Strict Ideal Completions of the Lambda Calculus

Patrick Bahr

IT University of Copenhagen

FSCD 2018

Infinitary Lambda Calculus

$$
N \rightarrow N y \rightarrow N y y \rightarrow \ldots
$$

where $\quad N=(\lambda x . x x y)(\lambda x . x x y)$

Infinitary Lambda Calculus

$$
N \rightarrow N y \rightarrow N \text { y } y \rightarrow \ldots
$$

$$
\text { where } \quad N=(\lambda x \cdot x x y)(\lambda x \cdot x x y)
$$

- Can we give a meaningful
(infinite) result term for such a non-terminating reduction?

Infinitary Lambda Calculus

$$
N \rightarrow N y \rightarrow N \text { y } y \rightarrow \ldots
$$

where $\quad N=(\lambda x . x x y)(\lambda x . x x y)$

- Can we give a meaningful (infinite) result term for such a non-terminating reduction?
- How about the infinite term $((\ldots y) y) y$?

Infinitary Lambda Calculus

$$
N \rightarrow N y \rightarrow N y y \rightarrow \ldots
$$

where $\quad N=(\lambda x . x x y)(\lambda x . x x y)$

- Can we give a meaningful (infinite) result term for such a non-terminating reduction?
- How about the infinite term $((\ldots y) y) y$?
- There is no single true answer to this question.

Different Infinitary Calculi

- Infinite normal forms induce a model of the lambda calculus, e.g.
- Böhm Trees, Levy-Longo Trees, Berarducci Trees

Different Infinitary Calculi

- Infinite normal forms induce a model of the lambda calculus, e.g.
- Böhm Trees, Levy-Longo Trees, Berarducci Trees
- In the infinitary lambda calculus corresponding to Berarducci Trees, the reduction

$$
N \rightarrow N y \rightarrow N \text { y } y \rightarrow \ldots
$$

converges to $((\ldots y) y) y$

- but does not converge in the calculi corresp. to Böhm Trees and Levy-Longo Trees

When do infinite reductions converge?

Many variants of infinitary calculi

- metric spaces \rightsquigarrow metric completion
- partial orders \rightsquigarrow ideal completion
- topological spaces
- coinductive definitions

When do infinite reductions converge?

Many variants of infinitary calculi

- metric spaces \rightsquigarrow metric completion
- partial orders \rightsquigarrow ideal completion
- topological spaces
- coinductive definitions

When do infinite reductions converge?

Many variants of infinitary calculi

- metric spaces \rightsquigarrow metric completion
- partial orders \rightsquigarrow ideal completion
- topological spaces
- coinductive definitions

Metric completion approach

- adjusting the metric yields different calculi

This talk

- Can we do the same for partial orders?

1. Metric Completion
2. Ideal Completion
3. Results

Metric Completion

N. Dershowitz, S. Kaplan, D.A. Plaisted. Rewrite, rewrite, rewrite, rewrite, rewrite, ... Theoretical Computer Science, 83(1):71-96, 1991.
R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary lambda calculus. Theoretical Computer Science, 175(1):93-125, 1997.

Metric on lambda terms

Standard metric on terms $\mathbf{d}(M, M)=0, \quad$ and $\quad \mathbf{d}(M, N)=2^{-d} \quad$ if $M \neq N$, where $d=$ minimum depth at which M, N differ

Metric on lambda terms

Standard metric on terms $\mathbf{d}(M, M)=0, \quad$ and $\quad \mathbf{d}(M, N)=2^{-d} \quad$ if $M \neq N$, where $d=$ minimum depth at which M, N differ Example

$$
\begin{aligned}
\mathbf{d}(\lambda x \cdot x, x y) & =2^{-0}=1 \\
\mathbf{d}(\lambda x \cdot x, \lambda x \cdot y) & =2^{-1}=\frac{1}{2}
\end{aligned}
$$

Metric on lambda terms

Standard metric on terms $\mathbf{d}(M, M)=0, \quad$ and $\quad \mathbf{d}(M, N)=2^{-d} \quad$ if $M \neq N$, where $d=$ minimum depth at which M, N differ Example

$$
\begin{aligned}
\mathbf{d}(\lambda x \cdot x, x y) & =2^{-0}=1 \\
\mathbf{d}(\lambda x \cdot x, \lambda x \cdot y) & =2^{-1}=\frac{1}{2}
\end{aligned}
$$

Metric on lambda terms

Standard metric on terms $\mathbf{d}(M, M)=0, \quad$ and $\quad \mathbf{d}(M, N)=2^{-d} \quad$ if $M \neq N$,
where $d=$ minimum depth at which M, N differ
Example

$$
\begin{aligned}
\mathbf{d}(\lambda x \cdot x, x y) & =2^{-0}=1 \\
\mathbf{d}(\lambda x \cdot x, \lambda x \cdot y) & =2^{-1}=\frac{1}{2}
\end{aligned}
$$

We can manipulate \mathbf{d} by changing the notion of depth.

Strictness

A triple $a b c \in\{0,1\}^{3}$ describes how to measure depth.

- $a=1$ iff lambda abstraction is counted
- $b=1$ iff application from the left is counted
- $c=1$ iff application from the right is counted

Strictness

A triple abc $\in\{0,1\}^{3}$ describes how to measure depth.

- $a=1$ iff lambda abstraction is counted
- $b=1$ iff application from the left is counted
- $c=1$ iff application from the right is counted Example

$$
\mathbf{d}^{111}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-2}=1 / 4
$$

Strictness

A triple $a b c \in\{0,1\}^{3}$ describes how to measure depth.

- $a=1$ iff lambda abstraction is counted
- $b=1$ iff application from the left is counted
- $c=1=$ standard metric d e right is counted

Example

$$
\mathbf{d}^{111}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-2}=1 / 4
$$

Strictness

A triple abc $\in\{0,1\}^{3}$ describes how to measure depth.

- $a=1$ iff lambda abstraction is counted
- $b=1$ iff application from the left is counted
- $c=1$ iff application from the right is counted Example

$$
\begin{aligned}
& \mathbf{d}^{111}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-2}=1 / 4 \\
& \mathbf{d}^{011}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-1}=1 / 2 \\
& \mathbf{d}^{001}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-1}=1 / 2 \\
& \mathbf{d}^{010}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-0}=1
\end{aligned}
$$

Strictness

A triple abc $\in\{0,1\}^{3}$ describes how to measure depth.

- $a=1$ iff lambda abstraction is counted
- $b=1$ iff application from the left is counted
- $c=1$ iff application from the right is counted Example

$$
\begin{aligned}
& \mathbf{d}^{111}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-2}=1 / 4 \\
& \mathbf{d}^{011}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-1}=1 / 2 \\
& \mathbf{d}^{001}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-1}=1 / 2 \\
& \mathbf{d}^{010}(\lambda x \cdot x x, \lambda x \cdot x y)=2^{-0}=1
\end{aligned}
$$

The infinite term $((\ldots y) y) y$ is in the metric completion of \mathbf{d}^{010} but not \mathbf{d}^{001}.

Infinitary Lambda Calculus

A reduction $t_{0} \rightarrow t_{1} \rightarrow t_{2} \rightarrow \ldots$ converges to t iff

- depth of contracted redexes tends to infinity,
- $\lim _{i \rightarrow \omega} t_{i}=t$.

Infinitary Lambda Calculus

A reduction $t_{0} \rightarrow t_{1} \rightarrow t_{2} \rightarrow \ldots$ converges to t iff

- depth of contracted redexes tends to infinity,
- $\lim _{i \rightarrow \omega} t_{i}=t$.

Böhm reduction
In addition, we need rewrite rules

$$
t \rightarrow \perp
$$

for each t that is root-active ($=$ can be contracted at depth 0 arbitrarily often)

Properties of the metric completion

Theorem ([Kennaway et al.])

- Infinitary Böhm reduction is confluent (for 001, 101, and 111) and normalising (in general).
- Its unique normal forms are Böhm Trees (001), Levy-Longo Trees (101), and Berarducci Trees (111).

Properties of the metric completion

 Theorem ([Kennaway et al.])- Infinitary Böhm reduction is confluent (for 001, 101, and 111) and normalising (in general).
- Its unique normal forms are Böhm Trees (001), Levy-Longo Trees (101), and Berarducci Trees (111).

Example

$$
N \rightarrow N y \rightarrow N \text { y } y \rightarrow \ldots
$$

converges to the infinite term $((\ldots y) y) y$ in 111 , but not in 001, 101
$(((\ldots y) y) y$ is not even a valid term in 001, 101).

Ideal Completion

Partial on lambda terms

Standard partial order on terms
Least monotone, partial order \leq_{\perp} such that

$$
\perp \leq_{\perp} M, \quad \text { for any } M
$$

i.e. $M \leq_{\perp} N$ if N is obtained from M by replacing \perp with arbitrary terms

Partial on lambda terms

Standard partial order on terms
Least monotone, partial order \leq_{\perp} such that

$$
\perp \leq_{\perp} M, \quad \text { for any } M
$$

i.e. $M \leq_{\perp} N$ if N is obtained from M by replacing \perp with arbitrary terms

Partial on lambda terms

Standard partial order on terms
Least monotone, partial order \leq_{\perp} such that

$$
\perp \leq_{\perp} M, \quad \text { for any } M
$$

i.e. $M \leq_{\perp} N$ if N is obtained from M by replacing \perp with arbitrary terms
Generalisation to $\underset{\perp}{a b c}$

- We adjust definition of \leq_{\perp} by restricting monotonicity
- For example: $\quad \lambda x . \perp \not \mathbb{L}_{\perp}^{011} \lambda x . M$.

Partial order $\leq_{\perp}^{a b c}$
 Least partial order $\leq_{\perp}^{\text {abc }}$ such that

$$
\perp \leq_{\perp}^{a b c} M
$$

$\lambda x . M \leq_{\perp}^{a b c} \lambda x \cdot M^{\prime} \quad$ if $M \leq_{\perp}^{a b c} M^{\prime}$

Partial order $\leq_{\perp}^{a b c}$
 Least partial order $\leq \underset{\perp}{\text { abc }}$ such that

$$
\perp \leq_{\perp}^{a b c} M
$$

$\lambda x . M \leq \underset{\perp}{a b c} \lambda x . M^{\prime} \quad$ if $M \leq \underset{\perp}{a b c} M^{\prime}$ and $M \neq \perp$ or $a=1$

Partial order $\leq \underset{\perp}{a b c}$

Least partial order $\leq \underset{\perp}{\text { abc }}$ such that

$$
\perp \leq_{\perp}^{a b c} M
$$

$\lambda x \cdot M \leq \underset{\perp}{a b c} \lambda x \cdot M^{\prime} \quad$ if $M \leq \underset{\perp}{a b c} M^{\prime}$ and $M \neq \perp$ or $a=1$
$M N \leq{ }_{\perp}^{a b c} M^{\prime} N \quad$ if $M \leq \perp$
$M N \leq{ }_{\perp}^{a b c} M N^{\prime} \quad$ if $N \leq \underset{\perp}{a b c} N^{\prime}$ and $N \neq \perp$ or $c=1$

Partial order $\leq_{\perp}^{a b c}$

Least partial order $\leq_{\perp}^{\text {abc }}$ such that

$$
\perp \leq_{\perp}^{a b c} M
$$

monotonicity

$\lambda x . M \leq_{\perp}^{\text {abc }} \lambda x \cdot M^{\prime} \quad$ if $M \leq \leq_{\perp}^{a b c} M^{\prime}$ and $M \neq \perp$ or $a=1$
$M N \leq_{\perp}^{a b c} M^{\prime} N \quad$ if $M \leq \leq_{\perp}^{a b c} M^{\prime}$ and $M \neq \perp$ or $b=1$
$M N \leq_{\perp}^{\text {abc }} M N^{\prime} \quad$ if $N \leq_{\perp}^{a b c} N^{\prime}$ and $N \neq \perp$ or $c=1$

Partial order $\leq_{\perp}^{a b c}$

Least partial order $\leq_{\perp}^{\text {abc }}$ such that

$$
\perp \leq_{\perp}^{\text {abc }} M
$$

monotonicity

$\lambda x \cdot M \leq_{\perp}^{\text {abc }} \lambda x \cdot M^{\prime} \quad$ if $M \leq_{\perp}^{a b c} M^{\prime}$ and $M \neq \perp$ or $a=1$
$M N \leq_{\perp}^{a b c} M^{\prime} N \quad$ if $M \leq{ }^{a b c} M^{\prime}$ and $M \neq \perp$ or $b=1$
$M N \leq_{\perp}^{a b c} M N^{\prime} \quad$ if $N \leq_{\perp}^{a b c} N^{\prime}$ and $N \neq \perp$ or $c=1$
$\rightsquigarrow \leq_{\perp}^{111}$ is just the standard partial order \leq_{\perp}

Partial order $\leq \underset{\perp}{a b c}$

Least partial order $\leq \underset{\perp}{a b c}$ such that

$$
\perp \leq_{\perp}^{a b c} M
$$

monotonicity

$\lambda x . M \leq_{\perp}^{a b c} \lambda x . M^{\prime} \quad$ if $M \leq \leq_{\perp}^{a b c} M^{\prime}$ and $M \neq \perp$ or $a=1$
$M N \leq{ }_{\perp}^{a b c} M^{\prime} N \quad$ if $M \leq \underset{\perp}{a b c} M^{\prime}$ and $M \neq \perp$ or $b=1$
$M N \leq{ }_{\perp}^{a} c c \quad$ if $N N^{\prime} \quad{ }_{\perp}^{a b c} N^{\prime}$ and $N \neq \perp$ or $c=1$
$\rightsquigarrow \leq_{\perp}^{111}$ is just the standard partial order \leq_{\perp}

Example

- $\lambda x . \perp \not \mathbb{Z}_{\perp}^{001} \lambda x . x x, \lambda x . \perp x \not \mathbb{Z}_{\perp}^{001} \lambda x . x x$, $\lambda x . x \perp \underset{\perp}{\leq_{\perp}^{001}} \lambda x . x x$

Partial order $\leq \underset{\perp}{a b c}$

Least partial order $\leq \underset{\perp}{a b c}$ such that

$$
\perp \leq_{\perp}^{a b c} M
$$

monotonicity

$\lambda x . M \leq_{\perp}^{a b c} \lambda x . M^{\prime} \quad$ if $M \leq_{\perp}^{a b c} M^{\prime}$ and $M \neq \perp$ or $a=1$
$M N \leq{ }_{\perp}^{a b c} M^{\prime} N \quad$ if $M \leq \underset{\perp}{a}{ }^{a} c c M^{\prime}$ and $M \neq \perp$ or $b=1$
$M N \leq \underset{\perp}{a b c} M N^{\prime} \quad$ if $N \leq{ }_{\perp}^{a b c} N^{\prime}$ and $N \neq \perp$ or $c=1$
$\rightsquigarrow \leq_{\perp}^{111}$ is just the standard partial order \leq_{\perp}
Example

- $\lambda x . \perp \not \mathbb{L}_{\perp}^{001} \lambda x . x x, \lambda x . \perp x \not \mathbb{Z}_{\perp}^{001} \lambda x . x x$, $\lambda x . x \perp \underset{\perp}{\leq_{\perp}^{001}} \lambda x . x x$
- The infinite term $((\ldots y) y) y$ is in the ideal completion of \leq_{\perp}^{010} but not \leq_{\perp}^{001}.

Correspondences

Theorem
There is a one-to-one correspondence between metric completion of $\mathbf{d}^{\text {abc }}$ and ideal completion of $\underset{\perp}{\leq a b c}$.

Correspondences

Theorem
There is a one-to-one correspondence between metric completion of $\mathbf{d}^{\text {abc }}$ and ideal completion of $\leq_{\perp}^{a b c}$.
Theorem

- If $\lim _{\iota \rightarrow \alpha} t_{\iota}=t$, then $\liminf _{\iota \rightarrow \alpha} t_{\iota}=t$.
- If $\lim _{\inf _{\iota \rightarrow \alpha}} t_{l}=t$ and t is total, then $\lim _{\iota \rightarrow \alpha} t_{\iota}=t$.

Correspondences

Theorem
There is a one-to-one correspondence between metric completion of $\mathbf{d}^{\text {abc }}$ and ideal completion of $\leq_{\perp}^{a b c}$. limit in $\mathbf{d}^{a b c}$
Theorem

- If $\lim _{\iota \rightarrow \alpha} t_{\iota}=t$, then $\liminf _{\iota \rightarrow \alpha} t_{\iota}=t$.
- If $\lim \inf _{l \rightarrow \alpha} t_{l}=t$ and t is total, then $\lim _{\iota \rightarrow \alpha} t_{\iota}=t$.

Correspondences

Theorem
There is a one-to-one correspondence hetween metric completion of $\mathbf{d}^{a b c}$ and id limit inferior in $\leq_{\perp}^{a b c}$ $\leq_{\perp}^{a b c}$.

limit in $\mathbf{d}^{a b c}$

Theorem

- If $\lim _{\iota \rightarrow \alpha} t_{\iota}=t$, then $\liminf _{\iota \rightarrow \alpha} t_{\iota}=t$.
- If ${\lim \inf _{l \rightarrow \alpha}} t_{l}=t$ and t is total, then $\lim _{\iota \rightarrow \alpha} t_{\iota}=t$.

Convergence of reductions in $\leq_{\perp}^{a b c}$

- A reduction $t_{0} \rightarrow t_{1} \rightarrow t_{2} \rightarrow \ldots$ always converges.
- It converges to $\liminf _{i \rightarrow \omega} c_{i}$, where
c_{i} is the greatest term, such that
- $c_{i} \leq_{\perp}^{\text {abc }} t_{i}$, and
- c_{i} does not contain the contracted redex.

Convergence of reductions in $\leq \underset{\perp}{a b c}$

- A reduction $t_{0} \rightarrow t_{1} \rightarrow t_{2} \rightarrow \ldots$ always converges.
- It converges to $\lim _{\inf }^{i \rightarrow \omega}{ }_{i}$, where c_{i} is the greatest term, such that
- $c_{i} \leq_{\perp}^{a b c} t_{i}$, and
- c_{i} does not contain the contracted redex.

Example

$$
N \rightarrow N y \rightarrow N y y \rightarrow \ldots
$$

- converges to $((\ldots y) y) y$ in \leq_{\perp}^{111}
- converges to \perp in \leq_{\perp}^{101} and \leq_{\perp}^{001}

Results

Properties of the ideal completion calculi

Theorem

- Infinitary β reduction is confluent (for 111) and normalising (in general).
- Normal forms of 111 are Berarducci Trees.

Properties of the ideal completion calculi

 Theorem- Infinitary β reduction is confluent (for 111) and normalising (in general).
- Normal forms of 111 are Berarducci Trees.

To get confluence for 001, 101, we add two rules:

$$
\begin{array}{cr}
\lambda x . \perp \rightarrow s \perp & \text { (for 001) } \\
\perp M \rightarrow s \perp & \text { (for 001 and 101) }
\end{array}
$$

Properties of the ideal completion calculi

 Theorem- Infinitary β reduction is confluent (for 111) and normalising (in general).
- Normal forms of 111 are Berarducci Trees.

To get confluence for 001, 101, we add two rules:

$$
\begin{array}{rr}
\lambda x . \perp & \rightarrow s \perp \\
\perp M \rightarrow s \perp & \text { (for 001) } \\
\perp \text { for } 001 \text { and 101) }
\end{array}
$$

Theorem

- Infinitary β S reduction is confluent and normalising for 001 and 101.
- Normal forms of 001 and 101 are Böhm Trees and Levy-Longo Trees. resp.

Conclusion

Alternative presentation of infinitary lambda calculi based on ideal completion
Why?

- Direct account of partial convergence instead without Böhm reduction
- Avoids technical difficulties of dealing with infinite set of reduction rules

Conclusion

Alternative presentation of infinitary lambda calculi based on ideal completion

Why?

- Direct account of partial convergence instead without Böhm reduction
- Avoids technical difficulties of dealing with infinite set of reduction rules

Drawback

- does not capture arbitrary 'meaningless terms'

Strict Ideal Completions of the Lambda Calculus

Patrick Bahr

IT University of Copenhagen

FSCD 2018

Bonus Slides

More Correspondences

Theorem

- If $s \xrightarrow{\mathrm{P}}_{\beta S} t$, then $s \xrightarrow{\mathrm{~m}}_{\mathbb{B}} t$.
- If $s \xrightarrow{\mathrm{~m}}_{\mathbb{B}} t$ and s is total, then $s{\xrightarrow{P_{\beta}}} t$.

