
1

Monadic Compiler Calculation
PATRICK BAHR, IT University of Copenhagen, Denmark

GRAHAM HUTTON, University of Nottingham, UK

Bahr and Hutton recently developed a new approach to calculating correct compilers directly from specifi-

cations of their correctness. However, the methodology only considers converging behaviour of the source

language, which means that the compiler could potentially produce arbitrary, erroneous code for source

programs that diverge. In this article, we show how the methodology can naturally be extended to support

the calculation of compilers that address both convergent and divergent behaviour simultaneously, without
the need for separate reasoning for each aspect. Our approach is based on the use of the partiality monad to

make divergence explicit, together with the use of strong bisimilarity to support equational-style calculations,

but also generalises to other forms of effect by changing the underlying monad.

1 INTRODUCTION
The aim of program calculation is to derive correct-by-construction programs from specifications

of their desired behaviour [Backhouse 2003]. For example, program calculation techniques can

be used to derive compilers from specifications of their correctness. This approach allows us to

systematically discover compilation techniques, while at the same time obtaining proofs that they
are correct. The starting point is a semantics for the compiler’s source and target languages, along

with a formal statement that the as-yet undefined compiler preserves the semantics of programs. We

then proceed to prove the correctness property by calculation, in the process of which the definition

of the compiler is discovered case by case. In addition, the target language and its semantics may

also be undefined, and then derived by calculation at the same time.

With existing compiler calculation techniques [Ager et al. 2003; Bahr and Hutton 2015; Meijer

1992; Reynolds 1972; Sestoft 1997; Wand 1982], the semantics of the source language is given

by an inductive big-step semantics, or a (structurally) recursive definitional interpreter. As such,

the semantics do not capture non-terminating behaviour, and calculation is limited to inductive

reasoning principles that cannot account for non-termination. Hence, these techniques are unsound

for non-total languages. In particular, if a source program diverges, then the compiler correctness

specification makes no guarantees about the behaviour of the resulting target program.

In compiler verification, reasoning about divergence is a long-solved problem: big-step semantics

may be defined coinductively [Leroy 2006a], and definitional interpreters may be defined by general

recursion using the partiality monad [Capretta 2005; Danielsson 2012]. Unfortunately, the reasoning

principles used in these settings are incompatible with compiler calculation, because they are based

on weak (bi)similarity. Informally, two computations are weakly bisimilar iff they have the same

behaviour modulo logical (silent) computation steps. In the case of compiler correctness, we seek to

establish a weak bisimilarity between the semantics of the source program and the semantics of the

compiled program. In this setting, logical steps should be ignored as they are mere artefacts of the

way in which the semantics are formulated, and in general we cannot expect that the source and

target semantics align in the way they use such steps. However, it is well-known that one cannot

combine equational-style proofs of weak bisimilarity with a coinduction reasoning principle; for

example, see [Danielsson 2012] and our discussion in section 2.

Instead of weak bisimilarity, we propose using strong bisimilarity as the underlying reasoning

principle for compiler calculation. While unsuitable for compiler verification, strong bisimilarity

fits the calculational approach as it supports equational-style coinduction proofs. Conversely,

calculation eliminates the otherwise fatal drawback of strong bisimilarity: because the semantics

Authors’ addresses: Patrick Bahr, IT University of Copenhagen, Denmark; Graham Hutton, University of Nottingham, UK.

1:2 Patrick Bahr and Graham Hutton

of the target language can also be derived, the correct number of logical steps can be inserted in

the target semantics so that it aligns with the source semantics. Moreover, as with the rest of the

derived components, where to add these steps naturally falls out of the calculation process.

In this article, we extend the compiler calculation techniques of Bahr and Hutton [2015] to

use strong bisimilarity, by defining the semantics of source and target language in terms of the

partiality monad in a similar manner to Danielsson [2012]. Crucially, however, we use a reasoning

principle based on strong rather than weak bisimilarity, which allows us to derive compilers directly

from their specifications, as opposed to verifying existing compilers. In addition, we argue that

the resulting calculations are simpler than the typical coinduction proofs used in verifications. In

particular, our calculations inherit the simplicity of previous compiler calculation methods, as we

can reason about non-termination using equational monadic laws.

We demonstrate our new compiler calculation technique on three examples. First of all, we use a

minimal language with a looping primitive to illustrate the shortcomings of previous techniques,

and how these can be remedied using the partiality monad and strong bisimilarity (section 2).

Secondly, to demonstrate that the methodology scales to more realistic languages, we apply it to a

call-by-value version of the lambda calculus (section 3). To the best of our knowledge, this is the first

calculation of a compiler for the untyped lambda calculus that establishes full correctness, i.e. taking

account of both convergent and divergent behaviour. Finally, we show that the methodology can be

applied to effects other than divergence by replacing the partiality monad with a different monad.

To this end, we calculate a compiler for a language with exceptions and interrupts (section 4), which

uses a non-determinism monad to take account of the fact that programs in this language may

have more than one possible result value. The aim of these examples is not to develop verified

real-world compilers, but rather to demonstrate the utility of our methodology for deriving sound

compilation techniques in the presence of non-termination and other effects.

The article is aimed at readers with some basic experience of formal semantics and reasoning,

but we do not require previous knowledge of compiler calculation. We use Haskell notation as our

meta-language for accessibility, but assume that the language is total. Whereas in many articles

calculations are often omitted or compressed for brevity, here they are the central focus, so are

generally presented in detail. All the calculations have been mechanically checked in Agda, and

the source code for these calculations, together with a number of additional compiler calculations,

are available as supplementary material.

2 A SIMPLE NON-TOTAL LANGUAGE
To introduce our new methodology, in this section we consider a minimal source language that

comprises arithmetic expressions that are built up from integer values using an addition operator,

extended with a primitive that simply loops forever without producing any result value:

data Expr = Val Int | Add Expr Expr | Loop

We begin by reviewing the compiler calculation approach of [Bahr and Hutton 2015], then identify

its shortcoming for non-total languages, and afterwards gradually refine the compiler specification

into its final form (Theorem 2.1) suitable for calculating a compiler for the above language.

2.1 Inductive specification
The semantics for expressions can naturally be captured by a definitional interpreter [Reynolds

1972] that evaluates an expression to an integer value. Importantly, the semantics is not total

because it may enter an infinite loop and hence never produce a result value; for this initial version

of the semantics we allow ourselves to use the standard, non-total version of Haskell:

Monadic Compiler Calculation 1:3

eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
eval Loop = eval Loop

Our goal now is to calculate a compiler comp :: Expr → Code that translates an expression into

code for our (as of yet unspecified) target language. We assume that the compiler targets a stack-

based machine, whose semantics is given by a function exec :: Code → Stack → Stack, where
type Stack = [Int] is the stack type for the machine. The definitions for Code and exec are not
given up front, but rather will fall naturally out of the calculation of the compiler. Because exec
defines the semantics of a virtual machine, we expect it to be a tail-recursive function.

Prior to specifying the desired behaviour of the compiler, we generalise the function comp to take
additional code to be executed after the compiled code. The addition of such a code continuation is

a key aspect of the underlying methodology and significantly simplifies the resulting calculations.

Moreover, the use of code continuations makes explicit that code can be composed sequentially

but is not necessarily linear. Using this idea, our goal now is to establish the following compiler

correctness property for the generalised compilation function comp :: Expr → Code→ Code:

exec c (eval e : s) = exec (comp e c) s

That is, compiling an expression and then executing the resulting code together with additional

code gives the same result as executing the additional code with the value of the expression on top

of the stack. The proof of the compiler correctness property proceeds by induction on the structure

of the source expression e. For each case of e, we start on the left-hand side of the equation, i.e. the

term exec c (eval e : s), and seek to transform it by equational reasoning into a term of the form

exec c′ s for some code c′. We then define comp e c = c′, which gives us a definition of the compiler

in this case that satisfies the correctness property above.

For example, in the case for Val n we first apply the definition of the evaluation function:

exec c (eval (Val n) : s)
= { definition of eval }
exec c (n : s)

Then, to complete the calculation, we need to arrive at a term of the form exec c′ s. That is, we
have to find some code c′ that solves the following equation:

exec c′ s = exec c (n : s)

Note that can cannot simply use this equation as a defining clause for exec, as n and c would be

unbound in the body of the definition. The solution is to package these two variables up in the

code argument c′, which can freely be instantiated as it is existentially quantified, whereas all the

other variables in the equation are universally quantified. This can be achieved by adding a new

constructor to the Code datatype that takes n and c as arguments,

PUSH :: Int → Code→ Code

and defining a new clause for the function exec as follows:

exec (PUSH n c) s = exec c (n : s)

That is, the code PUSH n c is executed by pushing the integer n onto the top of the stack and then

executing the remaining code c, which motivates the name for the new code constructor. This

definition solves the above equation, and allows us to conclude the calculation:

1:4 Patrick Bahr and Graham Hutton

exec c (n : s)
= { definition of exec }
exec (PUSH n c) s

In summary, we have discovered initial cases for both the stack machine and the compiler:

data Code = PUSH Int Code

exec :: Code→ Stack → Stack
exec (PUSH n c) s = exec c (n : s)
comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c

The calculations for the remaining two cases, Add x y and Loop, should complete these definitions

and the compiler correctness proof. The case for addition does not present any problems. However,

for Loop, applying the evaluation function brings us straight back to the same term:

exec c (eval Loop : s)
= { definition of eval }
exec c (eval Loop : s)

During such a calculation we aim to simplify the source expression in order to then apply an

induction hypothesis. However, we cannot apply an induction hypothesis here, because Loop is not

smaller than the expression we started out with, namely Loop itself. Fundamentally, the problem is

that the evaluation function eval is not compositional, i.e. structurally recursive, because in the

case for Loop we make a recursive call on precisely the same expression.

Bahr and Hutton [2015] addressed this problem by rephrasing the non-compositional evaluation

function as a big-step operational semantics 𝑒 ⇓ 𝑣 , and then performing induction on the structure

of the operational semantics, rather than on the structure of the source language. In turn, the

compiler correctness property is rephrased as follows:

𝑒 ⇓ 𝑣 ⇒ exec c (v : s) = exec (comp e c) s

However, due to the evaluation pre-condition, this property now only captures converging behaviour
of the source language. In particular, it makes no stipulations about how the compiled code should

behave if the source expression diverges, i.e. doesn’t terminate. As such, the code produced by the

compiler for the non-terminating expression Loop could be entirely arbitrary.

2.2 Coinductive specification
Rather than defining the semantics of the source language inductively, we can use a coinductive

definition to capture both the convergent and divergent behaviour. To this end we will follow

Danielsson’s [2012] approach and use Capretta’s partiality monad [2005]:

codata Partial a = Now a | Later (Partial a)

Here we write codata to indicate that the type is coinductively defined, i.e. defined as a greatest

fixed point. The idea is that Now returns a value immediately, while Later postpones a computation

by one time step. The partiality type forms a monad, with the operations defined as follows:

return :: a→ Partial a
return x = Now x

(>>=) :: Partial a→ (a→ Partial b) → Partial b

Monadic Compiler Calculation 1:5

Now x >>= f = f x
Later p >>= f = Later (p >>= f)

We’ll consider the monad laws later in this section once we have defined a suitable notion of

bisimilarity. In addition, we can define a computation that never terminates:

never :: Partial a
never = Later never

We can now rewrite our semantics as a coinductively defined function of type Expr → Partial Int.
We ensure that the definition is productive by making every recursive call either structurally

recursive, as in the case for addition, or guarding it with a Later , as in the case for loop:

eval :: Expr → Partial Int
eval (Val n) = return n
eval (Add x y) = do m← eval x

n← eval y
return (m + n)

eval Loop = Later (eval Loop)

Compared to the previous interpreter, our coinductive version of eval is total at the level of the
meta-language. That is, instead of relying on a non-total meta language, we have captured the

divergent behaviour explicitly using the partiality monad. As such, we can formally reason about

non-termination and thus prove that non-termination is preserved by the compiler. On a practical

level, this also means that we can use the definition above in a total language such as Agda.

Since our goal is to calculate a compiler that preserves all behaviours of the source language,

including non-termination, we also need that the target machine can diverge:

exec :: Code→ Stack → Partial Stack

Adapting the compiler correctness property to account for the use of the partiality monad in both

the source and target languages only requires a minor notational change:

do v ← eval e

exec c (v : s) = exec (comp e c) s

Note that both sides of the equality are terms of type Partial Stack, a coinductively defined type.

Depending on the nature of the meta language, simple equality may be too strict, i.e. the reasoning

principles afforded by the notion of equality might be too weak to actually prove this property.

Instead, we need a notion of bisimilarity [Park 1981] that supports a coinductive reasoning principle

and a calculation-style proof, i.e. equalities that can be chained together by transitivity. In the next

section we explore what a suitable notion of bisimilarity should look like.

2.3 Bisimilarity
In the literature on compiler verification (see section 5), one typically finds a form of weak bisimi-

larity. Intuitively, this notion expresses that one term converges iff another term converges, but it

does not matter how many steps they take to converge, i.e. how many times we encounter a Later .
To formally define this notion of weak bisimilarity, we first define when a computation p :: Partial a
converges to a value v :: a by an inductively defined relation 𝑝 ⇓ 𝑣 :

Now v ⇓ v
p ⇓ v

Later p ⇓ v

1:6 Patrick Bahr and Graham Hutton

That is, Now v immediately converges to v, while Later p converges to a value if p converges to

this value. Given two computations p, q :: Partial a we say that p and q are weakly bisimilar, written

as p ≈ q, if they coincide in terms of their convergence behaviours:

𝑝 ⇓ 𝑣 iff 𝑞 ⇓ 𝑣 for all 𝑣

The notion if weak bisimilarity abstracts away from how many steps are required. This makes it

suitable for use with our compiler correctness property, because executing the compiled code for

an expression may take a different number of steps to evaluating the expression:

do v ← eval e

exec c (v : s) ≈ exec (comp e c) s

Unfortunately, weak bisimilarity does not have a coinductive reasoning principle that is compat-

ible with a calculational style. In particular, calculation relies on the use of transitivity to chain

together successive reasoning steps. If we assumed such a coinductive reasoning principle, we

could prove p ≈ q for any p, q : Partial a by the following coinductive argument:

p
≈ { p and Later p only differ in the number of steps }

Later p
≈ { coinductive hypothesis p ≈ q, guarded by Later }
Later q
≈ { q and Later q only differ in the number of steps }

q

To avoid this problem, we will use the stricter notion of strong bisimilarity, or just bisimilarity for

short. To this end, we first define a step-indexed version of the convergence relation, which counts

the number of steps, i.e. uses of Later , that are required:

Now v ⇓𝑖 v
p ⇓𝑖 v

Later p ⇓𝑖+1 v
We can think of ⇓𝑖 as capturing the idea of convergence using 𝑖 units of ‘fuel’; the base case for

Now v uses an arbitrary index i rather than zero because we don’t need to use all the fuel that

is provided. Given two computations p, q :: Partial a we say that p and q are bisimilar, written as

p � q, if they coincide in terms of their step-counting convergence behaviours:

𝑝 ⇓𝑖 𝑣 iff 𝑞 ⇓𝑖 𝑣 for all v and i

2.4 Compiler correctness
Using the above notion of bisimilarity, we can now formulate the final version of the compiler

correctness property for our simple language of expressions:

Theorem 2.1 (compiler correctness).

do v ← eval e

exec c (v : s) � exec (comp e c) s

This property is much stricter than the version using weak bisimilarity. In general this is a problem,

as we expect compiled code to take a different number of steps to execute compared to the evaluation

of the original source expression. However, these ‘steps’ are not actual computation steps, but

rather ‘logical steps’, in the form of uses of Later that have been inserted to ensure a well-defined

evaluation function eval. Together with the fact that exec is not given up-front but is instead

Monadic Compiler Calculation 1:7

calculated, this leaves us the freedom to define exec so that it takes just the right number of logical

steps. Moreover, as we will see, where to place these logical steps will fall out of the calculation

process, in the same way that the rest of the definition of the exec function.
The benefit that bisimilarity gives us over weak bisimilarity is a coinductive reasoning principle

that is compatible with transitive reasoning. To this end, we define a notion of step-indexed

bisimilarity. Given two computations p, q :: Partial a and a natural number i, we say that p and q
are 𝑖-bisimilar, written as p �𝑖 q, if the following condition holds:

𝑝 ⇓𝑗 𝑣 iff 𝑞 ⇓𝑗 𝑣 for all 𝑣 and 𝑗 < 𝑖

The relation �𝑖 is explicitly defined to be downwards closed, i.e. 𝑝 �𝑖 𝑞 implies 𝑝 �𝑗 𝑞 for all 𝑗 ≤ 𝑖 .

This property is crucial to ensure that �𝑖 is a congruence for the monadic bind operator. Moreover,

using this definition, we have p � q iff p �𝑖 q for all step counts 𝑖 . Hence, our compiler correctness

theorem can be established by proving the following by induction on both 𝑖 and 𝑒:

do v ← eval e

exec c (v : s) �𝑖 exec (comp e c) s (1)

During such a proof, we can assume that for all step counts 𝑗 < 𝑖 , we have:

do v ← eval e′

exec c′ (v : s′) �𝑗 exec (comp e′ c′) s′

This inductive hypothesis can then be used by applying the following proof rule:

p �𝑗 q for all 𝑗 < 𝑖

Later p �𝑖 Later q (2)

Because we perform induction on the expression at the same time, we can also assume the following

induction hypothesis for all expressions 𝑒′ that are structurally smaller than 𝑒:

do v ← eval e′

exec c′ (v : s′) �𝑖 exec (comp e′ c′) s′

In addition, we will use the fact that Partial satisfies the monad laws up to bisimilarity (technically,

they are monads in a category in which equality is quotiented by bisimilarity) and therefore the

monadic laws also hold for our notion of 𝑖-bisimilarity:

return x >>= f � f x

mx >>= return � mx

(mx >>= f) >>= g � mx >>= (𝜆x → (f x >>= g))

2.5 Compiler calculation
We prove property (1) by induction on the step count 𝑖 and expression 𝑒 , from which compiler

correctness (Theorem 2.1) follows immediately. For each case of e, we start on the left-hand side of

the property and seek to transform it into the form exec c′ s for some code c′. We can then define

comp e c = c′ to give us the definition of the compiler in this case. During the calculation for each

case, we also discover a new clause for the definition of the virtual machine exec, driven by the

desire to transform the term being manipulated into the required form.

The cases for values and addition proceed in the same manner as [Bahr and Hutton 2015], except

that because we are now working in a monadic setting we also use the monad laws:

Case: e = Val n

1:8 Patrick Bahr and Graham Hutton

do v ← eval (Val n)
exec c (v : s)

�𝑖 { definition of eval }
do v ← return n

exec c (v : s)
�𝑖 { monad laws }

exec c (n : s)
�𝑖 { define: exec (PUSH n c) s = exec c (n : s) }
exec (PUSH n c) s

Case: e = Add x y

do v ← eval (Add x y)
exec c (v : s)

�𝑖 { definition of eval }
do v ← do m← eval x

n← eval y
return (m + n)

exec c (v : s)
�𝑖 { monad laws }

do m← eval x
n← eval y
exec c ((m + n) : s)

�𝑖 { define: exec (ADD c) (n :m : s) = exec c ((m + n) : s) }
do m← eval x

n← eval y
exec (ADD c) (n :m : s)

�𝑖 { induction hypothesis for y }

do m← eval x
exec (comp y (ADD c)) (m : s)

�𝑖 { induction hypothesis for x }

exec (comp x (comp y (ADD c))) s

In the loop case, we use proof rule (2) to apply the induction hypothesis for all smaller 𝑗 < 𝑖:

Case: e = Loop

do v ← eval Loop
exec c (v : s)

�𝑖 { definition of eval }
do v ← Later (eval Loop)

exec c (v : s)
�𝑖 { definition of >>= }

Later (do v ← eval Loop
exec c (v : s))

�𝑖 { proof rule (2), induction hypothesis for Loop and j < i }
Later (exec (comp Loop c) s)

Monadic Compiler Calculation 1:9

Target language

data Code = PUSH Int Code | ADD Code | LOOP | HALT

Compiler

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp Loop c = LOOP

Virtual machine

exec :: Code→ Stack → Partial Stack
exec (PUSH n c) s = exec c (n : s)
exec (ADD c) (n :m : s) = exec c ((m + n) : s)
exec LOOP s = Later (exec LOOP s)
exec HALT s = return s

Fig. 1. Compiler and virtual machine for the simple expression language.

�𝑖 { define: exec LOOP s = Later (exec (comp Loop c) s) }
exec LOOP s

All the steps above can be replicated using the original methodology of [Bahr and Hutton 2015],

with the exception of the use of proof rule (2). The key novelty here is that we are not proceeding

by structural induction on the expression e, but rather by induction on both the step index i and
the expression e. This allows us to apply the induction hypothesis to an expression that is not

structurally smaller, in this case calculating the Loop case by using the induction hypothesis for

Loop itself, with the step-indexing machinery resolving the circularity.

Note that the definition for exec LOOP s introduced in the final step is not well formed, as it

contains c as a free variable. Moreover, it is also unsatisfactory as it invokes the compiler, whereas

we normally expect all compilation to take place at compile-time. However, is is straightforward to

simplify the definition to exec LOOP s = Later (exec LOOP s) to eliminate both issues, by using

the equation comp Loop c = LOOP we have just calculated by means of the above reasoning.

Finally, we conclude by considering the top-level compilation function compile :: Expr → Code,
whose correctness can be captured by the following property,

do v ← eval e

return (v : s) � exec (compile e) s

Using the correctness of comp, it is easy to calculate the definition for compile:

do v ← eval e
return (v : s)

� { define: exec HALT s = return s }
do v ← eval e
exec HALT (v : s)

� { Theorem 2.1 }

exec (comp e HALT) s
In summary, we have calculated the definitions in Figure 1. Note that exec is not total because

the case for addition requires a stack of at least two values, but we are free to add equations to the

definition to make it total. We arbitrarily choose to add the catch-all equation exec = never that
returns the non-terminating computation never , but the choice is not important as it plays no role

in the proof of the compiler correctness theorem. In particular, we only ever execute well-formed

code produced by the compiler. At first glance, it might also seem that exec is not tail-recursive
because of the case for LOOP . However, Later is an effect of the partiality monad that is performed

before the recursive call. To see this, we can rewrite the right-hand side into the equivalent form

1:10 Patrick Bahr and Graham Hutton

Later (return ()) >> exec LOOP s. More generally, as we will see in section 4, the semantics of a

virtual machine is described by a set of mutually tail-recursive functions.

2.6 Reflection
We conclude this section with some reflective remarks on our new methodology.

Full correctness. The compiler that we have derived for the simple expression language captures

both the convergent and divergent aspects of compiler correctness by construction. In particular,

compiled code can produce precisely the same result values as the source semantics, no more

and no less. Moreover, our methodology only required a single calculation process to establish

both aspects compiler correctness at the same time. To the best of our knowledge, this is the first

approach to compiler calculation for non-terminating languages that ensures full correctness.

Extra steps. As noted earlier in this section, the use of strong bisimilarity to formulate compiler

correctness in Theorem 2.1 means that we may need to insert extra Later steps in the definition of

the virtual machine, in order to ensure that the number of steps matches the source semantics. In

the above calculation we only had to do this in one place, namely in the definition exec LOOP s =
Later (exec LOOP s). However, the need to do this fell naturally out of the calculation process,

via the use of Later in the definition eval Loop = Later (eval Loop) that gives a semantics to the

looping primitive, and did not require any additional insight or ‘eureka step’.

Methodology. The approach we have developed is a natural generalisation of Bahr and Hutton’s

[2015] methodology to deal with non-terminating languages. The calculations proceed in a similar

way, using the desire to apply induction hypotheses as the driving force for the calculation process,

from which the compilation machinery then arises in a natural manner. The difference is that we

now use bisimilarity rather than equality as the basis for the reasoning, and also exploit the monad

laws for the partiality monad. Moreover, whereas previous work required moving to a relational

semantics to deal with non-termination, using the partiality monad to making divergence explicit

allows us to retain the use of a functional semantics.

3 LAMBDA CALCULUS
To demonstrate that our coinductive technique also works for more sophisticated languages, we

consider the untyped, call-by-value lambda calculus extended with integers and addition.

3.1 Syntax and semantics
For the source language syntax, we use de Bruijn indices to represent bound variables:

data Expr = Val Int | Add Expr Expr | Var Int | Abs Expr | App Expr Expr

Informally, Var i is the variable with de Bruijn index 𝑖 ⩾ 0, while Abs x constructs an abstraction

over expression x, and App x y applies the abstraction that results from evaluating expression x to

the value of expression y. For example, the lambda term 𝜆𝑥 .𝜆𝑦.𝑥 +𝑦 that adds two integers together

is represented by the expression Abs (Abs (Add (Var 1) (Var 0))).
Since the language is untyped, it is not normalising. For example, the term Ω = (𝜆𝑥.𝑥 𝑥) (𝜆𝑥.𝑥 𝑥)

reduces to itself, and hence loops forever. As in the previous section, we will make the non-totality of

the semantics explicit using the partiality monad. In particular, the semantics will be coinductively

defined as a function Expr → Env → Partial Value that evaluates a (possibly open) expression

to a value in a given environment. Because the result of evaluating an expression may now be a

function, the notion of a value includes both integer values and closures:

data Value = Num Int | Clo Expr Env

Monadic Compiler Calculation 1:11

A closure comprises an expression 𝑡 and an environment 𝑒 that provides values for the free variables

in the expression. In turn, an environment can be represented as a list of values,

type Env = [Value]
with the value of the variable with de Bruijn index 𝑖 given by indexing into the list at this position

using a lookup function that diverges if the variable is not found:

lookup :: Int → [a] → Partial a
lookup 0 (x : xs) = return x
lookup i (x : xs) = lookup (i − 1) xs
lookup = never

Using these ideas, the semantics for the language can now be defined as follows:

eval :: Expr → Env → Partial Value
eval (Val n) e = return (Num n)
eval (Add x y) e = do Num m← eval x e

Num n← eval y e
return (Num (m + n))

eval (Var i) e = lookup i e
eval (Abs x) e = return (Clo x e)
eval (App x y) e = do Clo x′ e′ ← eval x e

v ← eval y e
Later (eval x′ (v : e′))

We conclude with three remarks about this definition. First of all, note that eval is structurally
recursive except for the final call eval x′ (v : e′) in the application case, which recurses on the

expression x′ that results from evaluating x. Hence, this is the only place in the definition where

we need to guard the recursive call with a Later to ensure that eval is well-defined.
Secondly, the definition for eval uses non-exhaustive pattern matching within the do blocks. For

example, the generator Num m← eval x e in the addition case will fail if the result of evaluating x
is not a numeric value. This is permitted in Haskell, provided that the underlying monad is an

instance of the MonadFail class. If pattern matching fails within a do block, then the fail function
of this class is called, which in the case of Partial we define as follows:

fail :: String → Partial a
fail = never

This definition means that if pattern matching within the eval function fails, such as the result of

eval x e not being of the required form Num m, then evaluation diverges. The string parameter

to fail is used for error messages, but does not concern us here.

And finally, note that for simplicity we represented all forms of undefined behaviour in eval in
the same way using divergence, whether it be due to the source expression not terminating, being

type incorrect, or containing an unbound variable. If we wish to have a more fine-grained notion of

undefined behaviour, this can be achieved by simply extending the Value type to represent different
forms of undefined behaviour using additional constructors. The accompanying Agda code includes

an example of this in a calculation for a lambda calculus extended with exceptions.

3.2 Compiler correctness
Our goal now is to calculate a compiler comp :: Expr → Code → Code and a stack machine

exec :: Code→ Conf → Partial Conf , where Conf is the type of configurations for the machine. In

1:12 Patrick Bahr and Graham Hutton

the previous example, a machine configuration was simply a stack. But because the semantics now

requires an environment, the configuration also includes an environment:

type Conf = (Stack, Env′)

However, the machine may require a different form of environment compared to the semantics, so

we use a new type Env′ for this purpose, defined as list of machine values of type Value′:

type Env′ = [Value′]

To convert between semantic and machine values, we assume a function conv :: Value→ Value′,
which can be lifted to environments by simply mapping over the list of values:

convE :: Env → Env′

convE = map conv

Similarly to comp, Code and exec, the definitions for Value′ and conv are not given in advance,

but will be derived during the compiler calculation. Finally, a stack is initially defined as a list of

machine values, with the element type being extended as required during the calculation:

type Stack = [Elem]
data Elem = VAL Value′

The above assumptions are the same as in [Bahr and Hutton 2015], except that the source semantics

is now defined as a function into Partial Value, rather than as a big-step operational semantics.

These assumptions make precise what kind of machine we wish to derive. As a consequence

of making non-termination explicit using the partiality monad, we can now formulate compiler

correctness in a manner that captures both convergent and divergent behaviour:

Theorem 3.1 (compiler correctness).

do v ← eval t e

exec c (VAL (conv v) : s, convE e) � exec (comp t c) (s, convE e)

This property has the same form as our first example, except that the virtual machine now operates

on configurations comprising a stack and an environment. As previously, using the fact that p � q
iff p �𝑖 q for all step counts 𝑖 , compiler correctness can be established by proving the following by

induction on the step count i and the lambda term t:

do v ← eval t e

exec c (VAL (conv v) : s, convE e) �𝑖 exec (comp t c) (s, convE e) (3)

3.3 Compiler calculation
For each case of the lambda term 𝑡 , we seek to transform the left-hand side of property (3) into

the form exec c′ (s, convE e) for some code c′, from which we can then define comp t c = c′ as
the definition for the compiler in this case. As in the previous example, to calculate the compiler

we will need to introduce new constructors into the Code type, together with their interpretation

by exec. Moreover, for this example we will also need to add new constructors to the stack element

type Elem and machine value type Value′, and define the conversion function conv.
The case for values follows the same pattern as for simple arithmetic expressions, with the minor

addition of applying the conversion function conv:

Case: t = Val n

Monadic Compiler Calculation 1:13

do v ← eval (Val n) e
exec c (VAL (conv v) : s, convE e)

�𝑖 { definition of eval }
do v ← return (Num n)

exec c (VAL (conv v) : s, convE e)
�𝑖 { monad laws }

exec c (VAL (conv (Num n)) : s, convE e)
�𝑖 { define: conv (Num n) = Num′ n }

exec c (VAL (Num′ n) : s, convE e)
�𝑖 { define: exec (PUSH n c) (s, e) = exec c (VAL (Num′ n) : s, e) }
exec (PUSH n c) (s, convE e)
The case for addition also proceeds in a similar manner to previously (the details are available

in the supplementary material) resulting in a new code constructor ADD that adds together two

numeric values on the stack, as shown below. However, we also need to take account of the fact

that the semantics for the language diverges if addition is applied to non-numeric values, which is

achieved by adding a corresponding failure case to the machine:

exec (ADD c) (VAL (Num′ n) : VAL (Num′ m) : s, e) = exec c (VAL (Num′ (m + n)) : s, e)
exec (ADD c) = never

The case for variables is straightforward, in which we use n rather than i as the de Bruin index

for the variable, as i is already used for the step index within this calculation:

Case: t = Var n

do v ← eval (Var n) e
exec c (VAL (conv v) : s, convE e)

�𝑖 { definition of eval }
do v ← lookup n e

exec c (VAL (conv v) : s, convE e)
�𝑖 { monad laws, lookup lemma }

do v ← lookup n (convE e)
exec c (VAL v : s, convE e)

�𝑖

{
define: exec (LOOKUP n c) (s, e′) = do v ← lookup n e

exec c (VAL v : s, e′)

}
exec (LOOKUP n c) (s, convE e)

The lookup lemma used above states that fmap f (lookup n xs) � lookup n (map f xs) and thus

applies to the term convE e, which is defined as map conv e. Its use allows us to generalise convE e
to e′ in the subsequent step where we define exec for LOOKUP .

The case for application proceeds in the now familiar way, by introducing new constructors to

bring the configuration into the form that is required to apply the induction hypotheses. First of

all, to apply the induction hypothesis for the expression x′ that results from evaluating the first

argument expression x, we save and restore a pair comprising code and an environment on the

stack by means of a new stack constructor CLO and code constructor RET :

Case: t = App x y

do w ← eval (App x y) e
exec c (VAL (conv w) : s, convE e)

1:14 Patrick Bahr and Graham Hutton

�𝑖 { definition of eval }
do w ← do Clo x′ e′ ← eval x e

v ← eval y e
Later (eval x′ (v : e′))

exec c (VAL (conv w) : s, convE e)
�𝑖 { monad laws }

do Clo x′ e′ ← eval x e
v ← eval y e
w ← Later (eval x′ (v : e′))
exec c (VAL (conv w) : s, convE e)

�𝑖 { define: exec RET (VAL v : CLO c e : s,) = exec c (VAL v : s, e) }
do Clo x′ e′ ← eval x e

v ← eval y e
w ← Later (eval x′ (v : e′))
exec RET (VAL (conv w) : CLO c (convE e) : s, convE (v : e′))

�𝑖 { definition of >>= }

do Clo x′ e′ ← eval x e
v ← eval y e
Later (do w ← eval x′ (v : e′)

exec RET (VAL (conv w) : CLO c (convE e) : s, convE (v : e′)))
�𝑖 { proof rule (2), induction hypothesis for x′ and j < i }
do Clo x′ e′ ← eval x e

v ← eval y e
Later (exec (comp x′ RET) (CLO c (convE e) : s, convE (v : e′)))

The remainder of the calculation is then driven by the desire to apply the induction hypotheses

for the argument expressions x and y. In a similar manner to addition, we also extend the exec
function with an additional failure case to take account of the fact that the semantics diverges if

evaluation of the first argument of an application does not result in a closure:

�𝑖 { define: exec (APP c) (VAL v : VAL (Clo′ c′ e′) : s, e) = Later (exec c′ (CLO c e : s, v : e′)) }
do Clo x′ e′ ← eval x e

v ← eval y e
exec (APP c) (VAL (conv v) : VAL (Clo′ (comp x′ RET) (convE e′)) : s, convE e)

�𝑖 { define: conv (Clo x e) = Clo′ (comp x RET) (convE e) }
do Clo x′ e′ ← eval x e

v ← eval y e
exec (APP c) (VAL (conv v) : VAL (conv (Clo x′ e′)) : s, convE e)

�𝑖 { define: exec (APP c) = never }
do u← eval x e

v ← eval y e
exec (APP c) (VAL (conv v) : VAL (conv u) : s, convE e)

�𝑖 { induction hypothesis for y }

do u← eval x e
exec (comp y (APP c)) (VAL (conv u) : s, convE e)

Monadic Compiler Calculation 1:15

�𝑖 { induction hypothesis for x }

exec (comp x (comp y (APP c))) (s, convE e)

Finally, using the new equation for conv introduced above, the case for abstraction proceeds by

simply adding a new code constructor ABS that puts a closure onto the stack:

Case: t = Abs x

do v ← eval (Abs x) e
exec c (VAL (conv v) : s, convE e)

�𝑖 { definition of eval }
do v ← return (Clo x e)

exec c (VAL (conv v) : s, convE e)
�𝑖 { monad laws }

exec c (VAL (conv (Clo x e)) : s, convE e)
�𝑖 { definition of conv }

exec c (VAL (Clo′ (comp x RET) (convE e)) : s, convE e)
�𝑖 { define: exec (ABS c′ c) (s, e) = exec c (VAL (Clo′ c′ e) : s, e) }
exec (ABS (comp x RET) c) (s, convE e)

In summary, we have calculated the definitions in Figure 2. As with the previous example,

the top-level compilation function compile is defined simply by applying comp to a nullary code

constructor HALT that returns the current configuration of the machine. Note that in the final

definition of the virtual machine, the failure cases for ADD and APP that were introduced for

exec have been generalised to a single catch-all equation exec = never , which also covers the

possibility that RET may fail if the stack is not of the required form. As previously, however, the

catch-all equation plays no role in the compiler correctness theorem.

3.4 Reflection
Full correctness. The resulting compiler and virtual machine for the lambda calculus are essentially

the same as those in [Bahr and Hutton 2015], except that the machine now explicitly deals with the

possibility of failure and divergence using the partiality monad. Moreover, the calculation in the

original article only considered the convergence aspect of compiler correctness, whereas our new

methodology allows us to simultaneously address both convergence and divergence.

Side conditions. Our new lambda calculus calculation is also conceptually simpler, because we no

longer need to keep track of side conditions concerning the evaluation of other expressions, as these

are now explicit in the term that is being manipulated. For example, during the case for addition,

Bahr and Hutton [2015] have side conditions x ⇓𝑒 Num m and y ⇓𝑒 Num n, which means that

that m and n appear as free variables in the calculation. In our new methodology, these conditions

are explicit in the term being manipulated by means of the generators Num m ← eval x e and
Num n← eval y e, which simplifies the reasoning process.

Totality. To show that exec is well-defined, it suffices to show that all recursive calls to exec are
on smaller arguments according to a suitable size measure, or are guarded by Later . If we define
the size of code as the number of constructors that it contains, and the size of a stack as the sum

of the sizes of all the code arguments for the CLO constructor, then it is straightforward to show

that exec is well-founded with respect to the sum of the sizes of its code and stack arguments. This

well-foundedness argument is formalised in the supplementary material.

1:16 Patrick Bahr and Graham Hutton

Target language

data Code = HALT
| PUSH Int Code
| ADD Code
| LOOKUP Int Code
| ABS Code Code
| RET
| APP Code

Compiler

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp (Var i) c = LOOKUP i c
comp (Abs x) c = ABS (comp x RET) c
comp (App x y) c = comp x (comp y (APP c))

Virtual machine

type Conf = (Stack, Env′)
type Stack = [Elem]
type Env′ = [Value′]

data Elem = VAL Value′ | CLO Code Env′

data Value′ = Num′ Int | Clo′ Code Env′

exec :: Code→ Conf → Partial Conf
exec HALT (s, e) = return (s, e)
exec (PUSH n c) (s, e) = exec c (VAL (Num′ n) : s, e)
exec (ADD c) (VAL (Num′ n) : VAL (Num′ m) : s, e) = exec c (VAL (Num′ (m + n)) : s, e)
exec (LOOKUP i c) (s, e) = do v ← lookup i e

exec c (VAL v : s, e)
exec (ABS c′ c) (s, e) = exec c (VAL (Clo′ c′ e) : s, e)
exec RET (VAL v : CLO c e : s,) = exec c (VAL v : s, e)
exec (APP c) (VAL v : VAL (Clo′ c′ e′) : s, e) = Later (exec c′ (CLO c e : s, v : e′))
exec = never

Conversion functions

conv :: Value→ Value′

conv (Num n) = Num′ n
conv (Clo x e) = Clo′ (comp x RET) (convE e)

convE :: Env → Env′

convE = map conv

Fig. 2. Compiler and virtual machine for the lambda calculus.

Initial assumptions.When formulating the compiler correctness property, we have made some

initial assumptions about the nature of the machine we wish to derive, namely that it is a stack

machine with access to a variable environment. The latter is motivated by the fact that the semantics

of the source language also requires a variable environment. The machine that we have calculated

from these assumptions is similar to the Zinc Abstract Machine (ZAM) [Grégoire and Leroy

2002]. While both machines utilise an environment and a stack, some instructions of the ZAM

are combined into a single instruction in our machine. For example, APP combines the GRAB,
APPLY and PUSHRETADDR instructions of the ZAM. By varying the initial assumptions about the

machine, we can influence the resulting compiler and machine. For example, we could have chosen

a register machine setup like Bahr and Hutton [2020] instead.

4 NON-DETERMINISM
For our final example, we consider an expression language that supports exceptions and interrupts.

Whereas for our previous examples the semantics was expressed using the partiality monad, for this

language the appropriate setting is a non-determinism monad. The resulting compiler calculation

Monadic Compiler Calculation 1:17

demonstrates that our monadic methodology is not specific to non-total languages, but can also be

used to calculate compilers for languages with other forms of effects.

4.1 Syntax and semantics
For the purposes of this example, we view an exception as an unexpected event that arises within

an expression itself during its evaluation, such as a division by zero. In turn, an interrupt is an
unexpected event that arises from the external environment, such as a timeout. These kind of

interrupts are also known as asynchronous exceptions, not to be confused with the hardware notion

of interrupts, which are more like asynchronous subroutine calls.

The source language we consider is taken from [Hutton and Wright 2007], except that we omit

the sequencing operator that was required there for a running example:

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr | Block Expr | Unblock Expr

While this language does not provide features that are necessary for actual programming, it does

provide just enough structure to explore the basic semantics of exceptions and interrupts. In

particular, integers and addition provide a minimal language in which to consider normal (non-

exceptional) computation, throw and catch constitute a minimal extension in which computations

can involves exceptions, and finally, block and unblock will allow us to consider interrupts.

As we shall see, the presence of interrupts in the language means that an expression may

evaluate to more than one possible result value. To take account of this, we define a type ND a for
non-deterministic computations that return result values of type a:

data ND a = ∅ | Ret a | ND a ⊕ ND a

The idea is that Ret transforms a value into a computation that simply returns this value, while ⊕
is a non-deterministic choice operator with ∅ as its identity element. The non-determinism type

forms a monad, with the operations defined as follows:

return :: a→ ND a
return x = Ret x

(>>=) :: ND a→ (a→ ND b) → ND b
∅ >>= f = ∅
(Ret x) >>= f = f x
(p ⊕ q) >>= f = (p >>= f) ⊕ (q >>= f)

We’ll consider laws for ND later in this section. Because the result of evaluating an expression may

now be an exception, the notion of a result value is defined using the Maybe type:

type Value = Maybe Int

That is, a value is either Nothing, which we view as an exceptional value, or has the form Just n,
which we view as a normal value [Spivey 1990]. The semantics also requires the notion of an

interrupt status, which specifies whether interrupts are currently blocked or unblocked:

data Status = B | U

The form of interrupts that we consider is a ‘worst-case scenario’ in which evaluation of an

expression can be interrupted at any point, provided that interrupts are not blocked. In order to

realise this behaviour, we define a simple function interrupt that has no effect if interrupts are

blocked, and otherwise returns the exceptional value Nothing:

1:18 Patrick Bahr and Graham Hutton

interrupt :: Status→ ND Value
interrupt B = ∅
interrupt U = return Nothing

To streamline the definition of the semantics, we adopt an extension of the pattern matching

syntax for the do notation, inspired by a similar syntactic shorthand in Idris [Brady 2013]:

do p← foo | bar
rest

means

do x ← foo
case x of
p → do rest
→ bar

That is, if matching foo against the pattern p fails, then evaluation proceeds with bar instead of

rest. Using the above ideas, the semantics can now be defined by mutually recursive functions that

evaluate an expression in a given interrupt status to produce a non-deterministic value:

eval :: Expr → Status→ ND Value
eval e i = eval′ e i ⊕ interrupt i

eval′ :: Expr → Status→ ND Value
eval′ (Val n) i = return (Just n)
eval′ (Add x y) i = do Just m← eval x i | return Nothing

Just n← eval y i | return Nothing
return (Just (m + n))

eval′ Throw i = return Nothing
eval′ (Catch x y) i = do Just n← eval x i | eval y i

return (Just n)
eval′ (Block x) i = eval x B
eval′ (Unblock x) i = eval x U

That is, eval either evaluates the expression using eval′, or interrupts the current evaluation if

the status permits this. In turn, eval′ defines the semantics of each language feature. In particular,

the use of the extended pattern matching syntax expresses that addition propagates an exception

thrown in either argument, while catch behaves as its first argument unless it throws an exception,

in which case the exception is handled by behaving as its second argument. The functions eval and
eval′ capture the same semantics as [Hutton and Wright 2007], but defined in a functional manner

using the non-determinism monad, rather than as a big-step operational semantics.

Note that the above semantics uses two monads: ND and Maybe. However, instead of combining

them to a single monad, we keep them separate and treat them in different ways, because they serve

different purposes. In particular, ND captures the ambient effects that are shared by the source

and target languages. Thus we treat ND in an abstract manner using the do notation, and are only

interested in which laws it satisfies so that we can reason about non-determinism. In contrast,

Maybe describes an effect, namely exceptions, that the compiler may decide to ‘compile away’. That

is, we make no assumption on whether the target machine has a built-in mechanism for handling

exceptions. Instead, the compiled code may implement exceptions in a particular way. Using explicit

pattern matching will allow us to reason about the concrete implementation of exceptions.

4.2 Bisimilarity
ND satisfies the monad laws with respect to equality because it is a free monad. However, it does

not satisfy certain laws that we would expect, e.g. that ∅ is the identity for ⊕. To achieve this, we

Monadic Compiler Calculation 1:19

quotient ND by an appropriate bisimulation relation, in a similar manner to how we quotiented

the partiality monad. To this end, we first define when a non-deterministic computation p :: ND a
converges to a value v :: a using an inductively defined relation 𝑝 ⇓ 𝑣 :

Ret v ⇓ v
𝑝 ⇓ 𝑣

𝑝 ⊕ 𝑞 ⇓ v
𝑞 ⇓ 𝑣

𝑝 ⊕ 𝑞 ⇓ v

That is, Ret v converges only to v, while p ⊕ q converges to any value that p or q converges to.

Note that there is no rule for ∅ because it never produces a value. We then say that p and q are

bisimilar, written as p � q, if they coincide in terms of their convergence behaviours:

𝑝 ⇓ 𝑣 iff 𝑞 ⇓ 𝑣 for all 𝑣

In this setting, we don’t need to make a distinction between weak and strong bisimilarity as there

are no Later steps. As expected, the ND type satisfies the monad laws up to bisimilarity. In addition,

the choice primitives satisfy the laws of a commutative, idempotent monoid:

(p ⊕ q) ⊕ r � p ⊕ (q ⊕ r) (associativity)

p ⊕ ∅ � p � ∅ ⊕ p (identity)

p ⊕ q � q ⊕ p (commutativity)

p ⊕ p � 𝑝 (idempotence)

We also use three laws that capture how choice interacts with monadic bind:

∅ >>= f � ∅ (left zero)

(p ⊕ q) >>= f � (p >>= f) ⊕ (q >>= f) (left distributivity)

(p >>= f) ⊕ q � p >>= (𝜆x → f x ⊕ q) if p ̸� ∅ (interchange)

The side condition on the interchange law is required because otherwise in the case when p � ∅
the law simplifies to q � ∅, which is not true in general.

4.3 Compiler correctness
Our goal now is to calculate a compiler comp :: Expr → Code → Code and a stack machine

exec :: Code → Conf → ND Conf , where Conf is the type of machine configurations. Because

the semantics now requires an interrupt status, this is paired with a stack to form the notion of a

configuration, while a stack is initially defined as a list of integer values:

type Conf = (Stack, Status)
type Stack = [Elem]
data Elem = VAL Int

To specify what it means for the compiler to be correct, we need to take account of the fact that

the evaluation may now fail, i.e. result in an exception. To this end, we follow the approach of Bahr

and Hutton [2015] and assume an as-yet undefined function fail :: Stack → Status → ND Conf
that captures the behaviour of the machine in the case when an exception is thrown. Using this

function, compiler correctness can now be captured as follows:

Theorem 4.1 (compiler correctness).

do Just v ← eval e i | fail s i
exec c (VAL v : s, i) � exec (comp e c) (s, i)

1:20 Patrick Bahr and Graham Hutton

The left-hand side states that if evaluation succeeds, then the resulting value is pushed onto the stack

prior to executing the remaining code. If evaluation results in an exception, control is transferred

to the function fail to deal with the exception in some appropriate way.

4.4 Compiler calculation
We proceed to prove Theorem 4.1 by induction on the expression e, seeking to transform the

left-hand side of the property into the form exec c′ (s, i) for some code c′, from which we can then

define comp e c = c′ in this case. Along the way we will introduce new constructors for Code and
Elem, and new equations for comp, exec and fail. The first few steps are the same for each case:

do Just v ← eval e i | fail s i
exec c (VAL v : s, i)

� { definition of eval }
do Just v ← (eval′ e i ⊕ interrupt i) | fail s i

exec c (VAL v : s, i)
� { left distributivity }

(do Just v ← eval′ e i | fail s i
exec c (VAL v : s, i)) ⊕

(do Just v ← interrupt i | fail s i
exec c (VAL v : s, i))

At this point, the second argument to ⊕ can be simplified by performing case analysis on the

interrupt status. In the case when interrupts are blocked, the second argument simplifies to ∅ using
the left zero law, and when interrupts are unblocked it simplifies to fail s i:

� { define: inter s i = if i ≡ B then ∅ else fail s i }
(do Just v ← eval′ e i | fail s i

exec c (VAL v : s, i)) ⊕ inter s i

The final step above introduces a function inter :: Stack → Status→ ND Conf that interrupts the

current execution if the interrupt status permits this. We continue the calculation by case analysis

on e. Some of these cases will make use of the following two simple lemmas:

Lemma 4.2. eval e i ̸� ∅ and eval′ e i ̸� ∅

Proof. By straightforward induction on e. □

Lemma 4.3. fail s i ⊕ inter s i � fail s i

Proof. By case analysis on i. □

We now continue the compiler calculation. The case for values proceeds in a similar manner to

previously, except that we now use the special do notation for pattern match failure:

Case: e = Val n

(do Just v ← eval′ (Val n) i | fail s i
exec c (VAL v : s, i)) ⊕ inter s i

� { definition of eval′ }
(do Just v ← return (Just n) | fail s i

exec c (VAL v : s, i)) ⊕ inter s i
� { monad laws }

exec c (VAL n : s, i) ⊕ inter s i

Monadic Compiler Calculation 1:21

� { define: exec (PUSH n c) (s, i) = exec c (VAL n : s, i) ⊕ inter s i }
exec (PUSH n c) (s, i)
For addition, there are two key changes from our previous examples. First of all, we make use of

the interchange law to push ⊕ inside the term being manipulated. And secondly, this case gives our

first equation for fail, which ensures that intermediate result values are removed from the stack

when an exception is thrown, an idea that is usually termed ‘unwinding’ the stack:

Case: e = Add x y

(do Just v ← eval′ (Add x y) i | fail s i
exec c (VAL v : s, i)) ⊕ inter s i

� { interchange law; lemma 4.2; case distribution }

do Just v ← eval′ (Add x y) i | fail s i ⊕ inter s i
exec c (VAL v : s, i) ⊕ inter s i

� { lemma 4.3 }

do Just v ← eval′ (Add x y) i | fail s i
exec c (VAL v : s, i) ⊕ inter s i

� { definition of eval′ }
do Just v ← (do Just m← eval x i | return Nothing

Just n← eval y i | return Nothing
return (Just (m + n))) | fail s i

exec c (VAL v : s, i) ⊕ inter s i
� { monad laws }

do Just m← eval x i | fail s i
Just n← eval y i | fail s i
exec c (VAL (m + n) : s, i) ⊕ inter s i

� { define: exec (ADD c) (VAL n : VAL m : s, i) = exec c (VAL (m + n) : s, i) ⊕ inter s i }
do Just m← eval x i | fail s i

Just n← eval y i | fail s i
exec (ADD c) (VAL n : VAL m : s, i)

� { define: fail (VAL m : s) i = fail s i }
do Just m← eval x i | fail s i

Just n← eval y i | fail (VAL m : s) i
exec (ADD c) (VAL n : VAL m : s, i)

� { induction hypothesis for y }

do Just m← eval x i | fail s i
exec (comp y (ADD c)) (VAL m : s, i)

� { induction hypothesis for x }

exec (comp x (comp y (ADD c))) (s, i)
The case for throw is straightforward, and introduces a new equation for exec that transfers

control to the auxiliary function fail when an exception is thrown:

Case: e = Throw

(do Just v ← eval′ Throw i | fail s i
exec c (VAL v : s, i)) ⊕ inter s i

� { definition of eval′ }

1:22 Patrick Bahr and Graham Hutton

(do Just v ← return Nothing | fail s i
exec c (VAL v : s, i)) ⊕ inter s i

� { monad laws }

fail s i ⊕ inter s i
� { lemma 4.3 }

fail s i
� { define: exec THROW (s, i) = fail s i }
exec THROW (s, i)

The case for catch introduces the idea of pushing and popping handler code to the stack, which

is usually termed ‘marking’ and ‘unmarking’ the stack. The corresponding MARK and UNMARK
instructions require a new stack constructor HAN to store and retrieve exception handling code.

This case also gives the second equation for fail, which transfers control back to the regular

execution function exec if handler code is found on top of the stack:

Case: e = Catch x y

(do Just v ← eval′ (Catch x y) i | fail s i
exec c (VAL v : s, i)) ⊕ inter s i

� { definition of eval′ }
(do Just v ← (do Just n← eval x | eval y i

return (Just n)) | fail s i
exec c (VAL v : s, i)) ⊕ inter s i

� { monad laws }

(do Just n← eval x | (do Just m← eval y i | fail s i
exec c (VAL m : s, i))

exec c (VAL n : s, i)) ⊕ inter s i
� { induction hypothesis for y }

(do Just n← eval x | exec (comp y c) (s, i)
exec c (VAL n : s, i)) ⊕ inter s i

� { define: fail (HAN (c : s)) i = exec c (s, i) }
(do Just n← eval x | fail (HAN (comp y c : s)) i

exec c (VAL n : s, i)) ⊕ inter s i
� { define: exec (UNMARK c) (VAL n : HAN : s, i) = exec c (VAL n : s, i) }
(do Just n← eval x | fail (HAN (comp y c) : s) i

exec (UNMARK c) (VAL n : HAN (comp y c) : s, i)) ⊕ inter s i
� { induction hypothesis for x }

exec (comp x (UNMARK c)) (HAN (comp y c) : s, i) ⊕ inter s i
� { define: exec (MARK c′ c) (s, i) = exec c (HAN c′ : s, i) ⊕ inter s i }
exec (MARK (comp y c) (comp x (UNMARK c))) (s, i)

Finally, the case for blocking interrupts introduces the idea of saving and restoring the current

interrupt status using a new stack constructor STA. This case also gives the third equation for fail,
which ensures that the correct status is maintained when an exception is thrown. The case for

unblocking interrupts proceeds in the same way, and we omit the details here.

Case: e = Block x

Monadic Compiler Calculation 1:23

(do Just v ← eval′ (Block x) i | fail s i
exec c (VAL v : s, i)) ⊕ inter s i

� { definition of eval′ }
(do Just v ← eval x B | fail s i

exec c (VAL v : s, i)) ⊕ inter s i
� { interchange law; lemma 4.2; case distribution }

do Just v ← eval x B | (fail s i ⊕ inter s i)
exec c (VAL v : s, i) ⊕ inter s i

� { lemma 4.3 }

do Just v ← eval x B | fail s i
exec c (VAL v : s, i) ⊕ inter s i

� { define: exec (RESET c) (VAL v : STA i : s, B) = exec c (VAL v : s, i) ⊕ inter s i }
do Just v ← eval x B | fail s i

exec (RESET c) (VAL v : STA i : s, B)
� { define: fail (STA i : s) B = fail s i }
do Just v ← eval x B | fail (STA i : s) B

exec (RESET c) (VAL v : STA i : s, B)
� { induction hypothesis for x }

exec (comp x (RESET c)) (STA i : s, B)
� { define: exec (BLOCK c) (s, i) = exec c (STA i : s, B) }
exec (BLOCK (comp x (RESET c))) (s, i)
In summary, we have calculated the definitions in Figure 3, from which we can define the top-

level compilation function compile in the same manner as previously. Note that the equations that

we derived for exec and fail do not yield total definitions, in the first case because some equations

require the stack to be of a certain form, and in the second because there is no equation for the

empty stack. In our final definitions we have added catch-all cases that return ∅, but any choice

would be fine because the calculation does not depend on it.

4.5 Reflection
The compiler that we have derived for the interrupts language is essentially the same as in [Hutton

and Wright 2007], with two key methodological differences. First of all, we have calculated the

compiler rather than verifying it, by means of a principled approach that allowed us to discover

the basic techniques for compiling exceptions and interrupts in a systematic manner.

Secondly, our new methodology allows us to simultaneously address both the soundness and

completeness aspects of compiler correctness. In particular, our correctness theorem captures

that compiled code can produce every result that is permitted by the semantics for the language

(completeness), and dually, that compiled code will always produce a result that is permitted by

the semantics (soundness). In our previous compiler verification for this language [2007], separate

specifications and verifications were required for each part, whereas we have calculated the compiler

using a single, unified reasoning process. Bahr [2015] also calculates a compiler for the interrupts

language, but relies on proof automation in Coq to discharge side conditions during the calculation.

Discharging these side conditions manually is tedious, which makes Bahr’s technique unsuitable

for tools such as Agda which lack customisable proof automation.

More importantly, using our monadic approach we can calculate compilers for languages that

feature both non-determinism and non-termination. The supplementarymaterial includes a compiler

calculation for the interrupts language extended with the Loop primitive from section 2. The

1:24 Patrick Bahr and Graham Hutton

Target language

data Code = HALT
| PUSH Int Code
| ADD Code
| THROW
| MARK Code Code
| UNMARK Code
| BLOCK Code
| UNBLOCK Code
| RESET Code

Compiler

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp Throw c = THROW
comp (Catch x y) c = MARK (comp y c) (comp x (UNMARK c))
comp (Block x) c = BLOCK (comp x (RESET c))
comp (Unblock x) c = UNBLOCK (comp x (RESET c))

Virtual machine

type Conf = (Stack, Status)
type Stack = [Elem]

data Elem = VAL Int | HAN Code | STA Status
data Status = B | U

exec :: Code→ Conf → ND Conf
exec HALT (s, i) = return (s, i)
exec (PUSH n c) (s, i) = exec c (VAL n : s, i) ⊕ inter s i
exec (ADD c) (VAL n : VAL m : s, i) = exec c (VAL (m + n) : s, i) ⊕ inter s i
exec THROW (s, i) = fail s i
exec (MARK c′ c) (s, i) = exec c (HAN c′ : s, i) ⊕ inter s i
exec (UNMARK c) (VAL n : HAN : s, i) = exec c (VAL n : s, i)
exec (BLOCK c) (s, i) = exec c (STA i : s, B)
exec (UNBLOCK c) (s, i) = exec c (STA i : s,U)
exec (RESET c) (VAL v : STA i : s,) = exec c (VAL v : s, i) ⊕ inter s i
exec = ∅

fail :: Stack → Status→ ND Conf
fail (VAL m : s) i = fail s i
fail (HAN c : s) i = exec c (s, i)
fail (STA i : s) = fail s i
fail = ∅

inter :: Stack → Status→ ND Conf
inter s B = ∅
inter s U = fail s U

Fig. 3. Compiler and virtual machine for the interrupts language.

calculation uses a monad ND⊥ that combines ND and Partial, for which two details are worth

noting. First of all, the interchange law does not hold for ND⊥, and consequently the calculation

for the non-total interrupts language leads to a different compiler. And secondly, the definition of

bisimilarity for ND⊥ explicitly accounts for divergence, as otherwise p ⊕ never � p.

5 RELATEDWORK
In this section we summarise some of the main developments related to our approach to compiler

calculation. A more detailed review of related work is provided in [Bahr and Hutton 2015].

Compiler verification. Research in compiler verification has a long history; see [Dave 2003] for

a chronological bibliography and [Patterson and Ahmed 2019] for an overview of more recent

developments. A landmark result was CompCert [Leroy 2006b], an optimising C compiler with a

machine-checked correctness proof. Correctness for this compiler was formulated as a program

refinement: each behaviour of the target code, such as producing a certain output or diverging, must

have an equivalent behaviour in the source program. For terminating languages, this refinement

Monadic Compiler Calculation 1:25

property is equivalent to weak bisimilarity, as there is precisely one behaviour. For languages with

non-determinism, weak bisimilarity is stronger, as it does not allow the compiler to drop behaviours

present in the source program. This is appropriate for the interrupts language in section 4, but in

many other cases non-determinism is intended as under-specification, and the compiler is free to

choose any behaviour exhibited by the source program. A weaker variant ≳ of the bisimulation

relation � in section 4 that supports such reasoning can be defined simply by replacing ‘iff’ by ‘if’

in its definition, and satisfies the same laws, plus 𝑝 ⊕ 𝑞 ≳ 𝑝 to choose an arbitrary behaviour.

More recently, a number of researchers have generalised CompCert’s correctness property to

account for the fact that compilers rarely translate whole programs but instead translate individual

modules, which are then linked with other modules. Moreover, each module might be compiled by

a different compiler, or from a different source language. These generalised correctness properties

are enabled by a variety of proof techniques including a combined language that embeds the source,

intermediate and target languages [Perconti and Ahmed 2014], devising a suitable logical simulation

relation [Beringer et al. 2014; Stewart et al. 2015] or parametric bisimulation relation [Neis et al.

2015], and reformulating correctness in a contextual form [Kang et al. 2016].

Non-termination. Big-step and small-step semantics are ubiquitous in operational semantics.

However, in their original forms only the latter can distinguish stuck computations from infinite

computations. This limitation has been addressed by using coinductive variants of big-step semantics

that can account for non-terminating behaviour [Leroy 2006a; Zúñiga and Bel-Enguix 2020].

The partiality monad was introduced by Capretta [2005], who also demonstrated its use to model

possibly infinite computations and a general recursion principle. Danielsson [2012] showed that

the partiality monad can be used to define the operational semantics of a programming language

for the purpose of proving type soundness, as well as proving the correctness of a simple compiler.

For the latter, Danielsson defined the semantics of the source and target language using the same

monad, so that the compiler correctness property could be formulated by weak bisimilarity. The

use of weak bisimilarity is crucial as the number of Later steps performed may be different for

source programs and target code. However, while suitable for compiler verification, this approach

cannot be used for compiler calculation, as weak bisimilarity does not support the use of a transitive

reasoning principle in coinductive calculations, as discussed in section 2.3.

Xia et al. [2019] generalised the partiality monad to interaction trees, which allow additional

effects to be considered. A rich theory to reason with interaction trees has been developed in Coq,

including a framework for coinductive reasoning over weak bisimilarity [Hur et al. 2020].

Calculational methodology. The idea of calculating with programs [Backhouse 2003] is a powerful

technique for verifying programs, and for deriving programs that are correct by construction.

Gibbons and Hinze [2011] showed that the techniques carry over to monadic programs, even if

the monads are only specified axiomatically. In this article, we extended this idea from equational

reasoning to reasoning over other transitive relations, namely bisimilarity and 𝑖-bisimilarity.

Our monadic calculation methodology extends the work of Bahr and Hutton [2015], which is

limited to total languages. While they also calculate a compiler for the untyped lambda calculus, the

correctness theorem on which the calculation is based only makes guarantees about terminating

source programs. More recently, Pickard and Hutton [2021] extended this methodology to a

dependently typed-setting to account for typed source languages. Bahr [2015] showed how to

calculate compilers for non-deterministic languages, but as noted in section 4.5 this approach is

complicated by the need to carefully manage side conditions.

1:26 Patrick Bahr and Graham Hutton

6 CONCLUSION AND FURTHERWORK
In this article we have shown how Bahr and Hutton’s [2015] approach to compiler calculation can

be extended to account for effects such as non-termination and non-determinism using monadic

reasoning. Moreover, the monadic approach allows us to maintain the familiar equational reasoning

style for calculations. Interesting topics for further work include: dealing with multiple effects by

compiling them away one at a time, leading to multi-stage compilers; combining the technique with

a dependently-typed approach to compiler calculation [Pickard and Hutton 2021]; and considering

how it may be adapted to register-based machines [Bahr and Hutton 2020].

ACKNOWLEDGMENTS
This work was supported by EPSRC grant EP/P00587X/1, Unified Reasoning About Program Correct-
ness and Efficiency, for which funding is gratefully acknowledged.

REFERENCES
Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. 2003. From Interpreter to Compiler and Virtual Machine:

A Functional Derivation. Technical Report RS-03-14. Department of Computer Science, University of Aarhus.

Roland Backhouse. 2003. Program Construction: Calculating Implementations from Specifications. John Wiley and Sons.

Patrick Bahr. 2015. Calculating Certified Compilers for Non-Deterministic Languages. In Proceedings of the Symposium on
Mathematics of Program Construction.

Patrick Bahr and Graham Hutton. 2015. Calculating Correct Compilers. Journal of Functional Programming 25 (2015).

Patrick Bahr and Graham Hutton. 2020. Calculating Correct Compilers II: Return of the Register Machines. Journal of
Functional Programming 30 (2020).

Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel. 2014. Verified Compilation for Shared-Memory

C. In Programming Languages and Systems.
Edwin Brady. 2013. Idris, a General-Purpose Dependently Typed Programming Language: Design and Implementation.

Journal of Functional Programming 23, 05 (2013).

Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical Methods in Computer Science 1, 2 (2005).
Nils Anders Danielsson. 2012. Operational Semantics Using the Partiality Monad. In Proceedings of the International

Conference on Functional Programming.
Maulik A. Dave. 2003. Compiler Verification: A Bibliography. Software Engineering Notes 28, 6 (2003).
Jeremy Gibbons and Ralf Hinze. 2011. Just Do It: Simple Monadic Equational Reasoning. In Proceedings of the International

Conference on Functional Programming.
Benjamin Grégoire and Xavier Leroy. 2002. A Compiled Implementation of Strong Reduction. In Proceedings of the

International Conference on Functional Programming.
Chung-kil Hur, Paul He, Yannick Zakowski, and Steve Zdancewic. 2020. An Equational Theory for Weak Bisimulation via

Generalized Parameterized Coinduction. In Proceedings of the International Conference on Certified Programs and Proofs.
Graham Hutton and Joel Wright. 2007. What is the Meaning of These Constant Interruptions? Journal of Functional

Programming 17, 6 (2007).

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight Verification of

Separate Compilation. In Proceedings of the Symposium Principles of Programming Languages.
Xavier Leroy. 2006a. Coinductive Big-Step Operational Semantics. In Proceedings of the European Symposium on Programming

Languages and Systems.
Xavier Leroy. 2006b. Formal Certification of a Compiler Back-End or: Programming a Compiler with a Proof Assistant. In

Proceedings of the Symposium on Principles of Programming Languages.
Erik Meijer. 1992. Calculating Compilers. PhD Thesis. Katholieke Universiteit Nijmegen.

Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A

Compositionally Verified Compiler for a Higher-Order Imperative Language. In Proceedings of the International Conference
on Functional Programming.

David Park. 1981. Concurrency and Automata on Infinite Sequences. In Theoretical Computer Science.
Daniel Patterson and Amal Ahmed. 2019. The Next 700 Compiler Correctness Theorems (Functional Pearl). Proceedings of

the ACM on Programming Languages 3, ICFP (2019).

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-Language Semantics. In Proceedings of
the European Symposium on Programming Languages and Systems.

Monadic Compiler Calculation 1:27

Mitchell Pickard and Graham Hutton. 2021. Calculating Dependently-Typed Compilers. Proceedings of the ACM on
Programming Languages 5, ICFP (2021).

John C Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM
Annual Conference. ACM.

Peter Sestoft. 1997. Deriving a Lazy Abstract Machine. Journal of Functional Programming 7, 03 (1997).

Mike Spivey. 1990. A Functional Theory of Exceptions. Science of Computer Programming 14, 1 (1990).

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In Proceedings
of the Symposium on Principles of Programming Languages.

Mitchell Wand. 1982. Deriving Target Code as a Representation of Continuation Semantics. Transactions on Programming
Languages and Systems 4, 3 (1982).

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.

2019. Interaction Trees: Representing Recursive and Impure Programs in Coq. Proceedings of the ACM on Programming
Languages 4, POPL (2019).

Angel Zúñiga and Gemma Bel-Enguix. 2020. Coinductive Natural Semantics for Compiler Verification in Coq. Mathematics
8, 9 (2020).

	Abstract
	1 Introduction
	2 A simple non-total language
	2.1 Inductive specification
	2.2 Coinductive specification
	2.3 Bisimilarity
	2.4 Compiler correctness
	2.5 Compiler calculation
	2.6 Reflection

	3 Lambda calculus
	3.1 Syntax and semantics
	3.2 Compiler correctness
	3.3 Compiler calculation
	3.4 Reflection

	4 Non-determinism
	4.1 Syntax and semantics
	4.2 Bisimilarity
	4.3 Compiler correctness
	4.4 Compiler calculation
	4.5 Reflection

	5 Related work
	6 Conclusion and further work
	Acknowledgments
	References

