
Pick’n’Fix

Capturing Control Flow in Modular Compilers

Laurence E. Day1 and Patrick Bahr2

1 Functional Programming Laboratory, University of Nottingham
led@cs.nott.ac.uk

2 Department of Computer Science, University of Copenhagen
paba@di.ku.dk

Abstract. We present a modular framework for implementing languages
with effects and control structures such as loops and conditionals. This
framework enables modular definitions of both syntax and semantics as
well as modular implementations of compilers and virtual machines. In
order to compile control structures, in particular cyclic ones, we employ
Oliveira and Cook’s purely functional representation of graphs. More-
over, to separate control flow features semantically from other language
features, we represent source languages using Johann and Ghani’s en-
coding of generalised algebraic datatypes as fixpoints of higher-order
functors. We demonstrate the usage of our modular compiler framework
with an extended running example and highlight the extensibility of our
modular compiler implementations.

1 Introduction

A compiler is typically decomposed into the various distinct manipulations and
translations of the syntax of a source language, such as lexing, parsing and code
generation. An additional dimension along which modularity may be exploited
is the set of computational features supported by the source language.

In previous work [9, 8], we combined the work of Liang et al. [17] on im-
plementing modular interpreters, and Swierstra’s data types à la carte [24] to
create a modular compiler framework, which we have since built extensively
upon. The result to date is a modular framework allowing the definition and im-
plementation of new language features without the modification of any existing
definitions. We have demonstrated the implementation of multiple such features,
including exceptions, mutable state and functional abstraction.

However, this framework currently falls short of properly capturing the notion
of control flow. For example, the compilation module for exception handling
currently duplicates a code continuation in order to represent convergent control
flow such as seen in conditional statements. Moreover, the framework at present
cannot sensibly handle cyclic control structures such as unbounded loops.

The underlying issue responsible for these shortcomings is the fact that the
modular target language of the compiler is essentially tree-shaped, and therefore
only able to capture tree-shaped control flow.

In this paper, we address this concern by refactoring our modular compilation
framework such that it operates on target languages that are graph structured
instead. This modular graph structure allows us to represent sharing and cycles,
solving the issue of code duplication and capturing cyclic control structures
respectively.

In particular, the contributions of this paper are as follows:

– We demonstrate the use of Oliveira and Cook’s structured graphs [21] as the
underpinning of the modular compiler target language representation.

– We demonstrate how the additional structure provided by structured graphs
allows us to properly compile non-cyclic control structures in a modular
fashion without code duplication.

– Most importantly, the graph representation allows us to build compiler mod-
ules for circular control structures, which we demonstrate on an imperative
language with loops.

– In order to deal with an imperative language, we use a typed representa-
tion of the syntax of source languages using Johann and Ghani’s fixpoint
representation of generalised algebraic datatypes (GADTs) [15].

– We demonstrate our modular compiler framework in action by way of an
extended example.

Throughout this paper, we utilise Haskell [18] as both a semantic meta-
language and an implementation language. This paper has been compiled from
a literate Haskell source file, and is available in the associated material from
the authors’ webpages.3 Due to the space restrictions we elided the modular
semantic definitions of the source and target languages presented in this paper.
Instead, these semantic definitions can be found in the associated material in
the form of a modular interpreter and a modular virtual machine.

2 Compilation à la Carte

Our primary goal is to construct a compiler for imperative languages with con-
trol structures such as loops and conditionals. In this section, we illustrate the
basic modular compiler framework as presented in previous work [9, 8], before
proceeding to identify the problems this approach presents when dealing with
control structures.

The fundamental idea is the representation of a data type as the least fixpoint
µ f of a functor f (also called the signature of the data type):

data µ f = In (f µ f)

The benefit of defining recursive datatypes in this fashion is that signature func-
tors compose neatly using coproducts:

data (f � g) e = Inl (f e) | Inr (g e)

3 http://www.diku.dk/~paba/picknfix.zip

http://www.diku.dk/~paba/picknfix.zip

As a result, we can define fragments of the source language in isolation. Below
we define language fragments for arithmetic, comparison operators, sequential
composition, state, and conditional control structures:

data Arith a = Val Int
| Add a a | Mul a a

data Comp a = Equ a a | Lt a a
data Seq a = Seq a a

newtype Ref = Ref String -- reference cells

data State a = Set Ref a
| Get Ref

data If a = If a a a
data While a = While a a

The source language supporting all of the above featues is thus represented
by the type µ (Arith � Comp � Seq � State If � While).

In order to define functions over datatypes constructed in such a modular
manner, we make use of a generic fold operator:

fold :: Functor f ⇒ (f c → c)→ µ f → c
fold f (In t) = f (fmap (fold f) t)

The first argument to the above is called an f -algebra, and is intuitively viewed
as a directive for recursively processing data constructors. The type c of an
f -algebra is called its carrier and forms the result type of a fold.

To circumvent the need to manually tag values with Inl and Inr constructors
when introducing elements of a compound functor constructed using �, the data
type à la carte technique makes use of a typeclass o, which provides an automatic
injection mechanism:

class g o f where
inj :: g a → f a

inject :: (g o f)⇒ g µ f → µ f
inject = In ◦ inj

We do not define the instance declarations for o here, but instead refer the
interested reader to the original work [24]. Suffice it to say that we have g o f if
and only if f is a sum with g a summand in f .

To further simplify the construction of elements of a fixpoint µ f , we make
use of smart constructors of the following form:

If µ :: (If o f)⇒ µ f → µ f → µ f → µ f

If µ c i t = inject (If c i t)

For example, we can write the following program in our extensible language:

let x = Ref "x"

in Whileµ (Getµ x ‘Ltµ‘ Valµ 10) (Setµ x (Getµ x ‘Addµ‘ Valµ 1))

The program increments the reference cell x until it reaches the value 10.
Next, we show how to use this framework in order to implement a compiler

in a modular manner. To this end, we first define the appropriate signatures for
the target language. For now we only consider the arithmetic and conditional
language signatures:

data ARITH e = PUSH Int e | ADD e | MUL e
data COND e = JPC e e
data HALT e = HALT

Intuitively, a PUSH instruction places its associated integer on top of the
current stack, and the ADD and MUL replace the two topmost elements of
the stack by their sum respectively their product. The JPC instruction of the
conditional signature pops the first integer off the stack and executes its first
argument if this integer is non-zero; otherwise it executes the second argument.
Finally, the HALT instruction simply ends the computation.

Secondly, we identify the structure of the compilation algebra. In this paper,
we define our compilers using continuation-passing style (CPS), requiring the
presence of an accumulator argument:

class (Functor f)⇒ AlgCo f g where
algCo :: f (µ g → µ g)→ µ g → µ g

The final compiler is obtained by folding over the compilation algebra defined
above and providing the HALT instruction as an initial continuation.

comp :: (HALT o g ,AlgCo f g)⇒ µ f → µ g
comp p = fold algCo p HALTµ

In order to simplify the presentation of our CPS compiler, we define an
explicit function application operator (similar to Haskell’s standard $ operator):

infixr 0 .

(.) :: (a → b)→ a → b
f . x = f x

Finally, we have to declare instances of the compilation algebra. The following
declaration derives instances for compound source language signatures:

instance (AlgCo f h,AlgCo g h)⇒ AlgCo (f � g) h where
algCo (Inl x) = algCo x
algCo (Inr y) = algCo y

Then we only need to declare instances for each of the individual source language
signatures. We start with arithmetic and conditionals:

instance (ARITH o g)⇒ AlgCo Arith g where
algCo (Val n) c = PUSH µ n . c
algCo (Add x y) c = x . y .ADDµ . c
algCo (Mul x y) c = x . y .MULµ . c

instance (COND o g)⇒ AlgCo If g where
algCo (If b x y) c = b . JPCµ (x . c) (y . c)

We can thus instantiate the modular compiler for the implemented language
features, e.g.:

compArithIf :: µ (Arith � If)→ µ (ARITH � COND � HALT)
compArithIf = comp

There is a subtle issue in the instantiation for If , however: the target code
produced for If first evaluates the Boolean condition before executing the cor-
responding branch. However, after that, control flow returns to the continuation
c. Due to the limitations of the target language, this continuation must be du-
plicated. A similar duplication occurs in the compilation of exception handlers
as seen in previous work [9, 8]

A more pressing issue becomes apparent if we wish to define an instance of
the compilation algebra for While:

instance (COND o g)⇒ AlgCo While g where
algCo (While b lb) c = b . JPCµ (lb) c

What we require in place of the ellipsis is an instruction which jumps back to
the check of the condition b, after executing the loop body lb. The tree structure
of the target language does not allow us to represent this cyclic control flow.

The core idea we present here in order to fix the issues described above is
simple: endow the target language with a graph structure. In the next section,
we illustrate how to do this whilst retaining the modular properties of the target
language and the compiler implementation.

3 A Graph-Structured Target Language

Typically, a graph-structured target language for a compiler uses explicit jumps
and labels (as seen in, for example, Hoopl [22]). This style of representing graphs,
whilst close to physical machine implementations, is quite tedious to use and er-
ror prone when humans become involved. Instead, we shall use the purely func-
tional representation of graphs by Oliveira and Cook [21], dubbed structured
graphs. In short, structured graphs provide a representation of term graphs,
which uses an elegant encoding of sharing and cyclicity using parametric higher-
order abstract syntax [7]. This representation provides a simple interface to con-
struct graphs in a compositional fashion (at the cost of a more complicated and
restrictive interface for ‘consuming’ them).

3.1 From Fixpoints to Graphs

Structured graphs, at their core, represent term graphs using mutually recursive
let bindings. To this end the definition of structured graphs extends the definition
of fixpoints by two additional constructors, Var and Mu, for metavariables and
mutually recursive bindings, respectively:

data GraphT f v = Var v
| Mu ([v]→ [GraphT f v])
| InG (f (GraphT f v))

The additional type variable v is used as the type for the metavariables in the
graph. Mu represents binders using higher-order abstract syntax (HOAS). In
order to allow mutually recursive bindings, Mu is a function that takes a list of
metavariables and returns a list of corresponding graphs. The intention is that
the i-th metavariable in the argument list is bound to the i-th graph in the result
list. The entry point is the first graph in the result list.

In this paper, we only use the above Mu constructor in two distinct cases,
viz. non-recursive let bindings and fixpoints over a single argument, which we
express as follows:

letx :: GraphT f v → (v → GraphT f v)→ GraphT f v
letx g f = Mu (λ∼(: x :)→ [f x , g])

mu :: (v → GraphT f v)→ GraphT f v
mu f = Mu (λ∼(x :)→ [f x])

With these two combinators we may represent a non-recursive let binding
“let x = b in s” as letx b (λx → s), and a fixpoint of f as mu f .

Structured graphs use a restricted form of HOAS called parametric HOAS [7].
When constructing structured graphs the type v of metavariables is left poly-
morphic. To ensure this, structured graphs are wrapped in the following type,
which enforces the parametric polymorphism of the metavariables type v :

newtype Graph f = MkGraph (∀ v .GraphT f v)

The parametricity of the type of metavariables ensures that the function argu-
ment passed to the Mu constructor is indeed only used for defining binders.

In analogy to smart constructors for the fixpoint type constructor µ ·, we
use smart constructors to simplify the construction of graphs. To this end we
transcribe inject from fixpoints to graphs:

injectG :: (f o g)⇒ f (GraphT g a)→ GraphT g a
injectG = InG ◦ inj

Using injectG, we obtain smart constructors such as the following:

PUSH G :: (ARITH o f)⇒ Int → GraphT f v → GraphT f v
PUSH G n c = injectG (PUSH n c)

3.2 Compiling To Graphs

We can now refactor the carrier of the compilation algebra to reflect the usage
of structured graphs instead of least fixpoints:

class Functor f ⇒ AlgG
Co f g where

algG
Co :: f (GraphT g v → GraphT g v)→ GraphT g v → GraphT g v

As before the type class is easily lifted to coproducts:

instance (AlgG
Co f g ,AlgG

Co h g)⇒ AlgG
Co (f � h) g where

algG
Co (Inl x) = algG

Co x

algG
Co (Inr y) = algG

Co y

Note that we use the GraphT type constructor instead of Graph. As a general
rule of thumb, we use GraphT in order to build up graphs, and after that we
use the MkGraph constructor to construct a graph of type Graph g . The rank 2
polymorphic type of MkGraph ensures that the construction of the underlying
graph of type GraphT was indeed polymorphic in the type v of metavariables:

compG :: (AlgG
Co f g ,HALT o g)⇒ µ f → Graph g

compG e = MkGraph (fold algG
Co e HALTG)

The implementation of the compiler for ARITH is analogous to the fixpoint
version from section 2. The only aspect that has to be changed is that we use
the smart constructors for graphs:

instance (ARITH o g)⇒ AlgG
Co Arith g where

algG
Co (Val n) c = PUSH G n . c

algG
Co (Add x y) c = x . y .ADDG . c

algG
Co (Mul x y) c = x . y .MULG . c

In principle, we may transcribe the compiler definition for If in the same
simple way. However, we can exploit the sharing capabilities that the graph
structure affords us:

instance (COND o g)⇒ AlgG
Co If g where

algG
Co (If b p1 p2) c = letx c

(λv → b . JPCG (p1 .Var v) . p2 .Var v)

Instead of placing the code continuation c directly into the generated code
(and thereby duplicating c), we bind c to the metavariable v , which is then used
instead of c, thus avoiding the duplication.

Likewise, for compiling loops, we make use of the graph structure, too. This
time, however, we need to construct a cycle, for which we use the mu combinator:

instance (COND o g)⇒ AlgG
Co While g where

algG
Co (While b lb) c = mu (λv → b . JPCG (lb .Var v) . c)

Next, we give the definition for compiling the signatures State and Comp.
To do this we need corresponding instructions in the target language:

data STATE e = GET Ref e | SET Ref e
data COMP e = EQ e | LT e

The corresponding compiler definitions are straightforward:

instance (STATE o g)⇒ AlgG
Co State g where

algG
Co (Get v) c = GETG v . c

algG
Co (Set v e) c = e . SETG v . c

instance (COMP o g)⇒ AlgG
Co Comp g where

algG
Co (Equ x y) c = x . y . EQG . c

algG
Co (Lt x y) c = x . y . LTG . c

Finally, we give the definition for compiling sequential composition:

instance AlgG
Co Seq g where

algG
Co (Seq x y) c = x . y . c

To see the resulting compiler in action, we consider the following example
source program that computes the factorial:

type Source = Arith � State � Seq � While � Comp

fac :: µ Source
fac = Setµ y (Valµ 1) ‘Seqµ‘ Whileµ (Valµ 0 ‘Ltµ‘ Getµ x)

(Setµ y (Getµ y ‘Mulµ‘ Getµ x) ‘Seqµ‘

Setµ x (Getµ x ‘Addµ‘ Valµ (−1)))
where x = Ref "x"; y = Ref "y"

In order to determine the target language, we need only sum up the con-
straints on the target signatures in the declarations of AlgG

Co for the individual
source language features:

type Target = ARITH � STATE � COND � COMP � HALT

compSource :: µ Source → Graph Target
compSource = compG

Note that Haskell’s type system makes sure that the target language has the
instructions required to compile the source language. For instance, if we forget
to include COMP in the target language, Haskell’s type checker complains:

No instance for (COMP :<: HALT) arising from a use of ‘comp’

Applying compSource to fac returns the following graph:

PUSH 1; SET y; [v1 -> PUSH 0; GET x; LT; JPC (GET y; GET x; MUL;

SET y; GET x; PUSH (-1); ADD; SET x; v1); HALT]

The code inside the brackets corresponds to bindings in the graph structure
constructed by Mu: the metavariable v1 is bound to the code to the right of
the -> arrow, which in turn contains a reference to v1. Thus, as expected, the
output code graph has a single cycle, corresponding to the loop of the source
program.

4 Typing the Source Language

We highlight at this point that all instances of source languages we have consid-
ered thus far have been defined as a single fixpoint of a signature functor, even
though said signature can be compound. We mention this because at present
there are no restrictions on how to combine these different language fragments,
permitting all manner of ill-formed source programs via the abuse of syntax. For
example, we can write:

Whileµ (Setµ (Ref "x") (Valµ 10)) (Getµ (Ref "x") ‘Addµ‘ Valµ 1)

We need to be able to cleanly separate (at least) between statements, which
can be combined using sequential composition, conditionals and loops, and ex-
pressions, which can be combined by arithmetic and Boolean operators.

4.1 Splitting the Source Language

In order to split the source language into different syntactic categories – while
retaining its modular properties – we use Johann and Ghani’s initial algebra
semantics of GADTs [15] and combine it with data types à la carte in the style
of Bahr and Hvitved [5]. The underlying idea is to annotate each node of the
tree type with the syntactic category it resides in. To this end, each signature
functor gets an additional type argument (and thus ceases to be a functor). For
example, using Haskell’s GADT syntax, Arith is now defined as follows:

data Exp -- type index for expressions

data Arith e l where Val :: Int → Arith e Exp
Add :: e Exp → e Exp → Arith e Exp
Mul :: e Exp → e Exp → Arith e Exp

Note that we define an empty datatype Exp as a label – or more precisely,
an index – for expressions. The Arith signature is simple; each operator only
takes expressions and returns expressions. More interesting is the definition of
the signature for assigning and dereferencing reference cells:

data Stmt -- type index for statements

data State e l where Get :: Ref → State e Exp
Set :: Ref → e Exp → State e Stmt

Note that the Get constructor builds an expression, while the Set constructor
takes an expression and builds a statement.

As we have already noted, the above indexed signatures are no longer Haskell
functors: instead of mapping types to types, they map functors to functors (and
natural transformations to natural transformations). In the language of Johann
and Ghani [15], these signatures are higher-order functors.

The type constructors � and µ · are easily adjusted to this setting by also
equipping them with an additional type argument:

data (f � g) (h :: ∗ → ∗) e = InlH (f h e) | InrH (g h e)

data µH f i = InH (f (µH f) i)

As expected, the fixpoint of a higher-order functor is itself a type function
of kind ∗ → ∗ (in other words, a family of types). In the case of the syntax
trees for our target language, this family comprises the different syntactic cate-
gories we want to represent. Concretely, µH (Arith � State) Exp is the type of
expressions over signature Arith �State, whereas µH (Arith �State) Stmt is the
corresponding type of statements.

As we have just introduced typed syntax trees, we make use of the infras-
tructure in order to also keep track of the object language typing. Our language
is simple enough such that it suffices to add a type for Boolean expressions:

data BExp

data Comp e l where Equ :: e Exp → e Exp → Comp e BExp
Lt :: e Exp → e Exp → Comp e BExp

Signatures for control structures are defined in the same style:

data If e l where If :: e BExp → e Stmt → e Stmt → If e Stmt
data While e l where While :: e BExp → e Stmt → While e Stmt

data Seq e l where Seq :: e Stmt → e Stmt → Seq e Stmt

We now have the infrastructure to define and combine signatures. In the next
section we shall see that the machinery to define folds on fixpoints and to define
smart constructors carries over to the setting of higher-order functors easily.

4.2 Folds and Smart Constructors

The representation of modular GADTs that we use here is based on fixpoints of
higher-order functors in the style of Johann and Ghani [15]. The key to this rep-
resentation is that the higher-order functors we make use of here have slightly
‘less’ structure than what one would typically assume of such constructs: our
versions only provide a mapping from natural transformations to natural trans-
formations:

class HFunctor f where hfmap :: (g →̇ h)→ f g →̇ f h

where natural transformations are defined as follows:

type f →̇ g = ∀ i . f i → g i

In the language of Johann and Ghani [15], these higher-order functors map
functors of kind | ∗ | → ∗ to functors of kind | ∗ | → ∗, which are (conveniently
enough) exactly what is needed to represent GADTs.

Instance declarations for HFunctor are defined in as straightforward a manner
as their Functor counterparts. For example, to instantiate State:

instance HFunctor State where
hfmap f (Get v) = Get v
hfmap f (Set v x) = Set v (f x)

Using this structure, we can define folds on fixpoints of higher-order functors.
Since the signatures are indexed (as are their fixpoints), it follows that the al-
gebras that are used to define these folds are indexed too. More precisely, given
a higher-order functor f and a type constructor c :: ∗ → ∗, an f -algebra with
carrier c is a natural transformation of type f c →̇ c. Apart from the typing, the
implementation of higher-order folds is the identical to that of ordinary Haskell
functors:

foldH :: HFunctor f ⇒ (f c →̇ c)→ µH f →̇ c
foldH f (InH t) = f (hfmap (foldH f) t)

The definition of the typeclass o is also lifted to the setting of higher-order
functors with minimum hassle:

class (sub :: (∗ → ∗)→ ∗ → ∗) o sup where
injH :: sub a →̇ sup a

The instance declarations for o are transcribed one-to-one to the typeclass o

without surprises, which in turn gives us the corresponding higher-order injection
function:

injectH :: (g o f)⇒ g (µH f) →̇ µH f
injectH = InH ◦ injH

As before, we assume that each constructor of a higher-order signature func-
tor comes equipped with a corresponding smart constructor, e.g.

WhileH :: (While o f)⇒ µH f BExp → µH f Stmt → µH f Stmt
WhileH x y = injectH (While x y)

Given these smart constructors, we can write a typed version of the factorial
program from section 3 as follows:

fac :: µH (Arith � State � Seq � While � Comp) Stmt
fac = SetH y (ValH 1) ‘SeqH‘ WhileH (ValH 0 ‘LtH‘ GetH x)

(SetH y (GetH y ‘MulH‘ GetH x) ‘SeqH‘
SetH x (GetH x ‘AddH‘ ValH (−1)))

where x = Ref "x"; y = Ref "y"

4.3 Adapting the Modular Compiler

In this section we briefly describe the changes necessary to adapt the modular
compiler implementation from section 3 to this typed setting.

The key concern is in coping with the fact that algebras are now natural
transformations rather than functions, and that algebras must now honour the
typing that the higher-order functors declare. For example, if we were to write
an interpreter, the arguments of Lt must evaluate to integers and Lt itself must
evaluate to a Boolean.

For the definition of the compiler the typing is of secondary concern, since
the target language is untyped (we consider typing necessary to ensure the well-
formedness of source programs). In order to discard the typing information when
no longer required we introduce a type constructor K , which yields the following
definition of the compilation algebra:

newtype K a i = K {unK :: a }
class (HFunctor f)⇒ AlgG

Co f g where

algG
Co :: f (K (GraphT g v → GraphT g v))

→̇K (GraphT g v → GraphT g v)

To simplify instance declarations for the compilation algebra, we remove the
occurrence of K in the result type:

class (HFunctor f)⇒ AlgG
Co f g where

algG
Co :: f (K (GraphT g v → GraphT g v)) i → GraphT g v → GraphT g v

In order to recover an algebra of the correct type, we compose algG
Co with K :

K ◦ algG
Co :: f (K (GraphT g v → GraphT g v))→̇K (GraphT g v → GraphT g v)

The final compiler is thus defined as follows:

compG :: (AlgG
Co f g ,HALT o g)⇒ µH f i → Graph g

compG e = MkGraph (unK (foldH (K ◦ algG
Co) e) HALTG)

Here we use unK to turn the result of the fold – of type K (GraphT g v →
GraphT g v) i – into a function of type GraphT g v → GraphT g v . This
function is then applied to a singleton HALT instruction, which serves as the
initial continuation. All that remains is to change the instance declarations for
the compilation algebra in such a way that they fit this new interface.

The lifting to coproducts now uses the type constructor � instead of �:

instance (AlgG
Co f g ,AlgG

Co h g)⇒ AlgG
Co (f � h) g where

algG
Co (InlH x) = algG

Co x

algG
Co (InrH y) = algG

Co y

The changes to the instance declarations for the individual language frag-
ments are syntactically very simple: we just need to insert the constructor K for
each ‘recursive’ argument of the language construct. For example, for the While
language fragment we define the following:

instance (COND o g)⇒ AlgG
Co While g where

algG
Co (While (K b) (K lb)) c = mu (λv → b . JPCG (lb .Var v) . c)

4.4 Modularity

The use of higher-order functors may appear to be overkill at first glance, since
our goal is simply to separate expressions from statements. Higher-order functors
allow us to encode GADTs, but the relation between expressions and statements
is much simpler: expressions may occur in statements, but not vice versa. How-
ever, we argue – similarly to [5] – that the higher-order functor representation
is much better suited to modular definitions.

If we were to retain the use of functors but still wished to discriminate be-
tween expressions and statements, we would need to make the expression lan-
guage a parameter of the statement language, e.g.:

data If exp stmt = If exp stmt stmt
data While exp stmt = While exp stmt

type Sig = If (µ Arith) � While (µ Arith)
type Lang = µ Sig

This approach complicates the composition of signatures, since we would then
need to ensure that each statement signature received the same expression lan-
guage argument. Moreover, signatures could then no longer be extended com-
positionally: if we were to extend the signature Sig with comparison operators,
we could not reuse the definition of Sig . We would be forced to define:

type Sig ′ = If (µ (Arith � Comp)) � While (µ (Arith � Comp))

Modular algebra definitions become markedly more difficult as well, as we would
need to operate over two ‘levels’ of modularity, namely on the expression and
the statement level.

In our opinion, the use of higher-order functors makes modular definitions far
simpler and more concise, as we need only deal with one level of modularity. No
matter whether we want to extend the statement or the expression language, we
simply use the coproduct � to add the desired signature. Further, as it stands
we can exploit the open nature of the kind system, i.e. if we want to add floating
point expressions, we simply introduce a new type index FPExp:

data FPExp -- type index for floating point expressions

data Div e l where Div :: e FPExp → e FPExp → Div e FPExp

type Lang = µH (Arith � While � If � State � Div) Stmt

In turn, our modular algebra definitions remain as simple as in the untyped
case. For example, assuming that we have a suitable signature DIV for the target
language, we may extend the compiler for the new floating point operator by
the following declaration:

instance (DIV o g)⇒ AlgG
Co Div g where

algG
Co (Div (K x) (K y)) c = x . y .DIV G . c

5 Discussion

5.1 Future Research Avenues

Additional Computational Constructs We would like to describe other computa-
tional features in the manner that we have presented in order to further increase
the expressive power of a modular source language. In particular, we are inter-
ested in implementing I/O, explicit parallelism and continuations in this manner,
and exploring how their semantics interacts with the existing framework.

Data-Flow Analysis and Optimisations A natural extension of our work is to im-
plement data-flow analysis and optimisations in a modular style as well. A good
starting point for extending our work in this direction is Hoopl, the Higher Order
Optimisation Library of Ramsey et al. [22]. Hoopl is a Haskell library that allows
compiler implementers to define data-flow analyses and implement optimising
transformations that are informed by this analysis. Modular implementations of
optimising transformations can be achieved using the same techniques as pre-
sented in this paper. In particular, data-flow analysis and the underlying lattice
structures can be defined in a modular way for (at least) standard textbook
analyses.

Testing and Reasoning An important property of a compiler is its trustworthi-
ness. Does it perform only semantics preserving transformations? Establishing
such trustworthiness in a modular fashion as well still remains a considerable
challenge. However, using the same techniques as presented here, automatic test
case generation (i.e. generation of input programs and initial configurations) can
be implemented in a modular fashion. Rigorous and machine-checked correct-
ness proofs, however, require new reasoning techniques that work in a modu-
lar setting. There is a growing interest in formalising programming language
metatheory in a modular fashion [11, 10, 23]. However, building modular proofs
of compiler correctness have to deal with additional difficulties. Such proofs have
to be modular along both the source and target language as well as computa-
tional effects. As the work of Delaware et al. [10] shows, modular reasoning about
effects already becomes a considerable obstacle for type soundness proofs.

5.2 Related Work

Modular Compilers William Harrison’s doctoral thesis [14] focuses on the topic
of modular compilation by defining ‘reusable compiler building blocks’. These
blocks are presented using two distinct approaches, one of which is monadic
code generators, which are closely related to our own research. Also contained
within each block is a set of equations defining the ‘compilation semantics’ of
the feature in question, and the compiler is verified correct by formulating and
proving relations between the standard and compilation semantics.

Marcos Viera’s doctoral thesis [25] presents the usage of attribute grammars
as the vehicle for defining extensible programming languages. In short, indi-
vidual fragments of an attribute grammar can describe individual features of a

language, and compositionality is guaranteed via the Haskell type system. There
is also a number of standalone attribute grammar systems with particular fo-
cus on extensible language implementation such as LISA [19], JastAdd [12] and
Silver [28].

Graph Representations for Compilers As previously mentioned, the data-flow
analysis library Hoopl [22] uses a graph representation based on explicit labels
and jumps. More recently, Bahr [3] demonstrated the use of structured graphs for
representing the target language of a compiler. However, Bahr’s work is focused
on compiler verification and does not consider cyclic graphs. Moreover, neither
Ramsey et al. [22] nor Bahr [3] consider the problem of modularising the target
language.

Recursion Schemes The recursion schemes used to define the compiler and the
semantics heavily influences how compiler and semantics can be extended. More
structured recursion schemes derived from tree automata [2, 4] and attribute
grammars [27, 26] offer more freedom to replace parts of modular definition as
opposed to only being able to extend them. In the same direction goes the work
of Kimmell et al. [16] and Frisby et al. [13] who introduce algebra combinators
such as switch and sequence algebras to compose algebras.

Modular Syntax The use of higher-order functors to represent indexed datatypes
and families of mutually recursive datatypes stems from Johann and Ghani [15].
Yakushev et al. [29] applied this technique to generic programming. Bahr and
Hvitved [5, 6] employed fixpoints of higher-order functors to represent modular
syntax and semantics, and combined it with parametric HOAS. Axelsson [1]
introduces a different approach to modular well-typed definitions of syntax and
semantics: he developed an applicative encoding of the syntax that makes heavy
use of type indexing to describe the signature of individual language features.
Oliveira and Löh [20] used structured graphs to represent source languages. To
this end they combined structured graphs with the typing mechanism of indexed
types and modular definitions using type classes.

References

[1] Axelsson, E.: A generic abstract syntax model for embedded languages. In:
ICFP (2012)

[2] Bahr, P.: Modular tree automata. In: MPC (2012)
[3] Bahr, P.: Proving correctness of compilers using structured graphs. In:

FLOPS. vol. 8475 (2014)
[4] Bahr, P., Day, L.E.: Programming macro tree transducers. In: WGP (2013)
[5] Bahr, P., Hvitved, T.: Compositional data types. In: WGP (2011)
[6] Bahr, P., Hvitved, T.: Parametric compositional data types. In: MSFP

(2012)
[7] Chlipala, A.: Parametric higher-order abstract syntax for mechanized se-

mantics. In: ICFP (2008)

[8] Day, L.E., Hutton, G.: Towards modular compilers for effects. In: TFP
(2011)

[9] Day, L.E., Hutton, G.: Compilation à la carte. In: IFL (2013)
[10] Delaware, B., Keuchel, S., Schrijvers, T., Oliveira, B.C.: Modular monadic

meta-theory. In: ICFP (2013)
[11] Delaware, B., d. S. Oliveira, B.C., Schrijvers, T.: Meta-theory à la carte.

In: POPL (2013)
[12] Ekman, T., Hedin, G.: The jastadd system - modular extensible compiler

construction. Sci. Comput. Prog. 69(1-3), 14–26 (2007)
[13] Frisby, N., Kimmell, G., Weaver, P., Alexander, P.: Constructing language

processors with algebra combinators. Sci. Comput. Prog. 75(7), 543 – 572
(2010)

[14] Harrison, W.: Modular Compilers and their Correctness Proofs. Ph.D. the-
sis, University of Illinois at Urbana-Champaign (2001)

[15] Johann, P., Ghani, N.: Foundations for structured programming with
GADTs. In: POPL (2008)

[16] Kimmell, G., Komp, E., Alexander, P.: Building compilers by combining
algebras. In: ECBS (2005)

[17] Liang, S., Hudak, P., Jones, M.: Monad transformers and modular inter-
preters. In: POPL. New York, NY, USA (1995)

[18] Marlow, S.: Haskell 2010 language report (2010), http://www.haskell.

org/onlinereport/haskell2010/

[19] Mernik, M., Umer, V.: Incremental programming language development.
Comput. Lang. Syst. Struct. 31(1), 1–16 (2005)

[20] Oliveira, B.C.d.S., Löh, A.: Abstract syntax graphs for domain specific lan-
guages. In: PEPM (2013)

[21] Oliveira, B.C., Cook, W.R.: Functional programming with structured
graphs. In: ICFP (2012)

[22] Ramsey, N., Dias, J., Peyton Jones, S.: Hoopl: a modular, reusable library
for dataflow analysis and transformation. In: Haskell (2010)

[23] Schwaab, C., Siek, J.: Modular type-safety proofs in agda. In: PLPV (2013)
[24] Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436

(2008)
[25] Viera, M.: First Class Syntax, Semantics and Their Composition. Ph.D.

thesis, Utrecht University (2013)
[26] Viera, M., Swierstra, D.: Attribute grammar macros. In: BSPL (2012)
[27] Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class.

In: ICFP (2009)
[28] Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute

grammar system. Sci. Comput. Prog. 75(1-2), 39–54 (2010)
[29] Yakushev, A.R., Holdermans, S., Löh, A., Jeuring, J.: Generic programming

with fixed points for mutually recursive datatypes. In: ICFP (2009)

http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/

	Pick'n'Fix

