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Abstract. Functional reactive programming (FRP) is a programming
paradigm for implementing software that continuously interacts with its
environment and manipulates highly dynamic data. Asynchronous FRP,
in particular, is very expressive and can be used to implement graphical
user interfaces and other reactive systems interacting with data streams
and events that are not synchronized. Testing such asynchronous FRP
programs is difficult since a program’s behaviour depends not only on
the concrete data it receives from its environment but also the relative
timing of when each piece of data arrives.

In this paper, we propose PropRatt, a property-based testing framework
for asynchronous FRP. The key component of PropRatt is its specifica-
tion language, which extends basic linear temporal logic with a means to
express properties of several concurrent signals. This allows us to express
temporal properties that relate data coming from different signals at dif-
ferent points in time. PropRatt is implemented in Haskell and targets a
recently introduced asynchronous FRP language embedded in Haskell.
We demonstrate the utility of PropRatt through a case study testing a
signal combinator library as well as a graphical user interface, in which
we suggest how the strategy for generating signals can be modified to
better model specific domains.

Keywords: Property-based testing - Functional Reactive Programming
- Linear Temporal Logic

1 Introduction

Reactive systems continuously respond to external inputs received from their
environments. Examples of these include graphical user interfaces (GUIs) that
react to a stream of mouse-clicks and keyboard inputs, or control software for
robots that continuously read input from hardware sensors. The key idea be-
hind functional reactive programming (FRP) [§] is to model the input from the
environment as a signal that can be manipulated as any other first-class value.
This programming paradigm enables writing reactive systems in a declarative
and compositional style. In the model of FRP we are considering here, signals
are values of type Sig a that represent a stream of values of type a that arrive
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time t; t1 to ts ta ts te
S1 = 1 2 3 4
52 — Ya’ ,b’ ’c, ’d’

zips1 82 = (1, ’a’) (17 ,b,) (27 ’C,) (37 ’C’) (47 ,C7) (47 ’d’)

Fig. 1. Execution trace for zip.

incrementally over time. These signals can then be composed and manipulated
using higher-order functions to build complex reactive systems. Async Rattus [1]
is an asynchronous FRP language embedded in Haskell that enables this pro-
gramming style. The asynchronous nature of the language allows for signals to
update independently with respect to a local clock attached to each signal, as
opposed to synchronous languages where all signals update according to a global
clock. This model is favourable for GUIs, where subcomponents frequently need
to be recomputed independently of most of the rest of the GUI. To illustrate such
asynchronous behaviour, consider the zip function on signals in Async Rattus
(instantiated to signals of integers and characters for the sake of this example)ﬂ

zip :: Sig Int -> Sig Char -> Sig (Int :* Char)

A call to zip may produce the execution trace illustrated in Figure [1} For each
of the three signals, the figure shows a value whenever the signal updates. For
example, at time t5, the signal so still has value ’c?’, while the other two signals
have been updated to the values 4 and (4, >c?). The zip function combines two
signals into a signal of (strict) pairs containing the two last observed values
of the two signals. That means, it must update whenever either of the two
argument signals updates. For example, at time ¢5, only signal s; updates and
so remains unchanged. Accordingly, zip s1 so updates to the new value (4, ’c?).
As a sidenote, zip uses the strict pair type operator :* as Async Rattus is a
strict language in order to make guarantees about the absence of space leaks.
From the trace in Figure[I] we can see how the number of test cases explodes.
Given two input signals s; and s, there are 3% = 243 possible different outcomes
for zip $1 $o in the first 6 time steps just due to the different timings of s; and ss!
And that is before we even begin to consider the number of different values the
signals can take. This combinatorial explosion renders conventional unit testing
that uses known input/output pairs highly impractical for sufficient testing.
Property-based testing (PBT) [4] is a tool which may aid in addressing these
challenges. Instead of writing test cases as input/output pairs, the user specifies a
predicate that must hold for all inputs. A testing framework then automatically
checks the predicate against many randomly generated inputs, thereby testing a
more general property of the system under test. This approach is well-suited for
complex or combinatorial input spaces, as it can explore a broad range of inputs
that would be impractical to write manually otherwise. To test a representative
subset of execution paths, the generation of signals cannot be completely arbi-

! Int :* Char denotes a strict pair type of integers and characters.
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trary. Instead, it must be carefully constrained to ensure fairness for all signals
under test, to avoid a signal never updating during a test run.

However, predicates written exclusively with propositional logic are insuffi-
ciently expressive to specify the expected behaviour of signals, as it can only
represent a static notion of truth. The value produced by a signal at a given
instant is of limited use, since it cannot express how signals evolve dynamically
over time. This naturally leads us to temporal logic, which allows properties
to be formulated with temporal operators. In particular, linear temporal logic
(LTL) [16] provides operators such as G (“always”) and F (“eventually”) to ex-
press statements relative to time. For example, we can express the property that
the first component of a zipped signal ss = zip s1 so always reflects the current
value of s; whenever s; produces a value:

G(V's1 = 51 = fst(s3)) (1)

Here, v's; denotes a tick of the clock tied to s;, capturing the idea that the
property is only relevant when s; updates. Using the temporal operators offered
by LTL allows for more expressive predicates and, in turn, properties of a system
that we wish to test. Exactly how an LTL-based specification language should be
designed to express specifications for asynchronous FRP has remained an open
question so far.

In this paper we present PropRattEL a property-based testing (PBT) library
for Async Rattus. PropRatt builds on top of QuickCheck [4], a PBT library for
Haskell, to generate arbitrary signals and to check temporal properties. The key
contributions of this work are as follows:

— We devise an LTL-based specification language to express temporal proper-
ties that involve multiple asynchronous signals.

— We implement an API that allows specifications to interact with several
signals of heterogeneous types in a type-safe manner using Haskell’s advanced
type system features.

— We combine this API with an execution model that produces finite well-
typed traces of parallel, asynchronous signals.

— We implement a testing harness that integrates the specification language
and execution model into QuickCheck.

— We demonstrate the expressiveness of the specification language, its use, and
its limitations in practice with a number of examples.

The remainder of this paper is structured as follows: In section [2] we give a
short introduction to the Async Rattus language and property-based testing.
In section [3] we present the LTL-based specification language, and in section [4]
we give an extended example of its use in PropRatt. In section 5] we give an
overview of the most important parts of the implementation of PropRatt and its
specification language. Finally, we give an overview of related work in section [f]
and conclude in section [[] with an outlook on future work.

2 Source code of Haskell package and examples submitted as supplemental material.
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2 Background

In this section, we give a brief introduction to functional reactive programming
in the Async Rattus language and property-based testing.

Async Rattus Async Rattus is an FRP language embedded in Haskell that
enables programming with asynchronous signals. It uses modal types to reflect
the temporal availability of expressions and values at the type level. To this
end, Async Rattus introduces two type modalities: a later modality 0, and a
boxr modality Box. The later modality defers a computation to a future time
step, while the box modality classifies time-independent data that can be moved
unchanged across time. By encoding timing constraints at the type level, Async
Rattus guarantees that only time-appropriate values are accessed at each step.
For example, a computation cannot accidentally use a value before it is received
at some later time. But these modalities also aid resource management: The
runtime only needs to keep the current values and the deferred computations
awaiting future input, freeing any older data that is no longer needed, thus
avoiding space leaks, which are notoriously difficult to debug. The core FRP
abstraction provided by Async Rattus is the signal type. A signal of type Sig a
represents a (possibly infinite) stream of values of type a. It is defined in Async
Rattus as a recursive type:

data Sig a = a ::: 0 (Sig a)

Here we use ::: as a cons-like constructor. A value of type Sig a carries an
immediate head of type a and a tail of type 0 (Sig a). The head is available
right away, while the tail is a computation that becomes available in the next
time step, according to some clock.

Each value d :: 0 b consist of a clock c1(d) and a delayed computation,
which produces a value of type b whenever the clock c1(d) ticks. In the case of
a signal, the tail is of type 0 (Sig a) and thus has an associated clock, which
determines when a new value of type Sig a is available, i.e. when the signal
updates. Concretely, a clock is simply a set of external input channels. When
an input arrives on one of those channels, we say that the associated clock ticks
and the deferred computation is executed. In the case of the tail of a signal, such
a tick yields the next value of the signal. Thus, each 0 (Sig a) is essentially
a promise to compute the next signal element as soon as the clock ticks. For
example, if a signal’s clock includes a GUI button’s event channel, then each
button press causes the signal to advance by one step. This design lets different
signals operate on independent clocks, unlike purely synchronous FRP where all
signals share a single global clock.

Async Rattus provides two primitives for working with the later modality:
delay and adv (advance). The delay keyword is the constructor for the later
modality. It wraps a computation so that it does not execute until the signal’s
clock ticks. Conversely, adv is the eliminator. It retrieves the value from a de-
layed computation when its clock allows it. The typing rules of Async Rattus
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ensures that every adv must be nested under the scope of a corresponding delay,
preventing the use of values that do not exist.

For instance, consider the following function, that subtracts one from a de-
layed integer:

subtractOne :: 0 Int -> Int
subtractOne laterN = laterN - 1

This function does not type check since laterN :: 0 Int is not an integer but
rather a delayed integer that arrives at some point in the future. We cannot
subtract 1 in the current time step. Instead, we have to await the clock of the
integer and only then subtract 1. A valid function could instead use the delay
and adv primitives to delay the computation according to the clock of laterN.

subtractOne :: 0 Int -> 0 Int
subtractOne laterN = delay (adv laterN - 1)

In this way, we correctly await the input, before executing the computation,
which naturally also changes the type of the function, to return a delayed integer.

Async Rattus requires that any value moved into the future be time-invariant,
introducing the notion of stable types. Values of stable types are time-independent
and consequently can be safely moved arbitrarily far into the future without risk
of space leaks. To illustrate, consider a naive map implementation on signals:

mapNaive :: (a -> b) -> Sig a -> Sig b

This type is naive because function types are inherently not stable, as they
may capture temporally-dependent information in their closure.
Instead, map can be defined as:

map :: Box (a -> b) -> Sig a -> Sig b

The box modality ensures the function is stable and thereby guaranteed
temporally-invariant. This ensures that no new time-varying information is hid-
den inside the function, ensuring an absence of space leaks.

Property-Based Testing Testing reactive and asynchronous programs writ-
ten in Async Rattus is challenging because of the enormous space of possible
event sequences. Property-based testing (PBT) offers a promising alternative to
traditional testing. Instead of writing fixed test cases, the programmer states
properties that the program should satisfy, and the testing framework checks
them against many automatically generated inputs. This approach aligns well
with the high-level nature of specifications and can uncover edge cases that
handwritten examples might miss. PBT libraries allow the programmer to write
compact specification, such as the following specification that reversing a list
twice produces the original list

prop_rev : [Int] -> Property
prop_rev xs = reverse (reverse xs) == Xs
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Predicate p :=T | F |e| = | oA | VY| p= 1
| X¢|Fop|GoploUyp|pRY

Ezpressione :=c|ey ea | 1| VI

Lookup | ::= prev [ | sig,,

Fig. 2. Syntax of PropRatt’s specification language.

A PBT library such as QuickCheck can generate random inputs for the argument
xs and check whether these satisfy the equation reverse (reverse xs) == xs.
In addition, QuickCheck also can also shrink such inputs in order to provide the
programmer with useful counterexamples if a property fails.

The core of this general principle is provided by the Arbitrary type class of
QuickCheck:

class Arbitrary a where
arbitrary :: Gen a
shrink :: a -> [a]

Given an instance of Arbitrary [Int], QuickCheck can test properties that
quantify over lists of integers such as prop_rev above: First arbitrary gen-
erates random values of type [Int]. Then it supplies these random values to
the function prop_rev one by one. Finally, if the property fails for one of the
generated inputs, say xs, then shrink xs will produce smaller lists with which
to test prop_rev in order to obtain a smaller counterexample.

In the context of reactive systems, PBT can offer the same benefits: It can
generate arbitrary input signals to explore the space of behaviours and shrink
such signals to simpler counterexamples to help locate the source of errors. How-
ever, equational specifications alone are not sufficiently expressive to capture the
complex behaviours expressible by asynchronous FRP programs.

3 Specification language

3.1 Untyped specification language

PropRatt introduces a DSL for writing declarative specifications at a high level of
abstraction, enabling property-based testing of FRP programs written in Async
Rattus. Such programs manipulate signals of different types, e.g. zip from sec-
tion [I] combines an Int and a Char signal. Therefore, the design of the speci-
fication language must be able to account for multiple, heterogeneously typed
signals. But before turning to the concrete syntax of the typed specification
language as implemented in PropRatt, we consider an idealized syntax of an un-
typed version of the language in Figure 2] in order to discuss the essential ideas
of the language.

The specification language consists of three components: a logical language
of predicates ¢, a language of expressions e, and a notation [ for looking up
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signals at a specific (relative) time. The predicate language is exactly LTL with
atoms of the form e written in the expression language. For example, we write
G(sig; > 0) to express that the signal identified by sig; always (globally) has
a positive value, and we write sig; > 0 U sig; = sig, to express that the signal
sig, is positive until both sig; and another signal sig, have the same value.

In these examples, sig; > 0 and sig; = sig, are Boolean-valued expressions,
which can act as atoms in an LTL formula. In general, an LTL formula is a
predicate over n signals whose current value can be referenced using sig; . . . sig,,.
We can also reference a previous value of a signal by using prev. For example,
G(X(prev sig; < sig;)) stipulates that signal sig; is strictly monotonically
increasing.

Traditionally, LTL works only on a single execution trace, whereas PropRatt
allows multiple parallel signals, which may produce new values independently
of one another according to their own clock. However, given such parallel, asyn-
chronous signals, we can construct a single execution trace that maintains the
relative timing information. We have seen an example of that in the execution
trace for zip, shown in Figure |1l It involves three signals, which, if combined,
produce a trace where at each time step ¢; at least one of the three signals ticks,
i.e. produces a new value.

In the expression language we have access to the timing information of such
a combined trace via expressions of the form v's, which are true whenever the
signal identified by s has ticked. Returning to the zip example from Figure[T] we
have that at time t5, the expressions v'sig; and v'sig; are true, since both s; and
zip s; so produced a new value, whereas v'sig, is false as so did not produce
a new value. Using this more formal notation for the specification language,
specification is written more precisely as G(v'sig; — sig; = fst’sigy),
where fst’ is the first projection of the strict pair type.

To illustrate the specification language, suppose we have a GUI with the
following signals:

timer :: Sig Int -- time to display
reset :: Sig O -- reset button

The timer signal is meant to increment by one every second and reset produces
a unit value () every time the ‘reset’ button in the GUI is pressed. Assume
that the signals we wish to test are supplied in the order they appear above, i.e.
sig; = timer and sig, = reset, we can specify that timer increments whenever
the clock of timer ticks and the reset button is not pressed:

G(v'sig; A —v'sig, = X(prev sig; < sig;) (2)

Here G and X are the standard LTL temporal operators. The expression v'sig;
retrieves whether the first signal has updated in the current time step as an
expression, while sig, retrieves the value of that signal. The lookup prev sig;
accesses the value of the timer from the previous time step. The property asserts
that at any time (G), whenever the timer signal ticks (v'sig;), then in the next
step (X) the timer (sig;) must have increased relative to its previous value
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data Pred (ts :: [Typel) where

TT, FF :: Pred ts
Now :: Expr ts Bool -> Pred ts
Not, X, G, F :: Pred ts -> Pred ts

And, Or, (:=>), U, R :: Pred ts -> Pred ts -> Pred ts

data Expr (ts :: [Typel) (t :: Type) where

Pure :: t -> Expr ts t

App :: Expr ts (t -> r) -> Expr ts t -> Expr ts r
Val :: Lookup ts t -> Expr ts t

Tick :: Lookup ts t -> Expr ts Bool

data Lookup (ts :: [Typel) (t :: Type) where

Prev :: Lookup ts t -> Lookup ts t
Sigl :: Lookup (Value t ’: x) t
Sig2 :: Lookup (x1 ’: Value t ’: x2) t

Fig. 3. Well-typed syntax of PropRatt.

(prev sig;). Importantly, this is only the case if reset has not been pressed
(—v'sig,).

3.2 Typed specification language

The syntax in Figure [2|is untyped and to ensure well-typedness we have to give
a type system so that only Boolean-valued expressions are used as atoms, and
expressions themselves are also well-typed, e.g. e; es is only well-typed if e; is of
type 71 — T2 and es is of type 71. Instead of presenting such a type system, we
give the encoding of this type system in Haskell.

The concrete syntax of PropRatt’s specification language is intrinsically well-
typed and uses generalized algebraic data types (GADTS) to represent the typing
information. The full definition of the syntax is given in Figure [3| The type of
predicates Pred is indexed by a list of type ts :: [Typel, which represents the
types of the signals over which we want to specify a property. For example, for
the property involving the timer :: Sig Int and reset :: Sig () signals,
this list of types is ’ [Int, O].

Similarly, expressions are indexed by such a list of types ts :: [Typel, as
well. But they also have an additional type index t :: Type that indicates
the type of values produced when evaluating such expressions. Using the Now
constructor, predicates over signal types ts may include expressions of type
Bool over signal types ts. In turn, expressions have access to the values and
timing information of the signals via Val and Tick, respectively. In addition,
they also have an applicative functor structure provided by Pure and Apply.
These two constructors correspond directly to the two operations pure and <x>
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sigl :: Expr (Value t ’: ts) t
sigl = Val Sigl

tickl :: Pred (Value t ’: ts)
tickl = Now (Tick Sigl)

-- sig2, tick2, etc. are defined similarly

prev :: Expr ts t -> Expr ts t

prev (Pure x) = Pure x
prev (App f x) = App (prev f) (prev x)
prev (Val 1lu) = Val (Prev 1lu)

prev (Tick lu) = Tick (Prev lu)

instance Num t => Num (Expr ts t) where
() xy=(+) < x <>y
-- similar definitions for (-), (%) etc

(I1<]) :: Ord t => Expr ts t -> Expr ts t -> Pred ts
x |<] y = Now ((<) <$> x <*> y)
-- similar definitions for comparison operators (==), (<=) etc.

Fig. 4. Shorthand notations for the specification language.

of the applicative functor interface. For example the expression prev sig; < sig;
from the timer specification above, is written

(<) <$> val (Prev Sigl) <> Val Sigl

where <$> is the map operator of applicative functors, defined by £ <$> x =
pure f <x> x. The above expression is of type Expr ’[Int, ()] Bool and thus
can be used in a predicate using Now. The type of the Sigl constructor ensures
that the type of Index Sigl matches exactly the first signal, and likewise for
the remaining constructors Sig2 etc.

Putting all of this together, specification can be expressed as follows:

prop :: Pred ‘[Int,()]
prop = G ((Now (Tick Sigl) ‘And‘¢ Not (Now (Tick Sig2)))
:=> X (Now ((<) <$> Val (Prev Sigl) <*> Val Sigl)))

To make properties more readable, the specification language also provides
shorthands, defined in Figure [l This includes shorthands for looking up the
current value of a signal (sigl, sig2 etc.), checking whether a signal has ticked
(tickl, tick2 etc.), Prev generalized to the expression language (prev), com-
mon arithmetic operators for the expression language, and common comparison
operators for the predicate language (1<1,l==1 etc.). With these shorthands the
above property prop can be written more concisely:



10 Christian Emil Nielsen, Mathias Faber Kristiansen, and Patrick Bahr

prop :: Pred ‘[Int, ()]
prop = G ((tickl ‘And‘ Not tick2) :=> X (prev sigl [<| sigl))

4 Case study

To evaluate the expressiveness of the specification language, we have compiled
two sets of example specifications: A set of specifications for the signal combina-
tors provided by the Async Rattus library and a set of specifications for a simple
timer GUI. Here we give a selection of these specifications, but the complete set
can be found in the supplemental material submitted with this paper.

Signal combinators The first set of examples comprises specifications for sig-
nal combinators like zip and map. We have seen one such specification in the
form of the LTL formula G(v'sig; — sig; = fst’ sig;) for the zip combinator.
This can be written in the typed specification language as follows:

-- sig3 = zip sigl sig2
prop_zipl :: Pred ’[Int, Char, (Int :* Char)]
prop_zipl = G (tickl :=> (sigl |==| (fst’ <$> sig3)))

Async Rattus can express dynamic dataflows using the switch combinator,
which takes a signal s1 and a delayed signal s2 and produces a new signal that
first behaves like s1 and behaves like s2 as soon as that delayed signal s2 arrives.
We can express this property as follows:

-- sig3 = switch sigl sig2
prop_switch :: Pred ’[Int, Int, Int]
prop_switch = (sig3 |==| sigl) ‘U¢ (tick2 ‘And‘ G(sig3 |==| sig2))

Note that PropRatt’s until operator U has the semantics of the ‘weak until’
operator (often denoted W). In an LTL formula ¢ U v, the ‘strict until’ operator
requires 1 to become true at some point in the future (and ¢ to be true at all
times before that). However, this requirement of ¢ becoming true at some point
is a liveness property, which cannot be tested using PBT since such properties
have only infinite counterexamples. Therefore, by necessity, PropRatt adopts the
weak form which does not require ¢ to become true. This ‘weak until’ semantics
of U matches the semantics of switch because the second (delayed) signal passed
to switch may never arrive.

GUI application For the second set of example specifications, we consider a
GUI application that extends the timer example from section[3.1]to include addi-
tional signals. This GUI application is taken from Disch et al. [7] and implements
the timer of Kiss’s 7TGUIs benchmark [12].

The timer application displays a value of elapsed time e, a reset button r and
a slider for adjusting a maximum duration d. Users may interact with the timer
in two ways: pressing the reset button and adjusting the slider which changes the
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maximum value the timer may reach. Once the timer reaches this maximum, it
stops incrementing until the slider is moved again or the reset button is pressed.
The GUI processes three inputs: a reset button (reset :: Sig ()), a slider to
adjust the maximum of the timer (max :: Sig Int), and a signal that ticks
every second (sec :: Sig ()). These three signals are combined to form the
signal of type state:: Sig (Int :* Int), which captures the state of the GUI.
Its first component holds the current timer value and its second component is
the maximum value currently chosen by the user.

Kiss [12] provides a specification of the timer application consisting of several
informal properties, which we can now formally express in the PropRatt speci-
fication language. First, the timer must stop whenever it reaches its maximum.
That is, the timer value never exceeds the maximum value supplied by the user:

-- sigl: state; sig2: reset; sig3: max; sigd: sec
propl :: Pred ’[(Int :* Int), (), Int, (]
propl = G ((snd’ <$> sigl) [|<=| sig3)

Second, if the timer has not yet reached its maximum, then it must increase
every second:

prop2 :: Pred ’[(Int :* Int), (), Int, ()]
prop2 = G ( ((snd’ <$> sigl) [<| sig3 ‘And‘ X tick4)
:=> X ((snd’ <$> sigl) |==| ((+1) . snd’ <$> prev sigl)))

Third, whenever the user presses the reset button, then in that same time step
the timer value must be 0:

prop3 :: Pred ’[(Int :* Int), (), Int, O]
prop3 = G (tick2 :=> (pure 0 |==| (fst’ <$> sigl)))

Finally, implicit in the specification of the timer GUI is the property that the
timer should remain constant unless a second has passed or the reset button was
pressed:

prop4 :: Pred ’[(Int :* Int), (), Int, (]
prop4 = G (X ((Not tick2 ‘And‘ Not tick4)
:=> ((fst’> <$> prev sigl) |==| (fst’ <$> sigl))))

Testing of these properties confirms that the implementation of the timer GUI
by Disch et al. [7] does indeed satisfy the specification.

5 Implementation

In section [3], we introduced the key type Pred, which defines well-typed temporal
specifications. We now turn to the implementation details that connect these
specifications to property-based testing with QuickCheck [4].

A specification is evaluated using the following function:

evaluate :: Pred ts -> Sig (HList ts) -> Bool
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The type Sig (HList ts) represents a flattened trace of a program contain-
ing data from all signals under test such as the example trace for zip in Figure[]
Understanding this type requires a short detour into how asynchronous signal
behaviour is represented. A naive approach might model a trace as a list of
independent signals [Sig a]. This representation is insufficient as it does not
allow us to inspect the timing relationships between signals directly. Instead, we
want a single signal of lists, where the nth value in a list corresponds to the
value produced by the nth signal of the property we are testing. In order to also
represent cases where some of the signals do not produce a new value, we can
represent such a single signal with the type Sig [Maybe a]. This representation
is essentially the idea of the type Sig (HList ts) used by evaluate above, but
instead of a list it uses a heterogeneous list type (HList) that allows different
signals to have different types:

data HList :: [Typel -> Type where
HNil :: HList °[]
(:%) :: !'x -> ! (HList xs) -> HList (x ’: xs)

Users can construct a heterogeneous list of signals to test:

-- assuming sl :: Sig Int, s2 :: Sig Char
sigs0fZip :: HList ’[Sig Int, Sig Char, Sig (Int :* Char)]
sigs0fZip = sl :% s2 :% zip sl s2 :9, HNil

Such a heterogeneous list of signals is then flattened into a single signal that can
then be passed to evaluate:

trace0fZip :: Sig (HList ’[Value Int,Value Char,Value (Int:*Char)])
trace0fZip = flatten sigs0fZip

Before looking more closely at flattening, we take a look at the Value type.

To support operators such as v' and prev, the trace must maintain past
values and indicate whether a signal has emitted a fresh value at the current
time step. We collect this data in the Value type:

newtype HasTicked = HasTicked Bool deriving Show

data Value a = Current !'HasTicked !(List a)

Recall the definition of the Lookup type in Figure [3] that represents lookups
of signal values. The type of each Sign constructor enforces that the nth type
in the list of types ts is of the form Value t in the type signature of evaluate.

To illustrate this representation, we show the trace from Figure|[l| as a value
of type Sig (HList ’[Value Int, Value Char, Value (Int :* Char)]):

51 S9 zip $1 S2
to| (T, [11) 2h (T, [’a’]) 2% (T,[(1,%a?)]) :% HNil
t1|(F, [11) 2% (T,[°b?,2a’]) 2% (T,[(1,°0%),(1,%a%)]) :% HNil

t2|(T,[2, 11) :% (T,[’c’,’b?,%a’]) :% (T,[(2,°¢?),(1,°b’),(1,%a*)]) :% HNil
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At to, both signals produce a new value, whereas at t1, only the second signal
emits a new value while the first carries over its previous one, which is also
indicated by the false Boolean flag at t;.

Flattening of signals to traces To construct traces from individual signals,
we define the function prepend, which merges a signal Sig t with an already-
flattened signal of heterogeneous list Sig (HList ts):

prepend :: (Stable t, Stable (HList ts), Falsify ts)
=> Sig t -> Sig (HList ts)
-> Sig (HList (Value t ’: ts))

The key idea is that prepend unions the clocks of the delayed computations from
both arguments, which means the resulting signal updates whenever either of the
input signals would update. This enables us to explore traces systematically. The
Stable constraints ensures that the values produced by either signal argument
are temporally-independent and safe to move to the future according to the type
system of Async Rattus, and Falsify is a type class that implements a single
method for a Value to negate the HasTicked flag. To flatten a heterogeneous list
of signals to a trace, we recursively apply prepend through the flatten method
defined in the multi-parameter type class Flatten:

class Stable (HList vals) =>
Flatten sigs vals | sigs -> vals, vals -> sigs where
flatten :: HList sigs -> Sig (HList vals)

instance Flatten ’[] ’[] where
flatten HNil = emptySig

instance (Stable a, Stable (Value a), Flatten as bs, Falsify bs)
=> Flatten (Sig a ’: as) (Value a ’: bs) where
flatten (HCons h t) = prepend h (flatten t)

We use a type class to implement flatten so that we can express the relation
between the argument type HList sigs and return type Sig (HList vals).
Namely, sigs is a list of types of the form Sig t, whereas vals is the cor-
responding list of types of the form Value t. The type class declaration uses
functional dependency annotations to make explicit that sigs and vals are in
a one-to-one correspondence, which helps the type checker to infer types.

Clock strategy The clock of a delayed computation is represented by a set of
so-called channels [2]. For example, the clock {k1, 2} indicates that it will tick
if data arrives on channel k1 or channel ko. Clocks such as {k1, ko} and {ko, k3}
may tick simultaneously if data has arrived on a channel that both share, in
this case k9. Concretely, channels are represented as integers in Async Rattus,
so that clocks are represented using the type IntSet of finite sets of integers.
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PropRatt must generate clocks in a manner that adequately reflects asyn-
chronous behaviour when signals are combined. During evaluation of properties
in PropRatt, we advance the state of the signals under test controlled by eval-
uation semantics of the specification language. This advancement must update
those signals that produce a new value while preserving the values of signals that
do not. To realize this behaviour, we randomly assign each delayed computation
of a generated signal a clock drawn from the non-empty subsets of {x1, k2, K3}:

genClock :: Gen Clock
genClock = do
n <- chooselInt (1, 3)
case n of
1 -> do x <- chooselnt (1,3)
return (IntSet.fromList [x])
2 -> elements $ map IntSet.fromList [[1,2], [2,3], [1,3]]
3 -> return (IntSet.fromList [1,2,3])

During the evaluation of the test, we then advance the signals by forcing
the delayed computation on the smallest channel of its clock. Together with the
implementation of prepend which unions the clock of each delayed computation
upon merge, this strategy makes it possible to produce both synchronous ticks,
where signals updates at the same time because the clocks share channels, but
also asynchronous advancements in which some signals wait multiple time steps
before advancing.

This extension allows us to generate arbitrary input signals that mimics asyn-
chronous user interaction, combine them with user-supplied signals if desired,
and integrate the resulting outputs into a model of our program.

Shrinking We supply implementations of the shrink method given by the
Arbitrary type class from QuickCheck. We implemented a shrinker for signals
by converting signals into a list that preserves the clocks of delayed computations:

type TSig a = [(a, Clock)]

This representation allows us to shrink signals using a strategy similar to that for
lists implemented in QuickCheck: Shrink the signal by iteratively dropping con-
tiguous chunks of values and shrink the remaining values contained in the signal
themselves as well. After producing new shrink candidates, we rebuild them as
signals and reapply the saved clocks so the delayed-computation strategy is pre-
served. QuickCheck evaluates shrink candidates iteratively until the property no
longer fails. This yields compact failing inputs and correspondingly short traces
that help pinpointing errors in the implementation or the specification.

6 Related work

LTL has long been recognized as a suitable specification language for reactive
programs. Jeffrey [10] and Jeltsch [II] independently discovered that LTL can



PBT for Asynchronous FRP Using LTL 15

be seen as a type system for functional reactive programs. Later, Perez and
Nilsson [I4T5] used LTL as a specification language for property-based testing
of functional reactive programs. LTL-based specification languages have also
been used for property-based testing of web applications [I3]. The work most
closely related to PropRatt is the property-based testing library developed for
Rattus [6], a synchronous version of Async Rattus.

In all previous work mentioned above, the LTL-based specification language
always targets single, synchronous executions of programs. By contrast, Pro-
pRatt specifications are hyperproperties, i.e. properties over several parallel ex-
ecution traces of signals. Variants of LTL for hyperproperties have been sug-
gested [5], but we are not aware of any property-based testing framework that
uses these ideas, apart from the thesis of Nielsen and Kristiansen [3] which this
paper summarizes. However, we are not the first to devise a specification lan-
guage for PBT of asynchronous reactive systems. Hughes et al. [9] have proposed
temporal relations as a specification language for testing the asynchronous be-
haviour of a communication protocol. A temporal relation is a relation between
time intervals and values. Such relations provide a compositional way to specify
properties of asynchronous computations.

7 Conclusion and Future Work

We have presented an LTL-based specification language that enables PBT of
asynchronous FRP programs. To our knowledge this is the first such PBT speci-
fication language that combines LTL-style connectives with the ability to express
properties across multiple asynchronous signals.

The focus of the present work is to explore the expressiveness of asynchronous
LTL specifications and to demonstrate it with case studies. This leaves consider-
ations of ergonomics of the specification language for future work. Such consider-
ations are important, because the ease with witch specifications can be written,
read, and modified do significantly contribute to the utility of a PBT framework.
The design of PropRatt as a hybrid DSL with a deeply embedded core allows for
further improvements to the specification language. For example, by inspecting
the AST of specifications, we can produce a warning when the user tries to test
liveness properties, which by their nature do not have finite counterexamples
and thus cannot be tested.

In addition, we could extend the language with further connectives. For ex-
ample, the predicate fragment of the specification language has combinators
that move forward in time (such as X and U), whereas the expression fragment
has a combinator that moves backwards in time (namely prev). While this de-
sign decision simplifies the implementation of an efficient checking procedure
for specifications, it can lead to unnatural or inelegant specifications. However,
it is possible to extend the specification language with combinators that allow
e.g. the expression fragment to also move forward in time. Specifications written
in this richer specification language can then be translated into an equivalent
specification in the simpler specification language presented in this paper.
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