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Infinitary Lambda Calculus

N—Ny—-Nyy—...

where N = (Ax.xxy)(Ax.xxy)

_ _ app
» Can we give a meaningful / O\
(infinite) result term for such a app Yy
non-terminating reduction? ; YN
» How about the infinite term p[i 4
(- ¥)y)y? oy

» There is no single true answer to this question.
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Different Infinitary Calculi
» Infinite normal forms induce a model of the

lambda calculus, e.g.
» Bohm Trees, Levy-Longo Trees, Berarducci Trees

» In the infinitary lambda calculus corresponding
to Berarducci Trees, the reduction

N—Ny—-Nyy—...

converges to ((... y)y)y

» but does not converge in the calculi corresp. to
Bohm Trees and Levy-Longo Trees



When do infinite reductions converge?
Many variants of infinitary calculi

» metric spaces ~~ metric completion
» partial orders ~~ ideal completion

» topological spaces

» coinductive definitions
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When do infinite reductions converge?
Many variants of infinitary calculi

» metric spaces ~~ metric completion
» partial orders ~~ ideal completion

» topological spaces

» coinductive definitions

Metric completion approach
» adjusting the metric yields different calculi

This talk

» Can we do the same for partial orders?



Overview

1. Metric Completion
2. ldeal Completion

3. Results



Metric Completion

N. Dershowitz, S. Kaplan, D.A. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite, ... Theoretical Computer Science, 83(1):71-96, 1991.

R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93-125, 1997.
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Metric on lambda terms

Standard metric on terms
dM,M)=0, and d(M,N)=2"9 ifM=#N,
where d = minimum depth at which M, N differ

Example
d( Ax.x, xy) =

d( Ax.x, Ax.y ) =

We can manipulate d by changing the notion of
depth.
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Strictness
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» b =1 iff application from the left is counted
» ¢ = 1 iff application from the right is counted

5/13



Strictness
A triple abc € {0, 1}3 describes how to measure
depth.
» a = 1 iff lambda abstraction is counted
» b =1 iff application from the left is counted
» ¢ = 1 iff application from the right is counted
Example

dM(Ax.xx, Ax.xy) =272 =1/4

5/13



Strictness

A triple abc € {0, 1}3 describes how to measure

depth.

» a = 1 iff lambda abstraction is counted
» b =1 iff application from the left is counted

» ¢ = 1| — standard metric d

e right is counted

Example ="

dM(Ax.xx, Ax.xy) =272 =1/4

5/13



Strictness
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depth.
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Strictness
A triple abc € {0, 1}3 describes how to measure
depth.
» a = 1 iff lambda abstraction is counted
» b =1 iff application from the left is counted
» ¢ = 1 iff application from the right is counted
Example

dM(Axxx, Ax.xy) =272 =1/4

Ax.xx, Ax.xy) =271 =1/2
Ax.xx, Ax.xy) =271 =1/2
Mx.xx, \x.xy) =270 =1

d011
dOOl

—_~~ A~ A~ ~

d010

The infinite term ((... y) y) y is in the metric
completion of d®1° but not d°!.
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Infinitary Lambda Calculus

A reduction ty — t; — tp — ... converges to t iff
» depth of contracted redexes tends to infinity,

» lim Lt = t.
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Infinitary Lambda Calculus

A reduction ty — t; — tp — ... converges to t iff
» depth of contracted redexes tends to infinity,

» lim Lt = t.

Bohm reduction
In addition, we need rewrite rules

t— L

for each t that is root-active (= can be contracted
at depth 0 arbitrarily often)

6 /13



Properties of the metric completion
Theorem ([Kennaway et al.])

> Infinitary Bohm reduction is confluent (for 001,
101, and 111) and normalising (in general).

» Its unique normal forms are Béhm Trees (001),
Levy-Longo Trees (101), and Berarducci Trees

(111).
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Properties of the metric completion
Theorem ([Kennaway et al.])

> Infinitary Bohm reduction is confluent (for 001,
101, and 111) and normalising (in general).

» Its unique normal forms are Béhm Trees (001),
Levy-Longo Trees (101), and Berarducci Trees

(111).

Example
N—Ny—Nyy—...

converges to the infinite term ((... y)y)y in 111,
but not in 001, 101
(((... y)y)y is not even a valid term in 001, 101).
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Partial on lambda terms

Standard partial order on terms
Least monotone, partial order <, such that

1L < M, forany M

i.,e. M <, N if N is obtained from M by replacing
L with arbitrary terms

Generalisation to §‘ibc

» We adjust definition of <, by restricting
monotonicity

» For example:  Ax.L £% Ax.M.



Partial order S‘ibc
Least partial order <3¢ such that

1 <3be pm
Ax.M <3¢ xx. M’ if M <3be M/
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Partial order S‘ibc
Least partial order <3¢ such that

1L <3 m

monotonicity

Ax.M §‘ibc Ax. M’
MN <3be M'N
MN <3be MN'

if M <3¢ M’ and M # Lora=1
if M <3¢ M and M # Lor b=1
if N <3¢ N and N # Lorc=1

~ <!1lis just the standard partial order <,

Example

» Ax. L 29 Axox x, Ax. L x £9% Ax.x x,
Ax.x L S‘fl AX.X X

» The infinite term ((... y)y) y is in the ideal
completion of STO but not g‘fl.
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Correspondences

Theorem
There is a one-to-one correspondence hetween
metric completion of d**¢ and id{ limit inferior in <3¢

<abc .
’ limit in dabc - |_|ﬂ<a (l_lﬂgKa tL)

Theorem Z Pz

» If lim,_, t, = t, then liminf,, t, = t.

» Ifliminf,,,t, =t and t is total, then
lim,_,t =t.
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Convergence of reductions in §‘ibc

» A reduction ty — t; — to — ... always
converges.
» It converges to liminf; ., ¢;, where
c; is the greatest term, such that
> G S‘ibc t;, and
» ¢; does not contain the contracted redex.
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Convergence of reductions in S‘ibc

» A reduction ty — t; — to — ... always
converges.

» It converges to liminf; ., ¢;, where
c; is the greatest term, such that
> G S‘ibc t;, and
» ¢; does not contain the contracted redex.

Example

N—Ny—Nyy—...

> converges to ((... y)y)y in <1
> converges to | in <19 and <9!
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Results



Properties of the ideal completion calculi

Theorem

» Infinitary 3 reduction is confluent (for 111) and
normalising (in general).
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Properties of the ideal completion calculi

Theorem

» Infinitary 3 reduction is confluent (for 111) and
normalising (in general).
» Normal forms of 111 are Berarducci Trees.

To get confluence for 001, 101, we add two rules:
Ax.L —s L (for 001)

IM—s L (for 001 and 101)

Theorem
» Infinitary BS reduction is confluent and
normalising for 001 and 101.
» Normal forms of 001 and 101 are Bohm Trees
and Levy-Longo Trees. resp. .



Conclusion

Alternative presentation of infinitary lambda calculi
based on ideal completion

Why?
» Direct account of partial convergence instead

without Bohm reduction

» Avoids technical difficulties of dealing with
infinite set of reduction rules
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Conclusion

Alternative presentation of infinitary lambda calculi
based on ideal completion

Why?

» Direct account of partial convergence instead
without Bohm reduction

» Avoids technical difficulties of dealing with
infinite set of reduction rules

Drawback

» does not capture arbitrary ‘meaningless terms’

13 /13
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More Correspondences

Theorem

» If s B g t, thens Bpt.
» If s B g t and s is total, then s % g t.
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