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Partial Compiler Calculation with Skew Bisimilarity
PATRICK BAHR, IT University of Copenhagen, Denmark

Compiler calculation is a technique for deriving a correct-by-construction compiler from the specification of

the compiler’s correctness. In this setting, the compiler specification typically states that the semantics of each

compiled program is bisimilar to the semantics of the original source program, i.e. both programs have the

same behaviour. However, full bisimilarity for all source programs is too strong of a requirement for complex

source languages with unsafe behaviour for which the compiler need not make any guarantees, e.g. because

programs that exhibit unsafe behaviour are ruled out by the type checker. This has been long recognised and

exploited in compiler verification, but to date no calculation technique can handle such partial specifications.

To address this, we propose a generalisation of bisimilarity, called skew bisimilarity, that allows us to weaken

the compiler specification so that we may safely ignore unsafe behaviour when calculating a compiler for the

specification. We demonstrate that skew bisimilarity enables us to derive more efficient compilers while at the

same time obtaining the same strong correctness guarantees for safe source programs.

We further show that – even for languages without unsafe behaviour – skew bisimilarity provides a

powerful generalisation of bisimilarity that enables a novel calculation technique for reasoning about register
machines. This improves on existing compiler calculation techniques for register machines, which are limited

to terminating source languages without effects. To demonstrate the effectiveness of skew bisimilarity as a

proof technique, we calculate compilers for a variety of languages, including the first calculation of a compiler

for a typed concurrent lambda calculus that targets a register machine.

1 INTRODUCTION
Compilers have long been recognised as an ideal target for formal verification [McCarthy and

Painter 1967] as they are complex pieces of software and constitute a critical link in any secure

software system. Program calculation is a technique to derive correct-by-construction programs from

specifications of their desired behaviour [Backhouse 2003]. Applied to compilers, this technique

allows us to discover new compilation techniques along with proofs of their correctness.

In its simplest form, the specification of a compiler is an equation of the form

JeK � Jcompile eK

which states that the semantics JeK of any source program e must be the same as the semantics of

the compiled program compile e. The bisimilarity relation � demands that both sides behave in the

same way.

However, in practice we don’t expect compilers to satisfy the above equation for all source pro-
grams, but only those programs that are safe. Discounting unsafe behaviours of the source program

in the specification affords the compiler more flexibility to produce more efficient code. This is the

typical approach taken by verified compilers such as CompCert [Leroy 2009] or CakeML [Kumar

et al. 2014].

In this article, we propose a weaker form of bisimilarity, called skew bisimilarity and denoted by

⊥� , that allows us to formulate a partial compiler specification in the form of an inequality

JeK ⊥� Jcompile eK

This specification makes no demands on unsafe behaviours exhibited by the left-hand side. While

not an equivalence relation, skew bisimilarity still enjoys the equational reasoning principles that

are necessary for calculating a correct-by-construction compiler. Moreover, we show that any

compiler that satisfies a partial specification of this form then also satisfies the full correctness
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property for all safe source programs:

JeK � Jcompile eK whenever e is safe

The use of skew bisimilarity not only simplifies the equational reasoning for compiler calculations

involving unsafe languages, it also results in compilers that exploit the less strict specification to

generate more efficient code.

We also show that skew bisimilarity has further applications beyond source languages with

unsafe behaviours. Even in cases where the source language is safe, the use of a partial specification

enables a new compiler calculation technique that allows us to derive compilers that target register
machines instead of stack machines.

While the source language may be without unsafe behaviours, reading from registers may in

general be unsafe, and skew bisimilarity allows us to elegantly reason in the presence of such unsafe

behaviours. Importantly, even though the specification is partial and thus allows us to interact with

unsafe register access, we still obtain the full correctness property in terms of bisimilarity.

We demonstrate this new compiler calculation technique enabled by skew bisimilarity on variety

of example languages. For the purpose of exposition, we focus on simple toy languages in this article.

In addition, the supplementary material contains Agda formalisations of compiler calculations for

more realistic languages, including lambda calculi with different features such as algebraic effects,

concurrency, and modal type operators for reactive programming.

The rest of the article proceeds as follows: In section 2, we calculate a compiler for a simple

language with unsafe behaviour. The example language is simple enough so that we can use the

Maybe monad as the underlying semantic structure, but for more realistic examples we need the

richer semantic structure provided by choice trees [Chappe et al. 2023], which we introduce in

section 3. In section 4, we then introduce the skew bisimilarity relation on choice trees and apply it

to a simple expression language with side effects. In section 5, we show how a mild generalisation

of skew bisimilarity allows us to calculate compilers that target register machines instead of stack

machines. Finally, we give an overview of related work in section 6 and conclude in section 7.

To make this article more accessible, we use Haskell notation as our meta language for all

programs and calculations, but we assume that the meta language is total. All definitions, theorems,

and compiler calculations presented in this article have been formalised in Agda [Norell 2007] and

are available as supplementary material.

2 PARTIAL SEMANTICS
In this section, we show how to calculate a compiler in the presence of unsafe or undefined

behaviours in the source language semantics. For the sake of exposition, we choose a simple

arithmetic expression language extended with Booleans and a conditional operator:

data Value = B Bool | N Int
data Expr = Val Value | Add Expr Expr | If Expr Expr Expr

Since this expression language can manipulate two different types of values – integers and Booleans

– untyped expressions may exhibit unsafe behaviour. However, the semantics is simple enough so

that it can be formalised and reasoned about very easily. We start by defining the semantics of the

expression language by a simple interpreter eval that evaluates an expression to a value:

eval :: Expr → Value
eval (Val v) = v
eval (Add x y) = let N m = eval x ; N n = eval y in N (m + n)
eval (If x y z) = let B b = x in if b then eval y else eval z
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The addition operator expects its two arguments to evaluate to a number, whereas the conditional op-

erator expects a Boolean as its first argument. The definition uses non-exhaustive pattern matching

and thus evaluation fails on ill-typed expression. For example, eval (Add (Val (B True)) (Val (N 9)))
is not defined. The above definition of eval only works if the meta language were not total. Instead

of relying on a non-total meta language, we want to make partiality explicit so that we can reason

about it. Since the expression language is terminating, theMaybemonad suffices to model partiality:

data Maybe a = Just a | Nothing
return :: a→ Maybe a
return = Just

(>>=) ::Maybe a→ (a→ Maybe b) → Maybe b
Nothing >>= f = Nothing
Just x >>= f = f x

With theMaybe monad in hand we can revise the interpreter eval so that a type mismatch produces

the result value Nothing:

eval :: Expr → Maybe Value
eval (Val v) = return v
eval (Add x y) = do N m← eval x ; N n← eval y ; return (N (m + n))
eval (If c x y) = do B b ← c ; if b then eval x else eval y

To reduce syntactic clutter, we use Haskell’s do notation, which translates into applications of >>=.

In addition, we use the fact that Maybe is an instance of the MonadFail type class, which in case of

a non-exhaustive pattern matching failing invokes its fail method

fail :: String → Maybe a
fail = Nothing

For example, the clause for eval (If c x y) desugars into
eval (If c x y) = c >>= 𝜆v → case v of B b→ if b then eval x else eval y

→ Nothing

With the revised eval function, Add (Val (B True)) (Val (N 9)) now evaluates to Nothing:
The first argument of Add evaluates to B True and thus the partial pattern match with N m fails,

resulting in the value Nothing, which in turn is propagated by the definition of the monadic bind

operator >>=.

2.1 Compiler Correctness
Our goal is to calculate a compiler compile :: Expr → Code that translates an expression into an

as-of-yet unspecified target language. To this end, we assume that the compiler targets a stack

machine, whose semantics is given by a function exec :: Code → Stack → Maybe Stack, where
Stack = [Value ]. In order to account for unsafe behaviour, also the semantics of the target language

is given in terms of the Maybe monad.

All three components – compile, exec, and Code – will be derived by the calculation process. But

before we formulate the correctness property of the compiler, we generalise the function compile
so that it takes an additional code argument that is meant to be executed after the compiled code.

This will significantly simplify the calculation process [Bahr and Hutton 2015]. Using this idea, the

specification for the generalised compilation function comp :: Expr → Code→ Code is as follows:

do v ← eval e ; exec c (v : s) = exec (comp e c) s (1)



111:4 Patrick Bahr

That is, compiling an expression and then executing the resulting code together with some additional

code c gives the same result as executing c with the value of the expression on top of the stack. Both

sides of the equation are of typeMaybe Stack, thus accounting for the fact that both the interpreter

eval and the stack machine exec may have unsafe behaviour.

We could now use specification (1) to calculate the compiler using monadic reasoning in the

style of Bahr and Hutton [2022]. However, this specification may be too strict. In general, we might

want to allow the compiler to exploit unsafe or undefined behaviour to perform optimisations.

Leroy [2009] expresses this intuition of the relation between a source program 𝑆 and compiled

program 𝐶 as follows

If Safe(𝑆), then ∀𝐵.𝐶 ⇓ 𝐵 =⇒ 𝑆 ⇓ 𝐵
That is, given a safe source program, any behaviour 𝐵 exhibited by the compiled program needs to

be exhibited by the source program. A program 𝑆 is safe if it has no wrong behaviours, i.e. 𝑆 ⇓ 𝐵
implies 𝐵 ∉ Wrong, for some set Wrong of wrong behaviours. For example, for our expression

language, Wrong = {Nothing}.
Assuming that the target language has a deterministic semantics, Leroy then strengthens the

above specification into a form that is easier to prove:

∀𝐵 ∉ Wrong.𝑆 ⇓ 𝐵 =⇒ 𝐶 ⇓ 𝐵
Translating this to our setting, we obtain the following refinement of our compiler specification (1):

do v ← eval e ; exec c (v : s) = Just w =⇒ exec (comp e c) s = Just w (2)

To perform a calculation we need to rephrase this specification into an equation or at least into an

inequality so that we can perform equational reasoning. We achieve this by defining an ordering

⊥= on Maybe types:

Nothing ⊥= p for any p ::Maybe a (⊥= -Nothing)

Just v ⊥= Just v for any v :: a. (⊥= -Just)

Using this ordering on Maybe, the above specification (2) can now be reformulated equivalently as

do v ← eval e ; exec c (v : s) ⊥= exec (comp e c) s (3)

Since ⊥= is a preorder, i.e. it is reflexive and transitive, and is a congruence for >>=, we can use

the above specification as the basis for the compiler calculation technique of Bahr and Hutton

[2020]. The crucial property of ⊥= that will allow us to essentially ignore unsafe behaviour during

the compiler calculation is the fact that Nothing is the least element w.r.t. ⊥= according to the

defining equation (⊥= -Nothing). In addition, we will make extensive use of the monad laws:

return x >>= f = f x (left identity)

mx >>= return = mx (right identity)

(mx >>= f ) >>= g = mx >>= (𝜆x . (f x >>= g)) (associativity)

2.2 Compiler Calculation
We can now calculate the desired compiler for the source language. To this end, we prove speci-

fication (3) by induction on the structure of the expression e, and we do so before we even have

definitions of comp, exec, and Code. As we shall see, the definitions of the missing components

will naturally fall out of the calculation: For each case of e, we start on the left-hand side of the

inequality and seek to transform it into the form exec c′ s for some code c′, thus proving

do v ← eval e ; exec c (v : s) ⊥= exec c′ s
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We can then set comp e c = c′ as the definition of the compiler for e, which completes the proof for

this case. Moreover, during the calculation we will discover new clauses for the definition of the

virtual machine exec along with new constructors for Code.
We start with the case for e = Val n, which is straightforward:

do v ← eval (Val n) ; exec c (v : s)
= { definition of eval }
do v ← return n ; exec c (v : s)

= { monad laws (left identity) }

exec c (n : s)
= { define: exec (PUSH n c) s = exec c (n : s) }
exec (PUSH n c) s

In the first two steps, we simply apply the definition of eval and simplify the term using the left

identity law of the Maybe monad. We then aim to turn the term exec c (n : s) into the desired form

exec c′ s. That is, we must solve the equation exec c′ s = exec c (n : s). We can do so by turning

this equation into a defining clause for exec. To this end, we must ensure that all variables on the

right-hand side also occur on the left-hand side. Variable s already occurs on the left-hand side.

The remaining variables n and c can be packaged up in the argument c′ with the help of a new

constructor PUSH :: Int → Code→ Code that takes them as argument. We then solve the equation

by setting c′ = PUSH n c and thus adding the following clause to the definition of exec:

exec (PUSH n c) s = exec c (n : s)

That is, we have discovered the first instruction of the virtual machine and its semantics. Moreover,

with the above calculation we arrive at the desired form, namely exec c′ s, and can thus read off

the first clause of the compiler:

comp (Val n) c = PUSH n c

We proceed with the case for e = Add x y, which starts in a similar manner: We first apply

the definition of eval followed by the monad laws. Our goal is to manipulate the term so that

we can apply the induction hypothesis. This requires solving an equation, which we do by again

introducing a defining clause for exec:

do v ← eval (Add x y) ; exec c (v : s)
= { definition of eval }
do v ← do {N m← eval x ; N n← eval y ; return (N (m + n)) } ; exec c (v : s)

= { monad laws (left identity & associativity) }

do N m← eval x ; N n← eval y ; exec c (N (m + n) : s)
= { define: exec (ADD c) (N n : N m : s) = exec c (N (m + n) : s) }
do N m← eval x ; N n← eval y ; exec (ADD c) (N n : N m : s)

However, now we appear to be stuck, since the subterm

do N n← eval y ; exec (ADD c) (N n : N m : s)

does not quite match the induction hypothesis for y. To see why, let’s unfold the syntactic sugar

for the non-exhaustive pattern matching:

do v ← eval y ; case v of N n→ exec (ADD c) (N n : N m : s)
→ Nothing
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For this term to match the left-hand side of the induction hypothesis we have to transform it so

that both cases of the pattern matching expression produce the same term. That is easily achieved

by appealing to the ⊥= -Nothing law to conclude that Nothing ⊥= exec (ADD c) (v : N m : s):
do v ← eval y ; case v of N n→ exec (ADD c) (N n : N m : s)

→ Nothing
⊥= { ⊥= -Nothing law }

do v ← eval y ; case v of N n→ exec (ADD c) (N n : N m : s)
→ exec (ADD c) (v : N m : s)

= { case analysis on v }

do v ← eval y ; exec (ADD c) (v : N m : s)
Using this idea we can resume our calculation for Add:

do N m← eval x ; N n← eval y ; exec (ADD c) (N n : N m : s)
⊥= { ⊥= -Nothing law }

do N m← eval x ; v ← eval y ; exec (ADD c) (v : N m : s)
⊥= { induction hypothesis for y }

do N m← eval x ; exec (comp y (ADD c)) (N m : s)
⊥= { ⊥= -Nothing law }

do m← eval x ; exec (comp y (ADD c)) (m : s)
⊥= { induction hypothesis for x }

exec (comp x (comp y (ADD c))) s
After having applied the induction hypothesis for y, we again appeal to the ⊥= -Nothing law to

transform the term so that we can apply the induction hypothesis for x. The resulting term is of

the desired form exec c′ s, and we can therefore read off the next clause of the compiler:

comp (Add x y) c = comp x (comp y (ADD c))
In the final case for e = If x y z, we can apply the lessons we learned in the first two cases to

complete the calculation:

do v ← eval (If x y z) ; exec c (v : s)
= { definition of eval }
do v ← do {B b← eval x ; if b then eval y else eval z } ; exec c (v : s)
= { monad laws (left identity & associativity) }

do B b← eval b ; if b then (do v ← eval y ; exec c (v : s))
else (do v ← eaval z ; exec c (v : s))

⊥= { induction hypothesis for y and z }
do B b← eval x ; if b then exec (comp x c) s

else exec (comp y c) s
= { define: exec (JPC c′ c) (B b : s) = if b then exec c′ s else exec c s }
do B b← eval x ; exec (JPC (comp x c) (comp y c)) (B b : s)
⊥= { ⊥= -Nothing law }

do v ← eval x ; exec (JPC (comp x c) (comp y c)) (v : s)
⊥= { induction hypothesis for x }

exec (comp b (JPC (comp x c) (comp y c))) s
We have thus found the final clause of the compiler definition:
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Target language

data Code = PUSH Int Code | ADD Code | JPC Code Code | HALT

Compiler

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp (If x y z) c = comp b (JPC (comp x c) (comp y c))

Virtual machine

type Stack = [Value ]
exec :: Code→ Stack → Maybe Stack
exec (PUSH v c) s = exec c (v : s)
exec (ADD c) (N n : N m : s) = exec c (N (m + n) : s)
exec (JPC c′ c) (B b : s) = if b then exec c′ s else exec c s
exec HALT s = return s
exec = Nothing

Fig. 1. Compiler and stack machine for the simple expression language with conditionals.

comp (If x y z) c = comp b (JPC (comp x c) (comp y c))
To complete the compiler calculation, we consider the top-level compiler compile ::Expr → Code,

whose correctness is captured by the following property:

do v ← eval e ; return (v : s) ⊥= exec (compile e) s
To calculate the definition of compile, we again start on the left-hand side and seek to manipulate

the term into the form exec c′ s so that we can define compile e = c′. However, this time no

induction is necessary:

do v ← eval e ; return (v : s)
= { define: exec HALT s = return s }
do v ← eval e ; exec HALT (v : s)
⊥= { correctness of comp }

exec (comp e HALT ) s
In summary, we have calculated the definitions in Figure 1.

By using a partial compiler specification that uses the partial order ⊥= instead of strict equality,

we were able to focus the calculation on the defined behaviour of the source language. The use of

the ⊥= -Nothing law allowed us to ignore undefined behaviour.

For this very simple language, the use of the weaker specification was not necessary as we would

also be able to calculate the same compiler and virtual machine using the stronger specification,

albeit at the cost of a more complicated calculation. However, this only works since the language

has no side effects. In the next section, we will see that as soon as the source language has side
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effects, e.g. non-termination, the partial compiler specification will allow us to calculate a more

efficient compiler.

3 CHOICE TREES
In section 2, we used theMaybemonad to express undefined behaviour of our source language. This

approach is applicable when we have a language without effects, i.e. the only observable behaviour

is the final result of the evaluation. To generalise this calculation approach to languages with effects

such as non-termination, non-determinism and algebraic effects, we replace the Maybe monad

with choice trees [Bahr and Hutton 2023]. In this section, we recall the basic definitions of choice

trees, and demonstrate the shortcomings of using standard bisimilarity for equational reasoning

in the presence of unsafe behaviour. We then introduce our solution to this issue – namely skew

bisimilarity – in section 4.

3.1 Syntax
The type of choice trees CTree e a represents non-deterministic computations that return values of

type a and that may use algebraic effects described by the type function e :: ∗ → ∗:
data CTree e a where

Now :: a→ CTree e a
(⊕) :: CTree e a→ CTree e a→ CTree e a
𝑍𝑒𝑟𝑜 :: CTree e a
Eff :: e b→ (b→ CTree e a) → CTree e a
Later ::∞ (CTree e a) → CTree e a

Now v returns the value v without performing any effects, p ⊕ q makes a non-deterministic

choice between two computations p and q, 𝑍𝑒𝑟𝑜 is a computation that has terminated, Eff o c is a
computation that first performs effectful computation o and then passes the result of that into a

continuation c, and Later p behaves like p but allows us to express non-terminating computations

as we will explain further below.

As an example, we construct an effectful operation that prints an integer, this can be achieved by

first defining a type function PrintEff that provides a single constructor called PrintInt, which is

then used to define a print function:

data PrintEff a where
PrintInt :: Int → PrintEff ()

print :: Int → CTree PrintEff ()
print n = Eff (PrintInt n) Now
CTree is an inductive type, defined mutually recursively with a coinductive type denoted by

∞ (CTree e a). We adopt here the ∞ notation for mixed inductive-coinductive types in Agda

[Danielsson and Altenkirch 2010], but to reduce clutter we assume conversions Delay ::CTree e a→
∞ (CTree e a) and Force ::∞ (CTree e a) → CTree are inserted implicitly in the appropriate places

as in Idris [Brady 2017]. In short, this means that Later is a coinductive constructor whereas all
other constructors of CTree are inductive. That is, a value of type CTree e a is a potentially infinite

tree with nodes labelled by the constructors Now, Step and so on, such that every infinite path from

the root must contain infinitely many nodes labelled Later . For example, a computation that never

terminates can be defined as follows:

never :: CTree e a
never = Later never
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Despite being non-terminating, this definition is total because the recursive call is guarded by Later ,
and systems such as Agda will accept it.

Choice trees form a monad, with return and >>= defined as follows:

return :: a→ CTree e a
return = Now

(>>=) :: CTree e a→ (a→ CTree e b) → CTree e b
Now v >>= f = f v
(p ⊕ q) >>= f = (p >>= f ) ⊕ (q >>= f )
𝑍𝑒𝑟𝑜 >>= f = 𝑍𝑒𝑟𝑜

Eff o c >>= f = Eff o (𝜆i→ c i >>= f )
Later p >>= f = Later (p >>= f )

Similarly to the Maybe monad, we will use Haskell’s do notation to make choice tree definitions

more readable.

We can use an algebraic Stuck effect to represent undefined or unsafe behaviour:

data Stuck a where
Stuck :: Stuck Void

where Void is the empty data type. We use the name Stuck since we can think of this effect as

representing a computation that is stuck. Using Stuck, we can form the type CTree Stuck a of

computations that may get stuck:

stuck :: CTree Stuck a
stuck = Eff Stuck elimVoid

where elimVoid :: Void → a is the eliminator for the empty type.

Like the Maybe monad, we can make CTree Stuck an instance of the MonadFail type class

fail :: String → CTree Stuck a
fail = stuck

We can now rewrite the evaluator from section 2 to use CTree Stuck instead of Maybe. In fact,

definition of eval itself remains syntactically exactly the same and only its type signature changes:

eval :: Expr → CTree Stuck Value
eval (Val v) = return v
eval (Add x y) = do N m← eval x ; N n← eval y ; return (N (m + n))
eval (If c x y) = do B b ← c ; if b then eval x else eval y

While the definition of eval remains unchanged, we now have a much richer semantic framework

that allows us to express effectful computations. Let’s extend the expression language with a simple

effect by including an operator that prints the value of an integer expression:

data Value = B Bool | N Int
data Expr = Val Value | Add Expr Expr | If Expr Expr Expr | Print Expr

The evaluator for this language needs access to both the Stuck and the PrintEff effect. To this

end, we define the coproduct of two effect types as follows:

data (e ⊎ f ) a = Inl (e a) | Inr (f a)
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Now v
⟨v⟩
=⇒ 𝑍𝑒𝑟𝑜

𝑝
𝑙

=⇒ 𝑝′

p ⊕ q
𝑙

=⇒ 𝑝′

𝑞
𝑙

=⇒ 𝑞′

p ⊕ q
𝑙

=⇒ 𝑞′

o :: e b c :: b→ CTree e a

Eff o c
↑𝑜
=⇒ c

c :: b→ CTree e a i :: b

𝑐
↓𝑖
=⇒ c i Later p

𝜏
=⇒ p

Fig. 2. Transition semantics for choice trees.

Using Data types à la carte [Swierstra 2008], we can define a type class ≺ that captures the fact

that an effect type is contained in another effect type, e.g. Stuck ≺ Stuck ⊎ PrintEff . In particular, ≺
provides an injection function:

inj :: e ≺ f ⇒ e a→ f a

This allows us to generalise the print and stuck effect, as well as the fail method of the MonadFail
instance:

stuck :: Stuck ≺ e⇒ CTree e a
stuck = Eff (inj Stuck) elimVoid

print :: PrintEff ≺ e⇒ Int → CTree e ()
print n = Eff (inj (PrintInt n)) Now
fail :: Stuck ≺ e⇒ String → CTree e a
fail = stuck

Finally, we can define the semantics of the extended expression language with print effect:

eval :: Expr → CTree (Stuck ⊎ PrintEff ) Value
eval (Val v) = return v
eval (Add x y) = do N m← eval x ; N n← eval y ; return (N (m + n))
eval (If c x y) = do B b ← c ; if b then eval x else eval y
eval (Print x) = do N n ← eval x ; print n ; return (N n)

To calculate a compiler for this extended expression language we need to generalise the ordering

⊥= from Maybe to choice trees. To this end, we first present the semantics of choice trees and the

resulting notion of bisimilarity.

3.2 Semantics
The semantics of choice trees is given by the labelled transition system proposed by Chappe et al.

[2023] and revised by Bahr and Hutton [2023]. A state in this labelled transition system consists

either of a choice tree p :: CTree e a or a continuation c :: b→ CTree e a that is waiting for some

external input of type b in response to an immediately preceding effect of type e b. The labels of
the labelled transition system take on one of four forms: a silent transition 𝜏 , a value v of type a, an
effect ↑ 𝑜 with o :: e b for some type b, or an input ↓ 𝑖 with i :: b for some type b. The definition of

the labelled transition system is shown in Figure 2.

As an example, we have a closer look at the labelled transition system of the choice tree

p :: CTree (Stuck ⊎ PrintEff ) Int
p = stuck ⊕ (print 1 >>= 𝜆() → return 2)
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which after unfolding the definitions of stuck, print, return, and >>= expands to

p = Eff (Inl Stuck) elimVoid ⊕ Eff (Inr (PrintInt 1)) (𝜆() → Now 2)
Because of the choice operator ⊕, p has two possible transition sequences: it can either get stuck,

𝑝
↑Inl Stuck
========⇒ elimVoid

or it can print 1, consume the resulting unit value (), and finally return 2:

𝑝
↑Inr (PrintInt 1)
=============⇒ 𝜆() → Now 2

↓()
=⇒ Now 2

⟨2⟩
=⇒ 𝑍𝑒𝑟𝑜

Since effect transitions ↑ 𝑜 and input transitions ↓ 𝑖 always occur in immediate succession, we

typically write them as a single transition labelled ↑ 𝑜 ↓ 𝑖 . For example, we write the above

transition sequence more compactly as

𝑝
↑Inr (PrintInt 1) ↓()
=================⇒ Now 2

⟨2⟩
=⇒ 𝑍𝑒𝑟𝑜

Both elimVoid ::Void → CTree (Stuck ⊎ PrintEff ) Int and 𝑍𝑒𝑟𝑜 ::CTree (Stuck ⊎ PrintEff ) Int are
terminal, i.e. there are no transitions of the elimVoid

𝑙
=⇒ p or 𝑍𝑒𝑟𝑜

𝑙
=⇒ p.

3.3 Bisimilarity
Because the semantics of choice trees CTree e a is defined using a labelled transition system, the

notion of bisimilarity � can be defined in the standard way. Concretely, � is the largest relation on

choice trees (and continuations) that satisfies the following two properties:

If 𝑝 � 𝑞 and 𝑝
𝑙

=⇒ 𝑝′, then there is some 𝑞′ with 𝑞
𝑙

=⇒ 𝑞′ and 𝑝′ � 𝑞′

If 𝑝 � 𝑞 and 𝑞
𝑙

=⇒ 𝑞′, then there is some 𝑝′ with 𝑝
𝑙

=⇒ 𝑝′ and 𝑝′ � 𝑞′

We have that the type of choice trees forms a monad modulo bisimilarity:

return x >>= f � f x
p >>= return � p

(p >>= f ) >>= g � p >>= 𝜆x → (f x >>= g)
Moreover, all operations on choice trees we consider in this article satisfy congruence laws with

respect to bisimilarity. For the monadic bind operator the congruence law is stated as follows:

𝑝 � 𝑞 f x � g x for all 𝑥

p >>= f � q >>= g

These laws will suffice for the simple language we are considering. For a more comprehensive

overview of the equational theory of choice trees, we refer the interested reader to Bahr and Hutton

[2023]. But as an illustration, we take a closer look at the following unit law for 𝑍𝑒𝑟𝑜 and ⊕:
𝑍𝑒𝑟𝑜 ⊕ p � p

When defining operational semantics using a small-step operational semantics it is customary to

consider stuck terms – i.e. terms without outgoing transitions – as unsafe. To prove that a language

is safe, one then usually proves progress and preservation properties, which imply that no stuck

term is not reachable. Even though 𝑍𝑒𝑟𝑜 is a ‘stuck’ choice tree in the sense that it has no outgoing

transitions, the above law shows that 𝑍𝑒𝑟𝑜 cannot be used to indicate unsafe behaviour in the

context of non-determinism. By contrast, we don’t have that stuck ⊕ p � p holds for all p.
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3.4 Compiler Calculation
We now aim to calculate a compiler comp :: Expr → Code→ Code that targets a stack machine

exec :: Code→ Stack → CTree (Stuck ⊎ PrintEff ) Stack
With the help of bisimilarity, we can state the compiler specification as follows:

do v ← eval e ; exec c (v : s) � exec (comp e c) s (4)

Similarly to our first specification (1) in section 2.1, this property is too strong as it requires the

compiler to produce for each expression code with the same behaviour – even if the expression is

ill-typed. We will therefore revise this specification in section 4. But before we do so, we try to

calculate a compiler with this overly strong specification.

We proceed by induction on e, and try to manipulate the left-hand side of the specification (4)

into the form exec c′ s. The case for e = Val v is straightforward as it is essentially the same as the

calculation in section 2. The case for e = Add x y starts as follows:

do v ← eval (Add x y) ; exec c (v : s)
= { definition of eval }
do v ← do {N m← eval x ; N n← eval y ; return (N (m + n)) } ; exec c (v : s)
� { left identity and associativity monad laws }

do N m← eval x ; N n← eval y ; exec c (N (m + n) : s)
= { define: exec (ADD c) (N n : N m : s) = exec c (N (m + n) : s) }
do N m← eval x ; N n← eval y ; exec (ADD c) (N n : N m : s)

Next we aim tomanipulate the term so that we can apply the induction hypothesis. In the calculation

in section 2 we used the ⊥= -Nothing law for that purpose. However, we don’t have a law of that

form at our disposal here. Instead, we can introduce a new equation for the virtual machine:

do N m← eval x ; N n← eval y ; exec (ADD c) (N n : N m : s)
= { define: exec (ADD c) (B : s) = stuck }

do N m← eval x ; v ← eval y ; exec (ADD c) (v : N m : s)
� { induction hypothesis for y }

do N m← eval x ; exec (comp y (ADD c)) (N m : s)
We are now in the same situation where we seek to manipulate the term so that we can apply the

induction hypothesis. Again we can achieve this by introducing a new equation for exec. But now
this requires the insertion of a new instruction:

do N m← eval x ; exec (comp y (ADD c)) (N m : s)
= { define: exec (ISN c) (B : s) = stuck; exec (ISN c) (N n : s) = exec c (N n : s) }
do v ← eval x ; exec (ISN (comp y (ADD c))) (v : s)
� { induction hypothesis for x }

exec (comp x (ISN (comp y (ADD c)))) s
This completes the calculation for the Add case. But the compiler now produces code with an

additional ISN instruction for each ADD instruction:

comp (Add x y) c = comp x (ISN (comp y (ADD c)))
This additional instruction is required to obtain the strong correctness property (4) in general. We

abort calculation here and instead seek to revise the specification.

In the next section, we introduce a weaker bisimilarity relation ⊥� that corresponds to the ⊥=
relation on Maybe and which satisfies a law corresponding to the ⊥= -Nothing law that we were
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sorely missing in the above calculation. While this weakens the compiler correctness property, we

still obtain the strong correctness property 4 for well-typed expressions e.

4 SKEW BISIMILARITY
Our goal is to weaken the bisimilarity relation � to account for unsafe behaviour in choice trees

with an effect signature 𝑒 containing Stuck. For notational convenience, we use the following

shorthand CTree⊥, which we refer to as the type of partial choice trees:

type CTree⊥ e a = CTree (Stuck ⊎ e) a

We say that a partial choice tree p ::CTree⊥ e a is locally safe if there is no transition 𝑝
↑Inl Stuck
========⇒ 𝑝′.

We then define skew bisimilarity, denoted ⊥� as the largest relation that satisfies the following:

(1) If 𝑝 ⊥� 𝑞, 𝑝 is locally safe, and 𝑝
𝑙

=⇒ 𝑝′, then there is some 𝑞
𝑙

=⇒ 𝑞′ with 𝑝′ ⊥� 𝑞′.

(2) If 𝑝 ⊥� 𝑞, 𝑝 is locally safe, and 𝑞
𝑙

=⇒ 𝑞′, then there is some 𝑝
𝑙

=⇒ 𝑝′ with 𝑝′ ⊥� 𝑞′.

That is, 𝑝 ⊥� 𝑞 vacuously holds if 𝑝 is not locally safe. In particular, this means that skew bisimilarity

satisfies the following additional law:

stuck ⊥� p for all 𝑝 (⊥� -stuck)

This corresponds to the ⊥= -Nothing law for the order ⊥= on the Maybe monad and like the

⊥= -Nothing law, the ⊥� -stuck law allows us to discard unsafe behaviour in compiler calculations.

Finally, to help us relate bisimilarity and skew bisimilarity, we define the notion of safe choice
trees: A partial choice tree 𝑝 is safe if no transition sequence starting from 𝑝 contains a transition

labelled ↑ Inl Stuck. More formally, we can define safety as the largest predicate on partial choice

trees (and continuations) with the following property:

(1) If p :: CTree⊥ e a is safe, then p is locally safe and any q with 𝑝
𝑙

=⇒ 𝑞 is safe.

(2) If c :: b→ CTree⊥ e a is safe, then c i is safe for all i :: b.
Bisimilarity � and skew bisimilarity ⊥� coincide if the left-hand side is safe:

Proposition 1. Let p, q :: CTree⊥ e a be two choice trees.
(1) If 𝑝 � 𝑞, then 𝑝 ⊥� 𝑞.
(2) If 𝑝 is safe and 𝑝 ⊥� 𝑞, then 𝑝 � 𝑞.

As a consequence, the equational laws of choice trees (see e.g. Bahr and Hutton [2023]) also

hold for skew bisimilarity. In addition, also all congruence laws hold for skew bisimilarity. Taken

together, this makes skew bisimilarity a suitable choice for calculating compilers.

4.1 Compiler Calculation
In this section, we use skew bisimilarity to calculate a compiler for the arithmetic language extended

with conditionals from section 3. Similarly to the aborted calculation in section 3, we aim to

calculate a compiler comp :: Expr → Code → Code for a stack machine exec :: Code → Stack →
CTree⊥ PrintEff Stack. However, how we weaken the compiler correctness specification by using

skew bisimilarity instead of full bisimilarity:

do v ← eval e ; exec c (v : s) ⊥� exec c′ s (5)

We can now proceed with the calculation of the compiler by proving the above inequality by

induction on the structure of e. In fact, the cases for e = Val v, e = Add x y, and e = If x y z
proceed in the same fashion as in section 2. Instead of the monad laws and the ⊥= -Nothing law

for the Maybe monad, the calculation uses the monad laws and the ⊥� -stuck law of choice trees,
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respectively. We only have to consider the remaining case for e = Print x, which follows in a similar

manner:

do v ← eval (Print x) ; exec c (v : s)
= { definition of eval }
do v ← do {N n← eval x ; print n ; return (N n) } ; exec c (v : s)
� { monad laws }

do N n← eval x ; print n ; exec c (N n : s)
= { define: exec (PRINT c) (N n : s) = do print n ; exec c (N n : s) }
do N n← eval x ; exec (PRINT c) (N n : s)
⊥� { ⊥� -stuck law }

do v ← eval x ; exec (PRINT c) (v : s)
� { induction for x }

exec (comp x (PRINT c)) s
Hence, we can read off the definition of compiler for this case as comp c (Print x) = comp x (PRINT c).
As before, we consider the top-level compiler compile :: Expr → Code, whose correctness is

captured by the following property:

do v ← eval e ; return (v : s) ⊥� exec (compile e) s (6)

The calculation proceeds in the same way as in section 2. The resulting complete definitions of

the compiler and virtual machine calculated in this fashion are shown in Figure 3.

The use of the partial correctness property (3) for the compiler calculation in section 2 was

merely a convenience, as the calculated compiler in fact satisfies the strict correctness property (1).

However, with the addition of effects, a partial correctness property using skew bisimilarity is

crucial to calculate a compiler that produces efficient code: Our compiler avoids having to insert

ISN instructions to check the type of values stored on the stack, which the compiler calculated in

section 3.4 had to do to satisfy the stricter specification.

To illustrate the difference between bisimilarity and skew bisimilarity, let’s consider the expres-

sion Add (Val (B True)) (Print (Val (N 1))). Its semantics produces the following transition:

eval (Add (Val (B True)) (Print (Val (N 1))))
↑Inl Stuck
========⇒ . . .

It gets stuck since it tries to add a Boolean with an integer. In particular, evaluation gets stuck

immediately before trying to evaluate the second argument.

The more efficient compiler calculated in this section transforms the above expression into

PUSH (B True) (PUSH (N 1) (PRINT (ADD HALT )))
for which we observe the following transitions:

exec (PUSH (B True) (PUSH (N 1) (PRINT (ADD HALT )))) [ ]
= exec (PUSH (N 1) (PRINT (ADD HALT ))) [B True ]
= exec (PRINT (ADD HALT )) [N 1, B True ]

↑Inr (PrintInt 1) ↓()
=================⇒ exec (ADD HALT ) [N 1, B True ]

↑Inl Stuck
========⇒ . . .

That is, while the original expression gets stuck immediately, the compiled code still evaluates the

second argument to Add and thus issues a print effect before getting stuck. Hence, for this example

expression the strict compiler correctness property 4 does not hold: the semantics of the source

expression is not bisimilar to the semantics of the compiled expression.
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Target language

data Code = PUSH Int Code | ADD Code | JPC Code Code | PRINT Code | HALT

Compiler

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp (If x y z) c = comp b (JPC (comp x c) (comp y c))
comp (Print x) c = comp x (PRINT c)

Virtual machine

type Stack = [Value ]
exec :: Code→ Stack → CTree⊥ PrintEff Stack
exec (PUSH v c) s = exec c (v : s)
exec (ADD c) (N n : N m : s) = exec c (N (m + n) : s)
exec (JPC c′ c) (B b : s) = if b then exec c′ s else exec c s
exec (PRINT c) (N n : s) = do print n ; exec c (N n : s)
exec HALT s = return s
exec = stuck

Fig. 3. Compiler and stack machine for the simple expression language extended with print.

By contrast the compiler from section 3.4 compiles the above expression into the code

PUSH (B True) (ISN (PUSH (N 1) (PRINT (ADD HALT ))))

for which we observe the following transitions:

exec (PUSH (B True) (ISN (PUSH (N 1) (PRINT (ADD HALT ))))) [ ]
= exec (ISN (PUSH (N 1) (PRINT (ADD HALT )))) [B True ]

↑Inl Stuck
========⇒ . . .

The additional ISN instruction ensures that the machine gets stuck before executing the code

PUSH (N 1) (PRINT (ADD HALT )) that would otherwise produce an observable effect.

4.2 Type safety
The compiler specification (5) only captures partial correctness. However, we can strengthen this

partial correctness property to the strict specification (4) if we restrict ourselves to well-typed
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𝑃 (𝑣)
return v is 𝑃-safe 𝑍𝑒𝑟𝑜 is 𝑃-safe

p and q are 𝑃-safe

p ⊕ q is 𝑃-safe

p is 𝑃-safe

Later p is 𝑃-safe
========================

f v is 𝑃-safe for all 𝑣

Eff (Inr e) f is 𝑃-safe

p is 𝑃-safe f v is 𝑄-safe for all v with 𝑃 (𝑣)
p >>= f is 𝑄-safe

Fig. 4. Proof rules for 𝑃-safety.

expressions. To this end, we consider a simple type system:

⊢v B b : Bool ⊢v N b : Nat

⊢v 𝑣 : 𝜏

⊢ Val v : 𝜏

⊢ 𝑒1 : Nat ⊢ 𝑒2 : Nat
Add e1 e2 : Nat

⊢ 𝑒1 : Bool ⊢ 𝑒2 : 𝜏 ⊢ 𝑒3 : 𝜏
If e1 e2 e3 : 𝜏

⊢ 𝑒 : Nat
Print e : Nat

Our goal is to invoke Proposition 1 to strengthen the compiler correctness property (5) to

do v ← eval e ; return (v : s) � exec (compile e) s if ⊢ 𝑒 : 𝜏 (7)

What remains to be shown is that the left-hand side of the above equation is a safe choice tree,

which in turn requires us to show that

eval e is safe for all ⊢ 𝑒 : 𝜏 (8)

To prove this by induction on e, we need to strengthen the property so that it additionally states

that eval e only produces values of type 𝜏 . To this end, we generalise the safety predicate to 𝑃-safety,
where 𝑃 is a predicate on the values of type a produced by a choice tree of type CTree e a. We

define 𝑃-safety is the largest predicate with the following property:

If p is 𝑃-safe, then p is locally safe, any q with 𝑝
𝑙

=⇒ 𝑞 is 𝑃-safe, and 𝑃 (𝑣) whenever 𝑝
⟨𝑣⟩
=⇒ 𝑞.

We thus strengthen (8) to the following:

eval e is 𝑃𝜏 -safe for all ⊢ 𝑒 : 𝜏,
where 𝑃𝜏 (𝑣) iff ⊢v 𝑣 : 𝜏

(9)

To prove this we may use the proof rules shown in Figure 4. The rule for Later is denoted with a

double line to indicate that it is a coinductive rule. The proof of (9) proceeds by a straightforward

induction on the derivation of ⊢ 𝑒 : 𝜏 . For example, in the case for ⊢ If c x y : 𝜏 , we have by

induction hypothesis that eval c is 𝑃Bool-safe. Hence, by the proof rule for >>=, it remains to be

shown that if b then eval y else eval z is 𝑃𝜏 safe for all 𝑏 :: 𝐵𝑜𝑜𝑙 . For that it suffices to show that

eval y and eval z are 𝑃𝜏 -safe, which follows from the induction hypothesis.

That means, we have the compiler correctness property (7).

4.3 Extensions
We demonstrated the compiler calculation technique based on skew bisimilarity for a very simple

source language. However, this technique applies also to more realistic languages. We will only

sketch some of these examples and refer the reader to the supplementary material that contains

Agda formalisations of all examples mentioned in this section.
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Non-termination. To reason about non-terminating languages, Bahr and Hutton [2022] use a

step-indexed version of bisimilarity, denoted �𝑖 , so that the calculation can proceed by induction

on both the structure of the source expression e and the step index i. This allows the calculation to

use the induction hypothesis under occurrences of Later since �𝑖 enjoys the following congruence

rule for Later

p �𝑗 q for all 𝑗 < 𝑖

Later p �𝑖 Later q

That is, whenever we want to prove step-indexed bisimilarity at 𝑖 , we only have to prove step-

indexed bisimilarity at all 𝑗 smaller than 𝑖 , for which we can then apply the induction hypothesis.

We can formulate skew bisimilarity also in a step-indexed version, denoted ⊥�𝑖 . While ⊥� is

defined coinductively, ⊥�𝑖 is defined inductively as the smallest relation such that 𝑝 ⊥�0 𝑞 holds,

and moreover 𝑝 ⊥�𝑖+1 𝑞 holds if the following two conditions hold (where 𝑗 = 𝑖 if 𝑙 = 𝜏 , and 𝑗 = 𝑖 +1
otherwise):

(1) If 𝑝
𝑙

=⇒ 𝑝′ then there is some 𝑞
𝑙

=⇒ 𝑞′ with 𝑝′ ⊥�𝑗 𝑞′

(2) If 𝑞
𝑙

=⇒ 𝑞′ then there is some 𝑝
𝑙

=⇒ 𝑝′ with 𝑝′ ⊥�𝑗 𝑞′

This step-indexed version of skew bisimilarity satisfies the same congruence laws as step-indexed

bisimilarity. In particular, we have the following congruence law for Later that allows us to reason

about non-terminating languages:

p ⊥�𝑗 q for all 𝑗 < 𝑖

Later p ⊥�𝑖 Later q

Concurrency. Choice trees can be used to give semantics to programming languages with con-

currency features [Chappe et al. 2023]. For example, Bahr and Hutton [2023] have used choice

trees to calculate compilers for concurrent languages including a concurrent call-by-value lambda

calculus. However, their calculation technique requires the construction of codensity choice trees,
which wraps choice trees inside the codensity monad [Voigtländer 2008]:

type CTreec e a = forall r . (a→ CTree e r) → CTree e r

As Bahr and Hutton [2023] show, the operations on choice trees – >>=, return, ⊕, etc. – can be lifted

to codensity choice trees. Likewise, the (step-indexed) bisimilarity relation can be lifted to codensity

choice trees by simply quantifying over all continuations:

𝑝 �𝑖 𝑞 iff p c �𝑖 q c for all 𝑐

The notion of (step-indexed) skew bisimilarity can be lifted in the same fashion:

𝑝 ⊥�𝑖 𝑞 iff p c ⊥�𝑖 q c for all 𝑐

We tested step-indexed skew bisimilarity, by calculating a compiler for the same concurrent lambda

calculus as Bahr and Hutton [2023] considered. By using step-indexed skew bisimilarity, we can

derive a more efficient compiler. Similar to the compiler we sketched in section 3.4, the compiler

calculated by Bahr and Hutton has to insert instructions similar to ISN whose only purpose is to

type check values at runtime to satisfy the overly strict correctness property. Our new calculation

avoids this inefficiency while still obtaining the full correctness property for well-typed terms.
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5 ORDERED SKEW BISIMILARITY FOR REGISTER MACHINES
The use of skew bisimilarity enables compiler calculations to gracefully deal with unsafe behaviours

in the source language semantics. In this section, we demonstrate that with a mild extension, skew

bisimilarity may also be used to enable a novel calculation technique for deriving compilers for

register machines instead of stack machines.

We expect an efficient compiler to produce code that simply overwrites unused registers. This

aspect of register machines complicates reasoning significantly. But a small trick, proposed by Bahr

and Hutton [2020], can simplify reasoning: The target machine’s memory is endowed with a partial

ordering ⊑ so that two memory instances𝑚 and𝑚′ are ordered𝑚′ ⊑𝑚 iff we can obtain𝑚′ from
𝑚 by freeing some registers. Importantly, such freeing of registers only happens at the meta level,

i.e. during the calculation, and thus no explicit freeing of registers is necessary during runtime.

However, freeing of registers may introduce unsafe behaviour, since we may have freed a register

that is read from later. That is why we need to be able to reason about unsafe behaviours even in

the context of languages with no such unsafe behaviours. So far, Bahr and Hutton’s calculation

technique for register machines has only been applied to pure languages and only partially to

non-terminating languages. By combining this technique with (codensity) choice trees and skew

bisimilarity we can extend it to a much wider range of languages.

5.1 Reasoning about Register Machines
We begin by recalling the abstract memory model of Bahr and Hutton [2020] rephrased slightly to

match our semantic framework. The memory model consists of an abstract type Reg of registers

and a type Mem a of memory instances with registers containing values of type a along with a set

of operations on them:

first :: Reg
next :: Reg → Reg

empty ::Mem a
set :: Reg → a→ Mem a→ Mem a
get :: Reg → Mem a→ CTree⊥ e a

Intuitively, first is the first register, and next produces a fresh register given an existing register. In

turn, empty produces an empty memory, set writes a value in the given register, and get reads the
value of a given register.

This abstract model comes with a set of laws that specify the semantics of the memory operations.

To formulate these laws, the model further contains the partial order ⊑ on Mem a and the binary

predicate freeFrom. As mentioned above,𝑚′ ⊑𝑚 means that we can obtain𝑚′ from𝑚 by freeing

some registers, whereas freeFrom r m means that register 𝑟 and all registers following 𝑟 are free in

the memory m.

freeFrom first empty (first-empty)

get r (set r v m) = return v (set-get)

freeFrom r m ⇒ m ⊑ set r v m (freeFrom-set)

freeFrom r m ⇒ freeFrom (next r) (set r v m) (freeFrom-next)

m ⊑ m′ ⇒ set r v m ⊑ set r v m′ (set-monotone)

m ⊑ m′ ⇒ get r m ⊥� get r m′ (get-monotone)
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Wedeviate slightly from the original presentation of thememorymodel of Bahr andHutton [2020].

In their presentation, get has type Reg → Mem a→ a since they use a non-total meta-language. By

contrast, the approach in this article is to use a total meta language and to reason explicitly about

partiality using choice trees instead. Consequently, also the set-get and get-monotone laws deviate

slightly from the original presentation. Our revised model can easily be shown to be consistent by

defining Reg = Int and Mem a = Reg → Maybe a.

5.2 Ordered Skew Bisimilarity
Let’s reconsider the expression language from section 3 whose semantics is given by eval :: Expr →
CTree⊥ PrintEff Value. Using the above memory model, our aim is to derive a compiler compile ::
Expr → Code along with a virtual machine of type exec :: Code→ Conf → CTree⊥ PrintEff Conf
that instead of a stack, operates on machine configurations of type Conf defined as follows:

type Conf = (Acc,Mem Value)
type Acc = Value

Configurations are pairs (a,m) consisting of a distinguished accumulation register a and a memory

m with further registers. To formulate the compiler correctness property we extend the partial

order ⊑ to machine configurations:

(a,m) ⊑ (a′,m′) ⇔ a = a′ ∧ m ⊑ m′

Bahr and Hutton [2020] only considered pure computations, i.e. the semantics is given by a

function of type eval :: Expr → Value and the machine of type exec :: Code → Conf → Conf . In
this simplified setting, the compiler correctness property can be phrased as follows:

(eval e, empty) ⊑ exec (compile e) (a, empty) (10)

The use of the ⊑ ordering means that we allow the right-hand side machine configuration to have

stored values in additional registers. In other, words the code produced by the compiler may use

free registers to store intermediate values without having to explicitly free them afterwards.

As Bahr and Hutton [2020] have demonstrated, this allows us to calculate a compiler targeting

a register machine. However, this approach is limited to terminating languages without any side

effects. While Bahr and Hutton also have applied this technique to non-terminating languages such

as the untyped lambda calculus, their compiler specification only captures completeness, i.e. all

behaviours of the source program are also exhibited by the target code, but not soundness, i.e. the

property that all behaviours of the target code are also exhibited by the original source program.

To combine this compiler calculation technique with choice trees, we need to generalise skew

bisimilarity relation ⊥� so that it also incorporates the order ⊑ on machine configurations. To

define such a relation on partial choice trees of type CTree⊥ e a, we assume an order ⊑ on a and
extend it to the set of labels in the labelled transition system. The ordering ⊑ on labels is the

least reflexive relation such that ⟨𝑣⟩ ⊑ ⟨𝑣 ′⟩ whenever 𝑣 ⊑ 𝑣 ′. Recall that ⟨𝑣⟩ is the transition label

produced by the choice tree return v. We then define the ordered skew bisimilarity relation, denoted

⊥≲ , as the largest relation that satisfies the following:

(1) If 𝑝 ⊥≲ 𝑞, 𝑝 is locally safe, and 𝑝
𝑙

=⇒ 𝑝′, then there is some 𝑞
𝑙 ′
=⇒ 𝑞′ with 𝑝′ ⊥≲ 𝑞′, and l ⊑ l′.

(2) If 𝑝 ⊥≲ 𝑞, 𝑝 is locally safe, and 𝑞
𝑙

=⇒ 𝑞′, then there is some 𝑝
𝑙 ′
=⇒ 𝑝′ with 𝑝′ ⊥≲ 𝑞′, and l′ ⊑ l.

Compared to skew bisimilarity, ordered skew bisimilarity does not require that labels of the form

⟨𝑣⟩ match on the nose, but instead a label ⟨𝑣⟩ on the left-hand side has to match with a label ⟨𝑣 ′⟩
on the right-hand side such that 𝑣 ⊑ 𝑣 ′ and vice versa. For example, return v ⊥≲ return v′ holds
whenever 𝑣 ⊑ 𝑣 ′. With the help of the ordered skew bisimilarity relation ⊥≲ we can now formulate
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the compiler correctness property for register machines within the semantic framework of choice

trees.

When reasoning with ordered skew bisimilarity, we have the same congruence laws at our dis-

posal as for skew bisimilarity. In addition, we have the following relation between skew bisimilarity

and ordered skew bisimilarity:

Proposition 2. Let p, q :: CTree⊥ e a be two partial choice trees.
(1) If 𝑝 ⊥� 𝑞, then 𝑝 ⊥≲ 𝑞.
(2) If 𝑥 ⊑ 𝑦 implies 𝑥 = 𝑦 for all x, y :: a, then 𝑝 ⊥≲ 𝑞 implies 𝑝 ⊥� 𝑞.

As a special case we obtain the following corollary, which states that, for safe choice trees,

ordered skew bisimilarity implies full bisimilarity as long as we disregard the final return value:

Corollary 3. Let p, q :: CTree⊥ e a and f :: a→ b such that 𝑥 ⊑ 𝑦 implies 𝑥 = 𝑦 for all x, y :: b.
If 𝑝 is safe and 𝑝 ⊥≲ 𝑞, then fmap f p � fmap f q.

Proof. By definition fmap f p = p>>=𝜆x → return (f x). By reflexivity, we have return (f x) ⊥≲
return (f x) for all x :: a and thus by the congruence law for >>= we have

fmap f p = p >>= f ⊥≲ q >>= f = fmap f q

Since the ordering on the type b is trivial, we obtain by Proposition 2 that fmap p ⊥� fmap f q. In
turn, since p and thus fmap f p is safe, we obtain by Proposition 1 fmap f p � fmap f q. □

Similar to compiler calculations based on skew bisimilarity, we can use this corollary to derive

the full correctness property for safe source programs.

5.3 Calculating a Register Machine Compiler
To demonstrate the calculation approach, we reconsider the expression language from section 3,

but without conditionals as these are not necessary here to illustrate the calculation technique:

data Expr = Val Int | Add Expr Expr | Print Expr
eval :: Expr → CTree⊥ PrintEff Int
eval (Val n) = return n
eval (Add x y) = do m← eval x ; n← eval y ; return (m + n)
eval (Print x) = do n← eval x ; print n ; return n

We have specified the semantics using partial choice trees, although the semantics never gets stuck,

i.e. we can prove that eval e is safe for all e :: Expr . We use the type CTree⊥ PrintEff Int instead of

just CTree PrintEff Int since (ordered) skew bisimilarity is only defined on partial choice trees.

We aim to calculate a compiler compile :: Expr → Code that targets a register machine exec ::
Code→ Config → CTree⊥ PrintEff Config where

type Conf = (Acc,Mem Int)
type Acc = Int

The compiler correctness property is essentially the same as specification (10) but is now formulated

using ordered skew bisimilarity:

do v ← eval e ; return (v, empty) ⊥≲ exec (compile e) (a, empty) (11)

In order to calculate the compiler, we follow the approach of Bahr and Hutton [2020] and generalise

its type to comp :: Expr → Reg → Code→ Code so that it takes two additional arguments: a code

continuation c similarly to stack machine compilers and a register r , which indicates the first register
that the compiler is at liberty to use. To accommodate this generalisation, the specification has to
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be generalised accordingly. In addition to the code continuation c, we generalise the specification
so that we may start with any memory m (not just the empty memory) as long as m is free from

the register r onwards:

freeFrom r m ⇒ do v ← eval e ; exec c (v,m) ⊥≲ exec (comp e r c) (a,m) (12)

The final crucial component of calculation technique of Bahr and Hutton [2020] is a side condi-

tion that requires the machine exec to be monotone with respect to the ordering ⊑ on machine

configuration. In our richer semantic framework of choice trees, this side condition reads as follows:

s ⊑ s′ ⇒ exec c s ⊥≲ exec c s′ (exec-mono)

Intuitively, the monotonicity property for exec means that the machine cannot observe whether a

reading a register has failed or not. This property holds by construction since the two operations on

memory configurations – set and get – are monotone. Calculations rely heavily on the exec-mono

property.

We now calculate the definition of comp from the specification (12) by structural induction on

e. That is, we may assume some memory 𝑚 and register 𝑟 with freeFrom r m and then aim to

manipulate the left-hand side of the inequality into a term of the form exec c′ (a,m), which can be

made to match the right-hand side of the inequality by defining comp e r c = c′ for that case of e.
The case for e = Val n is straightforward as it is very similar to the calculation for a stack

machine in section 3:

do v ← eval (Val n) ; exec c (v,m)
= { definition of eval }
do v ← return n ; exec c (v,m)
� { monad laws }

exec c (n,m)
= { define: exec (LOAD n c) (a,m) = exec c (n,m) }
exec (LOAD x c) (a,m)

In the last step, similarly to the calculation for a stack machine, we aim to arrive at a term of the

form exec c′ (a,m). That is, we must solve the inequality

exec c′ (a,m) ≳⊥ exec c (n,m)
which we achieve by first strengthening it to an equation

exec c′ (a,m) = exec c (n,m)
and then solving the equation by instantiating c′ with LOAD n c so that we can take the equation

as a clause of the definition of exec.
We proceed with the case for e = Add x y, which starts with the typical steps of first applying

the definition of eval followed by applying the monad laws:

do v ← eval (Add x y) ; exec c (v,m)
= { definition of eval }
do v ← do {n1 ← eval x ; n2 ← eval y ; return (n1 + n2) } ; exec c (v,m)
� { monad laws }

do n1 ← eval x ; n2 ← eval y ; exec c (n1 + n2,m)
We now aim to manipulate this term so that we may apply the induction hypothesis. That is, we

must obtain a subterm of the form

do n2 ← eval y ; exec c′ (n2,m′)
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Given the term we currently have, this means that we must solve the inequality

do n2 ← eval y ; exec c (n1 + n2,m) ⊥≲ do n2 ← eval y ; exec c′ (n2,m′)
Recall that in the calculation for stack machines, solving this kind of inequality was achieved by

introducing an instruction that that expects the two operands 𝑛1 and 𝑛2 to appear on the top of the

stack and replaces them with their sum 𝑛1 + 𝑛2. The same idea works here as well, but instead of

using the stack, we must manipulate the memory𝑚. In our target term on the right-hand side, 𝑛2
is already in the accumulation register. It thus remains to pick a suitable𝑚′ which contains the

other operand 𝑛1. We can achieve this by setting𝑚′ = set r n1 m. The memory laws allow us to

make this transformation since we know that freeFrom r m holds:

do n2 ← eval y ; exec c (n1 + n2,m)
⊥≲ { exec-mono and freeFrom-set }
do n2 ← eval y ; exec c (n1 + n2, set r n1 m)

To obtain our desired subterm to apply the induction hypothesis, it thus remains to solve the

inequality:

exec c (n1 + n2, set r n1 m) ⊥≲ exec c′ (n2,m′)
This can be achieved by strengthening this inequality to an equation

exec c (n1 + n2, set r n1 m) = exec c′ (n2,m′)
and then solving this equation by instantiating m′ = set r n1 m and c′ = ADD r c:

exec (ADD r c) (n2, set r n1 m) = exec c (n1 + n2, set r n1 m)
We cannot yet take this equation as a clause for the definition of exec. To achieve that we, first

rewrite the right-hand side into an equivalent form by appealing to the set-get law and the monad

laws:

exec (ADD r c) (n2, set r n1 m) = do n1 ← get (set r n1 m) r ; exec c (n1 + n2, set r n1 m)
Finally, we can read this as a definition by generalising set r n1 m to any memory m′:

exec (ADD r c) (n2,m′) = do n1 ← get m′ r ; exec c (n1 + n2,m′)
Using these ideas, we resume our calculation by first manipulating the memory, then introducing

the new instruction, and finally applying the induction hypothesis:

do n1 ← eval x ; n2 ← eval y ; exec c (n1 + n2,m)
⊥≲ { exec-mono and freeFrom-set }
do n1 ← eval x ; n2 ← eval y ; exec c (n1 + n2, set r n1 m)
= { set-get & monad laws; define: exec (ADD r c) (a,m) = do b← get m r ; exec c (b + a,m) }
do n1 ← eval x ; n2 ← eval y ; exec (ADD r c) (n2, set r n1 m)
⊥≲ { induction hypothesis for y and next r ; freeFrom-next law }

do n1 ← eval x ; exec (comp y (next r) (ADD r c)) (n1, set r n1 m)
In the last step, we cannot apply the induction hypothesis for the register 𝑟 since this register is no

longer free, i.e. freeFrom r (set r a m) does not hold. Instead, we can apply the induction hypothesis

to the next register next r since freeFrom (next r) (set r a m) according to the freeFrom-next law.
After clearing this hurdle, the calculation continues to the final goal in straightforward fashion:

do n1 ← eval x ; exec (comp y (next r) (ADD r c)) (n1, set r n1 m)
= { define: exec (STORE r c) (a,m) = exec c (a, set r a m) }
do n1 ← eval x ; exec (STORE r (comp y (next r) (ADD r c))) (n1,m)
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⊥≲ { induction hypothesis for x and r }
exec (comp x r (STORE r (comp y (next r) (ADD r c)))) (a,m)
Finally, we conclude the compiler calculation with the case for e = Print x. We first apply the

definition of eval and the monad laws. Then, our goal is to manipulate the term so that the induction

hypothesis applies. Solving the corresponding inequality is easily achieved simply by introducing

an instruction:

do v ← eval (Print x) ; exec c (v,m)
= { definition of eval }
do v ← do {n← eval x ; print n ; return n} ; exec c (v,m)
� { monad laws }

do n← eval x ; print n ; exec c (n,m)
= { define: exec (PRINT c) (n,m) = do print n ; exec c (n,m) }
do n← eval x ; exec (PRINT c) (n,m)
⊥≲ { induction hypothesis for x and r }
exec (comp x r (PRINT c)) (a,m)
This concludes the calculation of comp and exec. The top-level compiler compile can then be

calculated using specification (11):

do v ← eval e ; return (v, empty)
= { define: exec HALT s = return s }
do v ← eval e ; exec HALT (v, empty)
⊥≲ { specification (12) & first-empty }

exec (comp e first HALT ) (v, empty)
We can thus read off the definition compile e = comp e first HALT . The complete definitions of the

compiler and register machine we have calculated in this section are shown in Figure 5.

Finally, using the fact that eval e is safe for all e :: Expr , we can apply Corollary 3 to the partial

correctness property we just calculated so that we can obtain the full correctness property:

eval e � do (a,m) ← exec (compile e) (0, empty) ; return a

That is evaluating the expression e is the same as first compiling e, then running the resulting code

on the register machine starting with an empty memory and finally returning the value of the

accumulation register.

To derive this property, we start with the compiler specification (11) we have just proved:

do v ← eval e ; return (v, empty) ⊥≲ exec (compile e) (0, empty)
Since the left-hand side of the above inequality is a safe choice tree, we can apply Corollary 3 to

obtain

fmap fst (do v ← eval e ; return (v, empty)) � fmap fst (exec (compile e) (0, empty))
We can then apply the monad laws to simplify this to

eval e � do (a,m) ← exec (compile e) (0, empty) ; return a

We have demonstrated the calculation technique on a minimal example: a simple expression

language with a single algebraic effect. But the technique scales to more realistic source languages

as well. The extensions illustrated in section 4.3 also apply to ordered skew bisimilarity, which

allows us to calculate register machine compilers for source languages featuring non-termination

and concurrency. Among other examples, we have calculated a register machine compiler for a
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Target language

data Code = LOAD Int Code | STORE Reg Code | ADD Reg Code | PRINT Code

Compiler

compile :: Expr → Reg → Code
compile e r = comp e r HALT

comp :: Expr → Reg → Code→ Code
comp (Val n) r c = LOAD n c
comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))
comp (Print x) r c = comp x r (PRINT c)

Virtual machine

type Conf = (Acc,Mem Int)
type Acc = Int

exec :: Code→ Conf → CTree⊥ PrintEff Conf
exec (LOAD n c) (a,m) = exec c (n,m)
exec (STORE r c) (a,m) = exec c (a, set r a m)
exec (ADD r c) (a,m) = do b← get m r ; exec c (b + a,m)
exec (PRINT c) (a,m) = do print a ; exec c (a,m)
exec HALT s = return s

Fig. 5. Compiler and register machine for the simple expression language extended with print.

lambda calculus with algebraic effects and concurrency. The formalisation of these calculations can

be found in the supplementary material.

6 RELATEDWORK
6.1 Partial bisimilarity
Skew bisimilarity may be considered a further weakening of the notion of partial bisimilarity,
first introduced by Rutten [2000] in the context of controllability. Skew bisimilarity deems certain

transition labels as safe and weakens bisimilarity for all unsafe transition labels. In this article we

considered the case where only ↑ Inl Stuck is considered unsafe, but this restriction is not necessary.

Indeed, the Agda formalisation in the supplementary material is parametrised by the set of labels

that is considered unsafe. This simplifies the formalisation, since it means that bisimilarity is just a

special case of skew bisimilarity where the set of unsafe transition labels is empty.

Partial bisimilarity, denoted 𝑈∼, is parametrised by a set 𝑈 of uncontrollable transition labels

that play a similar role to safe transition labels for skew bisimilarity. Partial bisimilarity is defined
1

as the largest relation such that if 𝑠 𝑈∼ 𝑡 then

(1) 𝑙 ∈ 𝑈 and 𝑠
𝑙

=⇒ 𝑠′ implies 𝑡
𝑙

=⇒ 𝑡 ′ and 𝑠′ 𝑈∼ 𝑡 ′, and
(2) 𝑡

𝑙
=⇒ 𝑡 ′ implies 𝑠

𝑙
=⇒ 𝑠′ and 𝑠′ 𝑈∼ 𝑡 ′.

1
To compare it with skew bisimilarity more easily, the definition given here is in fact the inverse of the partial bisimilarity

relation ∼𝑈 found in the literature [Rutten 2000].
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However, this notion of partiality is not suitable for our purposes. If we instantiate 𝑈 = {𝑙 |
𝑙 ≠↑ Inl Stuck}, we don’t have the desired law stuck 𝑈∼ 𝑝 which we do have for skew bisimilarity.

Instead, we only obtain stuck⊕p 𝑈∼ 𝑝 . That is, we may disregard unsafe behaviours on the left-hand

side, but we must still account for any other behaviours.

6.2 Compiler calculation
Wand [1982] pioneered the idea of deriving compilers from their specification. The central underly-

ing techniques of Wand’s approach are the use of a definitional interpreter, which is formulated

using continuation-passing style, and defunctionalisation to produce the code for the target lan-

guage. All of these component techniques have been in turn introduced by Reynolds [1972] a

decade earlier and have proved essential also in later correct-by-construction compiler derivation

techniques proposed by Meijer [1992], Ager et al. [2003], and Bahr and Hutton [2015].

6.3 Partial specification
As mentioned in section 2.1, partial specifications of compiler correctness have long been adopted

by compiler verification projects [Leroy 2009]. However, we are not aware of a compiler calculation

technique that employs partial specifications.

An alternative approach to the use of partial specifications is to rule out unsafe source language

programs altogether. As Pickard and Hutton [2021] have demonstrated, by defining the syntax and

semantics of the source language in a dependently typed meta language – so-called intrinsic typing
– we can encode the source language’s type system so that the specification and the calculation

only has to deal with safe behaviours. Unsafe programs are simply not expressible, and we thus do

not even have to consider them in the definition of eval. However, so far this has only been applied

to simple languages without any side effects. Moreover, encoding the type system in the meta

language can be tricky and coming up with a corresponding type system for the target language

can be even more difficult as we need to anticipate how the target machine is going to work.

The use of skew bisimilarity circumvents these shortcomings entirely, allowing us to calculate

compilers for complex languages with sophisticated type systems. To put this claim to the test, we

have calculated a compiler for Simply RaTT [Bahr et al. 2019], a higher-order functional reactive

programming language that features modal type operators and a Fitch-style type system [Clouston

2018]. Calculating a compiler for such a language using the dependently typed approach of Pickard

and Hutton [2021] would be unfeasible: The proof of type soundness for this language, i.e. that

well-typed programs only exhibit safe behaviours, requires a complex logical relations argument

that is incompatible with an intrinsic typing approach. Likewise, devising a corresponding type

system for the target language is a research question in its own right.

7 CONCLUSION AND FURTHERWORK
With skew bisimilarity, we have introduced a weaker form of bisimilarity that can simplify reasoning

about unsafe source languages and allows us to derive compilers that can producemore efficient code.

In addition, it enables a novel calculation technique to derive compilers for register machines. This

constitutes a further step towards making calculation methods applicable to realistic programming

languages and target machines. However, an important aspect of realistic compilers that is still

missing in the compiler calculation literature is multi-stage compilers. Ongoing work on modular

reasoning techniques for choice trees [Chappe et al. 2023] may provide the semantic foundation

that enables calculation technique for closing that gap.
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