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Infinitary Lambda Calculus

N → N y → N y y → . . .

where N = (λx .x x y)(λx .x x y)

I Can we give a meaningful
(infinite) result term for such a
non-terminating reduction?

I How about the infinite term
((. . . y) y) y?
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I There is no single true answer to this question.
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Different Infinitary Calculi

I Infinite normal forms induce a model of the
lambda calculus, e.g.

I Böhm Trees, Levy-Longo Trees, Berarducci Trees

I In the infinitary lambda calculus corresponding
to Berarducci Trees, the reduction

N → N y → N y y → . . .

converges to ((. . . y) y) y

I but does not converge in the calculi corresp. to
Böhm Trees and Levy-Longo Trees
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When do infinite reductions converge?
Many variants of infinitary calculi

I metric spaces  metric completion

I partial orders  ideal completion

I topological spaces

I coinductive definitions

Metric completion approach

I adjusting the metric yields different calculi

This talk

I Can we do the same for partial orders?
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Overview

1. Metric Completion

2. Ideal Completion

3. Results



Metric Completion

N. Dershowitz, S. Kaplan, D.A. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite, ... Theoretical Computer Science, 83(1):71–96, 1991.

R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93–125, 1997.



Metric on lambda terms

Standard metric on terms
d(M ,M) = 0, and d(M ,N) = 2−d if M 6= N ,

where d = minimum depth at which M ,N differ

Example

d( λx .x , x y ) = 2−0 = 1

d( λx .x , λx .y ) = 2−1 =
1

2

We can manipulate d by changing the notion of
depth.
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Strictness
A triple abc ∈ {0, 1}3 describes how to measure
depth.
I a = 1 iff lambda abstraction is counted
I b = 1 iff application from the left is counted
I c = 1 iff application from the right is counted

Example

d111(λx .x x , λx .x y) = 2−2 = 1/4

d011(λx .x x , λx .x y) = 2−1 = 1/2

d001(λx .x x , λx .x y) = 2−1 = 1/2

d010(λx .x x , λx .x y) = 2−0 = 1

The infinite term ((. . . y) y) y is in the metric
completion of d010 but not d001.
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Infinitary Lambda Calculus

A reduction t0 → t1 → t2 → . . . converges to t iff

I depth of contracted redexes tends to infinity,

I lim i→ωti = t.

Böhm reduction
In addition, we need rewrite rules

t → ⊥

for each t that is root-active (= can be contracted
at depth 0 arbitrarily often)
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Properties of the metric completion
Theorem ([Kennaway et al.])

I Infinitary Böhm reduction is confluent (for 001,
101, and 111) and normalising (in general).

I Its unique normal forms are Böhm Trees (001),
Levy-Longo Trees (101), and Berarducci Trees
(111).

Example

N → N y → N y y → . . .

converges to the infinite term ((. . . y) y) y in 111,
but not in 001, 101
(((. . . y) y) y is not even a valid term in 001, 101).
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Ideal Completion



Partial on lambda terms

Standard partial order on terms
Least monotone, partial order ≤⊥ such that

⊥ ≤⊥ M , for any M

i.e. M ≤⊥ N if N is obtained from M by replacing
⊥ with arbitrary terms

Generalisation to ≤abc
⊥

I We adjust definition of ≤⊥ by restricting
monotonicity

I For example: λx .⊥ 6≤011
⊥ λx .M .
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Partial order ≤abc
⊥

Least partial order ≤abc
⊥ such that

⊥ ≤abc
⊥ M

monotonicity

λx .M ≤abc
⊥ λx .M ′ if M ≤abc

⊥ M ′

and M 6= ⊥ or a = 1

MN ≤abc
⊥ M ′N if M ≤abc

⊥ M ′ and M 6= ⊥ or b = 1

MN ≤abc
⊥ MN ′ if N ≤abc

⊥ N ′ and N 6= ⊥ or c = 1

 ≤111
⊥ is just the standard partial order ≤⊥

Example

I λx .⊥ 6≤001
⊥ λx .x x , λx .⊥ x 6≤001

⊥ λx .x x ,
λx .x ⊥ ≤001

⊥ λx .x x

I The infinite term ((. . . y) y) y is in the ideal
completion of ≤010

⊥ but not ≤001
⊥ .
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Correspondences

Theorem
There is a one-to-one correspondence between
metric completion of dabc and ideal completion of
≤abc
⊥ .

Theorem

I If limι→α tι = t, then lim infι→α tι = t.

I If lim infι→α tι = t and t is total, then
limι→α tι = t.
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limit inferior in ≤abc
⊥

=
⊔
β<α

(d
β≤ι<α tι

)
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Convergence of reductions in ≤abc
⊥

I A reduction t0 → t1 → t2 → . . . always
converges.

I It converges to lim inf i→ω ci , where
ci is the greatest term, such that

I ci ≤abc
⊥ ti , and

I ci does not contain the contracted redex.

Example

N → N y → N y y → . . .

I converges to ((. . . y) y) y in ≤111
⊥

I converges to ⊥ in ≤101
⊥ and ≤001

⊥
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Results



Properties of the ideal completion calculi
Theorem
I Infinitary β reduction is confluent (for 111) and

normalising (in general).

I Normal forms of 111 are Berarducci Trees.

To get confluence for 001, 101, we add two rules:
λx .⊥ →S ⊥ (for 001)

⊥M →S ⊥ (for 001 and 101)

Theorem
I Infinitary βS reduction is confluent and

normalising for 001 and 101.

I Normal forms of 001 and 101 are Böhm Trees
and Levy-Longo Trees. resp.
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Conclusion

Alternative presentation of infinitary lambda calculi
based on ideal completion

Why?

I Direct account of partial convergence instead
without Böhm reduction

I Avoids technical difficulties of dealing with
infinite set of reduction rules

Drawback

I does not capture arbitrary ‘meaningless terms’
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Bonus Slides



More Correspondences

Theorem

I If s �p �S t, then s �m B t.

I If s �m B t and s is total, then s �p �S t.
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