Strict Ideal Completions of the Lambda Calculus

Patrick Bahr

IT University of Copenhagen

FSCD 2018

$$N \rightarrow N y \rightarrow N y y \rightarrow \dots$$

where
$$N = (\lambda x.x x y)(\lambda x.x x y)$$

$$N \rightarrow N y \rightarrow N y y \rightarrow \dots$$

where
$$N = (\lambda x.x x y)(\lambda x.x x y)$$

 Can we give a meaningful (infinite) result term for such a non-terminating reduction?

$$N \rightarrow N y \rightarrow N y y \rightarrow \dots$$

where
$$N = (\lambda x.x x y)(\lambda x.x x y)$$

- Can we give a meaningful (infinite) result term for such a non-terminating reduction?
- How about the infinite term ((... y) y) y?

$$N \rightarrow N y \rightarrow N y y \rightarrow \dots$$

where
$$N = (\lambda x.x x y)(\lambda x.x x y)$$

- Can we give a meaningful (infinite) result term for such a non-terminating reduction?
- How about the infinite term ((... y) y) y?

There is no single true answer to this question.

Different Infinitary Calculi

- Infinite normal forms induce a model of the lambda calculus, e.g.
 - Böhm Trees, Levy-Longo Trees, Berarducci Trees

Different Infinitary Calculi

- Infinite normal forms induce a model of the lambda calculus, e.g.
 - Böhm Trees, Levy-Longo Trees, Berarducci Trees
- In the infinitary lambda calculus corresponding to Berarducci Trees, the reduction

$$N \to N y \to N y y \to \dots$$

converges to $((\ldots y)y)y$

 but does not converge in the calculi corresp. to Böhm Trees and Levy-Longo Trees When do infinite reductions converge? Many variants of infinitary calculi

- ► metric spaces ~→ metric completion
- partial orders \rightsquigarrow ideal completion
- topological spaces
- coinductive definitions

When do infinite reductions converge? Many variants of infinitary calculi

- ► metric spaces ~→ metric completion
- ► partial orders ~→ ideal completion
- topological spaces
- coinductive definitions

When do infinite reductions converge? Many variants of infinitary calculi

- ► metric spaces ~→ metric completion
- ► partial orders ~→ ideal completion
- topological spaces
- coinductive definitions

Metric completion approach

adjusting the metric yields different calculi

This talk

Can we do the same for partial orders?

1. Metric Completion

2. Ideal Completion

3. Results

Metric Completion

N. Dershowitz, S. Kaplan, D.A. Plaisted. *Rewrite, rewrite, rewrite, rewrite, rewrite, ...* Theoretical Computer Science, 83(1):71–96, 1991.

R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. *Infinitary lambda calculus*. Theoretical Computer Science, 175(1):93–125, 1997.

Standard metric on terms $\mathbf{d}(M, M) = 0$, and $\mathbf{d}(M, N) = 2^{-d}$ if $M \neq N$,

where d = minimum depth at which M, N differ

Standard metric on terms $\mathbf{d}(M, M) = 0$, and $\mathbf{d}(M, N) = 2^{-d}$ if $M \neq N$,

where d = minimum depth at which M, N differ Example

Standard metric on terms $\mathbf{d}(M, M) = 0$, and $\mathbf{d}(M, N) = 2^{-d}$ if $M \neq N$,

where d = minimum depth at which M, N differ Example

Standard metric on terms $\mathbf{d}(M, M) = 0$, and $\mathbf{d}(M, N) = 2^{-d}$ if $M \neq N$,

where d = minimum depth at which M, N differ Example

$$\mathbf{d}(\lambda x.x , x y) = 2^{-0} = 1 \\ \mathbf{d}(\lambda x.x , \lambda x.y) = 2^{-1} = \frac{1}{2}$$

We can manipulate **d** by changing the notion of depth.

A triple $abc \in \{0,1\}^3$ describes how to measure depth.

- a = 1 iff lambda abstraction is counted
- b = 1 iff application from the left is counted
- c = 1 iff application from the right is counted

A triple $abc \in \{0,1\}^3$ describes how to measure depth.

- a = 1 iff lambda abstraction is counted
- b = 1 iff application from the left is counted

• c = 1 iff application from the right is counted Example

$$d^{111}(\lambda x.x \, x, \lambda x.x \, y) = 2^{-2} = 1/4$$

A triple $abc \in \{0,1\}^3$ describes how to measure depth.

• a = 1 iff lambda abstraction is counted

• b = 1 iff application from the left is counted • c = 1 = standard metric **d** is right is counted Example $d^{111}(\lambda x.x x, \lambda x.x y) = 2^{-2} = 1/4$

A triple $abc \in \{0,1\}^3$ describes how to measure depth.

- a = 1 iff lambda abstraction is counted
- b = 1 iff application from the left is counted

• c = 1 iff application from the right is counted Example

$$\begin{aligned} \mathbf{d}^{111}(\lambda x.x\,\mathbf{x},\lambda x.x\,\mathbf{y}) &= 2^{-2} &= 1/4 \\ \mathbf{d}^{011}(\lambda x.x\,\mathbf{x},\lambda x.x\,\mathbf{y}) &= 2^{-1} &= 1/2 \\ \mathbf{d}^{001}(\lambda x.x\,\mathbf{x},\lambda x.x\,\mathbf{y}) &= 2^{-1} &= 1/2 \\ \mathbf{d}^{010}(\lambda x.x\,\mathbf{x},\lambda x.x\,\mathbf{y}) &= 2^{-0} &= 1 \end{aligned}$$

A triple $abc \in \{0,1\}^3$ describes how to measure depth.

- a = 1 iff lambda abstraction is counted
- b = 1 iff application from the left is counted

• c = 1 iff application from the right is counted Example

$$\begin{aligned} \mathbf{d}^{111}(\lambda x.x\,\mathbf{x},\lambda x.x\,\mathbf{y}) &= 2^{-2} &= 1/4\\ \mathbf{d}^{011}(\lambda x.x\,\mathbf{x},\lambda x.x\,\mathbf{y}) &= 2^{-1} &= 1/2\\ \mathbf{d}^{001}(\lambda x.x\,\mathbf{x},\lambda x.x\,\mathbf{y}) &= 2^{-1} &= 1/2\\ \mathbf{d}^{010}(\lambda x.x\,\mathbf{x},\lambda x.x\,\mathbf{y}) &= 2^{-0} &= 1\end{aligned}$$

The infinite term $((\ldots y)y)y$ is in the metric completion of \mathbf{d}^{010} but not \mathbf{d}^{001} .

A reduction $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \ldots$ converges to t iff

depth of contracted redexes tends to infinity,

$$\blacktriangleright \lim_{i\to\omega} t_i = t.$$

A reduction $t_0
ightarrow t_1
ightarrow t_2
ightarrow \ldots$ converges to t iff

depth of contracted redexes tends to infinity,

$$\bullet \lim_{i\to\omega} t_i = t.$$

Böhm reduction In addition, we need rewrite rules

$$t
ightarrow \bot$$

for each t that is root-active (= can be contracted at depth 0 arbitrarily often)

Properties of the metric completion Theorem ([Kennaway et al.])

- Infinitary Böhm reduction is confluent (for 001, 101, and 111) and normalising (in general).
- Its unique normal forms are Böhm Trees (001), Levy-Longo Trees (101), and Berarducci Trees (111).

Properties of the metric completion Theorem ([Kennaway et al.])

- Infinitary Böhm reduction is confluent (for 001, 101, and 111) and normalising (in general).
- Its unique normal forms are Böhm Trees (001), Levy-Longo Trees (101), and Berarducci Trees (111).

Example

$$N \rightarrow N \, y \rightarrow N \, y \, y \rightarrow \dots$$

converges to the infinite term $((\ldots y)y)y$ in 111, but not in 001, 101 $(((\ldots y)y)y)y$ is not even a valid term in 001, 101).

Ideal Completion

Partial on lambda terms Standard partial order on terms Least monotone, partial order \leq_{\perp} such that

 $\perp \leq_{\perp} M$, for any M

i.e. $M \leq_{\perp} N$ if N is obtained from M by replacing \perp with arbitrary terms

Partial on lambda terms Standard partial order on terms Least monotone, partial order \leq_{\perp} such that

 $\perp \leq_{\perp} M$, for any M

i.e. $M \leq_{\perp} N$ if N is obtained from M by replacing \perp with arbitrary terms

Partial on lambda terms Standard partial order on terms Least monotone, partial order \leq_{\perp} such that

 $\perp \leq_{\perp} M$, for any M

i.e. $M \leq_{\perp} N$ if N is obtained from M by replacing \perp with arbitrary terms

Generalisation to \leq_{\perp}^{abc}

- ► We adjust definition of ≤⊥ by restricting monotonicity
- For example: $\lambda x \perp \not\leq_{\perp}^{011} \lambda x . M$.

Partial order \leq_{\perp}^{abc} Least partial order \leq_{\perp}^{abc} such that $\perp \leq_{\perp}^{abc} M$ $\lambda x.M \leq_{\perp}^{abc} \lambda x.M'$ if $M \leq_{\perp}^{abc} M'$

Partial order \leq_{\perp}^{abc} Least partial order \leq_{\perp}^{abc} such that $\perp \leq_{\perp}^{abc} M$

 $\lambda x.M \leq_{\perp}^{abc} \lambda x.M'$ if $M \leq_{\perp}^{abc} M'$ and $M \neq \perp$ or a = 1

Partial order \leq_{\perp}^{abc} Least partial order \leq_{\perp}^{abc} such that $\perp \leq_{\perp}^{abc} M$ $\lambda x.M \leq_{\perp}^{abc} \lambda x.M'$ if $M \leq_{\perp}^{abc} M'$ and I $MN \leq_{\perp}^{abc} M'N$ if $M \leq_{\perp}^{abc} M'$ and I

 $\begin{array}{ll} \lambda x.M \leq_{\perp}^{abc} \lambda x.M' & \text{if } M \leq_{\perp}^{abc} M' \text{ and } M \neq \perp \text{ or } a = 1 \\ MN \leq_{\perp}^{abc} M'N & \text{if } M \leq_{\perp}^{abc} M' \text{ and } M \neq \perp \text{ or } b = 1 \\ MN \leq_{\perp}^{abc} MN' & \text{if } N \leq_{\perp}^{abc} N' \text{ and } N \neq \perp \text{ or } c = 1 \end{array}$

Partial order \leq_{\perp}^{abc} Least partial order \leq_{\perp}^{abc} such that $\perp \leq_{\perp}^{abc} M$ monotonicity $\lambda x.M \leq_{\perp}^{abc} \lambda x.M'$ if $M \leq_{\perp}^{abc} M'$ and $M \neq \perp$ or a = 1 $MN \leq_{\perp}^{abc} M'N$ if $M \leq_{\perp}^{abc} M'$ and $M \neq \perp$ or b = 1

 $\begin{array}{ll} MN \leq_{\perp}^{abc} M'N & \text{if } M \leq_{\perp}^{abc} M' \text{ and } M \neq \perp \text{ or } b = 1 \\ MN \leq_{\perp}^{abc} MN' & \text{if } N \leq_{\perp}^{abc} N' \text{ and } N \neq \perp \text{ or } c = 1 \end{array}$

Partial order \leq^{abc}_{\perp} Least partial order \leq^{abc}_{\perp} such that $\perp <^{abc}_{\perp} M$ $\lambda x.M \leq Ax.M'$ if $M \leq Ax.M'$ and $M \neq \bot$ or a = 1

 $MN \leq ADC M'N$ if $M \leq ADC M'$ and $M \neq \bot$ or b = 1 $MN \leq MN'$ if $N \leq Loc N'$ and $N \neq \bot$ or c = 1

monotonicity

 $\rightarrow \leq 111$ is just the standard partial order ≤ 1

Partial order \leq_{\perp}^{abc} Least partial order \leq_{\perp}^{abc} such that $\perp \leq_{\perp}^{abc} M$

monotonicity

 $\begin{array}{ll} \lambda x.M \leq_{\perp}^{abc} \lambda x.M' & \text{if } M \leq_{\perp}^{abc} M' \text{ and } M \neq \perp \text{ or } a = 1 \\ MN \leq_{\perp}^{abc} M'N & \text{if } M \leq_{\perp}^{abc} M' \text{ and } M \neq \perp \text{ or } b = 1 \\ MN \leq_{\perp}^{abc} MN' & \text{if } N \leq_{\perp}^{abc} N' \text{ and } N \neq \perp \text{ or } c = 1 \end{array}$

 $\rightsquigarrow \leq_{\perp}^{111}$ is just the standard partial order \leq_{\perp} Example

$$\lambda x. \perp \not\leq_{\perp}^{001} \lambda x. x x, \ \lambda x. \perp x \not\leq_{\perp}^{001} \lambda x. x x, \\ \lambda x. x \perp \leq_{\perp}^{001} \lambda x. x x$$

Partial order \leq_{\perp}^{abc} Least partial order \leq_{\perp}^{abc} such that $\perp <_{\perp}^{abc} M$

monotonicity

 $\begin{array}{ll} \lambda x.M \leq_{\perp}^{abc} \lambda x.M' & \text{if } M \leq_{\perp}^{abc} M' \text{ and } M \neq \perp \text{ or } a = 1 \\ MN \leq_{\perp}^{abc} M'N & \text{if } M \leq_{\perp}^{abc} M' \text{ and } M \neq \perp \text{ or } b = 1 \\ MN \leq_{\perp}^{abc} MN' & \text{if } N \leq_{\perp}^{abc} N' \text{ and } N \neq \perp \text{ or } c = 1 \end{array}$

 $\rightsquigarrow \leq_{\perp}^{111}$ is just the standard partial order \leq_{\perp} Example

- $\lambda x. \perp \not\leq_{\perp}^{001} \lambda x. x x, \ \lambda x. \perp x \not\leq_{\perp}^{001} \lambda x. x x, \ \lambda x. x \not\leq_{\perp}^{001} \lambda x. x x, \ \lambda x. x \perp \leq_{\perp}^{001} \lambda x. x x$
- The infinite term ((... y) y) y is in the ideal completion of ≤⁰¹⁰_⊥ but not ≤⁰⁰¹_⊥.

Theorem

There is a one-to-one correspondence between metric completion of \mathbf{d}^{abc} and ideal completion of \leq_{\perp}^{abc} .

Theorem

There is a one-to-one correspondence between metric completion of \mathbf{d}^{abc} and ideal completion of \leq_{\perp}^{abc} .

Theorem

- If $\lim_{\iota \to \alpha} t_{\iota} = t$, then $\liminf_{\iota \to \alpha} t_{\iota} = t$.
- If $\liminf_{\iota \to \alpha} t_{\iota} = t$ and t is total, then $\lim_{\iota \to \alpha} t_{\iota} = t$.

Theorem

There is a one-to-one correspondence between metric completion of \mathbf{d}^{abc} and ideal completion of \leq^{abc}_{\perp} . Theorem

- If $\lim_{\iota \to \alpha} t_{\iota} = t$, then $\liminf_{\iota \to \alpha} t_{\iota} = t$.
- If $\liminf_{\iota \to \alpha} t_{\iota} = t$ and t is total, then $\lim_{\iota \to \alpha} t_{\iota} = t$.

Convergence of reductions in \leq^{abc}_{\perp}

- A reduction $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \ldots$ always converges.
- ► It converges to $\liminf_{i\to\omega} c_i$, where c_i is the greatest term, such that

•
$$c_i \leq_{\perp}^{abc} t_i$$
, and

• *c_i* does not contain the contracted redex.

Convergence of reductions in \leq_{\perp}^{abc}

- A reduction $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \ldots$ always converges.
- ► It converges to $\liminf_{i\to\omega} c_i$, where c_i is the greatest term, such that

•
$$c_i \leq_{\perp}^{abc} t_i$$
, and

• *c_i* does not contain the contracted redex.

Example

$$N \rightarrow N y \rightarrow N y y \rightarrow \dots$$

- converges to $((\ldots y) y) y$ in \leq_{\perp}^{111}
- converges to \perp in \leq^{101}_{\perp} and \leq^{001}_{\perp}

Results

Properties of the ideal completion calculi Theorem

- Infinitary β reduction is confluent (for 111) and normalising (in general).
- Normal forms of 111 are Berarducci Trees.

Properties of the ideal completion calculi Theorem

- Infinitary β reduction is confluent (for 111) and normalising (in general).
- Normal forms of 111 are Berarducci Trees.

To get confluence for 001, 101, we add two rules: $\lambda x. \perp \rightarrow_S \perp$ (for 001) $\perp M \rightarrow_S \perp$ (for 001 and 101)

Properties of the ideal completion calculi Theorem

- Infinitary β reduction is confluent (for 111) and normalising (in general).
- Normal forms of 111 are Berarducci Trees.
- To get confluence for 001, 101, we add two rules: $\lambda x. \perp \rightarrow_S \perp$ (for 001) $\perp M \rightarrow_S \perp$ (for 001 and 101)

Theorem

- Infinitary βS reduction is confluent and normalising for 001 and 101.
- Normal forms of 001 and 101 are Böhm Trees and Levy-Longo Trees. resp.

Conclusion

Alternative presentation of infinitary lambda calculi based on ideal completion

Why?

- Direct account of partial convergence instead without Böhm reduction
- Avoids technical difficulties of dealing with infinite set of reduction rules

Conclusion

Alternative presentation of infinitary lambda calculi based on ideal completion

Why?

- Direct account of partial convergence instead without Böhm reduction
- Avoids technical difficulties of dealing with infinite set of reduction rules

Drawback

does not capture arbitrary 'meaningless terms'

Strict Ideal Completions of the Lambda Calculus

Patrick Bahr

IT University of Copenhagen

FSCD 2018

Bonus Slides

More Correspondences

Theorem

- If $s \xrightarrow{\mathbb{R}}_{\beta\mathbb{S}} t$, then $s \xrightarrow{\mathbb{M}}_{\mathbb{B}} t$.
- If $s \xrightarrow{m}_{\mathbb{B}} t$ and s is total, then $s \xrightarrow{\mathbb{B}}_{\beta \mathbb{S}} t$.