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Abstract

The infinitary lambda calculi pioneered by Kennaway et al. extend
the basic lambda calculus by metric completion to infinite terms and re-
ductions. Depending on the chosen metric, the resulting infinitary calculi
exhibit different notions of strictness. To obtain infinitary normalisation
and infinitary confluence properties for these calculi, Kennaway et al.
extend β-reduction with infinitely many ‘⊥-rules’, which contract mean-
ingless terms directly to ⊥. Three of the resulting Böhm reduction calculi
have unique infinitary normal forms corresponding to Böhm-like trees.

In this paper we develop a corresponding theory of infinitary lambda
calculi based on ideal completion instead of metric completion. We show
that each of our calculi conservatively extends the corresponding metric-
based calculus. Three of our calculi are infinitarily normalising and conflu-
ent; their unique infinitary normal forms are exactly the Böhm-like trees
of the corresponding metric-based calculi. Our calculi dispense with the
infinitely many ⊥-rules of the metric-based calculi. The fully non-strict
calculus (called 111) consists of only β-reduction, while the other two cal-
culi (called 001 and 101) require two additional rules that precisely state
their strictness properties: λx.⊥ → ⊥ (for 001) and ⊥M → ⊥ (for 001
and 101).

1 Introduction

In their seminal work on infinitary lambda calculus, Kennaway et al. [11] study
different infinitary variants of the lambda calculus, which are obtained by ex-
tending the ordinary lambda calculus by means of metric completion. Different
variants of the calculus are obtained by choosing a different metric. The ‘stan-
dard’ metric on terms measures the distance between two terms depending on
how deep one has to go into the term structure to distinguish two terms. For
example the term x y is closer to the term x z than to the term x, because in
the former case both terms are applications whereas in the latter case one term
is an application and the other is a variable.

The different metric spaces arise by changing the way in which we measure
depth. Kennaway et al. [11] indicate this using a binary triple abc with a, b, c ∈
{0, 1}, where a = 0 indicates that we do not count lambda abstractions when
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calculating the depth, and b = 0 or c = 0 indicates that we do not count the
left or the right side of applications, respectively. More intuitively these three
parameters can be interpreted as indicating strictness. For example, a = 0
indicates that lambda abstraction is strict, i.e. if M diverges, then so does
λx.M .

Since the set of infinite terms is constructed from the set of finite terms by
means of metric completion, each calculus has a different universe of terms, as
well as a different mode of convergence, which is based on the topology induced
by the metric. For instance, from the lambda term N = (λx.x x y)(λx.x x y),
we can derive the infinite reduction N → N y → N y y → . . . . In the fully
non-strict calculus, where abc = 111, this reduction converges to the infinite
term M = . . . y y y (i.e. M satisfies M = M y). By contrast, in the calculus 101,
which is strict on the left-hand side of every application, this reduction does not
converge. In fact, M is not even a valid term in the 101 calculus.

In order to deal with divergence as exemplified for the 101 calculus above,
Kennaway et al. [11] extend standard β-reduction to Böhm reduction by adding
rules of the form M → ⊥, for each term M that causes divergence such as
the term N in the 101 calculus. The resulting 001, 101, and 111 calculi based
on Böhm reduction have unique normal forms, which correspond to the well-
known Böhm Trees [18, 5], Levy-Longo Trees [17, 16] and Berarducci Trees [6],
respectively.

In this paper, we introduce infinitary lambda calculi that are based on ideal
completion instead of metric completion with the goal of directly dealing with
diverging terms without the need for additional reduction rules that contract
diverging terms immediately to ⊥. To this end, we devise for each metric of the
calculi of Kennaway et al. [11] a corresponding partial order with the following
property: Ideal completion of the set of finite lambda terms yields the same set
of infinite lambda terms as the corresponding metric completion (Section 3). We
also find a strong correspondence between the modes of convergence induced by
these structures: Each ideal completion yields a complete semilattice structure,
which means that the limit inferior is always defined. We show that this limit
inferior is a conservative extension of the limit in the corresponding metric
completion in the sense that both modes of convergence coincide on total lambda
terms, i.e. terms without ⊥ (Section 3).

Based on these partial order structures we define infinitary lambda calculi
by a straightforward instantiation of transfinite abstract reduction systems [2].
We find that the ideal completion calculi form a conservative extension of the
metric completion calculi of Kennaway et al. [11] (Section 4). Moreover, in
analogy to Blom [8] and Bahr [3], we find that the differences between the ideal
completion approach and the metric completion approach are compensated for
by adding ⊥-rules to the metric calculi in the style of Kennaway et al. [13] (Sec-
tion 5). Finally, we also show infinitary normalisation for our ideal completion
calculi and infinitary confluence for the 001, 101, and 111 calculi (Section 5).
However, in order to obtain infinitary confluence for 001 and 101, we need to
extend β-reduction with two additional rules that precisely capture the strict-
ness properties of these calculi: λx.⊥ → ⊥ (for 001) and ⊥M → ⊥ (for 001 and
101). In Section 6, we give a brief overview of related work.

We have abridged and in some cases omitted proofs in the main body of the
paper. The corresponding full proofs are collected in Appendix A.
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2 The Metric Completion

In this section, we introduce infinite lambda terms as the result of metric com-
pletion of the set of finite lambda terms. Before we get started, we introduce
some basic notions about transfinite sequences and lambda terms. We presume
basic familiarity with metric spaces and ordinal numbers.

A sequence over a set A of length α is a mapping from an ordinal α into
A and is written as (aι)ι<α, which indicates the mapping ι 7→ aι; the notation
|(aι)ι<α| denotes the length α of (aι)ι<α. If α is a limit ordinal, then (aι)ι<α is
called open; otherwise it is called closed. If (aι)ι<α is finite, it is also written as
〈a0, . . . , aα−1〉; in particular, 〈〉 denotes the empty sequence. We write S · T for
the concatenation of two sequences S and T ; S is called a (proper) prefix of T ,
denoted S ≤ T (resp. S < T ) if there is a (non-empty) sequence S′ such that
S · S′ = T . The unique prefix of a sequence S of length β ≤ |S| is denoted by
S|β .

We consider lambda terms with an additional symbol ⊥; the resulting set of
lambda terms Λ⊥ is inductively defined by the following grammar:

M,N ::= ⊥ | x | λx.M |MN

where x is drawn from a countably infinite set V of variable symbols. The set of
total lambda terms Λ is the subset of lambda terms in Λ⊥ that do not contain
⊥. Occurrences of a variable x in a subterm λx.M are called bound ; other
occurrences are called free. We use the notation M [x → y] to replace all free
occurrences of the variable x in M with the variable y. We use finite sequences
over {0, 1, 2}, called positions, to point to subterms of a lambda term; we write P
for the set of all positions. For each M ∈ Λ⊥, P(M) denotes the set of positions
of M (excluding ‘⊥’s) recursively defined as follows: P(⊥) = ∅, P(x) = {〈〉},
P(M1M2) = {〈〉} ∪ {〈i〉 · p | i ∈ {1, 2} , p ∈ P(Mi)}, and P(λx.M) = {〈〉} ∪
{〈0〉 · p | p ∈ P(M)}.

A conflict [11] between two lambda terms M,N is a position p ∈ P(M) ∪
P(N) such that: (a) if p = 〈〉, then M and N are not identical variables, not
both ⊥, not both applications, and not both abstractions; (b) if p = 〈i〉 · q and
i ∈ {1, 2}, then M = M1M2, N = N1N2, and q is a conflict of Mi and Ni; (c) if
p = 〈0〉 · q, then M = λx.M ′, N = λy.N ′, and q is a conflict of M ′[x→ z] and
N ′[y → z], where z is a fresh variable occurring neither in M nor N . The terms
M and N are said to be α-equivalent if they have no conflicts. By convention
we identify α-equivalent terms (i.e. Λ⊥ and Λ are assumed to be quotients by
α-equivalence).

Definition 2.1. Given a triple a = a0a1a2 ∈ {0, 1}3, called strictness signature,
a position is called a-strict if it is of the form q · 〈i〉 with ai = 0; otherwise it
is called a-non-strict. If a is clear from the context, we only say strict resp.
non-strict.

That is, a strictness signature indicates strictness by 0 and non-strictness by
1. For example, if a = 011, lambda abstraction is strict, and application is non-
strict both from the left and the right. We shall see what this means shortly:
Following Kennaway et al. [11], we derive, from a strictness signature a, a depth

measure |·|a, which counts the number of non-strict, non-empty prefixes of a
position. From this depth measure we then derive a corresponding metric da

on lambda terms.
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Definition 2.2. Given a strictness signature a, the a-depth of a position p,
denoted |p|a, is recursively defined as |〈〉|a = 0 and |q · 〈i〉|a = |q|a + ai. The
a-distance da(M,N) between two terms M,N ∈ Λ⊥ is 0 if M and N are α-

equivalent and otherwise 2−d, where d is the least number satisfying d = |p|a
for some conflict p of M and N .

Kennaway et al. [11] showed that the pair (Λ⊥,d
a) forms an ultrametric

space for any a. Intuitively, the consequence of the definition of these metric
spaces is that sequences of terms, such as the sequence N,N y,N y y, . . . , only
converge if conflicts between consecutive terms are guarded by an increasing
number of non-strict positions. In the example, conflicts between consecutive
terms are guarded by an increasing stack of applications to y. If a1 = 1, these
applications correspond to non-strict positions, and thus the sequence converges.
However, if a1 = 0, the sequence does not converge.

We turn now to the metric completion. To facilitate later definitions and to
illustrate the resulting structures, we use a partial function representation in the
form of lambda trees taken from Blom [8], which will serve as mediator between
metric completion and ideal completion.1 A lambda tree is a (possibly infinite)
labelled tree where a label λ indicates abstraction and @ indicates application;
labels in V indicate free variables and a label p ∈ P indicates a variable that is
bound by an abstraction at position p. There is no label corresponding to ⊥,
which instead is represented as a ‘hole’ in the tree. We write D(f) to denote
the domain of a partial function f , and f(p) ' g(q) to indicate that the partial
functions f and g are either both undefined or have the same value at p and q,
respectively.

Definition 2.3. A lambda tree is a partial function t : P ⇀ L with L = {λ,@}]
P ] V so that

(a) p · 〈0〉 ∈ D(t) =⇒ t(p) = λ,
(b) p · 〈1〉 ∈ D(t) or p · 〈2〉 ∈ D(t) =⇒ t(p) = @, and
(c) t(p) = q, where q ∈ P =⇒ q ≤ p and t(q) = λ.

As one would expect, the domain D(t) of a lambda tree t is prefix closed.
The set of all lambda trees is denoted T ∞⊥ . The set of ⊥-positions in t,

denoted D⊥(t), is the smallest set that satisfies the following: (a) 〈〉 6∈ D(t)
implies 〈〉 ∈ D⊥(t); (b) t(p) = λ, p · 〈0〉 6∈ D(t) implies p · 〈0〉 ∈ D⊥(t); and
(c) t(p) = @, p · 〈i〉 6∈ D(t), i ∈ {1, 2} implies p · 〈i〉 ∈ D⊥(t). A lambda tree t is
called total if D⊥(t) is empty. The set of all total lambda trees is denoted T ∞.
A lambda tree t is called finite if D(t) is a finite set. The set of all finite (total)
lambda trees is denoted T⊥ (respectively T ). A renaming of a lambda tree t
is a lambda tree s such that there is a bijection f : V → V with the following
properties: s(p) = t(p) if t(p) ∈ L \ V, s(p) = f(t(p)) if t(p) ∈ V, and otherwise
s(p) is undefined.

In order to avoid confusion, we use upper case letters M,N for lambda terms
and lower case letters s, t, u for lambda trees. Below, we give a bijection from
lambda terms to finite lambda trees that should help illustrate the idea behind
lambda trees. At the heart of this bijection are the following constructions based
on Blom [8]:

1In Appendix D we give a direct proof of the correspondence between metric and ideal
completion based on the meta theory of Majster-Cederbaum and Baier [19].
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Definition 2.4. Given lambda trees t, t1, t2 ∈ T ∞⊥ and a variable x ∈ V, let ⊥,
x, λx.t and t1 t2 be partial functions of type P ⇀ L defined by their graph as
follows:

⊥ = ∅ x = {(〈〉, x)}
λx.t = {(〈〉, λ)} ∪ {(〈0〉 · p, l) | l ∈ {λ,@} ] V \ {x} , (p, l) ∈ t}

∪ {(〈0〉 · p, 〈0〉 · q) | q ∈ P, (p, q) ∈ t} ∪ {(〈0〉 · p, 〈〉) | (p, x) ∈ t}
t1 t2 = {(〈〉,@)} ∪ {(〈i〉 · p, l) | i ∈ {1, 2} , l ∈ {λ,@} ] V, (p, l) ∈ ti }

∪ {(〈i〉 · p, 〈i〉 · q) | i ∈ {1, 2} , q ∈ P, (p, q) ∈ ti }

One can easily check that each of the above four constructions yields a
lambda tree, where ⊥ is the empty lambda tree, x the lambda tree consisting
of a single free variable x, λx.t is a lambda abstraction over x with body t, and
t1 t2 is an application of t1 to t2. The following translation of lambda terms to
finite lambda trees illustrates the use of these constructions:

Definition 2.5. Let J·K : Λ⊥ → T⊥ be defined recursively as follows:

J⊥K = ⊥ Jλx.MK = λx. JMK JxK = x JM NK = JMK JNK

One can easily check that J·K : Λ⊥ → T⊥ is indeed a bijection, which, if
restricted to Λ, is a bijection from Λ to T . Moreover, one can show that each
t ∈ T ∞⊥ with some 〈i〉 ·p ∈ D(t) is equal to λx.t′ if i = 0 and to t1 t2 if i ∈ {1, 2},
for some t′, t1, t2 ∈ T ∞⊥ . Following this observation, we define, for each t ∈ T ∞⊥
and p ∈ D(t), the subtree of t at p, denoted t|p, by induction on p as follows:
t|〈〉 = t, λx.t|〈0〉·p = t|p, and t1 t2|〈i〉·p = ti|p for i ∈ {1, 2}. One can easily check
that t|p is uniquely defined modulo renaming of free variables.

Definition 2.6. An infinite branch in a lambda tree t ∈ T ∞⊥ is an infinite
sequence S such that each proper prefix of S is in D(t). We call a proper prefix
of S a position along S.

Note that by instantiating König’s Lemma to lambda trees, we know that a
lambda tree is infinite iff it has an infinite branch.

The idea of the metric da on lambda terms is to disallow (in the ensuing
metric completion) infinite branches that have only finitely many non-strict
positions along them. The following definition makes this restriction explicit on
lambda trees:

Definition 2.7. An infinite branch S of a lambda tree t is called a-bounded if
the a-depth of all positions along S is bounded by some n < ω, i.e. |p|a < n
for all p < S. The lambda tree t is called a-unguarded if it has an a-bounded
infinite branch S. Otherwise, t is called a-guarded. The set of all a-guarded
(total) lambda trees is denoted T a⊥ (respectively T a). In particular, T 000

⊥ = T⊥
and T 111

⊥ = T ∞⊥ .

For example, the lambda tree s with s = s y is 101-unguarded while t with
t = λy.t y is 101-guarded as each application is guarded by an abstraction (which
is non-strict).

For each strictness signature a, we give a metric daT on lambda trees that
corresponds to the metric da on lambda terms.

Definition 2.8. For each two lambda trees s, t ∈ T ∞⊥ , define daT (s, t) = 0 if

s = t and otherwise daT (s, t) = 2−d, where d is the least |p|a with s(p) 6' t(p).
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From the characterisation of the metric completion of (Λ⊥,d
a) from Kenn-

away et al. [11, Lemma 7] we know that the metric space of a-guarded lambda
trees (T a⊥ ,daT ) is indeed the metric completion of (Λ⊥,d

a) with the isomet-
ric embedding J·K : Λ⊥ → T⊥ (cf. Appendix D for a more formal treatment).
Analogously, (T a,daT ) is the metric completion of (Λ,da).

3 The Ideal Completion

In this section, we present an alternative to the metric completion from Section 2
that is based on a family of partial orders on lambda terms indexed by strictness
signatures. In the following we assume basic familiarity with order theory.

Definition 3.1. Given a strictness signature a, the partial order ≤a⊥ is the least
transitive, reflexive order on Λ⊥ satisfying the following for all M,M ′, N,N ′ ∈
Λ⊥ and x ∈ V:

(a) ⊥ ≤a⊥ M
(b) λx.M ≤a⊥ λx.M ′ if M ≤a⊥ M ′ and M 6= ⊥ or a0 = 1

(c) MN ≤a⊥ M ′N if M ≤a⊥ M ′ and M 6= ⊥ or a1 = 1

(d) MN ≤a⊥ MN ′ if N ≤a⊥ N ′ and N 6= ⊥ or a2 = 1

For the case that a = 111, we obtain the partial order ≤⊥ that is typically
used for ideal completions. This order is fully monotone, i.e. M ≤⊥ M ′ implies
λx.M ≤⊥ λx.M ′, MN ≤⊥ M ′N and NM ≤⊥ NM ′. By contrast, ≤a⊥ restricts
monotonicity of abstraction in case a0 = 0 and of application in case a1 = 0
or a2 = 0. Intuitively, we have M ≤a⊥ N iff N can be obtained from M by
replacing occurrences of ⊥ in M at non-strict positions with arbitrary terms.
For example, if a = 001, then neither λx.⊥ ≤a⊥ λx.x x nor λx.⊥x ≤a⊥ λx.x x;
but we do have that λx.x⊥ ≤a⊥ λx.x x.

With this intuition in mind, we translate ≤a⊥ to a corresponding order Ea⊥
on lambda trees as follows:

Definition 3.2. Given lambda trees s, t ∈ T ∞⊥ , we have s Ea⊥ t if

(a) D(s) ⊆ D(t),
(b) s(p) = t(p) for all p ∈ D(s), and
(c) p ∈ D(s) =⇒ p · 〈i〉 ∈ D(s) for all a-strict positions p · 〈i〉 ∈ D(t).

Conditions (a) and (b) alone would give us the corresponding order for the
standard partial order ≤⊥. Condition (c) ensures that the partial order Ea⊥ may
not fill a hole in a strict position in the left-hand side tree.

One can check that (T ∞⊥ ,Ea⊥) forms a partially ordered set. Moreover, we
have the following correspondence between the two families of orders ≤a⊥ and
Ea⊥:

Proposition 3.3. J·K : (Λ⊥,≤a⊥)→ (T⊥,Ea⊥) is an order isomorphism.

For the remainder of this section, we turn our focus to the partial orders
Ea⊥ on lambda trees. In particular, we show that (T a⊥ ,Ea⊥) forms a complete
semilattice and that it is (order isomorphic to) the ideal completion of (Λ⊥,≤a⊥).
A complete semilattice is a partially ordered set (A,≤) that is a complete partial
order (cpo) and that has a greatest lower bound (glb)

d
B for every non-empty
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set B ⊆ A.2 A partially ordered set (A,≤) is a cpo if it has a least element, and
each directed set D in (A,≤) has a least upper bound (lub)

⊔
D; a set D ⊆ A is

called directed if for each two a, b ∈ D there is some c ∈ D with a, b ≤ c.
In particular, for any sequence (aι)ι<α in a complete semilattice, its limit

inferior, defined by lim infι→α aι =
⊔
β<α

(d
β≤ι<α aι

)
, exists. While the metric

completion lambda calculi are based on the limit of the underlying metric space,
our ideal completion lambda calculi are based on the limit inferior.

To show that (T a⊥ ,Ea⊥) forms a complete semilattice structure, we construct
the appropriate lubs and glbs:

Theorem 3.4 (cpo (T a⊥ ,Ea⊥)). The partially ordered set (T a⊥ ,Ea⊥) forms a com-
plete partial order. In particular, the lub t of a directed set D satisfies the
following:

D(t) =
⋃
s∈D D(s) s(p) = t(p) for all s ∈ D, p ∈ D(s)

Proof sketch. The lambda tree ⊥ is the least element in (T a⊥ ,Ea⊥). Construct
the lub t of D as follows: t(p) = s(p) iff there is some s ∈ D with p ∈ D(s). One
can check that t indeed is a well-defined lambda tree that is a-guarded and is
the least upper bound of D.

Proposition 3.5 (glbs of Ea⊥). Every non-empty subset T of T a⊥ has a glbd
T in (T a⊥ ,Ea⊥) such that D(

d
T ) is the largest set P satisfying the following

properties:

(1) If p ∈ P , then there is some l ∈ L such that s(p) = l for all s ∈ T .

(2) If p · 〈i〉 ∈ P , then p ∈ P .

(3) If p ∈ P , ai = 0, and p · 〈i〉 ∈ D(s) for some s ∈ T , then p · 〈i〉 ∈ P .

Proof sketch. Let P ⊆ P be the largest set satisfying (1) to (3). As these
properties are closed under union, P is well-defined. We define the partial
function t : P ⇀ L as the restriction of an arbitrary lambda tree in T to P .
Using (1) and (2), one can show that t is indeed a well-defined a-guarded lambda
tree. One can then check that t is the glb of T .

For instance
d
{λx.x y, λx.y x} is λx.⊥⊥ for 011, λx.⊥ for 110, and ⊥ for 001.

Theorem 3.6. (T a⊥ ,Ea⊥) is a complete semilattice for any a.

Proof. Follows from Theorem 3.4 and Proposition 3.5.

We conclude this section by establishing the partially ordered set (T a⊥ ,Ea⊥)
as (order isomorphic to) the ideal completion of (Λ⊥,≤a⊥). Recall that, given
a partially order set (A,≤), its ideal completion is an extension of the original
partially ordered set to a cpo. A set B ⊆ A is called an ideal in (A,≤) if it is
directed and downward-closed, where the latter means that for all a ∈ A, b ∈ B
with a ≤ b, we have that a ∈ B. The ideal completion of (A,≤), is the partially
ordered set (I,⊆), where I is the set of all ideals in (A,≤) and ⊆ is standard
set inclusion.

2Equivalently, complete semilattices are bounded complete cpos. Hence, complete semilat-
tices are a generalisation of Scott domains (which in addition have to be algebraic).
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Theorem 3.7 (ideal completion). The ideal completion of (Λ⊥,≤a⊥) is order
isomorphic to (T a⊥ ,Ea⊥).

Proof sketch. By Proposition 3.3, it suffices to show that the ideal completion
(I,⊆) of (T⊥,Ea⊥) is order isomorphic to (T a⊥ ,Ea⊥). To this end, we define two
functions φ : T a⊥ → I and ψ : I → T a⊥ as follows: φ(t) =

{
s ∈ T⊥

∣∣ s Ea⊥ t};
ψ(T ) =

⊔
T . Well-definedness of φ and ψ follows from König’s Lemma and

Theorem 3.4, respectively. Both φ and ψ are obviously monotone and one can
check that φ and ψ are inverses of each other. Hence, (I,⊆) is order isomorphic
to (T a⊥ ,Ea⊥)

Now that we have established the connection between T a⊥ and the metric
completion resp. the ideal completion of Λ⊥, we turn our focus to T a⊥ for the
rest of this paper.

The characterisation of lubs and glbs for the complete semilattice (T a⊥ ,Ea⊥)
allows us to relate the corresponding notion of limit inferior with the limit in
the complete metric space (T a⊥ ,daT ) as summarised in the following theorem:

Theorem 3.8. Let (tι)ι<α be a sequence in T a⊥ .

(i) If limι→α tι = t in (T a⊥ ,daT ), then lim infι→α tι = t in (T a⊥ ,Ea⊥).

(ii) If lim infι→α tι = t in (T a⊥ ,Ea⊥) and t is total, then limι→α tι = t in
(T a⊥ ,daT ).

The key to establish the correspondence above is the following characterisa-
tion of the limit t of a converging sequence (tι)ι<α in (T a⊥ ,daT ):

D(t) =
⋃
β<α

⋂
β≤ι<αD(tι), and t(p) = l ⇐⇒ ∃β < α∀β ≤ ι < α : tι(p) = l

The proof of the correspondence result makes use of a notion of truncation
similar Arnold and Nivat’s [1] but generalised to be compatible with the Ea⊥-
orderings.

From the above findings we can conclude that the limit inferior in (T a⊥ ,Ea⊥)
restricted to total lambda trees coincides with the limit in (T a,daT ). In other
words, the limit inferior is a conservative extension of the limit. In the next
section, we transfer this result to (strong) convergence of reductions.

4 Transfinite Reductions

In this section, we study finite and transfinite reductions on lambda trees. To
this end, we assume for the remainder of this paper a fixed strictness signature
a such that all subsequent definitions and theorems work on the same universe
of lambda trees T a⊥ and its associated structures daT and Ea⊥ (unless stated
otherwise). Moreover, we need a suitably general notion of reduction steps
beyond the familiar β- and η-rules in order to accommodate Böhm reductions
in Section 5.

Definition 4.1. A rewrite system R is a binary relation on T a⊥ such that (s, t) ∈
R implies that s 6= ⊥. Given s, t ∈ T a⊥ and p ∈ P, an R-reduction step from
s to t at p, denoted s →R,p t, is inductively defined as follows: if (s, t) ∈ R,
then s →R,〈〉 t; if t →R,p t′, then λx.t →R,〈0〉·p λx.t′, t s →R,〈1〉·p t′ s, and
s t→R,〈2〉·p s t

′ for all s ∈ T a⊥ . If R or p are irrelevant or clear from the context,
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we omit them in the notation→R,p. If (t, t′) ∈ R, then t is called an R-redex. If
s→R,p t, then s is said to have an R-redex occurrence at p. A lambda tree t is
called an R-normal form if no R-reduction step starts from t. The prefix “R-”
is dropped if R is irrelevant or clear from the context.

Example 4.2. The familiar β- and η-rules form rewrite systems as follows:

� =
{

((λx.t) s, t [x/s])
∣∣ s, t ∈ T a⊥ } � =

{
(λx.t x, t)

∣∣ t ∈ T a⊥ , x 6∈ Range(t)
}

where substitution t [x/s] is defined as follows: for each p ∈ P we have that
t [x/s] (p) = t(p) if t(p) ∈ L \ {x}; t [x/s] (p) = s(p2) if p = p1 · p2, t(p1) =
x, s(p2) ∈ L \ P; t [x/s] (p) = p1 · s(p2) if p = p1 · p2, t(p1) = x, s(p2) ∈ P; and
t [x/s] (p) is undefined otherwise.

The resulting �-reduction step relation →� on lambda trees is isomorphic
(via the isomorphism of Theorem 3.7) to the lifting of the ordinary finitary β-
reduction step relation on lambda terms to the ideal completion via the lifting
operator [·〉 of Blom [7]. An analogous correspondence can be shown for � as
well.

Definition 4.3. A sequence S = (tι →R,pι tι+1)ι<α of R-reduction steps is
called an R-reduction; S is called total if each tι is total. If S is finite, we also
write S : t0 →∗R tα.

The above notion of reductions is too general as it does not relate lambda
trees tβ at a limit ordinal index β to the lambda trees (tι)ι<β that precede it.
This shortcoming is addressed with a suitable notion of convergence and conti-
nuity. In the literature on infinitary rewriting one finds two different variants of
convergence/continuity: a weak variant, which defines convergence/continuity
only according to the underlying structure (metric limit or limit inferior), and
a strong variant, which also takes the position of contracted redexes into con-
sideration. While both the metric and the partial order lend themselves to
either variant, we only consider the strong variant here and refer the reader to
Appendix C for the weak variant.

We use the name m-convergence and p-convergence to distinguish between
the metric- and the partial order-based notion of convergence, respectively. Our
notion of (strong) m-convergence is the same notion of convergence that Kenn-
away et al. [11] used for their infinitary lambda calculi. For our notion of (strong)
p-convergence we instantiate the abstract notion of strong p-convergence from
our previous work [2]. The key ingredient of p-convergence is the notion of
reduction context, which assigns to each reduction step s → t a lambda tree c
with c Ea⊥ s, t. Intuitively, this reduction context c comprises the (maximal)
fragment of s that cannot be changed by the reduction step, regardless of the
reduction rule. For instance, the reduction context of λx.(λy.y) x → λx.x is
λx.⊥ if a0 = 1, and ⊥ otherwise. The notion of p-convergence is defined using
the limit inferior of the sequence of reduction contexts (instead of the original
lambda trees themselves). The canonical approach to derive such a reduction
context for any complete semilattice is to take the greatest lower bound of the
involved lambda trees s and t that does not contain any position of the redex:

Definition 4.4. The reduction context of a reduction step s→p t is the greatest
lambda tree c in (T a⊥ ,Ea⊥) with c Ea⊥ s, t and p 6∈ D(c); we write s →c t to
indicate the reduction context c.
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In order to simplify reasoning and provide an intuitive understanding of the
concept, we give a direct construction of reduction contexts as well:

Definition 4.5. Given t ∈ T ∞⊥ and p ∈ D(t), we write t \ p for the restriction
of t to the domain {q ∈ D(t) | p 6≤ q }, and p↓a for the longest non-strict prefix
of p.

That is, t \ p is obtained from t by replacing the subtree at p with ⊥. More-
over, ↓a can be characterised as follows: 〈〉↓a = 〈〉; (p · 〈i〉)↓a = p · 〈i〉 if ai = 1;
and (p · 〈i〉)↓a = p↓a if ai = 0.

Lemma 4.6. The reduction context of s→p t is equal to s \ p↓a and t \ p↓a.

Proof sketch. By a straightforward induction on p.

That is, the reduction context of s→p t is obtained from s by removing the
most deeply nested subtree that both contains the redex and is in a non-strict
position. The ensuing notions of strong convergence of reductions are spelled
out as follows:

Definition 4.7. An R-reduction S = (tι →pι,cι tι+1)ι<α m-converges to tα,

denoted S : t0 �m R tα, if limι→γ tι = tγ and (|pι|a)ι<γ tends to infinity for all limit
ordinals γ ≤ α. S p-converges to tα, denoted S : t0 �p R tα, if lim infι→γ cι = tγ
for all limit ordinals γ ≤ α. S is called m-continuous resp. p-continuous if the
corresponding convergence conditions hold for limit ordinals γ < α (instead of
γ ≤ α).

Intuitively, strong convergence under-approximates convergence in the un-
derlying structure (i.e. weak convergence) by assuming that every contraction
changes the root symbol of the redex. Thus, given a reduction step s →p t,
strong convergence assumes that the shortest position at which s and t differ is
p.

The semilattice structure underlying p-convergence ensures that every p-
continuous reduction also p-converges, whereas m-convergence does not neces-
sarily follow from m-continuity:

Example 4.8. Given Ω = (λx.x x)(λx.x x) and t = (λx.xΩ) y, we consider the �-
reduction S : t→ t→ . . . that repeatedly contracts the redex Ω in t. S is trivially
m- and p-continuous. However, it is not m-convergent, since contraction takes
place at a constant a-depth, namely |〈1, 0, 2〉|a. But it p-converges to t\〈1, 0, 2〉↓a,
which is also the reduction context of each reduction step in S and is equal to
(λx.x⊥) y if a2 = 1, to (λx.⊥) y if a2 = 0 but a0 = 1, to ⊥ y if a = 010, and to
⊥ if a = 000.

Similarly to the correspondence between the limit and the limit inferior in
Theorem 3.8, we find a correspondence between p- and m-convergence.

Proposition 4.9. For each reduction S : s�m t, we also have that S : s�p t.

Proof sketch. Let S = (tι →pι,cι tι+1)ι<α. If S m-converges, then (|pι|a)ι<γ
tends to infinity for all limit ordinals γ < α, i.e. for each d < ω we have
that |pι|a ≥ d after some δ < γ. With the help of Lemma 4.6, one can show
that the latter implies that tι and cι coincide up to a-depth d for all δ ≤ ι <
γ. Consequently, limι→γ tι = limι→γ cι, which, by Theorem 3.8 (i), implies
limι→γ tι = lim infι→γ cι. Since this holds for all limit ordinals γ ≤ α, we know
that S also p-converges to t.
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With the proposition above, we derive the other direction of the correspon-
dence:

Proposition 4.10. S : s�p t implies S : s�m t whenever S and t are total.

Proof sketch. One can show that the totality of S and t implies that the a-
depth of contracted redexes in each open prefix of S tends to infinity. Using
Proposition 5.5 from [2], we can show that the latter implies that S also m-
converges. Then according to Proposition 4.9, S must m-converge to the same
lambda tree t.

Note that it is not sufficient that the two trees s and t are total. For example,
the �-reduction S : (λx.y) Ω �p (λx.y)⊥ → y p-converges to y but does not m-
converge.

Putting Propositions 4.9 and 4.10 together we obtain that p-convergence is
a conservative extension of m-convergence:

Corollary 4.11. S : s�m t iff S : s�p t whenever S and t are total.

5 Beta Reduction

So far we have only studied the properties of p-convergence independent of
the rewrite system. In this section, we specifically study �-reduction and show
infinitary normalisation for all of our calculi, and infinitary confluence for three
of them. However, considering pure �-reduction, infinitary confluence only holds
for the 111 calculus. We can construct counterexamples for the other calculi:

Example 5.1 ([11]). Given a2 = 0 and t = (λx.y) Ω, we find reductions t �p �

⊥ and t →� y. Given a2 = 1, a1 = 0, and t = (λx.x y) Ω, we have t �p �

(λx.x y)⊥ →� ⊥ y and t →� Ω y �p � ⊥. Similarly, given a2 = 1, a0 = 0, and
t = (λx.λy.x) Ω, we have t�p � (λx.λy.x)⊥ →� λy.⊥ and t→� λy.Ω�p � ⊥.

Infinitary confluence of pure �-reduction fails for all m-convergence calculi of
Kennaway et al.[11] – including the 111 calculus. On the other hand, the Böhm
reduction calculi of Kennaway et al. [13], which extend pure �-reduction with
infinitely many rules of the form t→ ⊥, do satisfy infinitary confluence for the
001, 101, and 111 calculi.

We would like to obtain similar confluence results for the 001, 101, and 111
p-convergence calculi. However, the gap we have to bridge to achieve infinitary
confluence is much narrower in our p-convergence calculi. Intuitively, confluence
fails for 001 and 101 because p-convergence only captures partiality that is due
to infinite reductions, but not partiality that can propagate via finite reductions:
For example, in the 101 calculus we have Ω y �p � ⊥ but ⊥ y 6�p � ⊥. In order to
obtain the desired confluence properties, we have to add the rules λx.⊥ → ⊥
(for 001) and ⊥ t→ ⊥ (for 001 and 101). More generally we define these S-rules
formally as follows:

S =
{

(t1 t2,⊥)
∣∣ t1, t2 ∈ T a⊥ , ti = ⊥, ai = 0

}
∪ {(λx.⊥,⊥)) | a0 = 0}

We use the notation �S to denote � ∪ S. Abusing notation, we also write �(S)
to refer to � or �S, e.g. if a property holds for either system. Note that for the
111 calculus, �S = �.
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In addition, we continue studying the relation between m-convergence and
p-convergence: In general, they are subtly different, but we show that a p-
converging �(S)-reduction can be adequately simulated by an m-converging B-
reduction and vice versa, where B is an extension of �, called Böhm rewrite
system, which additionally contains rules of the form t→ ⊥. This result uses the
same construction used by Kennaway et al. [13] to study so-called meaningless
terms.

In the remainder of this section we first characterise the set of lambda trees
that p-converge to ⊥ (Section 5.1); we then establish a correspondence between
pure p-convergence and m-convergence extended with rules t → ⊥ for lambda
trees t that p-converge to ⊥ (Section 5.2); and finally we prove infinitary con-
fluence and normalisation for p-convergent �S-reductions in the 001, 101, and
111 calculi (Section 5.3). For the infinitary confluence result, we make use of
the correspondence between p-convergence and m-convergence.

5.1 Partiality

We begin with the characterisation of lambda trees that p-converge to ⊥:

Definition 5.2. Given an open reduction S = (tι →pι tι+1)ι<α, a position
p is called volatile in S if, for each β < α, there is some β ≤ γ < α with
pγ↓a ≤ p ≤ pγ . If p is volatile in S but no proper prefix of p is, then p is called
outermost-volatile in S.

For instance, in the �-reduction in Example 4.8, 〈1, 0, 2〉 is volatile and
〈1, 0, 2〉↓a is outermost-volatile. Note that outermost-volatile positions must
be non-strict, because if p is volatile, then so is p↓a.

The presence of volatile positions characterises partiality in p-convergent
reductions, which by Corollary 4.11 can be stated as follows:

Proposition 5.3. S : s�m t iff no prefix of S has volatile positions and S : s�p t.

Proof sketch. Let S = (tι →pι tι+1)ι<α. The “only if” direction follows from

Proposition 4.9 and the fact that if (|pι|a)ι<β tends to infinity, then S|β has no
volatile positions. For the “if” direction, the infinite pigeonhole principle yields
that (|pι|a)ι<β tends to infinity. Using this fact, one can show that S : s�m t.

More specifically, outermost-volatile positions pinpoint the exact location of
partiality in the result of a p-converging reduction.

Lemma 5.4. If p is outermost-volatile in S : s�p t, then p ∈ D⊥(t).

Proof sketch. Let S = (tι →pι,cι tι+1)ι<α. Since p is volatile in S, we find for
each β < α some β ≤ ι < α with pι↓a ≤ p. Hence, by Lemma 4.6, we know that
p 6∈ D(cι). Consequently, by Theorem 3.4 and Proposition 3.5, we have that
p 6∈ D(t). If p = 〈〉, then p ∈ D⊥(t) follows immediately. If p = q · 〈0〉, then
one can use the fact that no prefix of q is volatile to show that t(q) = λ, which
means that p ∈ D⊥(t). The argument for the cases p = q · 〈1〉 and p = q · 〈2〉 is
analogous.

This characterisation of partiality in terms of volatile positions motivates
the following notions of destructiveness and fragility:
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Definition 5.5. A reduction S is called destructive if it is p-continuous and 〈〉
is volatile in S. A lambda tree t ∈ T a⊥ is called fragile if there is a destructive
�-reduction starting from t. The set of all fragile total lambda trees is denoted
Fa.

Note that fragility is defined in terms of destructive �-reductions. However,
one can show that a destructive �-reduction exists iff a destructive �S-reduction
exists.

The following proposition explains why destructive reductions have deserved
their name:

Proposition 5.6. An open reduction is destructive iff it p-converges to ⊥.

Proof sketch. The “only if” direction follows from Lemma 5.4; the converse
direction can be shown using the characterisation of the limit inferior (Theo-
rem 3.4, Proposition 3.5).

For example, the �-reduction Ω→ Ω→ . . . (cf. Example 4.8) p-converges to
⊥ and is thus destructive. As a corollary from the above proposition, we obtain
that every fragile lambda tree – such as Ω – can be contracted to ⊥ by an open
p-convergent reduction.

5.2 Correspondence

To compare m- and p-converging reductions, we employ Böhm rewrite systems
and the underlying notion of ⊥-instantiation from Kennaway et al.’s work on
meaningless terms [13].

Definition 5.7. Let U ⊆ T ∞ and t ∈ T ∞⊥ . A lambda tree s ∈ T ∞ is called a
⊥-instance of t w.r.t. U if s is obtained from t by inserting elements of U into t
at each position p ∈ D⊥(t), i.e. s(p) = t(p) for all p ∈ D(t) and s|p ∈ U for all
p ∈ D⊥(t). The set of lambda trees that have a ⊥-instance w.r.t. U that is in
U itself is denoted U⊥. In other words, t ∈ U⊥ iff there is a lambda tree s ∈ U
such that s is obtained from t by replacing occurrences of ⊥ in t by lambda
trees from U .

In particular, we will use the above construction with the set of fragile total
lambda trees Fa, which gives us the set Fa⊥.

Finally, we give the construction of Böhm rewrite systems.

Definition 5.8. For each set U ⊆ T a, we define the following two rewrite
systems:

á(U) = {(t,⊥) | t ∈ U⊥ \ {⊥}} , B (U) = � ∪ á(U)

If U is clear from the context, we instead use the notation á and B, respectively.

In particular, we consider the Böhm rewrite system w.r.t. fragile total lambda
trees, denoted by B

(
Fa
)
. We start with one direction of the correspondence

between p-converging �(S)-reductions and m-converging B
(
Fa
)
-reductions:

Theorem 5.9. If s�p �S t, then s�m B t, where B = B
(
Fa
)
.
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Proof sketch. Given S : s�p �S t, we construct a B-reduction T from S that also
p-converges to t but that has no volatile positions in any of its open prefixes.
Thus, according to Proposition 5.3, T : s�m B t. The construction of T removes
steps in S that take place at or below any outermost-volatile position of some
prefix of S and replaces them by a single á-step. Such a á-step can be per-
formed since a fragile lambda tree must be responsible for an outermost-volatile
position. Moreover, S-steps in S are á-steps in T since S ⊆ á

(
Fa
)
. Lemma 5.4

can then be used to show that the resulting B-reduction T p-converges to t.

The converse direction of Theorem 5.9 does not hold in general. The problem
is that á-steps can be more selective in which fragile lambda subtree to contract
to ⊥ compared to p-convergent reductions with volatile positions. If p is a
volatile position, then so is p↓a. Consequently, volatile positions and thus ‘⊥’s
in the result of a p-converging reduction are propagated upwards through strict
positions. For example, let a0 = 0, and t = λy.Ω. Since Ω is fragile, we have
the reduction t →á λy.⊥. On the other hand, via p-convergent �-reductions, t
only reduces to itself and ⊥. This phenomenon, however, does not occur if we
restrict ourselves to the strictness signature 111 or if we only consider á-normal
forms. Indeed, in the above example, λy.⊥ is not a á-normal form and can be
contracted to ⊥ with a á-step.

Theorem 5.10. Let B = B
(
Fa
)

and s�m B t such that s is total. Then s�p � t
if a = 111 or t is a á-normal form.

Proof sketch. The reduction s �m B t can be factored into S : s �m � s′ and
T : s′ �m á t (by the same proof as Lemma 27 of Kennaway et al. [13]). Moreover,
we may assume w.l.o.g. that T contracts disjoint á-redexes in s′ (using an argu-
ment similar to Lemma 7.2.4 of Ketema [14]). By Proposition 4.9, we have that
S : s�p � s

′ and that T : s′ �p á t. For each step u→á,p v in T we find a reduction
Tp : u�p � v

′ in which p is volatile since u|p must be fragile. Given that a = 111
or that t is a á-normal form, we can show that p is in fact outermost-volatile
in Tp. Hence, the equality v = v′ follows from Lemma 5.4. Therefore, we may
replace each step u→á,p v in T by Tp, which yields a reduction s′ �p � t.

That is, in general we get one direction of the correspondence – namely
from metric to partial order reduction – only for reductions to normal forms.
However, this does not matter that much as p-converging �(S)-reductions (an
thus also m-converging B

(
Fa
)
-reductions) are normalising as we show below.

5.3 Infinitary Normalisation and Confluence

We begin by recalling the notion of active lambda trees [13], which we use
to establish infinitary normalisation and as an alternative characterisation of
fragile lambda trees (in the 001, 101, and 111 calculi).

Definition 5.11. A lambda tree t is called stable if no lambda tree t′ with
t →∗� t′ has a �-redex occurrence at a-depth 0; t is called active if no lambda
tree t′ with t→∗� t′ is stable. The set of all active total lambda trees is denoted

by Aa.

To construct normalising p-convergent reductions, we follow the idea of Ken-
naway et al. [13]: We contract all subtrees of the initial lambda tree into stable
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form. The only way to achieve this for active subtrees is to annihilate them by
a destructive reduction. The basis for that strategy is the following observation:

Lemma 5.12. Every active lambda tree is fragile.

Proof. If t0 is active, we find a reduction t0 →∗� t′0 to a �-redex at a-depth 0. By
contracting this redex we get a lambda tree t1 that is active, too. By repeating
this argument we obtain a destructive reduction t0 →∗� t′0 →� t1 →∗� t′1 →�

. . . .

The following normalisation result then follows straightforwardly:

Theorem 5.13. For each s ∈ T a⊥ , there is a normalising reduction s�p �(S) t.

Proof sketch. Similar to Theorem 1 of Kennaway et al. [13]: an active subtree at
position p is by Lemma 5.12 also fragile. Hence, there is a �-reduction in which
a prefix of p is outermost-volatile. By Lemma 5.4, such a reduction annihilates
the active subtree at p. This yields a reduction s�p � t to �-normal form t, which
can be extended by a reduction t�p S u to a �S-normal form u.

From the above we immediately obtain the corresponding result for m-
convergence:

Theorem 5.14. For each s ∈ T a⊥ there is a normalising reduction s�m B(Fa) t.

Proof. By Theorem 5.13 and 5.9, as �S-normal forms are also B
(
Fa
)
-normal

forms.

Consequently, we can derive the following correspondence result.

Corollary 5.15. For each s ∈ T a with s�m B(Fa) t, there is a reduction t�m B(Fa)
t′ such that s�p � t

′.

Proof. According to Theorem 5.14, there is a normalising reduction t�m B(Fa) t
′.

Then a reduction s�p � t
′ exists by Theorem 5.10.

A shortcoming of this correspondence property and the correspondence prop-
erties established in Section 5.2 is that they consider m-convergence in the sys-
tem B

(
Fa
)
, which is unsatisfactory since Fa is defined using p-convergence. A

more appropriate choice would be the set Aa of active terms, which is defined
in terms of finitary reduction only. To obtain a correspondence in terms of Aa,
we will show that Fa = Aa for strictness signatures 001, 101, and 111. To prove
this equality of fragility and activeness, we need the following key lemma, which
can be proved using descendants and complete developments (cf. Appendix B).

Lemma 5.16 (Infinitary Strip Lemma). Given S : s �p �S t1 and T : s →∗�S t2,
there are reductions S′ : t1 �p �S t and T ′ : t2 �p �S t, provided a ∈ {001, 101, 111}.

Recall that �S = � for a = 111, i.e. the infinitary strip lemma holds for
pure �-reduction in the 111 calculus; but it does not hold for 001 and 101
as Example 5.1 demonstrates. Hence, the need for S-rules. By contrast, in
the metric calculi of Kennaway et al. [11] the infinitary strip lemma does not
hold for any a. In order to obtain the infinitary strip lemma and confluence,
Kennaway et al. extended β-reduction to Böhm reduction.

We use the Infinitary Strip Lemma to show that p-convergent reductions to
⊥ can be compressed to length at most ω.
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Lemma 5.17. If a ∈ {001, 101, 111} and S : t�p �S ⊥, then there is a reduction
T : t�p �S ⊥ of length ≤ ω. If t is total, then T is a �-reduction of length ω.

Proof sketch. If |S| ≤ ω, we are done. Otherwise, we can construct a finite
reduction t →∗�S t′ with at least one contraction at a-depth 0 either using a
finite approximation property of p-convergence (in case S contracts �-redex at
a-depth 0) or by an induction argument (in case S contracts S-redex at root
position). By Lemma 5.16, there is a reduction S′ : t′ �p �S ⊥. Thus, we can
repeat the argument for S′. Iterating this argument yields either a reduction
t →∗�S ⊥ or a reduction t �p �S s

′ of length ω with infinitely many contractions
at a-depth 0, and thus s′ = ⊥. If s is total, then T cannot be finite, as finite
�S-reductions preserve totality. Hence, no step in T can be an S-step.

Lemma 5.18. If a ∈ {001, 101, 111}, a total lambda tree is active iff it is fragile.

Proof. The “only if” direction follows from Lemma 5.12. For the converse di-
rection let t be total and fragile, and let t →∗� t1. Since t is fragile, there is a
reduction t �p �S ⊥ according to Proposition 5.6. Hence, by Lemma 5.16, there
is a reduction T : t1 �p �S ⊥, which we can assume, according to Lemma 5.17,
to be a �-reduction of length ω. Since T is, by Proposition 5.6, destructive,
there is a proper prefix T ′ : t1 �p � t2 of T such that t2 has a redex occurrence at
a-depth 0. Because T is of length ω, T ′ is finite i.e. T ′ : t1 →∗� t2.

The above lemma allows us to derive confluence w.r.t. p-convergent reduc-
tions from the confluence results w.r.t. m-convergence of Kennaway et al. [11]:

Theorem 5.19 (infinitary confluence). Given a ∈ {001, 101, 111}, we have that
s�p �S t1 and s�p �S t2 implies that t1 �p �S t and t2 �p �S t.

Proof. According to Theorem 5.13, we can extend the existing reductions by
normalising reductions t1 �p �S t

′
1 and t2 �p �S t

′
2. According to Theorem 5.9 and

Lemma 5.18, the resulting normalising reductions s �p �S t
′
1 and s �p �S t

′
2 are

also m-convergent B
(
Aa
)
-reductions. Kennaway et al. [11] have shown that such

reductions are confluent. Hence, t′1 = t′2 (as �S-normal forms are B
(
Aa
)
-normal

forms too).

Together with the earlier normalisation result, this means that the 001, 101,
and 111 calculi have unique normal forms w.r.t. �p �S. By the correspondence
results between the metric and the partial order calculi, these normal forms are
the same as the unique normal forms w.r.t. �m B(Aa) [11], which in turn corre-
spond to Böhm Trees, Levy-Longo Trees, and Berarducci Trees, respectively.

6 Related Work

The use of ideal completion in lambda calculus to construct infinite terms has
a long history (see e.g. Ketema [14] for an overview), in particular in the form
of constructing infinite normal forms such as Böhm Trees. In that line of work,
the ideal completion is typically based on the fully monotone partial order ≤⊥
generated by ⊥ ≤⊥ M for any term M . Different kinds of infinite normal forms
are then obtained by modulating the set of rules that are used to generate the
normal forms. In this paper, we instead modulated the partial order and we have
constructed full infinitary calculi in the style of Kennaway et al. [11]. Blom’s
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abstract theory of infinite normal forms and infinitary rewriting based on ideal
completion [7] has been crucial for developing our infinitary calculi.

In previous work, we have compared infinitary rewriting based on partial
orders vs. metric spaces in a first-order setting [3, 4]. However, in that work we
have only considered fully non-strict convergence, whereas we consider varying
modes of strictness in the present paper.

Blom’s work [8] on preservation calculi is similar to our ideal completion
calculi. Blom also considers different calculi indexed by strictness signatures
and relates them to the corresponding metric calculi. However, he uses the
same partial order E111

⊥ for all calculi; the different calculi vary in the notion
of reduction contexts they use. Blom’s reduction contexts are the same as our
reduction contexts, and his Ω-rules are more general variants of our S-rules.
However, his approach of using a single partial order has some caveats:

Firstly, there is no corresponding weak notion of preservation sequences
that corresponds to weak m-convergence. Secondly, the partially ordered set
(T a⊥ ,E111

⊥ ) is only a complete semilattice for a = 111; otherwise it is not even a
cpo and limit inferiors do not always exist. For example, let t be an a-unguarded
lambda tree (i.e. t 6∈ T a⊥), and for each i < ω let ti be the restriction of t to
positions of depth < i, which means that ti ∈ T a⊥ . Then lim infi→ω ti w.r.t.
E111
⊥ is t itself and thus not in T a⊥ even though all ti are. This does not cause

a problem, if one only considers reduction contexts of p-continuous reductions,
though.

For the comparison of his preservation calculi with the metric calculi, Blom
uses a notion of 0-active terms, which is different from the notion of active terms
as used here and by Kennaway et al. [11, 13] (under the names 0-activeness
resp. abc-activeness). Blom defines that a lambda tree is 0-active iff there is a
destructive reduction of length ω starting from it. 0-activeness is demonstrably
different from activeness for any strictness signature with a2 = 0 as Example 5.1
shows. But 0-activeness and activeness do coincide for 001, 101, and 111 as we
have shown with the combination of Lemma 5.17 and Lemma 5.18.
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A Full Proofs

A.1 Ideal Completion

Proposition A.1. The function J·K : Λ⊥ → T⊥ is a bijection.

Proof Proof of Proposition A.1. For injectivity assume some M,N ∈ Λ⊥ such
that JMK = JNK. We proceed by induction on M . If M = ⊥, then also N = ⊥.
Likewise, if M = x ∈ V, then N = x, too.

If M = λx.M ′, then N = λy.N ′. W.l.o.g. we may assume that x = y
(otherwise we can just rename both to a fresh variable z). Hence, JM ′K = JN ′K
and thus, by induction hypothesis, M ′ = N ′. Consequently, we have that
λx.M ′ = λy.N ′.

If M = M1M2, then N = N1N2 and JMiK = JNiK. By applying the induction
hypothesis to the latter, we obtain that Mi = Ni and thus M1M2 = N1N2.

For surjectivity we assume some t ∈ T⊥ and construct by induction on the
cardinality of D(t) a term M ∈ Λ⊥ with JMK = t. If D(t) = ∅, then J⊥K = t.
Otherwise, we know that 〈〉 ∈ D(t). If t(〈〉) = x, then JxK = t. The case
t(〈〉) ∈ P is not possible.

If t(〈〉) = λ, then construct the lambda tree s as follows:

s(p) =


x if t(〈0〉 · p) = 〈〉
q if t(〈0〉 · p) = 〈0〉 · q
t(〈0〉 · p) otherwise

where x is a fresh variable not occurring in the image of t. One can easily check
that s is indeed a lambda tree. Since |D(s)| = |D(t)| − 1, we can apply the
induction hypothesis to obtain some M ∈ Λ⊥ with JMK = s. We then have that
Jλx.MK = t.

If t(〈〉) = @, then construct for each i ∈ {1, 2} a lambda tree si as follows:

si(p) =

{
q if t(〈i〉 · p) = 〈i〉 · q
t(〈i〉 · p) otherwise

One can easily check that both s1 and s2 are lambda terms. Since |D(s1)| +
|D(s2)| = |t| − 1, we may use the induction hypothesis for si. Hence, we find
Mi ∈ Λ⊥ with JMiK = si and we can conclude that JM1M2K = t.

Before we proceed, we give the explicit proof that Ea⊥ is indeed a partial
order as this fact is needed in the proof of Proposition 3.3.

Proposition A.2. For each strictness signature a, the relation Ea⊥ is a partial
order on T ∞⊥ .

Proof. Reflexivity and antisymmetry of Ea⊥ follow immediately from the defini-
tion. For transitivity, let t1 Ea⊥ t2 and t2 Ea⊥ t3. Then conditions (a) and (b) for
t1 Ea⊥ t3 follow immediately. For (c), let ai = 0, p ∈ D(t1) and p · 〈i〉 ∈ D(t3).
Then p ∈ D(t2) due to t1 Ea⊥ t2, which in turn implies p · 〈i〉 ∈ D(t2) due to
t2 Ea⊥ t3. Hence, p · 〈i〉 ∈ D(t1) due to t1 Ea⊥ t2.

Proposition 3.3. The function J·K : Λ⊥ → T⊥ is an order isomorphism from
(Λ⊥,≤a⊥) to (T⊥,Ea⊥).
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Proof Proof of Proposition 3.3. By Proposition A.1 it remains to be shown that
M ≤a⊥ N iff JMK Ea⊥ JNK for all M,N ∈ Λ⊥.

We show that the relation R defined by (M,N) ∈ R ⇐⇒ JMK Ea⊥ JNK has
the properties given in Definition 3.1. Since ≤a⊥ is the least such relation, we
obtain the “only if” direction of the equivalence. The relation R is a preorder
since Ea⊥ is a preorder according to Proposition A.2.

We trivially have J⊥K Ea⊥ JMK since D(J⊥K) = ∅. If a0 = 1 or M 6= ⊥, we can
easily check that JMK Ea⊥ JNK implies Jλx.MK Ea⊥ Jλx.NK, using Definition 2.5.
The same goes for the remaining two closure properties in Definition 3.1.

For the converse direction, we assume that JMK Ea⊥ JNK and show that then
M ≤a⊥ N by induction on M . If M = ⊥, we immediately have M ≤a⊥ N by (a)
of Definition 3.1. If M = x, then JMK Ea⊥ JNK implies, by (b) of Definition 3.2,
that N = x. By reflexivity of ≤a⊥, we thus have M ≤a⊥ N .

If M = M1M2, then JMK Ea⊥ JNK implies, by (b) of Definition 3.2, that
N is of the form N1N2. Using the definition of JMK (resp. JNK) in terms of
JM1K and JM2K (resp. JN1K and JN2K), we can derive that JMiK Ea⊥ JNiK for
all i ∈ {1, 2}. By induction hypothesis, we thus have that Mi ≤a⊥ Ni for all
i ∈ {1, 2}. Moreover, if ai = 0 for i ∈ 1, 2, then we can derive from JMK Ea⊥ JNK,
using (c) of Definition 3.2, that 〈〉 ∈ JNiK implies 〈〉 ∈ JMiK. That is, Mi = ⊥
implies Ni = ⊥. Consequently, we have that M1M2 ≤a⊥ N1M2 due to (c) of
Definition 3.1 in case a1 = 1, or a1 = 0 and M1 6= ⊥. In case, a1 = 0 and
M1 = ⊥, we know that also N1 = ⊥. Thus, M1M2 ≤a⊥ N1M2 follows by
reflexivity. By the same argument, also N1M2 ≤a⊥ N1N2 holds, which means
that by transitivity, we obtain that M1M2 ≤a⊥ N1N2.

If M = λx.M ′, then JMK Ea⊥ JNK implies, by (b) of Definition 3.2, that
N is of the form λy.N ′ and w.l.o.g. we may assume that y = x. By the same
argument as above, we derive from JMK Ea⊥ JNK, that JM ′K Ea⊥ JN ′K, which,
by induction hypothesis, yields M ′ ≤a⊥ N ′. Likewise we obtain, in case that
a0 = 0 that 〈〉 ∈ JN ′K implies 〈〉 ∈ JM ′K, which means that M ′ = ⊥ implies
N ′ = ⊥. Hence, if a0 = 0 and M ′ = ⊥, we obtain that N ′ = ⊥, which means
that λx.M ′ ≤a⊥ λy.N ′ follows by reflexivity. Otherwise, we may apply (b) of
Definition 3.1 to obtain λx.M ′ ≤a⊥ λy.N ′.

Theorem 3.4.For each strictness signature a, the partially ordered set (T a⊥ ,Ea⊥)
forms a complete partial order. In particular, the lub t of a directed set D
satisfies the following:

D(t) =
⋃
s∈D
D(s) s(p) = t(p) for all s ∈ D, p ∈ D(s)

Proof Proof of Theorem 3.4. The lambda tree ⊥ is obviously the least element
in (T a⊥ ,Ea⊥). To show that (T a⊥ ,Ea⊥) is directed complete, we assume a directed
set D in (T a⊥ ,Ea⊥) and construct a lambda tree t ∈ T a⊥ that is the lub of D.
Define t as follows: t(p) = s(p) iff there is some s ∈ D with p ∈ D(s).

• At first we show that this indeed defines a partial function t : P ⇀ L. To
this end assume s1, s2 ∈ D and p ∈ D(s1) ∩ D(s2). Since D is directed,
there is some s ∈ D with s1, s2 Ea⊥ s, which implies s1(p) = s(p) = s2(p).

• Next, we show that t is a well-defined lambda tree according to Defini-
tion 2.3:
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(a) If p · 〈0〉 ∈ D(t), then p · 〈0〉 ∈ D(s) for some s ∈ D. Hence, s(p) = λ
and thus t(p) = λ.

(b) If p · 〈1〉 ∈ D(t) or p · 〈2〉 ∈ D(t), then p · 〈1〉 ∈ D(s) or p · 〈2〉 ∈ D(s)
for some s ∈ D. Hence, s(p) = @ and thus t(p) = @.

(c) If t(p) = q ∈ P, then s(p) = q for some s ∈ D. Hence, q ≤ p and
s(q) = λ, which implies t(q) = λ.

• Next, we show that t is a-guarded and thus member of T a⊥ . Assume that
t is a-unguarded, i.e. t has an a-bounded infinite branch (mi)i<ω. That
means pj ∈ D(t) for all j < ω where pj = (mi)i<j and there is some n < ω
such that ami = 0 for all n ≤ i < ω. Consequently, we find for each j < ω
some sj ∈ D such that pj ∈ D(sj). We will show by induction on j that
pj ∈ D(sn) for all j < ω. From this we can then conclude that (mi)i<ω
is an a-bounded infinite branch in sn, which means that sn 6∈ T a⊥ . This
contradicts the assumption that D ⊆ T a⊥ , and we can thus conclude that
t is a-guarded.

The case j ≤ n is trivial since pn ∈ D(sn) and thus pj ∈ D(sn). For the
case n < j + 1 < ω, we have that pj+1 = pj · 〈mj〉 with amj = 0. By
induction hypothesis, we have that pj ∈ D(sn) and since D is directed,
we find some s ∈ D with sj+1 Ea⊥ s and sn Ea⊥ s. The former yields
that pj+1 ∈ D(s). According to (c) of Definition 3.2, the latter yields that
pj+1 ∈ D(sn) due to amj = 0, pj+1 ∈ D(s) and pj ∈ D(sn).

• Next, we show that t is an upper bound of D. To this end we assume
some s ∈ D and show that s Ea⊥ t:

(a) & (b) Immediate.

(c) Let ai = 0, p ∈ D(s) and p · 〈i〉 ∈ D(t). Then there is some s1 ∈ D
with p · 〈i〉 ∈ D(s1). As D is directed, we find some s2 ∈ D with
s1 Ea⊥ s2 and s Ea⊥ s2. The former yields that p · 〈i〉 ∈ D(s2), which
together with the latter implies that p · 〈i〉 ∈ D(s).

• Finally, we show that t is the least upper bound of D. To this end, we
assume some t′ with s Ea⊥ t

′ for all s ∈ D and show that then t Ea⊥ t
′.

(a) & (b) If p ∈ D(t) with t(p) = l then there is some s ∈ D with s(p) = l.
Since s Ea⊥ t

′, we then obtain that t′(p) = l, too.

(c) Let ai = 0, p ∈ D(t) and p · 〈i〉 ∈ D(t′). Then there is some s ∈ D
with p ∈ D(s), which implies p · 〈i〉 ∈ D(s) due to s Ea⊥ t′. Hence,
p · 〈i〉 ∈ D(t).

Proposition 3.5.Every non-empty subset T of T a⊥ has a glb
d
T in (T a⊥ ,Ea⊥)

such that D(
d
T ) is the largest set P satisfying the following properties:

(1) If p ∈ P , then there is some l ∈ L such that s(p) = l for all s ∈ T .

(2) If p · 〈i〉 ∈ P , then p ∈ P .

(3) If p ∈ P , ai = 0, and p · 〈i〉 ∈ D(s) for some s ∈ T , then p · 〈i〉 ∈ P .
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Proof Proof of Proposition 3.5. Given a non-empty subset T of T a⊥ , we con-
struct a lambda tree t ∈ T a⊥ and show that it is the glb of T .

Let P be the largest subset of P satisfying properties (1) through (3). Since
these properties are closed under union, P is well-defined. Let ŝ be and arbitrary
lambda tree in T . We define the partial function t : P ⇀ L as the restriction of
ŝ to P . This construction is justified since P ⊆ D(ŝ) by (1).

• At first, we show that t is a well-defined lambda tree. For all three parts
below, we make use of the fact that P is closed under taking prefixes
according to (2).

(a) If p · 〈0〉 ∈ P , then p · 〈0〉 ∈ D(ŝ) by (1). Hence, t(p) = ŝ(p) = λ.

(b) If p · 〈1〉 ∈ P or p · 〈2〉 ∈ P , then p · 〈1〉 ∈ D(ŝ) or p · 〈2〉 ∈ P by (1).
Hence, t(p) = ŝ(p) = @.

(c) If t(p) = q ∈ P, then ŝ(p) = q by (1). Hence, q ≤ p and t(q) = ŝ(q) =
λ.

• Next, we show that t is a-guarded and thus member of T a⊥ . To this end,
we assume that t is a-unguarded. That is, t has an a-bounded infinite
branch S. By (1), each position along S is also in ŝ, which means that
S is an infinite branch of ŝ as well. Hence, ŝ is a-unguarded, too. Since
this contradicts the assumption that T ⊆ T a⊥ , we can conclude that t is
a-guarded.

• Next, we show that t is a lower bound of T . To this end, we assume some
s ∈ T and show that then t Ea⊥ s:

(a) Immediate consequence of the construction of t.

(b) If p ∈ P , then t(p) = ŝ(p)
(1)
= s(p).

(c) Immediate consequence of (3).

• Finally, we show that t is the greatest lower bound of T . To this end,
we assume some t′ ∈ T a⊥ with t′ Ea⊥ s for all s ∈ T and show that then
t′ Ea⊥ t:

(a) In order to prove the inclusion D(t′) ⊆ P , we show that D(t′) satisfies
(1) through (3) of the coinductive definition of P : (1) and (3) follow
from the fact that t′ Ea⊥ s for all s ∈ T , whereas (2) follows from the
fact that t′ is a lambda tree.

(b) If p ∈ D(t′), then t′(p) = ŝ(p) since t′ Ea⊥ ŝ. Because D(t′) ⊆ P as
shown above, we know that p ∈ P . Hence, t(p) = ŝ(p) = t′(p).

(c) Let ai = 0, p ∈ D(t′), and p · 〈i〉 ∈ P . From the latter, we obtain
that p · 〈i〉 ∈ D(ŝ), which implies p · 〈i〉 ∈ D(t′) due to t′ Ea⊥ ŝ.

In the proof of Theorem 3.7, we use the following lemma, which allows us to
construct ideals:

Lemma A.3. For each t ∈ T a⊥ , the set t↓fin =
{
t ∈ T⊥

∣∣ s Ea⊥ t} forms an
ideal in (T⊥,Ea⊥).
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Proof. By construction, t↓fin is downwards-closed. To argue that t↓fin is di-
rected, we first observe that t↓fin is non-empty since ⊥ ∈ t↓fin. Furthermore,
let s1, s2 ∈ t↓fin, i.e. s1, s2 Ea⊥ t. Since (T a⊥ ,Ea⊥) is a complete semilattice
according to Theorem 3.6, every set with an upper bound also has a lub. In
particular, {s1, s2} has a lub s in (T a⊥ ,Ea⊥). Since t is an upper bound of {s1, s2},
we have that s Ea⊥ t. It only remains to be shown that s is finite.

Assume that s is not finite. By König’s Lemma, there is an infinite branch
S in s. Moreover, since s1, s2 are finite, S cannot be an infinite branch in s1
and s2. That is, there is some p1 < S such that p1 6∈ D(s1) ∪ D(s2). Moreover,
since s is a-guarded, S cannot be a-bounded, which means that we find some
p2 · 〈k〉 with p1 < p2 · 〈k〉 < S and ak = 1.

Let s′ be the restriction of s to {p ∈ D(s) |not p2 < p < S }. Clearly, s′ is
an a-guarded lambda tree, too. We show that s′ Ea⊥ s:

(a) & (b) follow from the construction of s′.

(c) If ai = 0, p ∈ D(s′), and p · 〈i〉 ∈ D(s), then we know that p 6< S or p 6> p2.
In the former case, also p · 〈i〉 6< S. In the latter case, if p · 〈i〉 > p2, then
p = p2. Consequently, p · 〈i〉 6< S since otherwise ai = ak = 1. For either
case, we conclude that p · 〈i〉 ∈ D(s′).

Since p2 · 〈i〉 is in D(s) but not in D(s′), we know that s 6= s′ and thus s′ Ca⊥ s.
Next, we show that sj Ea⊥ s

′ for all j ∈ {1, 2}:

(a) If p ∈ D(sj), then p ∈ D(s) since sj Ea⊥ s. Since p ∈ D(sj) and thus
p 6≥ p1 and a fortiori p 6≥ p2, we have that p ∈ D(s′).

(b) If p ∈ D(sj), then sj(p) = s(p) due to sj Ea⊥ s. Moreover, by construction
of s′, we obtain s′(p) = s(p) = sj(p).

(c) If ai = 0, p ∈ D(sj), and p · 〈i〉 ∈ D(s′), then p · 〈i〉 ∈ D(s), too. Since,
sj Ea⊥ s, we can then conclude that p · 〈i〉 ∈ D(sj).

This contradicts the fact that s is the lub of s1, s2. Hence, s must be finite.

Theorem 3.7.The ideal completion of (Λ⊥,≤a⊥) is order isomorphic to (T a⊥ ,Ea⊥
).

Proof Proof of Theorem 3.7. By Proposition 3.3, it suffices to show that the
ideal completion (I,⊆) of (T⊥,Ea⊥) is order isomorphic to (T a⊥ ,Ea⊥). To this
end, we define two functions φ : T a⊥ → I and ψ : I → T a⊥ :

φ(t) =
{
s ∈ T⊥

∣∣ s Ea⊥ t} ψ(T ) =
⊔
T

By Lemma A.3, φ is well-defined. Moreover, as each ideal T of (T⊥,Ea⊥) is
directed and thus has a lub in (T a⊥ ,Ea⊥) according to Theorem 3.4, ψ is well-
defined, too. Both φ and ψ are obviously monotonic. Hence, it remains to be
shown that φ and ψ are inverses of each other:

• For each T ∈ I, we show φ(ψ(T )) ⊆ T . If t ∈ φ(ψ(T )), then t ∈ T⊥ and
t Ea⊥ t̂ for t̂ =

⊔
T . According to Theorem 3.4, there is, for each p ∈ D(t̂),

a tp ∈ T such that tp(p) = t̂(p). Since t Ea⊥ t̂, we thus have that

t(p) = t̂(p) = tp(p) for each p ∈ D(t). (1)
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Moreover, as D(t) is finite and T is directed, we find some s ∈ T with

tp E
a
⊥ s for all p ∈ D(t). (2)

We will show that t Ea⊥ s:

(a) & (b) If p ∈ D(t), then t(p)
(1)
= tp(p)

(2)
= s(p).

(c) If ai = 0, p ∈ D(t), and p · 〈i〉 ∈ D(s), then p · 〈i〉 ∈ D(t̂) since s Ea⊥ t̂.
Because t Ea⊥ t̂, we can then conclude that p · 〈i〉 ∈ D(t).

As s ∈ T and T is downwards-closed, t Ea⊥ s implies that t ∈ T .

• For each T ∈ I, we show φ(ψ(T )) ⊇ T . If t ∈ T , then t ∈ T⊥ and
t Ea⊥

⊔
T . That is, t ∈ φ(ψ(T )).

• For each t ∈ T a⊥ , we show that ψ(φ(t)) = t. Let t̂ =
⊔
φ(t). We will show

that t = t̂.

If p ∈ D(t̂), then there is some s ∈ φ(t) with p ∈ D(s) and t̂(p) = s(p),
according to Theorem 3.4. Since s Ea⊥ t, this means that t̂(p) = s(p) =
t(p).

If p ∈ D(t), then consider t|ad for d = |p|a + 1. By construction of t|ad, we
have that p ∈ D(t|ad). According to Lemma A.6 and Lemma A.8, t|ad is
finite and t|ad Ea⊥ t. That is, t|ad ∈ φ(t). Hence, we can employ Theorem 3.4
to conclude that t(p) = t|ad(p) = t̂(p).

Next we show correspondences between the limit inferior in (T a⊥ ,Ea⊥) and
the limit in (T a⊥ ,daT ), akin to the corresponding result on first-order terms [3],
but with the addition of selective strictness according to a. As the first step, we
give a direct characterisation of the limit of a converging sequence of lambda
trees:

Lemma A.4. If a sequence (tι)ι<α converges to t in (T a⊥ ,daT ), then

D(t) =
⋃
β<α

⋂
β≤ι<αD(tι), and t(p) = l ⇐⇒ ∃β < α∀β ≤ ι <

α : tι(p) = l

Proof. We only show one direction for each of the two equalities above. The
other direction follows analogously. Let t(p) = l and d = |p|a + 1. Since (tι)ι<α
converges to t, there is some β < α such that daT (tι, t) < 2−d for all β ≤ ι < α.

That is, tι(q) ' t(q) for all q ∈ P with |q|a < d. In particular, tι(p) ' t(p).
Since p ∈ D(t), this means that p ∈

⋂
β≤ι<αD(tι), and since t(p) = l, we have

that tι(p) = t(p) = l for all β ≤ ι < α.

The following definition of truncations will help us to compare the limit
inferior in (T a⊥ ,Ea⊥) and the limit in the corresponding metric space (T a⊥ ,daT ):

Definition A.5. Given a strictness signature a, a depth d ≤ ω, and a lambda
tree t ∈ T ∞⊥ , the a-truncation t|ad of t at d is defined as the restriction of t to

the domain
{
p ∈ D(t)

∣∣∣ |p|a < d
}

.
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The above definition of truncation is a straightforward translation of the
notion of truncation used by Arnold and Nivat [1] to the a-depth measures that
we use here. In the following, we make use of the fact that the metric daT
can be characterised by daT (s, t) = 2−d with d = max

{
d ≤ ω

∣∣ s|ad = t|ad
}

. This
observation follows immediately from Definition A.5.

Lemma A.6. If t ∈ T a⊥ and d < ω, then t|ad ∈ T⊥.

Proof. We show the contraposition: Assume that t|ad is infinite. Then, by
König’s Lemma, t|ad has an infinite branch S. By construction of t|ad, S is
a-bounded, viz. by d. Since D(t|ad) ⊆ D(t), S is also an infinite branch of t,
which means that t is a-unguarded.

We can then derive the following proposition that characterises a-guarded
lambda trees:

Proposition A.7. A lambda tree is a-guarded iff it does not have infinitely
many positions that have the same a-depth.

Proof. The “if” direction follows from the fact that an a-bounded infinite branch
has infinitely many positions of the same a-depth; the converse direction follows
from Lemma A.6.

The a-truncation construction is monotonic w.r.t. Ea⊥:

Lemma A.8. For each t ∈ T ∞⊥ and d ≤ e ≤ ω, we have t|ad Ea⊥ t|ae . In
particular, t|ad Ea⊥ t.

Proof. We show the properties (a) through (c) from Definition 3.2:

(a) If p ∈ D(t|ad), then p ∈ D(t) with |p|a < d ≤ e. Hence, p ∈ D(t|ae).

(b) If p ∈ D(t|ad), then t|ad(p) = t(p) = t|ae(p).

(c) If ai = 0 and p ∈ D(t|ad), then |p · 〈i〉|a = |p|a + ai = |p|a < d, i.e.
p · 〈i〉 ∈ D(t|ad).

The theorem below detail the two directions of the correspondence between
the limit inferior and the limit.

Theorem 3.8. Let (tι)ι<α be a sequence in T a⊥ .

(i) If limι→α tι = t in (T a⊥ ,daT ), then lim infι→α tι = t in (T a⊥ ,Ea⊥).

(ii) If lim infι→α tι = t in (T a⊥ ,Ea⊥) and t is total, then limι→α tι = t in
(T a⊥ ,daT ).

Proof of Theorem 3.8. (i) If (tι)ι<α convergences to t, we find for each d < ω
some β < α such that t|ad = tι|ad for all β ≤ ι < α. By Lemma A.8, we thus
have that t|ad Ea⊥ tι for all β ≤ ι < α, which means that t|ad Ea⊥ sβ , for
sβ =

d
β≤ι<α tι. This inequality implies that

⊔
d<ω t|ad Ea⊥

⊔
β<α sβ . The

left-hand side is well-defined as the set
{
d < ω

∣∣ t|ad } is directed according
to Lemma A.8. Moreover, by Theorem 3.4, the left-hand side is equal to
t. Since the right-hand side is by definition equal to t′ = lim infι→α tι, we
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obtain the inequality t Ea⊥ t
′. Consequently, D(t) ⊆ D(t′) and t(p) = t′(p)

for all p ∈ D(t). It thus remains to be shown that D(t′) ⊆ D(t). To this
end, assume some p ∈ D(t′). By Theorem 3.4, we have that there is some
β < α such that p ∈ D(

d
β≤ι<α tι) and thus p ∈ D(tι) for all β ≤ ι < α.

Therefore, by Lemma A.4, we have that p ∈ D(t).

(ii) In order to prove that (tι)ι<α converges to t, we need to show that for each
d < ω there is some β < α such that tι|ad = t|ad for all β ≤ ι < α. Let d < ω.
According to the definition of the limit inferior, t =

⊔
β<α sβ with sβ =d

β≤ι<α tι. By Theorem 3.4, we thus know that for each p ∈ D(t) there is

some βp < α such that sβp(p) = t(p). Let B =
{
βp
∣∣ p ∈ D(t|ad)

}
. Since,

according to Lemma A.6, D(t|ad) is finite, so is B. Hence, B has a maximal
element, say β. Since (sι)ι<α is monotonic w.r.t. Ea⊥, we thus have that
sβp E

a
⊥ sβ for each p ∈ D(t|ad), which means that t(p) = sβp(p) = sβ(p)

for all p ∈ D(t|ad). By construction, sβ Ea⊥ tι for all β ≤ ι < α, and thus
t(p) = sβ(p) = tι(p) for all p ∈ D(t|ad) and β ≤ ι < α. We can therefore
conclude that t|ad(p) = tι|ad(p) for all p ∈ D(t|ad) and β ≤ ι < α.

Now it only remains to be shown that whenever p 6∈ D(t|ad) then p 6∈ D(tι|ad)

for all β ≤ ι < α. If |p|a ≥ d, then p 6∈ D(tι|ad) trivially holds. Otherwise,

if |p|a < d, then p 6∈ D(t|ad) implies p 6∈ D(t). Since t is total, 〈〉 ∈ D(t), i.e.
there is some prefix of p in D(t). Let q be the longest such prefix. Then
q ∈ D(t|ad) and, by the previous paragraph, we know that tι(q) = t(q) for
all β ≤ ι < α. Since q is maximal in D(t) and t is total, we know that
t(q) 6∈ {@, λ} and thus tι(q) 6∈ {@, λ} for all β ≤ ι < α. Hence, p is not in
D(tι) and therefore not in D(tι|ad).

A.2 Transfinite Reductions

For the proof of Lemma 4.6, we need the following property:

Lemma A.9. For each reduction step s→R,p t, we have that p ∈ D(s).

Proof. We proceed by induction on p. If p = 〈〉, then p ∈ D(s) follows from
the restriction of rewrite systems such that (l, r) ∈ R implies that l 6= ⊥. If
p = 〈i〉 · q, then p ∈ D(s) follows immediately by the induction hypothesis.

Lemma A.10. For all s, t ∈ T ∞⊥ with s Ea⊥ t and for all p ∈ D(t), we have
that p↓a ∈ D(s) implies p ∈ D(s).

Proof. We show that if p↓a ∈ D(s), then all q with p↓a ≤ q ≤ p are in D(s).
We proceed by induction on q. The case where q ≤ p↓a is trivial. Otherwise,
q = q′ · 〈i〉 for some q′ with p↓a ≤ q′ ≤ p. Hence, by induction hypothesis,
q′ ∈ D(s). Moreover, p↓a ≤ q′ ≤ p implies that ai = 0. Additionally, since p is
in D(t), so is its prefix q. Since s Ea⊥ t, we thus can conclude that q ∈ D(s).

Lemma 4.6. The reduction context of a step s →p t is equal to s \ p↓a and
t \ p↓a.

Proof Proof of Lemma 4.6. Let ĉ be the reduction context of s →p t. We pro-
ceed by induction on p. The case p = 〈〉 is trivial since then ĉ = s \ (p↓a) =
t \ (p↓a) = ⊥.
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Let p = 〈j〉 · p′. We only look at the case where j = 0, the cases j = 1 and
j = 2 follow by a similar argument. If p = 〈0〉 · p′, then s = λx.s′, t = λx.t′ and
s′ →p′ t

′. By induction hypothesis, the reduction context c′ of s′ →p′ t
′ is equal

to s′ \ p′↓a and t′ \ p′↓a.
We consider two cases. At first, suppose p↓a = 〈〉. Consequently, s \ p↓a =

t \ p↓a = ⊥. If ĉ 6= ⊥, then p↓a ∈ D(ĉ). Since, by Lemma A.9, p ∈ D(s),
and since ĉ Ea⊥ s, we can apply Lemma A.10 to conclude that p ∈ D(ĉ). This
contradicts the definition of reduction contexts. Hence, ĉ = ⊥.

Finally, suppose that p↓a 6= 〈〉. Consequently, p↓a = 〈0〉 · p′↓a, which means
that s \ p↓a = λx.(s′ \ p′↓a) and t \ p↓a = λx.(t′ \ p′↓a). Hence, s \ p↓a = λx.c′ =
t \ p↓a. We claim that ĉ = λx.c′. To prove this we show the following two
statements, where c = λx.c′: (i) c Ea⊥ s, t, and (ii) if d Ea⊥ s, t with p 6∈ D(d),
then d Ea⊥ c.

(i) We show (a)-(c) of Definition 3.2:

(a)&(b) Let c(q) = l. If q = 〈〉 then l = λ and s(q) = t(q) = λ.

If q = 〈0〉 · q′, then we have three cases to distinguish:

– l ∈ L \ P: Then c′(q′) = l, which means that s′(q′) = t′(q′) = l
since c′ Ea⊥ s

′, t′.

– l = 〈〉: Then c′(q′) = x, which means that s′(q′) = t′(q′) = x
since c′ Ea⊥ s

′, t′.

– l = 〈0〉 · q: Then c′(q′) = q, which means that s′(q′) = t′(q′) = q
since c′ Ea⊥ s

′, t′.

In all cases we can conclude that s(q) = t(q) = l.

(c) Assume that q ∈ D(c) and that q · 〈i〉 is in D(s) ∪ D(t) and strict.
We have to show that q · 〈i〉 ∈ D(c).

– If q = 〈〉, then i = 0, ai = 0 and 〈〉 ∈ D(s′)∪D(t′). Since p↓a 6= 〈〉
and a0 = 0, we know that p′↓a 6= 〈〉. Since c′ = s′\p′↓a = t′\p′↓a,
we can thus conclude that 〈〉 ∈ D(c′). That means that q · 〈i〉 ∈
D(c).

– If q = 〈0〉 · q′, then q′ ∈ D(c′), q′ · 〈i〉 ∈ D(s′)∪D(t′) and q′ · 〈i〉 is
strict. Since c′ Ea⊥ s

′, t′, we can thus conclude that q′ ·〈i〉 ∈ D(c′),
which means that q · 〈i〉 ∈ D(c).

(ii) Assuming d Ea⊥ s, t and p 6∈ D(d), we show (a)-(c) of Definition 3.2 to
prove that d Ea⊥ c:

(a)&(b) Let d(q) = l. If p↓a ≤ q, then also p↓a ∈ D(d). Since p ∈ D(s),
by Lemma A.9, and d Ea⊥ s, we can apply Lemma A.10 to obtain
that p ∈ D(d), which contradicts the assumption. Thus, we can
assume that p↓a 6≤ q. Consequently, (s \ p↓a)(q) = l, which means
that c(q) = l.

(a) Assume that q ∈ D(d) and that q · 〈i〉 is in D(c) and strict. Conse-
quently, since c Ea⊥ s, we have that q · 〈i〉 ∈ D(s). The latter implies
that q · 〈i〉 ∈ D(d) since d Ea⊥ s.
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The following property, which relates m-convergence and -continuity, fol-
lows from the fact that our definition of m-convergence on T a⊥ instantiates the
abstract notion of (strong) m-convergence from our previous work [2]:

Lemma A.11. Let S = (tι →pι tι+1)ι<α be an open m-continuous reduction.

If (|pι|a)ι<α tends to infinity, then S is m-convergent.

Proof. Special case of Proposition 5.5 from [2]; also cf. [9, Thm. B.2.5].

Proposition 4.9. For each reduction S : s�m t, we also have that S : s�p t.

Proof of Proposition 4.9. Let S = (tι →pι,cι tι+1)ι<α. Given a limit ordinal
γ ≤ α, we have to show that lim infι<γ cι = tγ , assuming tα = t. By m-

convergence of S, we know that (|pι|a)ι<γ tends to infinity and thus so does

(
∣∣pι↓a∣∣a)ι<γ . In other words, for each d < ω there is some δ < γ with

∣∣pι↓a∣∣a ≥ d
for all δ ≤ ι < γ. Since, by Lemma 4.6, cι = tι\pι↓a, we thus have that cι|ad = tι|ad
for all δ ≤ ι < γ. Consequently, (cι)ι<γ converges to the same lambda tree as
(tι)ι<γ if any. Since m-convergence of S implies that limι→γ tι = tγ , we can
therefore conclude that limι→γ cι = tγ . According to Theorem 3.8 (i), we thus
have that lim infι→γ cι = tγ .

The above proposition allows us to prove the following lemma that provides
a characterisation for when p-convergence implies m-convergence:

Lemma A.12. Let S : s�p t. Then S : s�m t iff the a-depth of contracted redex
occurrences tends to infinity for each open prefix of S.

Proof. The “only if” direction follows from the definition of m-convergence. For
the converse direction, we assume that S = (tι →pι tι+1)ι<α, and show that
S|β : s �m tβ for each prefix S|β of S by induction on its length β. The case
β = 0 is trivial; if β is a successor ordinal the statement follows immediately
from the induction hypothesis. Let β be a limit ordinal. By the induction
hypothesis, each proper prefix S|γ of S|β m-converges to tγ , which means that

S|β is m-continuous. Since (|pι|a)ι<α tends to infinity, there is, by Lemma A.11,
some t′β such that S|β : s �m t′β , which implies S|β : s �p t′β by Proposition 4.9.
As we know that S|β : s �p tβ , we can then conclude that t′β = tβ , and thus
S|β : s�m tβ .

Proposition 4.10. S : s�p t implies S : s�m t whenever S and t are total.

Proof Proof of Proposition 4.10. Let S = (tι →pι,cι tι+1)ι<α. To complete the

proof it remains to be show that (|pι|a)ι<γ tends to infinity for each limit ordinal
γ ≤ α. To this end, we assume some limit ordinal γ ≤ α and d < ω and construct
some δ < γ such that |pι|a ≥ d for all δ ≤ ι < γ.

By p-convergence, we know that tγ = lim infι→γ cι, i.e. tγ =
⊔
β<γ sβ where

sβ =
d
β≤ι<γ cι. By Theorem 3.4, we find for each p ∈ D(tγ |ad) some δ(p) < γ

with p ∈ D(sδ(p)). Since D(sδ′) ⊆ D(sδ′′) whenever δ′ ≤ δ′′ and since t|aa is finite
according to Lemma A.6, we find some δ < γ with D(tγ |ad) ⊆ D(sδ), namely
δ = max

{
δ(p)

∣∣ p ∈ D(tγ |ad)
}

. Since, by definition, sδ Ea⊥ cι for all δ ≤ ι < γ,
we then have that D(tγ |ad) ⊆ D(cι) for all δ ≤ ι < γ. From this we derive the
following for all δ ≤ ι < γ:
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(1) pι 6∈ D(tγ |ad), and (2) tι(p) = tγ(p) for all p ∈ D(tγ |ad).

(1) follows from the fact that pι 6∈ D(cι). For (2), assume that p ∈ D(tγ |ad).
Then p ∈ D(sδ), which implies that sδ(p) = tγ(p) as sδ Ea⊥ tγ . Since sδ Ea⊥ cι,
we also have that sδ(p) = cι(p), and since cι Ea⊥ tι, we have that cι(p) = tι(p).
Altogether, we thus have that tγ(p) = tι(p).

Finally, we prove the claim that |pι|a ≥ d for all δ ≤ ι < γ. If pι ∈ D(tγ),

then |pι|a ≥ d follows immediately from (1). Otherwise, if pι 6∈ D(tγ), we
find a maximal prefix q < pι with q ∈ D(tγ). Because tγ is total, we know

that tγ(q) ∈ V ] P. Assume that |pι|a ≥ d does not hold. Consequently,

|q|a ≤ |pι|a < d, which means that q ∈ D(tγ |ad). According to (2), we thus
obtain that tι(q) = tγ(q). Hence, tι(q) ∈ V ] P which means that pι 6∈ D(tι),
which, according to Lemma A.9, contradicts the fact that there is a reduction
step from tι at pι since D⊥(tι) = ∅. Consequently, |pι|a ≥ d.

A.3 Beta Reduction

Proposition 5.3. S : s�m t iff no prefix of S has volatile positions and S : s�p

t.

Proof of Proposition 5.3. Let S = (tι →pι tι+1)ι<α. The “only if” direction

follows from Proposition 4.9 and the fact that if (|pι|a)ι<β tends to infinity,
then S|β has no volatile positions. The “if” direction follows from Lemma A.12
as the absence of volatile positions implies that the a-depth of contracted redex
occurrences tends to infinity (by the infinite pigeonhole principle).

Lemma A.13. Let S = (tι →cι,pι tι+1)ι<α be an open reduction p-converging
to t. Then we have the following:

(i) p ∈ D(t) =⇒ ∃β < α∀β ≤ ι < α : pι↓a 6≤ p and tι(p) = t(p).

(ii) p ∈ D(tβ) and ∀β ≤ ι < α : pι↓a 6≤ p =⇒ ∀β ≤ ι < α : tι(p) = t(p).

Proof. (i) If p ∈ D(t), then, by Theorem 3.4, there is some β < α such
that s(p) = t(p), where s =

d
β≤ι<α cι. Since s Ea⊥ cι, we thus have

that cι(p) = s(p) = t(p) for all β ≤ ι < α. According to Lemma 4.6,
cι = tι \ p↓aι. Consequently, p↓aι 6≤ p and tι(p) = t(p) for all β ≤ ι < α.

(ii) Let β < α and P =
{
p ∈ D(tβ)

∣∣∀β ≤ ι < α : pι↓a 6≤ p
}

. We show the
following statements for all β ≤ γ ≤ α:

cι(p) = tβ(p) for all p ∈ P, β ≤ ι < γ (A)

tγ(p) = tβ(p) for all p ∈ P (B)

Then (ii) follows from (B). We proceed by induction on γ.

For γ = β, (A) is vacuously true and (B) is trivial.

Let γ = γ′ + 1 > β. For (A), it remains to be shown that cγ′(p) = tβ(p)
for all p ∈ P . Since, according to Lemma 4.6, cγ′ = tγ′ \ pγ′↓a, we know
that cγ′(p) = tγ′(p) for all p ∈ P . By the induction hypothesis for (B), we
then have that cγ′(p) = tβ(p) for all p ∈ P . Moreover, since cγ′ Ea⊥ tγ , we
have that tγ(p) = cγ′(p) = tβ(p) for all p ∈ P .
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Let γ be a limit ordinal. Then (A) follows immediately from the induction
hypothesis. For (B), we observer that properties (1) to (3) from Proposi-
tion 3.5 are satisfied for the glb s =

d
β≤ι<γ cι. Property (1) follows from

the induction hypothesis for (A) and (2) is immediate from the construc-
tion of P . To see that (3) is true, assume some β ≤ ι < γ and p ∈ P with
p · 〈i〉 ∈ D(cι) but p · 〈i〉 6∈ P . Then there is some β ≤ ι′ < γ such that
p · 〈i〉 = pι′↓a. Consequently, ai = 1. Since (1)-(3) are fulfilled, we may
apply Proposition 3.5, to conclude that s(p) = cβ(p) for all p ∈ P . Hence,
because s Ea⊥ tγ , we have that tγ(p) = cβ(p) for all p ∈ P . By applying
the induction hypothesis for (A), we can then conclude that tγ(p) = tβ(p)
for all p ∈ P .

Corollary A.14. Let S = (tι →cι,pι tι+1)ι<α be an open reduction p-converging
to t. Then we have the following:

(i) p · 〈i〉 ∈ D⊥(t) and ai = 0 =⇒ ∃β < α∀β ≤ ι < α : p · 〈i〉 ∈ D⊥(tι)

(ii) p · 〈i〉 ∈ D⊥(tβ) and ∀β ≤ ι < α : pι↓a 6≤ p =⇒ ∀β ≤ ι < α : p · 〈i〉 ∈
D⊥(t).

Proof. (i) Since p · 〈i〉 ∈ D⊥(t), we know that p ∈ D(t). Consequently, by
Lemma A.13 (i), there is some β < α such that pι↓a 6≤ p and tι(p) = t(p)
for all β ≤ ι < α. Since ai = 0, we have that pι↓a 6≤ p · 〈i〉 for all
β ≤ ι < α. Hence, p · 〈i〉 6∈ D(tι) for all β ≤ ι < α, because otherwise
p · 〈i〉 6∈ D(t) according to Lemma A.13 (ii). Consequently, p · 〈i〉 ∈ D⊥(tι)
for all β ≤ ι < α.

(ii) Let i = 0. The other cases follow by a similar argument.

Then tβ(p) = λ, and by Lemma A.13 (ii), also t(p) = λ. Hence, p ·
〈i〉 ∈ D(t) ∪ D⊥(t). By induction, we show below that p · 〈i〉 ∈ D(t)
implies p · 〈i〉 ∈ D(tβ) for any reduction S (including closed ones). Since
p · 〈i〉 6∈ D(tβ), that must mean that p · 〈i〉 ∈ D⊥(t).

The base case β = α is trivial. If α = γ + 1, then also p · 〈i〉 ∈ D(tγ)
and by induction hypothesis p · 〈i〉 ∈ D(tβ). If α is a limit ordinal, then
p · 〈i〉 ∈ D(tγ) for some β ≤ γ < α according Lemma A.13 (i). Then
p · 〈i〉 ∈ D(tβ) follows by the induction hypothesis.

Lemma 5.4. If p is outermost-volatile in S : s�p t, then p ∈ D⊥(t).

Proof of Lemma 5.4. Let S = (tι →pι,cι tι+1)ι<α. Since p is volatile in S, we
find for each β < α some β ≤ ι < α with pι↓a ≤ p. Hence, by Lemma 4.6, we
know that p 6∈ D(cι). Consequently, by Theorem 3.4 and Proposition 3.5, we
have that p 6∈ D(t).

If p = 〈〉, then p ∈ D⊥(t) follows immediately. If p = q · 〈0〉, then we have
to show that t(q) = λ to conclude that p ∈ D⊥(t). Since p is outermost-volatile
in S, we find some β < α such that p ∈ D(tβ) and pι↓a 6≤ q for all β ≤ ι < α
(the latter because otherwise some prefix of q would be volatile in S). Hence,
by Lemma A.13 t(q) = tβ(q). Moreover, since q · 〈0〉 ∈ D(tβ), we know that
tβ(q) = λ. Consequently, t(q) = λ. The argument for the cases p = q · 〈1〉 and
p = q · 〈2〉 is analogous.
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Corollary A.15. If p is volatile in S : s�p t, then p 6∈ D(t).

Proof. Follows from Lemma 5.4.

Proposition 5.6. An open reduction is destructive iff it p-converges to ⊥.

Proof. The “only if” direction follows immediately from Lemma 5.4.
For the “if” direction, let S = (tι →pι tι+1)ι<α. Because ⊥ is not a redex,

we know that D(tι) is non-empty for all ι < α. Since S p-converges to ⊥, we
thus know, according to (the contrapositive of) Lemma A.13 (ii), that for each
β < α there is some β ≤ ι < α such that pι↓a ≤ 〈〉. That is, S is destructive.

Lemma A.16. Given t ∈ T a⊥ and p ∈ D⊥(t) with |p|a = 0, we have that t ∈ Fa⊥.

Proof. Let s be a ⊥-instance of t w.r.t. Fa. Then s|p ∈ Fa, i.e. there is a
destructive reduction s|p �p � ⊥. By embedding this reduction into s at position

p, we obtain a reduction S : s→ s′ that has a volatile position p. Since |p|a = 0,
also 〈〉 is volatile in S. Consequently, s ∈ Fa, which means that t ∈ Fa⊥.

Lemma A.17. For any open �S-reduction t�p �S ⊥, we find an open �-reduction
t�p � ⊥.

Proof. We first show that any reduction S : t �p �S ⊥ contracts infinitely many
�-redexes at a-depth 0.

To this end, suppose this was not the case. Then, by Proposition 5.6, S
contracts infinitely many S-redexes at a-depth 0. However, �S-reduction at a-
depth > 0 creates no new S-redexes at a-depth 0, and S-reduction at a-depth 0
creates at most one S-redex at the same a-depth (but at a strictly smaller 111-
depth). Hence, contraction of infinitely many S-redexes at a-depth 0 requires
t to contain infinitely many S-redexes at a-depth 0, which is impossible by
Proposition A.7

Finally we construct a �-reduction T : t �p � ⊥ from S by removing all S-
steps. Clearly �-redexes contracted in S are still �-redexes in T . Moreover,
since infinitely many redexes at a-depth 0 are contracted T also p-converges to
⊥ by Proposition 5.6.

Theorem 5.9. If s�p �S t, then s�m B t, where B = B
(
Fa
)
.

Proof of Theorem 5.9. Let S = (φι : tι →pι tι+1)ι<α be a �S-reduction that p-
converges to tα. We construct a B-reduction T from S that also p-converges to
tα but that has no volatile positions in any of its open prefixes. Thus, according
to Proposition 5.3, T also m-converges to tα. The construction removes steps
in S that take place at or below outermost-volatile positions of some prefix of
S and replaces them by á-steps. Let p be an outermost-volatile position of
some prefix S|β . Then there is some ordinal γ < β such that no reduction step
between γ and β in S takes place strictly above p, i.e. pι 6< p for all γ ≤ ι < β.
Hence, we can construct a destructive reduction S1 : tγ |p �p �S ⊥ by taking the
subsequence of the segment S|[γ,β) that contains the reduction steps φι with
p ≤ pι. Moreover, by Lemma A.17, we find a �-reduction S2 : tγ |p �p � ⊥.

Note that tγ |p may not be total. However, the applicability of �-steps is
preserved by forming ⊥-instances. In particular, we can form ⊥-instances w.r.t.
Fa. Let r be such a ⊥-instance of tγ |p w.r.t. Fa. Then there is a destructive
reduction S3 : r �p � ⊥ that contracts redexes at the same positions as S2. Hence,
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r ∈ Fa, which means that tγ |p ∈ Fa⊥. Additionally, tγ |p 6= ⊥ since tγ |p contains
a �-redex. Consequently, there is a pair (tγ |p,⊥) ∈ á. Let T ′ be the reduction
that is obtained from S|β by replacing the γ-th step, which we can assume
w.l.o.g. to take place at p, by a á-step at the same position p and removing all
reduction steps φι with p ≤ pι and γ < ι < β. Let t′ be the lambda tree that
the reduction T ′ p-converges to. tβ and t′ can only differ at position p or below.
However, by construction, we have p ∈ D⊥(t′) and, by Lemma 5.4, p ∈ D⊥(tβ),
too. Consequently, t′ = tβ .

Lemma A.18. If B = B
(
Fa
)

and s�m B t, then s�m � s
′ and s′ �m á t.

Proof. According to Lemma 27 of Kennaway et al. [13], this property holds for
the metric d111

T for all B (U) given U is closed under substitution. The proof
works for all other metrics of the form daT as well, and Fa is clearly closed under
substitution: given a total, fragile lambda tree t witnessed by the destructive
�-reduction S and a substitution σ (of total lambda trees), then σ(t) is also
fragile witnessed by the reduction obtained from S by applying σ to each of its
lambda trees.

Lemma A.19. Let á=á(U) for some U ⊆ T a and S : s�m á t. Then there is a
reduction T : s�m á t of length at most ω contracting disjoint á-redexes of s.

Proof. Let S = (tι →pι tι+1)ι<α, and let P be the set of outermost positions of
redexes contracted in S, i.e. P = {pβ |β < α,∀ι < α : pι 6< pβ }. Then, for each
p ∈ P , also s|p is a á-redex by the definition of U⊥. Let T be the reduction
that contracts all redexes in s at positions P . By Proposition A.7, this yields
a reduction m-converging to some lambda tree t′. Since all redexes that are
contracted in S are subtrees of some redex contracted in T , we have that t′ =
t.

Theorem 5.10. Let B = B
(
Fa
)

and s�m B t such that s is total. Then s�p � t
if a = 111 or t is a á-normal form.

Proof of Theorem 5.10. By Lemmas A.18 and A.19, we find reductions S : s�m �

s′ and T : s′ �m á t, where T contracts disjoint á-redexes in s′. By Proposition 4.9,
we have that S : s �p � s

′ and that T : s′ �p á t. Let u →á,p v be a step in T .
Then u|p ∈ Fa⊥. Because s is total, so is s′. Together with the fact that all
steps in T occur at disjoint positions, this implies that u|p is total and thus
an element of Fa. Consequently, we have a destructive reduction starting in
u|p. By embedding this reduction in u at position p, we obtain a reduction
U : u �p � u

′ that has p as a volatile position. Following Lemma 5.4, we only
have to show that p is outermost-volatile in U in order to obtain that u′ = v.
Since all steps in U take place at p or below, p can only fail to be outermost-
volatile if it is strict. We show that p is non-strict. If p = 〈〉, this is trivial.
Otherwise, p = q · 〈i〉. If a = 111, then p is non-strict. Otherwise, t must be a
á-normal form according to the assumption. Moreover, we know that t|p = ⊥.
Hence, t|q 6= ⊥, and, according to Lemma A.16, t|q ∈ Fa⊥ whenever ai = 0. That
means, t|q is a á-redex whenever ai = 0, which contradicts the assumption that
t is a á-normal form. Hence, ai = 1 and, thus, p is non-strict.

Let T ′ be the reduction that is obtained from T by replacing each step
u→á,p v with a reduction u�p � v as constructed above. Clearly, we then have
that T ′ : s′ �p � t.
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Note that the restriction to total lambda trees s is crucial: if a0 = 0, then
we have a single step reduction λx.⊥ →B ⊥ to a á-normal form, but there is no
p-converging reduction λx.⊥�p � ⊥ as λx.⊥ is a �-normal form.

Theorem 5.13. For each s ∈ T a⊥ , there is a normalising reduction s�p �(S) t.

Proof Proof of Theorem 5.14. For each lambda tree u and non-strict position
p ∈ D(u), we have the following: If u|p is not active, then there is a finite
reduction u→∗� v, where v|p is stable. If, on the other hand, u|p is active, then
it is, according to Lemma 5.12, also fragile. Consequently, we find a reduction
S : u�p � v, in which p is volatile. Hence, according to Lemma 5.4, we have that
p 6∈ D(v), i.e. subtree at p has been annihilated.

By performing the above reductions starting with s at root position and
proceeding at positions of increasing depth, we obtain a p-converging reduction
s�p � t such that each subtree of t is stable. That is, t is a �-normal form.

We also find a reduction s �p �S u to �S-normal form u by extending the
�-reduction s �p � t with a S-reduction t �p S u that consecutively contracts all
S-redexes:

t = t0 �
p

S t1 �
p

S t2 �
p

S . . .

where each reduction ti �p S ti+1 is a complete development (cf. Section B) of all
S-redexes in ti. Since each contraction of a S-redex at depth d creates at most
one new redex at depth d− 1 and no other redexes, this process will terminate.
In other words, there is some n < ω such that tn is a S-normal form. Since
contraction of S-redexes creates no �-redexes and t0 is a �-normal form, we
know that tn is a �S-normal form.

Lemma A.20. If s �p �S t contracts a �-redex at position p, then there is a
finite reduction s→∗� u to a term u with a �-redex occurrence at p.

Proof. Let S : s�p �S s
′ be the prefix of s�p �S t that converges to a lambda tree

s′ that has a �-redex occurrence at position p. This means that s′(p · 〈1〉) = λ.
By Lemma B.8, there is a finite reduction s→∗� t with t(p · 〈1〉) = λ. That is, t
has a �-redex occurrence at p.

Lemma A.21. Let S : t�p �S ⊥. Then there is a finite reduction t→∗�S u such
that either u = ⊥ or u has a �-redex occurrence at a-depth 0.

Proof. We proceed by induction on the length of S. In case S is finite, there is
nothing to show. Otherwise, S is of the form t�p �S s→∗�S ⊥.

• Let s →∗�S ⊥ contain a �-step at a-depth 0. By Lemma A.20, there is a
finite reduction t→∗� u where u has a �-redex occurrence at a-depth 0.

• Let s →∗�S ⊥ be empty, i.e. S : t →∗�S ⊥ is empty. Then S can be turned
into an open �-reduction t�p � ⊥ according to Lemma A.17. Which accord-
ing to Proposition 5.6, contains a �-step at a-depth 0. By Lemma A.20,
there is a finite reduction t→∗� u a �-redex at a-depth 0.

• Let s →∗�S ⊥ be non-empty with no �-step at a-depth 0. Then s must
contain a non-root occurrence of ⊥ at a-depth 0, i.e. there is some p ∈
D⊥(s) with p 6= ∅ and |p|a = 0. That means p = q · 〈i〉 with ai = 0. By
Corollary A.14 (i), there is a proper prefix t�p �S u of the reduction t�p �S s
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such that p ∈ D⊥(u), too. Hence, t �p �S u →∗S ⊥. Since this reduction is
strictly shorter than S, we may apply the induction hypothesis to obtain
the desired finite reduction t →∗�S v such that either v = ⊥ or v has a
�-redex occurrence at a-depth 0.

Lemma 5.17. If a ∈ {001, 101, 111} and S : t�p �S ⊥, then there is a reduction
T : t�p �S ⊥ of length ≤ ω. If s is total, then T is a �-reduction of length ω.

Proof. By Lemma A.21, we find a finite reduction t →∗�S t1 that contracts a
redex at a-depth 0 or ends in ⊥. By Lemma 5.16 there is also a reduction
S′ : t1 �p �S ⊥. Thus we can repeat the argument for S′ (instead of S). By
iterating this argument, we obtain a reduction

T : t→∗�S t1 →∗�S t2 →∗�S . . .

that either stops at some tn = ⊥ or is of length ω and contracts infinitely many
redexes at a-depth 0 and thus p-converges to ⊥ according to Proposition 5.6.
In either case T : t�p � ⊥.

If s is total then T cannot be finite, as finite �S-reductions preserve totality.
Hence, no step in T can be an S-step.

B Finitary Approximation Lemma and Infini-
tary Strip Lemma

In order to prove the finitary approximation lemma and the infinitary strip
lemma for p-converging �S-reductions, we adopt the familiar technique of de-
scendants and complete developments.

Throughout this section we consider only �S-reductions over T a⊥ . As we
develop the theory, we have to make restrictions on the strictness signatures a
we consider.

Our definition of complete developments for p-converging �S-reductions is a
straightforward adaptation of the concept from the literature [12, 10, 15]:

Definition B.1 (descendants). Let S : t0 �p �S tα of length α, and U ⊆ D(t0).
The descendants of U by S, denoted U//S, is a subset of D(tα) inductively
defined as follows:

(a) If S = 〈〉, then U//S = U .

(b) If S = 〈φ〉 with φ : s→p t, then U//S =
⋃
u∈U Ru, where:

If φ is a �-step:

Ru =



{u} if p 6≤ u
∅ if u ∈ {p, p · 〈1〉}{
p · q · w

∣∣∣∣∣ s(p · 〈1, 0〉 · q)= p · 〈1〉

}
if u = p · 〈2〉 · w

{p · w} if u = p · 〈1, 0〉 · w and s(u) 6= p · 〈1〉
∅ if u = p · 〈1, 0〉 · w and s(u) = p · 〈1〉
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If φ is a S-step:

Ru =

{
∅ if p ≤ u
{u} if p 6≤ u

(c) If S = T · 〈φ〉, then U//S = (U//T )//〈φ〉

(d) If S is open, then U//S = D(tα) ∩ lim infι→α U//S|ι
That is, u ∈ U//S iff u ∈ D(tα) and ∃β < α∀β ≤ ι < α : u ∈ U//S|ι

If, in particular, U is a set of redex occurrences, then U//S is also called the set
of residuals of U by S. Moreover, by abuse of notation, we write u//S instead
of {u} //S.

The following lemma provides a more convenient characterisation of descen-
dants in the case of open reductions.

Lemma B.2. Let S = (φι : tι →pι tι+1)ι<α be an open �S-reduction with
S : s�p �S t and U ⊆ D(s). Then we have the following:

p ∈ U//S ⇐⇒ ∃β < α : p ∈ U//S|β and ∀β ≤ ι < α : pι↓a 6≤ p

Proof. We first prove the “=⇒” direction. To this end, we assume some p ∈
U//S. Consequently, p ∈ D(t) and there is some β1 < α such that p ∈ U//S|ι
for all β1 ≤ ι < α. According to Lemma A.13 (i), we thus also find some β2 < α
such that pι↓a 6≤ p for all β2 ≤ ι < α. Consequently, given β = max {β1, β2},
we have that p ∈ U//S|β and that pι↓a 6≤ p for all β ≤ ι < α.

For the “⇐=” direction, we show by induction on γ that p ∈ U//S|γ for all
β ≤ γ ≤ α.

The case γ = β is trivial. Let γ = γ′ + 1 > β. That is, U//S|γ =
(U//S|γ′) //〈φγ′〉. By the induction hypothesis, we know that p ∈ U//S|γ′ .
Moreover, pγ′↓a 6≤ p implies that pγ′ 6≤ p. Consequently, p ∈ U//S|γ′ implies
p ∈ U//S|γ .

Let γ be a limit ordinal. By the induction hypothesis, we know that p ∈
U//S|ι for all β ≤ ι < γ. Hence, it remains to be shown that p ∈ D(tγ). Since
p ∈ U//S|β , we know that p ∈ D(tβ). The latter, combined with the assumption
that pι↓a 6≤ p for all β ≤ ι < γ, implies by Lemma A.13 (ii) that p ∈ D(tγ).

Lemma B.3 (monotonicity). Let S : s�p �S t and U, V ⊆ D(s). If U ⊆ V , then
U//S ⊆ V//S.

Proof. We prove this statement by induction on the length of S. If S is empty,
the statement is trivial. If S = T · 〈φ〉, then

U//S = (U//T ) //〈φ〉
IH
⊆ (V//T ) //〈φ〉 = V//S

Let S be open, α = |S|, and p ∈ U//S. Then p ∈ D(t) and there is some
β < α such that p ∈ U//S|ι for all β ≤ ι < α. According to the induction
hypothesis, we then have that p ∈ V//S|ι for all β ≤ ι < α. Consequently,
p ∈ V//S.

Proposition B.4. Let S : s�p �S t and U ⊆ D(s). Then U//S =
⋃
u∈U u//S.

36



Proof. We prove this proposition by induction on the length of S. The cases
S = 〈〉 and S = 〈φ〉 are trivial.

If S = T · 〈φ〉, we can reason as follows:

U//S = (U//T )//〈φ〉 IH= (
⋃
u∈U

Vu︷ ︸︸ ︷
u//T )︸ ︷︷ ︸
V

//〈φ〉 IH=
⋃
u∈V

u//〈φ〉

=
⋃
u∈U

⋃
v∈Vu

v//〈φ〉 IH=
⋃
u∈U

Vu//〈φ〉 =
⋃
u∈U

(u//T )//〈φ〉 =
⋃
u∈U

u//S

Let S be open. The “⊇” follows from Lemma B.3. For the converse direction,
we assume S = (tι →pι tι+1)ι<α and p ∈ U//S. By Lemma B.2, there is some
β < α such that p ∈ U//S|β and pι↓a 6≤ p for all β ≤ ι < α. Hence, by
induction hypothesis, p ∈

⋃
u∈U u//S|β . That is, there is some u∗ ∈ U with

p ∈ u∗//S|β . By Lemma B.2, we may thus conclude that p ∈ u∗//S and thus
p ∈

⋃
u∈U u//S.

Proposition B.5. Let S : s �p �S t and U, V ⊆ D(s). If U ∩ V = ∅, then
U//S ∩ V//S = ∅.

Proof. We show the contraposition of the above statement. To this end, assume
that there is some w ∈ U//S ∩ V//S. By Proposition B.4, we thus find some
u ∈ U, v ∈ V with w ∈ u//S ∩ v//S. We show by induction on the length of S
that u = v, which then implies that U ∩ V 6= ∅.

The case S = 〈〉 is trivial and the case that S = T · 〈φ〉 follows immediately
from the induction hypothesis.

Let S be open with length α. Since w ∈ u//S ∩ v//S, we find β1, β2 such
that w ∈ u//S|ι for all β1 ≤ ι < α and w ∈ v//S|ι for all β2 ≤ ι < α. Given
β = max {β1, β2}, we thus have that w ∈ u//S|β ∩ v//S|β . Hence, by induction
hypothesis, we have that u = v.

By combining Proposition B.4 and Proposition B.5, we know that for each
p ∈ U//S there is a unique q ∈ U such that p ∈ q//S. This unique position q is
also called an ancestor. Moreover, we can show that every position in a lambda
tree has an ancestor:

Lemma B.6. Let S : s �p �S t and p ∈ D(t). Then there is a unique q ∈ D(s)
with p ∈ q//S.

Proof. By Proposition B.4 and Proposition B.5, it suffices to show that D(t) ⊆
D(s)//S. If we have that, then we find, according to Proposition B.4, for each
p ∈ D(t) some q ∈ D(s) with p ∈ q//S. By Proposition B.5, this q is unique.

Let S = (tι →pι tι+1)ι<α. We prove that D(t) ⊆ D(s)//S, by induction on
α.

The case α = 0 is trivial. If α is a successor ordinal, the inclusion follows
immediately from the induction hypothesis.

Let α be a limit ordinal and let p ∈ D(t). By Lemma A.13 (i), this implies
that there is some β < α such that p ∈ D(tβ) and pι↓a 6≤ p for all β ≤ ι < α.
Hence, by the induction hypothesis, p ∈ D(s)//S|β . Since pι↓a 6≤ p for all β ≤
ι < α, we know by Lemma B.2 that p ∈ D(s)//S|β implies that p ∈ D(s)//S.
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Lemma B.7. Let S : s�p �S t and p ∈ D(s). Then we have that s(p) = t(q) for
all q ∈ p//S.

Proof. Let S = (tι →pι tι+1)ι<α. We prove this lemma by induction on α.
The case α = 0 is trivial. If α is a successor ordinal, the inclusion follows

immediately from the induction hypothesis.
Let α be a limit ordinal and let q ∈ p//S. By Lemma B.2, this implies that

there is some β < α such that q ∈ p//S|β and pι↓a 6≤ q for all β ≤ ι < α.
By the induction hypothesis, we thus have that s(p) = tβ(q). Lemma A.13 (ii)
then yields that tβ(q) = t(q), which means that we have the desired equality
s(p) = t(q).

Lemma B.8 (Finitary Approximation Lemma). Let s �p �S t, and P a finite
subset of D(t). Then there is a reduction s→∗� t′ with t(p) = t′(p) for all p ∈ P .

Proof. We prove this by induction on the length of S. The case S = 〈〉 is trivial.
Let S = T · 〈φ〉, where φ : s′ →q t is a �-step. Define

P ′ = {p′ ∈ D(s′) | ∃p ∈ P : p ∈ p′//φ} ∪ {q · 〈1〉} .

By Lemma B.6, P ′ is finite, too. Thus, by induction hypothesis, there is a finite
reduction S′ : s→∗� s′′ such that s′(p) = s′′(p) for all p ∈ P ′. In particular, that
means that q is still �-redex occurrence in s′′. Thus there is a �-reduction step
φ′ : s′′ →q t

′. Let p ∈ P . According to Lemma B.6, there is a unique p′ ∈ D(s′)
with p ∈ p′//φ. By the construction of P ′, we know that p′ ∈ P ′. Hence,

t′(p)
Lemma B.7

= s′′(p′)
IH
= s′(p′)

Lemma B.7
= t(p)

Let S = T · 〈φ〉, where φ : s′ →q t is a S-step. Then s′(p) = t′(p) for
all p ∈ D(t). Moreover, we also have that D(t) ⊆ D(s′), which implies that
P ⊆ D(s′). Hence, we may apply the induction hypothesis to obtain a finite
reduction S′ : s →∗� s′′ such that s′(p) = s′′(p) for all p ∈ P . Consequently,
s′′(p) = t(p) for all p ∈ P .

Let S be open. By Lemma A.13 (i), there is a prefix T < S with T : s�p t′

and t(p) = t′(p) for all p ∈ P . By applying the induction hypothesis, we then
obtain a finite reduction s→∗ t′′ with t′(p) = t′′(p) for all p ∈ P . Consequently,
we have that t(p) = t′′(p) for all p ∈ P .

Proposition B.9. Let S : t0 �p �S t1, T : t1 �p �S t2, and U ⊆ D(t0). Then
U//S · T = (U//S) //T .

Proof. We prove this by induction on the length of T . The case T = is trivial.
If T = T ′ · 〈φ〉, then we can reason as follows:

U//S · T ′ · 〈φ〉 = (U//S · T ′) //〈φ〉 IH= ((U//S) //T ′) //〈φ〉 = (U//S) //T ′ · 〈φ〉

Let T be open. That means, also S · T is open. Hence, we can reason as
follows:

p ∈ U//S · T ⇐⇒ p ∈ D(t2),∃β < |S · T | ∀β ≤ ι ≤ |S · T | : p ∈ U// (S · T ) |ι
⇐⇒ p ∈ D(t2),∃β < |S · T | ∀β ≤ ι ≤ |S · T | : p ∈ U//S · (T |ι)
IH⇐⇒ p ∈ D(t2),∃β < |S · T | ∀β ≤ ι ≤ |S · T | : p ∈ (U//S) //T |ι
⇐⇒ p ∈ (U//S) //T
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For the next proposition we have to exclude certain strictness signatures,
in particular strictness signatures of the form 01∗. The problem is that for
strictness signatures of this form a descendant of a redex occurrence may not
be a redex occurrence as the following example demonstrates:

Example B.10. Let Ω = (λx.x x)(λx.x x) and t = (λx.Ω) y. We consider the
�-reduction S : t →〈1,0〉 t →〈1,0〉 . . . that repeatedly contracts the redex Ω at
〈1, 0〉. This reduction p-converges to ⊥ y if a0 = 0 and a1 = 1. The descendent
of the redex occurrence 〈〉 in t by S is not a redex occurrence in ⊥ y, which is a
�-normal form.

If, in addition, a2 = 1, this phenomenon may also occur for developments.
Let Iω be a lambda tree with Iω = (λx.x)Iω, and let t = (λx.Iω) y. Both Iω and
t are lambda trees in T 011

⊥ . Let U be the set of all occurrences of Iω in t. A
complete development of U in t, e.g. S : t →〈1,0〉 t →〈1,0〉 . . . , p-converges to
⊥ y. Again, 〈〉 is a redex occurrence in t, but its descendant by S is not a redex
occurrence in ⊥ y.

Proposition B.11. Let S : s �p �S t, and a0 = 1 or a1 = 0. If U is a set of
redex occurrences in s, then U//S is a set of redex occurrences in t.

Proof. Let S = (tι →pι tι+1)ι<α. We proceed by induction on α. The case
α = 0 is trivial, and for α a successor ordinal the statement follows immediately
from the induction hypothesis.

Let α be a limit ordinal. To prove the statement, we assume some p ∈ U//S
and show that t|p is a �S-redex. According to Lemma B.2, p ∈ U//S implies
that there is some β < α such that

p ∈ U//S|β and ∀β ≤ ι < α : pι↓a 6≤ p (1)

By the induction hypothesis, we know that tβ |p is a �S-redex.

• We first consider the case that tβ |p is a �-redex, i.e. tβ(p · 〈1〉) = λ.

We proceed by showing the following two statements for all β ≤ γ ≤ α,
where tα = t:

tγ(p · 〈1〉) = λ (2)

cι(p · 〈1〉) = λ for all β ≤ ι < γ (3)

For the case γ = α, we then obtain that t(p · 〈1〉) = λ, i.e. t|p is a �-redex.

For the case γ = β, we have already shown (2) above, and (3) is vacuously
true.

Let γ = γ′ + 1 > β. According to the induction hypothesis, (3) holds for
γ′, which means it remains to be shown that tγ(p · 〈1〉) = cγ′(p · 〈1〉) = λ.
We consider cγ′ first. If pγ′↓a 6≤ p · 〈1〉, then

cγ′(p · 〈1〉) = tγ′(p · 〈1〉)
IH
= λ

Otherwise, by (1), pγ′↓a must be equal to p · 〈1〉. This can only happen
if a1 = 1. Hence, according to the assumption about a, we know that
a0 = 1. Moreover, tγ′ |p·〈1〉 cannot be a �-redex because, by the induction
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hypothesis, tγ′(p · 〈1〉) = λ. Consequently, pγ′ ≥ p · 〈1, 0〉, which is not
possible since a0 = 1 and pγ′↓a = p · 〈1〉.
Next we consider tγ : since cγ′ Ea⊥ tγ , we have tγ(p · 〈1〉) = cγ′(p · 〈1〉) = λ.

Finally, let γ be a limit ordinal. Then (3) follows immediately from the
induction hypothesis. We will show that p · 〈1〉 ∈ D(s) for s =

d
β≤ι<γ cι.

Since s Ea⊥ cβ , tγ , we then have:

tγ(p · 〈1〉) sE
a
⊥tγ= s(p · 〈1〉) sE

a
⊥cβ= cβ(p · 〈1〉) IH

= λ

We know that pι↓a 6≤ p · 〈1〉 · w for all β ≤ ι < γ and w with |w|a = 0.
Otherwise, we would have pι↓a ≤ p · 〈1〉 for some β ≤ ι < γ, which would
contradict the induction hypothesis for (2) if pι↓a = p · 〈1〉, and (1) if
pι↓a ≤ p. Since we know from induction hypothesis for (3), that, for each
β ≤ ι < γ, we have that p · 〈1〉 ∈ D(cι), we can apply Lemma 4.6, conclude

that also p·〈1〉·w ∈ D(cι) for all w with |w|a = 0. Consequently, according
to Proposition 3.5, we have that p · 〈1〉 ∈ D(s).

• Finally we consider the case that tβ |p is an S-redex, i.e. p · 〈i〉 ∈ D⊥(tβ)
for some i with ai = 0.

We can then show by a simple induction proof that the following holds for
all β ≤ γ ≤ α, where tα = t:

p · 〈i〉 ∈ D⊥(tγ) (4)

For the case γ = α, we then obtain that p·〈i〉 ∈ D⊥(t), i.e. t|p is a S-redex.

The case γ = β is trivial.

If γ = γ′ + 1, then p · 〈i〉 ∈ D⊥(tγ) follows from the induction hypothesis
(p · 〈i〉 ∈ D⊥(tγ′)) and the fact that by (1), pγ 6≤ p.
Let γ be a limit ordinal. Then p · 〈i〉 ∈ D⊥(tγ) follows from Corol-
lary A.14 (ii) using (1).

For the remainder of this section we (tacitly) restrict ourselves to strictness
signatures a with a0 = 1 or a1 = 0. This restriction is necessary in order
for the following definition of developments to make sense, since it depends on
Proposition B.11.

For technical reasons, we have to generalise the notion of developments. A
development of a set of redex occurrences U in s is typically only allowed to
contract redexes occurrences that are descendants of redex occurrences in U . In
addition to that we also allow developments to contract any S-redex.

Definition B.12 (developments). Let s ∈ T a⊥ and U a set of redex occurrences
in s.

(i) A reduction S : s�p �S t is a development of U if each ι-th step φι : tι →pι

tι+1 of S contracts a redex at a position pι ∈ U//S|ι or an S-redex.

(ii) A development S : s �p �S t of U is called almost complete if S//U = ∅.
If, in addition, t is an S-normal form, then S is called complete, denoted
S : s�p U t.a
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Definition B.13. Given t ∈ T a⊥ , the set DS(t) is the smallest set satisfying the
following:

(a) D⊥(t) ⊆ DS(t);

(b) If p · 〈i〉 ∈ DS(t) and ai = 0, then p ∈ DS(t); and

(c) If p ∈ DS(t) and p · 〈i〉 ∈ DS(t), then p · 〈i〉 ∈ DS(t).

Proposition B.14. S is infinitarily normalising and confluent. The unique
S-normal form t↓S of t can be characterised as follows:

D(t↓S) = D(t) \ DS(t) t↓S(p) = t(p) for all p ∈ D(t↓S)

Proof. Let t ∈ T a⊥ and define t↓S as the restriction of t to the domain D(t) \
DS(t). By (c) of Definition B.13 this definition yields a well-defined lambda
tree. Moreover, t↓S is clearly an S-normal form.

To prove the proposition, we assume a reduction S : t �p S u and show that
then u�p S t↓S. It is easy to see that any reduction step in S contracts a S-redex
at a position in DS(t), and thus DS(u) ⊆ DS(t). Then a reduction u �p S t↓S
can be obtained by contracting all S-redexes by an innermost parallel reduction
strategy.

According to Proposition B.14, each lambda tree t ∈ T a⊥ has a unique S-
normal form. We write t↓S to denote this unique normal form. Moreover, this
S-normal form

Proposition B.15. Every set of redex occurrences has a complete development.

Proof. Below, we construct an almost complete development t0 �p �S s. This
almost complete development can be extended to a complete development by
a reduction s �p S s↓S to the S-normal form s↓S, which exists according to
Proposition B.14.

Let t0 ∈ T a⊥ , U0 a set of redex occurrences in t0 and V0 the set of outer-
most redex occurrences in U0. Furthermore, let S0 : t0 �p V0

t1 be some complete
development of V0 in t0. S0 can be constructed by contracting the redex occur-
rences in V0 in a left-to-right order. This step can be continued for each i < ω
by taking Ui+1 = Ui//Si, where Si : ti �p Vi ti+1 is some complete development
of Vi in ti with Vi the set of outermost redex occurrences in Ui.

Note that then, by iterating Proposition B.9, we have that

U//S0 · . . . · Sn−1 = Un for all n < ω (1)

If there is some n < ω for which Un = ∅, then S0 · . . . · Sn−1 is a complete
development of U according to (1).

If this is not the case, consider the reduction S =
∏
i<ω Si, i.e. the concate-

nation of all ’Si’s. We claim that S is a complete development of U . Suppose
that this is not the case, i.e. U//S 6= ∅. Hence, there is some u ∈ U//S. Since
all ’Ui’s are non-empty, so are the ’Vi’s. Consequently, all ’Si’s are non-empty
reductions which implies that S is an open reduction. Therefore, we can ap-
ply Lemma B.2 to infer from u ∈ U//S that there is some α < |S| such that
u ∈ U//S|α and all reduction steps beyond α do not take place at u or above.
This is not possible due to the parallel-outermost reduction strategy that S
follows.
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Next we want to show that the final lambda tree of complete developments
is uniquely determined by the start lambda tree and the set of redexes. To
this end we restrict ourselves to strictness signatures 111, 101 and 001, since
this uniqueness of complete developments fails for all other strictness signatures
(except for the trivial 000).

Example B.16. At first let a2 = 0, and let a1 = 1 or a0 = 1. Hence, the
lambda tree s with s = (λx.s) x is in T a⊥ . Given t = (λx.y) s, we find two
complete developments of the set of all redex occurrences in t: t �p � ⊥ (by
contracting s to itself repeatedly) and t→� y.

If we had chosen a more strict notion of complete developments, that does
not contract arbitrary S-redexes, then the uniqueness of complete developments
would also fail for 101 and 001: Let a2 = 1. Then the lambda tree Iω with
Iω = (λx.x) Iω is in T a⊥ . At first consider a1 = 0 and t = (λx.x y) Iω. Then
we have two complete developments of the set of all redex occurrences in t:
t �p � (λx.x y)⊥ →� ⊥ y and t →� I

ω y �p � ⊥. Similarly, given a0 = 0, and
t = (λx.λy.x) Iω, we have t�p � (λx.λy.x)⊥ →� λy.⊥ and t→� λy.I

ω �p � ⊥.

Definition B.17 (paths). Given a lambda tree t ∈ T a⊥ and U a set of redex
occurrences in t, a U -path in t (or simply path) is a finite sequence of length
over the set D(t)∪D⊥(t)]{0, 1, 2, λ,V} of the form 〈n0, e0, n1, e1, . . . , el−1, nl〉,
subject to a number of restrictions. We write paths using the notation n0

e0→
n1

e1→ · · · el−1→ nl, and call ni nodes and ei edges. Nodes range over D(t)∪D⊥(t)

and edges over {0, 1, 2, λ,V}. If a path contains ni
ei→ ni+1, we say that ni has

an outgoing ei-edge to ni+1.
The set of well-formed U -paths in t, denoted P(t, U), is defined as follows.

Each path starts with the node 〈〉 and must end in a node. For each node n
with an outgoing e-edge to n′, we require that n ∈ P(t) and that one of the
following conditions holds:

(a) If n 6∈ U , then n′ = n · 〈i〉 and e = i.

(b) If n ∈ U , then n′ = n · 〈1, 0〉 and e = λ.

(c) If t(n) = p · 〈1〉 ∈ D(t) and p ∈ U , then n′ = p · 〈2〉 and e = V.

Note that for (a), we implicitly require that n · 〈i〉 ∈ D(t) ∪ D⊥(t).

Note that the path consisting only of a single node 〈〉 is a path in any lambda
tree.

Definition B.18 (diverging paths). Let t ∈ T a⊥ and U a set of redex occurrences
in t. The set of diverging U -paths in t, denoted P⊥(t, U), is the subset of P(t, U)
inductively defined as follows:

(a) Let nk ∈ D(t) ∪ D⊥(t) and ek ∈ {λ,V} ∪ {i | ai = 0} for all k ≥ 0. If

P
e0→ n0

e1→ n1
e2→ · · · em→ nm is a path in P(t, U) for each m ≥ 0, then

P ∈ P⊥(t, U).

(b) If P ∈ P(t, U) ends in a node n ∈ D⊥(t), then P ∈ P⊥(t, U).

(c) If P
i→ n ∈ P⊥(t, U) with ai = 0, then P ∈ P⊥(t, U).

(d) If P ∈ P⊥(t, U) and P
i→ n ∈ P(t, U), then P

i→ n ∈ P⊥(t, U).
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Definition B.19 (terminated paths). Let t ∈ T a⊥ , U a set of redex occurrences
in t, and P a U -path in t.

(i) The position of P , denoted pos(P ), is the subsequence of P containing
only (and all) i-edges (with i ∈ {0, 1, 2}), i.e.

pos(n) = 〈〉 pos(P
e→ n) =

{
pos(P ) · 〈e〉 if e ∈ {0, 1, 2}
pos(P ) if e ∈ {λ,V}

(ii) P is called terminated if it is not diverging, does not end in a node n ∈ U ,
and cannot be extended with a V-edge, i.e. there is no U -path in t of the

form P
V→ n′. The set of all terminated U -paths in t is denoted PT (t, U).

(iii) If P is terminated, we define the labelling of P , denoted lab(P ), as follows:

lab(P ) =


t(n) if P terminates in a node n with t(n) ∈ L \ P
pos(Q) if P terminates in a node n with t(n) ∈ P and

Q is the longest prefix of P that ends in t(n)

Lemma B.20. Let S : s �p t be a development of a set U of redex occurrences
in s. Then there is a surjective mapping θS : PT (s, U) → PT (t, U//S) that
preserves pos(·) and lab(·), i.e.

pos(θS(P )) = pos(P ) and lab(θS(P )) = lab(P ) for all P ∈ PT (s, U).

Proof. Let S = (tι →pι tι+1)ι<α. We proceed by induction on α. The case
α = 0 is trivial. If α is a successor ordinal, the statement follows from the
induction hypothesis by careful case analysis (similar to [10]).

Let α be a limit ordinal. Furthermore, let P ∈ PT (t0, U) and let Pι = θS|ι(P )
for all ι < α. The latter is well-defined by the induction hypothesis. Since each
Pι is terminated, no node in Pι is a volatile position in S. Hence, there is some
β < α such that pι↓a is not a node in Pι for all β ≤ ι < α. Consequently,
Pι = Pβ for all β ≤ ι < α. From the characterisation of lubs and glbs from
Theorem 3.4 and Proposition 3.5 we can then derive that Pβ is also a U//S-
path in tα. Additionally, Pβ must also be terminated in tα, and we thus have
that Pβ ∈ PT (tα, U//S). Define θS(P ) = Pβ . Preservation of pos(·) and lab(·)
follows from the induction hypothesis.

To show that the thus defined function θS is indeed surjective, we assume
some P ∈ PT (tα, U//S) and show that there is some Q ∈ PT (t0, U) with
θS(Q) = P .

Let V be the set of nodes in P (which are positions in tα). Since V is finite,
we may apply Lemma A.13 (i), to obtain some β < α such that tι(p) = tα(p)
and pι↓a 6≤ p for all β ≤ ι < α and p ∈ V . Consequently, P is a terminated
U//S|β-path in tβ , i.e. P ∈ PT (tβ , U//S|β). Since, by induction hypothesis θS|β
is surjective, there is some Q ∈ PT (t0, U) with θS|β (Q) = P . Hence, according
to the definition of θS , we have that θS(Q) = P .

We can use the above lemma to directly define the uniquely determined
final lambda tree of an arbitrary complete development of a given set of redex
occurrences:
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Definition B.21. Let t ∈ T a⊥ and U a set of redex occurrences in t. Then
define the set of path labellings of t w.r.t. U , denoted PL(t, U), as follows:

PL(t, U) = {(pos(P ), lab(P )) |P ∈ PT (t, U)}

Lemma B.22. Let P be a U -path in t with U = ∅. Then

(i) P ends in the node pos(P ), and

(ii) P ∈ PT (t, ∅) iff P 6∈ P⊥(t, ∅).

Proof. (i) We proceed by induction on P . If P consists of a single node,

which thus has to be 〈〉, then pos(P ) = 〈〉. Otherwise, P = Q
i→ n and

by induction hypothesis we have that Q ends in pos(Q). Since the set U
of redex occurrences is empty, only (a) of Definition B.17 is applicable.
Hence, we then have that n = pos(Q) · 〈i〉, which is also the position of P .

(ii) Since U = ∅, P cannot end in a node in U . Moreover, P cannot be
extended by a V edge, since U = ∅ implies that all edges are labelled with
numbers from {0, 1, 2}. Hence, by definition, P 6∈ P⊥(t, ∅) necessary and
sufficient for P ∈ PT (t, ∅).

Lemma B.23. If t ∈ T a⊥ and U = ∅, then P⊥(t, U) is the least subset of P(t, U)
satisfying conditions (b) - (d) of Definition B.18.

Proof. Let P be the least subset satisfying conditions (b) - (d) of Definition B.18.
Hence, P ⊆ P⊥(t, U). To show that P ⊇ P⊥(t, U), we need to show that P
satisfies (a) as well. To this end, we show that the precondition of (a) can never
be satisfied.

Let nk ∈ D(t)∪D⊥(t) and ek ∈ {λ,V}∪{i | ai = 0} for all k ≥ 0. Moreover,

let P
e0→ n0

e1→ n1
e2→ · · · em→ nm is a path in P(t, U) for each m ≥ 0. We show

that this assumption leads to a contradiction.
Since U = ∅, we know that ek 6∈ {λ,V}, and thus ek ∈ {i | ai = 0}. Define

the infinite sequence S = pos(P ) · 〈e0, e1, e2, . . .〉. By Lemma B.22, S is an
infinite branch in t. Moreover, since ek ∈ {i | ai = 0} for all k ≥ 0, we know
that S a-bounded. This contradicts the assumption that t ∈ T a⊥ .

Lemma B.24. The mapping θ : PT (t, ∅) → D(t↓S) with θ(P ) = pos(P ) is a
bijection.

Proof. It is easy to show by induction that pos(·) : P(t, ∅) → D(t) ∪ D⊥(t) is a
bijection. Moreover, D(t↓S) = D(t)\DS(t) by Proposition B.14, and PT (t, ∅) =
P(t, ∅) \ P⊥(t, ∅), by Lemma B.22 (ii). Hence, it suffices to show that P ∈
P⊥(t, ∅) iff pos(P ) ∈ DS(t) for all P ∈ P(t, ∅).

We first prove the “only if” direction by induction on P ∈ P⊥(t, ∅). By
Lemma B.23, we only have to consider the cases (b)-(d) of Definition B.18.

(b) Let P ∈ P(t, ∅) such that P ends in a node n ∈ D⊥(t). Hence, n ∈ DS(t).
Since pos(P ) = n by Lemma B.22, we have that pos(P ) ∈ DS(t).

(c) Let P
i→ n ∈ P⊥(t, ∅) and ai = 0. By induction hypothesis, pos(P

i

)∈

DS(t). Since pos(P
i

)= pos(P ) · 〈i〉, we then have pos(P ) ∈ DS(t).
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(d) Let P = Q
i→ n and Q ∈ P⊥(t, ∅). By induction hypothesis, pos(Q) ∈

DS(t). Since pos(P ) = pos(Q) · 〈i〉, we then have pos(P ) ∈ DS(t).

The converse direction follows by a similar proof by induction on P ∈ P(t, ∅).

From the definition of paths, we can derive that the set of path labellings of
a lambda tree w.r.t. the empty set is the graph of the lambda tree itself:

Lemma B.25. For all t ∈ T a⊥ , we have that PL(t, ∅) = t↓S.

Proof. By Lemma B.24 and Proposition B.14, it suffices to show that lab(P ) =
t(pos(P )) for all P ∈ PT (t, ∅). Let P ∈ PT (t, ∅):

• If t(pos(P )) ∈ L \ P, then lab(P ) = t(n), where n is the node P ends in.
By Lemma B.22, n = pos(P ). Thus, lab(P ) = t(pos(P )).

• If t(pos(P )) ∈ P, then lab(P ) = pos(Q), where Q is the unique path that
ends in t(pos(P )). Thus, lab(P ) = t(pos(P ))

Moreover, from Lemma B.20 and Lemma B.25, we can immediately derive
the following corollary:

Corollary B.26. For each complete development s�p U t, we have PL(s, U) =
t.

Proof. PL(s, U)
Lemma B.20

= PL(t, ∅) Lemma B.25
= t↓S = t.

The equality t↓S = t follows from the fact that t is a S-normal form by the
definition of complete developments.

From this corollary we may derive the following two corollaries.

Corollary B.27. Given two complete developments s �p U t1 and s �p U t2, we
have that t1 = t2.

Proof. Immediate from Corollary B.26

Corollary B.28. For every pair of complete developments S : s �p U t1 and
T : s�p V t2, we find two complete developments S′ : t1 �p V//S t and T ′ : t2 �p U//T

t.

Proof. By Propositions B.4 and B.9, S ·S′ and T ·T ′ are complete developments
of U ∪ V . Hence, according to Corollary B.27, they p-converge to the same
lambda tree.

Corollary B.27 shows that the final term of a complete development is
uniquely determined, no matter in which order redexes are contracted. One
can also show that descendants are uniquely determined as well, i.e. given two
complete developments S : s �p U t1 and T : s �p U t2 and a set of positions
V ⊆ D(s), we have that V//S = V//T . This suggest the notation V//U for the
descendants of V in s by a complete development of U in s.

However, there is no need to prove that this is the case since none of our
proofs depend on it. We are only interested in the final term of a complete
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t0 t1 tβ tβ+1 tα

s0 s1 sβ sβ+1 sα

p0

U0 U1

pβ

Uβ Uβ+1 Uα

p0//U0 pβ//Uβ

S

Figure 1: The Infinitary Strip Lemma.

development: we know that a complete development of U followed by a com-
plete development of V//U is a complete development of U ∪ V , and according
to Corollary B.27, the final term of such a complete development is uniquely
determined (independent of whether V//U is uniquely determined).

We conclude with the proof of the strip lemma:

Lemma B.29. Let S : t0 �p tα a p-convergent reduction, and T : t0 �p U s0
a complete development of a set U of redex occurrences in t0. Then tα and
s0 are joinable by a reduction S/T : s0 �p sα and a complete development
T/S : tα �p U//S sα.

Proof. Let S = (tι →pι tι+1)ι<α. To prove this proposition, we construct
the diagram shown in Figure 1. The ’Uι’s in the diagram are sets of redex
occurrences: Uι = U//S|ι for all 0 ≤ ι ≤ α. In particular, U0 = U . That each
Uι is indeed a set of redex occurrences in tι follows from Proposition B.11. All
arrows in the diagram represent complete developments of the indicated sets
of redex occurrences. Particularly, in each ι-th step of S the redex at pι is
contracted. We will construct the diagram by an induction on α.

If α = 0, the diagram is trivial. If α is a successor ordinal β+1, then we can
take the diagram for the prefix S|β , which exists by the induction hypothesis,
and extend it to a diagram for S. The necessary square to extend the diagram
follows from Corollary B.28.

Let α be a limit ordinal. By induction hypothesis, the diagram exists for
each proper prefix of S. Let Tι : s0 �p sι denote the reduction at the bottom of
the diagram for the reduction S|ι for each ι < α. Since (Tι)ι<α is a monotone
sequence, S/T =

⊔
ι<α Tι is a well-defined �-reduction. Moreover since each Tι

is p-convergent, S/T is p-continuous. Hence, it is also p-convergent, i.e. there is
some sα such that S/T : s0 �p sα.

Let T 0 : tα �p Uα s be a complete development of Uα in tα. It remains to
be shown that s = sα. To this end, assume that T 0 = (φι : rι →qι rι+1)ι<α̂.
Moreover, we assume the following factorisations of T 0: for each ι < α̂, let
T 1
ι , T

2
ι be such that T 0 = T 1

ι · 〈φι〉 · T 2
ι .

Let p ∈ D(s). According to Lemma B.6, we find for each ι < α̂ some uι ∈
D(rι) such that p ∈ uι//〈φι〉 · T 2

ι . By Lemma B.7, we have that s(p) = tα(u0).
Hence, by Lemma A.13 (i), we find some β < α such that tι(u0) = tα(u0) and
pι 6≤ u0 for all β ≤ ι < α.

By Lemma B.2, we know that there must be some β̂ < α̂ such that qι 6≤ uι
for all β̂ ≤ ι < α̂. Consequently, we may assume w.l.o.g. that β is chosen large
enough such that sι(u0) = tι(u0) for all β ≤ ι < α. Moreover, there must
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be an upper bound β ≤ γ < α such that, sι(p) = tι(u0) and if vι ∈ pι//Uι,
then vι 6≤ p for all γ ≤ ι < α. Then, if S/T is closed, we trivially have that
sα(p) = tγ(u0). Otherwise, if S/T is open, we can apply Lemma A.13 (ii) to
obtain that sα(p) = tγ(u0). Combining the equalities we have found, we obtain
that sα(p) = tγ(u0) = tα(u0) = s(p).

By a similar argument we can show that D⊥(s) ⊆ D⊥(sα). Consequently,
we have that s = sα.

Lemma 5.16 (Infinitary Strip Lemma). Given reductions S : s�p �S t1 and
T : s →∗�S t2, there are reductions S′ : t1 �p �S t and T ′ : t2 �p �S t, provided
a ∈ {001, 101, 111}.

Proof. This follows by iterating Lemma B.29 for the special case that T a com-
plete development of a single redex occurrence.

C Weak Convergence

We briefly give the definition and some of the properties of weak convergence.
To distinguish this variant of convergence from the one in the main text of this
paper, we refer to the latter explicitly as strong (m-/p-) convergence.

Definition C.1 (weak convergence). An R-reduction S = (tι →R tι+1)ι<α is
called weakly m-continuous resp. p-continuous if, for all limit ordinals γ < α, we
have that limι→γ tι = tγ resp. lim infι→γ tι = tγ ; S is said to weakly m-converge
resp. p-converge to t, denoted S : t0 ↪→mR t resp. S : t0 ↪→p R t, if it is weakly
m-continuous and limι→α tι = t resp. weakly p-continuous and lim infι→α tι = t.

Intuitively, a reduction is continuous if it is well-defined at limit ordinal
indices, and a reduction is convergent if it additionally has a final result. Since
the partially ordered set (T a⊥ ,Ea⊥) forms a complete semilattice, every weakly
p-continuous reduction also weakly p-converges. In contrast, however, a weakly
m-continuous reduction is not necessarily weakly m-convergent:

Example C.2. Given I = λx.x and t = λx.I x x, consider the �-reduction t t→�

I t t →� t t →� . . . , which is trivially m- and p-continuous. Since the subtree
at position 〈1〉 alternates between t and I t, the reduction does not weakly m-
converge (for any a); but it does weakly p-converge to ⊥ t if a1 = 1 (i.e. position
〈1〉 is non-strict) and to ⊥ if a1 = 0 (i.e. 〈1〉 is strict).

Transferring the results from Section 3 to weak convergence is trivial as these
notions of convergence are directly based on the modes of convergence of the
underlying structures:

Theorem C.3. For each R-reduction S, we have the following:

(i) S : s ↪→mR t =⇒ S : s ↪→p R t.

(ii) S : s ↪→p R t =⇒ S : s ↪→mR t, provided S and t are total.

Proof. (i) follows from Theorem 3.8 (i), (ii) follows from Theorem 3.8 (i).

Note that for (ii) it is not enough to require that the reduction S is total,
since t is not necessarily a part of S but may only arise as a limit inferior of the
lambda trees in S.
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Corollary C.4. S : s ↪→m t iff S : s ↪→p t whenever S and t are total.

Another observation is that the strong notions of convergence indeed imply
their weak counterpart – however, with a small caveat for p-convergence. To
prove this, we need to prove the following observation:

Lemma C.5. Each t ∈ T ∞ is maximal in (T ∞⊥ ,Ea⊥).

Proof. Let t ∈ T ∞ and s ∈ T ∞⊥ with t Ea⊥ s. We prove that s = t by showing
that D(s) ⊆ D(t) by induction on the length of positions. If 〈〉 ∈ D(s), then
〈〉 ∈ D(t) as t ∈ T ∞. If p · 〈0〉 ∈ D(s), then s(p) = λ. Since t Ea⊥ s and, by
induction hypothesis, p ∈ D(t), we know that t(p) = λ. As t ∈ T ∞, we can
conclude that p · 〈0〉 ∈ D(t). The cases p · 〈1〉 and p · 〈2〉 follow analogously.

Lemma C.6. For each R-reduction S, we have the following:

(i) S : s�m t implies S : s ↪→m t.

(ii) S : s�p t implies S : s ↪→p t, provided S and t are total.

Proof. (i) follows immediately from the definition m-convergence. For (ii), we
use the fact that weak/strong p-convergence on lambda trees is an instantiation
of the abstract notion of weak/strong p-convergence from [2]. Proposition 6.5
from [2] states that (strong) p-convergence implies weak p-convergence if the
lambda trees in S and the lambda tree t is maximal w.r.t. Ea⊥, which follows
from Lemma C.5.

D Direct Proof of Correspondence

In this section we prove directly that the there is a one-to-one correspondence
between the ideal completion (ΛI,a⊥ ,⊆) of (Λ⊥,≤a⊥) and the metric comple-

tion (ΛM,a
⊥ ,da) of (Λ⊥,d

a). To this end we use the meta theory of Majster-
Cederbaum and Baier [19].

The first step is to show that the metric da may be canonically derived
from the partial order ≤a⊥ by what Majster-Cederbaum and Baier call a weight,
which in our case will be the height of lambda terms:

Definition D.1 (a-height). The a-height hgta (M) of a term M ∈ Λ⊥, is

hgta (M) = min
{
d < ω

∣∣∣ ∀p ∈ P(M). |p|a < d
}

Instead of 111-height and hgt111 (·), we also use height and hgt (·), respectively.
For each d < ω, define

↓da (M) =
{
N ≤a⊥ M

∣∣∣ hgta (N) ≤ d
}

Alternatively, we may characterise the a-height of a term as follows.

Lemma D.2. For each M1,M2 ∈ Λ⊥, we have the following:

hgta (⊥) = 0 hgta (x) = 1

hgta (M1M2) = max
{

1, hgta (M1) + a1, hgt
a (M2) + a2

}
hgta (λx.M1) = max

{
1, hgta (M1) + a0

}
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Proof. Follows straightforwardly from the definition.

Lemma D.3. For all M,N ∈ Λ⊥ with M ≤a⊥ N , we have that P(M) ⊆ P(N).

Proof. We define the relation � by M � N iff P(M) ⊆ P(N), and show that
� satisfies the condition in Definition 3.1. Since ≤a⊥ is the least such relation,
the lemma follows.

Since ⊆ is a preorder, so is �. ⊥ �M holds for all M since P(⊥) = ∅. Let
M � N . If p ∈ P(λx.M) then p = 〈0〉 · q with q ∈ P(M). By M � N , we
have that q ∈ P(N) and thus p = 〈0〉 · q ∈ P(λx.N). Hence, λx.M � λ.N . The
remaining two closure properties follow similarly.

Moreover, we have that the a-height satisfies the condition of a weight ac-
cording to Majster-Cederbaum and Baier [19]:

Lemma D.4. For each M ∈ Λ⊥, we have that

(i) hgta (M) = 0 iff M = ⊥.

(ii) M ≤a⊥ N implies hgta (M) ≤ hgta (N).

(iii) For each d < ω, ↓da (M) has a greatest element.

Proof. (i) follows immediately from the definition; (ii) follows from Lemma D.3.
For (iii), we construct by induction for each M ∈ Λ⊥ a term Md that is the

greatest element of ↓da (M). If d = 0, then Md is obviously ⊥. In the following
we assume that d > 0. The cases M = x and M = ⊥ are trivial.

If M = M1M2, then we may assume, by induction hypothesis, terms Mdi
i

for di = d − ai. If Md1
1 Md2

2 ≤a⊥ M1M2 then define Md = Md1
1 Md2

2 ; otherwise

Md = ⊥. In either case, Md ≤a⊥ M and hgta
(
Md
)
≤ d, i.e. Md ∈ ↓da (M).

In order to show that Md is the greatest element in ↓da (M), we assume some
N ∈ ↓da (M) and show that then N ≤a⊥ Md. We have that N ≤a⊥ M and thus
either N = ⊥, in which case N ≤a⊥ Md follows immediately, or N = N1N2 with

Ni ≤a⊥ Mi. In the latter case we then have, according to (ii), that hgta (Ni) ≤
hgta (Mi) ≤ di, i.e. Ni ∈ ↓dia (Mi). By induction hypothesis, we thus have that

Ni ≤a⊥ Mdi
i . Note that this means that if Mdi

i = ⊥, then Ni = ⊥. Since
N ≤a⊥ M , this then implies that Mi = ⊥ or ai = 1. In sum, we thus have

that Md1
1 Md2

2 ≤a⊥ M and therefore Md = Md1
1 Md2

2 . It thus remains to be

shown that N1N2 ≤a⊥ M
d1
1 Md1

1 . To this end, we show that N1N2 ≤a⊥ M
d1
1 N2;

Md1
1 N2 ≤a⊥ M

d1
1 Md2

2 follows analogously.

If a1 = 1 or N 6= ⊥, then N1N2 ≤a⊥ Md1
1 N2 follows immediately from

N1 ≤a⊥ Md1
1 . If a1 = 0 and N1 = ⊥, then M1 = ⊥ follows from N ≤a⊥ M .

Consequently, M1 = ⊥ and N1N2 ≤a⊥ M
d1
1 N2 follows by reflexivity.

The case M = λx.M ′ follows analogously.

In fact, a-height is a finite weight since, by definition, hgta (M) < ω for all
lambda terms M .

According to Majster-Cederbaum and Baier [19], the measure provided by
hgta (·) can thus be used to define an ultrametric d on Λ⊥ as follows:

d(M,N) =
l{

2−d
∣∣∣ ↓da (M) = ↓da (N)

}
.

The following two lemmas, will help us show that d and da coincide.
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Lemma D.5. If all conflicts of M,N ∈ Λ⊥ have an a-depth of at least d, then
M ′ ≤a⊥ N for all M ′ ∈ ↓da (M).

Proof. We proceed by induction on M ′. If d = 0, then hgta (M ′) ≤ d implies
that M ′ = ⊥ and thus M ′ ≤a⊥ N follows. In the following we thus assume d > 0.
The case M = ⊥ is trivial. If M ′ = x, then also M = x. Since d > 0, 〈〉 is not
a conflict of M,N , which means that N = x. Hence, M ′ ≤a⊥ N by reflexivity.

If M ′ = M ′1M
′
2, then M = M1M2 with M ′i ≤a⊥ Mi. Moreover, since d > 0,

〈〉 is not a conflict of M,N and thus N is of the form N = N1N2 and all
conflicts of Mi, Ni have a-depth ≥ d − ai. Moreover, because, by Lemma D.2,
hgta (M ′i) ≤ hgta (M ′) − ai ≤ d − ai, we may apply the induction hypothesis
to obtain that M ′i ≤a⊥ Ni. In order to show that M ′ ≤a⊥ N , we show that
M ′1M

′
2 ≤a⊥ N1M

′
2; N1M

′
2 ≤a⊥ N1N2 follows likewise. If a1 = 1 or M ′1 6= ⊥, then

M ′1M
′
2 ≤a⊥ N1M

′
2 follows immediately fromM ′1 ≤a⊥ N1. Otherwise, if a1 = 0 and

M ′1 = ⊥, then M1 = ⊥ since M ′ ≤a⊥ M . Hence, also N1 = ⊥, since otherwise,
〈1〉 is a conflict of M,N of a-depth 0. Consequently, M ′1M

′
2 ≤a⊥ N1M

′
2 follows

by reflexivity.
The case M ′ = λx.M ′1 follows analogously.

Lemma D.6. For all M ∈ Λ⊥ \{⊥} there is some N ≤a⊥ M with hgta (N) = 1.

Proof. We proceed by induction on M . If M = x, set N = x.
Let M = M1M2. If Mi = ⊥ or ai = 1, set Ni = ⊥. Otherwise, there are, by

induction hypothesis, Ni ≤a⊥ Mi with hgta (Ni) = 1 and Ni 6= ⊥. In either case
set N = N1N2. Moreover, we have N = N1N2 ≤a⊥ M1N2 ≤a⊥ M1M2 = M and

hgta (N) = max
{

1, hgta (N1) + a1, hgt
a (N2) + a2

}
= 1.

The case M = λx.M ′ follows analogously.

Lemma D.7. If p is a conflict of M,N with a-depth d, then there is some
M ′ ≤a⊥ M with hgta (M ′) = d + 1 and M ′ 6≤a⊥ N , or vice versa there is some

N ′ ≤a⊥ N with hgta (N ′) = d+ 1 and N ′ 6≤a⊥ M

Proof. We proceed by induction on p.
Let p = 〈〉. Since 〈〉 a conflict, M,N cannot be both ⊥. W.l.o.g. assume that

M 6= ⊥. By Lemma D.6, there is some M ′ ≤a⊥ M of a-height 1. Hence, M ′ and
M are either both the same variable, both applications or both abstractions.
Hence, p is also a conflict of M ′, N , which implies that M ′ 6≤a⊥ N .

Let p = 〈i〉 · q. We assume that i = 1; the cases for i ∈ {0, 2} follow
analogously. Since p is a conflict of M,N , we know that M = M1M2, N = N1N2

and q is a conflict of M1, N1. By induction hypothesis, we can assume w.l.o.g.
that there is some M ′1 ≤a⊥ M1 of a-height d+ 1−a1 and with M ′1 6≤a⊥ N1. From
the latter we deduce that M ′1 6= ⊥ and thus M ′1M2 ≤a⊥ M . If a2 = 1 or M2 = ⊥,
then set M ′2 = ⊥. We get that M ′1M

′
2 ≤a⊥ M ′1M2. Otherwise, if a2 = 0 and

M2 6= ⊥, then there is, according to Lemma D.6, some M ′2 6= ⊥ of a-height 1
with M ′2 ≤a⊥ M2. In either case, we have that M ′1M

′
2 ≤a⊥ M ′1M2 ≤a⊥ M and that

hgta (M ′2) + a2 ≤ 1. The latter implies, by Lemma D.2, that hgta (M ′1M
′
2) =

max
{
hgta (M ′1) + a1, 1

}
= max {d+ 1, 1} = d+ 1
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Finally, we can prove that two metrics d and da coincide:

Proposition D.8. For all M,N ∈ Λ⊥, we have that

da(M,N) =
l{

2−d
∣∣∣ ↓da (M) = ↓da (M)

}
Proof. We write d(M,N) to denote the right-hand side of the above equation.
If da(M,N) = 0, then M,N have no conflicts. By Lemma D.5, we then have
that ↓da (M) = ↓da (N) for all d < ω. Hence, d(M,N) = 0, too.

Otherwise, da(M,N) = 2−d such that there is a conflict p of M,N with
a-depth d and each conflict of M,N has a-depth at least d. The former implies,
by Lemma D.7, that ↓ea (M) 6= ↓ea (N) for all e > d and the latter implies, by
Lemma D.5, that ↓da (M) = ↓da (N). Hence, d(M,N) = 2−d as well.

The ultrametric induced by hgta (·) can be canonically extended to the ideal

completion ΛI,a⊥ of (Λ⊥,≤a⊥):

Definition D.9. For each set S ⊆ Λ⊥ and d < ω, define

⇓da (S) =
{
M ∈ S

∣∣∣ hgta (M) ≤ d
}
.

Define the distance measure daI on ΛI,a⊥ as follows:

daI (I, J) =
l{

2−d
∣∣∣⇓da (I) = ⇓da (J)

}
According to Majster-Cederbaum and Baier [19], daI is an ultrametric. More-

over, they also show that the metric completion (da,ΛM,a
⊥ ) is isometric to ideal

completion ΛI,a⊥ endowed with the metric daI whenever, each ⇓da (I) of an ideal
I is finite.

Lemma D.10. For each M,N ∈ Λ⊥ with M ≤a⊥ N and each p ∈ P(M) and
p · 〈i〉 ∈ P(N) with ai = 0, we have that p · 〈i〉 ∈ P(M).

Proof. We proceed by induction on p. Note that M 6= ⊥ since P(M) 6= ∅. Let
p = 〈〉. If i = 0, then N = λx.N1 and thus M = λx.M1. Since 〈0〉 ∈ P(N),
we know that N1 6= ⊥. Because a0 = 0, this implies that M1 6= ⊥. Hence,
〈0〉 ∈ P(M). The cases for i ∈ {1, 2} follow analogously.

Let p = 〈j〉 · q and assume j = 0. Then M = λx.M1, N = λx.N1, and
M1 ≤a⊥ N1. Since q ∈ P(M1) and q · 〈i〉 ∈ P(N1), we may apply the induction
hypothesis to obtain that q · 〈i〉 ∈ P(M1). Consequently, 〈j〉 · q · 〈i〉 ∈ P(M1).
The cases for j ∈ {1, 2} follow likewise.

Definition D.11. For each I ⊆ Λ⊥ define the set of positions P(I) of I as⋃
M∈I P(M).

A set I in (Λ⊥,≤a⊥) is said to be finitely bounded if for each M,N ∈ I there

is some M̂ ∈ Λ⊥ with M,N ≤a⊥ M̂ .

Proposition D.12. Given a finitely bounded set I in (Λ⊥,≤a⊥), I is finite iff
P(I) is finite.
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Proof. The “only if” direction is trivial. For the converse direction, assume that
I is infinite. We show that Id = {M ∈ I | hgt (M) ≤ d} is finite for each d < ω.
From this we can then deduce that for each d < ω, the set I \ Id is non-empty,
i.e. there is an M ∈ I with a height greater than d. Consequently, for each d,
there is a position p with height d in P(I), i.e. P(I) is infinite.

We show the above claim that Id is finite for any finitely bounded set I by
induction on d. The case d = 0 is trivial, since only ⊥ has depth 0. Let d > 0.
We show that Id contains only finitely many different variables, applications and
abstractions. For each two variables x, y ∈ Id, we find some M with x, y ≤a⊥ M
since I finitely bounded. Hence x = y. Let J = {M | ∃N ∈ Λ⊥ : M N ∈ I } and
K = {N | ∃M ∈ Λ⊥ : M N ∈ I }. Then also J and K are finitely bounded. For
each abstraction MN ∈ Id, we know that M ∈ Jd−1 and N ∈ Kd−1. Since, by
induction hypothesis, both Jd−1 and Kd−1 are finite, there are also only finitely
many applications in Id. The same argument applies to abstractions.

Lemma D.13. For each I ∈ ΛI,a⊥ and d < ω, ⇓da (I) is a finite set.

Proof. Assume that the lemma is not true, i.e. there is some I ∈ ΛI,a⊥ and

d < ω such that ⇓da (I) is an infinite set. According to Proposition D.12, the set
P(⇓da (I)) is infinite, too.

Since there are only finitely many different sequences over {0, 1, 2} of a given
finite length, there must be an infinite sequence q : ω → {0, 1, 2} such that

Pi =
{
p ∈ P(⇓da (I))

∣∣∣ pi ≤ p} is finite for all i < ω, where pi is the prefix of q

of length i.
Note that since each pi ∈ P(⇓da (I)), we know that |pi|a ≤ d. Hence, there

must be a k < ω such that aq(i) = 0 for all i ≥ k.

Let M ∈ ⇓da (I) with pk ∈ P(M). We show by induction on i that pi ∈ P(M)
for all i ≥ k, which is impossible as P(M) is finite. Thus our assumption that
the lemma is not true is false.

The case i = k is trivial. Let i ≥ k and pi ∈ P(M). Moreover, let N be
a term with pi+1 ∈ P(N). Since I is directed, we find a term M ′ ∈ I with
M,N ≤a⊥ M ′. By Lemma D.3, we thus also have that pi+1 ∈ P(M ′). Since
pi+1 = pi · 〈aq(i+1)〉 with aq(i+1) = 0, we can derive from pi ∈ P(M) that
pi+1 ∈ P(M) according to Lemma D.10.

Proposition D.14. The pair (da,ΛM,a
⊥ ) is isometric (daI ,Λ

I,a
⊥ ).

Proof. This proposition follows from Theorem 3.16 of Majster-Cederbaum and
Baier [19] with Lemma D.13 as hgta (·) is a finite weight.
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