
213

Calculating Compilers for Concurrency

PATRICK BAHR, IT University of Copenhagen, Denmark

GRAHAM HUTTON, University of Nottingham, UK

Choice trees have recently been introduced as a general structure for defining the semantics of programming

languages with a wide variety of features and effects. In this article we focus on concurrent languages, and

show how a codensity version of choice trees allows the semantics for such languages to be systematically

transformed into compilers using equational reasoning techniques. The codensity construction is the key

ingredient that enables a high-level, algebraic approach. As a case study, we calculate a compiler for a

concurrent lambda calculus with channel-based communication.

CCS Concepts: • Software and its engineering→ Compilers; Formal software verification; • Theory
of computation→ Logic and verification; Program verification.

Additional Key Words and Phrases: program calculation, concurrency, choice trees, codensity monad

ACM Reference Format:
Patrick Bahr and Graham Hutton. 2023. Calculating Compilers for Concurrency. Proc. ACM Program. Lang. 7,
ICFP, Article 213 (August 2023), 28 pages. https://doi.org/10.1145/3607855

1 INTRODUCTION
Compilers are hard to write, and hard to get right. This is particularly so in the case of concurrent

languages, where the addition of language primitives that introduce non-determinism make it

significantly more challenging to develop and verify compilers.

One approach to compiler verification for concurrent languages is to define the semantics for

both the source and target languages by translation into a lower-level concurrent language with

suitable reasoning principles, such as bisimilarity and coinduction. This approach was pioneered by

Wand [1995], who introduced the idea of translating into a process calculus, and has recently taken

a step forward with the development of choice trees [Chappe et al. 2023], which provide a monadic

language for expressing concurrency that supports modular, algebraic reasoning principles.

Such reasoning principles also make choice trees a suitable foundation for compiler calculation,
a program synthesis technique that aims to derive correct-by-construction compilers from specifi-

cations of their correctness [Bahr and Hutton 2015, 2022]. The nature of the semantic reasoning

principles is important for compiler calculation, because the aim is not only to produce correct

compilers, but it also to discover compilation techniques. Simple, equational-style reasoning and a

powerful (co-)induction principle are key features to enable this discovery.

In this article, we show how choice trees can be used as the semantic basis for compiler calculation

for concurrent languages. In particular, the article makes the following contributions:

• We adapt the syntax and semantics of choice trees to enable the simple (co-)induction principle

that powers the compiler calculation technique (Section 2).

Authors’ addresses: Patrick Bahr, IT University of Copenhagen, Denmark; Graham Hutton, University of Nottingham, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART213

https://doi.org/10.1145/3607855

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

https://doi.org/10.1145/3607855
https://doi.org/10.1145/3607855

213:2 Patrick Bahr and Graham Hutton

• We identify a limitation of choice trees for defining the semantics of a simple concurrent

language (Section 3), and show how the codensity construction can be applied to the choice

tree monad to remove this limitation (Section 4).

• We present reasoning principles for the resulting codensity choice trees (Section 5), and show

how they can be used to calculate a compiler for the simple concurrent language (Section 6).

• Finally, to demonstrate that our methodology scales to richly-featured concurrent languages,

we show how to calculate a compiler for an untyped lambda calculus extended with concur-

rency and channel-based communication (Sections 7 and 8).

We use Haskell notation as our meta-language for accessibility, but assume that the language is

total. Whereas in many articles calculations are often omitted or compressed for brevity, here they

are the central focus so are typically presented in detail. All the calculations have been mechanically

checked in Agda, and the proof scripts are available as online supplementary material [Bahr and

Hutton 2023].

2 CHOICE TREES
In this section we introduce the basic concept of choice trees, show how they can be given a

small-step operational semantics, and define the derived notion of parallel composition. To support

the equational approach to reasoning that is used in compiler calculation, the syntax and semantics

that we adopt for choice trees is different from the original article [Chappe et al. 2023]. As the full

definitions for choice trees are developed in stages, we defer a discussion of these differences and

their importance for compiler calculation until later on (Section 9).

2.1 Syntax
The type of choice trees CTree e a represents non-deterministic computations that return values of

type a and that may use algebraic effects defined by the type function e :: ∗ → ∗:

data CTree e a where
Now :: a→ CTree e a
(⊕) :: CTree e a→ CTree e a→ CTree e a
𝑍𝑒𝑟𝑜 :: CTree e a
Eff :: e b→ (b→ CTree e a) → CTree e a

Informally, Now v returns the value v without performing any effects, p ⊕ q makes a non-

deterministic choice between two computations p and q, while 𝑍𝑒𝑟𝑜 is a computation that has

terminated, and Eff o c is a form of sequencing that feeds the result value produced by an effectful

computation o into a continuation c. For example, if we wished to provide an effectful operation

that prints an integer, this can be achieved by first defining a type function PrintEff that provides a

single constructor called PrintInt, which is then used to define a print function:

data PrintEff a where
PrintInt :: Int → PrintEff ()

print :: Int → CTree PrintEff ()
print n = Eff (PrintInt n) Now

Note that print does not actually print an integer, but rather builds a choice tree that represents the

action of printing. Choice trees form a monad, with return and >>= defined as follows, which allows

Haskell’s do notation to be used to streamline the construction of choice trees:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:3

Now v
v

=⇒ 𝑍𝑒𝑟𝑜

𝑝
𝑙

=⇒ 𝑝′

p ⊕ q
𝑙

=⇒ 𝑝′

𝑞
𝑙

=⇒ 𝑞′

p ⊕ q
𝑙

=⇒ 𝑞′

o :: e b c :: b→ CTree e a

Eff o c
↑𝑜
=⇒ c

c :: b→ CTree e a i :: b

𝑐
↓𝑖
=⇒ c i

Fig. 1. Transition semantics for (codensity) choice trees.

return :: a→ CTree e a
return = Now

(>>=) :: CTree e a→ (a→ CTree e b) → CTree e b
Now v >>= f = f v
(p ⊕ q) >>= f = (p >>= f) ⊕ (q >>= f)
𝑍𝑒𝑟𝑜 >>= f = 𝑍𝑒𝑟𝑜

Eff o c >>= f = Eff o (_i→ c i >>= f)

We will also make use of the functorial map function, which is derived from >>= and return:

fmap :: (a→ b) → CTree e a→ CTree e a
fmap f p = p >>= (_x → return (f x))

Later on we will extend the notion of choice trees to support infinite (non-terminating) compu-

tations, but the above definitions will suffice for now.

2.2 Semantics
We define the semantics for choice trees by means of a labelled transition system. In our setting, a

state for the transition system is either a choice tree p ::CTree e a, or a continuation c ::b→ CTree e a
that is waiting for an external input of type b in response to an effect of type e b. Transitions
between states are labelled by one of four possible forms:

𝜏 a silent transition ↑ 𝑜 an effect o :: e b for some type b

v a return value v :: a ↓ 𝑖 an input i :: b for some type b

Using these ideas, we define a labelled transition relation by the inference rules shown in Figure 1,

which makes precise the informal meaning of choice trees from the previous section. Note that

there is no rule for 𝑍𝑒𝑟𝑜 because it represents a terminated computation that can make no further

transitions. The silent transition 𝜏 plays no role yet, but will be used later on.

By way of example, the expression return 1 ⊕ (print 2 >>= _() → return 3) expands to the choice
tree Now 1 ⊕ Eff (PrintInt 2) (_() → Now 3), which has two possible transition sequences because

of the use of the choice operator. In particular, it can either simply return the value 1,

Now 1 ⊕ Eff (PrintInt 2) (_() → Now 3) 1

=⇒ 𝑍𝑒𝑟𝑜

or it can print 2, consume the resulting unit value (), and return the value 3:

Now 1 ⊕ Eff (PrintInt 2) (_() → Now 3)
↑PrintInt 2
=⇒ _() → Now 3

↓()
=⇒ Now 3

3

=⇒ 𝑍𝑒𝑟𝑜

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:4 Patrick Bahr and Graham Hutton

As illustrated in this latter transition sequence, every effectful transition is always immediately

followed by an input transition that consumes the resulting value:

Eff o c
↑𝑜
=⇒ 𝑐

↓𝑖
=⇒ c i

Hence, we could simplify the semantics by combining the two transitions into one:

Eff o c
↑𝑜 ↓𝑖
=⇒ c i

While this approach has the benefit of avoiding the need for two kinds of states in the semantics,

it results in a notion of bisimilarity that is too coarse. We return to this issue in Section 9 in our

comparison to the work of Chappe et al. [2023], who do use this simplified semantics. Nonetheless,

as such transitions always occur in pairs, it is useful to define a relation that combines them:

𝑝
↑𝑜↓𝑖
=⇒⇒ 𝑞 iff ∃𝑐. 𝑝

↑𝑜
=⇒ 𝑐 ∧ 𝑐

↓𝑖
=⇒ 𝑞

2.3 Parallelism
Choice trees do not have a built-in notion of parallelism, as this can be derived from the other

primitives. In particular, we can define parallel composition using three auxiliary operators:

(∥) :: CTree e a→ CTree e b→ CTree e (a, b)
p ∥ q = (p ◁ q) ⊕ (p ▷ q) ⊕ (p ⊲⊳ q)
The first operator ◁ allows its left argument to perform an effectful computation:

(◁) :: CTree e a→ CTree e b→ CTree e (a, b)
Now v ◁ q = 𝑍𝑒𝑟𝑜

(p1 ⊕ p2) ◁ q = (p1 ◁ q) ⊕ (p2 ◁ q)
𝑍𝑒𝑟𝑜 ◁ q = 𝑍𝑒𝑟𝑜

Eff o c ◁ q = Eff o (_i→ c i ∥ q)
The second operator ▷ does the same for the right argument, and is defined symmetrically to ◁.
The final operator ⊲⊳ allows both argument choice trees to perform computations simultaneously,

with the resulting return values from each side being combined as a pair:

(⊲⊳) :: CTree e a→ CTree e b→ CTree e (a, b)
(p1 ⊕ p2) ⊲⊳ q = (p1 ⊲⊳ q) ⊕ (p2 ⊲⊳ q)
p ⊲⊳ (q1 ⊕ q2) = (p ⊲⊳ q1) ⊕ (p ⊲⊳ q2)
Now v ⊲⊳ Now w = Now (v,w)

⊲⊳ = 𝑍𝑒𝑟𝑜

The behaviour of ∥ can be concisely characterised by the following inference rules, which together

express that parallel composition has the expected behaviour:

𝑝
↑𝑜↓𝑖
=⇒⇒ 𝑝′

𝑝 ∥ 𝑞
↑𝑜↓𝑖
=⇒⇒ p′ ∥ q

𝑞
↑𝑜↓𝑖
=⇒⇒ 𝑞′

𝑝 ∥ 𝑞
↑𝑜↓𝑖
=⇒⇒ p ∥ q′

𝑝
𝑣

=⇒ 𝑍𝑒𝑟𝑜 𝑞
𝑤
=⇒ 𝑍𝑒𝑟𝑜

𝑝 ∥ 𝑞
(v,w)
=⇒ 𝑍𝑒𝑟𝑜

Moreover, these rules are complete, in the sense that any transition from p ∥ q can be derived using

them. Later we will consider more general situations in which both arguments may perform an

effectful computation simultaneously, such as when one sends a message to the other.

It is also useful to define a variant of parallel composition that discards any result values produced

by the left argument, hence this argument is only executed for its effects:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:5

(®q) :: CTree e a→ CTree e b→ CTree e b
p ®q q = fmap snd (p ∥ q)

Right-biased parallel composition ®q can be characterised in a similar way to ∥, except that the
inference rule for values only propagates the right value w rather than the pair (v,w).

3 EXAMPLE LANGUAGE
In this section, we introduce a simple concurrent language that we will use as an initial example

for presenting our compiler calculation technique, and show how a semantics for this language

can be defined in terms of choice trees. As we shall see, some care is required to ensure that the

semantics correctly captures the intended concurrent behaviour.

3.1 Syntax
We consider a minimal expression language that comprises arithmetic expressions built up from

integers values using an addition operator, extended with a primitive that prints the value of an

expression, and a primitive that forks the evaluation of an expression:

data Expr = Val Int | Add Expr Expr | Print Expr | Fork Expr

Informally, Fork e starts evaluation of the expression e using a new concurrent process and

immediately returns the result value 0, in a manner reminiscent of Haskell’s forkIO primitive [Jones

et al. 1996]. While the above language is not suitable for actual programming, it provides just what

we need to explain our compiler calculation technique. In particular, the integers provide a simple

notion of value, addition provides a simple notion of (sequential) computation, print provides a

simple form of observable effect, and fork provides a simple form of concurrency.

3.2 Semantics
Using the choice tree machinery that was introduced in Section 2, a semantics for our simple

expression language can be defined in terms of choice trees as follows:

eval :: Expr → CTree PrintEff Int
eval (Val n) = return n
eval (Add x y) = do n← eval x ; m← eval y ; return (n +m)
eval (Print x) = do n← eval x ; print n ; return n
eval (Fork x) = eval x ®q return 0

The first three cases are as we would expect, while the case for fork formalises the idea that the

argument expression is evaluated in parallel with returning the result 0. Using right-biased parallel

composition ®q in the fork case is appropriate because our language both returns values and performs

effects, and ensures that the argument expression x is evaluated purely for its effects.

While the above semantics for fork is simple, unfortunately it does not capture the desired

behaviour. The problem is that the ®q operator is synchronous, in the sense that it waits for both sides

to complete. To illustrate the problem, consider the expression Add (Fork x) y with semantics:

(eval x ®q return 0) >>= _n→ eval y >>= _m→ return (n +m)

We would expect that x and y are evaluated in parallel — that is the point of using fork. However,

in the above choice tree y is only evaluated after eval x ®q return 0 has completed, and hence only

after x is evaluated. Instead, we would expect the semantics of Add (Fork x) y to be

eval x ®q (return 0 >>= _n→ eval y >>= _m→ return (n +m))

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:6 Patrick Bahr and Graham Hutton

which then simplifies to eval x ®q eval y. Here, evaluation of x has been floated to the top-level,

which ensures that it takes place asynchronously. In Haskell [Jones et al. 1996], this behaviour is

realised by defining the semantics using an evaluation context that captures where the next step of

evaluation takes place. In our setting, this gives the following semantics for fork:

eval (C [Fork x]) = eval x ®q eval (C [Val 0])
That is, if we are evaluating in a context C for which the next step is to fork an expression x, then
we simply float evaluation of x to the top level, and continue with this expression replaced by the

value zero. However, the above semantics is no longer compositional, because the semantics of

Fork x is no longer defined purely in terms of the semantics of x, but also involves the semantics for

the residual expression C [Val 0]. Our compiler calculation methodology depends on the semantics

being compositional, so we cannot use the contextual approach here.

Fortunately, we can achieve the same effect as the contextual semantics while retaining com-

positionality by rewriting the semantics in continuation-passing style. In particular, we take an

additional argument c — the continuation — that is used to process of result of evaluating an

expression, and hence captures the idea of what to do after the current evaluation:

eval :: Expr → (Int → CTree PrintEff Int) → CTree PrintEff Int
eval (Val n) c = c n
eval (Add x y) c = eval x (_n→ eval y (_m→ c (n +m)))
eval (Print x) c = eval x (_n→ print n >>= _() → c n)
eval (Fork x) c = eval x return ®q c 0
This definition ensures that any continuation c that follows on from Fork x is in evaluated in parallel
with eval x return. For example, the expression Add (Fork x) y has the semantics eval x return ®q
eval y c, which ensures that x and y are evaluated in parallel as expected.

4 CODENSITY CHOICE TREES
While the continuation semantics in the previous section captures the intended behaviour, it is

not so appealing as the simple, but incorrect, monadic semantics that we originally presented.

More importantly, the explicit use of continuations would complicate the reasoning process, as we

discuss later on (Section 6). However, we can regain both the simplicity of the monadic semantics

and its reasoning principles by first generalising the return type of eval,

(Int → CTree PrintEff Int) → CTree PrintEff Int

from the specific case of integers to an arbitrary continuation input type a and result type r ,

(a→ CTree PrintEff r) → CTree PrintEff r

and then observing that this is in fact the codensity monad for CTree PrintEff . The codensity
monad [Voigtländer 2008] is similar to the familiar continuation monad, except that rather than

having a fixed result type r , it has a variable (polymorphic) result type. Based on the generalised

return type for eval, we can define a type of codensity choice trees CTreec e a as follows:

type CTreec e a = forall r . (a→ CTree e r) → CTree e r

Note that the return type r is universally quantified on the right-hand side of the declaration, in

contrast to the continuation monad where r is a parameter on the left-hand side. Codensity choice

trees form a monad, with the return and >>= operators defined as follows:

return :: a→ CTreec e a
return v = _c → c v

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:7

(>>=) :: CTreec e a→ (a→ CTreec e b) → CTreec e b
p >>= f = _c → p (_v → f v c)
In turn, we can also define CTreec versions of the non-deterministic choice primitives, effect

sequencing and printing, and the two versions of parallel composition:

(⊕c) :: CTreec e a→ CTreec e a→ CTreec e a
p ⊕c q = _c → p c ⊕ q c

Zeroc :: CTreec e a
Zeroc = _c → 𝑍𝑒𝑟𝑜

Effc :: e b→ (b→ CTreec e a) → CTreec e a
Effc o k = _c → Eff o (_v → k v c)
printc :: Int → CTreec PrintEff ()
printc n = Effc (PrintInt n) return
(∥c) :: CTreec e a→ CTreec e b→ CTreec e (a, b)
p ∥c q = _c → (p return ∥ q return) >>= c

(®qc) :: CTreec e a→ CTreec e b→ CTreec e b
p ®qc q = _c → p return ®q q c

Using these operations, it is now straightforward to redefine the continuation semantics from the

previous section using the notion of codensity choice trees:

eval :: Expr → CTreec PrintEff Int
eval (Val n) = return n
eval (Add x y) = do n← eval x ; m← eval y ; return (n +m)
eval (Print x) = do n← eval x ; printc n ; return n
eval (Fork x) = eval x ®qc return 0

This definition regains the simplicity of our original monadic definition of eval from Section 3.2,

but now correctly captures the intended semantics. Each CTreec represents a CTree, which can be

obtained simply by passing return for choice trees as the continuation:

ctree :: CTreec e a→ CTree e a
ctree p = p return

Using this translation function, the labelled transition system that defines the semantics for choice

trees CTree can be lifted to codensity choice trees CTreec, and satisfies the same rules as Figure 1

with the operations replaced by the corresponding codensity versions.

5 BISIMILARITY AND LAWS
In this section we introduce the notion of bisimilarity for (codensity) choice trees, together with a

number of laws for the operations on such trees that we will need for compiler calculation. We

begin by considering choice trees, then extend to codensity choice trees.

Because the semantics of choice trees CTree e a is defined using a labelled transition relation, the

notion of bisimilarity � can be defined in the standard way. In particular, � is the largest relation

on choice trees (and continuations) that satisfies the following two properties:

If 𝑝 � 𝑞 and 𝑝
𝑙

=⇒ 𝑝′, then there is some 𝑞′ with 𝑞
𝑙

=⇒ 𝑞′ and 𝑝′ � 𝑞′

If 𝑝 � 𝑞 and 𝑞
𝑙

=⇒ 𝑞′, then there is some 𝑝′ with 𝑝
𝑙

=⇒ 𝑝′ and 𝑝′ � 𝑞′

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:8 Patrick Bahr and Graham Hutton

return x >>= f � f x

p >>= return � p

(p >>= f) >>= g � p >>= _x → (f x >>= g)
(monad laws)

p ⊕ p � p (⊕-idem)

p ⊕ q � q ⊕ p (⊕-comm)

𝑍𝑒𝑟𝑜 ⊕ p � p (⊕-Zero)
(p ⊕ q) ⊕ r � p ⊕ (q ⊕ r) (⊕-assoc)

(p ⊕ q) >>= f � (p >>= f) ⊕ (q >>= f) (⊕-bind)
𝑍𝑒𝑟𝑜 >>= f � 𝑍𝑒𝑟𝑜 (𝑍𝑒𝑟𝑜-bind)

(return v) ®q p � 𝑝 (®q-return)
(fmap f p) ®q q � p ®q q (®q-fmap)

(p ®q q) ®q r � p ®q (q ®q r) (®q-assoc)
(p ®q q) ®q r � (q ®q p) ®q r (®q-comm)

Fig. 2. Laws for (codensity) choice trees.

Bisimilarity is an equivalence relation, i.e. reflexive, symmetric and transitive. Moreover, all opera-

tions on choice trees that we have defined satisfy congruence laws with respect to bisimilarity. For

example, congruence for the monadic bind operator is stated as follows:

𝑝 � 𝑞 f x � g x for all 𝑥

p >>= f � q >>= g

Other relevant laws for choice trees are given in Figure 2. In particular, choice trees form a monad,

and an idempotent, commutative monoid under ⊕ with 𝑍𝑒𝑟𝑜 as the unit. Because ®q only propagates
result values for the right argument, using return and fmap in the left argument has no effect. As

expected, ®q also satisfies associativity and commutativity laws. However, because result values

matter, commutativity only applies to the left argument of ®q, for which result values are discarded.

An important observation is that >>= does not distribute over ®q, due to the synchronous nature of

parallel composition for choice trees. In particular, with the expression (p ®q q) >>= f the computation

f can only start once both p and q have completed, whereas with p ®q (q >>= f) the computation f
can start as soon as q is complete and hence can run in parallel to p.

We now consider codensity choice trees. For our notion of bisimilarity on codensity choice trees

we have two requirements. Firstly, it should imply bisimilarity of the corresponding choice trees,

i.e. if codensity choice trees 𝑝 and 𝑞 are bisimilar, then so are the choice trees ctree p and ctree q.
And secondly, it should satisfy the same reasoning principles as choice trees, i.e. congruence laws

and the laws in Figure 2. To this end, we define bisimilarity for codensity choice trees as follows:

𝑝 � 𝑞 iff p c � q c for all 𝑐

That is, two codensity choice trees are bisimilar precisely when they are bisimilar as choice trees

for every continuation. Using this definition, it follows that if p � q for two codensity choice trees,

then their translations are bisimilar as choice trees, i.e. ctree p � ctree q.
In order to prove congruence laws and the laws in Figure 2, we restrict ourselves to codensity

choice trees p :: CTreec e a that satisfy the following two well-formedness properties:

if c x � c′ x for all 𝑥, then p c � p c′ for all c, c′ :: a→ CTree e b (CTreec-cont)

fmap f (p c) � p (_r → fmap f (c r)) for all c :: a→ CTree e b, f :: b→ b′ (CTreec-fmap)

The first property states that if we supply two pointwise bisimilar continuations to a codensity

choice tree, then we obtain two bisimilar choice trees. In turn, the second property states that fmap

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:9

distributes over the continuation of a codensity choice tree. All the operations on codensity choice

trees that we present in this article preserve both well-formedness properties. That is, using these

operators ensures that we can only construct well-formed codensity choice trees.

All laws in Figure 2 carry over to well-formed codensity choice trees, as do the congruence laws.

In addition, we obtain the following distributivity law for parallel composition:

(p ®qc q) >>= f � p ®qc (q >>= f) (®qc-bind)

As observed above, this law does not hold for p ®q q because the parallel computation is synchronous,

whereas p ®qc q is asynchronous in that it produces a result as soon as q has completed, rather than

also waiting for p. The ®qc-bind law captures this intuition formally. For example, this law can be

used to show that Add (Fork x) y has the intended semantics using codensity choice trees:

eval (Add (Fork x) y)
� { applying eval }
eval (Fork x) >>= (_n→ eval y >>= _m→ return (n +m))
� { applying eval }
(eval x ®qc return 0) >>= (_n→ eval y >>= _m→ return (n +m))
� { ®qc-bind law }

eval x ®qc (return 0 >>= _n→ eval y >>= _m→ return (n +m))
� { monad laws }

eval x ®qc eval y

That is, x is evaluated in parallel with y, and the result produced by y is returned.

The crucial semantic difference between ®q and ®qc discussed above also raises the question

of whether we could define a version of ®q on choice trees that does satisfy a distributivity law.

Unfortunately, this is not possible. In general, with a parallel computation p ®q q we expect that the

effects of p may interact with the effects of q. Indeed, we extend parallel composition in Section 7

to allow such interaction. However, if the ®q-bind law holds, then for an expression (p ®q q) >>= f we

should also expect that the effects of p may interact with the effects of q >>= f . Clearly, this cannot
be the case for an operator ®q that can only inspect p and q.

We conclude by noting that codensity choice trees are represented in a slightly different manner

in our Agda formalisation. In particular, rather than defining CTreec e a as the type forall r . (a→
CTree e r) → CTree e r subject to the well-formedness properties, it is defined as an inductive type

with the operations return, >>=, ⊕c, etc. as constructors, together with an interpretation function

sem :: CTreec e a → (forall r . (a → CTree e r) → CTree e r) that performs the codensity

construction as given in Section 4. In other words, the language of codensity choice trees is presented

as a shallow embedding in this article, but as a deep embedding in our Agda formalisation. Using this

approach allows us to prove that all our operations on codensity choice trees satisfy the required

well-formedness properties, which simplifies the formalisation.

6 COMPILER CALCULATION
We have now defined a datatype Expr that represents the syntax of a simple concurrent language,

an evaluation function eval that gives a semantics for the language in terms of codensity choice

trees, and a notion of bisimilarity for such trees. In this section, we show how to specify the desired

behaviour of a compiler for the simple language, and how such a specification can be used as the

basis for systematically calculating an implementation of the compiler.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:10 Patrick Bahr and Graham Hutton

6.1 Specification
Our goal is to define a compilation function comp :: Expr → Code that translates an expression

into code for an (as yet unspecified) target language. We assume the compiler targets a stack-

based machine, whose semantics is given by a function exec :: Code → Stack → Stack, where
type Stack = [Int] is the stack type for the machine. However, because our evaluation function

defines the semantics of expressions in terms of codensity choice trees,

eval :: Expr → CTreec PrintEff Int

we also generalise the type of the execution function function to operate in the same monadic

setting, i.e. within the codensity monad CTreec PrintEff :

exec :: Code→ Stack → CTreec PrintEff Stack

The definitions for the Code datatype and exec function are not given up front, but will rather fall

out naturally as part of the process of calculating the compiler itself.

Prior to specifying the desired behaviour of the compiler, we generalise the function comp to take
additional code to be executed after the compiled code. The addition of such a code continuation is

a key aspect of the methodology [Bahr and Hutton 2015], and significantly simplifies the resulting

calculations. Using this idea, our goal now is to establish the following compiler correctness property

for the generalised compilation function comp : Expr → Code→ Code:

do v ← eval e ; exec c (v : s) � exec (comp e c) s

That is, compiling an expression and then executing the resulting code together with the supplied

additional code should give the same result (up to bisimilarity) as executing the additional code

with the value of the expression on top of the stack.

6.2 Calculation
The proof of the compiler correctness property proceeds by structural induction on the expression e.
For each case, we start with the left-hand side of the property, and seek to transform it by equational

reasoning using the bisimilarity laws from Section 5 into the form exec c′ s for some code c′. We

then define comp e c = c′, which gives us a clause for the compiler in this case that is guaranteed

by construction to satisfy the correctness property. During such calculations we will also discover

new constructors for the Code datatype and new clauses for the exec function, driven by the desire

to transform the term that is being manipulated into the required form.

The cases for Val and Add proceed in the same manner as Bahr and Hutton [2022], except that

because our language doesn’t yet include non-termination, simple bisimilarity suffices rather than

the more refined notion of step-indexed bisimilarity. In the Val case, we first apply the definition of

the evaluation function, and then simplify the resulting term using the monad laws:

do v ← eval (Val n) ; exec c (v : s)
� { definition of eval }
do v ← return n ; exec c (v : s)
� { monad laws }

exec c (n : s)

Then, to complete the calculation, we need to arrive at a term of the form exec c′ s. That is, we
need to find some code c′ that solves the following bisimilarity equation:

exec c′ s � exec c (n : s)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:11

Note that we cannot simply strengthen bisimilarity to equality and use the resulting equation

exec c′ s = exec c (n : s) as a defining clause for the function exec, as the variables n and c would be
unbound in the body of the definition. The solution is to package these two variables up in the code

argument c′, which can freely be instantiated as it is existentially quantified. This can be achieved

by adding a new constructor to the Code datatype that takes n and c as arguments,

PUSH :: Int → Code→ Code

and defining a new clause for the function exec as follows:

exec (PUSH n c) s = exec c (n : s)
That is, the code PUSH n c is executed by pushing n onto the stack and then executing the code c,
which motivates the name for the new code constructor. This definition solves the above equation,

and allows us to complete the transformation into the required form:

exec c (n : s)
� { definition of exec }
exec (PUSH n c) s

In summary, via the above calculation we have discovered a new code constructor PUSH , a

corresponding new clause for the exec function, and a new clause for the compiler, namely

comp (Val n) c = PUSH n c. In turn, the Add case proceeds as follows:

do v ← eval (Add x y) ; exec c (v : s)
� { definition of eval }
do v ← do {m← eval x ; n← eval y ; return (m + n) } ; exec c (v : s)
� { monad laws }

do m← eval x ; n← eval y ; exec c ((m + n) : s)
� { define: exec (ADD c) (n :m : s) = exec c ((m + n) : s) }
do m← eval x ; n← eval y ; exec (ADD c) (n :m : s)
� { induction hypothesis for y }

do m← eval x ; exec (comp y (ADD c)) (m : s)
� { induction hypothesis for x }

exec (comp x (comp y (ADD c))) s
In the third step above, we introduce another code constructorADD and clause for exec. In particular,
in order to apply the induction hypothesis for y, we need to transform the term exec c ((m + n) : s)
into the form exec c′ (n : s′) for some code c′ and stack s′. We achieve this instantiating c′ = ADD c
and s′ = m : s, and defining a corresponding new clause for exec. Applying the two induction

hypotheses then completes the transformation into the required form, and hence we have discovered

another clause for the compiler, comp (Add x y) c = comp x (comp y (ADD c)).
The case for Print is straightforward, once again introducing a new clause for exec that brings

the term into the form that is required to apply the induction hypothesis:

do v ← eval (Print x) ; exec c (v : s)
� { definition of eval }
do v ← do {n← eval x ; print n ; return n} ; exec c (v : s)
� { monad laws }

do n← eval x ; print n ; exec c (n : s)
� { define: exec (PRINT c) (n : s) = do print n ; exec c (n : s) }
do n← eval x ; exec (PRINT c) (n : s)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:12 Patrick Bahr and Graham Hutton

� { induction hypothesis for x }

exec (comp x (PRINT c)) s

Finally, the case for Fork first exploits the laws for right-biased parallel composition to introduce a

minimal new clause for exec that allows the induction hypothesis to be applied, and then introduces

a further new clause to bring the resulting term into the required form:

do v ← eval (Fork x) ; exec c (v : s)
� { definition of eval }
do v ← (eval x ®qc return 0) ; exec c (v : s)
� { do notation }

(eval x ®qc return 0) >>= _v → exec c (v : s)
� { ®qc-bind law }

eval x ®qc (return 0 >>= _v → exec c (v : s))
� { monad laws }

eval x ®qc exec c (0 : s)
� { ®qc-fmap law }

fmap (_v → [v]) (eval x) ®qc exec c (0 : s)
� { definition of fmap }

(do v ← eval x ; return [v]) ®qc exec c (0 : s)
� { define: exec HALT s = return s }
(do v ← eval x ; exec HALT [v]) ®qc exec c (0 : s)
� { induction hypothesis for x }

(exec (comp x HALT) []) ®qc exec c (0 : s)
� { define: exec (FORK c′ c) s = exec c′ [] ®qc exec c (0 : s) }
exec (FORK (comp x HALT) c) s

Note how the ®qc-fmap law is used above to transform eval x into do v ← eval x ; return [v], which
places the result of evaluation into a singleton stack. This transformation is valid because ®qc discards
the result value produced by its left argument, and allows us to introduce a code constructor HALT
that simply returns the current stack, and then apply the induction hypothesis.

To complete the compiler calculation, we consider a top-level function compile :: Expr → Code
that compiles expressions into code, whose correctness is captured by the following property:

do v ← eval e ; return (v : s) � exec (compile e) s

Using the correctness of comp, it is straightforward to calculate the definition for compile:

do v ← eval e ; return (v : s)
� { definition of exec }
do v ← eval e ; exec HALT (v : s)
� { correctness of comp }

exec (comp e HALT) s

In summary, we have calculated the definitions in Figure 3.

6.3 Reflection
We conclude this section with some reflective remarks. First of all, note that the exec function is

not total because addition and printing require stacks of specific forms, e.g. ADD requires a stack

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:13

Target language

data Code = PUSH Int Code | ADD Code | PRINT Code | FORK Code Code | HALT

Compiler

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp (Print x) c = comp x (PRINT c)
comp (Fork x) c = FORK (comp x HALT) c

Virtual machine

exec :: Code→ Stack → CTreec PrintEff Stack
exec (PUSH n c) s = exec c (n : s)
exec (ADD c) (n :m : s) = exec c ((m + n) : s)
exec (PRINT c) (n : s) = do print n ; exec c (n : s)
exec (FORK c′ c) s = exec c′ [] ®qc exec c (0 : s)
exec HALT s = return s

Fig. 3. Compiler and virtual machine for the simple expression language.

with at least two elements. To make it total, we can add the catch-all case exec = Zeroc, but the
choice of semantics here is not important as compiler correctness does not depend on it.

Secondly, the exec function returns a collection of parallel computations in which recursive calls

are always tail calls, i.e. the final operation performed, which justifies referring to exec as a (parallel)
virtual machine. More precisely, using the transition semantics of codensity choice trees we can

observe that all transition sequences starting from exec c s are of the form

exec c s
↑𝑜1↓𝑖1
=⇒⇒ 𝑝1

↑𝑜2↓𝑖2
=⇒⇒ 𝑝2

↑𝑜3↓𝑖3
=⇒⇒ · · · 𝑠′

=⇒ Zeroc

where each 𝑝𝑖 is bisimilar to an expression of the form

exec c1 s1 ®qc exec c2 s2 ®qc · · · ®qc exec c𝑛+1 s𝑛+1

That is, the state of the virtual machine consists of 𝑛 + 1 parallel threads of execution, each with its

own code and stack. The result stack s′ from the whole execution is produced by the rightmost

thread, while the remaining n threads are only executed for their effects, and the order of these

threads does not matter according to the ®qc-comm law. Using the ®qc-return law, HALT kills the

current thread, and using the ®qc-assoc law, FORK spawns a new thread with an empty stack.

And finally, as shown in Section 3, we can capture the semantics of the source language using

choice trees alone if we use a continuation-passing style, and indeed we can calculate a compiler

based on this semantics. However, this approach has the drawback of having to prove ad-hoc

lemmas about each semantics, e.g. congruence and distributivity properties such as:

c x � c′ x for all x

eval e c � eval e c′ fmap f (eval e c) � eval e (_x → fmap f (c x))
These properties suggest that the continuation-passing style semantics eval e c behaves similarly

to eval e >>= c for a suitably defined monad. Codensity choice trees make this idea precise, and

provide an abstraction that satisfies these and other crucial structural properties by construction.
In contrast, the continuation-passing style semantics makes essentially no use of the monadic

structure of choice trees, because its only use of >>= can be replaced by continuation passing.

7 NON-TERMINATION AND EFFECT HANDLERS
For expository purposes, we have used a simplified version of (codensity) choice trees so far.

We now give the full definition, which will allow us to consider non-terminating computations

(Section 7.1). In addition, we introduce concurrent effect handlers on choice trees to allow us

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:14 Patrick Bahr and Graham Hutton

to consider concurrent computations that can interact, e.g. by sending and receiving messages

(Sections 7.2 and 7.3). The resulting semantic structure forms the basis for our compiler calculation

for a concurrent lambda calculus with channel-based communication in Section 8.

7.1 Non-termination
To support non-termination, we extend CTree with an additional constructor Step, whose argument

is a value of a coinductive type CTreeInf with a single constructor Delay:

data CTree e a where
· · ·
Step :: CTreeInf e a→ CTree e a

codata CTreeInf e a = Delay (CTree e a)

That is, CTree is still an inductive type, but is now defined mutually recursively with a coinductive

type CTreeInf , which we indicate by writing codata instead of data. In this manner, a value of type

CTree e a is a potentially infinite tree with nodes labelled by the constructors Now, Step and so

on, such that every infinite path from the root must contain infinitely many nodes labelled Step.
Subsequently, we write Later p as a shorthand for Step (Delay p) and don’t use Step or Delay
directly. For example, a computation that never terminates can be defined as follows:

never :: CTree e a
never = Later never

Despite being non-terminating, this definition is total because the recursive call is guarded by

Later , and systems such as Agda will accept it. The transition semantics for choice trees, and hence

the notion of bisimilarity, is extended to account for non-termination by adding the following

transition rule, which expresses that the effect of Later is a silent transition 𝜏 :

Later p
𝜏

=⇒ p

For example, never gives the infinite transition sequence never
𝜏

=⇒ never
𝜏

=⇒ never
𝜏

=⇒ · · · . In
essence, Later is a more restrictive variant of Eff that can be used to express non-terminating

behaviour. With this intuition in mind, we can extend monadic bind and parallel composition to

take account of non-termination by adding the following clauses:

Later p >>= f = Later (p >>= f)
Later p ◁ q = Later (p ∥ q)
p ▷ Later q = Later (p ∥ q)

To prove bisimilarity properties for choice trees defined co-recursively, such as never , we need
a (co)-induction principle that is powerful enough to account for this. To this end, we follow the

approach of Bahr and Hutton [2022] and use a step-indexed version of bisimilarity, denoted by �𝑖 ,
indexed by a natural number 𝑖 that counts the number of steps. While � is defined coinductively, �𝑖
is defined inductively as the smallest relation such that 𝑝 �0 𝑞 holds, and moreover 𝑝 �𝑖+1 𝑞 holds

if the following two conditions hold (where 𝑗 = 𝑖 if 𝑙 = 𝜏 , and 𝑗 = 𝑖 + 1 otherwise):

If 𝑝
𝑙

=⇒ 𝑝′ then there is some 𝑞
𝑙

=⇒ 𝑞′ with 𝑝′ �𝑗 𝑞′

If 𝑞
𝑙

=⇒ 𝑞′ then there is some 𝑝
𝑙

=⇒ 𝑝′ with 𝑝′ �𝑗 𝑞′

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:15

We can show (classically, using the law of excluded middle) that 𝑝 � 𝑞 iff 𝑝 �𝑖 𝑞 for all 𝑖 . In

particular, this means that we can prove bisimilarity 𝑝 � 𝑞 by proving 𝑝 �𝑖 𝑞 by induction on 𝑖 . To

do this, we make use the following congruence law for Later :

p �𝑗 q for all 𝑗 < 𝑖

Later p �𝑖 Later q

That is, whenever we ‘go under’ a Later we may use our induction hypothesis because we decrease

the step index i. For example, suppose we define a variant of never that invokes Later twice before
making a recursive call by never′ = Later (Later never′). Then we can prove that never′ and never
are bisimilar by proving that never′ �𝑖 never by induction on i, which proceeds as follows:

never′

�𝑖 { definition of never′ }
Later (Later never′)
�𝑖 { induction hypothesis, under two Laters }
Later (Later never)
�𝑖 { definition of never , applied twice }

never

The extended definition of choice trees carries over to the codensity construction. In particular,

we have a Laterc operation on codensity choice trees CTreec,

Laterc :: CTreec e a→ CTreec e a
Laterc p = _c → Later (p c)
as well a step-indexed bisimilarity relation, defined by:

𝑝 �𝑖 𝑞 iff p c �𝑖 q c for all 𝑐

All our previous laws for (codensity) choice trees, e.g. the congruence laws and those in Figure 2,

also hold for step-indexed bisimilarity. In addition, we have the following laws for Laterc:

p �𝑗 q for all 𝑗 < 𝑖

Laterc p �𝑖 Laterc q
(Laterc-cong)

Laterc p >>= f �𝑖 Laterc (p >>= f)
(Laterc-bind)

Similarly to choice trees, Laterc-cong provides us with a powerful induction principle for codensity

choice trees as we can prove 𝑝 � 𝑞 by proving 𝑝 �𝑖 𝑞 for all 𝑖 .

7.2 Concurrent Effect Handlers
While (codensity) choice trees have a parallel composition operator, there is no non-trivial in-

teraction between parallel computations. In particular, there is no way for such computations to

communicate with each other. To support this, we need to extend the definition of the ⊲⊳ operator

from Section 2.3, which describes how two parallel computations interact. With the current defini-

tion, only very simple interactions are possible, namely that if both computations finish with a

result value then their parallel composition finishes with the combined result value:

Now v ⊲⊳ Now w = Now (v,w)
To allow effects of the two computations to interact, we parameterise the parallel composition

operator with a type class that provides a concurrent effect handler:

class Concurrent e where
(⇄) :: e a→ e b→ CTree e (a, b)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:16 Patrick Bahr and Graham Hutton

The definition of ⊲⊳ is then generalised so that it uses this concurrent effect handler, which is

achieved by adding the following clause to its definition:

Eff e1 c1 ⊲⊳ Eff e2 c2 = (e1 ⇄ e2) >>= _(x, y) → c1 x ∥ c2 y
To ensure associativity of parallel composition ∥, as well as the right-biased version ®q, we require
that choice trees e1 ⇄ e2 can only have transitions of the form

e1 ⇄ e2
𝜏

=⇒ return v

which means that e1 ⇄ e2 is (bisimilar to) a sum of terms of the form Later (return (v,w)), i.e. two
concurrent effects e1 and e2 are handled by a silent transition 𝜏 that provides return values 𝑣 and𝑤

for the two effects. If the sum is empty, the two effects do not interact concurrently, whereas if

there is more than one summand, their interaction is non-deterministic. To ensure commutativity,

we also require that⇄ is commutative in the following way:

e1 ⇄ e2
𝜏

=⇒ return (v,w) implies e2 ⇄ e1
𝜏

=⇒ return (w, v)
The resulting generalised ∥ operator specialises to the previous version if⇄ always returns 𝑍𝑒𝑟𝑜 .

For example, the instance declaration for the printing effect is simply:

instance Concurrent PrintEff where
⇄ = 𝑍𝑒𝑟𝑜

For amore interesting example, let us consider an effect typeCommEff that supports communication

between computations in the form of sending and receiving integer values:

data CommEff a where
Send :: Int → CommEff ()
Receive :: CommEff Int

send :: Int → CTree CommEff ()
send n = Eff (Send n) return
receive :: CTree CommEff Int
receive = Eff Receive return

For the two operations to interact in the desired way, we define⇄ as follows:

instance Concurrent CommEff where
Send n ⇄ Receive = Later (return ((), n))
Receive ⇄ Send n = Later (return (n, ()))

⇄ = 𝑍𝑒𝑟𝑜

For example, we have the following transitions:

send 1 ®q receive 𝜏
=⇒ return () ®q return 1

1

=⇒ 𝑍𝑒𝑟𝑜

All previously presented laws for ®q and ®qc (see Figure 2) carry over to this extension with

concurrent effect handlers. Moreover, the rules characterising the transitions of ®q and ®qc (see
Section 2.3) carry over to this generalisation. However, to make the rules complete, i.e. any transition

starting from p ®q q can be derived using them, we additionally also prove the following rules:

𝑝
𝜏

=⇒ 𝑝′

p ®q q 𝜏
=⇒ p ®q q

𝑞
𝜏

=⇒ 𝑞′

p ®q q 𝜏
=⇒ p ®q q′

𝑝
↑𝑒
=⇒ c 𝑝′

↑𝑒′
=⇒ 𝑐′ e ⇄ e′

𝜏
=⇒ return (v, v′)

p ®q p′ 𝜏
=⇒ c v ®q c′ v′

These account for both the addition of the Later constructor and concurrent effect handlers.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:17

7.3 Effect Handlers
While the generalised parallel composition allows communication, it does not prevent communica-

tion effects to trigger independently. For example, we also have the transition

send 1 ®q receive
↑()↓2
=⇒⇒ send 1 ®q return 2

in which the value 2 is received from the outside context independently of the parallel computation

send 1. To restrict such communication to a local context, we follow Chappe et al. [2023] and use

an effect handling function interp, defined as follows:

interp :: (forall b . e b→ CTree f b) → CTree e a→ CTree f a
interp han (Now v) = Now v
interp han (Later p) = Later (interp han p)
interp han (p ⊕ q) = interp han p ⊕ interp han q
interp han 𝑍𝑒𝑟𝑜 = 𝑍𝑒𝑟𝑜

interp han (Eff e c) = han e >>= _i→ interp han (c i)
The argument han handles each effect from the effect type e by interpreting it as a choice tree with

a potentially different effect type f . We restrict effects to a local context by simply removing all

effects, which is achieved by interpreting them by the choice tree 𝑍𝑒𝑟𝑜 :

restrict :: CTree CommEff a→ CTree e a
restrict = interp (_ → 𝑍𝑒𝑟𝑜)
Note that the result type of restrict is polymorphic in the effect type e. In particular, we could choose

the empty effect type, which witnesses the fact that there are indeed no observable effects other

than 𝜏 transitions. Using restriction, we now only have a single transition from the choice tree

restrict (send 1 ®q receive), namely the 𝜏 transition to restrict (return () ®q return 1). That is, values
are now prevented from being sent to and received from the outside context.

We define the corresponding variant of interp for codensity choice trees as follows:

interpc :: (forall b . e b→ CTreec f b) → CTreec e a→ CTreec f a
interpc f p c = interp (_e→ ctree (f e)) (ctree p) >>= c

In this definition, the bind operator for choice trees is used to apply the continuation. Following

the extension of other choice tree operators to codensity choice trees, we may have expected the

following definition, in which the continuation is passed directly to p:

interp′c f p c = interp (_e→ ctree (f e)) (p c)
However, this definition suffers from two drawbacks. First of all, its type would be restricted to the

case where f = e, which means that it would not be applicable for effect handlers that change the

set of effects. For example, the type of the restrict function would no longer reflect the absence of

observable effects. And secondly, interp′c satisfies the following law:

interp′c h p >>= f �𝑖 interp′c h (p >>= f)
This law is similar to the ®qc-bind law and could be useful for calculation. However, it also reveals

that the scope of interp′c extends arbitrarily to the right of a bind operator, which would make it

unsuitable for defining a restriction function with a delimited scope. Instead of the above undesirable

law, both interp and interpc satisfy the following restricted version:

fmap f (interp h p) �𝑖 interp h (fmap f p) (interp-fmap)

In addition, both interp and interpc also satisfy congruence laws.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:18 Patrick Bahr and Graham Hutton

Finally, we note that effect handlers can also be generalised so that they can use an internal state,

by means of the following interpretation functions:

interpSt :: s→ (forall b . s→ e b→ CTree f (b, s)) → CTree e a→ CTree f a
interpSt s f (Now v) = Now v
interpSt s f (Later p) = Later (interpSt s f p)
interpSt s f (p ⊕ q) = interpSt s f p ⊕ interpSt s f q
interpSt s f 𝑍𝑒𝑟𝑜 = 𝑍𝑒𝑟𝑜

interpSt s f (Eff e c) = f s e >>= (_(x, s′) → interpSt s′ f (c x))
interpStc :: s→ (forall b . s→ e b→ CTreec f (b, s)) → CTreec e a→ CTreec f a
interpStc s f p c = interpSt s (_st e→ ctree (f st e)) (ctree p) >>= c

For example, instead of using restrict to prevent communication with the outside context, we could

simulate a context that stores sent values and returns them back when asked:

parrot :: Int → CTree CommEff a→ CTree e a
parrot s = interpSt s han where
han :: Int → CommEff b→ CTree e (b, Int)
han s (Send n) = Later (return ((), n))
han s Receive = Later (return (s, s))

For example, we have the following transitions:

parrot 0 (send 1 >> receive) 𝜏
=⇒ parrot 1 receive

𝜏
=⇒ return 1

8 CONCURRENT LAMBDA CALCULUS
To demonstrate that codensity choice trees and their associated reasoning principles scale to more

sophisticated concurrent languages, we show how to calculate a compiler for an untyped lambda

calculus extended with concurrency and channel-based communication.

8.1 Syntax
The syntax for our language is defined as follows, in which bound variables are represented using

de Bruijn indices, and channel names are represented as integers:

data Expr = Val Int | Add Expr Expr |
Var Int | Abs Expr | App Expr Expr |
Send Expr Expr | Receive Expr | Fork Expr

Informally, Var i is the variable with de Bruijn index i ⩾ 0, Abs x constructs an abstraction over

the expression x, App x y applies the abstraction that results from evaluation of x to the value of y,
Send c x sends the integer that results from evaluation of x on the channel c, and Receive c receives
an integer on the channel c. Finally, Fork x spawns a new concurrent process to evaluate x, creates
a new channel c that is passed to this process, and returns c as the result value.

In this lambda calculus, we can express complex concurrent programs that fork processes, create

communication channels, and pass integers on those channels. For example, using a standard

syntax that can readily be translated into the Expr type, the following program forks a new process

that increments an integer n received on the newly created channel c:

fork (_c . let n = receive c in send c (n + 1))

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:19

8.2 Semantics
We begin by defining an effect type ChanEff for channels that support sending and receiving

integers and creating new channels, where channels themselves are simply integers:

type Chan = Int

data ChanEff a where
SendInt :: Chan→ Int → ChanEff ()
ReceiveInt :: Chan→ ChanEff Int
NewChan :: ChanEff Chan

send :: Chan→ Int → CTreec ChanEff ()
send c n = Effc (SendInt c n) return
receive :: Chan→ CTreec ChanEff Int
receive c = Effc (ReceiveInt c) return
newChan :: CTreec ChanEff Chan
newChan = Effc NewChan return

To use the parallel composition operator, we also provide a concurrent effect handler ⇄ that

expresses the interaction of send and receive effects. In particular, SendInt c n causes any concurrent
effect ReceiveInt c on the same channel c to evaluate to the integer n:

instance Concurrent ChanEff where
SendInt c n ⇄ ReceiveInt c′ | c ≡ c′ = Later (return ((), n))
ReceiveInt c′ ⇄ SendInt c n | c ≡ c′ = Later (return (n, ()))

⇄ = 𝑍𝑒𝑟𝑜

Using the effect type for channels, our aim now is to define the semantics of the language as a

function that evaluates an expression to a value in a given environment:

eval : Expr → Env → CTreec ChanEff Value

Because the language now has first-class functions, it no longer suffices to use integers as the value

domain for the semantics, so we define a value type that also includes closures, which comprise an

unevaluated expression and an environment that captures its free variables:

data Value = Num Int | Clo Expr Env
In turn, an environment can be represented simply as a list of values,

type Env = [Value]
where the value of the variable with de Bruijn index i is given by indexing into the list at position i
using a lookup function that terminates execution if the variable is not found:

lookup :: Int → [a] → CTreec e a
lookup [] = Zeroc
lookup 0 (v : vs) = return v
lookup i (v : vs) = lookup (i − 1) vs
Using these ideas, the semantics for expressions can now be defined as follows:

eval :: Expr → Env → CTreec ChanEff Value
eval (Val n) e = return (Num n)
eval (Add x y) e = do Num n← eval x e ; Num m← eval y e ; return (Num (n +m))

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:20 Patrick Bahr and Graham Hutton

eval (Var n) e = lookup n e
eval (Abs x) e = return (Clo x e)
eval (App x y) e = do Clo x′ e′ ← eval x e ; v ← eval y e ; Laterc (eval x′ (v : e′))
eval (Send x y) e = do Num c ← eval x e ; Num n← eval y e ; send c n ; return (Num n)
eval (Receive x) e = do Num c ← eval x e ; n← receive c ; return (Num n)
eval (Fork x) e = do c ← newChan ; eval x (Num c : e) ®qc return (Num c)

There are a number of points to note about the above semantics. First of all, it uses a syntactic

notion of closures, as in our original work on compiler calculation [Bahr and Hutton 2015]. Secondly,

to make the definition well-founded, we need to guard the final recursive call in the App case with

a Laterc. All other recursive calls are on structurally smaller expressions. Thirdly, some cases make

use of non-exhaustive pattern matching. For example, the results of the recursive calls in the Add
case must be of the form Num n and Num m. Here we assume that if pattern matching fails, e.g. by

attempting to add closures, then the whole expression evaluates to Zeroc. In Haskell, this can be

achieved by implementing the fail method of the MonadFail type class for CTreec:

fail :: String → CTreec e a
fail = Zeroc

And finally, the Send, Receive and Fork cases are defined using the operations from the effect type

ChanEff . For example, Fork x creates a new channel using newChan, and then spawns a new

concurrent process to evaluate x, with the new channel being passed to this process by adding it to

the environment, and to the current process by returning it as the result.

We conclude this section by defining the top-level semantics of expressions. This semantics must

cover three aspects: i) providing the initial environment; ii) disallowing SendInt effects that have
not been handled by a concurrent ReceiveInt effect and vice versa; and iii) giving the semantics for

the NewChan effect. The first is achieved by simply providing the empty environment, while the

latter two are taken care of by a suitable stateful effect handler:

data NoEff a

evaluate :: Expr → CTreec NoEff Value
evaluate x = interpStc 0 hanChan (eval x [])
hanChan :: Chan→ ChanEff a→ CTreec NoEff (a,Chan)
hanChan c (SendInt) = Zeroc
hanChan c (ReceiveInt) = Zeroc
hanChan c NewChan = return (c, c + 1)

The effect handler hanChan handles the effect from ChanEff without using any uninterpreted

effects, which is indicated by the empty effect type NoEff that provides no operations. SendInt and
ReceiveInt effects are simply handled by Zeroc, whereas the NewChan effect is handled by using a

state of type Chan, which is initialised to 0 and incremented every time the effect is used.

8.3 Compiler Specification
Following the approach of Bahr and Hutton [2022], our goal to define a compiler comp :: Expr →
Code→ Code that produces code for a stack machine exec ::Code→ Conf → CTreec ChanEff Conf ,
where Conf is the type of configurations for the machine. Because the source language semantics

now requires an environment, the configuration type also includes an environment:

type Conf = (Stack, Env′)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:21

However, the machine may require a different form of environment to the source language, so we

use a new type Env′ for this purpose, defined as a list of machine values of type Value′:

type Env′ = [Value′]
To convert between source language and machine values, we assume a conversion function conv ::
Value→ Value′, which is lifted to environments by simply mapping over the list of values:

convE :: Env → Env′

convE = map conv

Similarly to comp, Code and exec, the definitions for Value′ and conv are not given in advance,

but will be derived during the compiler calculation. Finally, a stack is initially defined as a list of

machine values, with the element type being extended as required during the calculation:

type Stack = [Elem]
data Elem = VAL Value′

Using these definitions, compiler correctness for comp can be specified as follows:

do v ← eval x e

exec c (VAL (conv v) : s, convE e) � exec (comp x c) (s, convE e)

This property has the same form as for the simple language in Section 6, except that the machine

now operates on configurations comprising a stack and environment, and we need to take account

of the different value and environment types used by the source and target languages. In turn,

for the top-level semantics evaluate of expressions, our aim is to define a top-level compilation

function compile :: Expr → Code and a top-level execution function execute :: Code → Conf →
CTreec NoEff Conf that satisfy the following correctness property:

do v ← evaluate x

return ([VAL (conv v)], []) � execute (compile x) ([], [])

That is, compiling an expression and then executing the resulting code using an empty stack and

environment should result in a stack that contains the value of the expression.

8.4 Compiler Calculation
Using the fact that p � q iff p �𝑖 q for all step counts 𝑖 , to prove the correctness property for comp
it suffices to prove the following by induction on the step count i and expression x:

do v ← eval x e

exec c (VAL (conv v) : s, convE e) �𝑖 exec (comp x c) (s, convE e)

For each case of x, we start on the left-side of the property and seek to transform it into the form

exec c′ (s, convE e) for some code c′, which then gives a clause comp x c = c′ for the compiler

in this case. As previously, the calculation is driven by the desire to transform the term being

manipulated into the require form using the induction hypotheses.

The calculation proceeds in a similar manner to the pure lambda calculus [Bahr and Hutton 2022],

with the cases for the extra concurrency primitives Send, Receive and Fork being similar to the cases

for Print and Fork in Section 6. The supplementary material for the articles includes full details

of the calculations. One notable difference compared to previous calculations is that the source

language now has both externally observable effects and the possibility of getting stuck because of

an error, such as trying to add non-numeric values or looking up the value of an unbound variable.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:22 Patrick Bahr and Graham Hutton

Due to the presence of effects, it may be observable precisely when a computation gets stuck. To

illustrate the consequences, consider the calculation for the Add case, which proceeds as follows:

do v ← eval (Add x y) e
exec c (VAL (conv v) : s, convE e))

�𝑖 { definition of eval }
do v ← do {Num n← eval x e ; Num m← eval y e ; return (Num (n +m)) }

exec c (VAL (conv v) : s, convE e)
�𝑖 { monad laws }

do Num n← eval x e ; Num m← eval y e
exec c (VAL (conv (Num (n +m))) : s, convE e)

�𝑖 { define: conv (Num n) = Num′ n }

do Num n← eval x e ; Num m← eval y e
exec c (VAL (Num′ (n +m)) : s, convE e)

�𝑖

{
define: exec (ADD c) (VAL (Num′ m) : VAL (Num′ n) : s, e) =

exec c (VAL (Num′ (n +m)) : s, e)

}
do Num n← eval x e ; Num m← eval y e

exec (ADD c) (VAL (Num′ m) : VAL (Num′ n) : s, convE e)
�𝑖 { define: exec (ADD c) = Zeroc }
do Num n← eval x e ; v ← eval y e

exec (ADD c) (VAL (conv v) : VAL (Num′ n) : s, convE e)
�𝑖 { induction hypothesis for y }

do Num n← eval x e
exec (comp y (ADD c)) (VAL (Num′ n) : s, convE e)

�𝑖

{
define: exec (ISNUM c) (VAL (Num′ n) :s, e) = exec c (VAL (Num′ n) :s, e)

exec (ISNUM c) = Zeroc

}
do v ← eval x e

exec (ISNUM (comp y (ADD c))) (VAL (conv v) : s, convE e))
�𝑖 { induction hypothesis for x }

exec (comp x (ISNUM (comp y (ADD c)))) (s, convE e)

In the above calculation, in addition to the ADD instruction that adds together two numbers on top

of the stack, we introduce an ISNUM instruction that checks if the top of the stack is a numeric

value. The introduction of this latter instruction is driven by the need to manipulate the term so

that we can apply the induction hypothesis for x. Intuitively, including ISNUM after the compiled

code for x is required because the generated code must have the same semantics as the source

expression Add x y and hence fail as early as possible. Otherwise, the generated code would exhibit

the computational effects of the expression y even though the source expression Add x y would

not. Importantly, we did not have to make this observation, as the need for an instruction with the

semantics of ISNUM falls out naturally as part of the calculation.

In turn, we can calculate the top-level function compile from its correctness property. In this

case we don’t need step-counting or induction, as a simple equational reasoning suffices:

do v ← evaluate x ; return ([VAL (conv v)], [])
� { definition of evaluate }
do v ← interpStc 0 hanChan (eval x []) ; return ([VAL (conv v)], [])
� { interpStc-fmap law }

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:23

interpStc 0 hanChan (do v ← eval x [] ; return ([VAL (conv v)], []))
� { define: exec HALT (s, e) = return (s, e) }
interpStc 0 hanChan (do v ← eval x [] ; exec HALT ([VAL (conv v)], []))
� { compiler correctness for comp }

interpStc 0 hanChan (exec (comp x HALT) ([], []))
� { define: execute c (s, e) = interpStc 0 hanChan (exec c (s, e)) }
execute (comp x HALT) ([], [])

In summary, we have calculated the definitions in Figure 4.

8.5 Reflection
We conclude this section with some reflective remarks. First of all, note that the above calculation

is based on a strong notion of bisimilarity in which silent transitions 𝜏 introduced by Later must

be preserved. Strong bisimilarity supports the equational style of reasoning that underpins our

approach to compiler calculation for non-terminating languages [Bahr and Hutton 2022].

And secondly, the configuration of the virtual machine for our concurrent lambda calculus is

similar to that of the virtual machine calculated in Section 6, with the difference that the machine

now also has a global state 𝑐ℎ that denotes the next available channel, and each thread has an

environment in addition to a stack. An execution sequence of the machine has the form

execute c (s, e) 𝜏
=⇒ ch1 ⊗ p1

𝜏
=⇒ ch2 ⊗ p2

𝜏
=⇒ · · ·

where ch ⊗ p abbreviates interpStc ch hanChan p, and each 𝑝𝑖 is bisimilar to an expression:

exec c1 (s1, e1) ®qc exec c2 (s2, e2) ®qc · · · ®qc exec c𝑛+1 (s𝑛+1, e𝑛+1)
Note that because all effects are handled by interpStc, the only externally observable effects are

silent 𝜏 transitions. However, in a similar manner to Section 6, we could have included a Print
primitive in the lambda calculus, which the effect handler would have left uninterpreted and which

therefore would appear as PrintInt transitions in addition to the 𝜏 transitions.

9 RELATEDWORK
The codensity construction is a common trick in the functional programming literature, which

is typically used to improve efficiency; for example, see Hinze [2012] for an overview. Curiously,

the form of codensity choice tree without Laterc that was presented in Section 4 is very close to

the definition of an efficient parallel parser by Claessen [2004]. However, because it implements a

parser, Claessen’s definition only supports one effect, namely reading a symbol, and to improve

efficiency the Now and ⊕ constructors are fused together.

As noted in Section 4, the semantics of Haskell’s forkIO primitive [Jones et al. 1996] provided the

initial inspiration for our continuation-passing style semantics, which in turn motivated the use of

the codensity construction. In the remainder of this section, we review related work on compiler

verification, and compare the original notion of choice trees with our version.

9.1 Compiler Verification
Wand [1982a] pioneered a compiler verification technique that uses a suitably expressive lambda

calculus as a common language in which to define both the source and target language of the

compiler. This idea has its origins in Reynolds’ seminal work on definitional interpreters [Reynolds

1972], and has proved fruitful for deriving correct-by-construction compilers [Ager et al. 2003a,b;

Bahr and Hutton 2015, 2020; Gibbons 2021; Wand 1982a,b]. While this line of work is limited

to sequential programming languages, Wand [1995] later demonstrated how to prove compiler

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:24 Patrick Bahr and Graham Hutton

Target language

data Code =
PUSH Int Code | ADD Code |
| ISNUM Code | LOOKUP Int Code
| ABS Code Code | RET
| ISCLO Code | APP Code
| SEND Code | RECEIVE Code
| FORK Code Code | HALT

Compiler

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (ISNUM (comp y (ADD c)))
comp (Var i) c = LOOKUP i c
comp (Abs x) c = ABS (comp x RET) c
comp (App x y) c = comp x (ISCLO (comp y (APP c)))
comp (Send x y) c = comp x (ISNUM (comp y (SEND c)))
comp (Receive x) c = comp x (RECEIVE c)
comp (Fork x) c = FORK (comp x HALT) c

Virtual machine

type Conf = (Stack, Env′)
type Stack = [Elem]
type Env′ = [Value′]

data Elem = VAL Value′ | CLO Code Env′

data Value′ = Num′ Int | Clo′ Code Env′

execute :: Code→ Conf → CTreec NoEff Conf
execute c (s, e) = interpStc 0 hanChan (exec c (s, e))
exec :: Code→ Conf → CTreec ChanEff Conf
exec (PUSH n c) (s, e) = exec c (VAL (Num′ n) : s, e)
exec (ADD c) (VAL (Num′ m) : VAL (Num′ n) : s, e) = exec c (VAL (Num′ (n +m)) : s, e)
exec (ISNUM c) (VAL (Num′ n) : s, e) = exec c (VAL (Num′ n) : s, e)
exec (LOOKUP n c) (s, e) = do v ← lookup n e ; exec c (VAL v : s, e)
exec (ABS c′ c) (s, e) = exec c (VAL (Clo′ c′ e) : s, e)
exec RET (VAL u : CLO c e′ : s,) = exec c (VAL u : s, e′)
exec (ISCLO c) (VAL (Clo′ c′ e′) : s, e) = exec c (VAL (Clo′ c′ e′) : s, e)
exec (APP c) (VAL v : VAL (Clo′ c′ e′) : s, e) = Laterc (exec c′ (CLO c e : s, v : e′))
exec (SEND c) (VAL (Num′ n) : VAL (Num′ ch) : s, e) = do send ch n ; exec c (VAL (Num′ n) : s, e)
exec (RECEIVE c) (VAL (Num′ ch) : s, e) = do n← receive ch ; exec c (VAL (Num′ n) : s, e)
exec (FORK c′ c) (s, e) = do ch← newChan

exec c′ ([],Num′ ch : e) ®qc
exec c (VAL (Num′ ch) : s, e)

exec HALT (s, e) = return (s, e)
exec = Zeroc

Fig. 4. Compiler and virtual machine for the concurrent lambda calculus.

correctness for concurrent languages with the help of a higher-order process calculus called HOCC,

which extends the lambda calculus with primitives for spawning parallel processes, as well as

sending and receiving messages. However, we are not aware of any work that derives correct-by-

construction compilers for concurrent languages using this technique or others.

Considerable progress has been made in subsequent work on compiler verification, using proof

assistants to verify compilers for realistic languages, culminating in the landmark CompCert C

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:25

compiler [Leroy 2006, 2009]. This work inspired many further projects on compiler verification [Pat-

terson and Ahmed 2019], including Chlipala’s [2010] verified compiler, CakeML [Kumar et al. 2014]

and DeepSpec [2023]. CompCert and its correctness proof have since been extended to support

concurrency [Ševčík et al. 2013]. Rather than an intermediate language like HOCC or choice trees,

Ševčík et al. specify the semantics of source and target languages directly using a small-step seman-

tics. A key challenge for the verification of realistic compilers for concurrent languages is devising

a suitable memory model [Kang et al. 2017].

9.2 Choice Trees
Chappe et al. [2023] introduced choice trees as an extension of interaction trees [Xia et al. 2019]

with a distinguished effect for non-determinism, in order to obtain important equational reasoning

principles such the idempotent, commutative monoid laws for non-deterministic choice. In turn,

interaction trees extend the freer monad construction of Kiselyov and Ishii [2015] with an explicit

non-termination effect, in the style of Capretta’s [2005] delay monad. Again, the purpose of treating

non-termination differently from other effects is to obtain reasoning principles for non-termination,

such as coinduction or step-indexed reasoning. Rivas et al. [2018] give a systematic account of

extending computational effects with non-determinism, and in particular show how to construct a

free non-determinism monad as a free near-semiring. Because the freer monad construction is the

composition of the left Kan extension followed by the free monad construction [Kiselyov and Ishii

2015], we can also think of choice trees as the free near-semiring applied to the left Kan extension

of an effect signature extended with non-termination in the style of Capretta [2005].

Choice trees [Chappe et al. 2023] offer an alternative language to serve as the common semantic

domain for reasoning, and Chappe et al. have demonstrated how this language can be used to model

concurrent languages. Unlike Wand’s higher-order process calculus HOCC, choice trees don’t

explicitly feature parallelism or higher-order constructs, but these features can be encoded [Chappe

et al. 2023; Danielsson 2012; Xia et al. 2019]. Indeed, the concurrent lambda calculus from Section 8

is very similar to HOCC and the latter can be given a semantics in terms of (codensity) choice trees.

The only notable differences are that HOCC also allows sending and receiving closed lambda terms,

and that communication is via thread identifiers rather than channel identifiers.

The idea to use the effect handler operation interpSt to model the restriction of effects to a

local context, and the parallelism operator ∥ for choice trees, are both due to [Chappe et al. 2023].

Our addition of concurrent effect handlers is a natural generalisation. However, our syntax and

semantics for choice trees is different from Chappe et al.’s in crucial ways that enable the equational

reasoning that underlies our methodology. We discuss these differences in turn below.

Syntax. First of all, there are two superficial syntactic differences: instead of a binary choice

operator ⊕ with a unit 𝑍𝑒𝑟𝑜 , Chappe et al. [2023] use a choice operator brS of arbitrary finite arity,

and instead of Later , they have an operator brD that is the composition of brS and Later . However,
brS and brD are interdefinable with ⊕, 𝑍𝑒𝑟𝑜 and Later . Adjusting for these differences and using

our notation, Chappe et al.’s definition of choice trees is equivalent to the following:

codata CTree′ e a where
Now :: a→ CTree′ e a
Later :: CTree′ e a→ CTree′ e a
(⊕) :: CTree′ e a→ CTree′ e a→ CTree′ e a
𝑍𝑒𝑟𝑜 :: CTree′ e a
Eff :: e b→ (b→ CTree′ e a) → CTree′ e a

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

213:26 Patrick Bahr and Graham Hutton

This definition looks almost identical to ours, with one key difference: instead of an inductive

definition with a nested coinductive definition for Later , the entire type is defined coinductively. As
a result, a CTree′ might be infinite even though it contains no Later , which is different from CTree,
where all infinite behaviour must be due to Later . This means that while on the surface CTree′ only
permits finite non-determinism, it can in fact encode infinite non-deterministic choice:

infChoice :: (Int → CTree′ e a) → CTree′ e a
infChoice ps = ps 0 ⊕ infChoice (_n→ ps (n + 1))
This definition doesn’t work for CTree because ⊕ is an inductive constructor for CTree and hence

infChoice would not be well-founded. Having infinite non-deterministic choice for CTree′ makes

the notion of step-indexed bisimilarity �𝑖 that underpins our methodology unsound, in the sense

that p �𝑖 q for all i no longer implies p � q. For example, consider the choice trees p, q :: CTree′ e a
defined by p = Later p and q = infChoice qs, where qs 0 = 𝑍𝑒𝑟𝑜 and qs n = Later (qs (n − 1)).
Then we have p ⊕ q �𝑖 q for all 𝑖 , but not p ⊕ q � q. Failure of the latter can be seen by the fact

that p ⊕ q has non-terminating behaviour whereas q does not, while the former can be proved by

first showing that p �𝑖 qs i by induction on 𝑖 and then using this result to show p ⊕ q �𝑖 q.

Semantics. As we have observed in Section 2, every effectful transition is always immediately

followed by an input transition that consumes the resulting value:

Eff o c
↑𝑜
=⇒ 𝑐

↓𝑖
=⇒ c i

In contrast, Chappe et al. [2023] combine the two transitions into one:

Eff o c
↑𝑜 ↓𝑖
=⇒ c i

This has the benefit of avoiding the need for two kinds of states in the transition semantics, namely

choice trees and continuations. However, the resulting notion of bisimilarity is too coarse, which

in turn causes the congruence property for interp to fail. For example, suppose we have an effect

that flips a coin, and returns the result as a value of type Bool:

data CoinEff b where
Flip :: CoinEff Bool

Then with the semantics of Chappe et al. the following two choice trees are bisimilar

ignore = Eff Flip (_b→ return True) ⊕ Eff Flip (_b→ return False)
negate = Eff Flip (_b→ return b) ⊕ Eff Flip (_b→ return (¬ b))
Both examples start with a non-deterministic choice, and each choice component starts with a

coin flip. However, the two components of ignore both ignore the result of the coin flip and return

the fixed results True and False, respectively. On the other hand, the two components of negate
return the result of the coin flip unchanged and negated, respectively. The two examples have

different observable behaviours and hence should not be considered bisimilar, and indeed they are

not bisimilar with the semantics for choice trees that keeps ↑ 𝑜 and ↓ 𝑖 transitions separate.
However, with the transition semantics in the combined style of Chappe et al. [2023], the two

examples are bisimilar because they have the same four possible transitions:

ignore
↑Flip ↓b
=⇒ return b′ and negate

↑Flip ↓b
=⇒ return b′ for all b, b′ :: Bool

As a result of this coarser notion of bisimilarity, the effect handler operations interp and interpSt
do not satisfy the congruence property, which does hold for our notion of bisimilarity. Instead,

Chappe et al. [2023] prove congruence for interp and interpSt only for effect handlers han with

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

Calculating Compilers for Concurrency 213:27

han e � return v or han e � Eff f return, which excludes the effect handler we used in Section 8.

Indeed, if we define han Flip = Later (Eff Flip return), then congruence fails using Chappe et al.’s

semantics, because interp han ignore ̸� interp han negate even though ignore � negate.

10 CONCLUSION AND FURTHERWORK
In recent years, interaction trees and choice trees have proved to be a flexible, expressive and

modular approach to mechanising programming language meta-theory [Chappe et al. 2023; Hur

et al. 2020; Xia et al. 2019; Yoon et al. 2022]. In this article, we showed how the notion of choice

trees can also be adapted to admit an equational reasoning style that supports the derivation of

correct-by-construction compilers for concurrent languages. In particular, in combination with

subtle changes in the syntax and semantics of choice trees, the use of a codensity construction

allows the semantics of concurrent languages to be concisely captured in a monadic style, and

supports a high-level, algebraic approach to transforming the resulting semantics into compilers.

This article builds upon our recent work [Bahr and Hutton 2022] on compiler calculation for

non-terminating languages in a number of aspects. First of all, it shows how the standard notion of

choice trees can be adapted to support compiler calculation. Secondly, it shows how the resulting

form of choice trees can be used to extend our methodology to handle concurrency and general

effects. And finally, it demonstrates the practical application of the extended methodology by

calculating a compiler for a concurrent lambda calculus with channel-based communication.

In terms of further work, the use of (codensity) choice trees with explicit effect types opens up the

opportunity for deriving multi-stage compilers, where each stage compiles away some effects and

leaves others untouched. The concurrent lambda calculus compiler derived in Section 8 provides

an example of this, where the print effect remains uninterpreted in the type CTreec PrintEff of the

codensity choice tree that is used for both the Expr and Code languages. Thus one could see this

compiler as the first stage of a multi-stage compiler. The semantics of Code could be refined by an

effect handler that handles the print effect so that a second compiler calculation could produce the

second stage compiler that translates Code to a lower-level language.

Finally, we note that the use of explicit step-indexing in our methodology could be replaced by

the use of guarded type theory [Bizjak et al. 2016], e.g. using Guarded Cubical Agda [Kristensen

et al. 2022; Veltri and Vezzosi 2023], which simplifies the formalisation and also has the potential to

enable some extensions to the results, e.g. to support higher-order effects.

ACKNOWLEDGEMENTS
We would like to thank the reviewers for many useful comments and suggestions.

REFERENCES
Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. 2003a. A Functional Correspondence Between

Evaluators and Abstract Machines. In Proceedings of the International Conference on Principles and Practice of Declarative
Programming.

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. 2003b. From Interpreter to Compiler and Virtual Machine:
A Functional Derivation. Technical Report RS-03-14. BRICS, Department of Computer Science, University of Aarhus.

Patrick Bahr and Graham Hutton. 2015. Calculating Correct Compilers. Journal of Functional Programming 25 (2015).

Patrick Bahr and Graham Hutton. 2020. Calculating Correct Compilers II: Return of the Register Machines. Journal of
Functional Programming 30 (2020).

Patrick Bahr and Graham Hutton. 2022. Monadic Compiler Calculation. Proceedings of the ACM on Programming Languages
6, ICFP (2022).

Patrick Bahr and Graham Hutton. 2023. Supplementary Material for “Calculating Compilers for Concurrency”. https:

//doi.org/10.5281/zenodo.8124116

Aleš Bizjak, Hans Grathwohl, Ranald Clouston, Rasmus Møgelberg, and Lars Birkedal. 2016. Guarded Dependent Type

Theory with Coinductive Types. In Foundations of Software Science and Computation Structures.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

https://doi.org/10.5281/zenodo.8124116
https://doi.org/10.5281/zenodo.8124116

213:28 Patrick Bahr and Graham Hutton

Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical Methods in Computer Science 1, 2 (2005).
Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. 2023. Choice Trees: Representing

Nondeterministic, Recursive, and Impure Programs in Coq. Proceedings of the ACM on Programming Languages 4, POPL
(2023).

Adam Chlipala. 2010. A Verified Compiler for an Impure Functional Language. In Proceedings of the Symposium on Principles
of Programming Languages.

Koen Claessen. 2004. Functional Pearl: Parallel Parsing Processes. Journal of Functional Programming 14, 6 (2004).

Nils Anders Danielsson. 2012. Operational Semantics Using the Partiality Monad. In Proceedings of the International
Conference on Functional Programming.

DeepSpec 2023. The Science of Deep Specification. (2023). https://deepspec.org/.

Jeremy Gibbons. 2021. Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity. The Art, Science,
and Engineering of Programming 6, 2 (2021).

Ralf Hinze. 2012. Kan Extensions for Program Optimisation Or: Art and Dan Explain an Old Trick. In Proceedings of the
International Conference on Mathematics of Program Construction.

Chung-kil Hur, Paul He, Yannick Zakowski, and Steve Zdancewic. 2020. An Equational Theory for Weak Bisimulation via

Generalized Parameterized Coinduction. In Proceedings of the International Conference on Certified Programs and Proofs.
Simon Peyton Jones, Andrew Gorden, and Sigbjorn Finne. 1996. Concurrent Haskell. In Proceedings of the Symposium on

Principles of Programming Languages.
Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

Memory Concurrency. In Proceedings of the Symposium on Principles of Programming Languages.
Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of the 2015 ACM SIGPLAN

Symposium on Haskell.
Magnus Kristensen, Rasmus Mogelberg, and Andrea Vezzosi. 2022. Greatest HITs: Higher Inductive Types in Coinductive

Definitions via Induction Under Clocks. In Proceedings of the Symposium on Logic in Computer Science.
Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation of ML.

In Proceedings of the Symposium on Principles of Programming Languages.
Xavier Leroy. 2006. Formal Certification of a Compiler Back-End or: Programming a Compiler with a Proof Assistant. In

Proceedings of the Symposium on Principles of Programming Languages.
Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (2009).

Daniel Patterson and Amal Ahmed. 2019. The Next 700 Compiler Correctness Theorems. Proceedings of the ACM on
Programming Languages 3, ICFP (2019).

John C Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM
Annual Conference.

Exequiel Rivas, Mauro Jaskelioff, and Tom Schrijvers. 2018. A Unified View of Monadic and Applicative Non-Determinism.

Science of Computer Programming 152 (Jan. 2018).

Niccolò Veltri and Andrea Vezzosi. 2023. Formalizing CCS and 𝜋 -calculus in Guarded Cubical Agda. Journal of Logical and
Algebraic Methods in Programming 131 (2023).

Janis Voigtländer. 2008. Asymptotic Improvement of Computations over Free Monads. In Proceedings of the International
Conference on Mathematics of Program Construction.

Mitchell Wand. 1982a. Deriving Target Code as a Representation of Continuation Semantics. Transactions on Programming
Languages and Systems 4, 3 (1982).

Mitchell Wand. 1982b. Semantics-Directed Machine Architecture. In Proceedings of the Symposium on Principles of Program-
ming Languages.

Mitchell Wand. 1995. Compiler Correctness for Parallel Languages. In Proceedings of International Conference on Functional
Programming Languages and Computer Architecture.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.

2019. Interaction Trees: Representing Recursive and Impure Programs in Coq. Proceedings of the ACM on Programming
Languages 4, POPL (2019).

Irene Yoon, Yannick Zakowski, and Steve Zdancewic. 2022. Formal Reasoning About Layered Monadic Interpreters.

Proceedings of the ACM on Programming Languages 6, ICFP (2022).

Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A

Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013).

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 213. Publication date: August 2023.

https://deepspec.org/

	Abstract
	1 Introduction
	2 Choice Trees
	2.1 Syntax
	2.2 Semantics
	2.3 Parallelism

	3 Example Language
	3.1 Syntax
	3.2 Semantics

	4 Codensity Choice Trees
	5 Bisimilarity and laws
	6 Compiler calculation
	6.1 Specification
	6.2 Calculation
	6.3 Reflection

	7 Non-termination and effect handlers
	7.1 Non-termination
	7.2 Concurrent Effect Handlers
	7.3 Effect Handlers

	8 Concurrent Lambda Calculus
	8.1 Syntax
	8.2 Semantics
	8.3 Compiler Specification
	8.4 Compiler Calculation
	8.5 Reflection

	9 Related work
	9.1 Compiler Verification
	9.2 Choice Trees

	10 Conclusion and further work
	References

