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Type systems for programming languages are usually designed by hand, with the aim of satisfying a type
soundness property that guarantees well-typed programs can’t go wrong. In this article, we show how standard
techniques for proving type soundness can be used in reverse to systematically derive type systems that are
sound by construction. We introduce and illustrate our methodology with a series of practical examples,
including a typed lambda calculus with conditionals and checked exceptions.

1 Introduction
A type system is a set of rules that specify how types can be assigned to each component of a
program in a given language [Pierce 2002]. In the earliest programming languages, type systems
were introduced to prevent certain forms of programming errors, by ensuring that operations are
only applied to data of the correct form [Pierce 2003]. However, as type systems have become more
expressive, they have also played an important role in informing and guiding the development of
programs [TyDe 2025]. In this manner, types serve both as a ‘lifebuoy’ to save you if something
goes wrong, and as a ‘lamp’ to guide you towards doing something right [McBride 2016].

In this article, we focus on the process of designing type systems. The traditional approach is to
design type systems by hand, by first devising a set of typing rules that formalise how types are
assigned to program terms, and then proving a type soundness property that guarantees ‘well-typed
programs can’t go wrong’. In practice, this is usually an iterative process that requires quite a bit of
trial and error, rather than simply writing down rules and then proving soundness.

Here we take a different approach. In particular, we show how standard techniques for proving
type soundness can be used in reverse to systematically derive type systems that are sound. The
starting point for our approach is a semantics for the language being considered, expressed as a big-
step evaluation relation. We then formulate a suitable type soundness property, which formalises
the idea that well-typed programs are guaranteed to evaluate successfully. And finally, we calculate
a set of typing rules by ‘solving’ the type soundness property using algebraic reasoning techniques,
in a similar manner to how equations are solved in mathematics.
The calculational approach to type system design has a number of benefits. First of all, type

systems produced in this manner are sound by construction, and hence require no separate proofs
of soundness after they have been produced. Secondly, the approach provides a principled way to
discover typing rules, and to explore alternative design choices during and after the calculation
process. And finally, it is readily amenable to mechanical formalisation, allowing proof assistants to
be used as interactive tools for developing and certifying the calculations.

We introduce and illustrate our methodology using examples of increasing complexity. We begin
with a simple expression language with conditionals, showing how to calculate a type system for
this language, and how our approach can be used to explore alternative design choices (section 2).
We then extend the language with exception handling, and calculate a type system that supports
the idea of ‘checked exceptions’ (section 3). And finally, to demonstrate how the methodology
applies to more sophisticated settings, we calculate type systems for the lambda calculus (section 4)
and an extension with conditionals and checked exceptions (section 5).
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Following recent work on compiler calculation [Bahr and Hutton 2015, 2020], we use minimal
languages with particular features of interest, rather than attempting to derive type systems for
fully featured languages. This approach allows us to focus on core principles and present most of
the calculations in detail, since the calculations themselves are central in this work. Our emphasis
is on the process of type system derivation, the journey, rather than solely on the resulting system,
the destination. To support this approach, we restrict our attention to languages with deterministic
big-step semantics and type soundness properties that include strong normalisation.
The article is aimed at readers with some basic experience of formal semantics and reasoning,

but does not require specialist knowledge about type systems. It is written in a style that seeks to
demonstrate, in an accessible manner, how type systems can be systematically derived from sound-
ness properties. Most of the examples have also been formalised in the Agda proof assistant [Norell
et al. 2025], and the code is available online as supplementary material.

2 Conditional Language
Consider a simple expression language built up from basic values using addition and conditional
operations, where a value is either an integer 𝑛 ∈ Z or a logical value 𝑏 ∈ {false, true}:

𝑒 ::= 𝑣 | 𝑒 + 𝑒 | if 𝑒 then 𝑒 else 𝑒 𝑣 ::= 𝑛 | 𝑏
We define the semantics of the language using an evaluation relation 𝑒 ⇓ 𝑣 that specifies when an
expression 𝑒 can evaluate to a value 𝑣 , which is given by the following collection of rules:

𝑣 ⇓ 𝑣

𝑒 ⇓ 𝑛 𝑒′ ⇓ 𝑛′

𝑒 + 𝑒′ ⇓ 𝑛 + 𝑛′
𝑒 ⇓ true 𝑒1 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

𝑒 ⇓ false 𝑒2 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

Note that in the rule for addition, the symbol + is used both for the syntactic addition of expressions
and for the semantic addition of integers. It is straightforward to show that the evaluation relation
is deterministic, i.e. every expression evaluates to at most one value. However, evaluation can also
fail, in particular when attempting to add values that are not integers, or attempting to make a
conditional choice on a value that is not true or false.
Using a relational semantics naturally captures the possibility of failure, as relations can be

partial. In contrast, a functional semantics typically requires an explicit failure value to ensure
totality, which complicates the semantics and reasoning using it. With the relational approach,
failure of an expression e to evaluate simply means there is no value 𝑣 such that 𝑒 ⇓ 𝑣 .

2.1 Type Soundness
A common method for ensuring successful evaluation is to introduce a type system that guarantees
this. We first define a simple language of types comprising integers and logical values,

𝑡 ::= Int | Bool

together with a semantic function J−K that maps each type to the set of values it represents:

JIntK = Z JBoolK = {false, true}
Suppose now that we wish to define a typing relation ⊢ 𝑒 : 𝑡 that specifies when an expression 𝑒

can have type 𝑡 . The desired behaviour is captured by the following type soundness property:

⊢ 𝑒 : 𝑡
∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K

This property states that if an expression has a particular type, then the expression can always
evaluate to a value of this type. In combination with the evaluation relation being deterministic,
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type soundness ensures that ‘well-typed expressions can’t go wrong’ [Milner 1978], i.e. they are
guaranteed to successfully evaluate to a value of the given type.

Note that the above specification gives flexibility in how the typing relation ⊢ is implemented, as
there may be many possible definitions that satisfy the type soundness property. Indeed, the empty
typing relation is trivially sound, and so is the relation given by simply defining ⊢ 𝑒 : 𝑡 to mean
∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K. Our calculational approach naturally avoids such trivial solutions, and provides
a systematic means for designing typing rules that satisfy the above specification.

2.2 Calculating a Type System
Now that we have formulated the type soundness property, the traditional approach at this point is
to manually define the typing relation ⊢ 𝑒 : 𝑡 using a collection of rules, and then prove that the
relation defined by these rules satisfies the soundness property [Pierce 2002].
However, rather than first defining the typing relation and then separately proving that it is

sound, we can also use soundness as the basis for directly calculating the definition of the relation.
That is, we can seek to derive the typing relation by solving the soundness property for this relation,
in much the same way as we solve equations in mathematics. A type system produced in this
manner is sound by construction, and hence requires no separate proof of soundness.
The starting point for our methodology to achieve the above is to define a semantic typing

relation that exactly captures the desired soundness property:

|= 𝑒 : 𝑡
def⇐⇒ ∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K

Using this definition, the original type soundness property can now be formulated as:

⊢ 𝑒 : 𝑡
|= 𝑒 : 𝑡

(1)

To derive rules for the typing relation ⊢ that satisfy this soundness property by construction, we
aim to calculate properties of the semantic relation |= that have the form

|= 𝑒1 : 𝑡1 ∧ . . . ∧ |= 𝑒𝑛 : 𝑡𝑛 ∧ 𝑃

|= 𝑒 : 𝑡
(2)

where 𝑃 is any additional property that does not refer to |= and which can be used to impose side
conditions such as a value being in a given set, or an expression evaluating to a given value.
Once we have calculated these properties of |=, we then inductively define ⊢ by rules that have

precisely the same form as those for |=, but with |= replaced by ⊢:
⊢ 𝑒1 : 𝑡1 ∧ . . . ∧ ⊢ 𝑒𝑛 : 𝑡𝑛 ∧ 𝑃

⊢ 𝑒 : 𝑡
Because the relation |= only occurs positively in premises of properties of the form (2), we obtain
a valid inductive definition for ⊢. Moreover, both relations |= and ⊢ satisfy the same properties,
with |= doing so by calculation and ⊢ by definition, and ⊢ is the least such relation as it is defined
inductively. Therefore, it immediately follows that we also have ⊢ ⊆ |=, which establishes that type
soundness holds as this inclusion between relations is precisely the point-free form of (1).

We now proceed to calculate properties of |=, by deriving semantic typing properties from each
rule in our semantics. For each rule, we start with a term of the form |= 𝑒 : 𝑡 , where 𝑒 is the
expression being evaluated, and seek to strengthen it into a conjunction of terms of the required
form (2). First of all, the case for values simplifies to a property that on its own establishes the
desired result, i.e. no assumptions involving |= itself are required.
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Case:
𝑣 ⇓ 𝑣

|= 𝑣 : 𝑡
⇔ { definition of |= }

∃𝑣 ′ . 𝑣 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K
⇔ { definition of ⇓ }

∃𝑣 ′ . 𝑣 ′ = 𝑣 ∧ 𝑣 ′ ∈ J𝑡K
⇔ { substitute 𝑣 ′ = 𝑣 }

𝑣 ∈ J𝑡K

That is, we have calculated the property

𝑣 ∈ J𝑡K

|= 𝑣 : 𝑡

which we can then instantiate using the definition of the semantic function J−K to give two
properties, one for each of basic types Int and Bool:

𝑛 ∈ Z
|= 𝑛 : Int

𝑏 ∈ {false, true}
|= 𝑏 : Bool

Note that the calculations above actually yield properties that are equivalences, but for the purposes
of our methodology we only require that they are implications.
The case for addition proceeds similarly, by first using the definitions of |= and ⇓, and then

simplifying the resulting term. Using the semantics of the Int type and separating the two remaining
quantifiers then allows the term to be rewritten into the required conjunctive form.

Case:
𝑒 ⇓ 𝑛 𝑒′ ⇓ 𝑛′

𝑒 + 𝑒′ ⇓ 𝑛 + 𝑛′

|= 𝑒 + 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . 𝑒 + 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { definition of ⇓ }

∃𝑣 . ∃𝑛, 𝑛′ . 𝑒 ⇓ 𝑛 ∧ 𝑒′ ⇓ 𝑛′ ∧ 𝑣 = 𝑛 + 𝑛′ ∧ 𝑣 ∈ J𝑡K
⇔ { substitute 𝑣 = 𝑛 + 𝑛′ }

∃𝑛, 𝑛′ . 𝑒 ⇓ 𝑛 ∧ 𝑒′ ⇓ 𝑛′ ∧ 𝑛 + 𝑛′ ∈ J𝑡K

⇔
{
definition of J−K

}
∃𝑛, 𝑛′ . 𝑒 ⇓ 𝑛 ∧ 𝑛 ∈ JIntK ∧ 𝑒′ ⇓ 𝑛′ ∧ 𝑛′ ∈ JIntK ∧ 𝑡 = Int

⇔ { separate quantifiers }
(∃𝑛. 𝑒 ⇓ 𝑛 ∧ 𝑛 ∈ JIntK) ∧ (∃𝑛′ . 𝑒′ ⇓ 𝑛′ ∧ 𝑛′ ∈ JIntK) ∧ 𝑡 = Int

⇔ { definition of |= }
|= 𝑒 : Int ∧ |= 𝑒′ : Int ∧ 𝑡 = Int
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That is, we have calculated the following property:

|= 𝑒 : Int |= 𝑒′ : Int
|= 𝑒 + 𝑒′ : Int

Finally, for conditionals there are two cases, depending on whether the condition is true or false.
We present one case below, with the other following similarly. The key step is once again a simple
quantifier manipulation that allows the term to be rewritten into the required form.

Case:
𝑒 ⇓ true 𝑒1 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
⇔ { definition of |= }

∃𝑣 . if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }

∃𝑣 . 𝑒 ⇓ true ∧ 𝑒1 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { move quantifier inside }
𝑒 ⇓ true ∧ (∃𝑣 . 𝑒1 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K)

⇔ { definition of |= }
𝑒 ⇓ true ∧ |= 𝑒1 : 𝑡

That is, we can calculate the following properties:

𝑒 ⇓ true |= 𝑒1 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

𝑒 ⇓ false |= 𝑒2 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

Given the calculated properties for |=, we can now simply replace |= by ⊢ and thereby obtain an
inductive definition for a typing system that is guaranteed to be sound by construction:

𝑛 ∈ Z
⊢ 𝑛 : Int

𝑏 ∈ {false, true}
⊢ 𝑏 : Bool

⊢ 𝑒 : Int ⊢ 𝑒′ : Int
⊢ 𝑒 + 𝑒′ : Int

𝑒 ⇓ true ⊢ 𝑒1 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

𝑒 ⇓ false ⊢ 𝑒2 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

This type system is also as general as possible with respect to the soundness property from which it
was derived. In particular, every step in the calculation of properties for |= that give rise to the system
is an equivalence, except for the two cases for conditionals, which have one reverse implication
step when the condition is either true or false. In this manner, we are not ‘losing information’ in
the calculations by unnecessarily strengthening the term being manipulated, and hence obtain a
type system that is maximally general. Indeed, for this simple language, type soundness is actually
an equivalence, i.e. the derived type system is both sound and complete.

2.3 Other Typing Rules
While the derived typing rules for conditionals are as general as possible, they also go beyond what
we might normally expect for a type system for this language, in two ways. First of all, the rules
for conditionals depend on the value of the condition, i.e. whether it is true or false, rather than
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just depending on its type. And secondly, the rules allow the unused branch of a conditional to be
ill-typed, as there are no preconditions for the unused branches in the typing rules.

However, we can use the properties that we derived for the semantic typing relation |= to derive
another valid property that avoids these issues. In particular, we can start with the conjunction of
the two derived properties for conditionals, and transform these into another property:

𝑒 ⇓ true |= 𝑒1 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∧
𝑒 ⇓ false |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡 ′

⇒ { instantiate 𝑡 ′ = 𝑡 }
𝑒 ⇓ true |= 𝑒1 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∧
𝑒 ⇓ false |= 𝑒2 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

⇔ { combine into one rule }
(𝑒 ⇓ true ∧ |= 𝑒1 : 𝑡) ∨ (𝑒 ⇓ false ∧ |= 𝑒2 : 𝑡)

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
⇒ { bring evaluation terms together }

(𝑒 ⇓ true ∨ 𝑒 ⇓ false) |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

⇔
{
definition of J−K

}
(∃𝑣 .𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ JBoolK) |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
⇔ { definition of |= }

|= 𝑒 : Bool |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

Hence, we may replace the earlier two syntactic typing rules for conditionals with the following
single rule, which does not require evaluating the condition and ensures that both branches are
well-typed. This is the kind of rule that is, for example, found in languages such as Haskell.

⊢ 𝑒 : Bool ⊢ 𝑒1 : 𝑡 ⊢ 𝑒2 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

As previously, our methodology ensures that the resulting typing system is sound by construction.
Being able to use previously derived semantic typing rules to derive new syntactic rules in this
manner is an important benefit of our calculational methodology.
As another example of this idea, we can combine the two original properties for conditionals

into a single property that still allows the two branches to have different types:

𝑒 ⇓ true |= 𝑒1 : 𝑡
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∧
𝑒 ⇓ false |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡 ′

⇒ { add extra premise to each rule }
𝑒 ⇓ true |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
∧

𝑒 ⇓ false |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡 ′

⇔ { combine into one rule using a conditional }
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𝑒 ⇓ 𝑏 |= 𝑒1 : 𝑡 |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : if 𝑏 then 𝑡 else 𝑡 ′

⇔ { replace conditional by a function }
𝑒 ⇓ 𝑏 |= 𝑒1 : 𝑇 true |= 𝑒2 : 𝑇 false

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑇 𝑏

The function 𝑇 maps logical values to types. Hence, we may replace the earlier two syntactic
typing rules for conditionals with the following single rule, which enforces that both branches are
well-typed, but allows them to have different types:

𝑒 ⇓ 𝑏 ⊢ 𝑒1 : 𝑇 true ⊢ 𝑒2 : 𝑇 false

⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑇 𝑏

2.4 Reflection
We conclude this section with some reflective remarks. First of all, the derived typing rules for the
conditional language are standard, and in themselves unsurprising. But as noted in the introductory
section, our interest is in the process by which type systems can be derived, rather than just the
resulting systems. In particular, the rules were obtained by systematic calculation, driven by the
desire to ensure that type soundness is satisfied by construction. Our methodology also provides a
principled way to explore alternative design choices. For example, we showed how the original
typing rules for conditionals can be used to calculate two different kinds of typing rules that enforce
well-typing of both conditional branches. We will see further examples of this idea later on.

Secondly, note that the calculation of properties of the semantic typing relation |= from which the
typing rules were derived did not require any form of induction. Rather, the calculations proceed
by simply applying definitions, using logical properties, and manipulating quantifiers. Induction
only plays a role once we have derived suitable properties of |=, after which we then inductively
define the typing relation ⊢ as the least relation satisfying these properties. In this manner, we can
focus on the essential, non-inductive parts of the reasoning, with the use of induction being built-in
to our methodology rather than having to be manually applied.
The traditional approach to establishing type soundness is based on the syntactic properties of

progress and preservation [Wright and Felleisen 1994]. Here we use the approach of semantic type
soundness, based on a denotational interpretation of types, which has seen a recent resurgence in
interest [Timany et al. 2024]. In addition to avoiding the need for inductive reasoning, as noted
above, this approach enables more modular reasoning. For instance, the semantic approach allows
the two cases for conditionals to be treated separately, whereas in the syntactic approach these
usually need to be considered together, which leads to more cumbersome reasoning. As we will
see, the semantic approach also scales better to languages with more advanced features.
And finally, all the calculations in this section have been formalised in the Agda proof assis-

tant. The formalisation is straightforward, with the rules that define the typing relation ⊢ being
implemented as an inductive family, and the soundness proof then obtained by induction over this
family, where each case of the induction is precisely the corresponding semantic typing property.
The Agda code is available online as supplementary material.

3 Checked Exceptions
As a more sophisticated example of our approach to calculating type systems, we now extend the
language of conditional expressions with support for throwing and catching an exception:

𝑒 ::= 𝑣 | 𝑒 + 𝑒 | if 𝑒 then 𝑒 else 𝑒 | try 𝑒 catch 𝑒 𝑣 ::= 𝑛 | 𝑏 | throw
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As previously, 𝑛 is an integer and 𝑏 is a logical value. Intuitively, the new value throw represents
an exception that has been thrown, while an expression try 𝑒 catch 𝑒′ behaves as the expression 𝑒

unless it throws an exception, in which case it behaves as the handler expression 𝑒′. The semantics
of the language is formally defined by the following evaluation rules:

𝑣 ⇓ 𝑣

𝑒 ⇓ 𝑛 𝑒′ ⇓ 𝑛′

𝑒 + 𝑒′ ⇓ 𝑛 + 𝑛′
𝑒 ⇓ true 𝑒1 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

𝑒 ⇓ false 𝑒2 ⇓ 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣

𝑒 ⇓ throw

𝑒 + 𝑒′ ⇓ throw

𝑒 ⇓ 𝑛 𝑒′ ⇓ throw

𝑒 + 𝑒′ ⇓ throw

𝑒 ⇓ throw

if 𝑒 then 𝑒1 else 𝑒2 ⇓ throw

𝑒 ⇓ throw 𝑒′ ⇓ 𝑣

try 𝑒 catch 𝑒′ ⇓ 𝑣

𝑒 ⇓ 𝑣 𝑣 ≠ throw

try 𝑒 catch 𝑒′ ⇓ 𝑣

The first four rules are the same as before. The five new rules that follow specify that addition
propagates an exception thrown in either argument, conditionals propagate an exception thrown in
their first argument, and try/catch handles an exception thrown in its first argument by returning
the value of its second argument, and otherwise simply returns the value of the first.

We now extend the language of types to deal with exceptions. The approach we take is inspired
by checked exceptions in Java [Gosling et al. 1996], where the signature for a method declares any
exceptions that may be thrown in its body. To apply this idea in our setting, we extend the language
of types with an operation ? that captures the possibility of an exception being thrown:

𝑡 ::= Int | Bool | 𝑡?
The intuition is that an expression of type 𝑡? either evaluates to a value of type 𝑡 , or results in an
exception being thrown. This idea is formalised by extending the semantic function J−K that maps
each type to the set of values it represents as follows:

JIntK = Z JBoolK = {false, true} J𝑡?K = J𝑡K ∪ {throw}
Note that multiple uses of ? have no effect as it is semantically idempotent, i.e. J(𝑡?)?K = J𝑡?K. The
semantic typing relation |= is then defined in the same way as previously,

|= 𝑒 : 𝑡
def⇐⇒ ∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K

and the desired type soundness property also remains the same:

⊢ 𝑒 : 𝑡
|= 𝑒 : 𝑡

3.1 Calculating a Type System
Prior to calculating typing rules for the language, we observe that because J𝑡?K is by definition
a superset of J𝑡K, the semantics for types naturally induces a subtyping relation ≤ defined as the
least partial ordering satisfying 𝑡 ≤ 𝑡?. Then we have that 𝑡 ≤ 𝑡 ′ implies J𝑡K ⊆ J𝑡 ′K, and thus we
immediately obtain the following subtyping property for the |= relation:

|= 𝑒 : 𝑡 𝑡 ≤ 𝑡 ′

|= 𝑒 : 𝑡 ′

To derive rules for the typing relation ⊢ that satisfy the soundness property by construction, we
use the methodology introduced in section 2 and first calculate properties of the semantic typing
relation |=. In particular, for each rule in our evaluation semantics, we seek to strengthen the term
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|= 𝑒 : 𝑡 , where 𝑒 is the expression being evaluated, into a conjunction of terms of the form |= 𝑒𝑖 : 𝑡𝑖
together with an optional property 𝑃 that does not refer to |=.

Because the first four rules of the evaluation semantics are the same as previously, in these cases
we derive the same properties for |=. In the case of values, instantiating the derived rule

𝑣 ∈ J𝑡K

|= 𝑣 : 𝑡

using the semantic definition J𝑡?K = J𝑡K ∪ {throw} for the new type 𝑡? that deals with exceptions,
we obtain the following rule for the exceptional value throw:

|= throw : 𝑡?

Now we consider the new evaluation rules that specify that additions propagate an exception
thrown in either argument, and conditionals propagate an exception throw in their first argument.
In each case, the calculation uses the fact that throw ∈ J𝑡K means that the type 𝑡 must be of the
form 𝑡 ′?, because the ? operator is the only means of introducing the value throw into a type.

Case:
𝑒 ⇓ throw

𝑒 + 𝑒′ ⇓ throw

|= 𝑒 + 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . 𝑒 + 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓, 𝑣 = throw }
𝑒 ⇓ throw ∧ throw ∈ J𝑡K

⇔
{
definition of J−K

}
𝑒 ⇓ throw ∧ ∃𝑡 ′ . 𝑡 = 𝑡 ′?

That is, we have calculated the following property:

𝑒 ⇓ throw

|= 𝑒 + 𝑒′ : 𝑡?

Case:
𝑒 ⇓ 𝑛 𝑒′ ⇓ throw

𝑒 + 𝑒′ ⇓ throw

|= 𝑒 + 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . 𝑒 + 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓, 𝑣 = throw }

∃𝑛. 𝑒 ⇓ 𝑛 ∧ 𝑒′ ⇓ throw ∧ throw ∈ J𝑡K
⇔ { move quantifier inside }

(∃𝑛. 𝑒 ⇓ 𝑛) ∧ 𝑒′ ⇓ throw ∧ throw ∈ J𝑡K

⇔
{
definition of J−K

}
(∃𝑛. 𝑒 ⇓ 𝑛 ∧ 𝑛 ∈ JIntK) ∧ 𝑒′ ⇓ throw ∧ ∃𝑡 ′ . 𝑡 = 𝑡 ′?
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⇔ { definition of |= }
|= 𝑒 : Int ∧ 𝑒′ ⇓ throw ∧ ∃𝑡 ′ . 𝑡 = 𝑡 ′?

That is, we have calculated the following property:

|= 𝑒 : Int 𝑒′ ⇓ throw

|= 𝑒 + 𝑒′ : 𝑡?

Case:
𝑒 ⇓ throw

if 𝑒 then 𝑒1 else 𝑒2 ⇓ throw

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡
⇔ { definition of |= }

∃𝑣 . if 𝑒 then 𝑒1 else 𝑒2 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓, 𝑣 = throw }
𝑒 ⇓ throw ∧ throw ∈ J𝑡K

⇔
{
definition of J−K

}
𝑒 ⇓ throw ∧ ∃𝑡 ′ . 𝑡 = 𝑡 ′?

That is, we have calculated the following property:

𝑒 ⇓ throw

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

In turn, we now consider the two rules that define the evaluation semantics for try/catch. The first
rule uses a simple quantifier manipulation to allow the term to be rewritten into the required form
using |=, while the second rule uses the fact that evaluation is deterministic, i.e. every expression
has at most one value, to allow a quantifier to be split into two parts:

Case:
𝑒 ⇓ throw 𝑒′ ⇓ 𝑣

try 𝑒 catch 𝑒′ ⇓ 𝑣

|= try 𝑒 catch 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . try 𝑒 catch 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }

∃𝑣 . 𝑒 ⇓ throw ∧ 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { move quantifier inside }
𝑒 ⇓ throw ∧ (∃𝑣 . 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K)

⇔ { definition of |= }
𝑒 ⇓ throw ∧ |= 𝑒′ : 𝑡

That is, we have calculated the following property:

𝑒 ⇓ throw |= 𝑒′ : 𝑡
|= try 𝑒 catch 𝑒′ : 𝑡
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Case:
𝑒 ⇓ 𝑣 𝑣 ≠ throw

try 𝑒 catch 𝑒′ ⇓ 𝑣

|= try 𝑒 catch 𝑒′ : 𝑡
⇔ { definition of |= }

∃𝑣 . try 𝑒 catch 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }

∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw ∧ 𝑣 ∈ J𝑡K
⇔ { split quantifier, ⇓ is deterministic }

(∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K) ∧ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw)
⇔ { definition of |= }

|= 𝑒 : 𝑡 ∧ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw)

That is, we have calculated the following property:

|= 𝑒 : 𝑡 𝑒 ⇓ 𝑣 𝑣 ≠ throw

|= try 𝑒 catch 𝑒′ : 𝑡
(3)

We have now derived a property of |= for each new evaluation rule, and can therefore read off
a type system by simply replacing |= by ⊢ in each property. However, the resulting type system
utilises the evaluation semantics ⇓, in particular by having premises that check if an expression
throws an exception or not. As before, however, we can avoid this issue by transforming the existing
properties into other valid properties that do not involve evaluation.

3.2 Other Typing Rules
We start with the two derived properties for conditionals that cover the cases when the condition
throws an exception, and when it is a logical value. The transformation proceeds by first making
an instantiation that brings the conclusion of each property into the same form to allow them to be
combined, and then simplifying the resulting property:

𝑒 ⇓ throw

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
∧

|= 𝑒 : Bool |= 𝑒1 : 𝑡 ′ |= 𝑒2 : 𝑡 ′

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡 ′

⇒ { instantiate 𝑡 ′ = 𝑡? }
𝑒 ⇓ throw

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
∧

|= 𝑒 : Bool |= 𝑒1 : 𝑡? |= 𝑒2 : 𝑡?
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

⇔ { combine into one rule }
𝑒 ⇓ throw ∨ (|= 𝑒 : Bool ∧ |= 𝑒1 : 𝑡? ∧ |= 𝑒2 : 𝑡?)

|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
⇒ { bring 𝑒 terms together }

(𝑒 ⇓ throw ∨ |= 𝑒 : Bool) |= 𝑒1 : 𝑡? |= 𝑒2 : 𝑡?
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

⇔
{
definition of |= and J−K

}
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|= 𝑒 : Bool? |= 𝑒1 : 𝑡? |= 𝑒2 : 𝑡?
|= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

Next, we consider the properties for addition, for which the transformation proceeds by once
again making the conclusions into the same form, then combining and simplifying:

𝑒 ⇓ throw

|= 𝑒 + 𝑒′ : 𝑡?
∧

|= 𝑒 : Int 𝑒′ ⇓ throw

|= 𝑒 + 𝑒′ : 𝑡 ′?
∧

|= 𝑒 : Int |= 𝑒′ : Int
|= 𝑒 + 𝑒′ : Int

⇒ { instantiate 𝑡 = 𝑡 ′ = Int, subtyping Int ≤ Int? }
𝑒 ⇓ throw

|= 𝑒 + 𝑒′ : Int?
∧

|= 𝑒 : Int 𝑒′ ⇓ throw

|= 𝑒 + 𝑒′ : Int?
∧

|= 𝑒 : Int |= 𝑒′ : Int
|= 𝑒 + 𝑒′ : Int?

⇔ { combine into one rule }
𝑒 ⇓ throw ∨ (|= 𝑒 : Int ∧ 𝑒′ ⇓ throw) ∨ (|= 𝑒 : Int ∧ |= 𝑒′ : Int)

|= 𝑒 + 𝑒′ : Int?
⇔ { factor out common term }

𝑒 ⇓ throw ∨ (|= 𝑒 : Int ∧ (𝑒′ ⇓ throw ∨ |= 𝑒′ : Int))
|= 𝑒 + 𝑒′ : Int?

⇔
{
definition of |= and J−K

}
𝑒 ⇓ throw ∨ (|= 𝑒 : Int ∧ |= 𝑒′ : Int?)

|= 𝑒 + 𝑒′ : Int?
⇒ { bring 𝑒 terms together }

(𝑒 ⇓ throw ∨ |= 𝑒 : Int) |= 𝑒′ : Int?
|= 𝑒 + 𝑒′ : Int?

⇔
{
definition of |= and J−K

}
|= 𝑒 : Int? |= 𝑒′ : Int?

|= 𝑒 + 𝑒′ : Int?

Finally, we consider the properties for try/catch, from which we can derive a property that covers
the case when the first argument may throw an exception:

|= 𝑒 : 𝑡 𝑒 ⇓ 𝑣 𝑣 ≠ throw

|= try 𝑒 catch 𝑒′ : 𝑡
∧

𝑒 ⇓ throw |= 𝑒′ : 𝑡 ′

|= try 𝑒 catch 𝑒′ : 𝑡 ′

⇒ { instantiate 𝑡 ′ = 𝑡 }
|= 𝑒 : 𝑡 𝑒 ⇓ 𝑣 𝑣 ≠ throw

|= try 𝑒 catch 𝑒′ : 𝑡
∧

𝑒 ⇓ throw |= 𝑒′ : 𝑡
|= try 𝑒 catch 𝑒′ : 𝑡

⇔ { combine into one rule }
(|= 𝑒 : 𝑡 ∧ 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw) ∨ (𝑒 ⇓ throw ∧ |= 𝑒′ : 𝑡)

|= try 𝑒 catch 𝑒′ : 𝑡
⇒ { bring 𝑒 terms together }

(|= 𝑒 : 𝑡 ∧ 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw) ∨ 𝑒 ⇓ throw |= 𝑒′ : 𝑡
|= try 𝑒 catch 𝑒′ : 𝑡
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⇔ { simplify first premise }
|= 𝑒 : 𝑡? |= 𝑒′ : 𝑡
|= try 𝑒 catch 𝑒′ : 𝑡

The final step in this calculation is justified by the following reasoning, which allows the first
premise in the rule to be written in an equivalent but simpler form:

|= 𝑒 : 𝑡?
⇔ { definition of |= }

∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡?K

⇔
{
definition of J−K

}
∃𝑣 . 𝑒 ⇓ 𝑣 ∧ ((𝑣 ∈ J𝑡K ∧ 𝑣 ≠ throw) ∨ 𝑣 = throw)

⇔ { distributivity }
(∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K ∧ 𝑣 ≠ throw) ∨ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 = throw)

⇔ { eliminate second quantifier }
(∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K ∧ 𝑣 ≠ throw) ∨ 𝑒 ⇓ throw

⇔ { split quantifier, ⇓ is deterministic }
((∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K) ∧ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw)) ∨ 𝑒 ⇓ throw

⇔ { definition of |= }
(|= 𝑒 : 𝑡 ∧ (∃𝑣 . 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw)) ∨ 𝑒 ⇓ throw

We also get a property for when the first argument cannot throw an exception, which only requires
transforming the second derived property into a form that does not use evaluation:

|= 𝑒 : 𝑡 𝑒 ⇓ 𝑣 𝑣 ≠ throw

|= try 𝑒 catch 𝑒′ : 𝑡
⇒ { transform premises }

|= 𝑒 : 𝑡 ¬(∃𝑡 ′ . 𝑡 = 𝑡 ′?)
|= try 𝑒 catch 𝑒′ : 𝑡

The transformation of the premises is justified as follows:

|= 𝑒 : 𝑡 ∧ 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw

⇔ { definition of |= }
(∃𝑣 ′ . 𝑒 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K) ∧ 𝑒 ⇓ 𝑣 ∧ 𝑣 ≠ throw

⇔ { ⇓ is deterministic }
∃𝑣 ′ . 𝑒 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K ∧ 𝑣 ′ ≠ throw

⇐
{
definition of J−K

}
∃𝑣 ′ . 𝑒 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K ∧ ¬∃𝑡 ′ . 𝑡 = 𝑡 ′?

⇔ { move first quantifier inside }
(∃𝑣 ′ . 𝑒 ⇓ 𝑣 ′ ∧ 𝑣 ′ ∈ J𝑡K) ∧ ¬∃𝑡 ′ . 𝑡 = 𝑡 ′?

⇔ { definition of |= }
|= 𝑒 : 𝑡 ∧ ¬(∃𝑡 ′ . 𝑡 = 𝑡 ′?)
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Given the calculated properties for |=, we can now simply replace |= by ⊢ and thereby obtain an
inductive definition for a typing system that is guaranteed to be sound by construction:

⊢ 𝑒 : 𝑡 𝑡 ≤ 𝑡 ′

⊢ 𝑒 : 𝑡 ′
𝑛 ∈ Z
⊢ 𝑛 : Int

𝑏 ∈ {false, true}
⊢ 𝑏 : Bool ⊢ throw : 𝑡?

⊢ 𝑒 : Int ⊢ 𝑒′ : Int
⊢ 𝑒 + 𝑒′ : Int

⊢ 𝑒 : Int? ⊢ 𝑒′ : Int?
⊢ 𝑒 + 𝑒′ : Int?

⊢ 𝑒 : Bool ⊢ 𝑒1 : 𝑡 ⊢ 𝑒2 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

⊢ 𝑒 : Bool? ⊢ 𝑒1 : 𝑡? ⊢ 𝑒2 : 𝑡?
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

⊢ 𝑒 : 𝑡? ⊢ 𝑒′ : 𝑡
⊢ try 𝑒 catch 𝑒′ : 𝑡

⊢ 𝑒 : 𝑡 𝑡 not of the form 𝑡 ′?
⊢ try 𝑒 catch 𝑒′ : 𝑡

For example, we can show using these rules that the expression 𝑒 = if true then 1 else throw has
type Int?, which means it either returns an integer or throws an exception, whereas the expression
try 𝑒 catch 2 has type Int, because the use of try/catch allows us to recover from the possibility of
an exception being thrown in 𝑒 and thereby guarantee to return an integer.

3.3 Reflection
While the simple conditional language served as a suitable vehicle to introduce our approach, the
extension to exceptions shows how the approach can be used to derive a non-trivial type system.
In particular, we have derived a subtyping system for checked exceptions in a principled manner,
starting from a type soundness property. It is also possible to derive an alternative type system that
captures that an expression will certainly, rather than possibly, throw an exception. However, we
chose here to derive a more subtle type system that implements checked exceptions.

We conclude with two further remarks on the derived rules. First of all, note that rule

⊢ 𝑒 : 𝑡 𝑡 not of the form 𝑡 ′?
⊢ try 𝑒 catch 𝑒′ : 𝑡

does not require that the handler expression 𝑒′ is well-typed if the first expression 𝑒 cannot throw
an exception, i.e. its type does not use the ? operator. The above rule is perfectly valid, as all we
are aiming for is type soundness, and the above rule guarantees this. However, if did we wish to
ensure that all sub-expressions are well-typed, we can derive a stronger rule that achieves this by
simply adding the premise ⊢ 𝑒′ : 𝑡 ′′, which ensures that 𝑒′ is well-typed.

And secondly, onemight askwhywe don’t need additional rules for other argument combinations,
such as attempting to add expressions of type Int and Int?. The answer is that the existing rules are
sufficient to derive such additional rules by subtyping. In particular, using the fact that 𝑡 ≤ 𝑡?, the
following rules can be derived by subtyping from the existing rules:

⊢ 𝑒 : Int? ⊢ 𝑒′ : Int
⊢ 𝑒 + 𝑒′ : Int?

⊢ 𝑒 : Int ⊢ 𝑒′ : Int?
⊢ 𝑒 + 𝑒′ : Int?

⊢ 𝑒 : Bool? ⊢ 𝑒1 : 𝑡 ⊢ 𝑒2 : 𝑡
⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

⊢ 𝑒 : 𝑡? ⊢ 𝑒′ : 𝑡?
⊢ try 𝑒 catch 𝑒′ : 𝑡?
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4 Lambda Calculus
To put our methodology to the test with a more sophisticated language, we now consider a call-by-
value lambda calculus extended with integers and addition:

𝑒 ::= 𝑛 | 𝑒 + 𝑒 | 𝑥 | 𝜆𝑥 .𝑒 | 𝑒 𝑒
We assume 𝑛 ranges over the integers as previously, and 𝑥 ranges over an (infinite) set of variable
names. The previous example languages were simple enough so that we could have type-checked
expressions by simply evaluating them and checking the result for membership in a semantic type.
This is not possible as soon as we have functions, or even just free variables, both of which we
have in the lambda calculus. But as we will see, the lessons learned from the previous examples
still apply and allow us to calculate a sound-by-construction type system.
To evaluate an expression that may contain free variables, we need a variable environment 𝛾 ,

a finite mapping from variables to values. We use the notation dom(𝛾) to denote the domain of
an environment 𝛾 , and 𝛾 [𝑥 ↦→ 𝑣] to denote the environment 𝛾 extended with the mapping 𝑥 ↦→ 𝑣 .
Values are either integers, or function closures, which are explained below:

𝑣 ::= 𝑛 | ⟨𝛾, 𝜆𝑥 .𝑒⟩
The semantics of the language is given by an evaluation relation 𝑒 ⇓𝛾 𝑣 that specifies when an
expression 𝑒 evaluates in an environment 𝛾 to a value 𝑣 , defined by the following rules:

𝑛 ⇓𝛾 𝑛

𝑒 ⇓𝛾 𝑛 𝑒′ ⇓𝛾 𝑛′

𝑒 + 𝑒′ ⇓𝛾 𝑛 + 𝑛′
𝑥 ∈ dom(𝛾)
𝑥 ⇓𝛾 𝛾 (𝑥)

𝜆𝑥 .𝑒 ⇓𝛾 ⟨𝛾, 𝜆𝑥 .𝑒⟩
𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 𝑣 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤

𝑒 𝑒′ ⇓𝛾 𝑤

The rules for integers and addition are similar to previously, with the addition of an environment.
Variables are simply looked up in the environment, with a precondition to ensure they are defined.
In turn, abstractions are evaluated to a closure ⟨𝛾, 𝜆𝑥 .𝑒⟩, which captures the environment 𝛾 in which
the abstraction is evaluated, the variable 𝑥 that is bound by the abstraction, and the body 𝑒 of the
abstraction. And finally, when applying a function, we first evaluate it to such a closure with an
environment 𝛾 ′, and then evaluate the body of the closure in an extended environment 𝛾 ′ [𝑥 ↦→ 𝑣],
where 𝑣 is the value that was passed as an argument to the function.

The language of types consists of integers and function types:

𝑡 ::= Int | 𝑡 → 𝑡

The semantic type corresponding to Int is, as before, the set of integers Z. The semantic type of
functions from 𝑠 to 𝑡 formalises the intuition that a closure of this type must be able to take any
value of semantic type J𝑠K and produce a value of semantic type J𝑡K:

JIntK = Z J𝑠 → 𝑡K =
{
⟨𝛾, 𝜆𝑥 .𝑒⟩

��∀𝑣 ∈ J𝑠K . ∃𝑤. 𝑒 ⇓𝛾 [𝑥 ↦→𝑣 ] 𝑤 ∧ 𝑤 ∈ J𝑡K
}

Since the evaluation relation now takes an environment 𝛾 , the semantic typing relation |= must
also account for 𝛾 , which we achieve in two steps. We first define an evaluation typing relation
𝛾 Z⇒ 𝑒 : 𝑡 , which states that 𝑒 evaluates to a value of semantic type 𝑡 in an environment 𝛾 :

𝛾 Z⇒ 𝑒 : 𝑡
def⇐⇒ ∃𝑣 . 𝑒 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K

This relation only partially abstracts from concrete values to semantic types. In particular, the
value 𝑣 produced by an evaluation 𝑒 ⇓𝛾 𝑣 is abstracted to the semantic type J𝑡K, but the environment
𝛾 still remains. To abstract from 𝛾 , we extend the definition of semantic types to semantic typing
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contexts. A (syntactic) typing context Γ is a finite mapping from variables to types, typically written
in the form 𝑥1 : 𝑡1, . . . , 𝑥𝑛 : 𝑡𝑛 . For each typing context Γ, we define a corresponding semantic
typing context JΓK by recursion on the structure of Γ:

J·K = {∅} JΓ, 𝑥 : 𝑡K =
{
𝛾 [𝑥 ↦→ 𝑣]

��𝛾 ∈ JΓK ∧ 𝑣 ∈ J𝑡K
}

The empty typing context · is assigned the semantic typing context {∅}, which only contains the
empty environment ∅. The extension of a typing context Γ with a variable 𝑥 : 𝑡 , written Γ, 𝑥 : 𝑡 , is
represented in the semantic typing context with corresponding mappings of the form 𝑥 ↦→ 𝑣 added
to the environments. We can characterise semantic typing contexts more succinctly as consisting
of those environments that map variables to semantically well-typed values:

𝑥 : 𝑡 ∈ Γ ⇒ 𝛾 (𝑥) ∈ J𝑡K for all 𝛾 ∈ JΓK (4)

This property follows by a straightforward induction on Γ. Finally, we can now define the semantic
typing relation in terms of these semantic typing contexts,

Γ |= 𝑒 : 𝑡
def⇐⇒ ∀𝛾 ∈ JΓK . 𝛾 Z⇒ 𝑒 : 𝑡

and the desired type soundness property can then be formulated in the same way as previously,
with the addition of a typing context to deal with variables:

Γ ⊢ 𝑒 : 𝑡
Γ |= 𝑒 : 𝑡

4.1 Calculating a Type System
Similarly to previous sections, we aim to calculate semantic typing rules of the form

Γ1 |= 𝑒1 : 𝑡1 ∧ . . . ∧ Γ𝑛 |= 𝑒𝑛 : 𝑡𝑛 ∧ 𝑃

Γ |= 𝑒 : 𝑡
(5)

where 𝑃 is an optional additional property that does not refer to |=. We then obtain a sound-by-
construction type system by replacing |= with ⊢ in the calculated semantic typing rules, which
gives us corresponding syntactic typing rules of the form

Γ1 ⊢ 𝑒1 : 𝑡1 ∧ . . . ∧ Γ𝑛 ⊢ 𝑒𝑛 : 𝑡𝑛 ∧ 𝑃

Γ ⊢ 𝑒 : 𝑡
We could now proceed to calculate the semantic typing rules in a fashion similar to the previous

two example languages. However, we use a slightly different approach here, which simplifies
some of the calculations and which will prove essential for combining calculated rules in the style
of sections 2.3 and 3.2. Instead of using the semantic typing relation Γ |= 𝑒 : 𝑡 , we will use the
evaluation typing relation 𝛾 Z⇒ 𝑒 : 𝑡 and aim to derive rules of the form

𝛾1 Z⇒ 𝑒1 : 𝑡1 ∧ . . . ∧ 𝛾𝑛 Z⇒ 𝑒𝑛 : 𝑡𝑛 ∧ 𝑃

𝛾 Z⇒ 𝑒 : 𝑡

where 𝑃 does not refer to Z⇒. Only afterwards, we will perform the final abstraction step from
variable environments to typing contexts to obtain the desired semantic typing rules of the form (5).
While not strictly necessary for the lambda calculus language we consider here, this two-step
process will be crucial for more complex languages as we will see in section 5.
The calculation proceeds again by considering each rule of the evaluation semantics in turn.

The calculations for integers, addition, variables, and lambda abstraction are straightforward and
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Case:
𝑛 ⇓𝛾 𝑛

𝛾 Z⇒ 𝑛 : 𝑡
⇔ { definition of Z⇒ }

∃𝑣 . 𝑛 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { definition of ⇓ }
𝑛 ∈ J𝑡K

⇔
{
definition of J−K

}
𝑡 = Int

Case:
𝜆𝑥.𝑒 ⇓𝛾 ⟨𝛾, 𝜆𝑥 .𝑒⟩

𝛾 Z⇒ 𝜆𝑥 .𝑒 : 𝑡
⇔ { definition of Z⇒ }

∃𝑣 . 𝜆𝑥 .𝑒 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { definition of ⇓ }

⟨𝛾, 𝜆𝑥 .𝑒⟩ ∈ J𝑡K

⇔
{
definition of J−K

}
∃𝑡1, 𝑡2 . 𝑡 = 𝑡1 → 𝑡2

∧ ∀𝑣 ∈ J𝑡1K . ∃𝑤. 𝑒 ⇓𝛾 [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡2K
⇔ { definition of Z⇒ }

∃𝑡1, 𝑡2 . 𝑡 = 𝑡1 → 𝑡2

∧ ∀𝑣 ∈ J𝑡1K . 𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2

Case:
𝑒 ⇓𝛾 𝑛 𝑒′ ⇓𝛾 𝑛′

𝑒 + 𝑒′ ⇓𝛾 𝑛 + 𝑛′

𝛾 Z⇒ 𝑒 + 𝑒′ : 𝑡
⇔ { definition of Z⇒ }

∃𝑣 . 𝑒 + 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { definition of ⇓ }

∃𝑣 . ∃𝑛, 𝑛′ . 𝑒 ⇓𝛾 𝑛 ∧ 𝑒′ ⇓𝛾 𝑛′

∧ 𝑣 = 𝑛 + 𝑛′ ∧ 𝑣 ∈ J𝑡K

⇔
{
substitute 𝑣 = 𝑛 + 𝑛′

}
∃𝑛, 𝑛′ . 𝑒 ⇓𝛾 𝑛 ∧ 𝑒′ ⇓𝛾 𝑛′ ∧ 𝑛 + 𝑛′ ∈ J𝑡K

⇔
{
definition of J−K

}
∃𝑛, 𝑛′ . 𝑒 ⇓𝛾 𝑛 ∧ 𝑛 ∈ JIntK ∧ 𝑒′ ⇓𝛾 𝑛′

∧ 𝑛′ ∈ JIntK ∧ 𝑡 = Int

⇔ { separate quantifiers }
(∃𝑛. 𝑒 ⇓𝛾 𝑛 ∧ 𝑛 ∈ JIntK)
∧ (∃𝑛′ . 𝑒′ ⇓𝛾 𝑛′ ∧ 𝑛′ ∈ JIntK) ∧ 𝑡 = Int

⇔ { definition of Z⇒ }
𝛾 Z⇒ 𝑒 : Int ∧ 𝛾 Z⇒ 𝑒′ : Int ∧ 𝑡 = Int

Case:
𝑥 ∈ dom(𝛾)
𝑥 ⇓𝛾 𝛾 (𝑥)

𝛾 Z⇒ 𝑥 : 𝑡
⇔ { definition of Z⇒ }

∃𝑣 . 𝑥 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K
⇔ { definition of ⇓ }
𝛾 (𝑥) ∈ J𝑡K

Fig. 1. Calculation for integers, addition, variables, and lambda abstraction.

shown in figure 1. These calculations result in the following evaluation typing rules:

𝛾 Z⇒ 𝑛 : Int
𝛾 Z⇒ 𝑒 : Int 𝛾 Z⇒ 𝑒′ : Int

𝛾 Z⇒ 𝑒 + 𝑒′ : Int
𝛾 (𝑥) ∈ J𝑡K

𝛾 Z⇒ 𝑥 : 𝑡
∀𝑣 ∈ J𝑡1K . 𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2

𝛾 Z⇒ 𝜆𝑥 .𝑒 : 𝑡1 → 𝑡2

Note that because the semantics for addition is essentially the same as for the conditional language
in section 2, the calculation for addition in figure 1 is essentially the same as the corresponding
calculation in section 2, apart from the addition of an environment 𝛾 . We will exploit this and
similar observations in section 5 in order to reuse earlier calculations.

What remains is the case for function application.

Case:
𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 𝑣 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤

𝑒 𝑒′ ⇓𝛾 𝑤
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𝛾 Z⇒ 𝑒 𝑒′ : 𝑡
⇔ { definition of Z⇒ }

∃𝑤. 𝑒 𝑒′ ⇓ 𝑤 ∧𝑤 ∈ J𝑡K
⇔ { definition of ⇓ }

∃𝑤,𝛾 ′, 𝑥, 𝑒′′, 𝑣 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K

After applying the definition of Z⇒ and ⇓ as in the other cases, we appear to be stuck due to the
last two conjuncts 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 and 𝑤 ∈ J𝑡K. Because both depend on 𝑒′′ and 𝛾 ′, they are not
suitable to be included in a semantic typing rule. In order to discharge these conjuncts, we extend
the statement with additional assumptions about the semantic typing of the closure ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ and
the value 𝑣 . Taken together, these two assumptions will precisely discharge the two conjuncts noted
above: given ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K and 𝑣 ∈ J𝑠K, the definition of J𝑠 → 𝑡K implies that 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤
and𝑤 ∈ J𝑡K. With this insight, we can resume and complete the calculation:

∃𝑤,𝛾 ′, 𝑥, 𝑒′′, 𝑣 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K

⇐
{
strengthen with ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K and 𝑣 ∈ J𝑠K

}
∃𝑤,𝛾 ′, 𝑥, 𝑒′′, 𝑣, 𝑠 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠K

∧ 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K
⇔ { move quantifier for𝑤 inside }

∃𝛾 ′, 𝑥, 𝑒′′, 𝑣, 𝑠 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠K
∧ ∃𝑤. 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K

⇔
{
by definition, ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K and 𝑣 ∈ J𝑠K imply ∃𝑤. 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K

}
∃𝛾 ′, 𝑥, 𝑒′′, 𝑣, 𝑠 . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠K

⇔ { move quantifiers inside }
∃𝑠 . (∃𝛾 ′, 𝑥, 𝑒′′ . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∧ ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K) ∧ ∃𝑣 . 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠K

⇔
{
definition of Z⇒ and J𝑠 → 𝑡K

}
∃𝑠 . 𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 ∧ 𝛾 Z⇒ 𝑒′ : 𝑠

That is, we have derived the following evaluation typing rule:

𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 𝛾 Z⇒ 𝑒′ : 𝑠
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡

Finally, we take the derived evaluation typing rules and abstract from the environment 𝛾 to
obtain semantic typing rules. Three of the calculated evaluation typing rules, namely for integers,
addition, and function application, are of the form:

𝛾 Z⇒ 𝑒1 : 𝑡1 ∧ . . . ∧ 𝛾 Z⇒ 𝑒𝑛 : 𝑡𝑛
𝛾 Z⇒ 𝑒 : 𝑡

(6)

Each such rule implies a corresponding semantic typing rule:

Γ |= 𝑒1 : 𝑡1 ∧ . . . ∧ Γ |= 𝑒𝑛 : 𝑡𝑛
Γ |= 𝑒 : 𝑡

To prove this transformation step sound, we assume (6) and Γ |= 𝑒1 : 𝑡1 ∧ · · · ∧ Γ |= 𝑒𝑛 : 𝑡𝑛 , and we
must show that Γ |= 𝑒 : 𝑡 . To this end, we assume some environment 𝛾 ∈ JΓK, and must show that
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𝛾 Z⇒ 𝑒 : 𝑡 . Because Γ |= 𝑒𝑖 : 𝑡𝑖 and 𝛾 ∈ JΓK, we have by the definition of the semantic typing relation
|= that 𝛾 Z⇒ 𝑒𝑖 : 𝑡𝑖 . Hence, by (6), we have that 𝛾 Z⇒ 𝑒 : 𝑡 .
Applying this general transformation gives us the following semantic typing rules:

Γ |= 𝑛 : Int
Γ |= 𝑒 : Int Γ |= 𝑒′ : Int

Γ |= 𝑒 + 𝑒′ : Int
Γ |= 𝑒 : 𝑠 → 𝑡 Γ |= 𝑒′ : 𝑠

Γ |= 𝑒 𝑒′ : 𝑡

The remaining two calculated evaluation typing rules, namely the rules for variables and lambda
abstraction, do not match the form (6), as we can see here:

𝛾 (𝑥) ∈ J𝑡K

𝛾 Z⇒ 𝑥 : 𝑡
∀𝑣 ∈ J𝑡1K . 𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2

𝛾 Z⇒ 𝜆𝑥 .𝑒 : 𝑡1 → 𝑡2

However, in both cases, we can easily calculate corresponding semantic typing rules. We start with
the conclusion of the desired semantic typing rule and transform it step by step until we reach a
form suitable for the premise of the semantic typing rule:

Γ |= 𝑥 : 𝑡
⇔ { definition of |= }

∀𝛾 ∈ JΓK . 𝛾 Z⇒ 𝑥 : 𝑡
⇐ { evaluation typing rule for variables }

∀𝛾 ∈ JΓK . 𝛾 (𝑥) ∈ J𝑡K
⇐ { property (4) }

∀𝛾 ∈ JΓK . 𝑥 : 𝑡 ∈ Γ

⇔
{
eliminate quantifier, JΓK is non-empty

}
𝑥 : 𝑡 ∈ Γ

Γ |= 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

⇔ { definition of |= }
∀𝛾 ∈ JΓK . 𝛾 Z⇒ 𝜆𝑥 .𝑒 : 𝑡1 → 𝑡2

⇐ { evaluation typing rule for 𝜆 }
∀𝛾 ∈ JΓK . ∀𝑣 ∈ J𝑡1K .𝛾 [𝑥 ↦→ 𝑣] Z⇒ 𝑒 : 𝑡2

⇔
{
definition of JΓ, 𝑥 : 𝑡1K

}
∀𝛾 ′ ∈ JΓ, 𝑥 : 𝑡1K . 𝛾 ′ Z⇒ 𝑒 : 𝑡2

⇔ { definition of |= }
Γ, 𝑥 : 𝑡1 |= 𝑒 : 𝑡2

That is, we have obtained the following semantic typing rules:

𝑥 : 𝑡 ∈ Γ

Γ |= 𝑥 : 𝑡
Γ, 𝑥 : 𝑡1 |= 𝑒 : 𝑡2

Γ |= 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

Given the calculated semantic type rules, we now obtain sound-by-construction syntactic typing
rules for our language by simply replacing |= with ⊢:

Γ ⊢ 𝑛 : Int
Γ ⊢ 𝑒 : Int Γ ⊢ 𝑒′ : Int

Γ ⊢ 𝑒 + 𝑒′ : Int
𝑥 : 𝑡 ∈ Γ

Γ ⊢ 𝑥 : 𝑡
Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡2

Γ ⊢ 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

Γ ⊢ 𝑒 : 𝑠 → 𝑡 Γ ⊢ 𝑒′ : 𝑠
Γ ⊢ 𝑒 𝑒′ : 𝑡

These are the standard typing rules for simply typed lambda calculus. But while the rules are
standard, the way we obtained them is not, namely by systematic calculation that guarantees
soundness. The same systematic calculation technique applies to languages with more complex
combinations of features where designing a type system by hand is more challenging and would
still require a separate soundness proof. We will see an example of this in section 5.

4.2 Partial Specifications
We conclude this section by noting that the calculation of the semantic typing rule for application
hinges on the definition of the semantic function type J𝑠 → 𝑡K. While the definition we used is
standard, it is interesting to consider if it could have been discovered during the calculation, rather
than given upfront. If possible, this may benefit the calculation for more complex languages.
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Using the idea of partial specifications from earlier work on compiler calculation [Bahr and
Hutton 2015], we could have started the calculation with a partial definition

J𝑠 → 𝑡K = {⟨𝛾, 𝜆𝑥 .𝑒⟩ | 𝑃 (𝛾, 𝑥, 𝑒, 𝑠, 𝑡) }
where the predicate 𝑃 is left unspecified. We then aim for the definition of 𝑃 to be discovered
during the calculation. In fact, during the calculation for application, we run into the problem of
having to discharge the conjuncts 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑤 ] 𝑣 and 𝑣 ∈ J𝑡K. The strategy to solve this problem
is to strengthen the statement to include the assumption ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ ∈ J𝑠 → 𝑡K and then use 𝑃 to
discharge the two conjuncts. This is achieved by defining 𝑃 to give exactly these conjuncts:

𝑃 (𝛾, 𝑥, 𝑒, 𝑠, 𝑡) def⇐⇒ ∀𝑤. ∃𝑣 . 𝑒 ⇓𝛾 [𝑥 ↦→𝑤 ] 𝑣 ∧ 𝑣 ∈ J𝑡K (7)

This definition for 𝑃 allows the calculation for function application to go through, even though
it ignores the domain type 𝑠 of the function. However, we would get stuck in the calculation for
lambda abstraction, which needs 𝑤 to be semantically well-typed, i.e. 𝑤 ∈ J𝑠′K for some type 𝑠′.
An obvious choice would be to instantiate 𝑠′ = 𝑠 , i.e. to refine 𝑃 so that it assumes𝑤 ∈ J𝑠K:

𝑃 (𝛾, 𝑥, 𝑒, 𝑠, 𝑡) def⇐⇒ ∀𝑤 ∈ J𝑠K . ∃𝑣 . 𝑒 ⇓𝛾 [𝑥 ↦→𝑤 ] 𝑣 ∧ 𝑣 ∈ J𝑡K

This definition now matches the semantic type definition used in our calculation in section 4.1
and results in the standard typing rules for simply typed lambda calculus. But we could have also
chosen a different definition of 𝑃 that just assumes𝑤 be semantically typed by any type 𝑠′:

𝑃 (𝛾, 𝑥, 𝑒, 𝑠, 𝑡) def⇐⇒ ∀𝑠′ . ∀𝑤 ∈ J𝑠′K . ∃𝑣 . 𝑒 ⇓𝛾 [𝑥 ↦→𝑤 ] 𝑣 ∧ 𝑣 ∈ J𝑡K (8)

With this definition of 𝑃 , the calculations for abstraction and application go through, but they result
in a different type system that requires functions to take values of any type as argument:

Γ ⊢ 𝑒 : 𝑠 → 𝑡 Γ ⊢ 𝑒′ : 𝑠′

Γ ⊢ 𝑒 𝑒′ : 𝑡
∀𝑠′ . Γ, 𝑥 : 𝑠′ ⊢ 𝑒 : 𝑡
Γ ⊢ 𝜆𝑥 .𝑒 : 𝑠 → 𝑡

This type system not only unusual, but also not very useful: it effectively prohibits the use of any
function argument, because no assumption can be made about its type.

The above reasoning shows that the calculational approach does allow us to discover the definition
of the semantic function type. But this process may require some iteration, because we might
discover a definition that leads to a dead end, such as with (7), or to an impractical type system,
such as with (8). Such an iterative process is typical in devising type soundness proofs, but with an
important difference: in typical type soundness proofs, adjustments often have to be made both
on the typing rules and the semantic type definition, with the hope that the adjustments will lead
to a soundness proof. In the calculational approach, we only need to adjust the definition of the
semantic type, and we then let calculation lead us to sound-by-construction typing rules.

5 Lambda Calculus with Conditionals and Checked Exceptions
For our final example, we consider the lambda calculus from section 4 extended with conditionals
and checked exceptions in the style of section 3. The syntax and semantics is given in figure 2.
Designing typing rules that soundly capture the combination of higher-order functions and

checked exceptions is more challenging than for languages with only one of these features. In
contrast, the calculational approach is systematic and modular and handles this combination
gracefully. To calculate a sound-by-construction type system for this language, we combine the
techniques we have learned so far. In fact, the modular reasoning enabled by the semantic approach
to type soundness allows us to reuse previous calculations with little to no modifications.
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Syntax: 𝑒 ::= 𝑛 | 𝑏 | throw | 𝑒 + 𝑒 | if 𝑒 then 𝑒 else 𝑒 | try 𝑒 catch 𝑒 | 𝑥 | 𝜆𝑥 .𝑒 | 𝑒 𝑒
𝑣 ::= 𝑛 | 𝑏 | throw | ⟨𝛾, 𝜆𝑥 .𝑒⟩
𝑡 ::= Int | Bool | 𝑡? | 𝑡 → 𝑡

Evaluation Semantics:

𝑛 ⇓𝛾 𝑛 𝑏 ⇓𝛾 𝑏 throw ⇓𝛾 throw

𝑒 ⇓𝛾 𝑛 𝑒′ ⇓𝛾 𝑛′

𝑒 + 𝑒′ ⇓𝛾 𝑛 + 𝑛′
𝑒 ⇓𝛾 true 𝑒1 ⇓𝛾 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓𝛾 𝑣

𝑒 ⇓𝛾 false 𝑒2 ⇓𝛾 𝑣

if 𝑒 then 𝑒1 else 𝑒2 ⇓𝛾 𝑣

𝑒 ⇓𝛾 throw

𝑒 + 𝑒′ ⇓𝛾 throw

𝑒 ⇓𝛾 𝑛 𝑒′ ⇓𝛾 throw

𝑒 + 𝑒′ ⇓𝛾 throw

𝑒 ⇓𝛾 throw

if 𝑒 then 𝑒1 else 𝑒2 ⇓𝛾 throw

𝑒 ⇓𝛾 throw 𝑒′ ⇓𝛾 𝑣

try 𝑒 catch 𝑒′ ⇓𝛾 𝑣

𝑒 ⇓𝛾 𝑣 𝑣 ≠ throw

try 𝑒 catch 𝑒′ ⇓𝛾 𝑣

𝑥 ∈ dom(𝛾)
𝑥 ⇓𝛾 𝛾 (𝑥)

𝜆𝑥.𝑒 ⇓𝛾 ⟨𝛾, 𝜆𝑥 .𝑒⟩
𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 𝑣 𝑣 ≠ throw 𝑒′′ ⇓𝛾 ′ [𝑥 ↦→𝑣 ] 𝑤

𝑒 𝑒′ ⇓𝛾 𝑤

𝑒 ⇓𝛾 throw

𝑒 𝑒′ ⇓𝛾 throw

𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 throw

𝑒 𝑒′ ⇓𝛾 throw

Semantic Types: JIntK = Z JBoolK = {false, true} J𝑡?K = J𝑡K ∪ {throw}

J𝑠 → 𝑡K =

{
⟨𝛾, 𝜆𝑥 .𝑒⟩

���∀𝑣 ∈ J𝑠K .∃𝑤.𝑒 ⇓𝛾 [𝑥 ↦→𝑣 ] 𝑤 ∧𝑤 ∈ J𝑡K
}

Semantic Contexts: J·K = {∅} JΓ, 𝑥 : 𝑡K =
{
𝛾 [𝑥 ↦→ 𝑣]

��𝛾 ∈ JΓK ∧ 𝑣 ∈ J𝑡K
}

Fig. 2. Syntax and semantics of lambda calculus extended with conditionals and checked exceptions.

As with the lambda calculus in section 4, we define an evaluation typing and a semantic typing
relation to capture the desired soundness property:

𝛾 Z⇒ 𝑒 : 𝑡
def⇐⇒ ∃𝑣 . 𝑒 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑡K

Γ |= 𝑒 : 𝑡
def⇐⇒ ∀𝛾 ∈ JΓK . 𝛾 Z⇒ 𝑒 : 𝑡

As previously, we aim to calculate evaluation typing rules of the form

𝛾1 Z⇒ 𝑒1 : 𝑡1 ∧ . . . ∧ 𝛾𝑛 Z⇒ 𝑒𝑛 : 𝑡𝑛 ∧ 𝑃

𝛾 Z⇒ 𝑒 : 𝑡

where 𝑃 does not refer to Z⇒. Once these rules have been calculated, we can combine them as in
sections 2.3 and 3.2 to then finally transform them into semantic typing rules as in section 4.
We proceed by considering each rule of the evaluation semantics in turn. As observed earlier,

the calculation for 𝑒 + 𝑒′ in section 4 is essentially the same as the calculation in section 3. Indeed,
all calculations in section 3 can be performed for the language in this section as well and result in
essentially the same rules, except that we use the evaluation typing relation 𝛾 Z⇒ 𝑒 : 𝑡 instead of
the semantic typing |= 𝑒 : 𝑡 , and the rules refer to a variable environment 𝛾 . For instance, we can
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Case:
𝑒 ⇓𝛾 throw

𝑒 𝑒′ ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡
⇔ { definition of Z⇒ }

∃𝑣 . 𝑒 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }
𝑒 ⇓𝛾 throw ∧ throw ∈ J𝑡K

⇔
{
definition of J−K

}
𝑒 ⇓𝛾 throw ∧ ∃𝑠 . 𝑡 = 𝑠?

Case:
𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩ 𝑒′ ⇓𝛾 throw

𝑒 𝑒′ ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡
⇔ { definition of Z⇒ }

∃𝑣 . 𝑒 𝑒′ ⇓ 𝑣 ∧ 𝑣 ∈ J𝑡K
⇐ { definition of ⇓ }

(∃𝛾 ′, 𝑥, 𝑒′′ . 𝑒 ⇓𝛾 ⟨𝛾 ′, 𝜆𝑥 .𝑒′′⟩)
∧ 𝑒′ ⇓𝛾 throw ∧ throw ∈ J𝑡K

⇐
{
definition of J−K

}
(∃𝑠1, 𝑠2, 𝑣 . 𝑒 ⇓𝛾 𝑣 ∧ 𝑣 ∈ J𝑠1 → 𝑠2K)

∧ 𝑒′ ⇓𝛾 throw ∧ ∃𝑠 . 𝑡 = 𝑠?

⇔
{
definition of J−K and Z⇒

}
(∃𝑠1, 𝑠2 . 𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑠2) ∧ 𝑒′ ⇓𝛾 throw ∧ ∃𝑠 .𝑡 = 𝑠?

Fig. 3. Calculation for function application in the presence of exceptions.

calculate the following rules for conditional expressions:

𝑒 ⇓𝛾 true 𝛾 Z⇒ 𝑒1 : 𝑡
𝛾 Z⇒ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

𝑒 ⇓𝛾 false 𝛾 Z⇒ 𝑒2 : 𝑡
𝛾 Z⇒ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

𝑒 ⇓𝛾 throw

𝛾 Z⇒ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?
(9)

Here it is important that the calculations use the evaluation typing relation 𝛾 Z⇒ 𝑒 : 𝑡 rather than
the semantic typing relation Γ |= 𝑒 : 𝑡 . In particular, all three of the above rules depend on the
fact that we can directly refer to the variable environment 𝛾 in the premise, which allows us to
state how the expression 𝑒 evaluates in the environment 𝛾 . If we had used semantic typing, the
calculations would have resulted in the following rules instead:

∀𝛾 ∈ JΓK. 𝑒 ⇓𝛾 true Γ ⊢ 𝑒1 : 𝑡
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∀𝛾 ∈ JΓK. 𝑒 ⇓𝛾 false Γ ⊢ 𝑒2 : 𝑡
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

∀𝛾 ∈ JΓK. 𝑒 ⇓𝛾 throw

Γ |= if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

These rules are far more restrictive. For example, the last rule requires 𝑒 to throw an exception
in every semantically well-typed environment 𝛾 . As a consequence, these rules cannot be used to
derive further semantic typing rules as in section 3.2. However, with the rules in (9) we can apply
the same reasoning steps as in section 3.2 to calculate the following rule:

𝛾 Z⇒ 𝑒 : Bool? 𝛾 Z⇒ 𝑒1 : 𝑡? 𝛾 Z⇒ 𝑒2 : 𝑡?
𝛾 Z⇒ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

All calculations from section 4 also carry over to our extended lambda calculus, except that
the ⇔-steps that apply the definition of the evaluation relation become ⇐-steps here, because
several evaluation rules may now apply to terms of the same shape. We therefore obtain the same
evaluation typing rules for variables, lambda abstraction and application as in section 4:

𝛾 (𝑥) ∈ J𝑡K

𝛾 Z⇒ 𝑥 : 𝑡
∀𝑣 ∈ J𝑡1K . 𝛾 [𝑥 ↦→ 𝑣] |= 𝑒 : 𝑡2

𝛾 Z⇒ 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 𝛾 Z⇒ 𝑒′ : 𝑠
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡
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The only rules of the evaluation semantics for which we cannot directly reuse previous calcula-
tions are the three rules for application. Two of these rules deal with the propagation of exceptions
and thus do not have direct counterparts in sections 3 and 4. But the calculations for these two
cases are straightforward, see figure 3, and result in the following evaluation typing rules:

𝑒 ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
𝛾 Z⇒ 𝑒 : 𝑡1 → 𝑡2 𝑒′ ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
(10)

The remaining rule for the semantics of application is similar to the corresponding rule in section 4
but has the additional side condition that 𝑣 ≠ throw. We can therefore reuse the calculation from
section 4 with only minor changes that simply carry over the side condition, similarly to the
calculation for try/catch in section 3, which results in the following evaluation typing rule:

𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 𝛾 Z⇒ 𝑒′ : 𝑠 𝑒′ ⇓𝛾 𝑣 𝑣 ≠ throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡
(11)

The resulting side condition that 𝑒′ evaluate to a value different from throw reminds us of a
similar condition found in rule (3) calculated for try/catch in section 3. Using the same calculation
argument as in section 3.2, we can derive an evaluation typing rule that replaces this side condition
on the evaluation result with a side condition on the type of 𝑒′:

𝛾 Z⇒ 𝑒 : 𝑠 → 𝑡 𝛾 Z⇒ 𝑒′ : 𝑠 𝑠 not of the form 𝑠′?
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡

This rule is suitable to be turned into a semantic typing rule. However, the original rule (11) can
be used in conjunction with the other two rules for function application in (10) to calculate an
evaluation typing rule for application in the presence of exceptions:

𝑒 ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
∧

𝛾 Z⇒ 𝑒 : 𝑡1 → 𝑡2 𝑒′ ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡3?

∧
𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑠2 𝛾 Z⇒ 𝑒′ : 𝑠1 𝑒′ ⇓𝛾 𝑣 𝑣 ≠ throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑠2
⇒ { instantiate 𝑡3 = 𝑡 and 𝑠2 = 𝑡? }

𝑒 ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
∧

𝛾 Z⇒ 𝑒 : 𝑡1 → 𝑡2 𝑒′ ⇓𝛾 throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

∧
𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? 𝛾 Z⇒ 𝑒′ : 𝑠1 𝑒′ ⇓𝛾 𝑣 𝑣 ≠ throw

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
⇔ { combine into one rule }

𝑒 ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒 : 𝑡1 → 𝑡2 ∧ 𝑒′ ⇓𝛾 throw)
∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1 ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ≠ throw)

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
⇒ { instantiate 𝑡1 = 𝑠1 and 𝑡2 = 𝑡? }

𝑒 ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ 𝑒′ ⇓𝛾 throw)
∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1 ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ≠ throw)

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
⇔ { distributivity of ∧ over ∨ }
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𝑒 ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ (𝑒′ ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒′ : 𝑠1 ∧ 𝑒′ ⇓𝛾 𝑣 ∧ 𝑣 ≠ throw)))
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

⇔
{
definition of J−K and Z⇒

}
𝑒 ⇓𝛾 throw ∨ (𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡? ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1?)

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?
⇒ { bring 𝑒 terms together }

(𝑒 ⇓𝛾 throw ∨ 𝛾 Z⇒ 𝑒 : 𝑠1 → 𝑡?) ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1?
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

⇔
{
definition of J−K and Z⇒

}
𝛾 Z⇒ 𝑒 : (𝑠1 → 𝑡?)? ∧ 𝛾 Z⇒ 𝑒′ : 𝑠1?

𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

That is, we have derived the evaluation typing rule:

𝛾 Z⇒ 𝑒 : (𝑠 → 𝑡?)? 𝛾 Z⇒ 𝑒′ : 𝑠?
𝛾 Z⇒ 𝑒 𝑒′ : 𝑡?

This rule covers the case where both 𝑒 and 𝑒′ may throw an exception, resulting in an application
that may throw an exception. Using subtyping this rule also covers the cases where only one of
𝑒 and 𝑒′ may throw an exception. Note that the function type (𝑠 → 𝑡?)? has the domain 𝑠 rather
than 𝑠? due to the call-by-value semantics: an exception thrown by the argument 𝑒′ of type 𝑠? is
propagated as soon as 𝑒′ is evaluated, which happens before the function is called.
Finally, we transform all derived evaluation typing rules into semantic typing rules using the

same argument as in section 4. From these we then obtain syntactic typing rules by replacing |=
with ⊢. The full set of syntactic typing rules derived in this fashion is given in figure 4. We also
include the rules for subtyping, which follow directly from the definition of semantic types.

6 Related Work
To the best of our knowledge, the use of calculational techniques to derive type systems that are
sound by construction has not been previously explored in the literature. However, our approach
builds upon prior work in a number of areas, as discussed below.

Type checker calculation. Recently, Garby et al. [2025] proposed a methodology for calculating
type checkers [Backhouse 2003]. In their approach, a type checker is viewed as a special case of an
abstract interpreter [Cousot 1997]. In this view, the correctness of a type checker with respect to a
functional semantics is specified as an inequation, which can then be used to calculate the type
checker using equational reasoning principles. Similarly to our approach, their calculation approach
avoids the explicit use of induction. Instead, the type checker and the evaluation semantics are
defined as a fold so that the calculation can exploit a form of fold fusion.

Semantic type soundness. The notion of semantic type soundness was introduced by Milner along
with the notion of type soundness in his seminal paper on polymorphic types [1978]. In this paper,
semantic types are assigned to values and used as a way to prove type soundness. However, the
underlying proof technique goes back even further to Tait’s method to prove strong normalisation
for simply typed lambda calculus [1967]. The use of the |= notation to denote the semantic typing
relation is due to Appel and McAllester [2001], who use this notation to easily translate typing
rules (using ⊢) into semantic typing rules (using |=) that form the lemmas that need to be proved to
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𝑛 ∈ Z
Γ ⊢ 𝑛 : Int

𝑏 ∈ {true, false}
Γ ⊢ 𝑏 : Bool Γ ⊢ throw : 𝑡?

Γ ⊢ 𝑒 : Int Γ ⊢ 𝑒′ : Int
Γ ⊢ 𝑒 + 𝑒′ : Int

Γ ⊢ 𝑒 : Int? Γ ⊢ 𝑒′ : Int?
Γ ⊢ 𝑒 + 𝑒′ : Int?

Γ ⊢ 𝑒 : Bool Γ ⊢ 𝑒1 : 𝑡 Γ ⊢ 𝑒2 : 𝑡
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡

Γ ⊢ 𝑒 : Bool? Γ ⊢ 𝑒1 : 𝑡? Γ ⊢ 𝑒2 : 𝑡?
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑡?

Γ ⊢ 𝑒 : 𝑡? Γ ⊢ 𝑒′ : 𝑡?
Γ ⊢ try 𝑒 catch 𝑒′ : 𝑡?

Γ ⊢ 𝑒 : 𝑡 𝑡 not of the form 𝑠?
Γ ⊢ try 𝑒 catch 𝑒′ : 𝑡

𝑥 : 𝑡 ∈ Γ

Γ ⊢ 𝑥 : 𝑡
Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡2

Γ ⊢ 𝜆𝑥.𝑒 : 𝑡1 → 𝑡2

Γ ⊢ 𝑒 : 𝑠 → 𝑡 Γ ⊢ 𝑒′ : 𝑠 𝑠 not of the form 𝑠′?
Γ ⊢ 𝑒 𝑒′ : 𝑡

Γ ⊢ 𝑒 : (𝑠 → 𝑡?)? Γ ⊢ 𝑒′ : 𝑠?
Γ ⊢ 𝑒 𝑒′ : 𝑡?

Γ ⊢ 𝑒 : 𝑠 𝑠 ≤ 𝑡

Γ ⊢ 𝑒 : 𝑡 𝑡 ≤ 𝑡? 𝑡 ≤ 𝑡

𝑠 ≤ 𝑡 ′ 𝑡 ′ ≤ 𝑡

𝑠 ≤ 𝑡

𝑠′ ≤ 𝑠 𝑡 ≤ 𝑡 ′

𝑠 → 𝑡 ≤ 𝑠′ → 𝑡 ′

Fig. 4. Type system for lambda calculus extended with conditionals and checked exceptions.

show type soundness. We defined the semantic typing relation Γ |= 𝑒 : 𝑡 in terms of the evaluation
typing relation 𝛾 Z⇒ 𝑒 : 𝑡 , which in turn is based on the definition of semantic types J𝑡K. While we
are not aware of a direct counterpart to the evaluation typing relation in the literature, it is closely
related to the notion of a term relation (or expression relation), and the corresponding generalisation
of semantic types to relations is therefore often called a value relation [Pitts and Stark 1999].

Categorical logic and type theory. The idea that typing structure emerges from the semantics of a
formal language has a long history in type theory and category theory. In type theory, defining types
behaviourally by their computational content was pioneered by Martin-Löf [1982], and later further
developed in the Nuprl system and its underlying Computational Type Theory (CTT) [Allen et al.
2006; Constable et al. 1986]. Terms in CTT are untyped, and types are defined as specifications of the
intended behaviour of such untyped terms. The type system is then constructed on this semantic
foundation by essentially proving semantic typing rules. The influential work of Lawvere [1969]
showed that reasoning in a category with sufficient structure can be performed using an internal
language of the category, with structure in the category, e.g. adjunctions, giving rise to syntactic
features, e.g. quantifiers, that make up the internal language. This idea has been especially fruitful
in topos theory [Johnstone 2002] and type theory [Seely 1984].

7 Conclusion and Further Work
We have demonstrated how to systematically derive sound-by-construction type systems from a
specification of type soundness. The key idea is to formulate type soundness semantically and to
derive the typing rules as properties of the semantic typing relation. This semantic approach not
only makes these calculations feasible, but it also makes them modular. We can calculate semantic
typing rules one language feature at a time, and in some cases we can reuse semantic typing rules
across different languages with shared language features.



26 Patrick Bahr, Zac Garby, and Graham Hutton

The semantic approach to type soundness has seen a significant resurgence in recent years
and has produced a rich body of work, including the development of Kripke logical relations to
prove soundness for languages with various forms of effects, and the advancement of formalisation
techniques for mechanising such soundness proofs [Abel et al. 2019]. We believe that by drawing
on this abundance of semantic reasoning techniques, future work can extend our methodology
of calculating sound-by-construction type systems to a wider range of language features such as
non-termination, non-determinism, effectful computations, and polymorphic types.
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