keeps
a record of it. To allow this side effect the function uses the C monad. The C monad
is an IO monad made for this purpose.

In order to pass the button constructor to Monomer, a widget must fulfill certain
criteria based on the corresponding Monomer constructor. We want to create custom
data types and pass them to existing Monomer constructors. To do this, we need to
ensure that these custom data types can indeed be interpreted as Monomer widgets.
For this purpose the IsWidget typeclass is defined.

All widgets must be instances of the IsWidget typeclass, that requires the implemen-
tation of a mkWidget function. The mkWidget function ensures that a datatype can
be interpreted as a Monomer widget. This is because its return type is a widgetNode,
which is the type Monomer uses for GUI elements. The IsWidget type class is a sub
class of Continuous [7].

The Continuous type class is a definition from Async Rattus that represents a stream
of data that can be moved forward in time [7]. In Async Rattus any datatype that
can change over time must be an instance of Continuous. Therefore it is vital that
widgets are instances of Continuous since they may need to change their state in
response to user generated events. Note that any stable type is trivially Continuous.

The importance of widgets being Continuous is apparent in the runApplication func-
tion. In order to change the state of a widget it needs to call the Async Rattus
progressAndNext function, which is part of the Continuous class [7]. This function
progresses the state of a given widget in response to input on some channel. It re-
turns the new state of the widget alongside the clock that determines when next to

19

advance the widget.

With this in mind, the definition of IsWidget and the IsWidget instance declaration
for a button can be seen below. continuous ”Button is Template Haskell for creating
a Continuous instance of the button type:

class Continuous a => IsWidget a where

mkWidget :: a -> Monomer.WidgetNode AppModel AppEvent

continuous ''Button

instance IsWidget Button where

mkWidget :: Button -> Monomer.WidgetNode AppModel AppEvent

mkWidget Button{btnContent = txt ::: _ , btnClick = click} =

Monomer.button (display txt) (AppEvent click ())

The mkWidget function needs to return a Monomer widgetNode, which is exactly the
type returned by Monomer’s widget constructors. So as stated above the mkWidget
functions must call the constructor for a Monomer widget.

For example, the Monomer button constructor takes as input some text and an event.
In order to call the Monomer button constructor, we use the current value of the
btnContent signal as text input. The event input is constructed from the btnClick
channel. To convert channels into events, we define the AppEvent data type:

data AppEvent where

AppEvent :: !(Chan a) -> !a -> AppEvent

The AppEvent data type takes as input a channel of type a and a value of type
a. Button click events are of type unit, since they do not contain any information.
btnClick is a channel of type unit and by calling AppEvent click () an AppEvent is
constructed and passed to Monomer.

To make the process of constructing GUI elements simpler, the GUI library provides
some helper functions, such as mkButton:

mkButton :: (Displayable a, Stable a) => Sig a -> C Button

mkButton t = do

c <- chan

return Button{btnContent = t, btnClick = c}

The mkButton function only takes a signal as input. The input channel required for
btnClick is constructed and assigned by the call to mkButton. It is worth noting that
mkButton operates within the C monad, since it works with IO operations in the
form of channels. Hence mkButton returns C Button.

With the IsWidget typeclass and constructors in place it is possible to instantiate
widgets and pass them to the runApplication function. However, most widgets rep-
resent only a single GUI element, so it is necessary to have a container widget when
showing multiple elements on screen. Similarly to Monomer, horizontal and vertical
stacks of widgets are provided for this purpose. A stack is a widget consisting of a
list of other widgets. In Async Rattus we define a vertical stack by:

20

data VStack = VStack {vGrp :: !(Sig (List Widget))}

Since stacks should be able to contain multiple different widget types it is defined as
a signal of a list of Widgets. Widget is itself a data type made from any instance of
the IsWidget typeclass and a signal of type Bool.

data Widget where

Widget :: IsWidget a => !a -> !(Sig Bool) -> Widget

Being able to enable and disable widgets becomes significant in some of the later
benchmarks, but is in fact part of the Widget constructor, as can be seen above. If
a Widget never needs to be disabled, one can use the enabledWidget function:

enabledWidget :: IsWidget a => a -> Widget

enabledWidget w = Widget w (AsyncRattus.Signal.const True)

enabledWidget takes as input some type a that is an instance of IsWidget and returns
a Widget. Since we never want to disable such widgets, we can use the Async Rattus
const function to pass it an unchanging signal of True and create a Widget that is
enabled for display.

The GUI library is not meant to be functionally complete and does not implement
every Monomer widget. But a number of different widgets have been implemented
with the goal of creating the first four benchmarks. The implemented widgets are
shown with a short description in the Table 2:

Widget Name Fields Description

Button
btnContent :: Sig a
btnClick :: Chan ()

A button with a content signal, supporting any
instances of displayable, and a channel registering
clicks

TextField
tfContent :: Sig Text
tfInput :: Chan Text

A textfield widget with a text signal and an input
channel.

Label labText :: Sig a A label widget displaying a signal of a stable dis-
playable instance.

HStack hGrp :: Sig (List Widget) A horizontal stack of widgets, represented by a signal
of Widget lists.

VStack vGrp :: Sig (List Widget) A vertical stack of widgets, represented by a signal
of Widget lists.

TextDropdown

tddCurr :: Sig Text
tddEvent :: Chan Text
tddList :: Sig (List Text)

A dropdown menu with a current text signal, channel
for onChange events, and a list of options.

Popup

popCurr :: Sig Bool
popEvent :: Chan Bool
popChild :: Sig Widget

A popup widget with a signal determining visibility,
event channel, and a child widget signal.

Slider

sldCurr :: Sig Int
sldEvent :: Chan Int
sldMin :: Sig Int
sldMax :: Sig Int

A slider widget with signals for current value, mini-
mum, and maximum and a channel for raising events
when changed.

Widget
IsWidget a => a
Sig Bool

General Widget constructor where a satisfies IsWid-
get. Boolean signal used for enabling/disabling the
widget

Table 2: Widgets in the GUI Library

21

This is again to provide an overview of the widgets currently supported by our GUI
library and used throughout the case studies. The following sections will provide
in-depth explanations for relevant widgets.

5 Case Studies

Similar to Section 2, we have used 7GUIS: A GUI Programming Benchmark [8]
to inform the features needed in our library, and assess what its capable of. This
section will cover the first four of the seven benchmarks as well as a calculator GUI.
It will detail the code and showcase how the library was adapted to overcome issues
presented by the different cases.

5.1 Counter

The first benchmark is a simple test to verify that the library provides a toolkit for
constructing user interfaces. This is the same GUI that was presented in Section 2.
Figure 2 shows how one such benchmark could look:

Figure 2: Screenshot of the counter benchmark:
With an Increment button and a label displaying the current value

As described in Section 4, GUIs in our library are made by passing a widget, typically
a stack containing more widgets, to the runApplication function. A stack describing
the counter GUI can be constructed as follows:

benchmark1 :: C VStack

benchmark1 = do

btn <- mkButton (const ("Increment" :: Text))

let sig = btnOnClickSig btn

let sig' = scanAwait (box (\n _ -> n + 1 :: Int)) 0 sig

lbl <- mkLabel sig'

mkVStack (const [enabledWidget lbl, enabledWidget btn])

Here the GUI is defined as a vertical stack consisting of a button and a label. The
button is constructed using the mkButton function, which takes a signal of some a
that is an instance of Displayable and Stable, then returns a C button. To be an
instance of the Displayable typeclass a must have a function display that converts it
into a Text, so it can be shown on screen.

In our case we pass the button constructor a constant signal of text that always has
the value ”Increment”. The Async Rattus const function makes a constant signal

22

from any value[7]. The helper function btnOnClickSig takes a button and returns a
delayed signal of type unit. This signal ticks every time the button is pressed.

A tick on sig corresponds to a user generated event. Thus signals constructed from
sig can be used to add functionality to this event. The Async Rattus scanAwait
function behaves similarly to Haskells scanl function, but for signals rather than lists
[7].

Here is an example of how scanAwait could be used:

scanAwait box(+) 0 O(1:::2:::3:::...) == (0:::1:::3:::6:::...)

Here the sum function is applied whenever the input signal ticks, which returns a new
signal consisting of the accumulating sum. The signal notation above is not a valid
constructor, but the notation is a convenient way to show the value of a signal across
time steps. In the code for the counter, scanAwait is used to apply an increment
function whenever sig ticks. The resulting signal sig’ has an initial value of 0 and
increments whenever sig ticks.

Therefore the value of sig’ increments whenever the button is pressed. Calling mk-
Label sig’ then returns a label that always displays the current value of sig’. Between
the increment button and this label the functionality of the counter GUI is attained.

In the case of the counter GUI, we create a vertical stack Widget for passing to the
runApplication function. This stack needs to contain the button and the label. Since
neither Widget should be disabled, the enabledWidget function is used to create two
elements of type Widget. The two widgets are inserted into a list then passed to
mkVStack ; the function for constructing vertical stacks. Note that we once again
use the const function to make the list into a constant signal of List Widget.

5.2 Temperature Converter

The temperature converter GUI requires creating a bidirectional temperature con-
verter from Celsius to Fahrenheit [8]. The GUI should contain two textfields repre-
senting Fahrenheit and Celsius respectively[8]. When a number is typed into either
textfield the other should update to show the converted value. This benchmark in-
troduces two new challenges; handling user generated text input and introducing
bidirectional data flow [8]. Figure 3 illustrates how the temperature converter might
look:

Figure 3: Screenshot of the Temperature Converter Benchmark
Shows the two textfields containing Celsius and Fahrenheit

23

To handle user generated input, we define the TextField widget. A textfield consists
of a signal of type text and a channel of type text:

data TextField =

TextField {tfContent :: !(Sig Text), tfInput :: !(Chan Text)}

The channel tfInput contains any input the user types into the textfield. On the other
hand the signal tfContent produces the values that the textfield displays on screen.
By default tfContent has no intrinsic connection to tfInput. However, displaying the
user input is usually desired, so the mkTextfield function is defined as follows:

mkTextField :: Text -> C TextField

mkTextField txt = do

c <- chan

let sig = txt ::: mkSig (box (wait c))

return TextField{tfContent = sig, tfInput = c}

When calling mkTextField, tfContent is constructed from the input channel tfInput.
This ensures the display is updated when the user types in the textfield.

While the mkTextField function provides a simple way to handle user generated text
input, it presents difficulties in regards to creating a bidirectional data flow. To
achieve this we need to create a Celsius textfield that can be written to, but also
converts values written in the Fahrenheit textfield. So the tfContent signal has to
tick in response to the Celsius textfield’s tfInput and whenever the Fahrenheit signal
ticks. However, mkTextField defines tfContent as a signal that responds only to the
tfInput channel, so it cannot be used in this case. The temperature converter can
still be completed by using the textfield constructor directly:

cC <- chan

cF <- chan

let sigC = mkSig (box (wait cC))

let sigF = mkSig (box (wait cF))

let convertFtoC = mapAwait (box fahrenheitToCelsius) sigF

let convertCtoF = mapAwait (box celsiusToFahrenheit) sigC

let sigC' = "0":::interleave (box (\ x y -> x)) FtoC sigC

let sigF' = "32":::interleave (box (\ x y -> x)) CtoF sigF

let tfC = TextField {tfContent = sigC', tfInput = cC}

let tfF = TextField {tfContent = sigF', tfInput = cF}

In the code above, we initially construct two input channels, one for each textfield.
From these, two signals reflecting the user input are instantiated.

mapAwait is an Async Rattus function that constructs a signal by applying a function
to any value produced by a delayed signal[2]. An example usage could be:

mapAwait box(+1) (1:::2:::3:::...) == (2:::3:::4:::...)

In the temperature converter mapAwait is used to apply functions that convert be-
tween Celsius and Fahrenheit. Thus, when sigC produces an integer value con-
vertCtoF produces the corresponding value in Fahrenheit and vice versa.

Next the Async Rattus function interleave is used to combine the values produced
by sigC and convertFtoC. interleave is a function that takes two delayed signals and

24

produces a combined delayed signal. The combined signal ticks whenever one of the
input signals tick, producing the same value. Given signals xs and ys, an example
could be[7]:

xs: 1 3 5 3 1 3

ys: 0 2 4

interleave (box (+)) xs ys: 1 3 2 5 7 1 3

interleave takes as input a binary function that is applied when both signals tick at
once . In the temperature converter, we ensure that if the input signal ticks simulta-
neously with the conversion signal, it is the value of the conversion signal that gets
displayed.

Having interleaved the signals representing user input with signals applying the con-
version functions, it is possible to call the textfield constructor directly and get the
desired functionality.

Though the above solution works, it does not leverage much of the GUI library,
instead requiring the programmer to manipulate input channels directly. mkTextfield
cannot be used in this solution, since it defines tfContent prematurely and the value
cannot be changed. To provide better helper functions for this problem we define
addInputSigTF :

addInputSigTF :: TextField -> O (Sig Text) -> TextField

addInputSigTF tf sig =

let tfContent' = current (tfText tf) :::

interleave (box (\x y -> x))

(future (tfContent' tf)) sig

in tf{tfContent = tfContent', tfInput = tfInput tf}

The function addInputSigTF takes a textfield tf and a delayed signal sig as input.
It then defines a new signal tfContent’ by interleaving the tfContent value of tf with
sig. This new signal retains the behaviour of the original textfield, but also ticks
whenever sig does. Thus a new textfield can be returned that keeps the original
input channel, but also displays any value produced by sig. This can be used to
implement an alternative solution to the temperature converter GUI, which does not
require the programmer to manipulate input channels:

25

benchmark2 :: C HStack

benchmark2 = do

tfF1 <- mkTextField "32"

tfC1 <- mkTextField "0"

let convertFtoC = map (box fahrenheitToCelsius) (tfContent tfF1)

let convertCtoF = map (box celsiusToFahrenheit) (tfContent tfC1)

let tfF2 = addInputSigTF tfF1 (future convertCtoF)

let tfC2 = addInputSigTF tfC1 (future convertFtoC)

fLabel <- mkLabel (const ("Fahrenheit" :: Text))

cLabel <- mkLabel (const ("Celsius" :: Text))

fStack <- mkVStack

(const [enabledWidget tfF2, enabledWidget fLabel])

cStack <- mkVStack

(const [enabledWidget tfC2, enabledWidget cLabel])

mkHStack (const [enabledWidget fStack, enabledWidget cStack])

This implementation simplifies creating bidirectional data flows by using the helper
functions provided in our GUI library. Thus, it is shown that Async Rattus can be
used for creating GUIs, combining multiple widgets and handling non-trivial data
flows.

5.3 Flight Booker

The primary challenge behind the flight booker GUI comes in the form of constraints
[8]. The task is to build a flight booker where widgets disable or enable one another[8].
Figure 4 illustrates an implementation of the flight booker:

Figure 4: Screenshot of the Flight Booker:
At the bottom, an open textdropdown showing the flight options.

Above, the two textfields for dates and a booking button

26

The benchmark requires the implementation of a dropdown menu, wherein you can
select whether you are booking a return flight or a one-way ticket. For this purpose
a textDropdown is defined as:

data TextDropdown = TextDropdown {

tddCurr ::!(Sig Text),

tddEvent :: !(Chan Text),

tddList :: !(Sig (List Text))}

In the case where a one-way ticket is being selected, the textfield containing the
return date gets disabled. Additionally the button for booking a flight is disabled
whenever the dates are incorrectly formatted.

Monomer has a function for enabling or disabling widgets, called nodeEnabled. nodeEn-
abled is called with a widget and a boolean value, and returns a widget that is enabled
when the boolean value is true. To include this functionality in our Async Rattus
library we call nodeEnabled when constructing any Widget :

instance IsWidget Widget where

mkWidget :: Widget -> Monomer.WidgetNode AppModel AppEvent

mkWidget (Widget w (e ::: _)) =

Monomer.nodeEnabled (mkWidget w) e

Any call to the Widget constructor must include a signal of type Bool. The value of
this signal then determines when the Widget is enabled. As mentioned in Section 4
the enabledWidget function can be used to constructWidgets that are always enabled.

In addition to the aforementioned textdropdown, the flight booker requires the im-
plementation of a popup for signifying a correct booking. Popups are defined by:

data Popup = Popup {popCurr :: !(Sig Bool),

popEvent :: !(Chan Bool),

popChild :: !(Sig Widget)}

Here the popChild is a signal of Widget. popChild’s value indicates the widget to
display whenever popCurr is true.

The code for the flight booker GUI (Appendix 2.3) is more extensive than the previ-
ous benchmarks. It will not be included here, since it consists mostly of constructor
calls and comparison logic written in plain Haskell.

27

5.4 Timer

The timer GUI entails building an interactive timer[8]. The timer ticks up every
second and its value is displayed in both a progressbar and numerically on a label
[8]. User input comes in the form of a slider that determines the maximum value of
the timer, as well as a button that resets the timer[8]. Figure 5 has an image of our
solution:

Figure 5: Screenshot of the Timer Benchmark:
Showcasing the slider, progressbar and reset button

In the above GUI, the blue bar is the progress bar which increments towards the
maximum value of the grey slider. Pressing the reset button sets both the numerical
value and the progressbar to zero.

This benchmark required the implementation of a slider and a progressbar. A slider
can be represented by the following data type:

data Slider = Slider {sldCurr :: !(Sig Int),

sldEvent :: !(Chan Int),

sldMin :: !(Sig Int),

sldMax :: !(Sig Int)}

The slider uses integer signals for its maximum, minimum and current values. It also
has an integer channel that is used to receive user input when the bar is dragged,
setting the current value. This is implemented in the mkSlider function:

mkSlider :: Int -> Sig Int -> Sig Int -> C Slider

mkSlider start min max = do

c <- chan

let curr = start ::: mkSig (box (wait c))

return Slider{

sldCurr = curr, sldEvent = c,

sldMin = min, sldMax = max}

As can be seen in the above definition, the current value of the slider is a signal
made from the input channel c which is used for the sldEvent. Since the min and
max values are given by signals, these can be changed during program execution,
giving much flexibility to the widget.

Unfortunately Monomer does not currently have a progressbar widget [12]. However,
a serviceable alternative can be constructed from the slider widget:

28

mkProgressBar :: Sig Int -> Sig Int -> Sig Int -> C Slider

mkProgressBar min max curr = do

c <- chan

let boundedCurrent =

zipWith (box Prelude.min) curr max

return Slider{sldCurr = boundedCurrent,

sldEvent = c,

sldMin = min,

sldMax = max}

Instead of letting the current value sldCurr depend on the input channel, the above
implementation sets the current value based on the input signal curr. The slider
constructor is still passed a channel to satisfy type constraints, but it is given no
functionality.

mkProgressBar uses the Async Rattus function zipWith, to ensure that the current
value of the progressbar never exceeds its maximum value. zipWith takes as input
two signals and returns a new signal that ticks whenever either of the input signals
tick[2]. An example usage of zipWith could be [7]:

xs: 1 2 3 2

ys: 1 0 5 2

zipWith (box (+)) xs ys: 2 3 4 3 8 4

The returned signal is the result of applying the input function, (+) to the current
values of both input signals. This creates a new signal that is at all times equivalent
to the sum of the current values of xs and ys.

In the case of the timer, zipWith is used to apply the min function to curr and
max. This ensures that the current value of the progressbar never exceeds its current
maximum value.

The primary challenge of the timer GUI is concurrency, since user input competes
with the state of the timer[8]. This is a challenge that Async Rattus is well suited
for, since the Select primitive handles simultaneous ticks elegantly. However, con-
structing a signal representing the current value of the progressbar requires some
more advanced helper functions.

First, it is necessary to create a signal that ticks periodically. For this purpose we
define everySecondSig, which is signal that ticks every second:

everySecond :: Box (O())

everySecond = timer 1000000

everySecondSig :: Sig ()

everySecondSig = () ::: mkSig everySecond

This signal can be used to create another signal that increments every second using
the Async Rattus scan function. scan works similarly to scanAwait, but applied to
signals that are not delayed (See example in Section 5.1.). However, such a signal

29

would not be capped by the maximum value of the slider. Hence a function that can
stop the increments is necessary:

stop :: Box (a -> Bool) -> Sig a -> Sig a

stop f (x:::xs) = if unbox f x then x:::never

else x:::delay (stop f (adv xs))

The below example showcases how the stop function works:

stop box (>=3) 1:::2:::3:::4 == 1:::2:::3:::never

Every time the input signal ticks it applies the function f. If the result is true the
signal progression is stopped by returning x ::: never, which is a signal that never
ticks. As can be seen in the example, this could be used to stop an incrementing
signal at a specified value. Using stop we can implement the nats function for creating
timers:

nats :: (Int :* Int) -> Sig (Int :* Int)

nats (n :* max) =

stop (box (\ (n :* max) -> n >= max))

(scan (box (\ (n :* max) _ -> min (n + 1) max :* max))

(n :* max)

everySecondSig)

nats takes as input a pair of integers (n : ∗max) and returns a signal of the same
type. The resulting signal will tick every second, incrementing n, until it reaches
max. An example of how nats behaves can be seen below:

nats(0:*3) == (0:*3):::(1:*3):::(2:*3):::(3:*3):::never

This is achieved by passing the input tuple to scan and using a lambda function that
compares the current value of (n+ 1) with max every tick. Using the nats function
it is possible to implement the timer GUI:

30

reset :: (Int :* Int) -> (Int :* Int)

reset (n :* max) = (0 :* max)

setMax :: Int -> (Int :* Int) -> (Int :* Int)

setMax max' (n :* max) = min n max' :* max'

benchmark4' :: C VStack

benchmark4' = do

slider <- mkSlider 50 (const 1) (const 100)

resetBtn <- mkButton (const "Reset")

let resSig = mkSig (btnOnClick resetBtn)

let resetSig = mapAwait (box (\ _ -> reset)) resSig

let currentMax = current (sldCurr slider)

let setMaxSig = mapAwait (box setMax) (future (sldCurr slider))

let inputSig = interleave (box (.)) resetSig setMaxSig

let counterSig = switchB inputSig (box nats) (0 :* currentMax)

let currentSig = map (box first) counterSig

let maxSig = map (box second) counterSig

label <- mkLabel (map (box display) currentSig)

pb <- mkProgressBar (const 0) maxSig currentSig

mkVStack (const [enabledWidget slider,

enabledWidget resetBtn,

enabledWidget label,

enabledWidget pb])

To make the timer GUI the progressbar must be constructed using a signal that
represents a capped timer. Such a timer must consist of a current and a maximum
value. It needs to respond to two different types of user input: The reset button
that alters its current value, and the slider that determines its maximum value. For
this purpose two helper functions are defined, reset and setMax. From these we
create two signals: resetSig which returns the reset function any time the reset but-
ton is pressed, and setMaxSig which partially applies setMax whenever the slider is
changed. setMax always gets partially applied to the current value of the slider.

resetSig and setMaxSig are then interleaved using function composition. This cre-
ates the signal inputSig that ticks in response to either type of input producing the
corresponding helper function.

The signal representing the timer needs to dynamically update its behaviour in re-
sponse to user input, by applying the functions produced by inputSig. For this
purpose the switchB library function is defined:

31

switchB :: Continuous a =>

O (Sig (a -> a)) -> Box (a -> Sig a)-> a -> Sig a

switchB steps f st = switchS ((unbox f) st)

(delay (let step ::: steps' = adv steps

in (switchB steps' (f . step))))

Like switch (see Section 3.2.4), switchB is a function that changes the behaviour of
a signal during program execution . Whereas switch works by changing from one
input signal to another, switchB takes as input a delayed signal steps and updates
the behaviour of the returned signal whenever steps ticks. This is done by recursively
calling switchB in a call to the Async Rattus function switchS :

switchS :: Stable a ⇒ Sig a → ⃝(a → Sig a) → Sig a

The switchS function is similar to switch, but the second signal may depend on the
last value of the first signal[7]. switchS needs two inputs: a signal of type a to dictate
the initial behaviour, and a delayed function that creates signals of type a from val-
ues of type a. switchS returns a signal that initially behaves like its input signal and
changes behaviour when the delayed function becomes available. The new behaviour
of the signal will be the result of applying the delayed function to the current value
of the input signal.

switchB takes as input a function f that constructs signals from values of type a.
This function is applied to an initial value st to create a signal that determines the
initial behaviour of switchB’s output signal. This initial signal is passed to switchS
alongside a delayed recursive call to switchB. The delayed call is constructed by call-
ing adv on the input signal steps. delay and adv ensure that steps has ticked and
produced a current value step when the recursive call executes. step is a function of
type a → a. step composed with f gives a function of type a → Sig (a). By partially
applying switchB to steps′, the tail of steps after it has ticked, and f composed with
step we get a function of type a → Sig a which is the exact argument that switchS
expects.

In the case of the timer GUI switchB is used to create counterSig, a signal repre-
senting a capped timer. Table 3 contains an example of how counterSig behaves for
a given sequence of user input:

Events 1 second Max set to 10 1 second Reset pressed
inputSig setMax 10 reset

counterSig (0,50) (1,50) (2,10) (3,10) (0,10)

Table 3: Example table for counterSig

counterSig initially behaves like nats applied to (0 :* 50). After every second the
first part of counterSig increments. When the user sets the maximum value to 10
by dragging the slider, setMax 10 is applied to the current value of counterSig. This
returns (2:*10) and counterSig switches its behaviour to reflect nats (2 :* 10). This
increments to (3 :* 10) after another second. Once the reset button is pressed the
reset function is called with the current value of counterSig. This returns (0 :* 10)
and counterSig now behaves like nats (0:*10).

32

The rest of the benchmark code is a matter of passing the values from counterSig
to a label and a progressbar. These details can be seen in the code (Appendix 2),
but will not be discussed here. Although Async Rattus handles concurrency well, in
the timer GUI it becomes challenging to construct signals representing the needed
data flow, as it has become more advanced than in previous benchmarks. This is
something that will be further discussed in Section 6.

5.5 Calculator

Following the implementation of the initial four benchmarks with Async Rattus, this
section introduces the development of a basic calculator. By using Async Rattus to
create a calculator GUI, we get to see how Async Rattus can handle input from a
multitude of different widgets. This serves as a test for evaluating Async Rattus’
capabilities in managing dynamic user interactions in a more involved GUI. Figure
6 showcases our calculator GUI:

Figure 6: Screenshot of the Calculator GUI
Containing a 13 button numpad and a display label

The full source code for the calculator implementation can be found in Appendix 2.
The user interface consists of 13 buttons and a label. One button for each digit, as
well as plus minus and equality. The label represents the display of the calculator.
It should reflect any number typed in by the user and the result after calculation.
The calculator implementation uses several signals and many signal combinators, a
diagram describing the data flow can be seen here:

33

Figure 7: Data flow in the calculator.
Shows how signals are defined throughout the calculator

Figure 7 describes how data flows from user input to the displaySig which is used to
define the aforementioned label. The diagram uses arrows to show how user input
flows from the buttons through signals, to the displaySig. Written alongside the ar-
rows are the functions used to define each signal. The definitions of each signal will
be expanded on below.

The main difficulty presented by the calculator lies in controlling the data shown
in the label. To better understand what the calculator should do, the following
requirements are defined:

34

• When the user presses a digit button, the corresponding digit should appear
as the last digit in the number on the display.

• Pressing either the plus or minus buttons resets the display to zero in prepa-
ration for a new entry.

• When the user presses the equality button, the calculator should display the
result of applying the most recent operation to the number on the display.

• If a numerical button is pressed following the equality button, the display will
reset to show just the newly pressed digit.

To show any combination of numbers typed by the user one can use interleave to
combine a signal made from each of the numpad buttons:

let sigList = [onclick0,

onclick1,

onclick2,

onclick3,

onclick4,

onclick5,

onclick6,

onclick7,

onclick8,

onclick9, resetSig] :: [O (Sig (Int->Int))]

let combinedSig = Prelude.foldl1

(interleave (box (\ a b -> a)))

sigList

Here the onClick values are signals designed to produce functions when the corre-
sponding digit button is pressed. Each onClick signal ticks with a function of the
form: fn(x) = 10x+ n where n is the relevant digit.

To create a signal satisfying the first requirement, all the onClick signals are com-
bined into a single signal. This signal ticks in response to a user pressing any digit
button. This is achieved by folding through the onClick signals using interleave.

The combined signal also uses the interleave function with resetSig, which is defined
from the operators and equality buttons:

let resetSig =

mapAwait (box (\ _ _ -> 0))

(interleave (box (\ a b -> a))

(interleave (box (\ a b -> a))

(btnOnClickSig addBut)

(btnOnClickSig subBut))

(btnOnClickSig eqBut))

resetSig responds to the user pressing an operator or equality and returns a function
that resets any integer to zero. Since combinedSig interleaves this and signals from
every digit button, it ticks in response to any button on the numpad. This produces
a function to update the displayed value. The equality button must be included

35

in resetSig to ensure that the calculator is well behaved after carrying out the first
calculation, as specified in the fourth requirement.

What remains to do is apply the functions produced by combinedSig to a value. This
is done in the numberSig signal:

let numberSig = scanAwait (box (\ a f-> f a)) 0 combinedSig

numberSig uses scanAwait to apply any functions produced by combinedSig, starting
from an initial value of zero. numberSig is therefore a signal satisfying the first two
requirements.

Before handling the equality button and the third requirement, it is necessary to
implement a signal that saves the calculation when a user presses an operator button.
This is done with the calcSig :

let buffered = buffer 0 numberSig

let addSig = mapAwait

(box (\ _ -> box (+))) (btnOnClickSig addBut)

let subSig = mapAwait

(box (\ _ -> box (-))) (btnOnClickSig subBut)

let opSig = interleave (box (\ a b -> a)) addSig subSig

let calcSig = triggerStable

(box (\ op x ->box (unbox op x))) (box (0 +))

opSig buffered

Here the order of operations becomes a challenge. When the user presses an operator
the numberSig immediately resets to zero. However, the value of numberSig prior to
the user pressing an operator is vital for defining calcSig. Hence the buffer function
is defined:

buffer :: Stable a => a -> Sig a -> Sig a

buffer x (y ::: ys) = x ::: delay (buffer y (adv ys))

This function takes an initial value and a signal as input, and returns a signal that
is always one tick behind the input signal. An example using buffer could look like
this:

xs 1 2 7 5 6

buffer 0 xs 0 1 2 7 5

Using the buffer function bufferedSig is defined as the signal that is always one tick
behind numberSig. When the user presses an operator, numberSig gets the value zero
and bufferedSig has the integer typed in by the user prior to pressing an operator.
Some sample input could produce a sequence like the following:

input 3 + 4 5

numberSig 0 3 0 4 45

bufferSig 0 0 3 0 4

This makes it possible to define calcSig. calcSig applies the most recently pressed
operator to the current value of bufferedSig, producing a partially applied function.
This is done using the triggerStable function:

36

triggerStable :: (Stable b, Stable c) =>

Box (a -> b -> c) -> c -> O (Sig a) -> Sig b -> Sig c

triggerStable f c as (b ::: bs) = c :::

delay (case select as bs of

Fst (a' ::: as') bs' ->

triggerStable f (unbox f a' b) as' (b ::: bs')

Snd as' bs' -> triggerStable f c as' bs'

Both (a' ::: as') (b' ::: bs') ->

triggerStable f (unbox f a' b') as' (b' ::: bs'))

triggerStable is a variant of the Async Rattus trigger function. triggerStable creates
a signal that only updates its value in response to the delayed input signal. trigger-
Stable takes as input a function f. Whenever the delayed input signal as ticks, it
applies f to the current values of both input signals. When the other input signal
bs ticks, triggerStable’s value remains unchanged. Note that trigger uses the Maybe
monad and therefore returns an IO type, whereas triggerStable returns a signal. An
example usage of how triggerStable reacts to a sequence of user input can be seen in
Table 4:

User Input 4 0 + 3

numberSig 4 40 0 3 0
bufferedSig 0 4 40 0 3

opSig (+)
calcSig (0+) (0+) (40+) (40+) (40+)

Table 4: Signal values according to user input

Since calcSig is defined using triggerStable its value only changes when the user
presses one of the operator buttons. In the example, calcSig changes when + is
pressed, returning the partially applied function (40+). This now lets us define a
signal that applies the current value of calcSig to bufferedSig like so:

let resultSig = AsyncRattus.Signal.zipWith

(box (\ f x -> unbox f x)) calcSig buffered

resultSig is implemented using zipWith. Hence it ticks in response to any tick on
either bufferedSig or calcSig. This signal computes the number used for the third
calculator requirement. What remains is to display the value of resultSig when the
equality button is pressed, for this purpose we use triggerStable again:

let eqSig = triggerStable

(box (\ _ x -> x)) 0 (btnOnClickSig eqBut) resultSig

Because of triggerStable eqSig only produces a new value when the equality button is
pressed. This value is the result from resultSig. numberSig’s value corresponds to the
numbers typed in by the user, and eqSig produces the results of any typed calculation
when equality is pressed. These two signals combine to form the displaySig :

let displaySig = 0 ::: interleave (box (\ a b -> b))

(future numberSig) (future eqSig)

result <- mkLabel displaySig

37

By this construction the label result should satisfy the four requirements set out in
the beginning of this section. Note that the function passed to interleave prioritizes
eqSig over numberSig in the case that both signals tick simultaneously, which should
happen only when the equality button is pressed.

Unfortunately displaySig does not behave as intended, due to a peculiarity of trig-
gerStable. Table 5 shows the ticks produced by each signal in response to a given
sequence of user input:

User Input 4 0 + 3 =

numberSig 4 40 0 3 0
bufferedSig 0 4 40 0 3

opSig (+)
calcSig (0+) (0+) (40+) (40+) (40+)
resultSig 0 4 80 40 43
eqSig 0 0 0 0 43

displaySig 0 0 0 0 43
idealDisplaySig 4 40 0 3 43

Table 5: Signal values according to user input
displaySig is what is shown in the label
idealDisplaySig are the desired values

The values marked with red are the result of implementing triggerStable without the
Maybe monad. As can be seen in the definition of triggerStable, signals made using
triggerStable will tick whenever either of the input signals tick, although the current
value only updates if the delayed input signal ticks. In the Async Rattus function
trigger, the Maybe monad is used to filter any ticks on the input signal, so that the
returned signal does not tick.

Although signals made from triggerStable will have the intended value, the extra ticks
that are not filtered interfere with the data flow when interleaving eqSig and number-
Sig. Since eqSig is defined from numberSig it ticks in response to every button, not
just the equality button. This means the function passed to interleave is called every
time the display updates, and hence the numberSig is always overruled in the display.

This behaviour is a consequence of signals made using triggerStable ticking even
when the value does not update. The Async Rattus function trigger would not cause
this issue, but is incompatible with the GUI library as of now, since the IO and C
monads cannot be used in conjunction. This inability to use trigger and other filter
functions in the GUI library restricts the programmer significantly. This makes tasks
such as the calculator more difficult to implement, and representing some complex
data flows may not be possible.

38

6 Discussion

Having implemented four out of the seven benchmarks from 7GUIs: A GUI Program-
ming Benchmark[8] and attempted a calculator, we now discuss the implementation
of our GUI library. While this thesis has demonstrated the effectiveness of Async
Rattus as a programming language, it has not yet explored alternative solutions to
some of the problems we have addressed. It also remains to discuss the challenges
encountered during the project. This section will therefore outline the hurdles faced
during the implementation of the GUI library, how these obstacles were managed,
and identify areas where Async Rattus needs further development.

6.1 Challenges and Alternative Solutions

The calculator GUI tested the limits of what we could achieve using Async Rattus
and our GUI library. As concluded in Section 5.5, the current version using trigger-
Stable does not behave as intended. While Async Rattus provides several alternative
approaches to solving the calculator problem, we chose to extensively use Async
Rattus’ signals and associated functions. This decision was made to test the current
limits of Async Rattus as a tool for building GUIs.

One alternative implementation could have treated the display as a signal of text.
Using text concatenation to update after each button press. Then parsing it into a
calculation whenever the equality button is pressed. This would be a valid solution
using Async Rattus, but it would make minimal use of signal combinators and sim-
plify state management by shifting most functionality into a parsing function. We
did not choose this solution because the purpose of the thesis was to explore the
capabilities of Async Rattus as a language for implementing GUIs, rather than to
build the most optimal GUIs.

Additionally, it is worth noting that Async Rattus has a type that could have been
used to implement the calculator. This is the concept of futures from Async Rattus,
defined in the SigF data type [2]. Futures work similarly to signals but implement a
call to Maybe whenever they tick [2]. SigF implements a number of filter functions,
including trigger which would solve the issue we encountered when programming the
calculator. However, SigF is less efficient than the sig data type, because it has
to check for Nothing every time it ticks [2]. Therefore using sig is preferable when
possible. Since the entire GUI library was set up to work with the sig data type,
making this implementation could be the focus of another project.

6.2 Working with Async Rattus

The GUI library we have developed for Async Rattus enables the creation of widgets
and GUI layouts with simple, compact code. This is evident in the counter GUI,
where the entire user interface is implemented in just seven lines of code. Even in
the later benchmarks, the Async Rattus library requires less code compared to its
Monomer counterpart (see Appendix 4). Additionally, Async Rattus excels at han-
dling concurrent events. In the timer case study, we observed how Async Rattus
elegantly manages conflicting events. Even when three events compete to modify the
same state, Async Rattus functions provide built-in features to resolve such conflicts
seamlessly.

39

Async Rattus differs significantly from both Monomer and React in state manage-
ment. While Monomer and React use explicit model types to contain an application’s
state, the Async Rattus GUI library defines all state in terms of signals. In Monomer
and React, state changes are explicitly triggered by functions that modify parts of
the model. In contrast, Async Rattus signals define their own state and how they
change in response to user input. In React and Monomer, events call specific func-
tions when they occur updating the state of the application. On the other hand
events in Async Rattus are not defined as part of an event handler. Instead event
handling in Async Rattus involves mapping and combining signals, as well as filtering
them when necessary.

This approach to state management and event handling is very different from tra-
ditional methods. As a result, reasoning about state and event handling in Async
Rattus can become challenging as the complexity of data flows increase. This diffi-
culty was particularly apparent in the timer GUI, where dynamically switching the
behavior of signals during execution was needed. Although Async Rattus provides
functions for switching signal behaviors, they can be difficult to use and often re-
quire custom modifications for specific purposes. The calculator GUI also proved
that complex data flows increases the number of signals and combinators needed to
achieve the desired functionality.

6.3 Qualitative vs. Quantitative Metrics

The GUI library we present is a showcase of how Async Rattus can utilize the
Monomer library to create GUIs. By carrying out the case studies, we show that the
GUIs can reach a certain level of complexity. As seen in the project, this can require
further tool development in the GUI library, or Async Rattus when the available
signal combinators do not suffice.

These are, however, mostly qualitative metrics. Testing the performance of GUIs in
Async Rattus quantitatively has been beyond the scope of this project. Every GUI
described above has run smoothly without input lag. We did note that the compila-
tion time of the calculator noticeably exceeds that of the other GUIs, possibly due to
the increased number of widgets that need to be constructed. Still, the performance
of Async Rattus compared to other programming languages has not been tested.
The merits of such testing is discussed in Section 6.6.

6.4 Limitations and Areas for Improvement

Async Rattus provides powerful tools for handling concurrent input, but as a re-
search language, its implementation is not without flaws. Like most software under
development, occasional unintended behavior and bugs are bound to occur and will
only be revealed through extensive testing.

This project has been the first extensive exploration and test of Async Rattus, partic-
ularly in regards to GUI development. Throughout the course of this project several
bugs and limitations of Async Rattus have been discovered. This has in turn helped
the development of Async Rattus.

40

When first attempting the temperature converter, we encountered an unusual is-
sue. Trying to define a mkTextField function that properly updated its display in
response to user input, caused the compiler to panic. This put a temporary stop to
development since the five-page error message concluded that something impossible
had happened, and the issue was not in the GUI library. Once discovered, the issue
was quickly resolved by an update to the Async Rattus implementation. Improving
Async Rattus and allowing development to continue unhindered.

Additionally the interleave function, which is a key signal combinator, exhibited
unintended behaviour when this project began. interleave’s input function meant
to handle simultaneous input was not properly applied when simultaneous ticks oc-
curred. This bug was fixed by an update to Async Rattus. Similar issues can only
be found through extensively testing and using the Async Rattus library, whether
for GUI development or otherwise.

Async Rattus has another feature that proved problematic for the development of
this GUI library. In addition to the many signal combinators presented in this thesis,
Async Rattus has functions for filtering any input given to signals. Unfortunately,
these filter functions make use of the IO monad and hence have IO return types.
Since the GUI library makes extensive use of the C monad, the filter functions can-
not currently be used when constructing GUIs.

This severely restricts options for constructing useful signals in GUIs. For example,
in the temperature converter, two text fields should contain valid temperatures. Us-
ing an Async Rattus filter function to create a signal that only responds to numbers
would be ideal, but the conflict between the two monads prevents this.

While this is not an insurmountable issue, it will require a rework of either the GUI
library or the filter functions in Async Rattus to make the two tools compatible.
Creating alternative filter functions that work without the use of the IO monad is
also an option, but may cause unforeseen issues, such as those we experienced with
triggerStable.

6.5 The Complexities of a Research Language

Having engaged extensively with Async Rattus throughout this thesis, we now present
our subjective reflections on the experience. We will articulate our perspectives on
working with Async Rattus and compare them with our prior experiences using other
frameworks, such as React and Monomer.

During the course of this thesis, numerous challenges emerged, which is expected
given that Async Rattus is still under development as a research language. Notably,
some of these difficulties significantly influenced the implementation of our GUI li-
brary and are worth discussing.

One recurrent issue was the disabling of IntelliSense in our IDEs. This absence meant
that the only way to detect code errors was through compilation, complicating the
process of testing and debugging. This challenge is particularly severe with a research
language that lacks extensive documentation. Additionally, we faced issues with
inadequate error messaging. For example, we encountered the following misleading

41

error message:

No instance for (Stable Text) arising from a use of ’mkButton’

This message was generated in relation to this segment of code:

btn <- mkButton (const ("Increment"::Text))

let sig = btnOnClickSig btn

let sig' = scanAwait (box (\ n (_ :: b) -> n+1)) 0 sig

btf <- mkLabel sig'

mkVStack (const [enabledWidget btf, enabledWidget btn])

It turns out that the issue was related to a missing type annotation in the following
line:

let sig' = scanAwait (box (\ n (_ :: b) -> n+1 :: Int)) 0 sig

Dealing with such misleading error messages proved to be a challenging aspect of
developing our GUI library. There were also instances where IntelliSense was op-
erational within our IDEs but failed to provide any warnings. An example of this
occurred with the following line of code:

let adds = mapAwait (\ _ -> (+)

(current number))

(btnOnClickSig add)

Here, number is a signal of type Int. Thus, calling the Async Rattus function current
should raise an error, since signals are inherently unstable. However, this error was
only caught during compilation; the IDE provided no prior warnings.

This highlights that working in an environment that either provides misleading or no
error messages at all (before compile-time) can be particularly challenging, especially
for inexperienced programmers. Developers looking to explore Async Rattus should
be aware of these potential pitfalls.

6.6 Future Research

This paper serves as an initial investigation into GUI programming with Async Rat-
tus. Async Rattus shows promise as a language capable of producing GUIs of con-
siderable complexity and size. However, further research is necessary to explore its
full potential. Some areas prime for further exploration include the following topics:

Although the benchmarks highlight several useful qualities and capabilities of the
language, its scalability has not been thoroughly tested. In more complex GUIs,
data flow quickly became intricate and harder to manage. It would be valuable to
explore whether this poses additional issues as GUIs increase in scale. Similarly,
the performance of large GUIs might differ from the small benchmark examples.
Although no performance issues were noted throughout this paper, this is not guar-
anteed to hold for larger-scale programs.

It might be worth investigating Async Rattus GUIs more quantitatively. This paper
has shown qualitatively that Async Rattus can build small, performant GUIs using
compact code. It has not covered any quantitative comparisons between Async Rat-
tus and other tools for building GUIs. Such an exploration could focus on whether

42

the asynchronous nature of Async Rattus offers any significant benefits in terms of
efficiency and maintainability. This could be compared to traditional GUI program-
ming languages. Specifically comparing complex GUIs that have to handle various
input channels with a greater degree of asynchronicity.

The GUI library presented in this thesis is not functionally complete. Expanding
the library with additional widgets and tools would uncover more of Async Rattus’
potential for GUI development. Such development would also help find potential
limitations of Async Rattus. A significant issue encountered in this paper is the
inability to use filter functions in the current iteration of the GUI library. This prob-
lem is caused by incompatibility between the C and IO monads. Solving this issue,
or finding a suitable workaround, could increase the flexibility of the library and is
certainly worth pursuing.

7 Conclusion

This thesis explored the potential of Async Rattus, a Functional Reactive Program-
ming (FRP) language, for creating interactive applications with a focus on Graph-
ical User Interfaces (GUIs). GUI programming inherently requires handling asyn-
chronous operations. Async Rattus’ ability to handle such challenges was assessed
using 7GUIs: A GUI Programming Benchmark [8].

Our findings highlight several key strengths of Async Rattus:

Async Rattus excels in managing concurrent events, ensuring that GUIs remain re-
sponsive and free from common issues such as race conditions and deadlocks. This
is achieved through its sophisticated type system and the use of the modalities: ⃝
(later) and □ (box) to manage time-dependent computations and stable types.

The implementation of the first four benchmarks demonstrated that Async Rattus
could achieve the desired functionality with relatively concise code. The language’s
ability to dynamically switch signal behaviors during execution underscores its suit-
ability for reactive programming tasks.

Despite these strengths, the development process revealed significant challenges:

The lack of robust IntelliSense support and the prevalence of misleading or absent
error messages posed some difficulties. These issues highlight the need for improved
development tools and more comprehensive error reporting to enhance the program-
mer’s experience and productivity.

The incompatibility between Async Rattus’ C monad and the IO monad restricted
the implementation options for GUIs, by preventing the use of filter functions. This
limitation necessitates further development of Async Rattus’ library functions to ex-
pand the functionality of the GUI library.

Async Rattus is still a research language under active development. As this thesis has
showcased, several implementation bugs were encountered which resulted in direct
development of the language. Similar issues may be encountered as Async Rattus is

43

explored further.

While Async Rattus’ approach to state management through signals is powerful, it
can be challenging to reason about as the complexity of data flows increases. This
complexity was particularly evident in the implementation of the timer GUI, where
dynamically switching signal behaviors proved intricate and necessitated custom so-
lutions. This presents a contrast to React and Monomer’s traditional model based
approaches, where state can be manipulated more straightforwardly.

Given the promising yet challenging nature of developing GUIs with Async Rattus,
several avenues for future research emerge:

Future research could investigate how Async Rattus scales with more complex ap-
plications, particularly in terms of efficiency and maintainability compared to tradi-
tional GUI frameworks.

Addressing the current limitations in library functions and development tools is cru-
cial. The GUI library would be much enhanced by finding a way to utilize Async
Rattus’ filter functions and providing additional widgets and helper functions. En-
hancements to Async Rattus could include better IntelliSense support and clearer
error messages.

By addressing these challenges and exploring these research directions, Async Rattus
can continue to evolve as a powerful tool for reactive programming offering robust
solutions for developing interactive applications in an asynchronous environment.

44

References

[1] Joseph Abrahamson. A Little Lens Starter Tutorial. Accessed: 2024-05-29.
2018. url: https://www.schoolofhaskell.com/school/to- infinity-
and-beyond/pick-of-the-week/a-little-lens-starter-tutorial.

[2] Patrick Bahr, Emil Houlborg, and Gregers Thomas Skat Rørdam.Asynchronous
Reactive Programming with Modal Types in Haskell. IT University of Copen-
hagen, Copenhagen, Denmark. Available online at https://bahr.io/pubs/
files/asyncrattus-paper.pdf. 2024.

[3] Patrick Bahr and Rasmus Ejlers Møgelberg. “Asynchronous Modal FRP”. In:
Proc. ACM Program. Lang. 7.ICFP (Aug. 2023). doi: 10.1145/3607847. url:
https://doi.org/10.1145/3607847.

[4] Evan Czaplicki. The Elm Architecture. https : / / guide . elm - lang . org /
architecture/. Accessed: 2024-05-15. 2024.

[5] Conal Elliott and Paul Hudak. “Functional Reactive Animation”. In: Inter-
national Conference on Functional Programming. 1997. url: http://conal.
net/papers/icfp97/.

[6] HaskellWiki. Functional Reactive Programming — HaskellWiki. [Online; ac-
cessed 28-March-2024]. 2022. url: https://wiki.haskell.org/index.php?
title=Functional_Reactive_Programming&oldid=65422.

[7] Emil Houlborg, Gregers Rørdam, and Patrick Bahr. WidgetRattus: An asyn-
chronous modal FRP language. https://hackage.haskell.org/package/
WidgetRattus. Version 0.2. 2024. url: https://hackage.haskell.org/
package/WidgetRattus.

[8] Eugen Kiss. 7GUIs: A GUI Programming Benchmark. 2024. url: https://
eugenkiss.github.io/7guis/tasks (visited on 03/21/2024).

[9] Magnus Madsen, Ondrej Lhotak, and Frank Tip. “A Semantics for the Essence
of React”. In: European Conference on Object-Oriented Programming (). url:
https://par.nsf.gov/biblio/10157540.

[10] Pranav. What is the Difference Between Props and State in React. https:
//codedamn.com/news/reactjs/what- is- the- difference- between-

props-and-state-in-react. Accessed: 2024-04-17. 2023.

[11] React. Getting Started with React. https://legacy.reactjs.org/docs/
getting-started.html. Accessed: 2024-04-17.

[12] Francisco Vallarino. Monomer. https://hackage.haskell.org/package/
monomer. Accessed: 2024-05-12. 2024.

[13] Francisco Vallarino.Monomer Basics Tutorial. https://github.com/fjvallarino/
monomer/blob/main/docs/tutorials/01-basics.md. Accessed: 2024-05-12.
2024.

[14] Francisco Vallarino. Monomer GitHub Repository. https : / / github . com /
fjvallarino/monomer/tree/main. Accessed: 2024-05-12. 2024.

[15] Francisco Vallarino. Monomer Life Cycle Tutorial. https://github.com/
fjvallarino/monomer/blob/main/docs/tutorials/03-life-cycle.md#

merge-process. Accessed: 2024-05-12. 2024.

45

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://bahr.io/pubs/files/asyncrattus-paper.pdf
https://bahr.io/pubs/files/asyncrattus-paper.pdf
https://doi.org/10.1145/3607847
https://doi.org/10.1145/3607847
https://guide.elm-lang.org/architecture/
https://guide.elm-lang.org/architecture/
http://conal.net/papers/icfp97/
http://conal.net/papers/icfp97/
https://wiki.haskell.org/index.php?title=Functional_Reactive_Programming&oldid=65422
https://wiki.haskell.org/index.php?title=Functional_Reactive_Programming&oldid=65422
https://hackage.haskell.org/package/WidgetRattus
https://hackage.haskell.org/package/WidgetRattus
https://hackage.haskell.org/package/WidgetRattus
https://hackage.haskell.org/package/WidgetRattus
https://eugenkiss.github.io/7guis/tasks
https://eugenkiss.github.io/7guis/tasks
https://par.nsf.gov/biblio/10157540
https://codedamn.com/news/reactjs/what-is-the-difference-between-props-and-state-in-react
https://codedamn.com/news/reactjs/what-is-the-difference-between-props-and-state-in-react
https://codedamn.com/news/reactjs/what-is-the-difference-between-props-and-state-in-react
https://legacy.reactjs.org/docs/getting-started.html
https://legacy.reactjs.org/docs/getting-started.html
https://hackage.haskell.org/package/monomer
https://hackage.haskell.org/package/monomer
https://github.com/fjvallarino/monomer/blob/main/docs/tutorials/01-basics.md
https://github.com/fjvallarino/monomer/blob/main/docs/tutorials/01-basics.md
https://github.com/fjvallarino/monomer/tree/main
https://github.com/fjvallarino/monomer/tree/main
https://github.com/fjvallarino/monomer/blob/main/docs/tutorials/03-life-cycle.md#merge-process
https://github.com/fjvallarino/monomer/blob/main/docs/tutorials/03-life-cycle.md#merge-process
https://github.com/fjvallarino/monomer/blob/main/docs/tutorials/03-life-cycle.md#merge-process

	Introduction
	GUI Frameworks
	React
	Monomer
	Comparison

	Background
	Functional Reactive Programming
	Async Rattus
	Introduction to Async Rattus
	Later modality and clocks
	The Box Modality and Stable Types
	Signals

	Design and Implementation
	Case Studies
	Counter
	Temperature Converter
	Flight Booker
	Timer
	Calculator

	Discussion
	Challenges and Alternative Solutions
	Working with Async Rattus
	Qualitative vs. Quantitative Metrics
	Limitations and Areas for Improvement
	The Complexities of a Research Language
	Future Research

	Conclusion

