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Abstract

Over the past fifteen years, a number of languages for functional reactive programming (FRP) have
been suggested, which use modal types to ensure properties like causality, productivity and lack of
space leaks. So far, almost all of these languages have included a modal operator for delay on a global
clock. For some applications, however, the notion of global clock is unnatural and leads to leaky
abstractions as well as inefficient implementations. While modal languages without a global clock
have been proposed, no operational properties have been proved about them, yet.

This paper proposes Async RaTT, a new modal language for asynchronous FRP, equipped with an
operational semantics mapping complete programs to machines that take asynchronous input signals
and produce output signals. The main novelty of Async RaTT is a new modality for asynchronous
delay, allowing each output channel to be associated at runtime with the set of input channels it
depends on, thus causing the machine to only compute new output when necessary. We prove a series
of operational properties including causality, productivity and lack of space leaks. We also show that,
although the set of input channels associated with an output channel can change dynamically during
execution, upper bounds on these can be determined statically by the type system.

1 Introduction

Reactive programs are programs that engage in a dialogue with their environment, receiving
input and producing output, often without ever terminating. Examples include much of the
most safety critical software in use today, such as control software and servers, as well as
GUIs. Most reactive software is written in imperative languages using a combination of
complex features such as callbacks and shared memory, and for this reason it is error-prone
and hard to reason about.

The goal of functional reactive programming (FRP), originally proposed by Elliott and
Hudak (1997), is to provide programmers with the right abstractions to write reactive
programs in a functional style, allowing for concise, modular programs, as well as modular
reasoning principles for them. For such abstractions to be useful it is important that they
are designed so that efficient low-level implementations may be algorithmically generated
from high-level programs.
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The main abstraction of FRP is that of signals, which are time dependent values. In the
case of discrete time given by a global clock, a signal can be thought of as a stream of
data. A reactive program is essentially just a function taking input signals and producing
output signals. For this to be implementable, however, it needs to be causal: The current
output must only depend on current and past input. Moreover, the low-level implementations
generated from high-level programs should also be free of (implicit) space- and time-leaks.
This means that reactive programs should not store data indefinitely, causing the program
to eventually run out of space, nor should they repeat computations in such a way that the
execution of each step becomes increasingly slower.

These requirements have led to the development of modal FRP (Jeffrey, 2014, 2012;
Krishnaswami and Benton, 2011; Krishnaswami et al., 2012; Krishnaswami, 2013; Bahr
et al., 2019; Bahr, 2022; Jeltsch, 2012), a family of languages using modal types to ensure
that all programs can be implemented efficiently. The most important modal type constructor
is the later modality ⃝, used to classify data available in the next time step on some global,
discrete clock. For example, the type of signals should satisfy the type isomorphism Sig 𝐴 �
𝐴 ×⃝(Sig 𝐴) stating that the current value of the signal is available now, but its future values
are only available after the next time step. Using this encoding of signals, one can ensure
that all reactive programs are causal. Many modal FRP languages also include a variant of
the Nakano (2000) guarded fixed point operator of type (⃝𝐴→ 𝐴) → 𝐴. The type ensures
that recursive calls are only performed in future steps, thus ensuring termination of each
step of computation, a property called productivity. Often these languages also include a □
modality used to classify data that is stable, in the sense that it can be kept over time without
causing space leaks. Other modal constructors, such as ♢ (eventually) can be encoded,
suggesting a Curry-Howard correspondence between linear temporal logic (Pnueli, 1977)
and modal FRP (Jeffrey, 2012; Jeltsch, 2012; Cave et al., 2014; Bahr et al., 2021).

However, for many applications, the notion of a global clock associated with the ⃝ modal
operator may not be natural and can also lead to inefficient implementations. Consider, for
example, a GUI which takes an input signal of user keystrokes, as well as other signals that
are updated more frequently, like the mouse pointer coordinates. The global clock would
have to tick at least as fast as the updates to the fastest signal, and updates on the keystroke
signal will only happen on very few ticks on the global clock. Perhaps the most natural
way to model the keystroke signal is therefore a signal of type Maybe(Char). In the modal
FRP languages of Krishnaswami (2013); Bahr et al. (2019), the processor for this signal
will have to wake up for each tick on the global clock, check for input, and often also
transport some local state to the next time step by calling itself recursively. Perhaps more
problematic, however, is that an important abstraction barrier is broken when a processor
for an input signal is given access to the global clock. Instead, we would like to write the
GUI as a collection of processors for asynchronous input signals that are only activated
upon updates to the signals on which they depend.

1.1 Async RaTT

This paper presents Async RaTT, a modal FRP language in the RaTT family (Bahr et al.,
2019; Bahr, 2022; Bahr et al., 2021), designed for processing asynchronous input. A reactive
program in Async RaTT reads signals from a set of input channels and in response sends
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signals to a set of output channels. In a GUI application, typical input channels would
include the mouse position and keystroke events, while output channels could for example
include the content of a text field or the colour of a text field.

For each output channel 𝑜, the reactive program keeps track of the set 𝜃 of input channels
on which 𝑜 depends. We refer to such a set 𝜃 of input channels as a clock. When the signal
on an input channel 𝜅 is updated, only those output channels whose clock 𝜃 contains 𝜅 will
be updated. For example, the keystroke input channel might be in the clock for the text field
content but not the text field colour. Since the program can dynamically change its internal
dataflow graph, the clock associated with an output channel may change during execution
and so is not known at compile time. For example, the text field might fall out of focus
and thus not react to keystrokes any longer. We refer to the arrival of new data on an input
channel in the clock 𝜃 as a tick on clock 𝜃.

Async RaTT has a modal operator □ used to classify stable data, as well as two new
modalities: ∃⃝ for asynchronous delays and ∀⃝ for a delay on the global clock. A value
of type ∃⃝𝐴 is a pair consisting of a clock 𝜃 and a computation that can be executed to
return data of type 𝐴 on the next tick on 𝜃. The type ∃⃝𝐴 can therefore be thought of as an
existential type. Our notion of signal is encoded as a recursive type Sig 𝐴 � 𝐴 × ∃⃝(Sig 𝐴).
That means, a signal consists of its current value of type 𝐴 along with a tail of type
∃⃝(Sig 𝐴) that is a delayed computation producing future values of the signal. Since this
delayed computation uses the ∃⃝ modality, it contains a clock that specifies when the next
value of the signal becomes available. Consequently, as the signal unfolds over time, the
clock associated with its tail may change from one time step to the next.

Unlike the synchronous ⃝, the asynchronous ∃⃝ does not have an applicative action of
type ∃⃝(𝐴→ 𝐵) → ∃⃝𝐴→ ∃⃝𝐵 because the delayed function and the delayed input may not
arrive at the same time, and to avoid space leaks, Async RaTT does not allow the first input
to be stored until the second input arrives. Instead, Async RaTT synchronises delayed data
using an operator

sync : ∃⃝𝐴1 → ∃⃝𝐴2 → ∃⃝((𝐴1 × ∃⃝𝐴2) + ( ∃⃝𝐴1 × 𝐴2) + (𝐴1 × 𝐴2))

Given two delayed computations associated with clocks 𝜃1 and 𝜃2, respectively, sync returns
the delayed computation associated with the union clock 𝜃1 ⊔ 𝜃2. This delayed computation
waits for an input on any input channel 𝜅 ∈ 𝜃1 ⊔ 𝜃2, and then evaluates the computations
that can be evaluated depending on whether 𝜅 ∈ 𝜃1, 𝜅 ∈ 𝜃2, or both. For example, if the input
is received on channel 𝜅 ∈ 𝜃1 \ 𝜃2, only the first delayed computation is evaluated. The sync
operator can be used to implement signal combinators that dynamically update the dataflow
graph of a program. An example of such a signal combinator is

switch : Sig 𝐴→ ∃⃝(Sig 𝐴) → Sig 𝐴

The signal switch xs ys first behaves like the signal xs, but switches to ys as soon as it arrives,
namely when its clock ticks.

The modal type ∀⃝𝐴 classifies computations that can be run at any time in the future, but
not now. It is used in the guarded fixed point operator, which in Async RaTT has type

□( ∀⃝𝐴→ 𝐴) → 𝐴
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The input to the fixed point operator must be a stable function (as classified by □), because
it will be used in unfoldings at any time in the future. The use of ∀⃝ restricts fixed points to
only unfold in the future, ensuring termination of each step of computation.

1.2 Operational semantics and results

We present an operational semantics that maps each complete Async RaTT program to a
machine that transforms a sequence of inputs received on its input channels to a sequence
of outputs on its output channels. The transformation is done in steps, processing one input
at a time, producing new outputs on the affected output channels.

The operational semantics consists of two parts. The first is the evaluation semantics
describing the evaluation of a term in each step of the machine. This semantics takes a
term, a store, and values received on input channels and produces a value and an updated
store. The store contains delayed computations stored in up to two separate heaps: one heap
contains previously stored delayed computations that the evaluation semantics can now
run, and the other heap can be used to store new delayed computations to be evaluated at
a later step. The second part of the operational semantics is the reactive semantics, which
describes the machine which, at each step, locates the output signals to be updated and
executes the corresponding delayed computations according to the evaluation semantics in
order to produce output.

The transformation of input to output described by the operational semantics is causal by
construction. We show that it is also deterministic and productive – in the sense that each
step terminates and never gets stuck. We also show that the execution of an Async RaTT
program is free of (implicit) space leaks. This is achieved following a technique originally
due to Krishnaswami (2013): At the end of each step of execution, the machine deletes all
delayed computations that in principle could have been run in the current step – regardless
of whether they actually were run. All inputs are also deleted, either at the end of the step
or when the next input from the same signal arrives, depending on the kind of the specific
input signal. Our metatheoretic results show that this aggressive garbage collection strategy
is safe. Of course, the programmer can still write programs that accumulate space, but such
leaks will be explicit in the source program, not implicitly introduced by the implementation
of the language.

Finally, we show that an upper bound on the dynamic clocks associated with an output
signal can be computed statically. More precisely, given an Async RaTT program consisting
of a number of output signals in a given context Δ of input channels, if one of the output
signals can be typed in a smaller contextΔ′ ⊆ Δ, then that signal will never need to update on
input received on channels in Δ \ Δ′. Note that this signal independence result holds despite
the ability to express combinators like switch, which dynamically change the dataflow graph
of a program.

1.3 Overview

The paper is organised as follows: Section 2 presents the syntax and type system of Async
RaTT. Section 3 demonstrates the expressivity of Async RaTT by developing a small library
of signal combinators, along with examples that use the library for GUI programming and
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Locations 𝑙 ∈ Loc
Input Channels 𝜅 ∈ Chan
Clock Expr. 𝜃 ::= cl (𝑡) | 𝜃 ⊔ 𝜃′
Types 𝐴, 𝐵 ::= 𝛼 | 1 | Nat | 𝐴 × 𝐵 | 𝐴 + 𝐵 | 𝐴→ 𝐵 | ∃⃝𝐴 | ∀⃝𝐴 | Fix 𝛼.𝐴 | □𝐴
Stable Types 𝑆, 𝑆′ ::= 1 | Nat | 𝑆 × 𝑆′ | 𝑆 + 𝑆′ | ∀⃝𝐴 | □𝐴
Value Types 𝑇, 𝑇 ′ ::= 1 | Nat | 𝑇 ×𝑇 ′ | 𝑇 +𝑇 ′

Values 𝑣, 𝑤 ::= 𝑥 | () | 0 | suc 𝑣 | 𝜆𝑥.𝑡 | (𝑣, 𝑤) | in𝑖 𝑣 | 𝑙 | wait𝜅 | box 𝑡 | dfix 𝑥.𝑡 | into 𝑣
Terms 𝑠, 𝑡 ::= 𝑣 | suc 𝑡 | recNat (𝑠, 𝑥 𝑦.𝑡, 𝑢) | (𝑠, 𝑡) | in𝑖 𝑡 | 𝜋𝑖 𝑡 | 𝑡1𝑡2 | let 𝑥 = 𝑠 in 𝑡

| case 𝑡 of in1 𝑥.𝑡1; in2 𝑥.𝑡2 | delay𝜃 𝑡 | adv 𝑡 | adv∀ 𝑡 | select 𝑡1 𝑡2 | unbox 𝑡
| fix 𝑥.𝑡 | never | into | out | read𝜅

Fig. 1. Syntax.

computing integrals and derivatives of signals. The operational semantics is defined in
section 4, which also illustrates it with an example, and presents the main results. Section 5
presents the proofs of the main results, and in particular defines the Kripke logical relation
used for the proofs. Section 6 presents a more general type system called Full Async RaTT
that dispenses with some of the limitation of Async RaTT. Moreover, we show that closed
Full Async RaTT terms can be algorithmically transformed into Async RaTT terms of the
same type. Finally, section 7 and section 8 discuss related work, conclusions and future
work. This version of the paper is equipped with an appendix detailing the proof of the
fundamental property of the Kripke logical relation.

1.4 Additional material

This paper extends the conference paper (Bahr and Møgelberg, 2023) with the following
additional contributions:

• The type system of Async RaTT has been generalised and simplified. It now allows
arbitrarily many ticks in the typing context and places no restrictions on the ticks
occurring in the typing context when typing lambda abstractions.

• We include an additional example program in section 3.4.
• We present a generalised type system, called Full Async RaTT, and show that closed

Full Async RaTT programs can be transformed into Async RaTT programs of the
same type.

• We give examples demonstrating that Full Async RaTT programs do not in general
satisfy the operational properties of Async RaTT, and we illustrate how the program
transformation from Full Async RaTT to Async RaTT recovers these properties.

• We include all proofs of the main results: productivity, causality, signal independence,
and absence of implicit space leaks.
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· ⊢Δ

Γ ⊢Δ 𝑥 ∉ dom (Γ)
Γ, 𝑥 : 𝐴 ⊢Δ

Γ ⊢Δ Γ ⊢Δ 𝜃 : Clock
Γ, ✓𝜃 ⊢Δ

Γ ⊢Δ 𝜃 : Clock Γ ⊢Δ 𝜃′ : Clock
Γ ⊢Δ 𝜃 ⊔ 𝜃′ : Clock

Γ ⊢Δ 𝑣 : ∃⃝𝐴

Γ ⊢Δ cl (𝑣) : Clock
★

Γ′ tick-free or 𝐴 stable
Γ, 𝑥 : 𝐴, Γ′ ⊢Δ 𝑥 : 𝐴

Γ ⊢Δ () : 1
Γ ⊢Δ 𝑠 : 𝐴 Γ, 𝑥 : 𝐴 ⊢Δ 𝑡 : 𝐵

Γ ⊢Δ let 𝑥 = 𝑠 in 𝑡 : 𝐵
Γ, 𝑥 : 𝐴 ⊢Δ 𝑡 : 𝐵

Γ ⊢Δ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

Γ ⊢Δ 𝑡 : 𝐴→ 𝐵 Γ ⊢Δ 𝑡′ : 𝐴
Γ ⊢Δ 𝑡 𝑡′ : 𝐵

Γ ⊢Δ 𝑡 : 𝐴𝑖 𝑖 ∈ {1, 2}
Γ ⊢Δ in𝑖 𝑡 : 𝐴1 + 𝐴2

Γ, 𝑥 : 𝐴𝑖 ⊢Δ 𝑡𝑖 : 𝐵 Γ ⊢Δ 𝑡 : 𝐴1 + 𝐴2 𝑖 ∈ {1, 2}
Γ ⊢Δ case 𝑡 of in1 𝑥.𝑡1; in2 𝑥.𝑡2 : 𝐵

Γ ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝑡′ : 𝐵
Γ ⊢Δ

(
𝑡, 𝑡′

)
: 𝐴 × 𝐵

Γ ⊢Δ 𝑡 : 𝐴1 × 𝐴2 𝑖 ∈ {1, 2}
Γ ⊢Δ 𝜋𝑖 𝑡 : 𝐴𝑖

Γ, ✓𝜃 ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝜃 : Clock
Γ ⊢Δ delay𝜃 𝑡 : ∃⃝𝐴 Γ ⊢Δ never : ∃⃝𝐴

𝜅 :𝑐 𝐴 ∈ Δ 𝑐 ∈ {p, bp}
Γ ⊢Δ wait𝜅 : ∃⃝𝐴

𝜅 :𝑐 𝐴 ∈ Δ 𝑐 ∈ {b, bp}
Γ ⊢Δ read𝜅 : 𝐴

Γ ⊢Δ 𝑣 : ∃⃝𝐴 Γ′ tick-free
Γ, ✓cl(𝑣) , Γ

′ ⊢Δ adv 𝑣 : 𝐴
★

Γ ⊢Δ 𝑣1 : ∃⃝𝐴1 Γ ⊢Δ 𝑣2 : ∃⃝𝐴2 𝜃 = cl (𝑣1) ⊔ cl (𝑣2) Γ′ tick-free
Γ, ✓𝜃 , Γ

′ ⊢Δ select 𝑣1 𝑣2 : ((𝐴1 × ∃⃝𝐴2) + ( ∃⃝𝐴1 × 𝐴2)) + (𝐴1 × 𝐴2)
★

Γ ⊢Δ 0 : Nat

Γ ⊢Δ 𝑡 : Nat
Γ ⊢Δ suc 𝑡 : Nat

Γ ⊢Δ 𝑠 : 𝐴 Γ, 𝑥 : Nat, 𝑦 : 𝐴 ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝑛 : Nat
Γ ⊢Δ recNat (𝑠, 𝑥 𝑦.𝑡, 𝑛) : 𝐴

Γ□, 𝑥 : ∀⃝𝐴 ⊢Δ 𝑡 : 𝐴
Γ ⊢Δ fix 𝑥.𝑡 : 𝐴

Γ ⊢Δ 𝑥 : ∀⃝𝐴

Γ, ✓𝜃 , Γ
′ ⊢Δ adv∀ 𝑥 : 𝐴

Γ□ ⊢Δ 𝑡 : 𝐴
Γ ⊢Δ box 𝑡 : □𝐴

Γ ⊢Δ 𝑡 : □𝐴
Γ ⊢Δ unbox 𝑡 : 𝐴

Γ ⊢Δ 𝑡 : Fix 𝛼.𝐴
Γ ⊢Δ out 𝑡 : 𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼]

Γ ⊢Δ 𝑡 : 𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼]
Γ ⊢Δ into 𝑡 : Fix 𝛼.𝐴

·□ = · (Γ, ✓𝜃 )□ = Γ□ (Γ, 𝑥 : 𝐴)□ =

{
Γ□, 𝑥 : 𝐴 if 𝐴 stable
Γ□ otherwise

Fig. 2. Typing rules for Async RaTT. Rules marked with ★will be generalised in section 6.

2 Async RaTT

In this section, we give an overview of Async RaTT, referring to Figures 1 and 2 for the full
specification of its syntax and typing rules.

An Async RaTT program has access to a set of input channels, each of which receives
updates asynchronously from each other. To account for this, typing judgements are relative
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to an input channel context Δ or input context for short. An example of such a context is

keyPressed :p Nat,mouseCoord :bp Nat × Nat, time :b Float (2.1)

There are three classes of input channels, each corresponding to one of the subscripts
p, b, and bp as in the example above. Push-only input channels, indicated by p, are input
channels whose updates are pushed through the program, possibly causing output channels
to be updated. In the example context above, we want the program to react to user keypresses
immediately, and so updates to this should be pushed. On the other hand, we may wish to
have access to a time input channel, which we can read from at any time, but we may not
want the program to wake up whenever the time changes. Time is therefore treated as a
buffered-only input channel, indicated by b, whose most recent value is buffered, but whose
changes will not trigger the program to update any output channel. Finally, input channels
may be both buffered and pushed, indicated by bp, which means that updates are pushed,
but we also keep the value around in a buffer, so that the latest value can always be read
by the program. This is unlike the push-only input channels whose values are deleted for
space efficiency reasons, once an update has been treated. For example, we might want to
be informed when the mouse coordinates are updated, but also keep these around so that
we can read the mouse coordinates when a key is pressed, even if the mouse has not moved.
We refer to input channels that are either push-only or buffered-push (p or bp) as push
channels and similarly to input channels that are either buffered-only or buffered-push as
buffered channels.

All signals are assumed to have value types, i.e., any declaration 𝜅 :𝑐 𝐴 in Δ must have a
value type 𝐴. Intuitively speaking, value types classify basic values that contain no delayed
computations and thus exclude function types and all modal types. The grammar for value
types is given in Figure 1.

2.1 Clocks and the later modality ∃⃝

A clock is effectively a set of push channels (p or bp), that the program may have to react to.
For instance, ∅, {keyPressed} and {keyPressed,mouseCoord} are all examples of clocks
for the example input context given in (2.1) above. The type ∃⃝𝐴 is a type of delayed
computation on an existentially quantified clock. In other words, a value of type ∃⃝𝐴 is a
pair of a clock 𝜃 and a computation that will produce a value of type 𝐴 once an update on
one of the input channels in 𝜃 is received. We refer to such an update as a tick on the clock
𝜃. For example, if the associated clock is {keyPressed,mouseCoord}, then the data of type
𝐴 can be computed once keyPressed or mouseCoord receive new input.

Since ∃⃝𝐴 are existential types, one can obtain the clock cl (𝑣) for any value 𝑣 of these
types. The values of type ∃⃝𝐴 are variables and wait𝜅 where 𝜅 is a push channel. The latter
acts as a reference to the next value pushed on 𝜅, and so we can intuitively think of the clock
expression cl (wait𝜅 ) as representing the clock {𝜅}. Clocks can also be combined using a
union operator ⊔. We also include an element never which is associated with the empty
clock.

We use Fitch-style (Clouston, 2018), rather than the more traditional dual context
style (Davies and Pfenning, 2001) for programming with the modal type constructors
of Async RaTT. In the case of ∃⃝, this means that introduction and elimination rules use a
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special symbol ✓𝜃 , referred to as a tick, in the typing context. One can think of a tick ✓𝜃 as
representing a tick of the clock 𝜃. Thus, it divides the judgement into variables (to the left of
✓𝜃 ) received before the tick, and everything else, which happens after the tick. For example,
we can interpret the judgement 𝑥 : 𝐴, ✓𝜃 , 𝑦 : 𝐵 ⊢Δ 𝑡 :𝐶 as saying that if 𝑥 is available before
the tick of the clock 𝜃 and 𝑦 is available after the tick of 𝜃, then 𝑡 is available after the tick
of 𝜃. With this in mind, the elimination rule for ∃⃝ should be read as follows: If 𝑣 has type
∃⃝𝐴 now, then adv 𝑣 has type 𝐴 after a tick on the clock cl (𝑣). Similarly, the introduction
rule for ∃⃝ should be read as: If 𝑡 has type 𝐴 after a tick on clock 𝜃, then delay𝜃 𝑡 has type
∃⃝𝐴 now.

Operationally, the term delay𝜃 𝑡 creates a delayed computation, which is stored in a heap
until the input data necessary for evaluating it is available. It is therefore not considered a
value. Rather, delay𝜃 𝑡 evaluates to a heap reference 𝑙 that points to the delayed computation.
Although heap references are part of Async RaTT, and are even considered values (cf.
Figure 1), programmers are not allowed to use these directly, and there are therefore no
typing rules for them.

Two delayed values 𝑣1 : ∃⃝𝐴1 and 𝑣2 : ∃⃝𝐴2 can be synchronised using select once a tick
on the union clock cl (𝑣1) ⊔ cl (𝑣2) has been received. The type of select 𝑣1 𝑣2 reflects the
three possible cases for such a tick: It could be in one of the two clocks cl (𝑣1) and cl (𝑣2),
but not the other, or it could be in both. For example, if the input is in cl (𝑣1), but not cl (𝑣2),
then data of type 𝐴1 × ∃⃝𝐴2 can be computed. The sync operator shown in section 1.1 can
be defined using select:

sync = 𝜆𝑥.𝜆𝑦.delaycl(𝑥 )⊔cl(𝑦) (select 𝑥 𝑦)

The idea of using a term like select to distinguish between these cases is due to Graulund
et al. (2021), who only require two cases to be defined, resorting to non-deterministic choice
in the case where the tick is in the intersection of the clocks. This behaviour matches the
original select primitive in Concurrent ML (Reppy, 1999). By contrast, in Async RaTT,
providing all three cases is crucial for the operational results of section 4.

Note that the typing rules allow us to apply select and adv only to values. As we will
show in section 6, this restriction is necessary to ensure that the operational semantics, and
in particular its aggressive garbage collection strategy, is sound. This restriction also means
that clock expressions are always values that do not need to be evaluated. For example,
evaluating delaycl(𝑡 ) (adv 𝑡) would require evaluating 𝑡 twice: first for evaluating the clock,
and then to evaluate the term itself. Elimination of ∃⃝ can be done for general terms 𝑡 using
a combination of let-binding and adv, so that we write let 𝑥 = 𝑡 in delaycl(𝑥 ) (adv 𝑥) instead
of delaycl(𝑡 ) (adv 𝑡). Section 6 proves that this idea works in general: Any closed term that
is typeable in a more relaxed type system that allows general terms as arguments to adv
and select can be systematically transformed in a type preserving way so that it satisfies the
stricter typing rules in Figure 2. This transformation is also the basis for an implementation
of Async RaTT as an embedded language in Haskell (Bahr et al., 2024).

2.2 Stable types and fixed points

General values in Async RaTT can contain references to time-dependent data, such as
delayed computations stored in the heap. One of the main purposes of the type system
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is to prevent such references to be dereferenced at times in the future when a delayed
computation has been deleted from the heap. For this reason, arbitrary data should not be
kept across time steps. This is reflected in the typing rule for variable introduction, which
prevents general variables to be introduced across ticks.

For some types, however, values can not contain such references. We refer to these types
as stable types and the grammar defining them is given in Figure 1. The two kinds of types
that are explicitly not stable are delayed types ∃⃝𝐴 and function types 𝐴→ 𝐵. Intuitively
speaking, a value 𝑣 of type ∃⃝𝐴 is only available until its clock cl (𝑣) ticks and thus cannot
be considered stable. Similarly, a value of type 𝐴→ 𝐵 is a closure which may contain
arbitrary data, in particular values of type ∃⃝𝐴.

Stable types include all those of the form □𝐴, which classify computations that produce
values of type 𝐴 without any access to delayed computations. The introduction rule for
□ constructs a delayed computation box 𝑡 that can be evaluated at any time in the future.
This requires 𝑡 to be typed in a stable context, and so the hypothesis of the typing rule
removes all ticks and all variables not of stable type from the context. However, since
both wait𝜅 and read𝜅 are typeable in an empty context, they are stable in the sense that
⊢Δ box wait𝜅 : □( ∃⃝𝐴) for any 𝜅 :𝑐 𝐴 ∈ Δ where 𝑐 ∈ {p, bp} and ⊢Δ box read𝜅 : □𝐴 for any
𝜅 :𝑐 𝐴 ∈ Δ where 𝑐 ∈ {b, bp}.

The □ modality has a counit and a comultiplication:

counit : □𝐴→ 𝐴

counit = 𝜆𝑥.unbox 𝑥
comult : □𝐴→□(□𝐴)
comult = 𝜆𝑥.box (box (unbox 𝑥))

Async RaTT is a terminating calculus in the sense that each step of computation ter-
minates. It does, however, still allow recursive definitions through a fixed point operator,
whose type ensures that recursive calls are only performed during later time steps. More
precisely, the recursion variable 𝑥 in fix 𝑥.𝑡 has type ∀⃝𝐴, which means that the recursive
definition can be unfolded to produce a term of type 𝐴 any time in the future, but not now.
This is ensured through the elimination rule for ∀⃝ which allows it to be advanced using a
tick on any clock typeable in the current context. Since fixed points can be called recursively
at any time in the future, these must be stable, and so 𝑡 is required to be typeable in a stable
context.

To understand the difference between the two later modalities ∃⃝ and ∀⃝ it is instructive to
conceptualise them in terms of a more basic type modality ⃝𝜃 that classifies computations
that are delayed with respect to a specific clock 𝜃. Assuming such a type modality, we can
think of ∃⃝𝐴 as the existential type ∃𝜃.⃝𝜃 𝐴 and of ∀⃝𝐴 as the polymorphic type ∀𝜃.⃝𝜃 𝐴.
A value of the former type consists of a clock 𝜃 and a delayed computation that can be
performed as soon as 𝜃 ticks, while a value of the latter type is a delayed computation that
can be performed as soon as any clock ticks.

The types Fix 𝛼.𝐴 are guarded recursive types that unfold to 𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼] via the
terms into and out. The most important of these types is Sig 𝐴 defined as Fix 𝛼.(𝐴 × 𝛼),
which unfolds to 𝐴 × ∃⃝(Sig 𝐴). That is, a signal consists of a current value and a delayed
tail, which at some time in the future may return a new signal.
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As an example, we can use any push channel 𝜅 :𝑐 𝐴 ∈ Δ, i.e., 𝑐 ∈ {p, bp}, to define a
corresponding stable signal in Async RaTT:

box
(
fix 𝑥.delaycl(wait𝜅 ) (into (adv wait𝜅 , adv∀ 𝑥))

)
: □( ∃⃝(Sig 𝐴))

where the recursion variable 𝑥 has type ∀⃝( ∃⃝(Sig 𝐴)). These signals, of course, operate on
a fixed clock {𝜅}, but in general, the clock associated with the tail of a signal may change
from one step to the next, which we shall see examples of in section 3.

Besides all these constructions, Async RaTT also has a number of standard constructions
from functional programming: sum types, product types, natural numbers and function
types. The typing rules for these are completely standard.

3 Programming in Async RaTT

In this section, we demonstrate the expressiveness of Async RaTT with a number of exam-
ples. To this end, we assume a surface language that extends Async RaTT with syntactic
sugar for pattern matching, recursion, and top-level definitions. In addition, we elide the
clock subscript 𝜃 when using delay𝜃 as it can be inferred from the context. This syntax can
be easily elaborated into the Async RaTT calculus as described in section 3.6.

3.1 Simple signal combinators

We start by implementing a small set of simple combinators to manipulate signals, i.e.,
elements of the guarded recursive type Sig 𝐴 defined as Fix 𝛼.(𝐴 × 𝛼). For readability, we
use the shorthand 𝑠 :: 𝑡 for into (𝑠, 𝑡), such that, given 𝑠 : 𝐴 and 𝑡 : ∃⃝(Sig 𝐴), we have that
𝑠 :: 𝑡 : Sig 𝐴.

We start with one of the simplest signal combinator:

map : □ (A → B) → Sig A → Sig B
map f (x :: xs) = unbox f x :: delay (map f (adv xs))

The map combinator takes a stable function 𝑓 and applies it pointwise to a given signal.
The fact that 𝑓 is of type □(𝐴→ 𝐵) rather than just 𝐴→ 𝐵 is crucial: Since 𝐴→ 𝐵 is not
a stable type, 𝑓 would otherwise not be in scope ‘under’ the delay, where we need 𝑓 for the
recursive call. The need for the □ modality also has an intuitive justification: The function
will be applied to values of the input signal arbitrarily far into the future, but a closure of
type 𝐴→ 𝐵 may contain references to delayed computations that may have been garbage
collected in the future.

The map combinator is stateless in the sense that the current value of the output signal
only depends on the current value of the input signal. We can generalise this combinator to
scan, which produces an output signal that in addition may depend on the previous value
of the output signal:

scan : stable B ⇒□ (B → A → B) → B → Sig A → Sig B
scan f acc (a :: as) = acc′ :: delay (scan f acc′ (adv as))

where acc′ = unbox f acc a
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Every time the input signal updates, the output signal produces a new value based on the
current value of the input signal and the previous value of the output signal. Since the
previous value of the output signal is accessed, 𝐵 must be a stable type. We use the ⇒
notation to delineate such constraints from the type signature.

For example, we can use scan to produce the sum of an input signal of numbers:

sum : Sig Nat → Sig Nat
sum = scan (box (𝜆 m n.m + n)) 0

Often we only have access to a delayed signal. For instance, for each push channel
𝜅 :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {p, bp} we have the signal

sigAwait𝜅 : ∃⃝ (Sig A)
sigAwait𝜅 = delay (adv wait𝜅 :: sigAwait𝜅 )

For example, we might have the push-only channels mouseClick :p 1 or keyPress :p KeyCode
available. We can derive a version of scan for such signals:

scanAwait : stable B ⇒□ (B → A → B) → B → ∃⃝ (Sig A) → Sig B
scanAwait f acc as = acc :: delay (scan f acc (adv as))

A simple use case of scanAwait is a combinator that counts the updates of a given delayed
signal, e.g., the number of key presses:

count : ∃⃝ (Sig A) → Nat → Sig Nat
count s n = scanAwait (box (𝜆 m .m + 1)) n s

Like scan, also map naturally has a variant for delayed signals:

mapAwait : □ (A → B) → ∃⃝ (Sig A) → ∃⃝ (Sig B)
mapAwait f d = delay (map f (adv d))

The advantage of signals being first-class elements of the language is that we can easily
combine simple signals to construct more complex signals. The simplest signal that can
serve as such a basic building block for more complex signals is the constant signal:

const : A → Sig A
const x = x :: never

In isolation this combinator may appear to be of little use. Its utility becomes apparent once
we also have means to combine it with other signals. A very simple way to combine signals
is provided by the following jump combinator:

jump : □ (A → (1 + Sig A)) → Sig A → Sig A
jump f (x :: xs) = case unbox f x of

in1 () . x :: delay (jump f (adv xs))
in2 xs′. xs′

This combinator produces a signal that first behaves like the second argument, but as soon
as the first argument produces a new signal when given the current value of the signal, it
behaves like this new signal.
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We can now use const to define a combinator that takes a predicate and a signal and
modifies the signal so that it stops, i.e., behaves like the constant signal, as soon as the
predicate is satisfied:

stop : □ (A → Bool) → Sig A → Sig A
stop p = jump (box (𝜆 x. if unbox p x then in2 (const x) else in1 ()))

For readability, we have used the notation Bool as shorthand for 1 + 1 and if 𝑏 then 𝑑 else 𝑒
as shorthand for case 𝑏 of in1 𝑥.𝑑; in2 𝑦.𝑒.

We can use stop to implement a counter with an upper bound:

countMax : ∃⃝ (Sig A) → Nat → Nat → Sig Nat
countMax s start end = stop (box (𝜆 n. n ≡ end)) (count s start)

For the above example, we assume that we have implemented a comparison operator ≡
on natural numbers, which we can do using recNat. In the following section, we see more
examples of combinators that combine several signals.

3.2 Concurrent Signal Combinators

The combinators we looked at so far only consume a single signal, and thus have no need to
account for the concurrent behaviour of two or more clocks. For example, we may have two
input signals produced by two redundant sensors that independently provide a reading we
are interested in. To combine these two signals, we can interleave them using the following
combinator:

interleave : □ (A → A → A) → ∃⃝ (Sig A) → ∃⃝ (Sig A) → ∃⃝ (Sig A)
interleave f xs ys = delay (case select xs ys of

Left (x :: xs′) ys′ . x :: interleave f xs′ ys′

Right xs′ (y :: ys′). y :: interleave f xs′ ys′

Both (x :: xs′) (y :: ys′). unbox f x y :: interleave f xs′ xs′)

In this and subsequent definitions, we use the shorthands Left, Right, and Both to construct
and pattern match values of type ((𝐴1 × ∃⃝𝐴2) + ( ∃⃝𝐴1 × 𝐴2)) + (𝐴1 × 𝐴2) produced by
select. For example, Left 𝑠 𝑡 is short for in1 (in1 (𝑠, 𝑡)), i.e., the case that the left clock ticked
first. The interleave combinator uses select in order to wait until at least one of the input
signals ticks, and then updates the output signal accordingly. In case that both signals tick
simultaneously, the provided merging function 𝑓 is applied. For example, 𝑓 could just
always use the value of the first signal or take the average. Note that the produced signal
combines the clocks of the input signals, i.e., it ticks whenever either of the input signals
ticks.

We might also be interested in the values of both input signals simultaneously, in which
case we could use zip:

zip : stable A, B ⇒ Sig A → Sig B → Sig (A × B)
zip (x :: xs) (y :: ys) = (x, y) :: delay (case select xs ys of

Left xs′ ys′. zip xs′ (y :: ys′)
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Right xs′ ys′. zip (x :: xs′) ys′

Both xs′ ys′. zip xs′ ys′)

Similarly to interleave, the output signal produced by zip ticks whenever either of the input
signals does. However, note that in the Left and Right cases, we take the previously observed
value from the signal that did not tick and copy it into the future. Hence, we need both
types, 𝐴 and 𝐵, to be stable: The variables 𝑥 of type 𝐴 and 𝑦 of type 𝐵 are bound outside
the scope of the delay, but they are used inside it, namely in the Right case and the Left
case, respectively.

Finally, we consider the switching of signals. We wish to produce a signal that behaves
initially like a given input signal, but switches to a different signal as soon as some event
happens. This idea is implemented in the switch function:

switch : Sig A → ∃⃝ (Sig A) → Sig A
switch (x :: xs) d = x :: delay (case select xs d of

Left xs′ d′. switch xs′ d′

Right d′. d′

Both xs′ d′. d′)

The event that represents the future change of the signal is represented as a delayed signal,
and as soon as this delayed signal ticks, as in the Right and Both cases, it takes over. With
the help of switch we can construct dynamic dataflow graphs since we replace a given signal
with an entirely new signal, which may depend on different input channels and intermediate
signals compared to the original signal.

We will demonstrate an example of this dynamic behaviour in the next section. In
preparation for that we devise two variants of switch, both of which allow the new signal to
depend on the value of the previous signal:

switchS : stable A ⇒ Sig A → ∃⃝ (A → Sig A) → Sig A
switchS (x :: xs) d = x :: delay (case select xs d of

Left xs′ d′. switchS xs′ d′

Right d′. d′ x
Both (x′ :: xs′) d′. d′ x′)

Instead of a new signal, this combinator waits for a function that produces the new signal,
and we feed this function the last value of the first signal.

We can further generalise switchS so that instead of waiting for a single delayed function
to produce a new signal, we wait for a delayed signal of such functions

switchR : stable A ⇒ Sig A → ∃⃝ (Sig (A → Sig A)) → Sig A
switchR sig steps = switchS sig

(delay (let step :: steps′ = adv steps in𝜆 x. switchR (step x) steps′))

Wile switchS changes behaviour once, namely when the delayed function arrives, switchR
allows us to change behaviour repeatedly, namely every time the delayed signal produces a
new function.
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3.3 A simple GUI example

To demonstrate how to use our signal combinators, we consider a very simple example of
a GUI application: Our goal is to write a reactive program with two output channels that
describe the contents of two text fields. To this end, the two output channels are given the
type Sig Nat. The number displayed in text fields should be incremented each time the user
clicks a button, which is available as an input channel up :p 1 ∈ Δ. However, there is only
one ‘up’ button and the user can change which text field should be changed by the ‘up’
button using a ‘toggle’ button, which is available as an input channel toggle :p 1 ∈ Δ.

That means, the contents of the first text field can be described by a signal produced by
the count combinator, but then switches to a signal produced by the const combinator as
soon as ‘toggle’ is pressed. The behaviour of the other text field is reversed: first const,
then count. This continuous toggling between behaviours can be concisely described by the
following combinator:

toggleSig : stable A ⇒□ ( ∃⃝ 1) →□ (A → Sig A) →□ (A → Sig A) → A → Sig A
toggleSig tog f g x = switchS (unbox f x) (delay (adv tick; toggleSig tog g f ))

where tick = unbox tog

The first argument provides the events that determine when to toggle between the two
behaviours, which in turn are given as the next two arguments. In the implementation we
use the notation 𝑠; 𝑡 as a shorthand for let () = 𝑠 in 𝑡. The toggleSig combinator uses switchS
to start with the first signal provided by 𝑓 , but then switches to 𝑔 as soon as the toggle tog
ticks by using a recursive call that swaps the order of the two arguments 𝑓 and 𝑔.

The output channels that describe the two text fields can now be implemented by providing
the appropriate input signals to toggleSig:

field1, field2 : Sig Nat
field1 = toggleSig (box waittoggle) (box (count sigAwaitup)) (box const) 0
field2 = toggleSig (box waittoggle) (box const) (box (count sigAwaitup)) 0

Note that the dataflow graph changes during the execution of the program and how that
change is reflected in the clocks associated with the output channels: The output channel
for the first text field first has the clock {up, toggle} as it must both count the number of
times the ‘up’ button is clicked and change its behaviour in reaction to the ‘toggle’ button
being clicked. Once the ‘toggle’ button has been clicked, the clock for the output channel
for the text field changes to {toggle} as it now ignores the ‘up’ button. We will illustrate
the run-time behaviour of this example in more detail in section 4.3 when we discuss the
operational semantics of Async RaTT.

3.4 An interactive timer

As a second – more complex – example, we consider an interactive timer based on the
7GUIs benchmark (Kiss, 2014). This timer is a natural number signal that starting from 0
counts upwards each second. This signal depends on three push-only channels: seconds :p 1,
reset :p 1, and max :p Nat. The timer is incremented by 1 each time seconds ticks and is reset
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to 0 whenever reset ticks. Moreover, the timer stops when it reaches a maximum value,
which is provided by the max channel.

Our goal is to implement a signal of type Sig Nat that has the behaviour described above.
To this end, we implement a signal Sig (Nat × Nat) that consists of the actual timer value
as well as the current maximum of the timer. With this in mind, we can implement the
function that starts the basic behaviour of the timer given an initial value:

start : (Nat × Nat) → Sig (Nat × Nat)
start (n,max) = stop

(box (𝜆 (n,max). n ⩾ max))
(scanAwait (box (𝜆 (n,max) . (n + 1,max))) (n,max) sigAwaitseconds)

We use scanAwait to increment the timer similarly to the count example from section 3.1.
Then we use the stop combinator to stop the signal once we have reached the maximum.

Next we define two signals that describe how the reset and max channels change the
timer:

resetSig : ∃⃝ (Sig (Nat × Nat → Nat × Nat))
resetSig = mapAwait (box (𝜆 () ( ,max). (0,max))) sigAwaitreset

setMaxSig : ∃⃝ (Sig (Nat × Nat → Nat × Nat))
setMaxSig = mapAwait (box (𝜆 max′ (n, ). (min n max′,max′))) sigAwaitmax

The two delayed signals resetSig and setMaxSig produce functions that describe how the
current state of the timer should be changed upon receiving input on the reset and max
channels, respectively. To this end, we assume that min : Nat → Nat → Nat implements a
function that produces the minimum of two natural numbers. We then interleave these two
signals using function composition, i.e., if both signals produce a function at the same time
we sequentially compose them:

inputSig :: ∃⃝ (Sig (Nat × Nat → Nat × Nat))
inputSig = interleave (box (◦)) resetSig setMaxSig

We then compose the functions produced by inputSig with the start function to produce
functions that describe how to restart the timer signal in reaction to a reset or max input. We
can then use this as the switching signal for the switchR combinator to obtain the desired
behaviour:

restartSig :: ∃⃝ (Sig (Nat × Nat → Sig (Nat × Nat)))
restartSig = mapAwait (box (𝜆 f . start ◦ f )) inputSig
timerMaxSig :: Sig (Nat × Nat)
timerMaxSig = switchR (start (0, 100)) restartSig
timerSig : Sig Nat
timerSig = map (box (𝜆 (n, ). n)) timerMaxSig

The final signal timerSig is then produced by simply projecting to the first component, i.e.,
forgetting the component that stores the maximum.
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integral : Float → Sig Float → Sig Float
integral cur (0 :: xs) = cur :: delay (integral cur (adv xs))
integral cur (x :: xs) = cur :: delay (case select xs waitsample of

Left xs′ . integral cur xs′

Right xs′ dt. integral (cur + x × dt) (x :: xs′)
Both (x′ :: xs′) dt. integral (cur + x′ × dt) (x′ :: xs′))

derivative : Sig Float → Sig Float
derivative xs = der 0 (head xs) xs where

der : Float → Float → Sig Float → Sig Float
der 0 last (x :: xs) = 0 :: delay (let x′ :: xs′ = adv xs

in der ((x′ − x) / readsample) x (x′ :: xs′))
der d last (x :: xs) = d :: delay (case select xs waitsample of

Left xs′ . der d last xs′

Right xs′ dt . der ((x − last) / dt) x (x :: xs′)
Both (x′ :: xs′) dt. der ((x′ − last) / dt) x′ (x′ :: xs′))

Fig. 3. Integral and derivative signal combinators.

3.5 Integral and derivative

Buffered-push input channels can be used to represent input signals that change at discrete
points in time, but whose current value can be accessed at any time. For example, given a
buffered-push channel 𝜅 :bp 𝐴 ∈ Δ, we can construct the following signal (using sigAwait𝜅
from section 4.1):

sig𝜅 : Sig A
sig𝜅 = read𝜅 :: sigAwait𝜅

To illustrate what we can do with such input signals, we assume that Async RaTT is extended
with a stable type Float together with typical operations on floating-point numbers. Figure 3
gives the definition of two signal combinators that each take a floating-point-valued signal
and produce the integral and the derivative of that signal. To this end, we assume a buffered-
push channel sample :bp Float ∈ Δ that produces a new floating-point number 𝑠 at some fixed
interval (e.g., 10 times per second). This number 𝑠 is the number of seconds since the last
update on the channel, e.g., 𝑠 = 0.1 if sample ticks 10 times per second.

The integral combinator produces the integral of a given signal starting from a given
constant that is provided as the first argument. Its implementation uses a simple approxima-
tion that samples the value of the underlying signal each time the sample channel produces
a value and adds the area of the rectangle formed by the value of the signal and the time
that has passed since the last sampling.

The first equation of the definition is an optimisation and could be omitted. It says that
if the current value of the underlying signal is 0, we simply wait until the underlying signal
is updated, since the value of the integral won’t change until the underlying signal has a
non-zero value. Hence, we don’t have to sample every time the sample channel ticks.
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Similarly to integral, we can implement a function derivative that, given an underly-
ing floating-point-valued signal, produces its derivative. Like the integral function, also
derivative samples the underlying signal every time sample ticks. To do so it uses the auxil-
iary function der, which takes two additional arguments: the current value of the derivative
and the value of the underlying signal at the time of the most recent input from of the
sample channel. Similarly to integral, the first line of der performs an optimisation: If the
computed value of the derivative is 0, the sampling will pause until the underlying signal
is updated. As soon as it does, the signal behaves as if sample has just ticked in order to
provide a timely update of the derivative.

These two combinators can be easily generalised from floating-point values to any vector
space. This can then be used to describe complex behaviours in reaction to multidimensional
sensor data.

3.6 Elaboration of surface syntax into core calculus

To illustrate how the surface language used in this section elaborates into the Async RaTT
core calculus, we reconsider the definition of map:

map : □ (A → B) → Sig A → Sig B
map f (x :: xs) = unbox f x :: delay (map f (adv xs))

The syntactic sugar of this definition elaborates to the following term in plain Async RaTT:

map = fix 𝑟.𝜆 𝑓 .𝜆𝑠.let 𝑥 = 𝜋1 (out 𝑠) in let xs = 𝜋2 (out 𝑠)

in into
(
unbox 𝑓 𝑥, delaycl(xs) (adv∀ 𝑟 𝑓 (adv xs))

)
Recall that 𝑠 :: 𝑡 is a shorthand for into (𝑠, 𝑡). Pattern matching is translated into the corre-
sponding elimination forms, out for recursive types, 𝜋𝑖 for product types, and case for sum
types. The recursion syntax – map occurs in the body of its definition – is translated to
a fixed point fix 𝑟.𝑡 so that the recursive occurrence of map is replaced by adv∀ 𝑟 . Hence,
recursive calls must always occur in the scope of a ✓, which is the case in the definition
of map as it appears in the scope of a delay. The syntactic sugar elides the subscript cl (xs)
of delay, which can be uniquely inferred from the fact that we have the term adv xs in the
scope of the delay.

In addition, we make use of top-level definitions like map and scan, which may be used
in any context later on. For example, scan is used in the definition of scanAwait in the scope
of a ✓. We can think these top-level definitions to be implicitly boxed when defined and
unboxed when used later on. That is, these definitions are translated as follows to the core
calculus:

let scan = box(. . . ) in
let scanAwait = box(. . . (unbox 𝑠𝑐𝑎𝑛) . . . )) in
. . .
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4 Operational Semantics and Operational Guarantees

We describe the operational semantics of Async RaTT in two stages: We begin in section 4.1
with the evaluation semantics that describes how Async RaTT terms are evaluated at
a particular point in time. Among other things, the evaluation semantics describes the
computation that must happen to make updates in reaction to the arrival of new input
on a push channel. We then describe in section 4.2 the reactive semantics that captures
the dynamic behaviour of Async RaTT programs over time. The reactive semantics is
a machine that waits for new input to arrive, and then computes new values for output
channels that depend on the newly arrived input. For the latter, the reactive semantics
invokes the evaluation semantics to perform the necessary updating computations.

Finally, after demonstrating the operational semantics on an example in section 4.3, we
conclude the discussion of the operational semantics in section 4.4 with a precise account
of our main technical results about the properties of the operational semantics: productivity,
causality, signal independence, and the absence of implicit space leaks. To prove the latter,
the evaluation semantics uses a store in which both external inputs and delayed computations
are stored. Delayed computations are garbage collected as soon as the data on which they
depend has arrived. In this fashion, Async RaTT avoids implicit space leaks by construction,
provided we can prove that the operational semantics never gets stuck.

4.1 Evaluation semantics

Figure 4 defines the evaluation semantics as a deterministic big-step operational semantics.
We write ⟨𝑡; 𝜎⟩ ⇓ 𝜄 ⟨𝑣; 𝜏⟩ to denote that when given a term 𝑡, a store 𝜎, and an input buffer
𝜄, the machine computes a value 𝑣 and a new store 𝜏. During the computation, the machine
may defer computations into the future by storing unevaluated terms in the store 𝜎 to
be retrieved and evaluated later. Conversely, the machine may also retrieve terms whose
evaluation have been deferred at an earlier time and evaluate them now. In addition, the
machine may read the new value of the most recently updated push channel from the store
𝜎 and read the current value of any buffered channel from the input buffer 𝜄.

Up to this point we have used the term clock to refer to both clock expressions (i.e.,
expressions involving cl (·) and clock union⊔) and actual clocks (i.e., sets of push channels).
When discussing the operational semantics, we have to be more precise about the distinction
between these two. Therefore, we use 𝜃 to refer to clock expressions and Θ to refer to clocks.
When the machine encounters a clock expression 𝜃, it has to evaluate 𝜃 to a corresponding
clock |𝜃 |. This occurs, for example, in the semantics for delay𝜃 , which we return to shortly.

To facilitate the delay of computations and their resumption at a later time, the syntax
of the language features heap locations 𝑙, which are not typeable in the calculus but may
be introduced by the machine during evaluation. A heap location represents a delayed
computation that can be resumed once a particular clock has ticked, which indicates that
the data the delayed computation is waiting for has arrived. To this end, each heap location
𝑙 is associated with a clock, denoted cl (𝑙). As soon as the clock cl (𝑙) ticks, the delayed
computation represented by 𝑙 can be resumed by retrieving the unevaluated term stored
at heap location 𝑙 and evaluating it. We write Loc for the set of all heap locations and
assume that for each clock Θ, there are countably infinitely many locations 𝑙 with cl (𝑙) =Θ.
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⟨𝑣; 𝜎⟩ ⇓ 𝜄 ⟨𝑣; 𝜎⟩
⟨𝑡; 𝜎⟩ ⇓ 𝜄

〈
𝑣; 𝜎′〉 〈

𝑡′; 𝜎′〉 ⇓ 𝜄 〈𝑣′; 𝜎′′〉〈(
𝑡, 𝑡′

)
; 𝜎

〉
⇓ 𝜄

〈(
𝑣, 𝑣′

)
; 𝜎′′〉

⟨𝑡; 𝜎⟩ ⇓ 𝜄
〈
(𝑣1, 𝑣2) ; 𝜎′〉 𝑖 ∈ {1, 2}

⟨𝜋𝑖 (𝑡); 𝜎⟩ ⇓ 𝜄
〈
𝑣𝑖 ; 𝜎′〉 ⟨𝑡; 𝜎⟩ ⇓ 𝜄

〈
𝑣; 𝜎′〉 𝑖 ∈ {1, 2}

⟨in𝑖 (𝑡); 𝜎⟩ ⇓ 𝜄
〈
in𝑖 (𝑣); 𝜎′〉

⟨𝑡; 𝜎⟩ ⇓ 𝜄
〈
in𝑖 (𝑣); 𝜎′〉 〈

𝑡𝑖 [𝑣/𝑥]; 𝜎′〉 ⇓ 𝜄 〈𝑣𝑖 ; 𝜎′′〉 𝑖 ∈ {1, 2}
⟨case 𝑡 of in1 𝑥.𝑡1; in2 𝑥.𝑡2; 𝜎⟩ ⇓ 𝜄

〈
𝑣𝑖 ; 𝜎′′〉

⟨𝑡; 𝜎⟩ ⇓ 𝜄
〈
𝜆𝑥.𝑠; 𝜎′〉 〈

𝑡′; 𝜎′〉 ⇓ 𝜄 〈𝑣; 𝜎′′〉 〈
𝑠[𝑣/𝑥]; 𝜎′′〉 ⇓ 𝜄 〈𝑣′; 𝜎′′′〉〈

𝑡 𝑡′; 𝜎
〉
⇓ 𝜄

〈
𝑣′; 𝜎′′′〉

⟨𝑠; 𝜎⟩ ⇓ 𝜄
〈
𝑣; 𝜎′〉 〈

𝑡 [𝑣/𝑥]; 𝜎′〉 ⇓ 𝜄 〈𝑤; 𝜎′′〉
⟨let 𝑥 = 𝑠 in 𝑡; 𝜎⟩ ⇓ 𝜄

〈
𝑤; 𝜎′′〉 𝜅 ∈ dom (𝜄)

⟨read𝜅 ; 𝜎⟩ ⇓ 𝜄 ⟨𝜄(𝜅); 𝜎⟩

𝑙 = alloc | 𝜃 | (𝜎)〈
delay𝜃 𝑡; 𝜎

〉
⇓ 𝜄 ⟨𝑙; (𝜎, 𝑙 ↦→ 𝑡)⟩

𝑙 = alloc∅ (𝜎)
⟨never; 𝜎⟩ ⇓ 𝜄 ⟨𝑙; 𝜎⟩

⟨adv wait𝜅 ; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿⟩ ⇓ 𝜄 ⟨𝑣; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿⟩
⟨𝜂𝑁 (𝑙); 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿⟩ ⇓ 𝜄 ⟨𝑤; 𝜎⟩
⟨adv 𝑙; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿⟩ ⇓ 𝜄 ⟨𝑤; 𝜎⟩

𝜅 ∈ |cl (𝑣𝑖) | \ |cl (𝑣3−𝑖) | ⟨adv 𝑣𝑖 ; 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿⟩ ⇓ 𝜄 ⟨𝑢𝑖 ; 𝜎⟩ 𝑢3−𝑖 = 𝑣3−𝑖
⟨select 𝑣1 𝑣2; 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿⟩ ⇓ 𝜄 ⟨in1 (in𝑖 (𝑢1, 𝑢2)); 𝜎⟩

𝜅 ∈ |cl (𝑣1) | ∩ |cl (𝑣2) | ⟨adv 𝑣1; 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿⟩ ⇓ 𝜄 ⟨𝑢1; 𝜎⟩ ⟨adv 𝑣2; 𝜎⟩ ⇓ 𝜄
〈
𝑢2; 𝜎′〉

⟨select 𝑣1 𝑣2; 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿⟩ ⇓ 𝜄
〈
in2 (𝑢1, 𝑢2) ; 𝜎′〉

⟨𝑡; 𝜎⟩ ⇓ 𝜄
〈
𝑣; 𝜎′〉

⟨suc 𝑡; 𝜎⟩ ⇓ 𝜄
〈
suc 𝑣; 𝜎′〉 ⟨𝑛; 𝜎⟩ ⇓ 𝜄

〈
0; 𝜎′〉 〈

𝑠; 𝜎′〉 ⇓ 𝜄 〈𝑣; 𝜎′′〉
⟨recNat (𝑠, 𝑥 𝑦.𝑡, 𝑛); 𝜎⟩ ⇓ 𝜄

〈
𝑣; 𝜎′′〉

⟨𝑛; 𝜎⟩ ⇓ 𝜄
〈
suc 𝑣; 𝜎′〉〈

recNat (𝑠, 𝑥 𝑦.𝑡, 𝑣); 𝜎′〉 ⇓ 𝜄 〈𝑣′; 𝜎′′〉 〈
𝑡 [𝑣/𝑥, 𝑣′/𝑦]; 𝜎′′〉 ⇓ 𝜄 〈𝑤; 𝜎′′′〉

⟨recNat (𝑠, 𝑥 𝑦.𝑡, 𝑛); 𝜎⟩ ⇓ 𝜄
〈
𝑤; 𝜎′′′〉

⟨𝑡 [dfix 𝑥.𝑡/𝑥]; 𝜎⟩ ⇓ 𝜄
〈
𝑣; 𝜎′〉

⟨adv∀ (dfix 𝑥.𝑡); 𝜎⟩ ⇓ 𝜄
〈
𝑣; 𝜎′〉 ⟨𝑡 [dfix 𝑥.𝑡/𝑥]; 𝜎⟩ ⇓ 𝜄

〈
𝑣; 𝜎′〉

⟨fix 𝑥.𝑡; 𝜎⟩ ⇓ 𝜄
〈
𝑣; 𝜎′〉

⟨𝑡; 𝜎⟩ ⇓ 𝜄
〈
box 𝑡′; 𝜎′〉 〈

𝑡′; 𝜎′〉 ⇓ 𝜄 〈𝑣; 𝜎′′〉
⟨unbox 𝑡; 𝜎⟩ ⇓ 𝜄

〈
𝑣; 𝜎′′〉 ⟨𝑡; 𝜎⟩ ⇓ 𝜄

〈
𝑣; 𝜎′〉

⟨into 𝑡; 𝜎⟩ ⇓ 𝜄
〈
into 𝑣; 𝜎′〉

⟨𝑡; 𝜎⟩ ⇓ 𝜄
〈
into 𝑣; 𝜎′〉

⟨out 𝑡; 𝜎⟩ ⇓ 𝜄
〈
𝑣; 𝜎′〉

Fig. 4. Operational semantics.
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A clock Θ is a finite set of push channels drawn from Δ, and ticks whenever any of its
channels 𝜅 ∈Θ is updated. For example, assuming an input context Δ for a GUI, the clock
{keyPressed,mouseCoord} ticks whenever the user presses a key or moves the mouse.

Delayed computations reside in a heap, which is simply a finite mapping 𝜂 from heap
locations to terms. Of particular interest are heaps 𝜂 whose locations, denoted dom (𝜂),
each have a clock that contains a given input channel 𝜅:

Heap𝜅 = {𝜂 ∈ Heap | ∀𝑙 ∈ dom (𝜂) .𝜅 ∈ cl (𝑙) }

It is safe to evaluate terms stored in a heap 𝜂 ∈ Heap𝜅 as soon as a new value on the input
channel 𝜅 has arrived. This intuition is reflected in the representation of stores 𝜎, which
can be in one of two forms: a single-heap store 𝜂𝐿 or a two-heap store 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿 with
𝜂𝑁 ∈ Heap𝜅 . We typically refer to 𝜂𝐿 as the later heap, which is used to store delayed
computations for later, and to 𝜂𝑁 as the now heap, which stores terms that are safe to be
evaluated now. The ⟨𝜅 ↦→ 𝑣⟩ component of a two-heap store indicates that the input channel
𝜅 has been updated to the new value 𝑣. The machine can thus safely resume computations
from 𝜂𝑁 since the data that the delayed computations in 𝜂𝑁 were waiting for has arrived.

Let’s first consider the semantics for delay: To allocate fresh locations in the store,
we assume a function alloc, which, if given a clock Θ and a store 𝜂𝐿 or 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿 ,
produces a location 𝑙 ∉ dom (𝜂𝐿) with cl (𝑙) =Θ. The semantics of delay then stores the
argument term 𝑡 at that newly allocated location 𝑙, which results in a store 𝜂𝐿 , 𝑙 ↦→ 𝑡 or
𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿 , 𝑙 ↦→ 𝑡, respectively, where 𝜂𝐿 , 𝑙 ↦→ 𝑡 denotes the heap 𝜂𝐿 extended with the
mapping 𝑙 ↦→ 𝑡. The machine also has to evaluate the clock expression 𝜃 to a clock |𝜃 |
defined as follows:

|cl (𝑙) | = cl (𝑙) |cl (wait𝜅 ) | = {𝜅} |𝜃 ⊔ 𝜃′ | = |𝜃 | ∪ |𝜃′ |

Also never allocates a fresh heap location 𝑙, but it doesn’t store any term at that location.
Since the allocated location 𝑙 has the empty clock – which never ticks – the machine will
never try to read from location 𝑙.

The semantics for adv has two cases: In the case for adv wait𝜅 , the semantics simply looks
up the value 𝑣 that we have received on channel 𝜅. In the case adv 𝑙, the semantics retrieves
a previously delayed computation. The typing discipline ensures that adv 𝑣 will only be
evaluated in the context of a store of the form 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿 , where either 𝑣 = wait𝜅 with
a matching channel 𝜅, or 𝑣 is a location 𝑙 ∈ dom (𝜂𝑁 ) and therefore also 𝜅 ∈ cl (𝑙).

The select combinator allows us to interact with two delayed computations simultane-
ously. Its semantics checks for the three possible contingencies, namely which non-empty
subset of the two delayed computations has been triggered. Each of the two argument values
𝑣1 or 𝑣2 is either a heap location or of the form wait𝜅 ′ , and thus the machine can simply
check whether the current input channel 𝜅 is in the clocks associated with 𝑣1, 𝑣2, or both.
Depending on the outcome, the machine advances the corresponding value(s).

Finally, the fixed point combinator fix is evaluated with the help of the combinator dfix,
which similarly to heap locations is not typeable in the calculus but is introduced by the
machine. Intuitively speaking, we can think of a value of the form dfix 𝑥.𝑡 as shorthand
for Λ𝜃.(delay𝜃 (fix 𝑥.𝑡)). That is, dfix 𝑥.𝑡 is a thunk that, when given a clock 𝜃, produces a
delayed computation on 𝜃, which in turn evaluates a fixed point once 𝜃 ticks. The action of
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init
⟨𝑡; ∅⟩ ⇓ 𝜄 ⟨(𝑣1 :: 𝑙1, . . . , 𝑣𝑚 :: 𝑙𝑚) ; 𝜂⟩

⟨𝑡; 𝜄⟩
𝑥1 ↦→𝑣1 ,...,𝑥𝑚 ↦→𝑣𝑚

=⇒ ⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑚 ↦→ 𝑙𝑚; 𝜂; 𝜄⟩

input
𝜄′ = 𝜄[𝜅 ↦→ 𝑣] if 𝜅 ∈ dom (𝜄) otherwise 𝜄′ = 𝜄

⟨𝑁; 𝜂; 𝜄⟩ 𝜅 ↦→𝑣
=⇒

〈
𝑁; [𝜂]𝜅∈ ⟨𝜅 ↦→ 𝑣⟩ [𝜂]𝜅∉ ; 𝜄′

〉
output-end

⟨·; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿; 𝜄⟩ ·
=⇒ ⟨·; 𝜂𝐿; 𝜄⟩

output-skip
𝜅 ∉ cl (𝑙) ⟨𝑁; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿; 𝜄⟩ 𝑂

=⇒ ⟨𝑁 ′; 𝜂; 𝜄⟩

⟨𝑥 ↦→ 𝑙, 𝑁; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿; 𝜄⟩ 𝑂
=⇒ ⟨𝑥 ↦→ 𝑙, 𝑁 ′; 𝜂; 𝜄⟩

output-compute

𝜅 ∈ cl (𝑙)
⟨adv 𝑙; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿⟩ ⇓ 𝜄 ⟨𝑣′ :: 𝑙′; 𝜎⟩ ⟨𝑁; 𝜎; 𝜄⟩ 𝑂

=⇒ ⟨𝑁 ′; 𝜂; 𝜄⟩

⟨𝑥 ↦→ 𝑙, 𝑁; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿; 𝜄⟩
𝑥 ↦→𝑣′ ,𝑂
=⇒ ⟨𝑥 ↦→ 𝑙′, 𝑁 ′; 𝜂; 𝜄⟩

Fig. 5. Reactive semantics.

the adv∀ combinator for ∀⃝ can thus also be interpreted as first providing the clock 𝜃 and
then advancing the delayed computation delay𝜃 (fix 𝑥.𝑡), which means evaluating fix 𝑥.𝑡.

The evaluation semantics of the remaining language constructs is entirely standard.

4.2 Reactive semantics

An Async RaTT program interacts with its environment by receiving input from a set of
input channels and in return sends output to a set of output channels. The input context
Δ describes the available input signals. In addition, we also have an output context Γout,
that only contains variables 𝑥 : 𝐴, where 𝐴 is a value type. We refer to the variables in
Γout as output channels. Taken together, we call the pair consisting of Δ and Γout a reactive
interface, written Δ⇒ Γout.

Given an output context Γout = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛, we define the type Prod (Γout) as the
product of all types in Γout, i.e., Prod (Γout) = Sig 𝐴1 × · · · × Sig 𝐴𝑛. The 𝑛-ary product type
used here can be encoded using the binary product type and the unit type in the standard
way. An Async RaTT term 𝑡 is said to be a reactive program implementing the reactive
interface Δ⇒ Γout, denoted 𝑡 : Δ⇒ Γout, if ⊢Δ 𝑡 : Prod (Γout).

The operational semantics of a reactive program is described by the machine in Figure 5.
The state of the machine can be of two different forms: Initially, the machine is in a state
of the form ⟨𝑡; 𝜄⟩, where 𝑡 : Δ⇒ Γout is the reactive program and 𝜄 is the initial input buffer,
which contains the initial values of all buffered input channels. Subsequently, the machine
state is a pair ⟨𝑁; 𝜎; 𝜄⟩, where 𝑁 is a sequence of the form 𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑛 ↦→ 𝑙𝑛 that maps
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all output channels 𝑥𝑖 ∈ dom (Γout) to heap locations. That is, 𝑁 records for each output
channel the location of the delayed computation that will produce the next value of the
output channel as soon as it needs updating.

The machine can make three kinds of transitions:

an initialisation transition ⟨𝑡; 𝜄⟩ 𝑂
=⇒ ⟨𝑁; 𝜂; 𝜄⟩

an input transition ⟨𝑁; 𝜂; 𝜄⟩ 𝜅 ↦→𝑣
=⇒ ⟨𝑁; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿; 𝜄′⟩

an output transition ⟨𝑁; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿; 𝜄⟩ 𝑂
=⇒

〈
𝑁 ′; 𝜂′𝐿; 𝜄

〉
where 𝑂 is a sequence 𝑦1 ↦→ 𝑣1, . . . , 𝑦𝑚 ↦→ 𝑣𝑚 that maps some output channels 𝑦1 :
𝐵1, . . . , 𝑦𝑚 : 𝐵𝑚 ∈ Γout to values. After the initial transition, which initialises the values
of all output channels, the machine alternates between input transitions, each of which
updates the value of an input channel and possibly the input buffer (if the new input is on a
buffered channel), and output transitions, each of which provides new values for all output
channels triggered by the immediately preceding input transition.

The initialisation transition evaluates the reactive program 𝑡 in the context of the initial
input buffer 𝜄 and thereby produces a tuple (𝑣1 :: 𝑙1, . . . , 𝑣𝑚 :: 𝑙𝑚), where each component
𝑣𝑖 :: 𝑙𝑖 corresponds to an output channel 𝑥𝑖 : 𝐴𝑖 ∈ Γout. Each 𝑣𝑖 is the initial value of the
output channel 𝑥𝑖 and each 𝑙𝑖 points to a delayed computation in the heap 𝜂 that computes
future values of 𝑥𝑖 .

An input transition receives an updated value 𝑣 on the input channel 𝜅 and reacts by
updating the input buffer (if it already had a value for 𝜅) and transitioning the store 𝜂 to
the new store [𝜂]𝜅∈ ⟨𝜅 ↦→ 𝑣⟩ [𝜂]𝜅∉. This splits the heap 𝜂 into a part where clocks contain
𝜅 and a part that where clocks do not:

[𝜂]𝜅∈ (𝑙) = 𝜂(𝑙) if 𝜅 ∈ cl (𝑙) [𝜂]𝜅∉ (𝑙) = 𝜂(𝑙) if 𝜅 ∉ cl (𝑙)

That is, in the subsequent output transition, the machine can access the new value 𝑣 received
from 𝜅 and read from the heap [𝜂]𝜅∈ , i.e., exactly those heap locations from 𝜂 that were
waiting for input from 𝜅.

Finally, the output transition checks for each element 𝑥 ↦→ 𝑙 in 𝑁 , whether it should be
advanced because it depends on 𝜅 (output-compute) or should remain untouched because
it does not depend on 𝜅 (output-skip). Only in the output-compute case a new output
value for 𝑥 is produced. In the end, the output transition performs the desired garbage
collection that deletes both the now heap 𝜂𝑁 and the input value 𝑣 (output-end). This
also means that the updates performed by output-compute, are not only possible (because
the required data arrived), but also necessary (because both the input data and the delayed
computations they depend on will be gone after this output transition of the machine).

4.3 Example

To see the operational semantics in action, we reconsider the simple GUI program from
section 3.3 and run it on the machine. To this end, we first elaborate the definition of
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toggleSig into an Async RaTT term without syntactic sugar as described in section 3.6:

toggleSig = fix 𝑟.𝜆tog.𝜆 𝑓 .𝜆𝑔.𝜆𝑥.let tick = unbox tog in
switchS (unbox 𝑓 𝑥) (delaycl(tick) (adv tick; adv∀ 𝑟 tog 𝑔 𝑓 ))

During the execution, the machine turns fixed points like toggleSig into delayed fixed points
that use dfix instead of fix. We write toggleSig′ for this delayed fixed point, i.e., toggleSig′

is obtained from toggleSig by replacing fix with dfix. We will use the same notational
convention for other fixed point definitions and write sigAwait′𝜅 and scan′ for the dfix
versions of sigAwait𝜅 and scan from section 3.1.

For the sake of simplicity, we consider a reactive program with only one output channel,
namely the program field1 : Δ⇒ Γout with

field1 = toggleSig 𝑡 𝑠1 𝑠2 0
𝑡 = box waittoggle

𝑠1 = box (count sigAwaitup)
𝑠2 = box const

Δ =
{
up :p 1, toggle :p 1

}
Γout = 𝑥 : Nat

That is, this program describes the behaviour of the text field that initially is in focus and
thus reacts to the ‘up’ button.

For better clarity of the transition steps of the machine, we write the machine’s store as
just the list of its heap locations, and write the contents of the locations along with their
clocks separately underneath. The first step of the machine performs the initialisation that
provides the initial value of the output signal:

⟨field1; ∅⟩ 𝑥 ↦→0
=⇒ ⟨𝑥 ↦→ 𝑙1; 𝑙1, 𝑙2, 𝑙3, 𝑙4; ∅⟩

where 𝑙1 ↦→ case select 𝑙3 𝑙4 of . . . cl (𝑙1) = {toggle, up}
𝑙2 ↦→ adv waitup :: adv∀ sigAwait′up cl (𝑙2) = {up}
𝑙3 ↦→ scan (box (𝜆𝑚.𝜆𝑛.𝑚 + 1)) 0 (adv 𝑙2) cl (𝑙3) = {up}
𝑙4 ↦→ adv waittoggle; adv∀ toggleSig′ 𝑡 𝑠2 𝑠1 cl (𝑙4) = {toggle}

We can see that the next value for the output channel 𝑥 is provided by the delayed computa-
tion at location 𝑙1, and since cl (𝑙1) = {toggle, up} we know that 𝑥 will produce a new value
as soon as the user clicks either of the two buttons. If the user clicks the ‘up’ button, the
machine produces the following two transitions:

⟨𝑥 ↦→ 𝑙1; 𝑙1, 𝑙2, 𝑙3, 𝑙4; ∅⟩
up ↦→()
=⇒ ⟨𝑥 ↦→ 𝑙1; 𝑙1, 𝑙2, 𝑙3 ⟨up ↦→ ()⟩ 𝑙4; ∅⟩
𝑥 ↦→1
=⇒ ⟨𝑥 ↦→ 𝑙5; 𝑙4, 𝑙5, 𝑙6, 𝑙7; ∅⟩

where 𝑙5 ↦→ case select 𝑙7 𝑙4 of . . . cl (𝑙5) = {toggle, up}
𝑙6 ↦→ adv waitup :: adv∀ sigAwait′up cl (𝑙6) = {up}
𝑙7 ↦→ adv∀ scan′ (box (𝜆𝑚.𝜆𝑛.𝑚 + 1)) 0 (adv 𝑙6) cl (𝑙7) = {up}

The heap locations 𝑙1, 𝑙2, 𝑙3 are garbage collected and only 𝑙4 survives since only the clock
of 𝑙4 does not contain up. If the user now clicks the ‘toggle‘ button, we obtain the following
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two transitions:

⟨𝑥 ↦→ 𝑙5; 𝑙4, 𝑙5, 𝑙6, 𝑙7; ∅⟩
toggle↦→()
=⇒ ⟨𝑥 ↦→ 𝑙5; 𝑙4, 𝑙5 ⟨toggle ↦→ ()⟩ 𝑙6, 𝑙7; ∅⟩
𝑥 ↦→1
=⇒ ⟨𝑥 ↦→ 𝑙8; 𝑙6, 𝑙7, 𝑙8, 𝑙9; ∅⟩

where cl (𝑙0) = ∅ 𝑙8 ↦→ case select 𝑙0 𝑙9 of . . . cl (𝑙8) = {toggle}
𝑙9 ↦→ adv waittoggle :: adv∀ toggleSig′ 𝑡 𝑠1 𝑠2 cl (𝑙9) = {toggle}

The heap location 𝑙0 is allocated by never and thus does not appear on the heap. Now the
output channel 𝑥 only depends on the input channel toggle. If the user now repeatedly clicks
the ‘up’ button, no output is produced:

⟨𝑥 ↦→ 𝑙8; 𝑙6, 𝑙7, 𝑙8, 𝑙9; ∅⟩
up ↦→()
=⇒ ⟨𝑥 ↦→ 𝑙8; 𝑙6, 𝑙7 ⟨up ↦→ ()⟩ 𝑙8, 𝑙9; ∅⟩ ·

=⇒ ⟨𝑥 ↦→ 𝑙8; 𝑙8, 𝑙9; ∅⟩
up ↦→()
=⇒ ⟨𝑥 ↦→ 𝑙8; ⟨up ↦→ ()⟩ 𝑙8, 𝑙9; ∅⟩ ·

=⇒ ⟨𝑥 ↦→ 𝑙8; 𝑙8, 𝑙9; ∅⟩

Finally, note that since the input context Δ contains no buffered input channels the input
buffer remains empty during the entire run of the program.

4.4 Main results

The operational semantics presented above allows us to precisely state the operational
guarantees provided by Async RaTT, namely productivity, causality, the absence of implicit
space leaks, and signal independence. We address each of them in turn.

4.4.1 Productivity

Reactive programs 𝑡 : Δ⇒ Γout are productive in the sense that if we feed 𝑡 with a well-typed
initial input buffer and an infinite sequence of well-typed inputs on its input channels, then
it will produce an infinite sequence of well-typed outputs on its output channels. Before
we can state the productivity property formally, we need to make precise what we mean by
well-typed:

• An input buffer 𝜄 is well-typed, denoted ⊢ 𝜄 : Δ, if ⊢ 𝜄(𝜅) : 𝐴 for each 𝜅 such that
𝜅 :b 𝐴 ∈ Δ or 𝜅 :bp 𝐴 ∈ Δ.

• An input value 𝜅 ↦→ 𝑣 is well-typed, written ⊢ 𝜅 ↦→ 𝑣 : Δ, if 𝜅 :𝑐 𝐴 ∈ Δ and ⊢ 𝑣 : 𝐴.
• A set of output values 𝑂 is well-typed, written ⊢𝑂 : Γout, if for all 𝑥 ↦→ 𝑣 ∈𝑂, we

have that 𝑥 : 𝐴 ∈ Γout and ⊢ 𝑣 : 𝐴.

We can now formally state the productivity property as follows:

Theorem 4.1 (productivity). Given a reactive program 𝑡 : Δ⇒ Γout, well-typed input values
⊢ 𝜅𝑖 ↦→ 𝑣𝑖 : Δ for all 𝑖 ∈N, and a well-typed initial input buffer ⊢ 𝜄0 : Δ, there is an infinite
transition sequence

⟨𝑡; 𝜄0⟩
𝑂0
=⇒ ⟨𝑁0; 𝜂0; 𝜄0⟩

𝜅0 ↦→𝑣0
=⇒ ⟨𝑁0; 𝜎0; 𝜄1⟩

𝑂1
=⇒ ⟨𝑁1; 𝜂1; 𝜄1⟩

𝜅1 ↦→𝑣1
=⇒ . . .

with ⊢𝑂𝑖 : Γout for all 𝑖 ∈N.
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While a reactive program will always produce a set of output values 𝑂𝑖+1 for each
incoming input value 𝜅𝑖 ↦→ 𝑣𝑖 , this set may be empty. This happens if none of the heap
locations in 𝑁𝑖 depends on the input 𝜅𝑖 , i.e., if 𝜅𝑖 ∉ cl (𝑙) for all 𝑥 ↦→ 𝑙 ∈ 𝑁𝑖 . As we will see in
Proposition 4.3, this will necessarily be the case for inputs 𝜅 :b 𝐴 ∈ Δ that are buffered-only.

4.4.2 Causality

In the following, we refer to the transition sequences for a reactive program 𝑡 obtained by
Theorem 4.1 simply as well-typed transition sequences for 𝑡.

A reactive program 𝑡 is causal, if for any of its well-typed transition sequences

⟨𝑡; 𝜄0⟩
𝑂0
=⇒ ⟨𝑁0; 𝜂0; 𝜄0⟩

𝜅0 ↦→𝑣0
=⇒ ⟨𝑁0; 𝜎0; 𝜄1⟩

𝑂1
=⇒ ⟨𝑁1; 𝜂1; 𝜄1⟩

𝜅1 ↦→𝑣1
=⇒ . . .

each set of output values 𝑂𝑛 only depends on the initial input buffer 𝜄0 and previously
received input values 𝜅𝑖 ↦→ 𝑣𝑖 with 𝑖 < 𝑛. This property follows from Theorem 4.1 and the
fact that the operational semantics is deterministic in the following sense:

Lemma 4.2 (deterministic semantics).

(i) ⟨𝑡; 𝜎⟩ ⇓ 𝜄 ⟨𝑣1; 𝜎1⟩ and ⟨𝑡; 𝜎⟩ ⇓ 𝜄 ⟨𝑣2; 𝜎2⟩ implies that 𝑣1 = 𝑣2 and that 𝜎1 = 𝜎2.
(ii) 𝑐

𝜅 ↦→𝑣
=⇒ 𝑐1 and 𝑐

𝜅 ↦→𝑣
=⇒ 𝑐2 implies 𝑐1 = 𝑐2.

(iii) 𝑐
𝑂1
=⇒ 𝑐1 and 𝑐

𝑂2
=⇒ 𝑐2 implies 𝑂1 =𝑂2 and 𝑐1 = 𝑐2.

Hence, 𝑂𝑛 is uniquely determined by 𝜄0 and 𝜅𝑖 ↦→ 𝑣𝑖 for all 𝑖 < 𝑛.

4.4.3 Implicit space leaks

The operational semantics of Async RaTT is formulated in such a way so that after each
pair of input/output transitions

⟨𝑁; 𝜂; 𝜄⟩ 𝜅 ↦→𝑣
=⇒ ⟨𝑁; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿; 𝜄′⟩ 𝑂

=⇒
〈
𝑁 ′; 𝜂′𝐿; 𝜄′

〉
all heap locations 𝑙 in 𝜂 that depend on 𝜅, i.e., those with 𝜅 ∈ cl (𝑙), are moved into 𝜂𝑁
after the input transition, and then 𝜂𝑁 is garbage collected after the output transition. That
is, a delayed computation at location 𝑙 is only kept in memory until its clock cl (𝑙) ticks.
Likewise, the input 𝜅 ↦→ 𝑣 is garbage collected after each output transition. The machine
only keeps the latest value of buffered channels in its buffer 𝜄. The productivity property
demonstrates that this aggressive garbage collection strategy is safe: The machine never
gets stuck due to an attempt to dereference a garbage-collected heap location.

4.4.4 Signal independence

From the definition of the reactive semantics we can see that the machine only updates an
output channel 𝑥 : 𝐴 ∈ Γout if it depends on the input value 𝜅 ↦→ 𝑣 that has just arrived, i.e.,
if the machine is in a state ⟨𝑁; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿; 𝜄⟩ with 𝜅 ∈ cl (𝑁 (𝑥)). However, the typing
system allows us to give two useful static criteria for when 𝜅 ∉ cl (𝑁 (𝑥)) is guaranteed and
thus the output signal 𝑥 need not (and indeed cannot) be updated.

First, values received on buffered-only channels will never produce an output:
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Proposition 4.3 (buffered signal independence). If 𝑡 : Δ⇒ Γout is a reactive program and

⟨𝑡; 𝜄0⟩
𝑂0
=⇒ ⟨𝑁0; 𝜂0; 𝜄0⟩

𝜅0 ↦→𝑣0
=⇒ ⟨𝑁0; 𝜎0; 𝜄1⟩

𝑂1
=⇒ ⟨𝑁1; 𝜂1; 𝜄1⟩

𝜅1 ↦→𝑣1
=⇒ . . .

is a well-typed transition sequence for 𝑡, then 𝑂𝑖+1 is empty whenever 𝜅𝑖 :b 𝐴 ∈ Δ for some
𝐴.

Secondly, the input context Δ for a given output signal implementation gives us an upper
bound on the push channels that will trigger an update:

Theorem 4.4 (push signal independence). Suppose (𝑡1, . . . , 𝑡𝑛) : Δ⇒ Γout is a reactive
program with Γout = 𝑥1 : 𝐴1, . . . , 𝑥𝑚 : 𝐴𝑚 such that also 𝑡 𝑗 : Δ′ ⇒ (𝑥 𝑗 : 𝐴 𝑗 ) is a reactive
program for some 𝑗 and Δ′ ⊂ Δ. Given any well-typed transition sequence for (𝑡1, . . . , 𝑡𝑚)

⟨(𝑡1, . . . , 𝑡𝑚) ; 𝜄0⟩
𝑂0
=⇒ ⟨𝑁0; 𝜂0; 𝜄0⟩

𝜅0 ↦→𝑣0
=⇒ ⟨𝑁0; 𝜎0; 𝜄1⟩

𝑂1
=⇒ ⟨𝑁1; 𝜂1; 𝜄1⟩

𝜅1 ↦→𝑣1
=⇒ . . .

then 𝑥 𝑗 ↦→ 𝑣 ∈𝑂𝑖+1 implies that 𝜅𝑖 ∈ dom (Δ′). In other words, the output channel 𝑥 𝑗 is only
updated when inputs in Δ′ are updated.

5 Metatheory

In this section, we prove the operational properties presented in section 4.4, namely
Theorem 4.1, Proposition 4.3, and Theorem 4.4. All three follow from a more general
semantic soundness property. To prove this property, we first devise a semantic model of
the Async RaTT calculus in the form of a Kripke logical relation. That is, the model consists
of a family J𝐴K(𝑤) of sets of closed terms that satisfy the soundness properties we are
interested in. This family of sets is indexed by a world 𝑤 and is defined by induction on the
structure of the type 𝐴 and world 𝑤. The soundness proof is thus reduced to a proof that
⊢Δ 𝑡 : 𝐴 implies 𝑡 ∈ J𝐴K(𝑤), which is also known as the fundamental property of the logical
relation.

5.1 Kripke logical relation

The worlds 𝑤 for our logical relation consist of two components: a natural number 𝑛 and a
store 𝜎. The number 𝑛 allows us to model guarded recursive types via step-indexing (Appel
and McAllester, 2001). This is achieved by defining J ∃⃝𝐴K(𝑛 + 1, 𝜎) in terms of J𝐴K(𝑛, 𝜎′)
for some suitable 𝜎′. Since recursive types Fix 𝛼.𝐴 unfold to 𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼], we can
define JFix 𝛼.𝐴K(𝑛 + 1, 𝜎) in terms of J𝐴K(𝑛 + 1, 𝜎) and JFix 𝛼.𝐴K(𝑛, 𝜎′), which is well-
founded since in the former we refer to the smaller type 𝐴 and in the latter we refer to a
smaller step index 𝑛.

A key aspect of the operational semantics of Async RaTT is that it stores delayed com-
putations in a store 𝜎. Hence, in order to capture the semantics of a term 𝑡, we have to
account for the fact that 𝑡 may contain heap locations that point into some suitable store 𝜎.
Intuitively speaking, the set J𝐴K(𝑛, 𝜎) contains those terms that, starting with the store 𝜎,
can be evaluated safely to produce a value of type 𝐴. Ultimately, the index 𝜎 enables us to
prove that the garbage collection performed by reactive semantics is indeed sound.
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What makes J𝐴K(𝑛, 𝜎) a Kripke logical relation is the fact that we have a preorder ≲
on worlds such that (𝑛, 𝜎) ≲ (𝑛′, 𝜎′) implies J𝐴K(𝑛, 𝜎) ⊆ J𝐴K(𝑛′, 𝜎′). We can think of
(𝑛′, 𝜎′) as a future world reachable from (𝑛, 𝜎), i.e., it describes how the surrounding
context changes as the machine performs computations. There are four different kinds of
changes, which we address in turn below:

Firstly, time may pass, which means that we have fewer time steps left, i.e., 𝑛 > 𝑛′.
Secondly, the machine performs garbage collection on the store 𝜎. The following definition
of the garbage collection function gc describes this process:

gc(𝜂𝐿) = 𝜂𝐿 gc(𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿) = 𝜂𝐿
Third, the machine may store delayed computations in 𝜎, which we account for by the order
⊑ on heaps and stores:

𝜂(𝑙) = 𝜂′ (𝑙) for all 𝑙 ∈ dom (𝜂)
𝜂 ⊑ 𝜂′

𝜂𝑁 ⊑ 𝜂′𝑁 𝜂𝐿 ⊑ 𝜂′𝐿
𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿 ⊑ 𝜂′𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂′𝐿

That is, 𝜎 ⊑ 𝜎′ iff 𝜎′ is obtained from 𝜎 by storing additional terms. The following lemma
shows how the order ⊑ indeed captures how the store evolves during evaluation:

Lemma 5.1. If ⟨𝑡; 𝜎⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′⟩, then 𝜎 ⊑ 𝜎′.

Proof Straightforward induction on ⟨𝑡; 𝜎⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′⟩. ■

Finally, the machine may receive an input value 𝜅 ↦→ 𝑣, which is captured by the following
order ⊑Δ

✓
on stores:

𝜎 ⊑ 𝜎′

𝜎 ⊑Δ
✓ 𝜎

′
𝜂𝐿 ⊑ 𝜂′𝐿 𝜅 :𝑐 𝐴 ∈ Δ ⊢ 𝑣 : 𝐴 𝜂𝑁 ∈ Heap𝜅

𝜂𝐿 ⊑Δ
✓ 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂′𝐿

That is, in addition to the allocations captured by ⊑, the order may also introduce an input
value 𝜅 ↦→ 𝑣.

Taken together, we can define the Kripke preorder ≲ on worlds as follows:

(𝑛, 𝜎) ≲ (𝑛′, 𝜎′) iff 𝑛 ≥ 𝑛′ and 𝜎 ⊑Δ
✓ 𝜎

′

This preorder does not include garbage collection, as it is only sound in certain circum-
stances. Indeed, the machine performs garbage collection only at certain points of the
execution, namely at the end of an output transition.

Finally, before we can give the definition of the Kripke logical relation, we need to
semantically capture the notion of input independence that is needed both for the oper-
ational semantics of select and the signal independence properties (Proposition 4.3 and
Theorem 4.4). In essence, we need that a heap location 𝑙 in the world (𝑛 + 1, 𝜎) should
still be present in the future world (𝑛, 𝜎′) in which we received an input on a channel
𝜅 ∉ cl (𝑙). We achieve this by making the logical relation J ∃⃝𝐴K(𝑛, 𝜎) satisfy the following
clock independence property:

If 𝑙 ∈ J ∃⃝𝐴K(𝑛, 𝜎), then 𝑙 ∈ J ∃⃝𝐴K(𝑛, [𝜎]cl(𝑙) )
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where [𝜎]Θ restricts 𝜎 to heap locations whose clocks are subclocks of Θ:

[𝜂]Θ (𝑙) = 𝜂(𝑙) if cl (𝑙) ⊆ Θ

[𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿]Θ =

{
[𝜂𝑁 ]Θ ⟨𝜅 ↦→ 𝑣⟩ [𝜂𝐿]Θ if 𝜅 ∈Θ

[𝜂𝐿]Θ if 𝜅 ∉ Θ

The full definition of the Kripke logical relation is given in Figure 6. In addition to the
aspects discussed above, it is parameterised by the context Δ and distinguishes between the
value relation VΔJ𝐴K (𝑤) and the term relation TΔJ𝐴K (𝑤). The two relations are defined by
well-founded recursion by the lexicographic ordering on the tuple (𝑛, |𝐴| , 𝑒), where |𝐴| is
the size of 𝐴 defined below, and 𝑒 = 1 for the term relation and 𝑒 = 0 for the value relation.

|𝛼 | = | ∃⃝𝐴| = | ∀⃝𝐴| = |1| = |Nat| = 1
|𝐴 × 𝐵 | = |𝐴 + 𝐵 | = |𝐴→ 𝐵 | = 1 + |𝐴| + |𝐵 |
|□𝐴| = |Fix 𝛼.𝐴| = 1 + |𝐴|

Note that in the definition for VΔJ ∃⃝𝐴K (𝑛 + 1, 𝜎), we use the shorthand 𝜎(𝑙) for 𝜂𝐿 (𝑙),
where 𝜂𝐿 is the later heap of 𝜎.

Our goal is to prove the fundamental property, i.e., that ⊢Δ 𝑡 : 𝐴 implies 𝑡 ∈ TΔJ𝐴K (𝑛, 𝜎),
by induction on the typing derivation. Therefore, we need to generalise the fundamental
property to open terms as well. That means we need a corresponding logical relation for
contexts as well, which is given at the bottom of Figure 6. The interpretation of ✓𝜃 in a
context is quite technical, but is essentially determined by the interpretation of ∃⃝ due to
the requirement of being left adjoint (Birkedal et al., 2020).

The definition of CΔJΓK (𝑛, 𝜎) follows roughly the structure of the store 𝜎: If Γ con-
tains a tick ✓𝜃 , then 𝜎 must contain a tick ⟨𝜅 ↦→ 𝑣⟩ on a channel 𝜅 contained in 𝜃.
Otherwise, CΔJΓK (𝑛, 𝜎) is empty. Consequently, since stores may contain at most one
tick, CΔJΓK (𝑛, 𝜎) is only non-empty for contexts Γ that contain at most one tick. This
restricted semantic definition suffices, since any closed term ⊢Δ 𝑡 : 𝐴 can be typed in a
slightly modified type system that allows at most one tick in the context and which replaces
the typing rule for delay with the following rule:

Γ⃝ , ✓𝜃 ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ delay𝜃 𝑡 : ∃⃝𝐴
(5.1)

The context Γ⃝ , which we define below, is tick-free so that Γ⃝ , ✓𝜃 has exactly one tick.
The definition of Γ⃝ is motivated by the idea that any variable occurring to the left

of a tick ✓𝜃 can only be used in two ways: Either it can be used directly via the variable
introduction rule if its type is stable, or it can be used via adv or select if its type is of the
form ∃⃝𝐴. To capture this pattern, we define the notion of a later type, which is any type
of the form ∃⃝𝐴 and any stable type. Using this terminology, we define the context Γ⃝ as
follows:

·⃝ = · (Γ, ✓𝜃 )⃝ = Γ□ (Γ, 𝑥 : 𝐴)⃝ =

{
Γ⃝ , 𝑥 : 𝐴 if 𝐴 is a later type
Γ⃝ otherwise

That is, Γ⃝ removes all ticks from Γ and only keeps variables that either occur to the left
of a tick in Γ and are of stable type, or that do not occur to the left of a tick in Γ and are of
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VΔJ1K (𝑤) = {()} ,
VΔJNatK (𝑤) =

{
suc𝑛 0

�� 𝑛 ∈N }
,

VΔJ𝐴 × 𝐵K (𝑤) =
{
(𝑣1, 𝑣2)

�� 𝑣1 ∈VΔJ𝐴K (𝑤) ∧ 𝑣2 ∈VΔJ𝐵K (𝑤)
}
,

VΔJ𝐴 + 𝐵K (𝑤) =
{
in1 𝑣

�� 𝑣 ∈VΔJ𝐴K (𝑤)
}
∪
{
in2 𝑣

�� 𝑣 ∈VΔJ𝐵K (𝑤)
}

VΔJ𝐴→ 𝐵K (𝑛, 𝜎) =
{
𝜆𝑥.𝑡

���∀𝜎′ ⊒Δ
✓ 𝜎, 𝑛

′ ≤ 𝑛, 𝑣 ∈VΔJ𝐴K
(
𝑛′, 𝜎′) .𝑡 [𝑣/𝑥] ∈ TΔJ𝐵K

(
𝑛′, 𝜎′) }

VΔJ□𝐴K (𝑛, 𝜎) =
{
box 𝑡

�� 𝑡 ∈ TΔJ𝐴K (𝑛, ∅)
}

VΔJ ∀⃝𝐴K (0, 𝜎) = {dfix 𝑥.𝑡 | dfix 𝑥.𝑡 a closed term }
VΔJ ∀⃝𝐴K (𝑛 + 1, 𝜎) =

{
dfix 𝑥.𝑡

�� 𝑡 [dfix 𝑥.𝑡/𝑥] ∈ TΔJ𝐴K (𝑛, ∅)
}

VΔJ ∃⃝𝐴K (0, 𝜎) = LocΔ ∪ {wait𝜅 | 𝜅 :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {p, bp} }

VΔJ ∃⃝𝐴K (𝑛 + 1, 𝜎) =
𝑙 ∈ LocΔ

������∀𝜅 ∈ cl (𝑙) , ⊢ 𝑣 : Δ(𝜅).

𝜎(𝑙) ∈ TΔJ𝐴K
(
𝑛,

[
[gc(𝜎)]𝜅∈⟨𝜅 ↦→ 𝑣⟩[gc(𝜎)]𝜅∉

]
cl(𝑙)

) 
∪ {wait𝜅 | 𝜅 :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {p, bp} }

VΔJFix 𝛼.𝐴K (𝑤) =
{
into 𝑣

�� 𝑣 ∈VΔJ𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼]K (𝑤)
}

TΔJ𝐴K (𝑛, 𝜎) =
{
𝑡

����� 𝑡 closed, ∀ ⊢ 𝜄 : Δ.∀𝜎′ ⊒Δ
✓ 𝜎.∃𝜎

′′, 𝑣.〈
𝑡; 𝜎′〉 ⇓ 𝜄 〈𝑣; 𝜎′′〉 ∧ 𝑣 ∈VΔJ𝐴K

(
𝑛, 𝜎′′) }

CΔJ·K (𝑤) = {∗}
CΔJΓ, 𝑥 : 𝐴K (𝑤) =

{
𝛾 [𝑥 ↦→ 𝑣]

�� 𝛾 ∈ CΔJΓK (𝑤) , 𝑣 ∈VΔJ𝐴K (𝑤)
}

CΔJΓ, ✓𝜃 K (𝑛, 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿) ={
𝛾 ∈ CΔJΓK

(
𝑛 + 1, (𝜂′𝑁 ,

[
𝜂′𝐿

]
𝜅∉
)
) ����� [𝜂𝐿]Θ =

[
𝜂′𝐿

]
Θ
, [𝜂𝑁 ]Θ =

[
𝜂′𝑁

]
Θ
, 𝜂′𝑁 ∈ Heap𝜅 ,

⊢ 𝑣 : Δ(𝜅), 𝜅 ∈Θ, and Θ ⊆ domp (Δ) , where Θ= |𝜃𝛾 |

}
Using

domp (Δ) = {𝜅 | ∃𝐴, 𝑐 ∈ {p, bp}.𝜅 :𝑐 𝐴 ∈ Δ } LocΔ =
{
𝑙 ∈ Loc

�� cl (𝑙) ⊆ domp (Δ)
}

Fig. 6. Logical relation.

a later type. For example, if

Γ = 𝑥1 : 1 → Nat, 𝑥2 : ∃⃝Nat, 𝑥3 : ∀⃝(Nat → Nat), ✓cl(𝑥2 ) , 𝑥4 : ∃⃝Nat, 𝑥5 : Nat, 𝑥6 : 1 → Nat

then Γ⃝ = 𝑥3 : ∀⃝(Nat → Nat), 𝑥4 : ∃⃝Nat, 𝑥5 : Nat.
The following lemma shows that Γ⃝ , ✓𝜃 ⊢Δ 𝑡 : 𝐴 whenever Γ, ✓𝜃 ⊢Δ 𝑡 : 𝐴, which allows

us to transform any typing derivation so that it uses the revised typing rule (5.1) for delay.

Lemma 5.2. If Γ, Γ′ ⊢Δ 𝑡 : 𝐴 and Γ′ not tick-free, then Γ⃝ , Γ′ ⊢Δ 𝑡 : 𝐴.

Proof We proceed by induction on the structure of Γ, Γ′ ⊢Δ 𝑡 : 𝐴.
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• Let 𝑡 = 𝑥. If 𝑥 : 𝐴 ∈ Γ′, then Γ⃝ , Γ′ ⊢Δ 𝑥 : 𝐴 follows immediately. If 𝑥 : 𝐴 ∈ Γ, then 𝐴
must be a stable and thus 𝑥 : 𝐴 ∈ Γ⃝ as well. Hence, we also have Γ⃝ , Γ′ ⊢Δ 𝑥 : 𝐴.

• Let 𝑡 = adv 𝑣. Since Γ′ contains a tick, we have that Γ′ is of the form Γ1, ✓cl(𝑣) , Γ2
with Γ2 tick-free and Γ, Γ1 ⊢Δ 𝑣 : ∃⃝𝐴. It remains to be shown that Γ⃝ , Γ1 ⊢Δ 𝑣 : ∃⃝𝐴.
The only non-trivial case is when 𝑣 is a variable 𝑥 with 𝑥 : ∃⃝𝐴 ∈ Γ. Since ∃⃝𝐴 is not a
stable type, Γ must be of the form Γ3, 𝑥 : ∃⃝𝐴, Γ4 with Γ4 and Γ1 tick-free. Since ∃⃝𝐴

is a later type, we thus have that Γ⃝ = Γ
⃝
3 , 𝑥 : ∃⃝𝐴, Γ

⃝
4 , and thus Γ⃝ , Γ1 ⊢Δ 𝑣 : ∃⃝𝐴.

• The arguments for select and adv∀ are analogous to the argument for adv above.
• The case for box and fix follows immediately from the fact that (Γ, Γ′)□ = (Γ⃝ , Γ′)□.
• The remaining cases follow immediately from the induction hypothesis. The case for

delay additionally requires the property that Γ, Γ′ ⊢Δ 𝜃 : Clock implies Γ⃝ , Γ′ ⊢Δ 𝜃 :
Clock, which follows by a straightforward induction on 𝜃. ■

Next, we need to establish the closure properties of the logical relations that allow us to
prove their fundamental property. The central property of a Kripke logical relation is the
preservation under the Kripke preorder ≲:

Lemma 5.3. Let 𝑛 ≥ 𝑛′, and 𝜎 ⊑Δ
✓
𝜎′.

(i) VΔJ𝐴K (𝑛, 𝜎) ⊆ VΔJ𝐴K (𝑛′, 𝜎′).
(ii) TΔJ𝐴K (𝑛, 𝜎) ⊆ TΔJ𝐴K (𝑛′, 𝜎′).

(iii) CΔJΓK (𝑛, 𝜎) ⊆ CΔJΓK (𝑛′, 𝜎′).

Proof (i) and (ii) are proved by a well-founded induction using the same well-founded
order that we used to argue that both logical relations are well-defined. (iii) is proved by
induction on the length of Γ, and using (i). ■

We have that the term relation subsumes the value relation:

Lemma 5.4. VΔJ𝐴K (𝑤) ⊆ TΔJ𝐴K (𝑤).

Proof Let 𝑡 ∈VΔJ𝐴K (𝑛, 𝜎), and 𝜎′ ⊒Δ
✓
𝜎 and ⊢ 𝜄 : Δ. By inspection of the definition of

VΔJ𝐴K (𝑛, 𝜎), we obtain that 𝑡 is a value and thus ⟨𝑡; 𝜎′⟩ ⇓ 𝜄 ⟨𝑡; 𝜎′⟩. By Lemma 5.3, we
have that 𝑡 ∈VΔJ𝐴K (𝑛, 𝜎′). ■

Intuitively speaking, stable types are time independent, i.e., values of stable types can
be used at any time in the future. This intuition is confirmed by the following property that
states that the value relation for stable types is independent of the store 𝜎:

Lemma 5.5. VΔJ𝐴K (𝑛, 𝜎) =VΔJ𝐴K (𝑛, ∅) for any stable type 𝐴.

Proof By straightforward induction on the size of 𝐴. ■

The reactive semantics performs garbage collection after each output step. To show that
this is sound, we need that the logical relation is closed under performing such garbage
collection on the store 𝜎. However, we only need this property for elements of the language
that can be moved across time steps, namely for values of stable types, which can be moved



Journal of Functional Programming 31

into the future unchanged, and values of types of the form ∃⃝𝐴, which can be advanced
in the appropriate next time step. That is, the logical relation need only be closed under
garbage collection for later types. To account for this also on the level of typing contexts,
we further extend the notion of later types to contexts. We thus call any tick-free context a
later context if it only contains variables 𝑥 : 𝐴 where 𝐴 is a later type.

Lemma 5.6. (garbage collection)

(i) VΔJ𝐴K (𝑛, 𝜎) ⊆ VΔJ𝐴K (𝑛, gc(𝜎)) if 𝐴 is a later type.
(ii) CΔJΓK (𝑛, 𝜎) ⊆ CΔJΓK (𝑛, gc(𝜎)) if Γ is a later context.

Proof If 𝐴 is a stable type, then (i) follows immediately from Lemma 5.5. Otherwise, if
𝐴 = ∃⃝𝐵, then (i) follows immediately from the definition of the value relation. (ii) follows
from a simple induction argument on the length of Γ using (i). ■

Moreover, the clock independence property holds for both the value and context relations:

Lemma 5.7.

(i) If 𝑣 ∈VΔJ ∃⃝𝐴K (𝑛, 𝜎), then 𝑣 ∈VΔJ ∃⃝𝐴K (𝑛, 𝜎′), for any𝜎′ with [𝜎]cl(𝑣) = [𝜎′]cl(𝑣) .
(ii) If 𝛾 ∈ CΔJΓ, ✓𝜃 K (𝑛, 𝜎), then 𝛾 ∈ CΔJΓ, ✓𝜃 K

(
𝑛, [𝜎] | 𝜃𝛾 |

)
Proof Both items are proved by inspection of the definitions of VΔJ ∃⃝𝐴K (𝑛, 𝜎) and
CΔJΓ, ✓𝜃 K (𝑛, 𝜎), respectively. ■

The fact that (i) holds for VΔJ ∃⃝𝐴K (𝑛, 𝜎) but not for TΔJ ∃⃝𝐴K (𝑛, 𝜎) is the reason we
needed to restrict the calculus so that adv and select may only be applied to values.

Finally, the closure properties established above allow us to prove the soundness of the
language in the form of the following fundamental property of the logical relation:

Theorem 5.8. Given Γ ⊢Δ, Γ ⊢Δ 𝑡 : 𝐴, and 𝛾 ∈ CΔJΓK (𝑛, 𝜎), then 𝑡𝛾 ∈ TΔJ𝐴K (𝑛, 𝜎).

Proof The proof proceeds by structural induction on 𝑡. If 𝑡𝛾 is a value, it suffices to show that
𝑡𝛾 ∈VΔJ𝐴K (𝑛, 𝜎), according to Lemma 5.4. In all other cases, to prove 𝑡𝛾 ∈ TΔJ𝐴K (𝑛, 𝜎),
we assume some input buffer ⊢ 𝜄 : Δ and store 𝜎′ ⊒Δ

✓
𝜎, and show that there exists 𝜎′′ and 𝑣

such that ⟨𝑡𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩ and 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′). By Lemma 5.3 we may assume that
𝛾 ∈ CΔJΓK (𝑛, 𝜎′). In addition, Lemma 5.2 allows us to assume the revised typing rule (5.1)
for delay.

The induction proof on 𝑡 makes use of the aforementioned closure properties of the
logical relations. We include the full details of this induction argument in Appendix A. ■

Note that the proof uses Lemma 5.2 to transform the typing derivation on the fly so that
it effectively uses rule (5.1) for delay.
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5.2 Operational properties

We close this section by showing how we can use the fundamental property to prove the
operational properties presented in section 4.4, namely Theorem 4.1, Proposition 4.3, and
Theorem 4.4.

5.2.1 Productivity

In the following we assume a fixed reactive interface Δ⇒ Γout, for which we define the
following sets of machine states 𝐼𝑛 and 𝑆𝑛 for the reactive semantics:

𝐼𝑛 =
{
⟨𝑡; 𝜄⟩

�� ⊢ 𝜄 : Δ∧ 𝑡 ∈ TΔJProd (Γout)K (𝑛, ∅)
}

𝑆𝑛 =
{
⟨𝑁; 𝜂; 𝜄⟩

�� ⊢ 𝜄 : Δ∧∀𝑥 ↦→ 𝑙 ∈ 𝑁.∃𝑥 : 𝐴 ∈ Γout .𝑙 ∈VΔJ ∃⃝(Sig 𝐴)K (𝑛, 𝜂)
}

Intuitively speaking, 𝐼𝑛 is the set of initial machine states from which the machine can
safely run for 𝑛 steps, and 𝑆𝑛 is the set of machine states from which the machine can safely
run for 𝑛 more steps. In the definition of 𝐼𝑛 and 𝑆𝑛 as well as the proofs below we make use
of the notion of well-typedness for input buffers, input values, and output values, which are
presented in the beginning of section 4.4.1. The following lemma shows that the typing of
closed values coincides with the value relation for value types:

Lemma 5.9. Let 𝐴 be a value type. Then 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎) iff ⊢Δ 𝑣 : 𝐴.

Proof Straightforward induction on 𝐴. ■

This fact can be used together with the fundamental property to prove the following
lemma, which essentially states that the machine stays inside the sets of states 𝐼𝑛 and 𝑆𝑛
defined above and will only produce well-typed outputs.

Lemma 5.10 (productivity).

(i) If 𝑡 : Δ⇒ Γout and ⊢ 𝜄 : Δ, then ⟨𝑡; 𝜄⟩ ∈ 𝐼𝑛 for all 𝑛 ∈N.
(ii) If ⟨𝑡; 𝜄⟩ ∈ 𝐼𝑛, then there is a transition ⟨𝑡; 𝜄⟩ 𝑂

=⇒ ⟨𝑁; 𝜂; 𝜄⟩ such that ⟨𝑁; 𝜂; 𝜄⟩ ∈ 𝑆𝑛 and
⊢𝑂 : Γout.

(iii) If ⟨𝑁; 𝜂; 𝜄⟩ ∈ 𝑆𝑛+1 and ⊢ 𝜅 ↦→ 𝑣 : Δ, then there is a sequence of two transitions
⟨𝑁; 𝜂; 𝜄⟩ 𝜅 ↦→𝑣

=⇒ ⟨𝑁; 𝜎; 𝜄′⟩ 𝑂
=⇒ ⟨𝑁 ′; 𝜂′; 𝜄′⟩ such that ⟨𝑁 ′; 𝜂′; 𝜄′⟩ ∈ 𝑆𝑛 and ⊢𝑂 : Γout.

Proof

(i) We need to show that 𝑡 ∈ TΔJProd (Γout)K (𝑛, ∅). Since 𝑡 : Δ⇒ Γout, we know that
⊢Δ 𝑡 : Prod (Γout). Hence, by Theorem 5.8, we have that 𝑡 ∈ TΔJProd (Γout)K (𝑛, ∅).

(ii) Let ⟨𝑡; 𝜄⟩ ∈ 𝐼𝑛. We thus have 𝑡 ∈ TΔJProd (Γout)K (𝑛, ∅). Hence,
⟨𝑡; ∅⟩ ⇓ 𝜄 ⟨(𝑣1 :: 𝑤1, . . . , 𝑣𝑘 :: 𝑤𝑘) ; 𝜂⟩ with 𝑣𝑖 ∈VΔJ𝐴𝑖K (𝑛, 𝜂) and 𝑤𝑖 ∈
VΔJ ∃⃝(Sig 𝐴𝑖)K (𝑛, 𝜂). Since Sig 𝐴𝑖 is not a value type, 𝑤𝑖 cannot be of the
form wait𝜅 . Hence, by the definition of the value relation, each 𝑤𝑖 must be some heap
location 𝑙𝑖 . Hence, by definition, ⟨𝑡; 𝜄⟩

𝑥1 ↦→𝑣1 ,...,𝑥𝑘 ↦→𝑣𝑘
=⇒ ⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑘 ↦→ 𝑙𝑘 ; 𝜂; 𝜄⟩
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and ⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑘 ↦→ 𝑙𝑘 ; 𝜂; 𝜄⟩ ∈ 𝑆𝑛. Since each 𝐴𝑖 is a value type, we know that
𝑣𝑖 ∈VΔJ𝐴𝑖K (𝑛, 𝜂) implies ⊢ 𝑣𝑖 : 𝐴𝑖 and thus ⊢ 𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑘 ↦→ 𝑣𝑘 : Γout.

(iii) By definition, we have ⟨𝑁; 𝜂; 𝜄⟩ 𝜅 ↦→𝑣
=⇒ ⟨𝑁; 𝜎; 𝜄′⟩, where 𝜎 = [𝜂]𝜅∈ ⟨𝜅 ↦→ 𝑣⟩ [𝜂]𝜅∉, 𝜄′ =

𝜄[𝜅 ↦→ 𝑣] if 𝜅 ∈ dom (𝜄), and 𝜄′ = 𝜄 otherwise. To construct the second transition step,
we show the following more general property:

If 𝜎′ ⊒ 𝜎, 𝑁1 ⊆ 𝑁, then ⟨𝑁1; 𝜎′; 𝜄′⟩ 𝑂
=⇒ ⟨𝑁2; 𝜂′; 𝜄′⟩ ,

such that ⟨𝑁2; 𝜂′; 𝜄′⟩ ∈ 𝑆𝑛, gc(𝜎′) ⊑ 𝜂′, and ⊢𝑂 : Γout .
(5.2)

From (5.2), we then obtain that ⟨𝑁; 𝜎; 𝜄′⟩ 𝑂
=⇒ ⟨𝑁 ′; 𝜂′; 𝜄′⟩, with ⟨𝑁 ′; 𝜂′; 𝜄′⟩ ∈ 𝑆𝑛 and

⊢𝑂 : Γout. We conclude this proof by proving (5.2) by induction on the size of 𝑁1.
Since 𝜎′ ⊒ 𝜎, we know that 𝜎′ = 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿 with 𝜂𝑁 ⊒ [𝜂]𝜅∈ and 𝜂𝐿 ⊒ [𝜂]𝜅∉.

• Let𝑁1 = ·. Then, by definition, we get the transition ⟨·; 𝜎′; 𝜄′⟩ ·
=⇒ ⟨·; gc(𝜎′); 𝜄′⟩,

where the conditions ⟨·; gc(𝜎′); 𝜄′⟩ ∈ 𝑆𝑛, gc(𝜎′) ⊑ gc(𝜎′), and ⊢ · : Γout are
trivially true.

• Let 𝑁1 = 𝑥 ↦→ 𝑙, 𝑁 ′
1 with 𝜅 ∉ cl (𝑙) and 𝑥 : 𝐴 ∈ Γout. By induction hypothe-

sis, we obtain a transition
〈
𝑁 ′

1; 𝜎′; 𝜄′
〉 𝑂
=⇒

〈
𝑁 ′

2; 𝜂′; 𝜄′
〉
, with

〈
𝑁 ′

2; 𝜂′; 𝜄′
〉
∈

𝑆𝑛, gc(𝜎′) ⊑ 𝜂′, and ⊢𝑂 : Γout. By definition, we obtain the tran-
sition

〈
𝑥 ↦→ 𝑙, 𝑁 ′

1; 𝜎′; 𝜄′
〉 𝑂
=⇒

〈
𝑥 ↦→ 𝑙, 𝑁 ′

2; 𝜂′; 𝜄′
〉
. Since ⟨𝑁; 𝜂; 𝜄⟩ ∈ 𝑆𝑛+1, we

know that 𝑙 ∈VΔJ ∃⃝(Sig 𝐴)K (𝑛 + 1, 𝜂). Because of 𝜅 ∉ cl (𝑙), we can con-
clude that [𝜂]cl(𝑙) =

[
[𝜂]𝜅∉

]
cl(𝑙) , which, by Lemma 5.7, means that 𝑙 ∈

VΔJ ∃⃝(Sig 𝐴)K
(
𝑛 + 1, [𝜂]𝜅∉

)
. Since [𝜂]𝜅∉ ⊑ 𝜂𝐿 = gc(𝜎′) ⊑ 𝜂′, we have by

Lemma 5.3 that 𝑙 ∈VΔJ ∃⃝(Sig 𝐴)K (𝑛, 𝜂′) and thus
〈
𝑥 ↦→ 𝑙, 𝑁 ′

2; 𝜂′; 𝜄′
〉
∈ 𝑆𝑛.

• Let 𝑁1 = 𝑥 ↦→ 𝑙, 𝑁 ′
1 with 𝜅 ∈ cl (𝑙) and 𝑥 : 𝐴 ∈ Γout. Since ⟨𝑁; 𝜂; 𝜄⟩ ∈ 𝑆𝑛+1, we

know that 𝑙 ∈VΔJ ∃⃝(Sig 𝐴)K (𝑛 + 1, 𝜂), which implies adv 𝑙 ∈ TΔJSig 𝐴K (𝑛, 𝜎)
by definition. Hence, by definition, we obtain ⟨adv 𝑙; 𝜎′⟩ ⇓ 𝜄′ ⟨𝑣′ :: 𝑙′; 𝜎′′⟩ with
𝑣′ ∈VΔJ𝐴K (𝑛, 𝜎′′) and 𝑙′ ∈VΔJ ∃⃝(Sig 𝐴)K (𝑛, 𝜎′′). By induction hypothe-
sis, we obtain a transition

〈
𝑁 ′

1; 𝜎′′; 𝜄′
〉 𝑂
=⇒

〈
𝑁 ′

2; 𝜂′; 𝜄′
〉
, with

〈
𝑁 ′

2; 𝜂′; 𝜄′
〉
∈

𝑆𝑛, gc(𝜎′′) ⊑ 𝜂′, and ⊢𝑂 : Γout. Since 𝜎′ ⊑ 𝜎′′ by Lemma 5.1, we
also have gc(𝜎′) ⊑ gc(𝜎′′) ⊑ 𝜂′. By definition, we obtain the tran-
sition

〈
𝑥 ↦→ 𝑙, 𝑁 ′

1; 𝜎′; 𝜄′
〉 𝑥 ↦→𝑣′ ,𝑂

=⇒
〈
𝑥 ↦→ 𝑙′, 𝑁 ′

2; 𝜂′; 𝜄′
〉
. By Lemma 5.3 and

Lemma 5.6, we have that 𝑙′ ∈VΔJ ∃⃝(Sig 𝐴)K (𝑛, 𝜂′), and thus we also have〈
𝑥 ↦→ 𝑙′, 𝑁 ′

2; 𝜂′; 𝜄′
〉
∈ 𝑆𝑛. In addition, since 𝑣′ ∈VΔJ𝐴K (𝑛, 𝜎′′) implies ⊢Δ 𝑣′ : 𝐴

by Lemma 5.9, we have that ⊢ 𝑥 ↦→ 𝑣′, 𝑂 : Γout. ■

The productivity property is now a straightforward consequence of the above lemma:

Proof [Theorem 4.1 (productivity)] For each 𝑛 ∈N, we can construct the following finite
transition sequence 𝑠𝑛 using Lemma 5.10:

⟨𝑡; 𝜄0⟩
𝑂0
=⇒ ⟨𝑁0; 𝜂0; 𝜄0⟩

𝜅0 ↦→𝑣0
=⇒ ⟨𝑁0; 𝜎0; 𝜄1⟩

𝑂1
=⇒ ⟨𝑁1; 𝜂1; 𝜄1⟩

𝜅1 ↦→𝑣1
=⇒ . . .

𝑂𝑛

=⇒ ⟨𝑁𝑛; 𝜂𝑛; 𝜄𝑛⟩

with ⊢𝑂𝑖 : Γout for all 0 ≤ 𝑖 ≤ 𝑛. By Lemma 4.2, 𝑠𝑛 is a prefix of 𝑠𝑚 for all 𝑚 > 𝑛. We thus
obtain the desired infinite transition sequence as the limit of all 𝑠𝑛. ■
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5.2.2 Signal independence

Also the signal independence property for buffered signals is a straightforward consequence
of Lemma 5.10:

Proof [Proposition 4.3 (buffered signal independence)] By Lemma 5.10 any input tran-
sition ⟨𝑁𝑖; 𝜂𝑖; 𝜄𝑖⟩

𝜅𝑖 ↦→𝑣𝑖
=⇒ ⟨𝑁𝑖; 𝜎𝑖; 𝜄𝑖+1⟩ in a sequence starting from ⟨𝑡; 𝜄0⟩ will be in 𝑆1. In

particular, this means that 𝑙 ∈VΔJ ∃⃝(Sig 𝐴)K (1, 𝜂𝑖) for any 𝑥 ↦→ 𝑙 ∈ 𝑁𝑖 with 𝑥 : 𝐴 ∈ Γout,
which in turn means that cl (𝑙) ∈ LocΔ. Hence, 𝜅 ∉ cl (𝑙), and so 𝑂𝑖+1 is empty. ■

For the proof of Theorem 4.4, we first define the following sets of machine states in the
context of a partial map 𝐷 that maps variables 𝑥 to input contexts 𝐷𝑥 :

𝑇𝐷
𝑛 =

{
⟨𝑁; 𝜂; 𝜄⟩

�� ⊢ 𝜄 : Δ∧∀𝑥 ↦→ 𝑤 ∈ 𝑁.𝐷𝑥 ⊆ Δ∧ ∃𝑥 : 𝐴 ∈ Γout .𝑤 ∈V𝐷𝑥
J ∃⃝(Sig 𝐴)K (𝑛, 𝜂)

}
Machine states in 𝑇𝐷

𝑛 are maintained during the execution of the machine:

Lemma 5.11. If ⟨𝑁; 𝜂; 𝜄⟩ ∈ 𝑇𝐷
𝑛+1 and ⟨𝑁; 𝜂; 𝜄⟩ 𝜅 ↦→𝑣

=⇒ ⟨𝑁; 𝜎; 𝜄′⟩ 𝑂
=⇒ ⟨𝑁 ′; 𝜂′; 𝜄′⟩, then

⟨𝑁 ′; 𝜂′; 𝜄′⟩ ∈ 𝑇𝐷
𝑛 .

Proof Note that 𝜎 = [𝜂]𝜅∈ ⟨𝜅 ↦→ 𝑣⟩ [𝜂]𝜅∉ and that [𝜂]𝜅∉ ⊑ 𝜂′. Suppose 𝑥 ↦→ 𝑤 ∈ 𝑁 , and
note that 𝑤 must be some location 𝑙, since Sig 𝐴 is not a value type. Then there is
an 𝑙′ such that 𝑥 ↦→ 𝑙′ ∈ 𝑁 ′, and we must show that 𝑙′ ∈V𝐷𝑥

J ∃⃝(Sig 𝐴)K (𝑛, 𝜂′) using
the hypothesis 𝑙 ∈V𝐷𝑥

J ∃⃝(Sig 𝐴)K (𝑛 + 1, 𝜂). Suppose first that 𝜅 ∉ cl (𝑙). Then 𝑙′ = 𝑙

and since 𝜅 ∉ cl (𝑙), we know that [𝜂]cl(𝑙) =
[
[𝜂]𝜅∉

]
cl(𝑙) , which, by Lemma 5.7, means

that 𝑙′ ∈VΔJ ∃⃝(Sig 𝐴)K
(
𝑛 + 1, [𝜂]𝜅∉

)
. We can then apply Lemma 5.3 to conclude that

𝑙′ ∈V𝐷𝑥
J ∃⃝(Sig 𝐴)K (𝑛, 𝜂′).

Suppose now 𝜅 ∈ cl (𝑙). In that case, 𝑙′ must have occurred by evaluating ⟨𝜎′ (𝑙); 𝜎′⟩ ⇓ 𝜄

⟨𝑤′ :: 𝑙′; 𝜎′′⟩ for some 𝜎′, 𝜎′′ such that 𝜎 ⊑ 𝜎′, and gc(𝜎′′) ⊑ 𝜂′ as well as 𝑙′ ∈
V𝐷𝑥

J ∃⃝(Sig 𝐴)K (𝑛, 𝜎′′). The hypothesis tells us that

𝜂(𝑙) ∈ T𝐷𝑥
J ∃⃝(Sig 𝐴)K

(
𝑛, [𝜂]𝜅∈ ⟨𝜅 ↦→ 𝑣⟩ [𝜂]𝜅∉

)
Since [𝜂]𝜅∈ ⟨𝜅 ↦→ 𝑣⟩ [𝜂]𝜅∉ ⊑ 𝜎′, this means that ⟨𝜂(𝑙); 𝜎′⟩ ⇓ 𝜄 ⟨𝑤′′ :: 𝑙′′; 𝜎′′′⟩. Since 𝜂(𝑙) =
[𝜂]𝜅∈ (𝑙) = 𝜎′ (𝑙), by Lemma 4.2, 𝜎′′′ = 𝜎′′ and 𝑙′′ = 𝑙′. From this we conclude that

𝑙′ ∈V𝐷𝑥
J ∃⃝(Sig 𝐴)K (𝑛, 𝜎′′) ⊆ V𝐷𝑥

J ∃⃝(Sig 𝐴)K (𝑛, gc(𝜎′′)) ⊆ V𝐷𝑥
J ∃⃝(Sig 𝐴)K (𝑛, 𝜂′)

where the first inclusion follows from Lemma 5.6 and the second inclusion follows from
Lemma 5.3. ■

With the help of Lemma 5.11, we can now prove the push signal independence property:

Proof [Theorem 4.4 (push signal independence)] The initialisation transition

⟨(𝑡1, . . . , 𝑡𝑚) ; 𝜄0⟩
𝑥1 ↦→𝑣1 ,...,𝑥𝑚 ↦→𝑣𝑚

=⇒ ⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑚 ↦→ 𝑙𝑚; 𝜂0; 𝜄0⟩ = ⟨𝑁0; 𝜂0; 𝜄0⟩

is caused by an evaluation of the form ⟨(𝑡1, . . . , 𝑡𝑚) ; ∅⟩ ⇓ 𝜄 ⟨(𝑣1 :: 𝑙1, . . . , 𝑣𝑚 :: 𝑙𝑚) ; 𝜂0⟩,
which in turn means that

〈
𝑡 𝑗 ; 𝜂′

〉
⇓ 𝜄

〈
𝑣 𝑗 :: 𝑙 𝑗 ; 𝜂′′

〉
for some 𝜂′, 𝜂′′ with 𝜂′′ ⊑ 𝜂0 by

Lemma 5.1. By assumption ⊢Δ′ 𝑡 𝑗 : Sig 𝐴 𝑗 and thus 𝑡 𝑗 ∈ TΔ′JSig 𝐴 𝑗K (𝑛, ∅) for all 𝑛 by
Theorem 5.8, which in turn implies 𝑙 𝑗 ∈VΔ′J ∃⃝(Sig 𝐴 𝑗 )K (𝑛, 𝜂0) for all 𝑛. Likewise, 𝑙𝑘 ∈
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Γ ⊩Δ 𝑡 : ∃⃝𝐴

Γ ⊩Δ cl (𝑡) : Clock
Γ ⊩Δ 𝑡 : ∃⃝𝐴 Γ′ tick-free
Γ, ✓cl(𝑡 ) , Γ

′ ⊩Δ adv 𝑡 : 𝐴

Γ ⊩Δ 𝑡1 : ∃⃝𝐴1 Γ ⊢Δ 𝑡2 : ∃⃝𝐴2 𝜃 = cl (𝑡1) ⊔ cl (𝑡2) Γ′ tick-free
Γ, ✓𝜃 , Γ

′ ⊩Δ select 𝑡1 𝑡2 : ((𝐴1 × ∃⃝𝐴2) + ( ∃⃝𝐴1 × 𝐴2)) + (𝐴1 × 𝐴2)

Fig. 7. Revised typing rules for Full Async RaTT.

VΔJ ∃⃝(Sig 𝐵𝑘)K (𝑛, 𝜂0) for all 𝑛, and 𝑘 = 1, . . . , 𝑚. So ⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑚 ↦→ 𝑙𝑚; 𝜂0; 𝜄0⟩ ∈ 𝑇𝐷
𝑛

for all 𝑛, where 𝐷𝑥 𝑗
= Δ′ and 𝐷𝑥𝑘 = Δ, for 𝑘 ≠ 𝑗 . By 𝑛 applications of Lemma 5.11,

we thus obtain that ⟨𝑁𝑛; 𝜂𝑛; 𝜄𝑛⟩ ∈ 𝑇Δ′′

1 . In particular, 𝑁𝑛 (𝑥 𝑗 ) = 𝑙′ for some 𝑙′ ∈
VΔ′J ∃⃝(Sig 𝐴 𝑗 )K (1, 𝜂𝑛). Hence, cl (𝑙′) ⊆ dom (Δ′) and thus 𝑥 𝑗 ↦→ 𝑣 ∈𝑂𝑖+1 implies 𝜅𝑖 ∈
cl (𝑙′), which in turn implies 𝜅𝑖 ∈ dom (Δ′). ■

6 Full Async RaTT

In this section, we give a slightly more general type system that eliminates the value
restriction for clocks and for arguments of adv and select. This generalised type system,
which we refer to as Full Async RaTT, allows both adv and select to be applied to arbitrarily
terms of the appropriate type rather than just values.

The purpose of Full Async RaTT is to demonstrate that the value restriction for adv and
select does not limit the expressiveness of the Async RaTT calculus. At the same time, these
restrictions are crucial to obtain the operational properties proved in section 5: As we shall
see in section 6.3, it is not sound to apply the operational semantics of Async RaTT directly
to Full Async RaTT. However, we will show that we can transform any well-typed, closed
Full Async RaTT term into a well-typed Async RaTT term of the same type, which can then
safely run on the machine presented in section 4. This program transformation is also used
in the implementation of Full Async RaTT as an embedded language in Haskell (Bahr et al.,
2024).

Full Async RaTT shares almost all of its typing rules with Async RaTT; the only typing
rules that change are those marked with ★ in Figure 2. The new typing rules that replace
these in Full Async RaTT are shown in Figure 7. To distinguish the type system from that
of Figure 2, we use the symbol ⊩ instead of ⊢.

6.1 Program transformation

In this section, we present a program transformation that turns any Full Async RaTT program
into an Async RaTT program of the same type. This program transformation accounts for
the fact that Full Async RaTT allows adv and select to be applied to non-value terms. The
program transformation is formalised as a rewrite relation −→ on terms defined by the
rewrite rules in Figure 8. In the following, we will explain the idea behind the rewrite
relation as well as the terminology we use to define it, in particular the notion of tick-closed
terms and the tick-substitution operation 𝑠L𝑡M.
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delaycl(𝑡 ) 𝑠 −→ let 𝑥 = 𝑡 in delaycl(𝑥 ) (𝑠Ladv 𝑥M) if 𝑡 is not a value (T1)
delaycl(𝑡1 )⊔cl(𝑡2 ) 𝑠 −→ let 𝑥 = 𝑡1 in delaycl(𝑥 )⊔cl(𝑡2 ) (𝑠Lselect 𝑥 𝑡2M) if 𝑡1 is not a value (T2)

delaycl(𝑣)⊔cl(𝑡 ) 𝑠 −→ let 𝑦 = 𝑡 in delaycl(𝑣)⊔cl(𝑦) (𝑠Lselect 𝑣 𝑦M) if 𝑡 is not a value (T3)
delay𝑇 [cl(𝑡 ) ] 𝑠 −→ let 𝑥 = 𝑡 in delay𝑇 [cl(𝑥 ) ] 𝑠 if 𝑠 is tick-closed and 𝑡 not a value (T4)

For all rules, we have the side condition that 𝑠 is in normal form.
Fig. 8. Rewrite rules for the transformation of Full Async RaTT terms to Async RaTT terms.

All rewrite rules replace occurrences of subterms of the form delay𝜃 𝑠, where 𝜃 is not
a value, i.e., 𝜃 contains a non-value term, and where 𝑠 is already in normal form, i.e., no
rewrite rule can be applied to 𝑠. The side condition on 𝑠 is crucial to ensure that rewriting
is type preserving. Rule (T1) considers the case where 𝑠 may contain an occurrence of
adv that consumes the tick ✓𝜃 introduced by delay𝜃 into the typing context. This can only
happen if 𝜃 is of the form cl (𝑡) for some term 𝑡. Rules (T2) and (T3) perform an analogous
transformation, but for select instead of adv. Finally, rule (T4) considers the case where 𝑠
does not contain any occurrences of adv or select that consumes the tick ✓𝜃 . Note that the
rules are not mutually exclusive, e.g., (T1) and (T4) may apply if 𝜃 = cl (𝑡) and 𝑠 does not
contain any corresponding adv. Similarly, both (T2) and (T3) may apply simultaneously
with (T4).

To see the rewrite rules in action, consider the closed Full Async RaTT term

𝜆𝑥.delaycl(𝑥 ) (delaycl(adv 𝑥 ) (𝑠𝑢𝑐 (adv (adv 𝑥)))) (6.1)

of type ∃⃝( ∃⃝Nat) → ∃⃝( ∃⃝Nat). It defines a function that increments a doubly-delayed
number. This term is not well-typed in Async RaTT since adv is applied to the non-value
term adv 𝑥. However, we can transform this term into a well-typed Async RaTT term that
first evaluates adv 𝑥 to a value 𝑦 and then applies adv to 𝑦 instead of adv 𝑥:

𝜆𝑥.delaycl(𝑥 ) (let 𝑦 = adv 𝑥 in delaycl(𝑦) (𝑠𝑢𝑐 (adv 𝑦))) (6.2)

Rule (T1) captures exactly this transformation. To this end, the rewrite rule use the tick-
substitution operation 𝑡L𝑠M that replaces all occurrences of adv and select in 𝑡 that are not
guarded by delay, box, or fix with 𝑠:

𝑡L𝑠M = 𝑡 if 𝑡 is of the form delay 𝑡′, box 𝑡′, or fix 𝑦.𝑡′

𝑡L𝑠M = 𝑠 if 𝑡 is of the form adv 𝑡′ or select 𝑡1 𝑡2
(𝑡1 𝑡2)L𝑠M = (𝑡1L𝑠M) (𝑡2L𝑠M) and similarly for all other terms

Rule (T1) uses tick-substitution to replace occurrences of adv 𝑡 in 𝑠 with adv 𝑥: Well-
typing of the term delaycl(𝑡 ) 𝑠 ensures that 𝑠 does not contain select and that all occurrences
of adv are of the form adv 𝑡. Returning to the example term (6.1), we can see that we obtain
the term (6.2), by performing the following subsitution:

(𝑠𝑢𝑐 (adv (adv 𝑥)))Ladv 𝑦M = 𝑠𝑢𝑐 (adv 𝑦)

The same idea is used to account for select instead of adv. However, we have two rules,
(T2) and (T3), that handle each of the two arguments of select separately.
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Finally, we turn to rule (T4), which considers the case where delay𝜃 is applied to a term
that has no occurrence of adv or select that consumes the tick on 𝜃. For example, consider
the following Full Async RaTT term of type (Nat → ∃⃝1) → ∃⃝ ( ∃⃝Nat → ∃⃝Nat):

𝜆𝑥.delaycl(𝑥 0)⊔cl(𝑥 1)⊔cl(𝑥 2) (𝜆𝑦.delaycl(𝑦) (𝑠𝑢𝑐 (adv 𝑦))) (6.3)

The clock expression cl (𝑥 0) ⊔ cl (𝑥 1) ⊔ cl (𝑥 2) is not well-formed in Async RaTT since
it contains terms that are not values. Since the argument to delaycl(𝑥 0)⊔cl(𝑥 1)⊔cl(𝑥 2) has no
occurrence of adv or select that consumes the tick of clock cl (𝑥 0) ⊔ cl (𝑥 1) ⊔ cl (𝑥 2), the
clock expression is not of the right form for any of the first three rules to be applicable.
Rule (T4) covers exactly this case. Repeatedly applying this rule transforms (6.3) into a
term that first evaluates 𝑥 0, 𝑥 1, and 𝑥 2 to values before constructing the clock:

𝜆𝑥.let 𝑧0 = 𝑥 0 in let 𝑧1 = 𝑥 1 in let 𝑧2 = 𝑥 2 in
delaycl(𝑧0 )⊔cl(𝑧1 )⊔cl(𝑧2 ) (𝜆𝑦.delaycl(𝑦) (𝑠𝑢𝑐 (adv 𝑦)))

To understand the final rewrite rule, we need to introduce some terminology: We use the
notation𝑇 for a clock expression with a single hole [] and write𝑇 [𝜃] for the clock expression
obtained from 𝑇 by replacing the unique hole in 𝑇 by 𝜃. For example, if 𝑇 = cl (𝑥) ⊔ [],
then 𝑇 [cl (𝑦)] = cl (𝑥) ⊔ cl (𝑦). Similarly, we use the notation 𝐾 for a term with a single
occurrence of a hole [], which must not be the scope of delay, adv, select, box, or fix. More
precisely, 𝐾 is generated by the following grammar:

𝐾 ::= [] | 𝐾 𝑡 | 𝑡 𝐾 | 𝜆𝑥.𝐾 | let 𝑥 = 𝐾 in 𝑡 | let 𝑥 = 𝑡 in 𝐾 | (𝐾, 𝑡) | (𝑡, 𝐾) | in1 𝐾 | in2 𝐾 | 𝜋1 𝐾

| 𝜋2 𝐾 | case 𝐾 of in1 𝑥.𝑠; in2 𝑥.𝑡 | case 𝑠 of in1 𝑥.𝐾; in2 𝑥.𝑡 | case 𝑠 of in1 𝑥.𝑡; in2 𝑥.𝐾

| suc 𝐾 | into 𝐾 | out 𝐾 | unbox 𝐾 | recNat (𝐾, 𝑥 𝑦.𝑡, 𝑢) | recNat (𝑠, 𝑥 𝑦.𝐾, 𝑢)
| recNat (𝑠, 𝑥 𝑦.𝑡, 𝐾)

We write 𝐾 [𝑡] for the term obtained from 𝐾 by substituting the unique hole [] in 𝐾 with
the term 𝑡. Finally, we say that a term 𝑡 is tick-closed iff 𝑡 is neither of the form 𝐾 [adv 𝑠] nor
𝐾 [select 𝑠 𝑠′]. In other words, a term 𝑡 is tick-closed iff any occurrence of adv and select in
𝑡 is in the scope of delay, box, or fix. Tick substitution is closely related to 𝐾 . Namely, 𝑡L𝑠M
is the result of repeatedly applying to 𝑡 the rewrite relation defined by 𝐾 [adv 𝑠′] −→ 𝐾 [𝑠]
and 𝐾 [select 𝑠1 𝑠2] −→ 𝐾 [𝑠].

Returning to the example, we can see that (T4) can be applied to (6.3) since the term
𝜆𝑦.delaycl(𝑦) (𝑠𝑢𝑐 (adv 𝑦)) is tick-closed: The occurrence of adv 𝑦 is guarded by delaycl(𝑦)
and thus 𝜆𝑦.delaycl(𝑦) (𝑠𝑢𝑐 (adv 𝑦)) is not of the form 𝐾 [adv 𝑦].

As mentioned above, sometimes more than one rewrite rule is applicable. For example,
if we have a term of the form delaycl(𝑡 ) 𝑠 where 𝑠 is tick-closed and 𝑡 is not a value, then
both (T1) and (T4) apply. However, the outcome of applying either of these rules is the
same, because 𝑠L𝑡M = 𝑠 whenever 𝑠 is tick-closed.

6.2 Soundness of the program transformation

We show that the rewrite relation −→ is strongly normalising and type-preserving in the
Full Async RaTT calculus. Moreover, any closed Full Async RaTT term that cannot be
further rewritten is also well-typed in Async RaTT. That is, by exhaustively applying the
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rewrite rules to a closed Full Async RaTT term, we can transform it into an Async RaTT
term of the same type:

Theorem 6.1. For each ⊩Δ 𝑡 : 𝐴, we can effectively construct a term 𝑡′ with 𝑡 −→∗ 𝑡′ and
⊢Δ 𝑡′ : 𝐴.

The proof of the above theorem can be broken down into the following three properties,
where we use the notation 𝑡 X−→ to denote that there is no 𝑡′ with 𝑡 −→ 𝑡′:

(1) Exhaustiveness: If 𝑡 X−→, then ⊩Δ 𝑡 : 𝐴 implies ⊢Δ 𝑡 : 𝐴.
(2) Subject reduction: If Γ ⊩Δ 𝑠 : 𝐴 and 𝑠 −→ 𝑡, then Γ ⊩Δ 𝑡 : 𝐴.
(3) Strong normalisation: There is no infinite −→-reduction sequence.

Theorem 6.1 follows immediately from these three properties. We prove each of them in
turn below.

6.2.1 Exhaustiveness

To prove the exhaustiveness property, we need three lemmas that allow us to show that any
clock occurring in a term 𝑡 X−→ is indeed also a well-formed clock in Async RaTT:

Lemma 6.2. Let Γ, ✓𝜃 , Γ′ ⊩Δ 𝐾 [𝑡] : 𝐴 and Γ′ tick-free.

(i) If 𝑡 = adv 𝑠, then 𝜃 = cl (𝑠).
(ii) If 𝑡 = select 𝑡1 𝑡2, then 𝜃 = cl (𝑡1) ⊔ cl (𝑡2).

Proof By straightforward induction on 𝐾 . ■

We say that a clock expression 𝜃 is a value if any term 𝑡 occurring in 𝜃 is a value. Any
well-formed value clock in Full Async RaTT is also a well-formed clock in Async RaTT:

Lemma 6.3. If Γ ⊩Δ 𝜃 : Clock and 𝜃 is a value, then Γ ⊢Δ 𝜃 : Clock.

Proof Straightforward induction on Γ ⊩Δ 𝜃 : Clock. ■

Moreover, exhaustively applying −→ ensures that all clocks are indeed values:

Lemma 6.4. If Γ, ✓𝜃 ⊩Δ 𝑡 : 𝐴 and delay𝜃 𝑡 X−→, then 𝜃 is a value.

Proof We consider two cases:

• 𝑡 is tick-closed: Then delay𝜃 𝑡 X−→ implies that 𝜃 is a value.
• 𝑡 is not tick-closed: Hence, 𝑡 is of the form 𝐾 [adv 𝑠] or 𝐾 [select 𝑡1 𝑡2], which

by Lemma 6.2 means that 𝜃 = cl (𝑠) or 𝜃 = cl (𝑡1) ⊔ cl (𝑡2), respectively. Hence,
delay𝜃 𝑡 X−→ implies that 𝜃 is a value. ■
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The exhaustiveness property is proved by induction on the typing judgement. To this end,
we generalise the property from closed Full Async RaTT terms to open Full Async RaTT
terms in contexts that are also valid in Async RaTT:

Proposition 6.5 (exhaustiveness). If Γ ⊢Δ, Γ ⊩Δ 𝑡 : 𝐴, and 𝑡 X−→, then Γ ⊢Δ 𝑡 : 𝐴.

Proof We proceed by induction on Γ ⊩Δ 𝑡 : 𝐴:

• Γ ⊩Δ delay𝜃 𝑡 : ∃⃝𝐴: Hence, Γ, ✓𝜃 ⊩Δ 𝑡 : 𝐴 and Γ ⊩Δ 𝜃 : Clock. By Lemma 6.3 and
Lemma 6.4, we have that Γ ⊢Δ 𝜃 : Clock and thus Γ, ✓𝜃 ⊢Δ. Consequently, we have
Γ, ✓𝜃 ⊢Δ 𝑡 : 𝐴 by induction and thus Γ ⊢Δ delay𝜃 𝑡 : ∃⃝𝐴.

• Γ, ✓cl(𝑡 ) , Γ
′ ⊩Δ adv 𝑡 : 𝐴: Hence, Γ ⊩Δ 𝑡 : ∃⃝𝐴. From the assumption Γ, ✓cl(𝑡 ) , Γ

′ ⊢Δ we
obtain that 𝑡 is a value and that Γ ⊢Δ. Hence, we may apply the induction hypothesis
to obtain that Γ ⊢Δ 𝑡 : ∃⃝𝐴. Since 𝑡 is a value, we thus have Γ, ✓cl(𝑡 ) , Γ

′ ⊢Δ adv 𝑡 : 𝐴.
• Γ, ✓𝜃 , Γ

′ ⊩Δ select 𝑡1 𝑡2 : ((𝐴1 × ∃⃝𝐴2) + ( ∃⃝𝐴1 × 𝐴2)) + (𝐴1 × 𝐴2): This follows
from an argument analogous to the one above.

• All remaining cases follow immediately from the induction hypothesis, because all
other typing rules are the same in Async RaTT and Full Async RaTT. ■

6.2.2 Subject reduction

The proof of subject reduction makes use of the side condition that the rewrite rules in
Figure 8 can only be applied to a term delay𝜃 𝑠 if 𝑠 X−→. As we have shown in section 6.2.1,
this side condition ensures that any clocks in 𝑠 must be values, which allows us to apply the
following lemma:

Lemma 6.6. If Γ, ✓𝜃 , Γ′ ⊩Δ 𝑡 : 𝐴, Γ ⊩Δ 𝜃′ : Clock, and Γ′ contains a tick on a value clock,
then Γ, ✓𝜃 ′ , Γ

′ ⊩Δ 𝑡 : 𝐴.

Proof We proceed by induction on Γ, ✓𝜃 , Γ
′ ⊩Δ 𝑡 : 𝐴:

• If 𝑡 = adv 𝑠, then there are Γ1 and Γ2 such that Γ2 is tick-free, Γ′ = Γ1, ✓cl(𝑠) , Γ2
and Γ, ✓𝜃 , Γ1 ⊩Δ 𝑠 : ∃⃝𝐴. To conclude Γ, ✓𝜃 ′ , Γ

′ ⊩Δ 𝑡 : 𝐴, it remains to be shown that
Γ, ✓𝜃 ′ , Γ1 ⊩Δ 𝑠 : ∃⃝𝐴:

– If 𝑠 is a value, then it is either a variable or of the form wait𝜅 . In either case, we
have that Γ, ✓𝜃 ′ , Γ1 ⊩Δ 𝑠 : ∃⃝𝐴.

– If 𝑠 is not a value, then Γ1 must still contain a tick on a value clock since
cl (𝑠) is not a value. Hence, we can apply the induction hypothesis to obtain
Γ, ✓𝜃 ′ , Γ1 ⊩Δ 𝑠 : ∃⃝𝐴.

• The case 𝑡 = select 𝑡1 𝑡2 is similar to the previous case.
• If 𝑡 = box 𝑠, or 𝑡 = fix 𝑥.𝑠, then Γ, ✓𝜃 ′ , Γ

′ ⊩Δ 𝑡 : 𝐴 follows immediately.
• The remaining cases follow immediately from the induction hypothesis. ■

The essence of the subject reduction property for each of the four rewrite rules is captured
by the following lemma:
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Lemma 6.7. Let Γ, ✓𝜃 , Γ′ ⊩Δ 𝑡 : 𝐴, 𝑡 X−→, Γ′ tick-free, Γ ⊩Δ 𝜃 : Clock, and 𝑥 a fresh variable
for 𝑡.

(i) If 𝜃 = cl (𝑠), then Γ, 𝑥 : ∃⃝𝐵, ✓cl(𝑥 ) , Γ
′ ⊩Δ 𝑡Ladv 𝑥M : 𝐴 and Γ ⊩Δ 𝑠 : ∃⃝𝐵 for some 𝐵.

(ii) If 𝜃 = cl (𝑡1) ⊔ cl (𝑡2), then Γ, 𝑥 : ∃⃝𝐵, ✓cl(𝑥 )⊔cl(𝑡2 ) , Γ
′ ⊩Δ 𝑡Lselect 𝑥 𝑡2M : 𝐴 and Γ ⊩Δ 𝑡1 :

∃⃝𝐵 for some 𝐵.
(iii) If 𝜃 = cl (𝑡1) ⊔ cl (𝑡2), then Γ, 𝑥 : ∃⃝𝐵, ✓cl(𝑡1 )⊔cl(𝑥 ) , Γ

′ ⊩Δ 𝑡Lselect 𝑡1 𝑥M : 𝐴 and Γ ⊩Δ 𝑡2 :
∃⃝𝐵 for some 𝐵.

(iv) If 𝜃 =𝑇 [cl (𝑠)] and 𝑡 tick-closed, then Γ, 𝑥 : ∃⃝𝐵, ✓𝑇 [cl(𝑥 ) ] , Γ
′ ⊩Δ 𝑡 : 𝐴 and Γ ⊩Δ 𝑠 : ∃⃝𝐵

for some 𝐵.

Proof We prove (i). The other three statements can be proved in an analogous fashion.
Γ ⊩Δ cl (𝑠) : Clock implies that Γ ⊩Δ 𝑠 : ∃⃝𝐵 for some 𝐵. We proceed by induction on 𝑡:

• If 𝑡 is of the form box 𝑡′, delay𝜃 ′ 𝑡′, or fix 𝑥.𝑡′, then 𝑡Ladv 𝑥M = 𝑡. By weakening,
we have Γ, 𝑥 : ∃⃝𝐵, ✓𝜃 , Γ′ ⊩Δ 𝑡Ladv 𝑥M : 𝐴. If 𝑡 is of the form box 𝑡′ or fix 𝑥.𝑡′, then
Γ, 𝑥 : ∃⃝𝐵, ✓cl(𝑥 ) , Γ

′ ⊩Δ 𝑡Ladv 𝑥M : 𝐴 follows immediately from the typing rules for
box and fix. Otherwise, if 𝑡 = delay𝜃 ′ 𝑡′, then Γ, 𝑥 : ∃⃝𝐵, ✓𝜃 , Γ′, ✓𝜃 ′ ⊩Δ 𝑡′ : 𝐴′ for some
𝐴′ with ∃⃝𝐴′ = 𝐴. Then we can apply Lemma 6.4 to obtain that Γ′, ✓𝜃 ′ contains
a tick on a value clock. This allows us to apply Lemma 6.6 to obtain that Γ, 𝑥 :
∃⃝𝐵, ✓cl(𝑥 ) , Γ

′, ✓𝜃 ′ ⊩Δ 𝑡′ : 𝐴′. Hence, Γ, 𝑥 : ∃⃝𝐵, ✓cl(𝑥 ) , Γ
′ ⊩Δ 𝑡Ladv 𝑥M : 𝐴 follows.

• The case 𝑡 = select 𝑡1 𝑡2 is impossible.
• If 𝑡 = adv 𝑠′, then 𝑡Ladv 𝑥M = adv 𝑥 and 𝐴 = 𝐵. Hence, Γ, 𝑥 : ∃⃝𝐵, ✓cl(𝑥 ) , Γ

′ ⊩Δ
𝑡Ladv 𝑥M : 𝐴.

• The remaining cases all follow by induction hypothesis. ■

The subject reduction property then follows from the above lemma in a straightforward
manner:

Proposition 6.8 (subject reduction). If Γ ⊩Δ 𝑠 : 𝐴 and 𝑠 −→ 𝑡, then Γ ⊩Δ 𝑡 : 𝐴.

Proof We proceed by induction on 𝑠 −→ 𝑡.

• Let 𝑠 −→ 𝑡 be due to congruence closure. Then Γ ⊩Δ 𝑡 : 𝐴 follows by the induction
hypothesis. For example, if 𝑠 = 𝑠1 𝑠2, 𝑡 = 𝑡1 𝑠2 and 𝑠1 −→ 𝑡1, then we know that Γ ⊩Δ
𝑠1 : 𝐵→ 𝐴 and Γ ⊩Δ 𝑠2 : 𝐵 for some type 𝐵. By induction hypothesis, we then have
that Γ ⊩Δ 𝑡1 : 𝐵→ 𝐴 and thus Γ ⊩Δ 𝑡 : 𝐴.

• If 𝑠 −→ 𝑡 is due to any of the four rewrite rules, then Γ ⊩Δ 𝑡 : 𝐴 follows from
Lemma 6.7. For example, in case of rule (T1), we have that 𝑠 = delaycl(𝑡 ′ ) 𝑠

′′,
𝑡 = let 𝑥 = 𝑡′ in delaycl(𝑥 ) (𝑠′′Ladv 𝑥M), and 𝑠′′ X−→. Consequently, 𝐴 is of the form
∃⃝𝐴′ for some 𝐴′ and Γ, ✓cl(𝑡 ′ ) ⊩Δ 𝑠

′′ : 𝐴′ and Γ ⊩Δ cl (𝑡′) : Clock. By Lemma 6.7, we
have that Γ, 𝑥 : ∃⃝𝐵, ✓cl(𝑥 ) ⊩Δ 𝑠

′′Ladv 𝑥M : 𝐴′ and Γ ⊩Δ 𝑡
′ : 𝐵 for some 𝐵. Hence, the

typing rules for delay and let bindings apply to yield Γ ⊩Δ 𝑡 : 𝐴. ■
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6.2.3 Strong Normalisation

Finally, strong normalisation of the rewrite relation follows from the observation that each
rewrite step removes at least one occurrence of a non-value clock expression cl (𝑡):

Proposition 6.9 (strong normalisation). The rewrite relation −→ is strongly normalising
on well-typed Full Async RaTT terms.

Proof To show that−→ is strongly normalising, we define for each term 𝑢 a natural number
𝑑 (𝑢) such that, whenever Γ ⊩Δ 𝑢 : 𝐴 and 𝑢 −→ 𝑢′, then 𝑑 (𝑢) > 𝑑 (𝑢′). By Proposition 6.8,
also Γ ⊩Δ 𝑢

′ : 𝐴 and thus strong normalisation follows. Let 𝑑 (𝑡) be defined as the number
of occurrences of clock expressions of the form cl (𝑠) in 𝑡 where 𝑠 is not a value, i.e.:

𝑑 (𝜃1 ⊔ 𝜃2) = 𝑑 (𝜃1) + 𝑑 (𝜃2) 𝑑 (cl (𝑣)) = 0 𝑑 (cl (𝑡)) = 1 + 𝑑 (𝑡) if 𝑡 is not a value.
𝑑 (delay𝜃 𝑡) = 𝑑 (𝜃) + 𝑑 (𝑡) 𝑑 (𝑠 𝑡) = 𝑑 (𝑠) + 𝑑 (𝑡) 𝑑 (𝜆𝑥.𝑡) = 𝑑 (𝑡) etc.

We proceed by induction on 𝑢 −→ 𝑢′:

• If 𝑢 −→ 𝑢′ is by congruence closure, then 𝑑 (𝑢) > 𝑑 (𝑢′) follows by induction.
• If 𝑢 = delaycl(𝑡 ) 𝑠 and 𝑢′ = let 𝑥 = 𝑡 in delaycl(𝑥 ) (𝑠Ladv 𝑥M) where 𝑡 is not a value, then
𝑑 (𝑢) = 𝑑 (𝑡) + 𝑑 (𝑠) + 1 and 𝑑 (𝑢′) = 𝑑 (𝑡) + 𝑑 (𝑠Ladv 𝑥M). Since 𝑑 (adv 𝑥) = 0, we have
that 𝑑 (𝑠Ladv 𝑥M) ≤ 𝑑 (𝑠), and thus we have the desired decrease 𝑑 (𝑢) > 𝑑 (𝑢′).

• If 𝑢 = delaycl(𝑡1 )⊔cl(𝑡2 ) 𝑠 and 𝑢′ = let 𝑥 = 𝑡1 in delaycl(𝑥 )⊔cl(𝑡2 ) (𝑠Lselect 𝑥 𝑡2M), where 𝑡1 is
not a value, then 𝑑 (𝑢) = 𝑑 (𝑡1) + 𝑑 (cl (𝑡2)) + 𝑑 (𝑠) + 1 and 𝑑 (𝑢′) = 𝑑 (𝑡1) + 𝑑 (cl (𝑡2)) +
𝑑 (𝑠Lselect 𝑥 𝑡2M). Since Γ, ✓cl(𝑡1 )⊔cl(𝑡2 ) , Γ

′ ⊩Δ 𝑠 : 𝐴 for some 𝐴 and tick-free Γ′, we
can use Lemma 6.2 to observe that 𝑠Lselect 𝑥 𝑡2M is obtained from 𝑠 by replacing
occurrences of select 𝑡1 𝑡2 with select 𝑥 𝑡2. Hence, 𝑑 (𝑠Lselect 𝑥 𝑡2M) ≤ 𝑑 (𝑠), which
means that 𝑑 (𝑢) > 𝑑 (𝑢′).

• The remaining two cases follow in a similar manner. ■

6.3 Counterexamples

In the previous section, we have shown that we can safely execute Full Async RaTT programs
by first transforming them to a corresponding Async RaTT program of the same type and
then executing the resulting program on the machine presented in section 4. In this section,
we show that this transformation is crucial since we cannot execute Full Async RaTT
programs directly even with a suitable extension of the operational semantics.

Full Async RaTT removes the restriction of Async RaTT that adv and select can only be
used on values. Therefore, if applied to Full Async RaTT terms directly, the operational
semantics of section 4 would fail in a trivial manner by virtue of not evaluating the argument
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of adv and select. We address this by generalising the semantics in a straightforward way:

⟨𝑡; 𝜂𝑁 ⟩ ⇓ 𝜄
〈
wait𝜅 ; 𝜂′𝑁

〉
⟨adv 𝑡; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿⟩ ⇓ 𝜄

〈
𝑣; 𝜂′𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿

〉
⟨𝑡; 𝜂𝑁 ⟩ ⇓ 𝜄

〈
𝑙; 𝜂′𝑁

〉 〈
𝜂𝑁 (𝑙); 𝜂′𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿

〉
⇓ 𝜄 ⟨𝑤; 𝜎⟩

⟨adv 𝑡; 𝜂𝑁 ⟨𝜅 ↦→ 𝑣⟩ 𝜂𝐿⟩ ⇓ 𝜄 ⟨𝑤; 𝜎⟩

Instead of expecting the argument of adv to be a value, we first evaluate the argument 𝑡 to
a value and then proceed as in the original semantics, but with a potentially updated now
heap 𝜂′

𝑁
. A similar generalisation can be made for select. We also have to generalise the

semantics for delay so that it evaluates its clock argument to a value:

⟨𝜃; 𝜎⟩ ⇓ 𝜄 ⟨𝜃′; 𝜎′⟩ 𝑙 = alloc | 𝜃
′ | (𝜎′)〈

delay𝜃 𝑡; 𝜎
〉
⇓ 𝜄 ⟨𝑙; (𝜎′, 𝑙 ↦→ 𝑡)⟩

We elide the definition of clock expression evaluation ⟨𝜃; 𝜎⟩ ⇓ 𝜄 ⟨𝜃′; 𝜎′⟩, as it is
straightforward.

In the following, we construct two examples that demonstrate that this semantics may get
stuck as it tries to dereference a delayed computation that has been garbage collected in a
previous computation step. For the first example, consider the following function that takes
a signal of numbers and produces a new signal that simply repeats every other element of
the input signal:

stutter : Sig Nat → Sig Nat
stutter (x :: xs) = x :: delay (x :: delay (stutter (adv (tail (adv xs)))))

This definition elaborates into the following Full Async RaTT term:

stutter = fix 𝑟.𝜆𝑠.let 𝑥 = 𝜋1 (out 𝑠) in let xs = 𝜋2 (out 𝑠) in
𝑥 :: delaycl(xs) (𝑥 :: delaycl(𝜋2 (out (adv xs) ) ) (adv∀ 𝑟 (adv (𝜋2 (out (adv xs))))))

We assume a push-only channel nat :p Nat ∈ Δ so that we can apply stutter to the signal
0 :: sigAwaitnat of type Sig Nat. Following the naming convention from section 4.3, we use
stutter′ and sigAwait′nat for the variants of stutter and sigAwaitnat that use dfix instead of fix.
As in section 4.3, we write the machine’s store as just the list of its heap locations, and write
the contents of the locations separately underneath. We do not give the clocks of the heap
locations explicitly, since all locations in this and the next example have the clock {nat}.

We start with the initialisation step:〈
stutter (0 :: sigAwaitnat); ∅

〉 𝑥 ↦→0
=⇒ ⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2; ∅⟩

where 𝑙1 ↦→ adv waitnat :: adv∀ sigAwait′nat

𝑙2 ↦→ 0 :: delaycl(𝜋2 (out (adv 𝑙1 ) ) ) (adv∀ stutter′ (adv (𝜋2 (out (adv 𝑙1)))))
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In the subsequent input steps, we assume that nat produces increasing numbers. As expected,
the program repeats the output 0 from the initialisation step:

⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2; ∅⟩ nat ↦→1
=⇒ ⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2 ⟨nat ↦→ 1⟩ ∅; ∅⟩ 𝑥 ↦→0

=⇒ ⟨𝑥 ↦→ 𝑙3; 𝑙3; ∅⟩
where 𝑙3 ↦→ adv∀ stutter′ (adv (𝜋2 (out (adv 𝑙1))))

However, as we can already see, the delayed computation stored at 𝑙3 references 𝑙1, which
has already been garbage collected. As a result, the machine gets stuck after the next input
step:

⟨𝑥 ↦→ 𝑙3; 𝑙3; ∅⟩ nat ↦→2
=⇒ ⟨𝑥 ↦→ 𝑙3; 𝑙3 ⟨nat ↦→ 2⟩ ∅; ∅⟩ Y=⇒

The underlying issue that makes stutter fail is that it contains two nested occurrences
of delay, which require two ticks in the context to type check. This results in two nested
occurrence of adv in the term stored at 𝑙3, which the evaluation semantics cannot support,
due to its aggressive garbage collection.

But even if we don’t allow for two nested occurrences of delay, we can still construct a
(rather contrieved) Full Async RaTT program that cannot be directly run by the machine.
This example is adaped from Bahr et al. (2019):

leaky : (1 → 1) → Sig A → Sig A
leaky f (x :: xs) = x :: delay (leaky (𝜆 y. adv (f (); xs); ()) (adv (f (); xs)))

Recall that we use the notation 𝑠; 𝑡 as shorthand for let 𝑥 = 𝑠 in 𝑡 for some fresh variable 𝑥.
The definition of leaky is quite elaborate, but it simply repeats the input signal it is given.
That is, leaky id : Sig 𝐴→ Sig 𝐴 is equivalent to the identity function. The above definition
elaborates into the following Full Async RaTT term:

leaky = fix 𝑟.𝜆 𝑓 .𝜆𝑠.let 𝑥 = 𝜋1 (out 𝑠) in let xs = 𝜋2 (out 𝑠) in
𝑥 :: delaycl( 𝑓 ( ); xs) (adv∀ 𝑟 (𝜆𝑦.adv ( 𝑓 (); xs); ())) (adv ( 𝑓 (); xs))

We again assume a push-only channel nat :p Nat ∈ Δ so that we can construct the program
leaky id (0 :: sigAwaitnat) of type Sig Nat. We start with the initialisation step:〈

leaky id (0 :: sigAwaitnat); ∅
〉 𝑥 ↦→0
=⇒ ⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2; ∅⟩

where 𝑙1 ↦→ adv waitnat :: adv∀ sigAwait′nat

𝑙2 ↦→ adv∀ leaky′ (𝜆𝑦.adv (id (); 𝑙1); ()) (adv (id (); 𝑙1))

Given an input 1 on the nat channel, the program simply repeats this input as expected:

⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2; ∅⟩ nat ↦→1
=⇒ ⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2 ⟨nat ↦→ 1⟩ ∅; ∅⟩ 𝑥 ↦→1

=⇒ ⟨𝑥 ↦→ 𝑙4; 𝑙3, 𝑙4; ∅⟩
where 𝑙3 ↦→ adv waitnat :: adv∀ sigAwait′nat

𝑙4 ↦→ adv∀ leaky′ (𝜆𝑦.adv ((𝜆𝑦.adv (id (); 𝑙1); ()) (); 𝑙3); ())
(adv ((𝜆𝑦.adv (id (); 𝑙1); ()) (); 𝑙3))

After the next input transition, the machine gets stuck trying to evaluate the subterm
(𝜆𝑦.adv (id (); 𝑙1); ()) that it encounters at heap location 𝑙4. Evaluation of this term requires
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dereferencing the heap location 𝑙1, which has been garbage collected by this time:

⟨𝑥 ↦→ 𝑙4; 𝑙3, 𝑙4; ∅⟩ nat ↦→2
=⇒ ⟨𝑥 ↦→ 𝑙4; 𝑙3, 𝑙4 ⟨nat ↦→ 2⟩ ∅; ∅⟩ Y=⇒

Perhaps, a solution to address this problem is that we simply have to hold on to heap
locations for a bit longer. However, the result would be that we could run this program for
a bit longer, but it would eventually get stuck again since the reference to 𝑙1 will remain in
the store indefinitely. In other words, it would require an unbounded store to safely run this
program directly.

For comparison, we consider the Async RaTT program that we obtain after applying the
program transformation to leaky:

leaky𝑇 = fix 𝑟.𝜆 𝑓 .𝜆𝑠.let 𝑥 = 𝜋1 (out 𝑠) in let xs = 𝜋2 (out 𝑠) in
𝑥 :: let 𝑑 = 𝑓 (); xs in delaycl(𝑑) (adv∀ 𝑟 (𝜆𝑦.adv 𝑑; ())) (adv 𝑑)

Let’s try to run this program on the machine with the same inputs from nat:〈
leaky𝑇 id (0 :: sigAwaitnat); ∅

〉 𝑥 ↦→0
=⇒ ⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2; ∅⟩

where 𝑙1 ↦→ adv waitnat :: adv∀ sigAwait′nat

𝑙2 ↦→ adv∀ leaky′𝑇 (𝜆𝑦.adv 𝑙1; ()) (adv 𝑙1)

As we can see adv is now directly applied to the heap location 𝑙1 instead of a term that will
evaluate to 𝑙1. This avoids the problem that an unevaluated term may contain references to
heap locations that will be garbage collected before the machine has the chance to evaluate
the term. We can see this after the next output transition:

⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2; ∅⟩ nat ↦→1
=⇒ ⟨𝑥 ↦→ 𝑙2; 𝑙1, 𝑙2 ⟨nat ↦→ 1⟩ ∅; ∅⟩ 𝑥 ↦→1

=⇒ ⟨𝑥 ↦→ 𝑙4; 𝑙3, 𝑙4; ∅⟩
where 𝑙3 ↦→ adv waitnat :: adv∀ sigAwait′nat

𝑙4 ↦→ adv∀ leaky′𝑇 (𝜆𝑦.adv 𝑙3; ()) (adv 𝑙3)

Unlike the untransformed program, the heap location 𝑙4 no longer contains a reference to
the garbage collected heap location 𝑙1. We can thus safely continue the execution of the
program:

⟨𝑥 ↦→ 𝑙4; 𝑙3, 𝑙4; ∅⟩ nat ↦→2
=⇒ ⟨𝑥 ↦→ 𝑙4; 𝑙3, 𝑙4 ⟨nat ↦→ 1⟩ ∅; ∅⟩ 𝑥 ↦→2

=⇒ ⟨𝑥 ↦→ 𝑙6; 𝑙5, 𝑙6; ∅⟩
where 𝑙5 ↦→ adv waitnat :: adv∀ sigAwait′nat

𝑙6 ↦→ adv∀ leaky′𝑇 (𝜆𝑦.adv 𝑙5; ()) (adv 𝑙5)

7 Related work

Functional reactive programming originates with Elliott and Hudak (1997). The use of
modal types for FRP was first suggested by Krishnaswami and Benton (2011), and the
connection between linear temporal logic and FRP was discovered independently by Jeffrey
(2012) and Jeltsch (2012). Although some of these calculi have been implemented, they
do not offer operational guarantees like the ones proved here for lack of space leaks. The
first such operational guarantees were given by Krishnaswami et al. (2012) who describe
a modal FRP language using linear types and allocation resources to statically bound
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the memory used by a reactive program. The simpler, but less precise, idea of using an
aggressive garbage collection technique for avoiding space leaks is due to Krishnaswami
(2013). Krishnaswami’s calculus used a dual context approach to programming with modal
types. Bahr et al. (2019) recast these results in a Fitch-style modal calculus, the first in the
RaTT family. This was later implemented in Haskell with some minor modifications (Bahr,
2022).

All the above calculi are based on a global notion of time, which in almost all cases is
discrete. In particular, the modal operator ⃝ for time-steps in these calculi refers to the
next time step on the global clock. One can of course also understand the step semantics of
Async RaTT as operating on a global clock, but in our model each step is associated with an
input coming from an input channel, and this allows us to define the delay modality ∃⃝ as a
delay on a set of input channels. From the model perspective, ∃⃝𝐴 carries some similarities
with the type ⃝(♢𝐴), where ♢𝐴 � 𝐴 + ⃝♢𝐴 is a guarded recursive type. This encoding
however, has it limitations, in particular the efficiency and abstraction problems mentioned
in the introduction.

The only asynchronous modal FRP calculus that we are aware of is 𝜆widget defined by
Graulund et al. (2021), which takes ♢ as a type constructor primitive and endows it with
synchronisation primitive similar to select in Async RaTT. However, the programming
primitives in 𝜆widget are very different from the ones use here. For example, 𝜆widget allows
an element of ♢𝐴 to be decomposed into a time and an element of 𝐴 at that time, and much
programming with ♢ uses this decomposition. There is also no delay type constructor
⃝, so ∃⃝ is not expressible: Unlike ∃⃝𝐴, an element of ♢𝐴 could give a value of type 𝐴
already now. Graulund et al. provide a denotational semantics for 𝜆widget, but no operational
semantics, and no operational guarantees as proved here.

Another approach to avoiding space leaks and non-causal reactive programs is to devise
a carefully designed interface to manipulate signals such as Yampa (Nilsson et al., 2002)
or FRPNow! (Ploeg and Claessen, 2015). Rhine (Bärenz and Perez, 2018) is a recent
refinement of Yampa that annotates signal functions with type-level clocks, which allows
the construction of complex dataflow graphs that combine subsystems running at different
clock speeds. The typing discipline fixes the clock of each subsystem statically at compile
time, since the aim of Rhine is to provide efficient resampling between subsystems. By
contrast, the type-level clocks of Async RaTT are existentially quantified, which allows
Async RaTT programs to dynamically change the clock of a signal, e.g., by using the switch
combinator from section 3.2.

Elliott (2009) proposed a push-pull implementation of FRP, where signals (which in the
tradition of classic FRP (Elliott and Hudak, 1997) are called behaviours) are updated at
discrete time steps (push), but can also be sampled at any time between such updates (pull).
We can represent such push-pull signals in Async RaTT using the type Sig (Time → 𝐴), i.e.,
at each tick of the clock we get a new function Time → 𝐴 that describes the time-varying
value of the signal until the next tick of the clock.

Futures, first implemented in MuliLisp (Halstead, 1985) and now commonly found in
many programming languages under different names (promise, async/await, delay, etc.),
provide a powerful abstraction to facilitate communication between concurrent computa-
tions. A value of type Future 𝐴 is the promise to deliver a value of type 𝐴 at some time in
the future. For example, a function to read the contents of a file could immediately return a
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value of type Future Buffer instead of blocking the caller until the file was read into a buffer.
Async RaTT can provide a similar interface using the type modality ∃⃝, either directly or
by defining Future as a guarded recursive type Future 𝐴 � 𝐴 + ∃⃝(Future 𝐴) to give Future
a monadic interface. Since Async RaTT does not require the set of push-only channels to
be finite, we could implement a function that takes a filename 𝑓 and returns a result of
type Future Buffer simply as a family of channels readFile 𝑓 :p Buffer. The machine would
monitor delayed computations for clocks containing these channels, initiate reading the
corresponding files in parallel, and provide the value of type Buffer on the channel upon
completion of the file reading procedure.

As mentioned earlier, Krishnaswami et al. (2012) used a linear typing discipline to
obtain static memory bounds. In addition to such memory bounds, synchronous dataflow
languages such as Esterel (Berry and Cosserat, 1985), Lustre (Caspi et al., 1987), and Lucid
Synchrone (Pouzet, 2006) even provide bounds on runtime. Despite these strong guarantees,
Lucid Synchrone affords a high-level, modular programming style with support for higher-
order functions. However, to achieve such static guarantees, synchronous dataflow languages
must necessarily enforce strict limits on the dynamic behaviour, disallowing both time-
varying values of arbitrary types (e.g., we cannot have a stream of streams) and dynamic
switching (i.e., no functionality equivalent to the switch combinator). Both Lustre and Lucid
Synchrone have a notion of a clock, which is simply a stream of Booleans that indicates at
each tick of the global clock, whether the local clock ticks as well.

8 Conclusion and future work

This paper presented Async RaTT, the first modal language for asynchronous FRP with
operational guarantees. We showed how the new modal type ∃⃝ for asynchronous delay can
be used to annotate the runtime system with dependencies from output channels to input
channels, ensuring that outputs are only recomputed when necessary. The examples of the
integral and the derivative even show how the programmer can actively influence the update
rate of output channels.

The choice of Fitch-style modalities is a question of taste, and we believe that the
results could be reproduced in a dual context language. Even though Fitch-style uses non-
standard operations on contexts, other languages in the RaTT family have been implemented
as libraries in Haskell (Bahr, 2022). We therefore believe that also Async RaTT can be
implemented in Haskell or other functional programming languages, giving programmers
access to a combination of features from RaTT and the hosting programming language.

One aspect missing from Async RaTT is filtering of output channels. For example, it is
not possible to write a filter function that only produces output when some condition on the
input is met. The best way to do model this is using an output channel of type Maybe(𝐴),
leaving it to the runtime system to only push values of type 𝐴 to the consumers of the output
channel. This way the filtering is external to the programming language. We see no way to
meaningfully extend the runtime model of Async RaTT to internalise it.
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A Proof of the Fundamental Property

Given a heap 𝜂 we use the following notation to construct a well-formed store with ⟨𝜅 ↦→ 𝑣⟩
as follows:

tick𝜅 ↦→𝑣 (𝜂) = [𝜂]𝜅∈ ⟨𝜅 ↦→ 𝑣⟩ [𝜂]𝜅∉

Lemma A.1.

(i) If 𝜎 ⊑Δ
✓
𝜎′, then gc(𝜎) ⊑ gc(𝜎′).

(ii) gc(𝜎) ⊑Δ
✓
𝜎.

(iii) If 𝜂 ⊑ 𝜂′ then tick𝜅 ↦→𝑣 (𝜂) ⊑ tick𝜅 ↦→𝑣 (𝜂′).

Proof By a straightforward case analysis. ■

Lemma A.2.

(i) [tick𝜅 ↦→𝑣 (𝜂)]Θ = tick𝜅 ↦→𝑣

(
[𝜂]Θ

)
.

(ii) [gc(𝜎)]Θ = gc( [𝜎]Θ).

Proof By a straightforward case analysis. ■

Lemma A.3. Let 𝛾 ∈ CΔJΓ, Γ′K (𝑛, 𝜎) such that Γ′ is tick-free. Then 𝛾 |Γ ∈ CΔJΓK (𝑛, 𝜎).

Proof By a straightforward induction on the length of Γ′. ■

Lemma A.4. If 𝛾 ∈ CΔJΓK (𝑛, 𝜎), then 𝛾 |Γ□ ∈ CΔJΓ□K (𝑛, ∅).

Proof By a straightforward induction on the length of Γ using Lemma 5.3 Lemma 5.5. ■

Lemma A.5. If 𝑣 is a value with 𝑣 ∈ TΔJ𝐴K (𝑤), then 𝑣 ∈VΔJ𝐴K (𝑤).

Proof Let 𝑣 ∈ TΔJ𝐴K (𝑛, 𝜎), and pick an arbitrary ⊢ 𝜄 : Δ. Since ⟨𝑣; 𝜎⟩ ⇓ 𝜄 ⟨𝑣; 𝜎⟩, we have
by definition that 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎). ■

Lemma A.6. If Γ ⊢Δ 𝜃 : Clock and 𝛾 ∈ CΔJΓK (𝑤), then 𝜃𝛾 is a closed clock expression and
|𝜃𝛾 | ⊆ domp (Δ).

Proof We proceed by induction on Γ ⊢Δ 𝜃 : Clock.

•

Γ ⊢Δ 𝜃 : Clock Γ ⊢Δ 𝜃′ : Clock

Γ ⊢Δ 𝜃 ⊔ 𝜃′ : Clock
By induction, 𝜃𝛾 and 𝜃′𝛾 are closed and |𝜃𝛾 | ⊆ dom (Δ). Hence, (𝜃 ⊔ 𝜃′)𝛾 = 𝜃𝛾 ⊔ 𝜃′𝛾
is closed and | (𝜃 ⊔ 𝜃′)𝛾 | = |𝜃𝛾 | ∪ |𝜃′𝛾 | ⊆ dom (Δ).

•

Γ ⊢Δ 𝑣 : ∃⃝𝐴

Γ ⊢Δ cl (𝑣) : Clock
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Γ ⊢Δ 𝑣 : ∃⃝𝐴 implies that 𝑣𝛾 ∈VΔJ ∃⃝𝐴K (𝑤) (because either 𝑣 is a variable or 𝑣 = wait𝜅
for some clock 𝜅). Hence, 𝑣𝛾 ∈ LocΔ ∪

{
wait𝜅

�� 𝜅 ∈ domp (Δ)
}

and thus cl (𝑣) 𝛾 is a
closed clock expression and |cl (𝑣) 𝛾 | ⊆ domp (Δ).

■

Lemma A.7. Let 𝜂𝑁 ∈ Heap𝜅 , 𝑣 ∈VΔJ ∃⃝𝐴K
(
𝑛 + 1, (𝜂𝑁 , [𝜂𝐿]𝜅∉)

)
, ⊢ 𝜄 : Δ, ⊢ 𝑤 : Δ(𝜅) and

𝜅 ∈ |cl (𝑣) |. Then, for any 𝜎 ⊒ 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿 , there are some 𝜎′ and 𝑣′ ∈VΔJ𝐴K (𝑛, 𝜎′)
with ⟨adv 𝑣; 𝜎⟩ ⇓ 𝜄 ⟨𝑣′; 𝜎′⟩.

Proof By definition, 𝑣 is either some 𝑙 ∈ Loc or of the form wait𝜅 ′ .

• In the former case, we have by the definition of the value relation and Lemma A.2,

(𝜂𝑁 , [𝜂𝐿]𝜅∉) (𝑙) ∈ TΔJ𝐴K
(
𝑛,

[
𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ [𝜂𝐿]𝜅∉

]
cl(𝑙)

)
.

In turn, this implies by Lemma 5.3 that

(𝜂𝑁 , [𝜂𝐿]𝜅∉) (𝑙) ∈ TΔJ𝐴K (𝑛, 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿) .

Moreover, since 𝜅 ∈ cl (𝑙) we know that (𝜂𝑁 , [𝜂𝐿]𝜅∉) (𝑙) = 𝜂𝑁 (𝑙). Hence, there is a
reduction ⟨𝜂𝑁 (𝑙); 𝜎⟩ ⇓ 𝜄 ⟨𝑣′; 𝜎′⟩ with 𝑣′ ∈VΔJ𝐴K (𝑛, 𝜎′), which by definition means
that ⟨adv 𝑣; 𝜎⟩ ⇓ 𝜄 ⟨𝑣′; 𝜎′⟩.

• In the latter case, we know that 𝜅′ = 𝜅 because 𝜅 ∈ |cl (wait𝜅 ′ ) | = {𝜅′}. Moreover, we
have that 𝜅 :𝑐 𝐴 ∈ Δ for 𝑐 ∈ {p, bp} and thus ⊢ 𝑤 : 𝐴. By definition, 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿 ⊑
𝜎 implies that𝜎 is of the form 𝜂′

𝑁
⟨𝜅 ↦→ 𝑤⟩ 𝜂′

𝐿
. Hence, by definition ⟨adv wait𝜅 ; 𝜎⟩ ⇓ 𝜄

⟨𝑤; 𝜎⟩. Moreover, by Lemma 5.9, 𝑤 ∈VΔJ𝐴K (𝑛, 𝜎). ■

We proceed with two lemmas that allow us to reason about contexts of the form Γ⃝ ,
defined in section 5.1, which we need in order to apply Lemma 5.2.

Lemma A.8. If 𝛾 ∈ CΔJΓK (𝑛, 𝜎), then 𝛾 |Γ⃝ ∈ CΔJΓ⃝K (𝑛, 𝜎).

Proof By a straightforward induction on the length of Γ and using Lemma A.4 and
Lemma 5.3. ■

Lemma A.9. If Γ, Γ′ ⊢Δ 𝜃 : Clock, then Γ⃝ , Γ′ ⊢Δ 𝜃 : Clock.

Proof Straightforward induction on Γ, Γ′ ⊢Δ 𝜃 : Clock. ■

We can now give the full proof of the fundamental property:

Theorem 5.8 (Fundamental property). Given Γ ⊢Δ, Γ ⊢Δ 𝑡 : 𝐴, and 𝛾 ∈ CΔJΓK (𝑛, 𝜎), then
𝑡𝛾 ∈ TΔJ𝐴K (𝑛, 𝜎).

Proof We proceed by induction on the size of 𝑡. If 𝑡𝛾 is a value, it suffices to show that
𝑡𝛾 ∈VΔJ𝐴K (𝑛, 𝜎), according to Lemma 5.4. In all other cases, to prove 𝑡𝛾 ∈ TΔJ𝐴K (𝑛, 𝜎),
we assume some input buffer ⊢ 𝜄 : Δ and store 𝜎′ ⊒Δ

✓
𝜎, and show that there exists 𝜎′′
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and 𝑣 s.t. ⟨𝑡𝛾; 𝜎⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩ and 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′). By Lemma 5.3 we may assume that
𝛾 ∈ CΔJΓK (𝑛, 𝜎′).

•

Γ′ tick-free or 𝐴 stable

Γ, 𝑥 : 𝐴, Γ′ ⊢Δ 𝑥 : 𝐴

We show that 𝑥𝛾 ∈VΔJ𝐴K (𝑛, 𝜎). If Γ′ is tick-free, then 𝑥𝛾 ∈VΔJ𝐴K (𝑛, 𝜎) by
Lemma A.3. If Γ′ is not tick-free, then 𝐴 is stable. Hence, 𝑥 : 𝐴 ∈ Γ□ and thus
𝑥 ∈ domp

(
𝛾 |Γ□

)
. By Lemma A.4, 𝛾 |Γ□ ∈ CΔJΓ□K (𝑛, ∅). Since Γ□ is tick-free we

thus have 𝑥𝛾 ∈VΔJ𝐴K (𝑛, ∅) by Lemma A.3. Hence, by Lemma 5.3, we have that
𝑥𝛾 ∈VΔJ𝐴K (𝑛, 𝜎).

• Γ ⊢Δ () : 1

Follows immediately by definition.

•

Γ ⊢Δ 𝑠 : 𝐴 Γ, 𝑥 : 𝐴 ⊢Δ 𝑡 : 𝐵

Γ ⊢Δ let 𝑥 = 𝑠 in 𝑡 : 𝐵

By induction, we have 𝑠𝛾 ∈ TΔJ𝐴K (𝑛, 𝜎), which means that ⟨𝑠𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩ for
some 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′). By Lemma 5.3 and Lemma 5.1, 𝛾 ∈ CΔJΓK (𝑛, 𝜎′′) and
thus

𝛾 [𝑥 ↦→ 𝑣] ∈ CΔJΓ, 𝑥 : 𝐴K (𝑛, 𝜎′′) .

Hence, we may apply the induction hypothesis to obtain 𝑡𝛾 [𝑥 ↦→ 𝑣] ∈ TΔJ𝐵K (𝑛, 𝜎′′).
Since all elements in the range of 𝛾 are closed terms, 𝑡𝛾 [𝑥 ↦→ 𝑣] = (𝑡𝛾) [𝑣/𝑥] and
thus (𝑡𝛾) [𝑣/𝑥] ∈ TΔJ𝐵K (𝑛, 𝜎′′). Consequently, ⟨(𝑡𝛾) [𝑣/𝑥]; 𝜎′′⟩ ⇓ 𝜄 ⟨𝑤; 𝜎′′′⟩ with
𝑤 ∈VΔJ𝐵K (𝑛, 𝜎′′′). By definition, we thus have ⟨(let 𝑥 = 𝑠 in 𝑡)𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑤; 𝜎′′′⟩
with 𝑤 ∈VΔJ𝐵K (𝑛, 𝜎′′′).

•

Γ, 𝑥 : 𝐴 ⊢Δ 𝑡 : 𝐵

Γ ⊢Δ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

We show that 𝜆𝑥.𝑡𝛾 ∈VΔJ𝐴→ 𝐵K (𝑛, 𝜎). To this end, we assume 𝜎′ ⊒Δ
✓
𝜎, 𝑛′ ≤

𝑛, and 𝑣 ∈VΔJ𝐴K (𝑛′, 𝜎′), with the goal of showing (𝑡𝛾) [𝑣/𝑥] ∈ TΔJ𝐵K (𝑛′, 𝜎′).
By Lemma 5.3, 𝛾 ∈ CΔJΓK (𝑛′, 𝜎′). Thus, by definition, 𝛾 [𝑥 ↦→ 𝑣] ∈ CΔJΓ, 𝑥 :
𝐴K (𝑛′, 𝜎′). By induction, we then have that 𝑡𝛾 [𝑥 ↦→ 𝑣] ∈ TΔJ𝐵K (𝑛′, 𝜎′). Since
all elements in the range of 𝛾 are closed terms, 𝑡𝛾 [𝑥 ↦→ 𝑣] = (𝑡𝛾) [𝑣/𝑥] and thus
(𝑡𝛾) [𝑣/𝑥] ∈ TΔJ𝐵K (𝑛′, 𝜎′).

•

Γ ⊢Δ 𝑠 : 𝐴→ 𝐵 Γ ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ 𝑠 𝑡 : 𝐵
By induction, we have 𝑠𝛾 ∈ TΔJ𝐴→ 𝐵K (𝑛, 𝜎), which means that ⟨𝑠𝛾; 𝜎′⟩ ⇓ 𝜄

⟨𝜆𝑥.𝑠′; 𝜎′′⟩ for some 𝜆𝑥.𝑠′ ∈VΔJ𝐴→ 𝐵K (𝑛, 𝜎′′). By induction, we also have 𝑡𝛾 ∈
TΔJ𝐴K (𝑛, 𝜎). Since by Lemma 5.1, 𝜎′′ ⊒Δ

✓
𝜎, this means that ⟨𝑡𝛾; 𝜎′′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′′⟩

for some 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′′). Hence, by definition, 𝑠′ [𝑣/𝑥] ∈ TΔJ𝐵K (𝑛, 𝜎′′′), since
𝜎′′′ ⊒Δ′

✓
gc(𝜎′′) by Lemma A.1 and Lemma 5.1. That means that we have
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⟨𝑠[𝑣/𝑥]; 𝜎′′′⟩ ⇓ 𝜄 ⟨𝑤; 𝜎′′′′⟩ for some 𝑤 ∈VΔJ𝐵K (𝑛, 𝜎′′′′). By definition of the
machine, we thus have ⟨(𝑠𝛾) (𝑡𝛾); 𝜎′⟩ ⇓ 𝜄 ⟨𝑤; 𝜎′′′′⟩.

•

Γ ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝑡′ : 𝐵

Γ ⊢Δ (𝑡, 𝑡′) : 𝐴 × 𝐵

By induction, we have 𝑠𝛾 ∈ TΔJ𝐴K (𝑛, 𝜎), which means that ⟨𝑠𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩ for
some 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′). We also have 𝑡𝛾 ∈ TΔJ𝐴K (𝑛, 𝜎) by induction, which by
Lemma 5.1 means that ⟨𝑡𝛾; 𝜎′′⟩ ⇓ 𝜄 ⟨𝑣′; 𝜎′′′⟩ for some 𝑣′ ∈VΔJ𝐵K (𝑛, 𝜎′′′). Hence,
⟨(𝑡, 𝑡′) ; 𝜎′⟩ ⇓ 𝜄 ⟨(𝑣, 𝑣′) ; 𝜎′′′⟩, and by Lemma 5.3, (𝑣, 𝑣′) ∈ VΔJ𝐴 × 𝐵K (𝑛, 𝜎′′′).

•

Γ ⊢Δ 𝑡 : 𝐴1 × 𝐴2 𝑖 ∈ {1, 2}
Γ ⊢Δ 𝜋𝑖 𝑡 : 𝐴𝑖

By induction, we have 𝑡𝛾 ∈ TΔJ𝐴1 × 𝐴2K (𝑛, 𝜎), which means that ⟨𝑡𝛾; 𝜎′⟩ ⇓ 𝜄

⟨(𝑣1, 𝑣2) ; 𝜎′′⟩ with 𝑣𝑖 ∈VΔJ𝐴𝑖K (𝑛, 𝜎′′). Moreover, by definition, ⟨𝜋𝑖 𝑡𝛾; 𝜎′⟩ ⇓ 𝜄

⟨𝑣𝑖; 𝜎′′⟩.

•

Γ ⊢Δ 𝑡 : 𝐴𝑖 𝑖 ∈ {1, 2}
Γ ⊢Δ in𝑖 𝑡 : 𝐴1 + 𝐴2

By induction, we have 𝑡𝛾 ∈ TΔJ𝐴𝑖K (𝑛, 𝜎), which means that ⟨𝑡𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩
with 𝑣 ∈VΔJ𝐴𝑖K (𝑛, 𝜎′′). Hence, by definition, ⟨in𝑖 𝑡𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨in𝑖 𝑣; 𝜎′′⟩ and in𝑖 𝑣 ∈
VΔJ𝐴1 + 𝐴2K (𝑛, 𝜎′′).

•

Γ, 𝑥 : 𝐴𝑖 ⊢Δ 𝑡𝑖 : 𝐵 Γ ⊢Δ 𝑡 : 𝐴1 + 𝐴2 𝑖 ∈ {1, 2}
Γ ⊢Δ case 𝑡 of in1 𝑥.𝑡1; in2 𝑥.𝑡2 : 𝐵

By induction, we have 𝑡𝛾 ∈ TΔJ𝐴1 + 𝐴2K (𝑛, 𝜎), which means that ⟨𝑡𝛾; 𝜎′⟩ ⇓ 𝜄

⟨in𝑖 𝑣; 𝜎′′⟩ for some 𝑖 ∈ {1, 2} such that 𝑣 ∈VΔJ𝐴𝑖K (𝑛, 𝜎′′). By Lemma 5.3 and
Lemma 5.1, 𝛾 ∈ CΔJΓK (𝑛, 𝜎′′) and thus 𝛾 [𝑥 ↦→ 𝑣] ∈ CΔJΓ, 𝑥 : 𝐴𝑖K (𝑛, 𝜎′′). Hence,
we may apply the induction hypothesis to obtain 𝑡𝑖𝛾 [𝑥 ↦→ 𝑣] ∈ TΔJ𝐵K (𝑛, 𝜎′′). Since
all elements in the range of 𝛾 are closed terms, 𝑡𝑖𝛾 [𝑥 ↦→ 𝑣] = (𝑡𝑖𝛾) [𝑣/𝑥] and thus
(𝑡𝑖𝛾) [𝑣/𝑥] ∈ TΔJ𝐵K (𝑛, 𝜎′′). Consequently, ⟨(𝑡𝑖𝛾) [𝑣/𝑥]; 𝜎′′⟩ ⇓ 𝜄 ⟨𝑤; 𝜎′′′⟩ with 𝑤 ∈
VΔJ𝐵K (𝑛, 𝜎′′′). By definition, we thus have ⟨(case 𝑡 of in1 𝑥.𝑡1; in2 𝑥.𝑡2)𝛾; 𝜎′⟩ ⇓ 𝜄

⟨𝑤; 𝜎′′′⟩, as well.

•

Γ, ✓𝜃 ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝜃 : Clock

Γ ⊢Δ delay𝜃 𝑡 : ∃⃝𝐴

By definition of the machine we have that
〈
delay𝜃𝛾 𝑡𝛾; 𝜎′〉 ⇓ 𝜄 ⟨𝑙; 𝜎′′⟩, where

𝜎′′ = 𝜎′, 𝑙 ↦→ 𝑡𝛾 and cl (𝑙) = |𝜃𝛾 |. By Lemma 5.2, we have that Γ⃝ , ✓𝜃 ⊢Δ 𝑡 : 𝐴.
Let 𝛾′ = 𝛾 |Γ⃝ . By Lemma A.9, we have that Γ⃝ ⊢Δ 𝜃 : Clock. Consequently,
𝜃𝛾′ = 𝜃𝛾. By Lemma A.6, |𝜃𝛾 | = |𝜃𝛾′ | ⊆ domp (Δ). It remains to be shown that
𝑙 ∈VΔJ ∃⃝𝐴K (𝑛, 𝜎′′). For the case where 𝑛 = 0, this follows immediately from the
fact that |𝜃𝛾 | ⊆ domp (Δ).
Assume that 𝑛 = 𝑛′ + 1, 𝜅 ∈Θ, and ⊢ 𝑣 : Δ(𝜅), whereΘ= |𝜃𝛾 |. By Lemma 5.3, we have
that 𝛾 ∈ CΔJΓK (𝑛′ + 1, 𝜎′′). By Lemma A.8, we then have 𝛾′ ∈ CΔJΓ⃝K (𝑛′ + 1, 𝜎′′).
And by Lemma 5.6, we then have 𝛾′ ∈ CΔJΓ⃝K (𝑛′ + 1, gc(𝜎′′)). By definition, we
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thus have that

𝛾′ ∈ CΔJΓ⃝ , ✓𝜃 K
(
𝑛′, [gc(𝜎′′)]𝜅∈ ⟨𝜅 ↦→ 𝑣⟩ [gc(𝜎′′)]𝜅∉

)
= CΔJΓ⃝ , ✓𝜃 K (𝑛′, tick𝜅 ↦→𝑣 (gc(𝜎′′))) ,

and thus 𝛾′ ∈ CΔJΓ⃝ , ✓𝜃 K
(
𝑛′, [tick𝜅 ↦→𝑣 (gc(𝜎′′))]Θ

)
according to Lemma 5.7.

Hence, we can apply the induction hypothesis to conclude that

𝑡𝛾′ ∈ TΔJ𝐴K
(
𝑛′, [tick𝜅 ↦→𝑣 (gc(𝜎′′))]Θ

)
.

Since Γ⃝ , ✓𝜃 ⊢Δ 𝑡 : 𝐴, we know that 𝑡𝛾 = 𝑡𝛾′. Because 𝜎′′ (𝑙) = 𝑡𝛾 = 𝑡𝛾′, we thus have
that 𝑙 ∈VΔJ ∃⃝𝐴K (𝑛, 𝜎′′).

• Γ ⊢Δ never : ∃⃝𝐴

According to the definition of the machine, we have ⟨never; 𝜎′⟩ ⇓ 𝜄 ⟨𝑙; 𝜎′⟩ with 𝑙 =
alloc∅ (𝜎). Since cl (𝑙) = ∅, we know that 𝑙 ∈VΔJ ∃⃝𝐴K (𝑛, 𝜎′).

•

𝜅 :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {p, bp}
Γ ⊢Δ wait𝜅 : ∃⃝𝐴

wait𝜅𝛾 = wait𝜅 ∈VΔJ𝐴K (𝑛, 𝜎) follows immediately by definition and the premise.

•

𝜅 :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {b, bp}
Γ ⊢Δ read𝜅 : 𝐴

Since ⊢ 𝜄 : Δ, we know that ⊢ 𝜄(𝜅) : 𝐴. Hence, By definition of the machine
⟨read𝜅 ; 𝜎′⟩ ⇓ 𝜄 ⟨𝜄(𝜅); 𝜎′⟩. Moreover, by Lemma 5.9 𝜄(𝜅) ∈ VΔJ𝐴K (𝑛, 𝜎′).

•

Γ ⊢Δ 𝑣 : ∃⃝𝐴 Γ′ tick-free

Γ, ✓cl(𝑣) , Γ
′ ⊢Δ adv 𝑣 : 𝐴

By Lemma 5.3 we have that 𝛾 ∈ CΔJΓ, ✓cl(𝑣) , Γ
′K (𝑛, 𝜎′) and by Lemma A.3, 𝛾 |Γ ∈

CΔJΓ, ✓cl(𝑣) K (𝑛, 𝜎′). Let Θ= |cl (𝑣) 𝛾 |Γ |. By definition of the context relation, Θ
is well-defined and a subset of domp (Δ). By definition of the context relation we
also find 𝜅 ∈Θ, 𝜂𝑁 , 𝜂𝐿 , 𝜂′

𝑁
, 𝜂′

𝐿
such that 𝜎′ = 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿 , ⊢ 𝑤 : Δ(𝜅), [𝜂𝑁 ]Θ =[

𝜂′
𝑁

]
Θ

, [𝜂𝐿]Θ =
[
𝜂′
𝐿

]
Θ

, and 𝛾 |Γ ∈ CΔJΓK
(
𝑛 + 1, (𝜂′

𝑁
,
[
𝜂′
𝐿

]
𝜅∉
)
)
. By induction, we

thus have that 𝑣𝛾 ∈ TΔJ ∃⃝𝐴K
(
𝑛 + 1, (𝜂′

𝑁
,
[
𝜂′
𝐿

]
𝜅∉
)
)
. Since 𝑣𝛾 is a value we have

𝑣𝛾 ∈VΔJ ∃⃝𝐴K
(
𝑛 + 1, (𝜂′

𝑁
,
[
𝜂′
𝐿

]
𝜅∉
)
)

by Lemma A.5. By Lemma 5.7 we then have
that

𝑣𝛾 ∈VΔJ ∃⃝𝐴K
(
𝑛 + 1, (𝜂𝑁 , [𝜂𝐿]𝜅∉)

)
.

By Lemma A.7, we then find a reduction ⟨adv 𝑣𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣′; 𝜎′′⟩ with 𝑣′ ∈
VΔJ𝐴K (𝑛, 𝜎′′).

•

Γ ⊢Δ 𝑣1 : ∃⃝𝐴1 Γ ⊢Δ 𝑣2 : ∃⃝𝐴2 𝜃 = cl (𝑣1) ⊔ cl (𝑣2) Γ′ tick-free

Γ, ✓𝜃 , Γ
′ ⊢Δ select 𝑣1 𝑣2 : ((𝐴1 × ∃⃝𝐴2) + ( ∃⃝𝐴1 × 𝐴2)) + (𝐴1 × 𝐴2)

By Lemma 5.3 we have that 𝛾 ∈ CΔJΓ, ✓𝜃 , Γ′K (𝑛, 𝜎′) and by Lemma A.3,
𝛾 |Γ ∈ CΔJΓ, ✓𝜃 K (𝑛, 𝜎′). Let Θ1 = |cl (𝑣1) 𝛾 |Γ |, Θ2 = |cl (𝑣2) 𝛾 |Γ |, and Θ=Θ1 ∪Θ2.
According to the definition of the context relation, Θ is well-defined and a sub-
set of dom (Δ). By definition of the context relation we also find 𝜅 ∈Θ, 𝜂𝑁 , 𝜂𝐿 ,
𝜂′
𝑁
, 𝜂′

𝐿
such that 𝜎′ = 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿 , ⊢ 𝑤 : Δ(𝜅), [𝜂𝑁 ]Θ =

[
𝜂′
𝑁

]
Θ

, [𝜂𝐿]Θ =
[
𝜂′
𝐿

]
Θ

,
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and 𝛾 |Γ ∈ CΔJΓK
(
𝑛 + 1, (𝜂′

𝑁
,
[
𝜂′
𝐿

]
𝜅∉
)
)
. By induction hypothesis, we thus have that

𝑣𝑖𝛾 ∈ TΔJ ∃⃝𝐴𝑖K
(
𝑛 + 1, (𝜂′

𝑁
,
[
𝜂′
𝐿

]
𝜅∉
)
)

for all 𝑖 ∈ {1, 2}. Since 𝑣𝑖𝛾 are values, we also

have that 𝑣𝑖𝛾 ∈VΔJ ∃⃝𝐴𝑖K
(
𝑛 + 1, (𝜂′

𝑁
,
[
𝜂′
𝐿

]
𝜅∉
)
)

by Lemma A.5. By Lemma 5.7 we
then have that 𝑣𝑖𝛾 ∈VΔJ ∃⃝𝐴𝑖K

(
𝑛 + 1, (𝜂𝑁 , [𝜂𝐿]𝜅∉)

)
for all 𝑖 ∈ {1, 2}. There are two

cases to consider:
– Let 𝑖 ∈ {1, 2} and 𝑗 = 3 − 𝑖 such that 𝜅 ∈Θ𝑖 \Θ 𝑗 :

By Lemma A.7, there is a reduction ⟨adv 𝑣𝑖𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑢𝑖; 𝜎′′⟩ with 𝑢𝑖 ∈
VΔJ𝐴𝑖K (𝑛, 𝜎′′), which by definition means that ⟨select 𝑣1𝛾 𝑣2𝛾; 𝜎′⟩ ⇓ 𝜄

⟨in1 (in𝑖 (𝑢1, 𝑢2)); 𝜎′′⟩ with 𝑢 𝑗 = 𝑣 𝑗𝛾. It thus remains to be shown that 𝑣 𝑗𝛾 ∈
VΔJ ∃⃝𝐴 𝑗K (𝑛, 𝜎′′). There are two cases to consider.

∗ Let 𝑣 𝑗𝛾 = 𝑙 for some 𝑙 ∈ LocΔ. From 𝑙 ∈VΔJ ∃⃝𝐴 𝑗K
(
𝑛 + 1, (𝜂𝑁 , [𝜂𝐿]𝜅∉)

)
and the fact that 𝜅 ∉ Θ 𝑗 , we obtain that 𝑙 ∈VΔJ ∃⃝𝐴 𝑗K

(
𝑛 + 1, [𝜂𝐿]𝜅∉

)
by

using Lemma 5.7. In particular, we use the fact that [𝜂𝑁 ]Θ 𝑗
= ∅ since 𝜂𝑁 ∈

Heap𝜅 and 𝜅 ∉ Θ 𝑗 . Since [𝜂𝐿]𝜅∉ ⊑Δ
✓
𝜎′ and, by Lemma 5.1, 𝜎′ ⊑Δ

✓
𝜎′′, we

can then use Lemma 5.3 to conclude that 𝑙 ∈VΔJ ∃⃝𝐴 𝑗K (𝑛, 𝜎′′).
∗ Let 𝑣 𝑗𝛾 = wait𝜅 ′ for some clock 𝜅′. But then Γ ⊢Δ 𝑣 𝑗 : ∃⃝𝐴 𝑗 is due to
𝜅′ :p 𝐴 𝑗 ∈ Δ or 𝜅′ :bp 𝐴 𝑗 ∈ Δ and thus 𝑣 𝑗𝛾 ∈VΔJ ∃⃝𝐴 𝑗K (𝑛, 𝜎′′) follows
immediately by definition of the value relation.

– 𝜅 ∈Θ1 ∩Θ2: By Lemma A.7, we obtain a reduction ⟨adv 𝑣1𝛾); 𝜎′⟩ ⇓ 𝜄〈
𝑣′1; 𝜎′′〉 with 𝑣′1 ∈VΔJ𝐴1K (𝑛, 𝜎′′), and a reduction ⟨adv 𝑣2𝛾; 𝜎′′⟩ ⇓ 𝜄〈
𝑣′2; 𝜎′′′〉 with 𝑣′2 ∈VΔJ𝐴2K (𝑛, 𝜎′′′). By definition we thus obtain a

reduction ⟨select (𝑣1𝛾) (𝑣2𝛾); 𝜎′⟩ ⇓ 𝜄
〈
in2 (

(
𝑣′1, 𝑣

′
2
)
); 𝜎′′′〉. Moreover, applying

Lemma 5.1 and Lemma 5.3, we obtain that 𝑣′1 ∈VΔJ𝐴1K (𝑛, 𝜎′′′), which means
that we have in2 (

(
𝑣′1, 𝑣

′
2
)
) ∈ VΔJ𝐴1 × 𝐴2K (𝑛, 𝜎′′′).

• Γ ⊢Δ 0 : Nat
0𝛾 ∈VΔJNatK (𝑛, 𝜎) follows immediately by definition.

•

Γ ⊢Δ 𝑡 : Nat

Γ ⊢Δ suc 𝑡 : Nat
By induction hypothesis 𝑡𝛾 ∈ TΔJNatK (𝑛, 𝜎), which means that ⟨𝑡𝛾; 𝜎′⟩ ⇓ 𝜄

⟨suc𝑚 0; 𝜎′′⟩ for some 𝑚 ∈N. Hence, by definition, ⟨suc 𝑡𝛾; 𝜎′⟩ ⇓ 𝜄
〈
suc𝑚+1 0; 𝜎′′〉

and suc𝑚+1 0 ∈VΔJNatK (𝑛, 𝜎′′).

•

Γ ⊢Δ 𝑠 : 𝐴 Γ, 𝑥 : Nat, 𝑦 : 𝐴 ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝑢 : Nat

Γ ⊢Δ recNat (𝑠, 𝑥 𝑦.𝑡, 𝑢) : 𝐴
We claim that the following holds:

recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, suc𝑘 0) ∈ TΔJ𝐴K (𝑛, 𝜎) for all 𝑘 ∈N (A.1)

To show that recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, 𝑢𝛾) ∈ TΔJ𝐴K (𝑛, 𝜎), assume some 𝜎′ ⊒Δ
✓
𝜎

and ⊢ 𝜄 : Δ. By induction hypothesis 𝑢𝛾 ∈ TΔJNatK (𝑛, 𝜎), which means
that ⟨𝑢𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨suc𝑚 0; 𝜎′′⟩. By (A.1) and Lemma 5.1 we have that
⟨recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, suc𝑚 0); 𝜎′′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′′⟩ with 𝑣 ∈ TΔJ𝐴K (𝑛, 𝜎′′′). By definition
of the machine, we also have that ⟨recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, 𝑢𝛾); 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′′⟩.
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We conclude by showing (A.1) by induction on 𝑘 .
– Case 𝑘 = 0: Let 𝜎′ ⊒Δ

✓
𝜎 and ⊢ 𝜄 : Δ. By definition, ⟨0; 𝜎′⟩ ⇓ 𝜄 ⟨0; 𝜎′⟩. By induc-

tion hypothesis 𝑠𝛾 ∈ TΔJ𝐴K (𝑛, 𝜎), which means that ⟨𝑠𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩ for
some 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′). By definition, ⟨recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, 0); 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩
follows.

– Case 𝑘 = 𝑙 + 1. Let 𝜎′ ⊒Δ
✓
𝜎 and ⊢ 𝜄 : Δ. By definition,〈

suc𝑘 0; 𝜎′〉 ⇓ 𝜄
〈
suc(suc𝑙 0); 𝜎′〉. By induction (on 𝑘), we have that〈

recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, suc𝑙 0); 𝜎′〉 ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩ with 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′). By
Lemma 5.1 and Lemma 5.3, we have 𝛾 ∈ CΔJΓK (𝑛, 𝜎′′) and thus

𝛾 [𝑥 ↦→ suc𝑙 0, 𝑦 ↦→ 𝑣] ∈ CΔJΓ, 𝑥 : Nat, 𝑦 : 𝐴K (𝑛, 𝜎′′) .

By induction we thus obtain that

(𝑡𝛾) [suc𝑙 0/𝑥, 𝑣/𝑦] = 𝑡𝛾 [𝑥 ↦→ suc𝑙 0, 𝑦 ↦→ 𝑣] ∈ TΔJ𝐴K (𝑛, 𝜎′′) ,

which means that there is a reduction
〈
(𝑡𝛾) [suc𝑙 0/𝑥, 𝑣/𝑦]; 𝜎′′〉 ⇓ 𝜄 ⟨𝑤; 𝜎′′′⟩

with 𝑤 ∈VΔJ𝐴K (𝑛, 𝜎′′′). According to the definition of the machine, we thus
have 〈

recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, suc𝑘 0); 𝜎′〉 ⇓ 𝜄 ⟨𝑤; 𝜎′′′⟩ .

•

Γ□, 𝑥 : ∀⃝𝐴 ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ fix 𝑥.𝑡 : 𝐴
We will show that

dfix 𝑥.𝑡𝛾 ∈VΔJ ∀⃝𝐴K (𝑚, ∅) for all 𝑚 ≤ 𝑛. (A.2)

Using (A.2), Lemma A.4, and Lemma 5.3, we then obtain that
(𝛾 |Γ□ ) [𝑥 ↦→ dfix 𝑥.𝑡𝛾] ∈ CΔJΓ□, 𝑥 : ∀⃝𝐴K (𝑛, 𝜎). Hence, by induction,
𝑡 [dfix 𝑥.𝑡/𝑥]𝛾 = 𝑡 (𝛾 |Γ□ ) [𝑥 ↦→ dfix 𝑥.𝑡𝛾] ∈ TΔJ𝐴K (𝑛, 𝜎), which means that we
find ⟨𝑡 [dfix 𝑥.𝑡/𝑥]𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩ with 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′). By definition of the
machine we thus obtain the desired ⟨fix 𝑥.𝑡𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩.
We prove (A.2) by induction on 𝑚.
If 𝑚 = 0, then (A.2) follows immediately from the fact that dfix 𝑥.𝑡𝛾 is a closed term.
Let 𝑚 =𝑚′ + 1. By Lemma 5.3 and Lemma A.4, 𝛾 |Γ□ ∈ CΔJΓ□K (𝑚′, ∅). By the
induction hypothesis (on (A.2)) we have dfix 𝑥.𝑡𝛾 ∈VΔJ ∀⃝𝐴K (𝑚′, ∅) and thus

(𝛾 |Γ□ ) [𝑥 ↦→ dfix 𝑥.𝑡𝛾] ∈ CΔJΓ□, 𝑥 : ∀⃝𝐴K (𝑚′, ∅) .

Hence, by induction, 𝑡 [dfix 𝑥.𝑡/𝑥]𝛾 = 𝑡 (𝛾 |Γ□ ) [𝑥 ↦→ dfix 𝑥.𝑡𝛾] ∈ TΔJ𝐴K (𝑚′, ∅), which
allows us to conclude that dfix 𝑥.𝑡𝛾 ∈VΔJ ∀⃝𝐴K (𝑚, ∅).

•

Γ ⊢Δ 𝑥 : ∀⃝𝐴

Γ, ✓𝜃 , Γ
′ ⊢Δ adv∀ 𝑥 : 𝐴

By Lemma 5.3 we have that 𝛾 ∈ CΔJΓ, ✓𝜃 , Γ′K (𝑛, 𝜎′) and by Lemma A.3,
𝛾 |Γ ∈ CΔJΓ, ✓𝜃 K (𝑛, 𝜎′). Let Θ= |𝜃𝛾 |Γ |. According the definition of the con-
text relation, Θ is well-defined and we find 𝜅 ∈Θ, ⊢ 𝑤 : Δ(𝜅), 𝜂𝑁 , 𝜂𝐿 ,
𝜂′
𝑁
, 𝜂′

𝐿
such that 𝜎′ = 𝜂𝑁 ⟨𝜅 ↦→ 𝑤⟩ 𝜂𝐿 , [𝜂𝑁 ]Θ =

[
𝜂′
𝑁

]
Θ

, [𝜂𝐿]Θ =
[
𝜂′
𝐿

]
Θ

, and 𝛾 |Γ ∈
CΔ′JΓK

(
𝑛 + 1, (𝜂′

𝑁
,
[
𝜂′
𝐿

]
𝜅∉
)
)
. By Lemma A.3, we thus have that 𝛾(𝑥) = dfix 𝑦.𝑡
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with dfix 𝑦.𝑡 ∈VΔJ ∀⃝𝐴K
(
𝑛 + 1, (𝜂′

𝑁
,
[
𝜂′
𝐿

]
𝜅∉
)
)
. By definition, this implies that

𝑡 [dfix 𝑦.𝑡/𝑦] ∈ TΔJ𝐴K (𝑛, ∅). That is, we find a reduction ⟨𝑡 [dfix 𝑦.𝑡/𝑦]; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩
with 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′), which by definition means that we also have a reduction
⟨adv∀ 𝑥𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩.

•

Γ□ ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ box 𝑡 : □𝐴
We show that box 𝑡𝛾 ∈VΔJ□𝐴K (𝑛, 𝜎). By Lemma A.4, 𝛾 |Γ□ ∈ CΔJΓ□K (𝑛, ∅).
Hence, by induction, 𝑡𝛾 = 𝑡𝛾 |Γ□ ∈ TΔJ𝐴K (𝑛, ∅), and thus box 𝑡𝛾 ∈VΔJ□𝐴K (𝑛, 𝜎).

•

Γ ⊢Δ 𝑡 : □𝐴

Γ ⊢Δ unbox 𝑡 : 𝐴
By induction hypothesis, we have that 𝑡𝛾 ∈ TΔJ□𝐴K (𝑛, 𝜎). That is, ⟨𝑡𝛾; 𝜎′⟩ ⇓ 𝜄

⟨box 𝑠; 𝜎′′⟩ for some 𝑠 ∈ TΔJ𝐴K (𝑛, ∅). Hence, ⟨𝑠; 𝜎′′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′′⟩ such that 𝑣 ∈
VΔJ𝐴K (𝑛, 𝜎′′′) which, by Lemma 5.3, implies 𝑣 ∈VΔJ𝐴K (𝑛, 𝜎′′′). Moreover, by
definition of the machine we have that ⟨unbox 𝑡; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′′⟩.

•

Γ ⊢Δ 𝑡 : Fix 𝛼.𝐴

Γ ⊢Δ out 𝑡 : 𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼]
By induction hypothesis 𝑡𝛾 ∈ TΔJFix 𝛼.𝐴K (𝑛, 𝜎), which means that ⟨𝑡𝛾; 𝜎′⟩ ⇓ 𝜄

⟨into 𝑣; 𝜎′′⟩ for some 𝑣 ∈VΔJ𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼]K (𝑛, 𝜎′′). Moreover, by definition
of the machine we consequently have ⟨out 𝑡𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩.

•

Γ ⊢Δ 𝑡 : 𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼]
Γ ⊢Δ into 𝑡 : Fix 𝛼.𝐴

By induction hypothesis 𝑡𝛾 ∈ TΔJ𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼]K (𝑛, 𝜎), which means that
⟨𝑡𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨𝑣; 𝜎′′⟩ with 𝑣 ∈VΔJ𝐴[ ∃⃝(Fix 𝛼.𝐴)/𝛼]K (𝑛, 𝜎′′). Hence, by definition,
⟨into 𝑡𝛾; 𝜎′⟩ ⇓ 𝜄 ⟨into 𝑣; 𝜎′′⟩ and into 𝑣 ∈VΔJFix 𝛼.𝐴K (𝑛, 𝜎′′). ■
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