
Generalising Tree Traversals and Tree Transformations to DAGs:
Exploiting Sharing without the Pain

Patrick Bahr

Department of Computer Science, University of Copenhagen

Emil Axelsson

Department of Computer Science and Engineering, Chalmers University of Technology

Abstract

We present a recursion scheme based on attribute grammars that can be transparently applied to trees
and acyclic graphs. Our recursion scheme allows the programmer to implement a tree traversal or a tree
transformation and then apply it to compact graph representations of trees instead. The resulting graph
traversal or graph transformation avoids recomputation of intermediate results for shared nodes – even if
intermediate results are used in different contexts. Consequently, this approach leads to asymptotic speedup
proportional to the compression provided by the graph representation. In general, however, this sharing of
intermediate results is not sound. Therefore, we complement our implementation of the recursion scheme
with a number of correspondence theorems that ensure soundness for various classes of traversals. We
illustrate the practical applicability of the implementation as well as the complementing theory with a
number of examples.

Keywords:
attribute grammars, sharing, graph traversal, graph transformation, directed acyclic graphs, parametricity,
Haskell

1. Introduction

Functional programming languages such as Haskell excel at manipulating tree-structured data. Using
algebraic data types, we can define functions over trees in a natural way by means of pattern matching and
recursion. As an example, we take the following definition of binary trees with integer leaves, and a function
to find the set of leaves at and below a given depth in the tree:

data IntTree = Leaf Int | Node IntTree IntTree

leavesBelow :: Int → IntTree → Set Int
leavesBelow d (Leaf i)
| d 6 0 = Set .singleton i
| otherwise = Set .empty

leavesBelow d (Node t1 t2) = leavesBelow (d − 1) t1 ∪ leavesBelow (d − 1) t2

One shortcoming of tree structures is that they are unable to represent sharing of common subtrees,
which occur, for example, when a compiler substitutes a shared variable by its definition. The following tree
t has a shared node a that appears twice:

Email addresses: paba@di.ku.dk (Patrick Bahr), emax@chalmers.se (Emil Axelsson)

Technical report with full proofs

t = let a = Node (Node (Leaf 2) (Leaf 3)) (Leaf 4)
in Node a a

Unfortunately, a function like leavesBelow is unable to observe this sharing, and thus needs to traverse the
shared subtree in t twice.

In order to represent and take advantage of sharing, one could instead use a directed graph representation,
such as the structured graphs of Oliveira and Cook [44]. However, such a change of representation would
force us to express leavesBelow by traversing the graph structure instead of by plain recursion over the Node
constructors. If we are only interested in graphs as a compact representation of trees, this is quite a high
price to pay. In an ideal world, one should be able to leave the definition of leavesBelow as it is, and be able
to run it on both trees and graphs.

Oliveira and Cook [44] define a fold operation for structured graphs which makes it possible to de-
fine structurally recursive functions as algebras that can be applied to both trees and graphs. However,
leavesBelow is a context-dependent function that passes the depth parameter down the recursive calls.
Therefore, an implementation as a fold – namely by computing a function from context to result – would
not be able to exploit the sharing present in the graph: intermediate results for shared nodes still have to be
recomputed for each context in which they are used. Moreover, it is not possible to use folds to transform
a graph without losing sharing.

This paper presents a method for running tree traversals on directed acyclic graphs (DAGs), taking full
account of the sharing structure. The traversals are expressed as attribute grammars (AGs) using Bahr’s
representation of tree automata in Haskell [6]. The underlying DAG structure is completely transparent
to the AGs, which means that the same AG can be run on both trees and DAGs. The main complication
arises for algorithms that pass an accumulating parameter down the tree. In a DAG this may lead to a
shared node receiving conflicting values for the accumulating parameter. Our approach is to resolve such
conflicts using a separate user-provided function. For example, in leavesBelow , the resolution function for
the depth parameter would be min, since we only need to consider the deepest occurrence of each shared
subtree. As we will show, this simple insight extends to many practically relevant computations over trees
including program analyses and program transformations.

The paper makes the following contributions:

• We present an implementation of AGs in Haskell, which allows us to write tree traversals such that
they can be applied to compact DAG representations of trees as well.

• We generalise AGs to parametric AGs in order to implement complex tree transformations that preserve
sharing if applied to DAGs.

• We prove a number of general correspondence theorems that relate the semantics of (parametric) AGs
on trees to their semantics on corresponding DAG representations. These correspondence results allow
us to prove the soundness of our approach for various classes of traversals.

• Our implementation and the accompanying theory covers an important class of algorithms, where
an inherited attribute maintains a variable environment. This makes our method suitable for cer-
tain syntactic analyses and manipulations, for instance in a compiler. We demonstrate this fact by
implementing type inference and a size-based simplifier for a simple functional language.

The rest of the paper is organised as follows: Section 2 presents the running example – a simple expression
language and a type inference algorithm for it. Section 3 introduces recursion schemes based on AGs, and
section 4 shows how to run AGs on DAGs. Section 5 gives the semantics and theoretical results for reasoning
about AGs on trees and DAGs. Section 6 introduces a generalisation of AGs called parametric attribute
grammars with which we can transparently express transformations of trees and graphs. Section 7 presents
an extended example of our technique – a simplifier for a simple functional language. Section 8 gives the
implementation of AGs on DAGs, and evaluates the performance of different implementations. Some proofs
were elided or abridged to save space. The full proofs are collected in the appendix. Likewise, the paper
does not give the exact implementation of all recursion schemes. The missing parts are available in an
accompanying repository[8].

2

2. Running Example

To illustrate the ideas in this paper, we will use the following simple expression language:

data Exp = LitB Bool -- Boolean literal
| LitI Int -- Integer literal
| Eq Exp Exp -- Equality
| Add Exp Exp -- Addition
| If Exp Exp Exp -- Condition
| Var Name -- Variable
| Iter Name Exp Exp Exp -- Iteration

type Name = String

Most constructs in Exp have a straightforward meaning. For example, the following is a conditional expres-
sion that corresponds to the Haskell expression if x ≡ 0 then 1 else 2:

If (Eq (Var "x") (LitI 0)) (LitI 1) (LitI 2)

However, Iter requires some explanation. This is a looping construct that corresponds to the following
Haskell function:

iter :: Int → s → (s → s)→ s
iter 0 s b = s
iter n s b = iter (n − 1) (b s) b

The expression iter n s b applies the b function n times starting in state s. The corresponding expression
Iter "x" n s b (where n, s, b :: Exp) works in the same way. However, since we do not have functions in the
Exp language, the first argument of Iter is a variable name, and this name is bound in the body b. For
example, the Haskell expression iter 5 1 (λs → s + 2) is represented as

Iter "s" (LitI 5) (LitI 1) (Add (Var "s") (LitI 2))

2.1. Type Inference
A typical example of a function over expressions that has an interesting flow of information is simple

type inference, defined in Figure 1. The first argument is the environment – a mapping from bound variables
to their types. Most of the cases just check the types of the children and return the appropriate type. The
environment is passed unchanged to the recursive calls, except in the Iter case, where the bound variable is
added to the environment. The only case where the environment is used is in the Var case, where the type
of the variable is obtained by looking it up in the environment.

Note that typeInf has many similarities with leavesBelow from the introduction: It is defined using recur-
sion over the tree constructors; it passes an accumulating parameter down the recursive calls; it synthesises
a result from the results of the recursive calls. Naturally, it also has the same problems as leavesBelow when
applied to an expression with shared sub-expressions: It will repeatedly infer types for shared sub-expressions
each time they occur.

This issue can be resolved by adding a let binding construct to Exp in order to explicitly represent shared
sub-expressions. The type inference algorithm can then be extended to make use of this sharing information.
However, let bindings tend to get in the way of syntactic simplifications, which is why optimising compilers
often try to inline let bindings in order to increase the opportunities for simplification. In general, it is not
possible to inline all let bindings, as this can lead to unmanageably large ASTs. This leaves the compiler
with the tricky problem of inlining enough to trigger the right simplifications, but not more than necessary
so that the AST does not explode.

Ideally, one would like to program syntactic analyses and transformations without having to worry about
sharing, especially if the sharing is only used to manage the size of the AST. The method proposed in this
paper makes it possible to traverse expressions as if all sharing was inlined, yet one does not have to pay
the price of duplicated sub-expressions, since the internal representation of expressions is an acyclic graph.

3

data Type = BoolType | IntType deriving (Eq)
type Env a = Map Name (Maybe a)

typeInf :: Env Type → Exp → Maybe Type
typeInf env (LitB) = Just BoolType
typeInf env (LitI) = Just IntType
typeInf env (Eq a b)
| Just ta ← typeInf env a
, Just tb ← typeInf env b
, ta ≡ tb = Just BoolType

typeInf env (Add a b)
| Just IntType ← typeInf env a
, Just IntType ← typeInf env b = Just IntType

typeInf env (If c t f)
| Just BoolType ← typeInf env c
, Just tt ← typeInf env t
, Just tf ← typeInf env f
, tt ≡ tf = Just tt

typeInf env (Var v) = lookEnv v env
typeInf env (Iter v n i b)
| Just IntType ← typeInf env n
, ti ′@(Just ti) ← typeInf env i
, Just tb ← typeInf (insertEnv v ti ′ env) b
, ti ≡ tb = Just tb

typeInf = Nothing

insertEnv :: Name → Maybe a → Env a → Env a
insertEnv = Map.insert

lookEnv :: Name → Env a → Maybe a
lookEnv v = join.Map.lookup v

Figure 1: Type inference for example EDSL.

3. Attribute Grammars

In this section we describe the representation and implementation of attribute grammars in Haskell.
The focus of our approach is put on a simple representation of this recursion scheme that at the same time
allows us to easily move from tree-structured data to graph-structured data. To this end, we represent
tree-structured data as fixed points of functors:

data Tree f = In (f (Tree f))

For instance, to represent the type Exp, we define a corresponding functor ExpF below, which gives us the
type Tree ExpF isomorphic to Exp (modulo non-strictness):

data ExpF a = LitB Bool | LitI Int | Var Name | Eq a a | Add a a | If a a a | Iter Name a a a

Apart from requiring functors such as ExpF to be instances of Functor , we also require them to be
instances of the Traversable type class. This will keep the representation of our recursion scheme on trees

4

A

B

D E

C

(a) Attribute propagation.

A

B

D E

C

(b) Tree traversal.

Figure 2: Propagation of attribute values by an attribute grammar.

simple and is indeed necessary in order to implement it on DAGs. Haskell is able to provide such instances
automatically via its deriving clause.

An attribute grammar (AG) consists of a number of attributes and a collection of semantic functions that
compute these attributes for each node of the tree. One typically distinguishes between inherited attributes,
which are computed top-down, and synthesised attributes, which are computed bottom-up. For instance, if
we were to express the type inference algorithm typeInf as an AG, it would consist of an inherited attribute
that is the environment and a synthesised attribute that is the inferred type.

Figure 2a illustrates the propagation of attribute values of an AG in a tree. The arrows facing upwards
and downwards represent the propagation of synthesised and inherited attributes, respectively. Due to this
propagation, the semantic functions that compute the attribute values for each node n have access to the
attribute values in the corresponding neighbourhood of n. For example, to compute the inherited attribute
value that is passed down from B to D, the semantic function may use the inherited attributes from A
and the synthesised attributes from D and E. This scheme allows for complex interdependencies between
attributes. Provided that there are no cyclic dependencies, a traversal through the tree that computes all
attribute values of each node can be executed as illustrated in Figure 2b.

3.1. Synthesised Attributes

We defer the formal treatment of AGs until section 5 and focus on the implementation in Haskell for now.
We start with the simpler case, namely synthesised attributes. The computation of synthesised attributes
follows essentially the same structure as a fold, i.e. the following recursion scheme:

type Algebra f c = f c → c

fold :: Functor f ⇒ Algebra f c → Tree f → c
fold alg (In t) = alg (fmap (fold alg) t)

The algebra of a fold describes how the value of type c for a node in the tree is computed given that it has
already been computed for its children.

AGs go beyond this recursion scheme: they allow us to use not only values of the attribute of type c
being defined but also other attributes, which are computed by other semantic functions. To express that
an attribute of type c is part of a larger collection of attributes, we use the following type class:

class c ∈ as where
pr :: as → c

Intuitively, c ∈ as means that c is a component of as, and it provides the corresponding projection function.
We can give instance declarations accordingly, which gives us for example that a ∈ (a, b) with the projection
function defined as pr = λ(x , y) → x . Using closed type families [20], the type class ∈ can be defined
such that it works on arbitrarily nested product types, but disallows ambiguous instances such as Int ∈
(Int , (Bool , Int)) for which multiple projections exist. But there are also simpler implementations of ∈ that
only use type classes [6].

We can thus represent the semantic function for a synthesised attribute of type s as follows:

type Syn f as s = (s ∈ as)⇒ as → f as → s

5

To compute the attribute of type s we can draw from the complete set of attributes of type as at the current
node as well as its children. Moreover, we can assume that as at least contains s.

For example, the following excerpt gives one case for the synthesised type attribute of type inference (cf.
the reference implementation in Figure 1):

typeInfS :: Syn ExpF as (Maybe Type)
typeInfS (Add a b)
| Just IntType ← pr a
, Just IntType ← pr b = Just IntType

...

However, instead of the above Syn type, we shall use a more indirect representation, which will turn out
to be beneficial for the representation of inherited attributes, and later for parametric AGs. It is based on
the isomorphism below, which follows from the Yoneda Lemma for all functors f and types as, s:

(∀c.(c → as)→ (f c → s)) ∼= f as → s

It allows us to define the type Syn f as s alternatively as follows:

∀ c.(s ∈ as)⇒ as → (c → as)→ f c → s

We further transform this type by turning the first two arguments of type as and c → as into implicit
parameters [38], which provides an interface closer to that of AG systems:

type Syn f as s = ∀ c.(?below :: c → as, ?above :: as, s ∈ as)⇒ f c → s

The implicit parameters ?below and ?above provide access to the attribute values at the children and
the current node, respectively. Combining the implicit parameters with projection gives us two convenient
helper functions for writing semantic functions:

above :: (?above :: as, i ∈ as)⇒ i
above = pr (?above)

below :: (?below :: a → as, s ∈ as)⇒ a → s
below a = pr (?below a)

These functions pick out a specific attribute from the compound type as of all attributes. Typically, above is
used to access an inherited attribute (propagated from the parent) and below to access a synthesised attribute
(propagated from a child). But it is not unusual to use above for synthesised attributes (propagated to the
parent) and below for inherited attributes (propagated to the children).

The complete definition of the synthesised type attribute for type inference is given in Figure 3. The
function typeInfI is the semantic function for the inherited environment attribute. It will be explained in
the following subsection. The code uses a convenient helper function for querying the synthesised type of a
sub-expression:

typeOf :: (?below :: c → as,Maybe Type ∈ as)⇒ c → Maybe Type
typeOf = below

3.2. Inherited Attributes

The representation of semantic functions defining inherited attributes is slightly more complicated, which
is to say that there is no representation that is both elegant and convenient to use. We need to represent
a mapping that assigns attribute values to the children of a node. Concretely, given a node of type f c,
where type c represents child positions of the node, we assign inherited attribute values of type i to each

6

typeInfS :: (Env Type ∈ as)⇒ Syn ExpF as (Maybe Type)
typeInfS (LitB) = Just BoolType
typeInfS (LitI) = Just IntType
typeInfS (Eq a b)
| Just ta ← typeOf a
, Just tb ← typeOf b
, ta ≡ tb = Just BoolType

typeInfS (Add a b)
| Just IntType ← typeOf a
, Just IntType ← typeOf b = Just IntType

typeInfS (If c t f)
| Just BoolType ← typeOf c
, Just tt ← typeOf t
, Just tf ← typeOf f
, tt ≡ tf = Just tt

typeInfS (Var v) = lookEnv v above
typeInfS (Iter v n i b)
| Just IntType ← typeOf n
, Just ti ← typeOf i
, Just tb ← typeOf b
, ti ≡ tb = Just tb

typeInfS = Nothing

typeInfI :: (Maybe Type ∈ as)⇒ Inh ExpF as (Env Type)
typeInfI (Iter v n i b) = b 7→ insertEnv v ti above

where ti = typeOf i
typeInfI = ∅

Figure 3: Semantic functions for synthesised and inherited attributes of type inference.

such child position. This can be achieved, for example, by a finite mapping of type Map c i . This would
give us the following representation of semantic functions for inherited attributes:

type Inh f as i = ∀ c.(?below :: c → as, ?above :: as, i ∈ as,Ord c)⇒ f c → Map c i

However, instead of choosing a concrete representation of the mapping of child positions to attribute values,
such as Map, we rather want to give an abstract interface. This will also enable us to provide an efficient
implementations of inherited attributes tailored to the specific use cases. In our definition of Inh below, m i
is an abstract type that represents finite mappings from c to i , which is expressed by the type constraint
Mapping m c:

type Inh f as i = ∀ m c.(?below :: c → as, ?above :: as, i ∈ as,Mapping m c)⇒ f c → m i

The type class Mapping describes the interface that finite mappings provide. Its definition is given in
Figure 4. For now, only the first three methods are of interest: The two infix operators 7→ and & allow us
to construct singleton mappings x 7→ y and construct the union m & n of two mappings. The constant ∅
denotes the empty mapping.

The definition of Inh given above does not ensure that the returned mapping is complete, i.e. that each
position is assigned a value. However, this situation provides the opportunity to allow so-called copy rules.
Such copy rules are a common convenience feature in AG systems and state when inherited attributes are

7

class Traversable m ⇒ Mapping m k | m → k where

-- operators to construct mappings
(&) :: m v → m v → m v
(7→) :: k → v → m v
∅ :: m v

-- methods for the internal implementation
prodMapWith :: (v1 → v2 → v)→ v1 → v2 → m v1 → m v2 → m v
findWithDefault :: a → k → m a → a

Figure 4: Definition of finite mappings.

simply propagated to a child. In our case, we copy an inherited attribute value to a child if no explicit
assignment is made in the mapping of the semantic function.

The semantic function for the inherited environment attribute of type inference is given by typeInfI in
Figure 3. The only interesting case is Iter , in which the local variable is inserted into the environment.
The environment is only updated for the sub-expression b (because the variable binding only scopes over
the body of the loop). Hence, the other sub-expressions (n and i) will get an unchanged environment by
the abovementioned copy rule. Similarly, for all other constructs in the EDSL, the environment is copied
unchanged.

3.3. Combining Semantic Functions to Attribute Grammars

Now that we have Haskell representations for semantic functions, we need combinators that allow us to
combine them to form complete AGs.

At first, we define combinators that combine two semantic functions to obtain a semantic function that
computes the attributes of both of them. For synthesised attributes, this construction is simple:

(⊗) :: (s1 ∈ as, s2 ∈ as)⇒ Syn f as s1 → Syn f as s2 → Syn f as (s1, s2)
(s1 ⊗ s2) t = (s1 t , s2 t)

The implementation for inherited attributes is more difficult as we have to honour the copy rule. That
is, given two semantic functions i1 and i2, where i1 assigns an attribute value for a given child position but
i2 does not, the product of i1 and i2 must assign an attribute value consisting of the value given by i1 and a
copy for the second attribute. To this end, we use the prodMapWith method provided by the Mapping type
class.

(~) :: (Functor f , i1 ∈ as, i2 ∈ as)⇒ Inh f as i1 → Inh f as i2 → Inh f as (i1, i2)
(i1 ~ i2) t = prodMapWith (λx y → (x , y)) above above (i1 t) (i2 t)

The first argument to prodMapWith is the function that is used to combine values in the two mappings, in
this case pairing. The next two arguments are the default values that are to be used in case only one of
the two mappings contains a value for a given child position. By passing above as the argument here, this
implementation honours the copy rule.

Finally, a complete AG is given by a semantic function of type Syn f (s, i) s and another one of type
Inh f (s, i) i . That is, taken together the two semantic functions define the full attribute space (s, i).
Moreover, we have to provide an initial value of the inherited attribute of type i in order to run the AG
on an input tree of type Tree f . In general, the initial value of the inherited attributes does not have to
be fixed but may depend on (some of) the synthesised attributes. These constraints are summarised in the
type of the function that implements the run of an AG:

runAG :: Traversable f ⇒ Syn ′ f (s, i) s → Inh ′ f (s, i) i → (s → i)→ Tree f → s

8

type Syn ′ f as s = ∀ c. (?below :: c → as, ?above :: as)⇒ f c → s

type Inh ′ f as i = ∀ m c.(?below :: c → as, ?above :: as,Mapping m c)⇒ f c → m i

The types Syn ′ and Inh ′ are like Syn and Inh but without the constraints of the form ... ∈ as. Those
constraints are not needed here because runAG operates on the full attribute space. Yet it is possible to
pass functions of type Syn and Inh to runAG as we will see in the following example, which defines type
inference using runAG .

We define type inference as a run of the AG defined in Figure 3:

typeInf :: Env Type → Tree ExpF → Maybe Type
typeInf env = runAG typeInfS typeInfI (λ → env)

In this example, the initialisation function for the inherited attribute is simply a constant function that
returns the environment. In section 3.5, we shall see an example that uses the full power of the initialisation
function.

3.4. Example: leavesBelow

As another example of how to define an AG, we consider the function leavesBelow from the introduction.
The first step is to define a functor corresponding to the type of integer trees:

data IntTreeF a = Leaf Int | Node a a
deriving (Functor ,Foldable,Traversable)

The inherited attribute is an integer that corresponds to the accumulated parameter in leavesBelow , i.e.
it gives the depth at which we should start collecting the leaves:

leavesBelowI :: Inh IntTreeF as Int
leavesBelowI (Leaf i) = ∅
leavesBelowI (Node t1 t2) = t1 7→ d ′ & t2 7→ d ′

where d ′ = above − 1

In the first case, there are no children, so we return the empty mapping. In the Node case, the inherited
attribute is decreased by one before being passed on to the children.

The synthesised attribute is the set of leaves at and below the depth given by the inherited attribute:

leavesBelowS :: (Int ∈ as)⇒ Syn IntTreeF as (Set Int)
leavesBelowS (Leaf i)
| (above :: Int) 6 0 = Set .singleton i
| otherwise = Set .empty

leavesBelowS (Node t1 t2) = below t1 ∪ below t2

In the Leaf case, we check whether the leaf should be collected by querying the inherited attribute, and in
the Node case, we simply join the set of leaves from the children.

The two semantic functions can be combined and run using runAG :

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow d = runAG leavesBelowS leavesBelowI (λ → d)

3.5. Example: Richard Bird’s repmin

A classic example of a tree traversal with interesting information flow is Bird’s repmin problem [12]. The
problem is as follows: given a tree with integer leaves, compute a new tree of the same shape but where
all leaves have been replaced by the minimal leaf in the original tree. For example, applied to the tree in

9

2

1

(a) Input DAG.

2

2 1

(b) Unravelling.

1

1 1

(c) repmin as AG.

1

1

(d) repmin as RAG.

1

(e) repmin as PAG.

Figure 5: Input and output of different versions of repmin.

Figure 5b, we obtain the tree in Figure 5c. Bird shows how this transformation can be implemented by a
single traversal in a lazy functional language.

To code repmin as an AG, we introduce two attribute types:

newtype MinS = MinS Int deriving (Eq ,Ord)
newtype MinI = MinI Int

MinS is the synthesised attribute representing the smallest integer in a subtree, and MinI is the inherited
attribute that is going to be the smallest integer in the whole tree. We also define a convenience function
for accessing the MinI attribute:

globMin :: (?above :: as,MinI ∈ as)⇒ Int
globMin = let MinI i = above in i

The semantic function for the MinS attribute is as follows:

minS :: Syn IntTreeF as MinS

minS (Leaf i) = MinS i
minS (Node a b) = min (below a) (below b)

The MinI attribute should be the same throughout the whole tree, so we define a function that just
copies the inherited attribute:

minI :: Inh IntTreeF as MinI

minI = ∅

Finally, we need to be able to synthesise a new tree that depends on the globally smallest integer available
from the MinI attribute. To do so we define a synthesised attribute of type Tree IntTreeF computed by the
following semantic function:

rep :: (MinI ∈ as)⇒ Syn IntTreeF as (Tree IntTreeF)
rep (Leaf i) = In (Leaf globMin)
rep (Node a b) = In (Node (below a) (below b))

Now we have all the parts needed to define repmin:

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = snd ◦ runAG (minS ⊗ rep) minI init

where init (MinS i ,) = MinI i

The init function uses the synthesised smallest integer as the initial inherited attribute value.

10

A B

C

v1 v2

(a) Abstract problem.

Iter "x"

LitI 10 Add

Var "x"Iter "y"

LitI 5 Add
{x 7→ Int,
y 7→ Int}

{x 7→ Int}

(b) Example: type inference.

Figure 6: Confluence of inherited attributes.

3.6. Informal Semantics

Instead of reproducing the implementation of runAG here, we shall informally describe the semantics of
an AG and describe how runAG implements this semantics. The formal semantics and its implementation
in Haskell is given later in section 5 and 8, respectively.

The semantic functions of an AG describe how to compute the value of an attribute at a node n using
the attributes in the “neighbourhood” of n. For synthesised attributes, this neighbourhood consists of n
itself and its children, whereas for inherited attributes, it consists of n, its siblings, and its parent. Running
the AG on a tree t amounts to computing, for each attribute a, the mapping ρa : N → Da from the set of
nodes of t to the set of values of a. In other words, the tree is decorated with the computed attribute values.
We call the collection of all these mappings ρa a run of the AG on t. In general, there may not be a unique
run (including no run at all), since there may be a cyclic dependency between the attributes. However, if
there is no such cyclic dependency, runAG will effectively construct the unique run of the AG on the input
tree, and return the product of all synthesised attribute values at the root of the tree.

Figure 2b illustrates how runAG may compute the run of a given AG by a traversal through the tree.
Such a traversal is, however, not statically scheduled in advance but rather dynamically – exploiting Haskell’s
lazy semantics.

4. Attribute Grammars on DAGs

Our goal is to take algorithms intended to work on trees and apply them – without or with only little
change – to DAGs such that we can exploit the sharing for performance gains. The key observation that
allows us to do this is the fact that AGs are unaware of the underlying representation they are working on.
Semantic functions simply compute attributes of a node using attribute values in the neighbourhood of the
node. The informal semantics of AGs on trees given in section 3.6 is equally applicable to DAGs.

This straightforward translation of the semantics to DAGs, however, will rarely yield a well-defined run.
The problem is that in the presence of sharing – i.e. there is a node with more than one incoming edge –
the semantic function for an inherited attribute may overlap: it assigns potentially different values to the
same attribute at the same node. Figure 6a illustrates the problem: the semantic function for the inherited
attribute computes for each of the two nodes A and B the value v1 resp. v2 of the inherited attribute that
should be passed down to the child node of A resp. B. However, A and B share the same child, C, which
therefore receives both values for the inherited attribute.

The easiest way to deal with this situation is to traverse the sub-DAG reachable from C multiple times
– once for each of the conflicting attribute values v1 and v2. This is what happens if we would implement
traversals as folds in the style of Oliveira and Cook [44]. But our goal is to avoid such recomputation.

A simple special case is if we know that v1 and v2 are always the same. That happens, for example, if
inherited attributes are only copied downwards as in the repmin example from section 3.5. However, for
the type inference AG, this is clearly not the case. One example that shows the problem is the DAG in
Figure 6b, where the shared variable "x" is used in two different environments.

11

Nonetheless, for type inference, as for many other AGs of interest, we can still extend the semantics to
DAGs in a meaningful way by providing a commutative, associative operator ⊕ on inherited attributes that
combines confluent attribute values. In the illustration in Figure 6a, the inherited attribute at C is then
assigned the value v1 ⊕ v2. For the type inference AG, a (provably) sensible choice for ⊕ is the intersection
of environments (cf. section 4.3). In Figure 6b, forming the intersection of the two environments of the node
Var "x" yields the environment {x 7→ Int}.

This observation allows us to efficiently run AGs on DAGs. Our implementation provides a corresponding
variant of runAG :

runAGG :: Traversable f ⇒ (i → i → i)→
Syn f (s, i) s → Inh f (s, i) i → (s → i)→ Dag f → s

The interface differs in two points from runAG : (1) it takes DAGs as input and (2) it takes a binary operator
of type i → i → i , which is used to combine confluent attributes as described above.

For instance, we may use the type inference AG to implement type inference on DAGs as follows:

typeInfG :: Env Type → Dag ExpF → Maybe Type
typeInfG env = runAGG intersection typeInfS typeInfI (λ → env)

We defer the discussion of the formal semantics of AGs on DAGs as well as the implementation of runAGG

until section 5 and 8, respectively. But we briefly explain how DAGs of type Dag f are represented. We
represent DAGs with explicit nodes and edges, with nodes represented by integers:

type Node = Int

Edges are represented as finite mappings from Node into f Node. In this way, each node is mapped to all its
children, but also its labelling. In addition, each DAG has a designated root node. This gives the following
definition of Dag as a record type:

data Dag f = Dag {root :: Node,
edges :: IntMap (f Node)}

Note that acyclicity is not explicitly encoded in this definition of DAGs. Instead, we rely on the combinators
to construct such DAGs to ensure or check for acyclicity. Moreover, finite mappings are represented by the
type IntMap, which is Haskell’s implementation of PATRICIA trees [43].

Following Gill [28], we provide a function that observes the implicit sharing of a tree of type Tree f and
turns it into a DAG of type Dag f :

reifyDag :: Traversable f ⇒ Tree f → IO (Dag f)

As a final example, we turn the repmin function from section 3.5 into a function repminG that works on
DAGs.

repminG :: Dag IntTreeF → Tree IntTreeF
repminG = snd ◦ runAGG const (minS ⊗ rep) minI init

where init (MinS i ,) = MinI i

The only additional definition we have to provide is the function to combine inherited attribute values, for
which we choose const , i.e. we arbitrarily pick one of the values. The rationale behind this choice is that
the value of inherited attribute – computed by minI – is globally the same since it is copied. The formal
justification for this choice is given in section 4.1 below.

The type of repminG indicates that it is not quite the function we had hoped for: it returns a tree
rather than a DAG. For instance, applied to the DAG pictured in Figure 5a, repminG produces the tree in
Figure 5c. This is the same result we would obtain if we first unravelled the DAG to a tree (pictured in
Figure 5b) and then applied repmin. In section 6 we will introduce a generalisation of AGs that can preserve
the sharing present in the input DAG and thus produces the DAG pictured in Figure 5d. Beyond that we
will also be able make use of the nature of the transformation to introduce additional sharing in the result
(pictured in Figure 5e).

12

4.1. Trees vs. DAGs

The most important feature of our approach is that we can express the semantics of an AG on DAGs in
terms of the semantics on trees. This is achieved by two correspondence theorems that relate the semantics
of AGs on DAGs to the semantics on trees. The theorems are discussed and proved in section 5. But we
present them here informally and illustrate their applicability to the examples that we have seen so far.

To bridge the gap between the tree and the DAG semantics of AGs, we use the notion of unravelling
(or unsharing) of a DAG g to a tree U (g), which is the uniquely determined tree U (g) that is bisimilar
to g. Since we only consider finite acyclic graphs g, the unravelling U (g) is always a finite tree. The
correspondence theorems relate the result of running an AG on a DAG g to the result of running it on the
unravelling of g. The practical relevance of these theorems stems from the fact that reifyDag turns a tree t
into a DAG g that unravels to t.

The first and simplest correspondence result is applicable to all so-called copying AGs, which are AGs
that copy all their inherited attributes. That is, in concrete terms, the semantic function of each inherited
attribute returns the empty mapping ∅. Such AGs are by no means trivial, since inherited attributes may
still be initialised as a function on the synthesised attributes. The repmin AG, for example, is copying. The
following correspondence theorem is thus applicable to repmin:

Theorem 1 (sketch). Given a copying AG G, a binary operator ⊕ on inherited attributes with x⊕y ∈ {x, y}
for all x, y, and a DAG g, we have that G terminates on U (g) with result r iff (G,⊕) terminates on g with
result r.

In terms of our Haskell implementation, Theorem 1 can be read as follows: given an initialisation function
init :: s → i and semantic functions inh :: Inh f i and syn :: Syn f s such that inh returns ∅ for all inputs,
we have the following for all t :: Tree f :

runAG syn inh init t = runAGG const syn inh init g

where g is the DAG obtained by applying reifyDag to t .
In particular, we can immediately apply Theorem 1 to the repmin AG. We obtain that repminG applied

to a DAG g yields the same result as repmin applied to U (g). That is, we get the same result for repmin t
and fmap repminG (reifyDag t).

Before we discuss the second correspondence theorem we have to consider the termination behaviour of
AGs on trees vs. DAGs.

4.2. Termination of Attribute Grammars

While AGs are quite flexible in the interdependency between attributes they permit – which in general
may lead to cyclic dependencies and thus non-termination – they come with a tool set to check for circular
dependencies. Already when Knuth [35, 34] introduced AGs, he gave an algorithm to check for circular
dependencies and proved that absent such circularity AGs terminate.

This result also applies to our AGs. And the example AGs we have considered this far are indeed
non-circular – runAG will terminate for them (given any finite tree as input). Somewhat surprisingly this
property does not carry over to acyclic graphs.

The essence of the phenomenon that causes this problem is illustrated in Figure 7. Figure 7a shows a
simple DAG consisting of two nodes, and Figure 7b its unravelling to a tree. The double arrows illustrate
the flow of information from a run of an AG. The numbers indicate the order in which the information
flows: we first pass information from A to B1 (via the inherited attribute) then from B1 back to A (via
the synthesised attribute) and then similarly to and from B2. This is a common situation, which one e.g.
finds in type inference. The underlying AG is non-circular, and the numbering indicates the order in which
attributes are computed and then propagated.

However, in a DAG the two children of A may very well be shared, i.e. represented by a single node B.
This causes a cyclic dependency, which can be observed in Figure 7a: information flow (2) can only occur
after (1) and (3), as only then all the information coming to B has been collected. But (3) itself depends
on (2).

13

A

B

1 2 3 4

(a) A DAG g.

A

B1 B2

1
2 3

4

(b) Unravelling of g.

Iter "x"

LitI 0

Var "x"

Iter "x"

(c) Example DAG.

Figure 7: Cyclic dependency in non-circular AG on DAGs.

Cyclic dependencies can easily occur with the type inference AG. In the DAG in Figure 7c the lower
Iter loop computes the initial state of the upper Iter loop, and both loops use the variable "x" for the
state. The variable node inherits two environments – one from each of the Iter nodes – which are resolved
by intersection. Thus, the type of the variable depends on the environment from the upper loop, which
depends on the type of the lower loop, which in turn depends on the type of the variable.

Semantically, the non-termination manifests itself in the lack of a unique run. While the type inference
AG has a unique run on the unravelling of this DAG, there are exactly two distinct runs on the DAG itself:
one in which the Var "x" node is given the synthesised attribute value Nothing and another one in which
it is given the value Just IntType. We discuss how to resolve this issue in the next section.

Note that this issue cannot occur for the repmin example. The repmin AG is non-circular and thus
terminates on trees. By virtue of Theorem 1, it thus terminates on DAGs as well.

4.3. Correspondence by Monotonicity

Relating the semantics of the type inference AG on trees to its semantics on DAGs is much more difficult
– even if the issue of termination is sorted out. We do not have a simple equality relation as we have
for a copying AG. In fact, it should be expected that type inference on a DAG g is more restrictive than
on its unravelling U (g): a node that is shared in a DAG can only be assigned a single type, whereas its
corresponding copies in the unravelling may have different types.

However, we can prove the following property: if the type inference AG infers a type t for a DAG g,
then it infers the same type t for U (g). This soundness property follows immediately from a more general
monotonicity correspondence theorem.

In order to apply this theorem, we have to find, for each attribute a, a quasi-order . on the values of
attribute a, such that each semantic function f is monotone w.r.t. these quasi-orders. That is, given two
sets of inputs A and B, with B greater than A, also the result of f applied to B is greater than f applied to
A. We say that an AG is monotone w.r.t. ., if each semantic function is. Moreover, we require the binary
operator ⊕ on inherited attributes be decreasing w.r.t. the order ., i.e. x⊕ y . x, y.

Theorem 2 (sketch). Let G be a non-circular AG, ⊕ an associative, commutative operator on inherited
attributes, and . such that G is monotone and ⊕ is decreasing w.r.t. .. If (G,⊕) terminates on a DAG g
with result r, then G terminates on U (g) with result r′ such that r . r′.

Note that due to the symmetry of Theorem 2, we also know that if ⊕ is increasing, i.e. x, y . x⊕y, then
we have that r′ . r. We obtain this corollary by simply considering the inverse of ..

Let’s see how the above theorem applies to the type inference AG. The order . on Env is the usual order
on partial mappings, i.e. the subset order on the graph of partial mappings, and . on Maybe Type is the
least quasi-order with Nothing . t for all t :: Maybe Type. According to these orders, all semantic functions
are monotone, and the operator ⊕ = intersection is decreasing. We thus get the soundness property by
applying Theorem 2: if type inference on a DAG g returns r then it returns r′ on U (g) with r . r′. In
particular, if r = Just t then also r′ = Just t .

As alluded to above, in general, we cannot hope to obtain a completeness property for type inference
on DAGs. However, given a mild restriction, we can, in fact, obtain completeness. The DAG in Figure 8

14

Add

Iter "x"

LitI 10

Iter "x"

LitB False

Var "x"

{x 7→
B
ool}

{x
7→
In
t}

Figure 8: DAG that is not well-scoped.

provides a counterexample for completeness: the result for the DAG g is Nothing , while for U (g) it is Just t .
The problem is that the variable "x" is shared between two contexts in which it has different types. That
is, intersecting the environments yields the empty environment. However, the above phenomenon as well as
non-termination can only occur if the DAG is not well-scoped in the following sense: a DAG is well-scoped
if no variable node is shared among different binders, or shared between a bound and free occurrence. This
restriction rules out the DAG in Figure 8 as well as the one in Figure 7c.

Given this well-scopedness property, we can show that type inference on a well-scoped DAG g produces
the same result as on its unravelling U (g) – provided it terminates. It only remains to be shown that
whenever the result r on g is Nothing , then also the result r′ on U (g) is Nothing . The full version of
Theorem 2, as we will see in section 5.4, is much stronger than stated above: we have the relation .
between a run on a DAG and a run on its unravelling not only for the final results r and r′ but for each
attribute at each node. That means if we get a type t for a sub-DAG of g, then we also get the type t for
the corresponding subtree of U (g). Consequently, if we had a type for U (g) but not for g itself, then the
reason could not be a type mismatch. It can only be because a variable was not found in the environment.
That, however, can never happen because of well-scopedness. Hence, also r′ = Nothing .

Finally, we show that typeInfG terminates. Semantically, non-termination means that there is either no
run or multiple different runs on DAGs. While monotonicity does not prove termination in general, it can
help us to at least establish the existence of runs:

Proposition 2 (sketch). Given G, ⊕, and . as in Theorem 2 such that . is well-founded on inherited
attributes, then (G,⊕) has a run on any DAG.

Proposition 2 immediately applies to the type inference AG. Thus it remains to be shown that runs are
unique. As we have seen in Figure 7c, this is not true in general. However, restricted to well-scoped DAGs
it is: if there were two distinct runs on a DAG g, then the runs can only differ on shared nodes, since runs
on U (g) are unique. Moreover, the type attribute depends only on type attributes of child nodes, except
in the case of variables. Hence, there must be a variable node to which the two runs assign different types.
However, well-scopedness makes this impossible.

Thus, we can conclude that typeInfG on a well-scoped DAG g behaves as typeInf on its unravelling U (g).
It is always possible to make a DAG well-scoped by means of alpha-renaming. However, note that

renaming on a DAG may lead to duplication. For example, renaming one of the loops in Figure 8 would
require introducing a new variable node. As a safe approximation, in particular when using reifyDag , making
sure that all binders introduce distinct variable names guarantees that the DAG is well-scoped.1

Finally, it is important to note that monotonicity is not an intrinsic property of AGs, but depends on
the choice of ..2 In particular, we may choose one order . for using Theorem 2 and another one for proving
termination using Proposition 2.

4.4. Observing the Sharing

In this paper, we have only looked at AGs for which we want to get the same result when running on a
DAG and running on its unravelling. That is, we have only cared about DAGs as a compact representation

1See the Dag.Rename module in the accompanying repository.
2For example, any AG is monotone w.r.t the full relation.

15

of trees, and we want to get the same result regardless of how the tree is represented.
However, there are cases where we actually want to give meaning to the sharing in the DAG. One such

case is when estimating signal delays in digital circuits. The time it takes for an output of a logic gate to
switch depends on how many other gates are connected to it – i.e. its load. A higher load leads to slower
switching.

As a simple example, let us for a while assume that the IntTreeF functor defined in section 3.4 represents
digital circuits. Leaf represents inputs and Node represents nand gates (any n-ary Boolean function can be
computed by a network of nand gates).

type Circuit = Dag IntTreeF

To implement delay analysis as an AG, we start by defining attributes for delay and load:

newtype Delay = Delay Int deriving (Eq ,Ord ,Num)
newtype Load = Load Int deriving (Eq ,Ord ,Num)

The delay attribute can be computed by summing the maximum input delay, some intrinsic gate delay and
a load-dependent term:

gateDelay :: (Load ∈ as)⇒ Syn IntTreeF as Delay
gateDelay (Leaf) = Delay 0
gateDelay (Node a b) = max (below a) (below b) + Delay 10 + Delay l

where Load l = above

In this simplified delay analysis, we interpret load as the number of connected gates, so the load attribute
that is propagated down is 1 for both inputs:

gateLoad :: Inh IntTreeF as Load
gateLoad (Node a b) = a 7→ 1 & b 7→ 1
gateLoad = ∅

The delay analysis is completed by running the AG on a circuit DAG using (+) as the resolution function:

delay :: Load → Circuit → Delay
delay l = runAGG (+) gateDelay gateLoad (λ → l)

Note that the semantic function for the load attribute does not do any interesting computation. Instead, it
is the resolution function that “counts” the number of connected gates for each node.

Since the AG defined by the above semantic functions is monotone and + is increasing w.r.t. the natural
order on integers, Theorem 2 gives us the expected result that the delay of a circuit DAG is greater than or
equal to the delay of its unravelling.

The circuit description system Wired [4] implements analyses on circuit DAGs using a generic traversal
scheme and semantic functions similar to the ones above. It should be possible to give a more principled
implementation of these analyses in terms of AGs using monotonicity as a proof principle.

5. Semantics

With the goal of keeping the presentation simple, we give the semantics of AGs in a set theoretic setting.
Moreover, in order to be able to formulate a semantics of AGs on DAGs, we have to restrict ourselves to
functors that are representable by finitary containers [1]. In the Haskell implementation, this assumption
corresponds to the restriction to functors that are instances of the Traversable type class. Traversable
functors (that satisfy the appropriate associated laws) are known to be exactly those that are representable
by finitary containers [13].

Definition 1. A finitary container F is a pair (Sh, ar) consisting of a set Sh of shapes, and an arity function
ar : Sh → N. Each finitary container F gives rise to a functor Ext(F) : Set → Set, called the extension of
F , that maps each set X to the set of (dependent) pairs (s, x), where s ∈ Sh and x ∈ Xar(s). By abuse of
notation we also write F for the functor Ext(F).

16

5.1. Trees and DAGs

Analogously to the way trees and DAGs are parametrised by a (Traversable) functor in our Haskell
implementation, we parametrise the corresponding semantic notions by a finitary container. In the following,
we use the shorthand notation (si)i<l for a tuple (s0, . . . , sl−1) ∈ Πi<lSi. Moreover, we use the notation
〈n1, . . . , nl〉 for finite sequences over N, i.e. in particular, 〈〉 denotes the empty sequence; and we use the
binary operator · to denote the concatenation of finite sequences.

Definition 2. The set of trees Tree(F) over a finitary container F is the least fixed point of Ext(F). That
is, each tree t is of the form (s, (ti)i<l) with ti ∈ Tree(F) for all i < l. The set P (t) of positions of a tree t
is the least set of finite sequences over N such that 〈〉 ∈ P (t) and if p ∈ P (tj), then 〈j〉 · p ∈ P (s, (ti)i<l).
Given a position p ∈ P (t), we define the subtree t|p of t at p as follows: t|〈〉 = t and (s, (ti)i<l)|〈j〉·p = tj |p
for all j < l.

For the formal definition of DAGs, we use a representation similar to the Haskell implementation, viz. a
mapping from nodes to their child nodes.

Definition 3. A graph g = (N,E, r) over a finitary container F is given by a finite set N of nodes, an edge

function E : N → F (N), and a root node r ∈ N . A graph g induces a reachability relation
g→, which is the

least transitive relation
g→ such that n

g→ nj , whenever E(n) = (s, (ni)i<l). We write
g← for the inverse of

g→. A graph g = (N,E, r) is called a DAG if (a) each node n ∈ N is reachable from r, i.e. r
g→ n, and

(b) g is acyclic, i.e.
g← is well-founded. The set of all DAGs over F is denoted DAG(F). Given a DAG

g = (N,E, r) and a node n ∈ N , the sub-DAG of g rooted in n, denoted g|n, is the DAG (N ′, E′, n), where

N ′ = {m ∈ N |n g→ m} is the set of nodes reachable from n in g, and E′ is the restriction of E to N ′.

Since DAGs are finite,
g→ is well-founded iff

g← is well-founded. Moreover, each tree t ∈ Tree(F) gives
rise to a DAG G (t) ∈ DAG(F), given by the triple (P (t) , E, 〈〉), where

E(p) = (s, (p · 〈i〉)i<l) if t|p = (s, (ti)i<l).

Conversely, each DAG g = (N,E, r) gives rise to a tree U (g), called the unravelling of g, as follows:

U (g) = (s, (U (g|ni
))i<l) if E(r) = (s, (ni)i<l)

The mapping U (·) : DAG(F) → Tree(F) is well-defined by the principle of well-founded recursion with the
well-founded relation < given by: g < h iff g = h|n with n a node in h that is not the root. Well-foundedness

of < follows from the well-foundedness of the reachability relation
g← for each DAG g ∈ DAG(F).

Similarly to positions in trees, we define paths in a DAG. Given a DAG g = (N,E, r) and node n ∈ N , the
set Pg (n) of paths to n in g is inductively defined as the least set with (a) 〈〉 ∈ Pg (r), and (b) if p ∈ Pg (n)
and E(n) = (s, (ni)i<l), then p · 〈i〉 ∈ Pg (ni) for all i < l. The set of all paths in a DAG g, denoted P (g),
is then simply the union

⋃
n∈N Pg (n). This union is a disjoint union, i.e. for each path p ∈ P (g), there is a

unique node n ∈ N such that p ∈ Pg (n). We denote this unique node n as g [p]. We can observe the close
relationship between paths and positions in the unravelling of DAGs: we have that P (g) = P (U (g)).

5.2. Attribute Grammars and Their Semantics

In the following we will work with families (Da)a∈I of sets and families (fa)a∈I of functions fa : X → Da

defined on them. To work with them conveniently, we make use of the notation DA, with A ⊆ I, for the set
Πa∈ADa and fA for the function of type X → DA that maps each x ∈ X to (fa(x))a∈A.

Definition 4. An attribute grammar (AG) G over a finitary container F = (Sh, ar) is a tuple (S, I,D, α, δ)
consisting of:

• finite, disjoint sets S, I of synthesised resp. inherited attributes,

• a family D = (Da)a∈S∪I of sets, called attribute domains,

17

• a family α = (αa : DS → Da)a∈I of initialisation functions,

• a family δ = (δa)a∈S∪I of semantic functions, where

δa : F (DS)×DI → Da if a ∈ S
δa : Π((s,d),d)∈F (DS)×DI

Dar(s)
a if a ∈ I

In other words, δa maps each ((s, d), d) ∈ F (DS)×DI to some e ∈ Da if a ∈ S and to some e ∈ Dar(s)
a

if a ∈ I.

The semantics of an AG is defined in terms of runs on a tree or a DAG. A run is simply a decoration of
all nodes in the tree resp. DAG with elements of the attribute domains that is consistent with the semantic
and initialisation functions.

Definition 5. Let G = (S, I,D, δ, α) be an AG over F and t ∈ Tree(F). A family ρ = (ρa)a∈S∪I of mappings
ρa : P (t)→ Da is called a run of G on t if the following conditions are met:

• αa(ρS(〈〉)) = ρa(〈〉) for all a ∈ I

• For each p ∈ P (t) with t|p = (s, (ti)i<l), we have that

δa((s, (ρS(p · 〈i〉))i<l), ρI(p)) =

{
ρa(p) if a ∈ S
(ρa(p · 〈i〉))i<l if a ∈ I

If there is a unique run ρ, we obtain the result ρS(〈〉) ∈ DS , which we denote by JGK (t).

For the semantic function δa of an inherited attribute a, we use the notation δa,j for the function that
returns the j-th component of the result of δa. For example, we can reformulate the condition on ρa from
the above definition as follows:

δa,j((s, (ρS(p · 〈i〉))i<l), ρI(p)) = ρa(p · 〈j〉) for all j < l

In general an AG may have multiple runs or no run at all. However, we can give sufficient conditions on
AGs that ensure that a given AG has exactly one run on any tree. One such condition is that the semantic
functions have no cyclic dependencies, which is known as non-circularity in the literature on AGs.

We will not go into the details of deciding non-circularity and instead refer to the algorithm of Knuth
[35, 34]. An important consequence of non-circularity is that we can schedule the construction of the unique
run of the AG on an input tree. In particular, given a tree t ∈ Tree(F) and AG G = (S, I,D, δ, α) on F ,
there is a well-founded order < on the set (S ∪ I)×P (t), which describes in which order the run of G on t
can be constructed. For example, if (a, 〈0〉) < (b, 〈〉) then the attribute b of the root of the tree can only be
computed after the attribute a of the first child of the root has been computed.

Below we give the properties that the order < satisfies. For each p ∈ P (t) with t|p = (s, (ti)i<l), we have
the following:

• For all a ∈ S and b ∈ I, we have (a, 〈〉) < (b, 〈〉) or αb is independent of a.

• For all a ∈ S, b ∈ I, and i, j < l, we have (a, p · 〈i〉) < (b, p · 〈j〉) or δb,j((s, ·), ·) is independent of (a, i).

• For all a, b ∈ I, and j < l, we have (a, p) < (b, p · 〈j〉) or δb,j((s, ·), ·) is independent of a.

• For all a, b ∈ S, and i < l, we have (a, p · 〈i〉) < (b, p) or δb((s, ·), ·) is independent of (a, i).

• For all a ∈ I and b ∈ S, we have (a, p) < (b, p) or δb((s, ·), ·) is independent of a.

18

We say that αb is independent of a if αa((ec)c∈S) has the same value for each ea ∈ Da and we say that that
a function f((s, ·), ·) : Dl

S×DI →M is independent of (a, j) or a if f((s, (di)i<l), (eb)b∈I) with di = (di,b)b∈S
has the same value for all dj,a ∈ Da, respectively, for all ea ∈ Da.

In the following, when we say that an AG is non-circular, we assume that a well-founded order as
described above exists for any input tree.

Proposition 1. Every non-circular AG has a unique run on any given tree.

The definition of a run on DAGs is more difficult as a node in a DAG may have multiple parents, which
leads to the situation depicted in Figure 6, where a node may receive several inherited attribute values. Our
approach in this paper is to assume, for each inherited attribute a, a binary operator ⊕a that combines
attribute values. In order to obtain well-defined notion of a run, we must in general assume that ⊕a is
associative and commutative, i.e. it does not matter in which order inherited attributes are combined:

Definition 6. Let G = (S, I,D, α, δ) be an AG over F , ⊕ = (⊕a : Da×Da → Da)a∈I a family of associative
and commutative binary operators, and g = (N,E, r) ∈ DAG(F). A family ρ = (ρa)a∈S∪I of mappings
ρa : N → Da is called a run of G modulo ⊕ on g if the following conditions are met:

• ρa(r) = αa(ρS(r)) for all a ∈ I

• For all n ∈ N with E(n) = (s, (ni)i<l) and a ∈ S, we have

ρa(n) = δa((s, (ρS(ni))i<l), ρI(n))

• For all n ∈ N and a ∈ I, we have

ρa(n) =
⊕

(m,j,s,(ni)i<l)∈M

δa,j((s, (ρS(ni))i<l), ρI(m))

where M is the set of all tuples (m, j, s, (ni)i<l) such that E(m) = (s, (ni)i<l) and nj = n, and the
sum is w.r.t. ⊕a.

If there is a unique run ρ, we obtain the result ρS(r) ∈ DS , which we denote by LG,⊕M(g).

Note that the definition of runs on DAGs generalises the definition of runs on trees in the sense that a
run on a tree t is also a run on the corresponding DAG G (t) and vice versa.

Lemma 1. Let G = (S, I,D, α, δ) be an AG on F , ⊕ = (⊕a : Da × Da → Da)a∈I a family of associative
and commutative binary operators, and t ∈ Tree(F). Then each ρ is a run of G on t iff it is a run of G
modulo ⊕ on G (t).

Proof. Immediate consequence of the definition of G (t).

In particular, this means that if JGK (t) or LG,⊕M(t) is defined, then JGK (t) = LG,⊕M(G (t)).
In the following two sections, we shall formally state and prove the correspondence theorems that we

used in section 4.

5.3. Copying Attribute Grammars

At first we consider the case of copying AGs, i.e. AGs whose semantic functions for all inherited attributes
simply copy the value of the attribute from each node to all its child nodes:

Definition 7. An AG G = (S, I,D, α, δ) over F is called copying, if δa,j((s, d), (eb)b∈I) = ea for all a ∈ I,
(s, d) ∈ F (DS), j < ar(s) and (eb)b∈I ∈ DI . A family (⊕a : Da ×Da → Da)a∈I of binary operators is called
copying if d⊕a e ∈ {d, e} for all a ∈ I and d, e ∈ Da.

19

Given a setting as described above, we can show that, for each run of an AG on a DAG g, we find an
equivalent run of the AG on U (g), and vice versa. Equivalence of runs is defined as follows: given an AG
G = (S, I,D, α, δ) over F , we say that a run ρ of G on a DAG g ∈ DAG(F) and a run ρ′ of G on U (g) are
equivalent if ρ′a(p) = ρa(g [p]) for all a ∈ S ∪ I and p ∈ P (g).

Theorem 1. Given a copying AG G = (S, I,D, α, δ) over F , a copying ⊕ = (⊕a : Da ×Da → Da)a∈I , and
a DAG g = (N,E, r) ∈ DAG(F), we have that for each run of G modulo ⊕ on g there is an equivalent run
of G on U (g), and vice versa.

Proof sketch. Given a run ρ on g, we construct ρ′ on U (g) by setting ρ′a(p) = ρa(g [p]). Conversely, given a
run ρ on U (g), we construct a run ρ′ on g by setting ρ′a(n) = ρa(p) for some p ∈ Pg (n). This is well-defined
since ρa is constant for a ∈ I, and for a ∈ S, we have ρa(p) = ρa(q) whenever U (g) |p = U (g) |q.

Corollary 1. Given G, ⊕, and g as in Theorem 1 such that G is non-circular, we have that LG,⊕M(g) =
JGK (U (g)).

Proof. Due to the correspondence of runs according to Theorem 1, uniqueness of runs of G on DAGs follows
from the uniqueness of its runs on trees (cf. Proposition 1). Hence, both LG,⊕M(g) and JGK (U (g)) are
defined, and by Theorem 1 they are equal.

Note that for copying AGs we do not need ⊕ to be commutative and associative to obtain a well-defined
semantics on DAGs – as long as ⊕ is copying, too.

5.4. Correspondence by Monotonicity

Next we show that if the attribute domains Da of an AG G are quasi-ordered such that the semantic
and initialisation functions are monotone and ⊕a are decreasing, then the result of any run of G on a DAG
g is less than or equal to the result of the run of G on U (g). We start by making the preconditions of this
theorem explicit:

Definition 8. A family of binary operators (⊕a : Da × Da → Da)a∈A on a family of quasi-ordered sets
(Da,.a)a∈A is called decreasing if d1 ⊕a d2 . d1, d2 for all a ∈ A and d1, d2 ∈ Da. A function f : S → T
between two quasi-ordered sets (S,.S) and (T,.T) is called monotone if s1 .S s2 implies f(s1) .T f(s2)
for all s1, s2 ∈ S. An AG G = (S, I,D, α, δ) equipped with a quasi-order .a on Da for each a ∈ S ∪ I, is
called monotone if each αa and δa is monotone, where the orders on DS , F (DS)×DI and Dn

S are defined
pointwise according to (.a)a∈S∪I . That is, e.g. .A on DA is defined by (da)a∈A .A (ea)a∈A iff da .a ea
for all a ∈ A, and . on F (DS)×DI is defined by ((s, (di)i<k), d) . ((t, (ei)i<l), e) iff s = t, di .S ei for all
i < l and d .I e.

Theorem 2. Let G = (S, I,D, α, δ) be a non-circular AG, ⊕ = (⊕a : Da × Da → Da)a∈S∪I associative
and commutative operators, and (.a)a∈S∪I quasi-orders such that G is monotone and ⊕ is decreasing w.r.t.
(.a)a∈S∪I . Given a run ρ of G modulo ⊕ on a DAG g = (N,E, r) and the run ρ′ of G on U (g), we have
ρa(g [p]) .a ρ

′
a(p) for all a ∈ S ∪ I and p ∈ P (g).

Proof sketch. Since G is non-circular, there is a well-founded order < on (S∪ I)×P (U (g)) compatible with
G. The above inequation can then be shown by well-founded induction using <.

Corollary 2. Given G, ⊕, (.a)a∈S∪I , and g as in Theorem 2, and given that LG,⊕M(g) is defined, then
LG,⊕M(g) .S JGK (U (g)).

Proof. Given the unique runs ρ and ρ′ on g and U (g), respectively, we have the following according to
Theorem 2:

LG,⊕M(g) = ρS(r) = ρS(g [〈〉]) .S ρ
′
S(〈〉) = JGK (U (g))

20

Note that while we assume non-circularity of the AG (as in Corollary 1), LG,⊕M(g) may not be defined
(unlike in Corollary 1). Nonetheless, for the proof of Theorem 2 the assumption of non-circularity is essential
since it is the basis of the induction argument. The issue of non-termination of AGs on DAGs was discussed
in section 4.2 exemplified with the DAG depicted in Figure 8.

Nevertheless, in case the AG is monotone w.r.t. well-founded orders, we can at least prove the existence
of runs on DAGs:

Proposition 2. Given G, ⊕, and (.a)a∈S∪I as in Theorem 2 such that .a is well-founded for every a ∈ I,
then, on any DAG there is a run of G modulo ⊕.

6. Transforming and Constructing DAGs

The definition of repminG from the beginning of section 4 uses runAGG to run the repmin AG on DAGs.
While repminG does take DAGs as input, it produces trees as output. The reason for this is that while the
AG is oblivious to whether it runs on a DAG or a tree, it does explicitly construct a tree as its output.

However, there is no reason why it should do so. The only assumption that is made in constructing the
synthesised tree attribute is that its values can be combined using the constructors of the underlying functor
IntTreeF . However, this assumption is true for both the type Tree IntTreeF and Dag IntTreeF . Indeed, by
drawing ideas from macro tree transducers [22, 9] our AG recursion scheme can be generalised to preserve
sharing in the result of an AG computation. That is, if applied to trees the AG constructs trees and if
applied to a DAG the AG constructs DAGs in its attributes. An important property of this generalised
recursion scheme is that both Theorem 1 and Theorem 2 can be generalised to cover it, too.

For the sake of demonstration we first consider a simple special case that is often sufficient to express
transformations of DAGs. This special case is represented by rewriting attribute grammars (or RAGs for
short), which provide an additional semantic function that allows us to rewrite the input tree respectively
DAG. The more general case is covered later in sections 6.2 and 6.3.

6.1. Special Case: Simple Rewriting

Rewriting attribute grammars (RAGs) extend AGs with a simple “rewrite” function, which is used to
transform the input DAG. This intuition is encoded in the following type that can be seen as a specialisation
of Syn:

type Rewrite f as g = ∀ c.(?below :: c → as, ?above :: as)⇒ f c → g c

The difference between Rewrite and Syn is that the latter may produce values of an arbitrary type s,
whereas the former produces values of type g c, where c is the type of child nodes. Intuitively, each node –
represented as element of the type f c – is rewritten to a new node of type g c. In this representation, child
nodes – i.e. elements of type c – are not only used to reference other attribute values via above and below ,
but also to define how newly constructed nodes are connected to other nodes.

The semantic function rep, which defines the repmin transformation, has to be modified only superficially
to fit the Rewrite type:

rep′ :: (MinI ∈ as)⇒ Rewrite IntTreeF as IntTreeF
rep′ (Leaf i) = Leaf globMin
rep′ (Node a b) = Node a b

Note that the parametric polymorphism of the type Rewrite allows us to instantiate the construction
performed by rep′ to both trees and DAGs. Apart from this polymorphism, functions of this type are no
different from semantic functions for synthesised attributes. Therefore, we can extend the function runAG
such that it takes a rewrite function as an additional semantic function:

runRewrite :: (Traversable f ,Functor g)⇒ Syn f (s, i) s → Inh f (s, i) i → Rewrite f (s, i) g
→ (s → i)→ Tree f → Tree g

21

The definition of repmin can thus be reformulated as follows:

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = runRewrite minS minI rep′ init

where init (MinS i) = MinI i

The corresponding variant for DAGs, not only takes DAGs as input but also produces DAGs as output:

runRewriteG :: (Traversable f ,Functor g)⇒ (i → i → i)→ Syn f (s, i) s → Inh f (s, i) i
→ Rewrite f (s, i) g → (s → i)→ Dag f → Dag g

The definition of repminG is adjusted accordingly:

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = runRewriteG const minS minI rep′ init

where init (MinS i) = MinI i

Now repminG has the desired type – and the implementation of runRewriteG has the expected property
that sharing of the input DAG is preserved. For example, repminG transforms the DAG in Figure 5a into
the DAG in Figure 5d. However, repminG does not produce the same result for a DAG g as repmin does
for U (g). But it does produce a DAG that unravels to the result of repmin, i.e. both are equivalent modulo
unravelling. This is an immediate consequence of the corresponding variant of Theorem 1 for rewriting AGs:

Theorem 3 (sketch). Given a copying rewriting attribute grammar G, a binary operator ⊕ on inherited
attributes with x⊕ y ∈ {x, y} for all x, y, and a DAG g, we have that G terminates on U (g) with result t iff
(G,⊕) terminates on g with result h such that U (h) = t.

The above theorem is an instance of the more general Theorem 4 for parametric AGs, which we shall
discuss in more detail in section 6.3.

The type of Rewrite as given above is unnecessarily restrictive, since it requires that each constructor
from the input functor f is replaced by a single constructor from the target functor g . In general, a rewrite
function may produce arbitrary layers built from g . This generalisation can be expressed as follows, where
Free g is the free monad of g :

type Rewrite f as g = ∀ c.(?below :: c → as, ?above :: as)⇒ f c → Free g c

The free monad type constructor itself is defined as follows:

data Free f a = In (f (Free f a))
| Ret a

The implementation of runRewrite and runRewriteG can be changed to accommodate this more general
definition of Rewrite. In section 7, we shall look at an extended example that uses this more general version
of Rewrite to implement a simplifier for a simple functional language.

Note that it is possible to reimplement Tree approximately in terms of Free by ruling out the use of the
Ret constructor:

type Tree f = Free f Zero

data Zero -- empty type

This implementation of Tree will be used throughout the rest of the paper.

22

6.2. Parametric Attribute Grammars

The rewriting AGs from the previous section introduced a new type of semantic function – represented
by the type Rewrite – that describes how to transform an input tree or DAG. While this rewrite pattern
fits many applications, it is also quite limited in at least two ways: (a) only a single rewrite transformation
is performed, and (b) rewrites are propagated bottom-up only.

Relaxing both restrictions opens new applications that are essential for program transformations. What
we want to achieve is that tree/DAG transformations as facilitated by Rewriting can be performed and
referred to in the same flexible fashion as synthesised and inherited attribute.

For instance if we wish to implement loop-invariant code motion, i.e. moving code outside of a loop
for performance optimisation, we need to propagate several transformations upwards: (1) a set of code
fragments that we want to hoist out of loops, and (2) the final optimised program. A simple example that
requires bottom-up and top-down propagation of transformations is inlining: code fragments that need to be
inlined have to be propagated top-down, while the resulting transformed program is constructed bottom-up.

In this section we present Parametric AGs (or PAGs for short) as a solution to this problem. PAGs
generalise ordinary AGs by incorporating the idea of RAGs into both synthesised and inherited attributes.
In particular, instead of ‘just’ types, attribute domains become functors in PAGs. Semantic functions for
these attribute will then become parametrically polymorphic functions – hence the name parametric AGs.
As for RAGs, the parametric polymorphism will allow us to use instantiate these semantic functions for
both trees and DAGs. In the case for DAGs, this will mean that synthesised and inherited attributes will
allow us to propagate DAGs (or DAG fragments) upwards respectively downwards during the computation.

Since we are generalising AGs, we need to redefine some basic concepts. To clarify where this occurs, we
underline the redefined concepts. For example, we write Syn instead of Syn and ∈ instead of ∈.

The best way to illustrate the representation of PAGs in Haskell is by contrasting it with the repre-
sentation of ordinary AGs. In the following we give the definition of Syn for AGs, and right below it the
corresponding definition for PAGs:

type Syn f as s = ∀ c. (?below :: c → as, ?above :: as, s ∈ as)⇒ f c → s
type Syn f as s g = ∀ c n.(?below :: c → as n, ?above :: as n, s ∈ as)⇒ f c → s (Free g n)

Note that we have chosen to name concepts in PAGs the same as the corresponding concepts in AGs – even
though they may have different types respectively kinds. In particular, ∈ is now a binary type class over
types of kind ∗ → ∗ instead of ∗.

The first change in the above definition is that Syn now takes an additional argument g :: ∗ → ∗. This
argument serves a purpose similar to the argument g of Rewrite: it is the functor describing the target tree
or DAG data structure. Secondly, attributes are now of kind ∗ → ∗, and the function is parametric in the
argument n that is passed to the attribute types. The idea is that this type n represents the nodes in the
tree/DAG data structure. The parametric polymorphism ensures that the only thing we can do is shuffle
nodes around; we cannot inspect them. In particular, we can use these nodes to construct new trees or
DAGs and store them in the synthesised attribute that the semantic function computes. The occurrence of
Free g n in the codomain enables this.

The same intuition applies to the generalisation of the type Inh for PAG:

type Inh f as i = ∀ m c. (?below :: c → as, ?above :: as, i ∈ as,Mapping m c)
⇒ f c → m i

type Inh f as i g = ∀ m c n.(?below :: c → as n, ?above :: as n, i ∈ as,Mapping m c)
⇒ f c → m (i (Free g n))

Similarly to ordinary AGs, we also allow an initialisation function to initialise inherited attributes.
However, in accordance with the generalisation provided by PAGs, this initialisation function is parametric
in the node type n and allows construction of trees:

type Init s i g = (∀ n.s n → i (Free g n))

23

Tying all these components of a PAG together, we obtain the following interface for running a PAG on
trees:

runPAG :: ∀ f i s g n.(Traversable f ,Functor g ,Functor i ,Functor s)
⇒ Syn f (s :∗: i) s g → Inh f (s :∗: i) i g → Init s i g
→ Tree f → s (Tree g)

where :∗: is the pointwise product on functors. In analogy to the ordinary product type, we use ffst and
fsnd for the first and second projection on :∗:, respectively.

The interface for running PAGs on DAGs is similar. Like for ordinary AGs, the only addition we need
is a conflict resolution function:

runPAGG :: ∀ f i s g .(Traversable f ,Traversable g ,Traversable i ,Traversable s)
⇒ (∀ n.i n → i n → i n)→ Syn f (s :∗: i) s g → Inh f (s :∗: i) i g → Init s i g
→ Dag f → s (Dag g)

To illustrate PAGs on a simple example we reconsider the repmin transformation from section 3.5. In
section 6.1, we have used a RAG to implement repmin such that it preserves the sharing of the original
input. However, the nature of the repmin transformation provides the opportunity to introduce additional
sharing: after the repmin transformation, each leaf node has the same label. That means in principle we
should be able to produce a DAG that has only a single leaf node instead of many leaf nodes with the same
label. Figure 5e illustrates the desired result DAG. PAGs will allow us to do just that. In the definition of
repminG , we have an inherited attribute, computed by minI , that propagates the minimum label throughout
the DAG. This attribute is then used to relabel all leaf nodes accordingly. With PAGs, we can redefine the
inherited attribute such that instead of the minimum label, it contains a node with the minimum labelling.
Then, instead of relabelling each leaf node, we can replace each leaf node by this single node in the inherited
attribute.

To code repmin as a PAG, we first have to change the types of the attributes accordingly:

newtype MinS n = MinS Int deriving (Functor ,Foldable,Traversable)
newtype MinI n = MinI n deriving (Functor ,Foldable,Traversable)

The type MinS essentially remains the same, but we have to turn it into a type constructor of kind ∗ → ∗.
More interesting is the type MinI : instead of the type Int in the original definition, we use the type variable
n. Recall that this type variable n represents the nodes in the tree/DAG that we want to construct.

The corresponding semantic functions follow the original definition closely:

minS :: Syn IntTreeF as MinS f
minS (Leaf i) = MinS i
minS (Node a b) = MinS (min (unMinS (below a)) (unMinS (below b)))

minI :: Inh IntTreeF as MinI f
minI = ∅

However, instead of using the overloaded min function on the type MinS , we have to explicitly use the
projection function unMinS that extracts the integer value from MinS :

unMinS :: MinS a → Int
unMinS (MinS x) = x

The function globMin to retrieve the MinI attribute is also changed accordingly:

globMin :: (?above :: as n,MinI ∈ as)⇒ n
globMin = let MinI i = above in i

Instead of an integer globMin returns a node.

24

The actual transformation is achieved similar to the rewrite function we used in section 6.1. Such rewrite
functions are simply a special case of a synthesised attribute with the identity functor as domain:

data I a = I {unI :: a } deriving (Functor ,Foldable,Traversable)

We can thus define the transformation as follows:

rep :: (MinI ∈ as)⇒ Syn IntTreeF as I IntTreeF
rep (Leaf) = I (Ret globMin)
rep (Node a b) = I (In ((Node (Ret (unI (below a)))) (Ret (unI (below b)))))

Finally, we can run the thus defined PAG on trees as follows:

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = unI ◦ ffst ◦ runPAG (rep ⊗minS) minI init

where init (:∗: MinS i) = MinI (In (Leaf i))

The important difference between this definition and the definition in section 6.1 is that here the initialisation
function init constructs the unique leaf node that is used for the whole transformation.

The same PAG can then also be used on DAGs using the runPAGG function. Like for the AG and the
RAG version, we use const as the conflict resolution function:

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = unI ◦ ffst ◦ runPAGG const (rep ⊗minS) minI init

where init (:∗: MinS i) = MinI (In (Leaf i))

Theorems 1 and 2 generalise to the setting of PAGs. The PAG version of Theorem 1 reads as follows:

Theorem 4 (sketch). Given a copying, non-circular PAG G, a binary operator ⊕ on inherited attributes
with x ⊕ y ∈ {x, y} for all x, y, and a DAG g, we have that G terminates on U (g) with result r iff (G,⊕)
terminates on g with result r.

Note that in contrast to Theorem 1 the above theorem assumes non-circularity.
Applied to the above definitions of repmin and repminG, we can conclude that for each DAG g , the

unravelling of repminG g is equal to repmin g .
The PAG version of Theorem 2 is given as follows:

Theorem 5 (sketch). Let G be a non-circular AG, ⊕ an associative, commutative operator on inherited
attributes, and . such that G is monotone and ⊕ is decreasing w.r.t. .. If (G,⊕) terminates on a DAG g
with result r, then G terminates on U (g) with result r′ such that U (r) . r′.

The above formulations of Theorems 4 and 5 are somewhat informal. In particular, the subtlety of the
role of parametricity is not explicit here: the binary operator ⊕ works on the instantiation of the attribute
domains to DAGs, whereas . works on the instantiation to trees. In addition, we use the unravelling
operator U on the result r in Theorem 5, by which we mean that all DAGs ‘occurring’ in r are unravelled.
We will treat these issues more carefully in the next section, which covers the theory of PAGs.

6.3. Semantics

In this section we give the formal semantics of PAGs and generalise the correspondence theorems from
section 5 accordingly. Both ordinary AGs and rewriting AGs arise as a special case of this general theory.

The idea is to introduce trees in the attributes and in the semantic functions as a type variable that
we can instantiate to the type of trees or the type of DAGs. For the semantics, this means that attribute
domains are now functors instead of sets, and semantic functions are natural transformations between
functors instead of functions between sets.

25

In the definition below we use products and sums on endofunctors. In addition, given a finitary container
F , we write F ∗ for the free monad of the functor Ext(F) induced by F . Similar to the notation that we used
for families of sets and families of functions, we use the following notation for families (Da : Set → Set)a∈I
of endofunctors and families (fa : D

·→ Da)a∈I of natural transformations defined on them: we write DA,

with A ⊆ I, for the functor Πa∈ADa and fA for the natural transformation of type D
·→ DA that, for each

set X, maps each d ∈ D(X) to (fa,X(d))a∈A.

Definition 9. A parametric attribute grammar (PAG) G = (S, I,D, α, δ) from a finitary container F1 =
(Sh, ar) to a finitary container F2 consists of:

• finite, disjoint sets S, I of synthesised resp. inherited attributes,

• a family D = (Da : Set→ Set)a∈S∪I of endofunctors (called attribute domains),

• a family α = (αa : DS
·→ Da ◦ F ∗2)a∈I of natural transformations (called initialisation functions),

• a family δ = (δa)a∈S∪I of semantic functions, where

δa : (F1 ◦DS)×DI
·→ Da ◦ F ∗2 if a ∈ S

δa : (F1 ◦DS)×DI
·→ FM ◦Da ◦ F ∗2 if a ∈ I

where FM is the free monoid functor, i.e. for any set X we have that FM(X) =
∑

n≥0X
n.

Additionally, we require for the case a ∈ I that

δa,X((s, x), y) ∈ (Da(F ∗2 (X)))ar(s) for all X, s, x, y.

In order to instantiate the semantic functions to trees and DAGs it is not enough to simply instantiate
the natural transformations to the corresponding sets Tree(F2) and DAG(F2). The semantic functions
would then have the codomain Da(F ∗2 (Tree(F2))) respectively Da(F ∗2 (DAG(F2))). Instead, we want to
obtain functions with codomain Da(Tree(F2)) and Da(DAG(F2)), respectively. That is easily achieved by
composition with functions of type F ∗2 (Tree(F2)) → Tree(F2) and F ∗2 (DAG(F2)) → DAG(F2), respectively.
In turn, these functions are given by appropriate F2-algebras, i.e. functions of type F2(Tree(F2))→ Tree(F2)
and F2(DAG(F2))→ DAG(F2), respectively. The basis for this construction is the fact that each F -algebra
a : F (X)→ X gives rise to an Eilenberg-Moore F ∗-algebra a∗ : F ∗(X)→ X (see e.g. Proposition 4.5 in Barr
and Wells [10]). An important property of this construction is that it preserves homomorphisms.

Thus, we only need to give algebras of type F2(Tree(F2)) → Tree(F2) and F2(DAG(F2)) → DAG(F2).
The former is simply the isomorphism inF2 between F2(Tree(F2)) and Tree(F2). The latter is a bit more
involved. We define, for each finitary container F , the function grF : F (DAG(F))→ DAG(F) as follows:

grF (s, (gi)i<l) = (N,E, r) for all (s, (gi)i<l) ∈ F (DAG(F))

where gi = (Ni, Ei, ri) ∈ DAG(F)

N = {r}]
⋃
i<l

Ni

E(r) = (s, (ri)i<l)

E(n) = Ei(n) if n ∈ Ni

In the above construction, we assume that if n ∈ Ni ∩Nj , then Ei(n) = Ej(n). If this is not the case nodes
are renamed accordingly.

Lemma 2. For every finitary container F , the unravelling operator U : DAG(F)→ Tree(F) is a homomor-
phism between the F ∗-algebras gr∗F and in∗F , i.e. the following square commutes:

26

F ∗(DAG(F)) DAG(F)

F ∗(Tree(F)) Tree(F)

F ∗(U) U

gr∗F

in∗F

Proof. Any F -algebra homomorphism from a to b is also an homomorphism from a∗ to b∗ (see e.g. Propo-
sition 4.5 in Barr and Wells [10]). Thus, to show commutativity of the above diagram it suffices to show
commutativity of the following diagram:

F (DAG(F)) DAG(F)

F (Tree(F)) Tree(F)

F (U) U

grF

inF

U (grF (s, (gi)i<l))

= { definition of U }
(s, (U (grF (s, (gi)i<l)|ri))i<l)

= { definition of grF }
(s, (U (gi))i<l)

= { inF is the identity }
inF (s, (U (gi))i<l)

The following two definitions describe the instantiation of PAGs to AGs using the F ∗-algebras in∗F and
gr∗F . The resulting AGs GT and GG embody the semantics of the original PAG G for tree and DAGs,
respectively.

Definition 10. LetG = (S, I,D, α, δ) be a PAG from F1 to F2. We construct an AGGT = (S, I,DT , αT , δT)
by instantiating the attribute domains and semantic functions to Tree(F2) as follows:

DT
a = Da(Tree(F2)) for all a ∈ S ∪ I

αT
a : DT

S → DT
a αT

a = Da(in∗F2
) ◦ αa,Tree(F2) for all a ∈ I

δTa : F1(DT
S)×DT

I → DT
a δTa = Da(in∗F2

) ◦ δa,Tree(F2) for all a ∈ S
δTa : F1(DT

S)×DT
I → FM(DT

a) δTa = FM(Da(in∗F2
)) ◦ δa,Tree(F2) for all a ∈ I

A run of G on a tree t ∈ Tree(F1) is a run of GT on t.

Definition 11. LetG = (S, I,D, α, δ) be a PAG from F1 to F2. We construct an AGGG = (S, I,DG, αG, δG)
by instantiating the attribute domains and semantic functions to DAG(F2) as follows:

DG
a = Da(DAG(F2)) for all a ∈ S ∪ I
αG
a = Da(gr∗F2

) ◦ αa,DAG(F2) for all a ∈ I
δGa = Da(gr∗F2

) ◦ δa,DAG(F2) for all a ∈ S
δGa = FM(Da(gr∗F2

)) ◦ δa,DAG(F2) for all a ∈ I

That is, we have that

αG
a : DG

S → DG
a for all a ∈ I

δGa : F1(DAG(F2)×DG
S)× DAG(F2)×DG

I → DG
a for all a ∈ S

δGa : F1(DAG(F2)×DG
S)× DAG(F2)×DG

I → FM(DG
a) for all a ∈ I

Let ⊕ = (⊕a : DG
a × DG

a → DG
a)a∈I be a family of associative and commutative binary operators and

g ∈ DAG(F1). A run of G on g modulo ⊕ is a run of GG modulo ⊕ on g.

27

The two instantiations GT and GG can be related via unravelling:

Lemma 3. Let G = (S, I,D, α, δ) be a PAG from F1 to F2. Then we have the following:

(i) For all a ∈ I and d ∈ DS(DAG(F2)),

Da(U)(αG
a (d)) = αT

a (DS(U)(d))

(ii) For all a ∈ I, (s, (di)i<l) ∈ F1(DS(DAG(F2))), e ∈ DI(DAG(F2)), and j < l,

Da(U)(δGa,j((s, (di)i<l), e)) = δGa,j((s, (DS(U)(di))i<l), DI(U)(e))

(iii) For all a ∈ S, (s, (di)i<l) ∈ F1(DS(DAG(F2))), and e ∈ DI(DAG(F2)),

Da(U)(δGa ((s, (di)i<l), e)) = δGa ((s, (DS(U)(di))i<l), DI(U)(e))

Proof. Straightforward calculation.

The notion of non-circularity of AGs carries over to PAGs in a straightforward manner by instantiation
to trees: a PAG G is non-circular iff the AG GT is non-circular.

As an immediate consequence of the definition of runs of PAGs as runs of AGs, we obtain the following
corollary about non-circular PAGs:

Corollary 3. Every non-circular PAG has a unique run on any given tree.

Also the notion of copying AGs carries over to PAGs:

Definition 12. A PAG G = (S, I,D, α, δ) from F1 to F2 is called copying, if δa,j,A((s, d), (eb)b∈I) = ea for
all sets A, a ∈ I, (s, d) ∈ F1(DS(A)), j < ar(s) and (eb)b∈I ∈ DI(A).

Given a copying, non-circular PAG G, we can show that, for each run of G on a DAG g, we find an
equivalent run of G on U (g), and vice versa. Equivalence of runs is defined as follows: given a PAG
G = (S, I,D, α, δ) from F1 to F2, we say that a run ρ of G on a DAG g ∈ DAG(F1) and a run ρ′ of G on
U (g) are equivalent if ρ′a(p) = Da(U)(ρa(g [p])) for all a ∈ S ∪ I and p ∈ P (g).

Theorem 4. Given a copying, non-circular PAG G = (S, I,D, α, δ) from F1 to F2, a copying ⊕ =
(⊕a : DG

a ×DG
a → DG

a)a∈I , and a DAG g = (N,E, r) ∈ DAG(F1), we have that for each run of G modulo ⊕
on g there is an equivalent run of G on U (g), and vice versa.

Proof sketch. Given a run ρ on g, we construct ρ′ on U (g) by setting ρ′a(p) = Da(U ()) (ρa(g [p])). For the
converse direction, we construct a run ρ′ on g from scratch according to the semantics of PAGs. The run ρ′

is defined by well-founded recursion using the non-circularity of G. We then prove by well-founded induction
that any run ρ on U (g) must be equivalent to ρ′. By using Lemma 3, we can reuse large parts of the proof
of Theorem 1.

Corollary 4. Given G, ⊕, and g as in Theorem 4, we have that LG,⊕M(g) = JGK (U (g)).

Proof. Due to the correspondence of runs according to Theorem 4, uniqueness of runs of G on DAGs follows
from the uniqueness of its runs on trees (cf. Corollary 3). Hence, both LG,⊕M(g) and JGK (U (g)) are defined,
and by Theorem 4 they are equal.

Similarly to notion of circularity, we lift the definition of monotonicity to PAGs by instantiation of PAGs
to trees. However, since the conflict resolution operators ⊕a for PAGs are defined on the instantiation of
PAGs to DAGs, decreasingness is defined via unravelling:

28

Definition 13. Let G = (S, I,D, α, δ) be a PAG equipped with a quasi-order .a on DT
a for each a ∈ S ∪ I.

G is called monotone w.r.t. (.a)a∈S∪I if GT is monotone w.r.t. (.a)a∈S∪I . Moreover, ⊕ = (⊕a : DG
a ×DG

a →
DG

a)a∈I is called decreasing w.r.t. (.a)a∈I if we have, for all a ∈ I, that

Da(U)(d1 ⊕a d2) .a Da(U)(d1), Da(U)(d2) for all d1, d2 ∈ DG
a

Having established the necessary terminology, we can generalise Theorem 2 to PAGs as follows:

Theorem 5. Let G = (S, I,D, α, δ) be a non-circular PAG, ⊕ = (⊕a : DG
a ×DG

a → DG
a)a∈I associative and

commutative, and (.a)a∈S∪I quasi-orders such that G is monotone and ⊕ is decreasing. Given a run ρ of
G modulo ⊕ on a DAG g = (N,E, r) and the run ρ′ of G on U (g), we have that

Da(U)(ρa(g [p])) .a ρ
′
a(p) for all a ∈ S ∪ I and p ∈ P (g) .

Proof sketch. Since G is non-circular, there is a well-founded order < on (S∪ I)×P (U (g)) compatible with
G. The above inequation can then be shown by well-founded induction using <.

Corollary 5. Given G, ⊕, (.a)a∈S∪I , and g as in Theorem 5, and provided that LG,⊕M(g) is defined, we
have that DS(U)(LG,⊕M(g)) .S JGK (U (g)).

Proof. Given the unique runs ρ and ρ′ on g and U (g), respectively, we have the following according to
Theorem 5:

DS(U)(LG,⊕M(g)) = DS(U)(ρS(r)) = DS(U)(ρS(g [〈〉])) .S ρ
′
S(〈〉) = JGK (U (g))

7. Extended Example

As a demonstration of the versatility of our approach, we have implemented a size-based simplifier for a
subset of the Feldspar EDSL [5]. The code is found in the file Feldspar.hs in the accompanying repository.
The simplifier is implemented as a RAG as follows:

simplifyDag :: Dag Feldspar → Dag Feldspar
simplifyDag = runRewriteG intersection (sizeInfS ⊗ constFoldS) sizeInfI simplifier (const Map.empty)

◦ renameFeld

The RAG consists of four parts:

• sizeInfS synthesises a Size attribute, which gives a conservative approximation of the set of values an
expression might take on.

• constFoldS synthesises a Maybe Value attribute, which gives the value of constant expressions of
Boolean or integer type.

• sizeInfI computes the inherited environment attribute. The environment gives the size of variables in
scope.

• simplifier rewrites a node based on the inferred Size and Value attributes.

We use intersection to resolve inherited attributes for shared nodes, just like for typeInfG . The function
renameFeld makes sure that the DAG is well-scoped according to the definition in section 4.3.

The AG consisting of sizeInfS and sizeInfI is similar in structure to the type inference AG in section 3.
Size is represented as a list of ranges, and a range is a pair of an upper bound and a lower bound:

type Size = [Range]
type Range = (Maybe Integer ,Maybe Integer)

29

Lists of ranges are needed for array expressions. For example, the size [r1, r2, re] is for a two-dimensional
array where the extent of the outer dimension is within r1, the extent of the inner dimension is within r2
and each element is in the range re.

The additional attribute computed by constFoldS is used to propagate constant values. For integer
expressions, constFoldS falls back to the inferred size, since an expression with a singleton range must be a
constant.

The simplifier function makes use of the inferred sizes and constants to rewrite nodes. Here are a few
interesting cases:

simplifier :: (Size ∈ as,Maybe Value ∈ as,Env Size ∈ as)⇒ Rewrite Feldspar as Feldspar
simplifier
| Just (B b)← above = In (LitB b)
| Just (I i) ← above = In (LitI i)

simplifier (Add a b)
| Just 0← valueOfI a = Ret b
| Just 0← valueOfI b = Ret a

simplifier (Min a b)
| Just True ← liftA2 (6) ua lb = Ret a
| Just True ← liftA2 (6) ub la = Ret b
where [(la, ua)] = sizeOf a

[(lb, ub)] = sizeOf b

...

The following two functions are used to query the synthesised attributes:

sizeOf :: (?below :: a → as,Size ∈ as) ⇒ a → Size
valueOfI :: (?below :: a → as,Maybe Value ∈ as)⇒ a → Maybe Integer

The first two cases of simplifier rewrite directly to a literal if the expression is constant. The Add cases
simplify expressions of the form 0 + b and a + 0. Finally, the case for Min uses the size of the operands to
reduce the node statically if the sizes are disjoint (or overlap by at most one value). The function liftA2 is
used to lift the (6) operator to values of type Maybe Integer such that the result is Nothing whenever either
argument is Nothing .

8. Implementation

8.1. Representation of DAGs

Our implementation represents DAGs by explicit mappings from nodes, which are represented by integers,
to their outgoing edges. In section 4, we presented the following definition of the type Dag :

data Dag f = Dag {root :: Node,
edges :: IntMap (f Node)}

The edges field provides a mapping that maps each node to its outgoing edges, which are represented by
the type f Node.

However, this naive representation is inefficient. Typical DAGs have a large chunks that are tree-shaped,
with some edges in between that provide sharing. For example, consider the DAG pictured in Figure 9a.
There are only three nodes (A, B, and C) that have more than one incoming edge and are thus shared.
The remaining nodes – with only a single incoming edge each – can be thought of as nodes in a tree rooted
in one of the shared nodes (or the root R of the whole DAG). This idea is illustrated in Figure 9b. Each
of the shaded areas constitutes a self-contained tree. These trees are connected via edges between them.
This two-level representation – a DAG whose nodes are trees – is more efficient. Only edges between the

30

R

A

B

C

(a) Naive representation.

R

A

B

C

(b) Hybrid representation.

Figure 9: Representation of DAGs.

trees (pictured as solid arrows) have to be represented explicitly via an IntMap, i.e. a PATRICIA tree [43].
The edges within the tree structures (pictured as dashed arrows) can be represented using an algebraic data
type.

Concretely, instead of representing edges by the type f Node, we shall represent edges using the type
f (Free f Node). That is, we use the free monad Free f to represent the nested tree structures. Apart from
that, we also represent the root of the DAG by the type f (Free f Node), rather than simply Node. In sum,
we obtain the following representation:

data Dag f = Dag {root :: f (Free f Node),
edges :: IntMap (f (Free f Node)),
nodeCount :: Int }

In addition, the Dag data structure also contains the number of (explicit) nodes in the Dag . This information
will be helpful for allocating memory for implementing AGs efficiently.

Note that we could have also chosen to represent edges using the type Free f Node instead of f (Free f Node).
However, with the former, we would also represent “empty” edges, which represent indirection. Such empty
edges could potentially useful, but we found no application for them in our implementation of AGs.

Apart from an overall more compact representation that allows us to implement AGs more efficiently,
the Dag data structure provides specific benefits for the implementation of both RAGs and PAGs. Trans-
formations on DAGs described by RAGs and PAGs introduce embedded tree-shaped fragments inside the
result DAG by way of the free monad Free f . If we were to implement RAGs and PAGs using the naive
representation of DAGs, we would have to allocate fresh nodes for each implicit inner node inside a free
monad data structure of type Free f Node. Such an implementation would be very inefficient and would
lose a lot of the speedup gains obtained by sharing.

8.2. Implementing Attribute Grammars on Trees and DAGs

8.2.1. Preparations

Before we start with the actual implementation of AGs, we need to implement one important auxiliary
functionality: an instance for the Mapping type class, which is essential for the implementation of inherited
attributes. The intention of the Mapping class is to provide a representation of mappings that assign
attribute values to child positions. In the simplest case, the type Inh is a mapping of type f c → m i , with
the type constraint Mapping m c. The idea of implementing an instance of Mapping is to uniquely number
the child nodes of type c. Then a mapping from child positions to attribute values of type v is provided by
a simple integer map of type IntMap v .

31

runAG :: ∀ f s i .Traversable f ⇒ Syn ′ f (s, i) s → Inh ′ f (s, i) i → (s → i)→ Tree f → s
runAG syn inh init t = sFin where

sFin = run iFin t
iFin = init sFin
run :: i → Tree f → s
run i (In t) = s where

recurse (Numbered n c) = let i ′ = lookupNumMap i n m
in Numbered n (run i ′ c, i ′)

t ′ = fmap recurse (number t)
m = explicit inh (s, i) unNumbered t ′

s = explicit syn (s, i) unNumbered t ′

Figure 10: Implementation of runAG.

For numbering arbitrary values, we introduce the following type Numbered :

data Numbered a = Numbered Int a

unNumbered :: Numbered a → a
unNumbered (Numbered x) = x

There are many different ways of numbering the elements of type c in a structure of type f c, given that f
is Traversable. Here we simply use a state monad to keep track of the counter:

number :: Traversable f ⇒ f c → f (Numbered c)
number x = evalState (Traversable.mapM run x) 0
where run :: c → State Int (Numbered c)

run b = do n ← get
put (n + 1)
return (Numbered n b)

We then wrap the IntMap type in a newtype to construct the type that we use to instantiate the
Mapping type class. Implementing the methods of Mapping is straightforward using the underlying IntMap.

newtype NumMap k v = NumMap (IntMap v) deriving (Functor ,Foldable,Traversable)

instance Mapping (NumMap k) (Numbered k) where
...

In addition, we provide a lookup function for NumMap, which simply uses the underlying lookup function
of the IntMap type:

lookupNumMap :: a → Int → NumMap t a → a
lookupNumMap d k (NumMap m) = IntMap.findWithDefault d k m

Next we shall see how this implementation of the Mapping interface is used for implementing AGs on
trees and DAGs.

8.2.2. Implementing Attribute Grammars on Trees

We first take a look at the simplest case: the implementation of AGs on trees. The implementation
of runAG is shown in Figure 10. At the top-level, runAG computes sFin and iFin, the synthesised resp.
inherited attribute at the root of the tree. The traversal of the tree is performed by the run function, which
takes the inherited attribute value at the current node and returns the synthesised attribute of the current

32

node. Before applying the semantic functions inh and syn, we number the child nodes using number and
recursively apply run to the child nodes via fmap recurse. In order to apply the semantic functions, we have
to supply the implicit parameters ?above and ?below . To this end, we use the combinator explicit , which
turns these implicit parameters into explicit arguments:

explicit :: ((?above :: q , ?below :: a → q)⇒ b)→ q → (a → q)→ b
explicit x ab be = x where ?above = ab; ?below = be

The ?above parameter is given the value (i , s), consisting of the inherited attribute given as argument to
run and the synthesised attribute we have computed. The ?below parameter is provided by the unNumbered
function, which simply strips away the numbering that we have performed earlier, thus exposing the attribute
values that have been recursively computed via recurse.

An important aspect of this implementation is its circular nature. It essentially depends on the non-strict
semantics of Haskell. The circularity can be seen immediately in the definition of sFin and iFin, which refer
to each other, and the definition of s at the bottom, which refers to itself.

8.2.3. Implementing Attribute Grammars on DAGs

The implementation of AGs on DAGs is a bit more intricate. The main idea, however, is quite simple:
We construct mappings from nodes in the DAG to inherited and synthesised attributes. To this end our
implementation assumes that nodes are numbers from 0 to nodeCount − 1; the latter given by the field
nodeCount of the Dag record. We make sure that all operations that construct DAGs – e.g. reifyDag
– or transform DAGs – e.g. runRewriteG – maintain this invariant. To construct and maintain these
mappings between nodes and attribute values, we use two mutable array data structures: imap of type
MVector st (Maybe i) to store the inherited attribute values of type i , and smap of type MVector st s to
store the synthesised attribute values of type s. The type variable st is used for the ST monad to restrict
the side effects for dealing with ephemeral data structures to the runM function.

The difference in the types for imap and smap – the fact that imap uses Maybe – is crucial and char-
acterises the difference between computing inherited vs. synthesised attributes. As we have illustrated in
Figure 6, we may have to compute inherited attributes for a given node several times – once for each incom-
ing edge. The Maybe type allows us to keep track of whether we already computed an attribute value for a
given node. If so, we need to use the conflict resolution function res to combine the previously computed
value with a newly incoming value. If not, we can safely store a newly incoming value as the attribute value
of the node. This behaviour is implemented in the runF auxiliary function in Figure 11.

Apart from this caching of attribute values using arrays, the implementation of runAGG follows a pattern
similar to runAG . The auxiliary function run applies the semantic functions inh and syn using explicit and
numbering of child nodes. However, in contrast to runAG , we do not use the number function to perform
the numbering. Instead we make use of the fact that the ST monad allows us to allocate a single counter
reference count , which is then used to do the numbering.

Like runAG , a characteristic feature of runAGG is its circularity; we make essential use of Haskell’s
lazy evaluation. To achieve this circularity in a monadic function definition we use the mdo keyword,
which provides a convenient interface for the underlying MonadFix instance of the ST monad. Like in the
definition for runAG , we use circularity for applying the semantic functions. But in addition, circularity
is also used for accessing the final attribute values stored in the two arrays imap and smap. We use the
function unsafeFreeze to turn these two mutable arrays into immutable arrays, which are then used in the
construction of imap and smap.

8.2.4. Implementation of PAGs

The implementation of AGs on trees and DAGs can be readily generalised to PAGs: we simply follow
the instantiation of a PAG G to the AG GT respectively GG as described in section 6.3. This instantia-
tion is straightforward for trees. However, the instantiation to DAGs, adds considerable complexity. We
need to allocate fresh nodes and edges that are described by the semantic functions of the PAG G. Our
hybrid representation of DAGs (cf. section 8.1) makes this process substantially simpler and more efficient.

33

runAGG :: ∀ f i s.Traversable f ⇒ (i → i → i)→ Syn f (s, i) s → Inh f (s, i) i → (s → i)
→ Dag f → s

runAGG res syn inh init Dag {edges, root ,nodeCount } = sFin where
sFin = runST runM
iFin = init sFin
runM :: ∀ st .ST st s
runM = mdo

imap ← MVec.new nodeCount -- construct empty mapping from nodes to inh. attrs.
MVec.set imap Nothing -- set inh. attrs. to Noting
smap ← MVec.new nodeCount -- allocate mapping from nodes to syn. attrs.
count ← newSTRef 0 -- allocate counter for numbering child nodes
let -- run the AG on an edge with the given input inh. attr. and produce

-- the output syn. attr.
run :: i → f (Free f Node)→ ST st s
run i t = mdo

-- apply the semantic functions
let s = explicit syn (s, i) unNumbered result

m = explicit inh (s, i) unNumbered result
-- recurses into the child nodes and numbers them

run ′ :: Free f Node → ST st (Numbered (s, i))
run ′ c = do n ← readSTRef count

writeSTRef count (n + 1)
let i ′ = lookupNumMap i n m
s ′ ← runF i ′ c -- recurse
return (Numbered n (s ′, i ′))

writeSTRef count 0 -- re-initialize counter
result ← Traversable.mapM run ′ t
return s

runF :: i → Free f Node → ST st s -- recurses through the tree structure
runF i (Ret x) = do -- we found a node: update the mapping for inh. attrs.

old ← MVec.unsafeRead imap x
let new = case old of

Just o → res o i
→ i

MVec.unsafeWrite imap x (Just new)
return (smapFin ! x)

runF i (In t) = run i t
-- This function is applied to each edge

iter (n, t) = do s ← run (fromJust (imapFin ! n)) t
MVec.unsafeWrite smap n s

s ← run iFin root -- first apply to the root
mapM iter (IntMap.toList edges) -- then apply to the edges

-- finalise the mappings for attribute values
imapFin ← Vec.unsafeFreeze imap
smapFin ← Vec.unsafeFreeze smap
return s

Figure 11: Implementation of runAGG .

34

5 10 15

0

0.5

1

·10−2

Depth

T
im

e
(s

)

Tree

Dag

Simple

(a) Full sharing.

5 10 15

10−5

10−3

10−1

Depth

T
im

e
(s

)

Tree

Dag

Simple

(b) No sharing.

500 1,000

0

1

2

·10−3

Depth

T
im

e
(s

)

Dag

Simple

(c) Large input, full sharing.

Figure 12: Benchmark: leavesBelow implemented as AG.

5 10 15

0

2

4

·10−2

Depth

T
im

e
(s

)

Tree

Dag

Simple

(a) Full sharing.

5 10 15

10−5

10−3

10−1

Depth

T
im

e
(s

)

Tree

Dag

Simple

(b) No sharing.

500 1,000

0

1

2

3

·10−3

Depth

T
im

e
(s

)

Dag

Simple

(c) Large input, full sharing.

Figure 13: Benchmark: repmin implemented as RAG.

Nonetheless, we have to make sure that all DAGs that are constructed by the PAG are self-contained and
satisfy the invariant that nodes are numbered from 0 to nodeCount − 1. Self-containedness is non-trivial,
since during the run of a PAG, semantic functions have access to all attributes and thus a common pool of
DAG nodes and edges. As a consequence, a single node may end up being shared among several DAGs that
are constructed by the PAG. We elide the implementation details of of the PAG implementation and refer
the reader to the accompanying source code repository [8].

8.3. Performance Results

We have implemented benchmarks to evaluate the efficiency of our approach. The benchmarks are found
in the code associated with this paper [8].

The benchmarks focus on two extreme situations: (1) DAGs with a lot of sharing (each node is shared),
and (2) DAGs with no sharing at all. The assumption behind the paper is that we have structures with a
lot of sharing, so the first extreme tests that we succeed in dealing with this case more efficiently. At the
same time, the second extreme is meant to show what is the overhead of working with DAGs in cases when
it is not needed.

The measurements were done on balanced trees of different depths. The trees were represented as
ordinary trees and as DAGs (i.e. using the Tree and Dag types). To gauge the performance trade-off that
the hybrid DAG representation (as described in section 8.1) offers, we also measure the performance of the
naive DAG representation, which is labelled as “Simple” in the diagrams.

35

5 10 15

0

2

4

6

8
·10−4

Depth

T
im

e
(s

)

AG

RAG

PAG

(a) Full sharing.

5 10 15
10−6

10−4

10−2

Depth

T
im

e
(s

)

AG

RAG

PAG

(b) No sharing.

500 1,000

0

2

4

6
·10−3

Depth

T
im

e
(s

)

RAG

PAG

(c) Large input, full sharing.

Figure 14: Benchmark: repmin implemented as AG vs. RAG vs. PAG.

ex1 ex2 ex3

2

3

4

·10−6

T
im

e
(s

)

Tree Dag Simple

(a) Type inference.

ex1 ex2 ex3

1

2

·10−5

T
im

e
(s

)

Tree Dag Simple

(b) Feldspar simplifier.

Figure 15: Benchmark: type inference and Feldspar simplifier.

36

The DAGs were constructed in two different ways: with sharing at each level and with no sharing at all.
A balanced tree of depth d has 2d− 1 nodes, and thus the DAG without sharing also has 2d− 1 nodes. The
DAG with sharing at each level has d nodes.

At first, we consider the AG implementation of leavesBelow from the introduction. It is computationally
inexpensive (since all leave nodes in the input are labelled the same) and thus provides a measure of the
overhead of working with DAGs. Figure 12a shows the time that the different implementations of leavesBelow
take for different input sizes (measured by depth). The run time is proportional to the size of the tree: the
run time grows exponentially without sharing and linearly with sharing.

We can see that there is some overhead in using the Dag representation instead of Tree when there is
no sharing. Figure 12b show the overhead of the DAG representation in case of no sharing. The overhead
stays below a factor of 4 for the hybrid DAG representation, and a factor of 7 for the naive representation.
Figure 12c shows that the run time for large DAGs with maximal sharing increases roughly linearly even at
large depths – with no significant difference between the hybrid and the naive DAG representation.

The purpose of the measurements in Figure 12b is to see the overhead of AGs on DAGs in case of little
sharing. To this end we have disabled an optimisation in our implementation that falls back to the tree-based
implementation of AGs in case of no sharing. With this optimisation in place, the overhead of using runAGG

instead of runAG is reduced to zero for input with no sharing. However, this optimisation only works if the
input DAG is represented optimally, i.e. using explicit pointers only if there is sharing. While this property
is guaranteed by the DAGs produced by reifyDag , DAGs that are the result of a transformation e.g. by
runRewriteG may not have this property.

Next, we look at the performance of the runRewrite and runRewriteG implementation. To this end,
we consider the RAG implementation of repmin example from section 3.5 using the same input as for the
leavesBelow benchmark above. The resulting measurements, shown in Figure 13, have the same character-
istics as the corresponding measurements from Figure 12: the DAG version is asymptotically better than
the tree version in case of sharing. In case of no sharing the overhead remains below a factor of 2.5 for the
hybrid DAG representation and around 3 for the naive representation. However, repmin is a very simple
transformation, and the performance of the naive DAG representation regresses considerably if we consider
a variation of repmin that replaces each leaf node with two leaf nodes – one with the global minimum label
and one with the old label – the speedup afforded by the hybrid transformation becomes more pronounced.

We have also considered the performance of the implementation of PAGs: Figure 14 compares the
PAG-based implementation of repmin – as discussed in section 6.2 – with the RAG- and AG-based imple-
mentations. We can see that the PAG implementation has a asymptotic run time characteristic similar to
the RAG-based implementation. However, we can observe some overhead of the PAG-based implementation.

Finally, we look at two more realistic computations: the type inference implementation from section 2
and the size-based simplifier from section 7. We applied each to three small example programs. The results
are depicted in Figure 15. The input programs are fairly small and only have very little sharing. The
examples are too simple to draw any real conclusions from, but we observe that all three options are of
comparable speed, as expected when the amount of sharing is small.

9. Related Work

Graph Representations. The immediate practical applicability of our recursion schemes is based on Gill’s idea
of turning the implicit sharing information in a Haskell expression into an explicit graph representation [28];
thus making sharing visible. The twist of our work is, however, that we provide recursion schemes that are –
from the outside – oblivious to sharing, but – under the hood – exploit the sharing information for efficiency.

Oliveira and Cook [44] introduced a purely functional representation of graphs, called structured graphs,
using Chlipala’s parametric higher-order abstract syntax [18]. The recursion scheme that Oliveira and Cook
use is a fold generalised to (cyclic) graphs. For a number of specialised instances, e.g. map on binary trees
and fold on streams, the authors provide laws for equational reasoning. Oliveira and Löh [45] generalised
structured graphs to indexed data structures with particular focus on EDSLs. Bahr [7] used structured
graphs to lift compiler implementations and their correctness proofs from trees to DAGs. However, his

37

approach is limited to folds. While AGs could be implemented as a fold on structured graphs, doing so
would incur a performance penalty due to recomputation as soon as inherited attributes are used. Moreover,
the indirect representation of sharing in structured graphs hinders a direct efficient implementation of AGs.

The Lightweight Modular Staging framework, by Rompf and Odersky [48], allows its internal graph
representation to be traversed through a tree-like interface, and the implementation takes care of the ad-
ministration of avoiding duplication in the generated code for shared nodes. However, as far as we know,
there is no support for using the tree interface to write algorithms such as our type inference, which avoids
duplicated computations when shared nodes are used in different contexts.

Buneman et al. [14] introduce the language UnQL for querying graph-structured data. Queries are based
on structural recursion, which means that the user can view the data as a tree, regardless of the underlying
representation (which may even be cyclic). The motivation behind UnQL is similar to ours; however, UnQL
does not appear to support propagation and merging of accumulating parameters (which correspond to our
inherited attributes) in recursive functions. More recently, Hidaka et al. [30] have introduced the language
λFG, which is based on the underlying calculus of UnQL (called UnCAL), but works on ordered graphs.
While λFG is more expressive than UnQL, it still lacks the ability to merge accumulating parameters.

Recursion Schemes. Generic recursion schemes [41] provide fixed schemes for traversing regular data types.
The most common recursion scheme is the generic fold. Gibbons [27] introduced a recursion scheme for
traversals with accumulating parameters reminiscent of an AG with inherited attributes. Recursion schemes
are normally defined for trees and, as such, do not deal with sharing.

Tree Compression. We use DAGs as compact representations of trees with the goal of improving runtime
performance of tree traversals and tree transformations. But there are many more approaches to compress
trees [50]. For example, tree grammars have been extensively studied as compact representation for trees [40,
39, 15]. DAGs can only express repetition of subtrees (i.e. common subexpressions) in order to achieve
compression. Tree grammars, on the other hand, can also express repetition of tree patterns and thus offer
more opportunity for compression, which may result in an exponentially smaller representation compared
to DAGs [39]. Recently, so-called top DAGs have been introduced by Bille et al. [11], which also can express
tree pattern repetition. The downside of these more expressive representations, is the lack of recursion
schemes that both match the expressiveness of attribute grammars and our efficient implementation (cf.
the discussion on automata below). Moreover, the goal of our work is to leverage the sharing information
that is already present in embedded DSL implementations. For this purpose DAGs are sufficient; the more
sophisticated compression offered by tree grammars and top DAGs requires considerable computational
effort: although there are fast approximations, finding a minimal tree grammar is NP-hard [17] while a
minimal DAG can be constructed in linear time [19].

Tree and Graph Automata. There is a strong relationship between tree automata and attribute grammars:
bottom-up acceptors correspond to synthesised attributes and top-down acceptors correspond to inherited
attributes. The difference is that automata are typically used to characterise tree languages and devise
decision procedures, i.e. the automaton itself is the object of interest rather than the results of its computa-
tions. Our notion of rewriting attribute grammars is derived from tree transducers [26], i.e. tree automata
that characterise tree transformations, and our representation of these automata in Haskell is based on
Hasuo et al. [29]. Our representation of AGs in Haskell is taken from Bahr’s modular tree automata [6],
which are in turn derived from representations of tree automata based on the work of Hasuo et al. [29].
However, we slightly adjusted the representation of top-down state propagation to obtain a more abstract
interface that allowed us to implement semantic functions of inherited attributes more efficiently. Moreover,
we derived our notion of parametric attribute grammars from Bahr and Day [9], who recognised that the
addition of parametricity in the state space corresponds to the generalisation of tree transducers to macro
tree transducers [22].

While a number of generalisations of tree automata to graphs have been studied, a unified notion of
graph automata remains elusive [47]. Only specialised graph automata for particular applications have been
proposed thus far, and our notion of AGs on DAGs falls into this category as well. There are some automata

38

models that come close to our approach. However, they either cause recomputation in case of conflicting
top-down state (instead of providing a resolution operator ⊕) [39, 25], restrict themselves to bottom-up
state propagation only [16, 3, 23], or assume that the in-degree of nodes is fixed for each node label (i.e.
data constructor) [32, 46]. Either approach is too restrictive for the application we have demonstrated in
this paper. Moreover, none of these automata models allow for interdependency between bottom-up and
top-down state.

Kobayashi et al. [36] consider a much more general form of compact tree representations than just
DAGs: programs that produce trees. The authors study and implement tree transducers on such compact
tree representations. To this end, they consider generalised finite state transformations (GFSTs) [21],
which subsume both bottom-up and top-down transducers. However, GFSTs only provide top-down state
propagation. Bottom-up state propagation has to be encoded inefficiently and is restricted to finite state
spaces.

Attribute Grammars. Viera et al. [52] were the first to give an embedding of AGs in Haskell that allows
the programmer to combine semantic functions to construct AGs in a modular fashion. They do not rely
on a specific representation of trees as we do, but instead make heavy use of Template Haskell in order
to derive the necessary infrastructure. As a result, their approach is applicable to a wider variety of data
types. At the same time, however, this approach excludes transparent execution of thus defined AGs on
graph structures. Nonetheless, one could imagine using Template Haskell to also produce an appropriate,
specialised DAG type that corresponds to a given algebraic data type.

The idea to utilise the structure of attributes that happen to be tree-structured – as our parametric
AGs from section 6 do – also appears in the literature on AGs, albeit with a different motivation: so-called
higher-order attribute grammars [53] permit the execution of the AG nested within those tree-structured
attributes. By composing parametric AGs sequentially similarly to the composition of tree transducers [26],
we can achieve the same effect.

Higher-order attribute grammars implicitly introduce sharing when duplicating higher-order attributes.
Saraiva et al. [51] exploit this sharing for their implementation of incremental attribute evaluation. Their
goal, however, is different from ours: the sharing structure makes equality tests, which are necessary for
incremental evaluation, cheaper and increases cache hits.

Data Flow Analysis. Despite the difference in their application, there is some similarity between our corre-
spondence theorems for simple AGs and the soundness results for data flow analysis (DFA) [2]. In particular,
variants of Theorem 2 also appear in the literature on DFA. In the context of DFA, these soundness results
are formulated as follows: the maximum fixpoint (MFP) is bounded by the meet over all paths (MOP).
The MFP roughly corresponds to the run of an AG on a DAG, whereas the individual paths in the MOP
correspond to the run of an AG on a tree. However, there are a number of important differences.

First of all we only consider acyclic graphs, whereas DFA typically considers cyclic graphs. As a con-
sequence, there are stronger requirements for DFA, in particular, the ordering has to have finite height.
Secondly, AGs perform bidirectional computations, whereas DFA typically only considers unidirectional
problems, i.e. either forward or backwards analyses. There are DFA frameworks that do support bidirec-
tional analyses, however, they come with additional restrictions, e.g. separability [33].

The differences become more pronounced if we consider the parametric AGs described in section 6,
which allow us to implement sharing-preserving graph transformations. The closest analogue in the DFA
literature is an approach that interleaves unidirectional DFA with transformation steps [37]. However, we
are not aware of a DFA framework that combines bidirectional analyses with graph transformations.

10. Discussion and Future Work

We have presented a technique that allows us to represent trees as compact DAGs, yet process them as if
they were trees. The distinguishing feature of our approach is that it avoids recomputation for shared nodes
even in the case of interdependent bottom-up and top-down propagation of information. This approach
is supported by complementing correspondence theorems to prove the soundness of the shift from trees to

39

DAGs. In particular, correspondence by monotonicity (Theorems 2 and 5) provides a widely applicable proof
principle since it is parametric in the quasi-order. We have presented four examples for which correspondence
by monotonicity gives useful results: leavesBelow , typeInf , gateDelay and simplify (cf. Appendix Appendix
H)

A difficult obstacle in this endeavour is ensuring termination of the resulting graph traversals. As we
have shown, for some instances, such as type inference, termination can only be guaranteed if further
assumptions are made on the structure of the input DAG. A priority for future work is to find more general
principles that allow us to reason about termination on a higher level analogous to the correspondence
theorems we presented. We already made some progress in this direction as Theorem 1, Theorem 3 and, to
a limited degree, Proposition 2 allowed us to infer termination of graph traversals. A potential direction for
improvement is a stricter notion of non-circularity that guarantees termination of AGs on DAGs. A simple
approximation of this could be for example a coarser notion of dependency: if an attribute a depends on
attribute b, then b may not depend on a. The resulting notion of non-circularity would for example prove
that the AG corresponding to leavesBelow from the introduction terminates on DAGs.

Another direction for future work is to extend the expressive power of our recursion scheme:

• Extend AGs with fixpoint iteration [42, 24, 49] to deal with cyclic graphs and to implement analyses
based on abstract interpretation.

• Support a wider class of data types, e.g. mutually recursive data types and GADTs. Both should be
possible using well-known techniques from the literature [31, 54].

• Support deep pattern matching in AGs. This can be done by extending the Inh, Syn, and Rewrite
type with a parameter that can partially uncover nested subtrees. Deep patterns would make it easier
to express e.g. rewrite rules in a compiler.

Acknowledgements

We would like to thank the attendees of PEPM 2015 as well as the anonymous referees for their insightful
comments and suggestions. The first author is funded by the Danish Council for Independent Research,
Grant 12-132365. The second author is funded by the Swedish Foundation for Strategic Research, under
grant RAWFP.

References

[1] M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In FoSSaCS, 2003.
[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-10088-6.
[3] S. Anantharaman, P. Narendran, and M. Rusinowitch. Closure properties and decision problems of dag automata. Inf.

Process. Lett., 94(5):231 – 240, 2005.
[4] E. Axelsson. Functional Programming Enabling Flexible Hardware Design at Low Levels of Abstraction. PhD thesis,

Chalmers University of Technology, 2008.
[5] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckeg̊ard, A. Persson, M. Sheeran, J. Svenningsson, and

A. Vajda. Feldspar: A domain specific language for digital signal processing algorithms. In MEMOCODE, 2010.
[6] P. Bahr. Modular tree automata. In MPC, 2012.
[7] P. Bahr. Proving correctness of compilers using structured graphs. In M. Codish and E. Sumii, editors, Functional and

Logic Programming, volume 8475 of Lecture Notes in Computer Science, pages 221–237. Springer International Publishing,
2014.

[8] P. Bahr and E. Axelsson. Associated source code repository. https://github.com/emilaxelsson/ag-graph.
[9] P. Bahr and L. E. Day. Programming macro tree transducers. In WGP, 2013.

[10] M. Barr and C. Wells. Toposes, Triples and Theories. Springer, New York, 1 edition, 1984.
[11] P. Bille, I. L. Gørtz, G. M. Landau, and O. Weimann. Tree compression with top trees. Information and Computation,

243(0):166 – 177, 2015. 40th International Colloquium on Automata, Languages and Programming (ICALP 2013).
[12] R. Bird. Using circular programs to eliminate multiple traversals of data. Acta Inform., 21(3):239–250, 1984.
[13] R. Bird, J. Gibbons, S. Mehner, J. Voigtländer, and T. Schrijvers. Understanding idiomatic traversals backwards and

forwards. In Haskell, 2013.

40

https://github.com/emilaxelsson/ag-graph

[14] P. Buneman, M. Fernandez, and D. Suciu. UnQL: a query language and algebra for semistructured data based on structural
recursion. The VLDB Journal, 9(1):76–110, 2000.

[15] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document trees. Information Sys-
tems, 33(4–5):456 – 474, 2008. ISSN 0306-4379. Selected Papers from the Tenth International Symposium on Database
Programming Languages (DBPL 2005.

[16] W. Charatonik. Automata on DAG representations of finite trees. Research report, Max-Planck-Institut für Informatik,
March 1999.

[17] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat. The smallest grammar problem.
IEEE Transactions on Information Theory, 51(7):2554–2576, July 2005. ISSN 0018-9448.

[18] A. Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In ICFP, 2008.
[19] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpression problem. Journal of the ACM, 27(4):

758–771, 1980. ISSN 0004-5411. doi: 10.1145/322217.322228.
[20] R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed type families with overlapping equations. In

POPL, 2014.
[21] J. Engelfriet. Bottom-up and top-down tree transformations — a comparison. Mathematical systems theory, 9(2):198–231,

1975.
[22] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System Sci., 31(1):71–146, 1985.
[23] B. Fila and S. Anantharaman. Running tree automata on trees and/or dags. Technical report, LIFO, 2006.
[24] J. Fokker and S. D. Swierstra. Abstract interpretation of functional programs using an attribute grammar system. In

LDTA, 2009.
[25] A. Fujiyoshi. Recognition of directed acyclic graphs by spanning tree automata. Theor. Comput. Sci., 411(38–39):3493 –

3506, 2010.
[26] Z. Fülöp and H. Vogler. Syntax-Directed Semantics: Formal Models Based on Tree Transducers. Springer-Verlag New

York, Inc., 1998.
[27] J. Gibbons. Generic downwards accumulations. SCP, 37:37–65, 2000.
[28] A. Gill. Type-safe observable sharing in Haskell. In Haskell, 2009.
[29] I. Hasuo, B. Jacobs, and T. Uustalu. Categorical views on computations on trees (extended abstract). In ICALP, 2007.
[30] S. Hidaka, K. Asada, Z. Hu, H. Kato, and K. Nakano. Structural recursion for querying ordered graphs. In Proceedings

of the 18th ACM SIGPLAN International Conference on Functional Programming, pages 305–318, New York, NY, USA,
2013. ACM.

[31] P. Johann and N. Ghani. Foundations for structured programming with GADTs. In POPL, 2008.
[32] T. Kamimura and G. Slutzki. Transductions of dags and trees. Math. Syst. Theory, 15(1):225–249, 1981.
[33] U. P. Khedker and D. M. Dhamdhere. A generalized theory of bit vector data flow analysis. ACM Trans. Program. Lang.

Syst., 16(5):1472–1511, 1994.
[34] D. Knuth. Semantics of context-free languages: Correction. Math. Syst. Theory, 5(2):95–96, 1971.
[35] D. E. Knuth. Semantics of context-free languages. Theory Comput. Syst., 2(2):127–145, 1968.
[36] N. Kobayashi, K. Matsuda, A. Shinohara, and K. Yaguchi. Functional programs as compressed data. Higher-Order and

Symbolic Computation, pages 1–46, 2013.
[37] S. Lerner, D. Grove, and C. Chambers. Composing dataflow analyses and transformations. In POPL, pages 270–282,

2002.
[38] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit parameters: dynamic scoping with static types. In

POPL, 2000.
[39] M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-compressed trees. Theoretical Com-

puter Science, 363(2):196 – 210, 2006. ISSN 0304-3975. Implementation and Application of Automata 10th International
Conference on Implementation and Application of Automata (CIAA 2005).

[40] S. Maneth and G. Busatto. Tree transducers and tree compressions. In I. Walukiewicz, editor, Foundations of Software
Science and Computation Structures, volume 2987 of Lecture Notes in Computer Science, pages 363–377. Springer Berlin
Heidelberg, 2004. ISBN 978-3-540-21298-0.

[41] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, envelopes and barbed wire. In
Functional Programming Languages and Computer Architecture, volume 523 of LNCS, pages 124–144. Springer, 1991.

[42] A. Middelkoop. Inference with Attribute Grammars. PhD thesis, Universiteit Utrecht, Feb. 2012.
[43] D. R. Morrison. PATRICIA—practical algorithm to retrieve information coded in alphanumeric. J. ACM, 15(4):514–534,

Oct. 1968. ISSN 0004-5411.
[44] B. C. Oliveira and W. R. Cook. Functional programming with structured graphs. In ICFP, 2012.
[45] B. C. d. S. Oliveira and A. Löh. Abstract syntax graphs for domain specific languages. In PEPM, 2013.
[46] D. Quernheim and K. Knight. Dagger: A toolkit for automata on directed acyclic graphs. In FSMNLP, 2012.
[47] J.-C. Raoult. Problem #70: Design a notion of automata for graphs, 2005. URL http://rtaloop.mancoosi.

univ-paris-diderot.fr/problems/70.html. The RTA list of open problems.
[48] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic approach to runtime code generation and compiled

DSLs. In GPCE, 2010.
[49] M. Rosendahl. Abstract interpretation using attribute grammars. In WAGA, 1990.
[50] S. Sakr. XML compression techniques: A survey and comparison. Journal of Computer and System Sciences, 75(5):303

– 322, 2009. ISSN 0022-0000.
[51] J. Saraiva, D. Swierstra, and M. Kuiper. Functional incremental attribute evaluation. In Compiler Construction, 2000.
[52] M. Viera, S. D. Swierstra, and W. Swierstra. Attribute grammars fly first-class. In ICFP, 2009.

41

http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/70.html
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/70.html

[53] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars. In PLDI, 1989.
[54] A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic programming with fixed points for mutually recursive

datatypes. In ICFP, 2009.

42

List of Appendices

A. Proof of Theorem 1 43

B. Proof of Theorem 2 45

C. Proof of Theorem 3 46

D. Existence of Unique Runs of Non-Circular AGs 49

E. Proof of Proposition 2 50

F. Proof of Theorem 4 50

G. Proof of Theorem 5 54

H. leavesBelow as Attribute Grammar 55

Appendix A. Proof of Theorem 1

To prove Theorem 1, we need the following two lemmas, that characterise runs of copying AGs. We
begin with the case for trees:

Lemma 4. Given a copying AG G = (S, I,D, α, δ) over F , a tree t ∈ Tree(F), and a run ρ = (ρa)a∈S∪I of
G on t, we have the following:

(i) ρa(p) = ρa(q) for all a ∈ I and p, q ∈ P (t).

(ii) ρa(p) = ρa(q) for all a ∈ S and p, q ∈ P (t) with t|p = t|q.

Proof. (i) Given some a ∈ I, we prove that ρa(p) = ρa(〈〉) for all p ∈ P (t) by induction on the length of p.
The case p = 〈〉 is trivial. If p = q · 〈j〉, and t|q = (s, (ti)i<l), then we have that

ρa(q · 〈j〉) = δa,j(s, (ρS(q · 〈i〉))i<l, (ρI(q))) = ρa(q) = ρa(〈〉)

where the first equality follows from the definition of runs on trees, the second one from the fact that G is
copying, and the last one from the induction hypothesis.

(ii) We show this property by induction on t|p. Given t|p = t|q = (s, (ti)i<l), we have that

ρa(p) = δa(s, (ρS(p · 〈i〉))i<l, ρI(p))

= δa(s, (ρS(p · 〈i〉))i<l, ρI(q))

= δa(s, (ρS(q · 〈i〉))i<l, ρI(q)) = ρa(q)

where the first and last equality follow from the definition of runs on trees, the second one follows from (i),
and the third one from the induction hypothesis.

Lemma 5. Given a copying AG G = (S, I,D, α, δ) over F , a copying ⊕ = (⊕a : Da ×Da → Da), a DAG
g = (N,E, r) ∈ DAG(F), and a run ρ = (ρa)a∈S∪I of G modulo ⊕ on g, we have that ρa(n) = ρ(m) for all
a ∈ I and n,m ∈ N .

Proof. We prove this property by showing that ρa(n) = ρa(r) for all a ∈ I and n ∈ N by well-founded

induction on the reachability relation
g→. By the definition of runs on DAGs and the fact that ⊕ is copying,

we know that
ρa(n) = δa,j(s, (ρS(ni))i<l, ρI(m))

for some m ∈ N with E(m) = (s, (ni)i<l) and nj = n. Since G is copying, the right-hand side is equal to

ρa(m), i.e. ρa(n) = ρa(m) for some m
g→ n. Hence, we can apply the induction hypothesis to conclude that

ρa(n) = ρa(r).

43

Theorem 1. Given a copying AG G = (S, I,D, α, δ) over F , a copying ⊕ = (⊕a : Da ×Da → Da)a∈I , and
a DAG g = (N,E, r) ∈ DAG(F), we have that for each run of G modulo ⊕ on g there is an equivalent run
of G on U (g), and vice versa.

Proof of Theorem 1. Let ρ be a run of G modulo ⊕ on g. For each a ∈ S ∪ I, define ρ′a : P (U (g))→ Da by
p 7→ ρa(g [p]). It remains to be shown that ρ′ = (ρa)a∈S∪I is a run of G on U (g).

Let a ∈ I. Then we have by definition that

ρ′a(〈〉) = ρa(r) = αa(ρS(r)) = αa(ρ′S(〈〉))

Moreover, we have, for each p ∈ P (U (g)) with U (g) |p = (s, (ti)i<l) and j < l, that

ρ′a(p · 〈j〉)
= { definition of ρ′ }
ρa(g [p · 〈j〉])

= { Lemma 5 }
ρa(g [p])

= { G is copying }
δa,j(s, (ρS(g [p · 〈i〉]))i<l, ρI(g [p]))

= { definition of ρ′ }
δa,j(s, (ρ

′
S(p · 〈i〉))i<l, ρ

′
I(p))

Let a ∈ S. For each p ∈ P (U (g)) with U (g) |p = (s, (ti)i<l), we have that

ρ′a(p)

= { definition of ρ′ }
ρa(g [p])

= { G is copying }
δa(s, (ρS(g [p · 〈i〉]))i<l, ρI(g [p]))

= { definition of ρ′ }
δa(s, (ρ′S(p · 〈i〉))i<l, ρ

′
I(p))

Conversely, let ρ be a run of G on U (g). For each a ∈ S ∪ I define ρ′a : N → Da by n 7→ ρa(p) for
some p ∈ Pg (n). That each ρ′a is well-defined follows from Lemma 4(ii). It remains to be shown that
ρ′ = (ρ′a)a∈S∪I is a run of G modulo ⊕ on g.

Let a ∈ I. Then we have by definition that

ρ′a(r) = ρa(〈〉) = αa(ρS(〈〉)) = αa(ρ′S(r))

Let n ∈ N , and let M be the set of all tuples (m, j, s, (ni)i<l) such that E(m) = (s, (ni)i<l) and nj = n:⊕
(m,j,s,(ni)i<l)∈M

δa,j(s, (ρ
′
S(ni))i<l, ρ

′
I(m))

=
⊕

(m,j,s,(ni)i<l)∈M

ρ′a(m) (G is copying)

= ρ′a(m) for some (m, j, s, n) ∈M (⊕ is copying)

= ρ′a(n) (by Lemma 4 and definition of ρ′)

Finally, let a ∈ S, and assume some n ∈ N such that E(n) = (s, (ni)i<l). Then ρ′a(n) = ρa(p) for any p ∈
Pg (n). Hence, ρ′a(n) is equal to δa(s, (ρS(p · 〈i〉))i<l, ρI(p)), which in turn is equal to δa(s, (ρ′S(ni))i<l, ρ

′
I(n))

because p · 〈i〉 ∈ Pg (ni) for all i < l.

44

We also give a detailed proof of Corollary 1.

Corollary 1. Given G, ⊕, and g as in Theorem 1 such that G is non-circular, we have that LG,⊕M(g) =
JGK (U (g)).

Proof of Corollary 1. Since G is non-circular, it has a unique run ρ on U (g). By Theorem 1 there is an
equivalent run ρ′ of G modulo ⊕ on g. This run ρ′ must be unique. If it was not, then we would find a run
ρ2 on g that is different from ρ′, and by Theorem 1, we would then find a run ρ3 on U (g) that is equivalent
to ρ2 and thus different from ρ. This would contradict the fact that ρ is unique. Consequently, we have that
LG,⊕M(g) = ρ′S(r) and JGK (U (g)) = ρS(〈〉). Since ρ and ρ′ are equivalent, we know that ρ′S(r) = ρS(〈〉).

Appendix B. Proof of Theorem 2

Theorem 2. Let G = (S, I,D, α, δ) be a non-circular AG, ⊕ = (⊕a : Da × Da → Da)a∈S∪I associative
and commutative operators, and (.a)a∈S∪I quasi-orders such that G is monotone and ⊕ is decreasing w.r.t.
(.a)a∈S∪I . Given a run ρ of G modulo ⊕ on a DAG g = (N,E, r) and the run ρ′ of G on U (g), we have
that

ρa(g [p]) .a ρ
′
a(p) for all a ∈ S ∪ I and p ∈ P (g)

Proof of Theorem 2. Since G is non-circular, there is well-founded order < on (S ∪ I) × P (U (g)) that is
compatible with G. We prove the above inequation by well-founded induction using <.

We begin with a ∈ I. Let p = 〈〉. By induction hypothesis, we have, for all b ∈ S, that ρb(r) .b ρ
′
b(〈〉)

or αa is independent of b. Due to the monotonicity of αa, this implies that

ρa(r)
(a)
= αa(ρS(r))

(b)

. a αa(ρ′S(〈〉)) (c)
= ρ′a(〈〉)

where (a) and (c) follow from the fact that ρ resp. ρ′ are runs, and (b) follows from the induction hypothesis
and monotonicity of αa.

Next, let p = q · 〈j〉 and let m = g [q]. We thus have that E(m) = (s, (ni)i<l) with j < l. Consequently,
ni = g [q · 〈i〉] for all i < l. According to the definition of U , we thus find that U (g) |q = (s, (U (g|ni))i<l).
Since ρ′ is a run of G on U (g), we then have that

ρ′a(q · 〈j〉) = δa,j(s, (ρ
′
S(q · 〈i〉))i<l, ρ

′
I(q)) (B.1)

According to the induction hypothesis we have, for each i < l and b ∈ S that ρb(ni) .b ρ
′
b(q ·〈i〉) or δa,j(s, ·, ·)

is independent of (b, i), and, for each b ∈ I, that ρb(m) .b ρ
′
b(q) or δa,j(s, ·, ·) is independent of b. Due to the

monotonicity of δa, the induction hypothesis can be used to turn the equality from (B.1) into the following
inequality:

ρ′a(q · 〈j〉) &a δa,j(s, (ρS(ni))i<l, ρI(m)) (B.2)

Let n = g [q · 〈j〉]. Since ρ is a run on g, we know that ρa(n) is equal to a ⊕a-sum, where one of the
summands is the right-hand side of (B.2). Since ⊕a is decreasing w.r.t. .a, we thus have that

ρa(n) .a δa,j(s, (ρS(ni))i<j , ρI(m)) (B.3)

Consequently, by transitivity of .a, we have the desired inequality

ρa(g [q · 〈j〉]) .a ρ
′
a(q · 〈j〉)

Finally, we consider a ∈ S. To this end, let n = g [p] and E(n) = (s, (ni)i<l). Consequently, ni = g [p · 〈i〉]
for all i < l and we have that t|p = (s, (U (g|ni

))i<l). By virtue of ρ and ρ′ being runs on g and U (g),
respectively, we have that

ρa(n) = δa(s, (ρS(ni))i<l, ρI(n))

ρ′a(p) = δa(s, (ρ′S(p · 〈i〉))i<l, ρ
′
I(n))

45

By applying the induction hypothesis (as described in the case for a ∈ I above) together with the mono-
tonicity of δa, we then obtain the desired inequality:

ρa(g [p]) .a ρ
′
a(p)

We also give the proof of Corollary 2.

Corollary 2. Given G, ⊕, (.a)a∈S∪I , and g as in Theorem 2, and given that LG,⊕M(g) is defined, then
LG,⊕M(g) .S JGK (U (g)).

Proof of Corollary 2. Given the unique runs ρ and ρ′ on g and U (g), respectively, we have the following
according to Theorem 2:

LG,⊕M(g) = ρS(r) = ρS(g [〈〉]) .S ρ
′
S(〈〉) = JGK (U (g))

Appendix C. Proof of Theorem 3

The rewriting AGs presented in section 6.1 are a special case of parametric AGs, which we presented in
appendix 6. Theorem 3 can be derived from by instantiating the corresponding theorem on parametric AGs
(cf. Theorem 4).

However, for the sake of presentation we shall present rewriting AGs as well as the proof of Theorem 3
in a self-contained manner.

Definition 14. A rewriting attribute grammar (RAG) G from F1 to F2 is a tuple (S, I,D, α, δ, τ) consisting
of an AG (S, I,D, α, δ) over F1 and a natural transformation τ from F1(DS × −) ×DI to the free monad
F ∗2 of F2.

The rewriting function τ acts as an additional semantic function (of a synthesised attribute), with the
difference that the other attributes may not depend on it. The second difference is the fact that τ is a
natural transformation and therefore works on both trees and DAGs:

τTree(F2) : F1(DS × Tree(F2))×DI → F ∗2 (Tree(F2))

τDAG(F2) : F1(DS × DAG(F2))×DI → F ∗2 (DAG(F2))

These function are not quite of the type we need them to be. In order to treat them as semantic function,
we need them to map into Tree(F2) and DAG(F2), respectively. This is easily achieved by composing τTree(F2)

and τDAG(F2) with functions of type F ∗2 (Tree(F2))→ Tree(F2) and F ∗2 (DAG(F2))→ DAG(F2), respectively. In
turn, these functions are given by corresponding F2-algebras, i.e. functions of type F2(Tree(F2))→ Tree(F2)
and F2(DAG(F2))→ DAG(F2). The basis for this construction is the fact that each F -algebra a : F (X)→ X
gives rise to an Eilenberg-Moore F ∗-algebra a∗ : F ∗(X) → X (see e.g. Proposition 4.5 in Barr and Wells
[10]). The most important property of this construction is that it preserves homomorphisms. We shall use
this property in the proof of Theorem 3.

Thus, in order to derive suitable semantic functions from τ , we only need to give algebras of type
F2(Tree(F2)) → Tree(F2) and F2(DAG(F2)) → DAG(F2). The former is simply the isomorphism inF2

between F2(Tree(F2)) and Tree(F2). The latter is a bit more involved.
We define, for each finitary container F , the function grF : F (DAG(F))→ DAG(F) as follows:

grF (s, (gi)i<l) = (N,E, r) for all (s, (gi)i<l) ∈ F (DAG(F))

where gi = (Ni, Ei, ri) ∈ DAG(F)

N = {r}]
⋃
i<l

Ni

E(r) = (s, (ri)i<l)

E(n) = Ei(n) if n ∈ Ni

46

F1(DS × DAG(F2))×DI F ∗2 (DAG(F2)) DAG(F2)

F1(DS × Tree(F2))×DI F ∗2 (Tree(F2)) Tree(F2)

(1) (2)F1(DS × U)×DI F ∗2 (U) U

τDAG(F2) gr∗F2

τTree(F2) in∗F2

F2(DAG(F2)) DAG(F2)

F2(Tree(F2)) Tree(F2)

(3)F2(U) U

grF2

inF2

Figure C.16: Commutativity of rewriting and unravelling.

In the above construction, we assume that if n ∈ Ni ∩Nj , then Ei(n) = Ej(n). If this is not the case nodes
are renamed accordingly.

We thus obtain the desired functions (Figure C.16 illustrates them in the left-hand diagram):

in∗F2
◦ τTree(F2) : F1(DS × Tree(F2))×DI → Tree(F2)

gr∗F2
◦ τDAG(F2) : F1(DS × DAG(F2))×DI → DAG(F2)

We use the shorthand τT for in∗F2
◦ τTree(F2) and τG for gr∗F2

◦ τDAG(F2).
Using the above construction, the extension of the semantics of AGs to RAGs is straightforward:

Definition 15. Let G = (S, I,D, α, δ, τ) be a RAG from F1 to F2 and ⊕ = (⊕a : Da×Da → Da)aI
a family

of associative, commutative operators.

(i) Given a tree t ∈ Tree(F1), a run of G on t is a pair (ρ, σ) consisting of a run ρ of the underlying AG of
G on t and a mapping σ : P (t)→ Tree(F2) such that for each position p ∈ P (t) with t|p = (s, (ti)i<l),
we have that

σ(p) = τT (s, ((ρS(p · 〈i〉), σ(p · 〈i〉)))i<l, ρI(p))

If (ρ, σ) is the unique such run, we write JGK (t) to denote the final result σ(〈〉).

(ii) Given a DAG g = (N,E, r) ∈ DAG(F1), a run of G modulo ⊕ on g is a pair (ρ, σ) consisting of a run
ρ of the underlying AG of G modulo ⊕ on g and a mapping σ : N → DAG(F2) such that for each node
n ∈ N with E(n) = (s, (ni)i<l), we have that

σ(n) = τT (s, ((ρS(ni), σ(ni)))i<l, ρI(n))

If (ρ, σ) is the unique such run, we write LG,⊕M(g) to denote the final result σ(r).

The key ingredient of the proof of Theorem 3 is that τT and τG commute with the DAG unravelling U ,
i.e.

τT ◦ F1(DS × U (·))×DI = U ◦ τG

In other words the left-hand diagram in Figure C.16 (square (1) and (2) combined) commutes. To show this,
we prove that the two squares (1) and (2) commute: (1) commutes because of naturality of τ . (2) expresses
that U is a homomorphism between the F ∗-algebras gr∗F2

and in∗F2
(note: we also use F ∗ to denote the

underlying functor of the free monad F ∗). To show that this is the case we make use of the fact that any
F -algebra homomorphism from a to b is also an homomorphism from a∗ to b∗ (see e.g. Proposition 4.5 in

47

Barr and Wells [10]). Thus, to show commutativity of (2) it suffices to show commutativity of (3), which is
obtained as follows:

U (grF2(s, (gi)i<l))

= {definition of U}
(s, (U (grF2(s, (gi)i<l)|ri))i<l)

= {definition of grF2}
(s, (U (gi))i<l)

= {inF2 is the identity}
inF2(s, (U (gi))i<l)

The commutativity of the diagram in Figure C.16 is summarised in the following lemma:

Lemma 6. Given a RAG G = (S, I,D, α, δ, τ) from F1 to F2, we have the following equality for all
(s, (di, gi)i<l) ∈ F1(DS × DAG(F2)) and e ∈ DI :

τT (s, (di,U (gi))i<l, e) = U
(
τG(s, (di, gi)i<l, e)

)
With the above lemma, we can complete the proof of Theorem 3:

Theorem 3. Given a copying RAG G = (S, I,D, α, δ, τ) from F1 to F2, a copying ⊕ = (⊕a : Da×Da → Da),
and a DAG g = (N,E, r) ∈ DAG(F1), there is, for each run of G modulo ⊕ on g, an equivalent run of G on
U (g), and vice versa.

Proof of Theorem 3. Let (ρ, σ) be a run of G modulo ⊕ on g. By Theorem 1 there is a run ρ′ of the
underlying AG of G on U (g) that is equivalent to ρ. Define σ′ : P (U (g)) → Tree(F2) by recursion on
U (g) |p:

σ′(p) = τT (s, ((ρ′S(p · 〈i〉), σ′(p · 〈i〉)))i<l, ρ
′
I(p))

By definition, (ρ′, σ′) is a run of G on U (g). We show that

σ′(p) = U (σ(g [p])) for all p ∈ P (g) (C.1)

by induction on U (g) |p:
Let p ∈ P (g), n = g [p], and E(n) = (s, (ni)i<l). Hence, U (g) |p = (s, (U (g|ni

))i<l). We can assume by
induction hypothesis that

σ′(p · 〈i〉) = U (σ(ni)) for all i < l

Hence, we can show the equality (C.1) as follows:

σ′(p)

= {definition of σ′}
τT (s, ((ρ′S(p · 〈i〉), σ′(p · 〈i〉)))i<l, ρ

′
I(p))

= {ρ and ρ′ are equivalent}
τT (s, ((ρS(ni), σ

′(p · 〈i〉)))i<l, ρI(n))

= {induction hypothesis}
τT (s, ((ρS(ni),U (σ(ni))))i<l, ρI(n))

= {Lemma 6}
U
(
τG(s, ((ρS(ni), σ(ni)))i<l, ρI(n))

)
= {by definition, since (ρ, σ) is a run}
σ(n)

48

Conversely, let (ρ, σ) be a run of G on U (g). By Theorem 1 there is a run ρ′ of the underlying AG of G

modulo ⊕ on g that is equivalent to ρ. Define σ′ : N → DAG(F2) by well-founded recursion on
g← as follows:

σ′(n) = τG(s, ((ρ′S(ni), σ
′(ni)))i<l, ρ

′
I(n))

– where E(n) = (s, (ni)i<l). By definition, (ρ′, σ′) is a run of G modulo ⊕ on g. We show that

U (σ′(n)) = σ(p) for all n ∈ N, p ∈ Pg (n) (C.2)

by well-founded induction on
g←:

Let n ∈ N , E(n) = (s, (ni)i<l), and p ∈ Pg (n). Hence, U (g) |p = (s, (U (g|ni
))i<l). Since ni

g← n, we
can assume by induction hypothesis that

U (σ′(ni)) = σ(q) for all i < l and q ∈ Pg (ni)

Hence, we can show the equality (C.2) as follows:

U (σ′(n))

= {definition of σ′}
U
(
τG(s, ((ρ′S(ni), σ

′(ni)))i<l, ρ
′
I(n))

)
= {Lemma 6}
τT (s, ((ρ′S(ni),U (σ′(ni))))i<l, ρ

′
I(n))

= {induction hypothesis}
τT (s, ((ρ′S(ni), σ(p · 〈i〉)))i<l, ρ

′
I(n))

= {ρ and ρ′ are equivalent}
τT (s, ((ρS(p · 〈i〉), σ(p · 〈i〉)))i<l, ρI(p))

= {by definition, since (ρ, σ) is a run}
σ(p)

Corollary 6. Given G, ⊕, and g as in Theorem 3 such that G is non-circular, we have that U (LG,⊕M(g)) =
JGK (U (g)).

Proof. Since G is non-circular, it has a unique run (ρ, σ) on U (g). By Theorem 3 there is an equivalent
run (ρ′, σ′) of G modulo ⊕ on g. This run (ρ′, σ′) must be unique. If it was not, then we would find a run
(ρ2, σ2) on g that is different from (ρ′, σ′), and by Theorem 3, we would then find a run (ρ3, σ3) on U (g)
that is equivalent to (ρ2, σ2) and thus different from (ρ, σ). This would contradict the fact that (ρ, σ) is
unique. Consequently, we have that LG,⊕M(g) = σ′(r) and JGK (U (g)) = σ(〈〉). Since (ρ, σ) and (ρ′, σ′) are
equivalent, we know that U (σ′(r)) = σ(〈〉).

Appendix D. Existence of Unique Runs of Non-Circular AGs

We prove the fact that non-circular AGs have unique runs on any tree.

Proposition 1. Every non-circular AG has a unique run on any given tree.

Proof of Proposition 1. Let G = (S, I,D, α, δ) be an AG over F and t ∈ Tree(F). Since G is non-circular,
we find a well-founded order < on (S ∪ I)×P (t) that is compatible with G. Hence, the conditions for runs
on trees in Definition 5 can be read as a construction of a run by well-founded recursion. Let ρ = (ρa)a∈S∪I
be the run thus obtained.

49

To show that ρ is unique, let ρ′ = (ρ′a)a∈S∪I be another run of G on t. We show by well-founded
induction on < that ρa(p) = ρ′a(p) for all a ∈ S ∪ I and p ∈ P (t).

Let a ∈ I. If p = 〈〉, then ρa(〈〉) = αa(ρA(〈〉)) and ρ′a(〈〉) = αa(ρ′A(〈〉)). By induction hypothesis, we
have for all b ∈ S, that ρb(〈〉) = ρ′b(〈〉) or αa is independent of b. Hence, ρa(〈〉) = ρ′a(〈〉). If p = q · 〈j〉, then
– given that t|q = (s, (ti)i<l) – we have that

ρa(q · 〈j〉) = δa,j(s, (ρS(q · 〈i〉))i<l, ρI(q))

ρ′a(q · 〈j〉) = δa,j(s, (ρ
′
S(q · 〈i〉))i<l, ρ

′
I(q))

By induction hypothesis, we know, for all b ∈ S and i < l, that ρb(q · 〈i〉) = ρ′b(q · 〈i〉) or δa,j(s, ·, ·) is
independent of (b, i), and, for all b ∈ I, that ρb(q) = ρ′b(q) or δa,j(s, ·, ·) is independent of b. Hence, the
right-hand sides of the above two equations coincide and we thus have that ρa(q · 〈j〉) = ρ′a(q · 〈j〉). The case
a ∈ S follows by a similar argument.

Appendix E. Proof of Proposition 2

Proposition 2. Given G, ⊕, and (.a)a∈S∪I as in Theorem 2 such that .a is well-founded for every a ∈ I,
then, on any DAG there is a run of G modulo ⊕.

Proof of Proposition 2. Let G = (S, I,D, α, δ), ⊕ = (⊕a : Da ×Da → Da)a∈I and g = (N,E, r) ∈ DAG(F).
Since G is non-circular, we find a well-founded order < on (S ∪ I)×P (t) that is compatible with G. With
the help of this order we can read Definition 6 almost as a construction of a run of G modulo ⊕ on g by
well-founded induction similarly to the proof of Proposition 1. The only exception is the definition for the
value of inherited attributes a ∈ I, which are defined in terms of ⊕a-sums. To construct such an attribute
value for some node n ∈ N , i.e. to construct ρa(n), we can iteratively find a fixed point.

By applying the induction hypothesis, we know that at least one of the summands d0 is defined already.
Moreover, since ⊕a is decreasing, we know that the sum is at most d0. Thus we tentatively, set ρa(n) = d0.
As the other summands d1, . . . dk become defined, we can compute the sum e0 =

⊕
i≤k di. Since ⊕a is

decreasing, we have that e0 .a d0. If e0 = d0, we have found the right value for ρa(n), viz. e0. Otherwise,
we tentatively redefine ρa(n) = e0, and recompute the attributes that depend on it. We can then compute
the new value of the sum e1, for which we have that e1 . e0, since G is monotone and e0 .a d0. If e1 = e0,
we stop. Otherwise, we repeat this process, which yields a sequence e0 &a e1 &a . . . of decreasing values.
Since .a is well-founded, this sequence cannot be infinite, i.e. there is some i ∈ N with ei = ei+1. We can
thus set ρa(n) = ei.

Appendix F. Proof of Theorem 4

Lemma 3. Let G = (S, I,D, α, δ) be a PAG from F1 to F2. Then we have the following:

(i) For all a ∈ I and d ∈ DS(DAG(F2)),

Da(U)(αG
a (d)) = αT

a (DS(U)(d))

(ii) For all a ∈ I, (s, (di)i<l) ∈ F1(DS(DAG(F2))), e ∈ DI(DAG(F2)), and j < l,

Da(U)(δGa,j((s, (di)i<l), e)) = δGa,j((s, (DS(U)(di))i<l), DI(U)(e))

(iii) For all a ∈ S, (s, (di)i<l) ∈ F1(DS(DAG(F2))), and e ∈ DI(DAG(F2)),

Da(U)(δGa ((s, (di)i<l), e)) = δGa ((s, (DS(U)(di))i<l), DI(U)(e))

50

Proof of Lemma 3. (i)

Da(U)(αG
a (d))

= { definition of αG
a }

Da(U)(Da(gr∗F2
)(αa,DAG(F2)(d)))

= { Da is a functor }
Da(U ◦ gr∗F2

)(αa,DAG(F2)(d))

= { Lemma 2 }
Da(in∗F2

◦ F ∗2 (U))(αa,DAG(F2)(d))

= { Da is a functor }
Da(in∗F2

)(Da(F ∗2 (U))(αa,DAG(F2)(d)))

= { αa is a natural transformation }
Da(in∗F2

)(αa,Tree(F2)(DS(U)(d)))

= { definition of αT
a }

αT
a (DS(U)(d))

(ii) Let prj denote the j-th projection from an l-ary product. To show the equality, we show the following:

prj ◦ δTa ◦ ((F1 ◦DS)×DI)(U) = Da(U) ◦ δGa,j
The argument is as follows:

prj ◦ δTa ◦ ((F1 ◦DS)×DI)(U)

= { definition of δTa }
prj ◦ ((FM ◦Da)(in∗F2

)) ◦ δa,Tree(F2) ◦ ((F1 ◦DS)×DI)(U)

= { δa is a natural transformation }
prj ◦ ((FM ◦Da)(in∗F2

)) ◦ (FM ◦DS ◦ F ∗2)(U) ◦ δa,DAG(F2)

= { FM ◦Da is a functor }
prj ◦ ((FM ◦Da)(in∗F2

◦ F ∗2 (U))) ◦ δa,DAG(F2)

= { Lemma 2 }
prj ◦ ((FM ◦Da)(U ◦ gr∗F2

)) ◦ δa,DAG(F2)

= { FM ◦Da is a functor }
prj ◦ (FM ◦Da)(U) ◦ (FM ◦Da)(gr∗F2

) ◦ δa,DAG(F2)

= { definition of δGa }
prj ◦ (FM ◦Da)(U) ◦ δGa

= { definition of prj }
Da(U) ◦ prj ◦ δGa

= { definition of notation δGa,j }
Da(U) ◦ δGa,j

(iii) Analogous to (ii).

Theorem 4. Given a copying, non-circular PAG G = (S, I,D, α, δ) from F1 to F2, a copying ⊕ =
(⊕a : DG

a ×DG
a → DG

a)a∈I , and a DAG g = (N,E, r) ∈ DAG(F1), we have that for each run of G modulo ⊕
on g there is an equivalent run of G on U (g), and vice versa.

51

Proof of Theorem 4. Let ρ be a run of G modulo ⊕ on g. For each a ∈ S ∪ I, define ρ′a : P (U (g)) →
Da(Tree(F2)) by p 7→ Da(U)(ρa(g [p])). It remains to be shown that ρ′ = (ρa)a∈S∪I is a run of G on U (g).

Let a ∈ I. Then we have that

ρ′a(〈〉)
= { definition of ρ′ }
Da(U)(ρa(r))

= { ρ is a run of G on g }
Da(U)(αG

a (ρS(r)))

= { Lemma 3 }
αT
a (DS(U)(ρS(r)))

= { definition of ρ′ }
αT
a (ρ′S(〈〉))

For each p ∈ P (U (g)) with U (g) |p = (s, (ti)i<l) and j < l, we have that

ρ′a(p · 〈j〉)
= { definition of ρ′ }
Da(U)(ρa(g [p · 〈j〉]))

= { Lemma 5 }
Da(U)(ρa(g [p]))

= { G is copying }
Da(U)(δGa,j(s, (ρS(p · 〈i〉))i<l, ρI(p)))

= { Lemma 3 }
δTa,j(s, (DS(U)(ρS(g [p · 〈i〉])))i<l, DI(U)(ρI(g [p]))))

= { definition of ρ′ }
δTa,j(s, (ρ

′
S(p · 〈i〉))i<l, ρ

′
I(p))

Let a ∈ S. For each p ∈ P (U (g)) with U (g) |p = (s, (ti)i<l), we have that

ρ′a(p)

= { definition of ρ′ }
Da(U)(ρa(g [p]))

= { ρ is a run of G on g }
Da(U)(δGa (s, (ρS(p · 〈i〉))i<l, ρI(p)))

= { Lemma 3 }
δTa (s, (DS(U)(ρS(g [p · 〈i〉])))i<l, DI(U)(ρI(g [p]))))

= { definition of ρ′ }
δTa (s, (ρ′S(p · 〈i〉))i<l, ρ

′
I(p))

Conversely, let ρ be a run of G on U (g). Since G is non-circular, we find a well-founded order < on
(S ∪ I)× P (U (g)) that is compatible with G. We define the relation ≺ on (S ∪ I)×N as follows:

(a, n) ≺ (b,m) ⇐⇒ ∀q ∈ P (m)∃p ∈ P (n) : (a, p) < (b, q)

Since < is well-founded, so is ≺.

52

By well-founded induction using ≺, we define, for each a ∈ S ∪ I, a mapping ρ′a : N → Da(DAG(F2)):
For all a ∈ I,

ρ′a(r) = αG
a (ρ′S(r))

Well-foundedness follows from the fact that < is compatible with G.
For all a ∈ I and n ∈ N \ {r},

ρ′a(n) = ρ′a(r)

Since G is copying, we have that (a, 〈〉) < (a, p) for all p ∈ P (U (g)) \ {〈〉}. Hence, (a, r) ≺ (a, n). Hence,
the above definition is well-founded.

For all a ∈ S and n ∈ N and E(n) = ((s, (ni)i<l),

ρ′a(n) = δGa ((s, (ρ′S(ni))i<l), ρ
′
I(n))

Well-foundedness follows from the fact that < is compatible with G.
To show that ρ′ is a run of G on g, we only need to show that it is compatible with δa for all a ∈ I. The

other cases follow immediately from the construction of ρ′.
Let n ∈ N , and let M be the set of all tuples (m, j, s, (ni)i<l) such that E(m) = (s, (ni)i<l) and nj = n:⊕

(m,j,s,(ni)i<l)∈M

δa,j(s, (ρ
′
S(ni))i<l, ρ

′
I(m))

=
⊕

(m,j,s,(ni)i<l)∈M

ρ′a(m) (G is copying)

= ρ′a(m) for some (m, j, s, n) ∈M (⊕ is copying)

= ρ′a(r) (definition of ρ′)

= ρ′a(n) (definition of ρ′)

Finally, we have to show that ρ and ρ′ are equivalent, i.e.

Da(U)(ρ′a(g [p])) = ρa(p) for all p ∈ P (g)

We will do this by well-founded induction using ≺.
Let a ∈ I. At first we consider the case that p = 〈〉.

Da(U)(ρ′a(r))

= { definition of ρ′ }
Da(U)(αG

a (ρ′S(r)))

= { Lemma 3 }
αT
a (DS(U)(ρ′S(r)))

= { induction hypothesis }
αT
a (ρS(〈〉))

= { ρ is a run of G on U (g) }
ρa(〈〉)

If p 6= 〈〉, then

Da(U)(ρ′a(g [p]))

= { definition of ρ′ }
Da(U)(ρ′a(r))

= { induction hypothesis }
ρa(〈〉)

= { Lemma 4 }
ρa(p)

53

Finally, let a ∈ S, p ∈ P (g), n = g [p] and E(n) = (s, (ni)i<l):

Da(U)(ρ′a(n))

= { definition of ρ′ }
Da(U)(δGa ((s, (ρ′S(ni))i<l), ρ

′
I(n)))

= { Lemma 3 }
δTa ((s, (DS(U)(ρ′S(ni)))i<l), DI(U)(ρ′I(n)))

= { induction hypothesis }
δTa ((s, (ρS(p · 〈i〉))i<l), ρI(p))

= { ρ is a run of G on U (g) }
ρa(p)

Appendix G. Proof of Theorem 5

Theorem 5. Let G = (S, I,F , D, α, δ) be a non-circular PAG, ⊕ = (⊕a : DG
a ×DG

a → DG
a)a∈I associative

and commutative, and (.a)a∈S∪I quasi-orders such that G is monotone and ⊕ is decreasing. Given a run
ρ of G modulo ⊕ on a DAG g = (N,E, r) and the run ρ′ of G on U (g), we have that

Da(U)(ρa(g [p])) .a ρ
′
a(p) for all a ∈ S ∪ I and p ∈ P (g) .

Proof of Theorem 5. Since G is non-circular, there is well-founded order < on (S ∪ I) × P (U (g)) that is
compatible with G. We prove the above inequation by well-founded induction using <.

We begin with a ∈ I. Let p = 〈〉. By induction hypothesis, we have, for all b ∈ S, that

Db(U)(ρb(r)) .b ρ
′
b(〈〉) or αa is independent of b.

Due to the monotonicity of αT
a , this implies that

αT
a (DS(U)(ρS(r))) .a α

T
a (ρ′S(〈〉)) (G.1)

Hence, we can reason as follows:

Da(U)(ρa(r))

= { ρ is a run on g }
Da(U)(αG

a (ρS(r)))

= { Lemma 3 }
αT
a (DS(U)(ρS(r)))

.a { (G.1) }
αT
a (ρ′S(〈〉))

= { ρ′ is a run on t }
ρ′a(〈〉)

Thus we have that Da(U)(ρa(r)) .a ρ
′
a(〈〉).

Next, let p = q · 〈j〉 and let m = g [q]. We thus have that E(m) = (s, (ni)i<l) with j < l. Consequently,
ni = g [q · 〈i〉] for all i < l. According to the definition of U , we thus find that U (g) |q = (s, (U (g|ni))i<l).
Since ρ′ is a run of G on U (g), we then have that

ρ′a(q · 〈j〉) = δTa,j(s, (ρ
′
S(q · 〈i〉))i<l, ρ

′
I(q)) (G.2)

54

According to the induction hypothesis we have, for each i < l and b ∈ S that Db(U)(ρb(ni)) .b ρ
′
b(q · 〈i〉) or

δTa,j(s, ·, ·) is independent of (b, i) and, for each b ∈ I, that Db(U)(ρb(m)) .b ρ
′
b(q) or δa,j(s, ·, ·) is independent

of b. Due to the monotonicity of δTa , the induction hypothesis can be used to turn the equality from (G.2)
into the following inequality:

ρ′a(q · 〈j〉) &a δ
T
a,j(s, (DS(U)(ρS(ni)))i<l, DI(U)(ρI(m))) (G.3)

Using Lemma 3, we can rewrite inequality (G.3) to the following inequality:

ρ′a(q · 〈j〉) &a Da(U)(δGa,j(s, (ρS(ni))i<l, ρI(m))) (G.4)

Let n = g [q · 〈j〉]. Since ρ is a run on g, we know that ρa(n) is equal to a ⊕a-sum, where one of the
summands is δGa,j(s, (ρS(ni))i<l, (ρI(m))) (i.e. the right-hand side of (G.4) before unravelling). Since ⊕a is
decreasing w.r.t. .a, we thus have that

Da(U)(ρa(n)) .a Da(U)(δGa,j(s, (ρS(ni))i<j , ρI(m))) (G.5)

By combining inequality (G.4) with the above, we thus obtain the desired inequality

Da(U)(ρa(g [q · 〈j〉])) .a ρ
′
a(q · 〈j〉)

Finally, we consider a ∈ S. To this end, let n = g [p] and E(n) = (s, (ni)i<l). Consequently, ni = g [p · 〈i〉]
for all i < l and we have that t|p = (s, (U (g|ni

))i<l). By virtue of ρ and ρ′ being runs on g and U (g),
respectively, we have that

ρa(n) = δGa (s, (ρS(ni))i<l, ρI(n))

ρ′a(p) = δTa (s, (ρ′S(p · 〈i〉))i<l, ρ
′
I(n))

By applying the induction hypothesis (as described in the case for a ∈ I above) together with the mono-
tonicity of δTa , we then obtain the desired inequality:

Da(U)(ρa(g [p])) .a ρ
′
a(p)

Appendix H. leavesBelow as Attribute Grammar

The function leavesBelow may be implemented as an attribute grammar as follows:

leavesBelowI :: Inh IntTreeF as Int
leavesBelowI (Leaf i) = Map.empty
leavesBelowI (Node t1 t2) = t1 7→ d ′ & t2 7→ d ′

where d ′ = above − 1

leavesBelowS :: (Int ∈ as)⇒ Syn IntTreeF as (Set Int)
leavesBelowS (Leaf i)
| (above :: Int) 6 0 = Set .singleton i
| otherwise = Set .empty

leavesBelowS (Node t1 t2) = below t1 ∪ below t2

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow = runAG leavesBelowS leavesBelowI

leavesBelowG :: Int → Dag IntTreeF → Set Int
leavesBelowG = runAGG min leavesBelowS

leavesBelowI

Let l be the synthesised attribute computed by leavesBelowS and d the inherited attribute computed by
leavesBelowI . Using Theorem 2 we can prove partial correctness of the DAG version leavesBelowG . To this

55

end we define orders .d and .l on the attributes: .l is the natural order on integers; .l is the superset
relation. The above AG is indeed monotone w.r.t. these orders and min is decreasing. Hence, by Theorem 2,
we have that r ⊇ r′, for any result r for a DAG g and result r′ for the unravelling U (g). To prove the
converse inclusion r ⊆ r′ assume we have a run of the AG on a DAG g. The value of l at each node of U (g)
is clearly a subset of r′ (since l is computed by taking the union of the l attribute of the children). Moreover
the attribute l at each leaf of g must be a subset of r′, too: let n be a leaf of g. Then d at n must be equal
to d at a node m in t corresponding to n (go from n up the DAG, always taking an edge from a node where
the attribute d is the smallest; the path thus taken is the position of m in t). Hence, l has the same value
in n as in m. Since we know that l at m is a subset of r′, so must be l at n. Since l is computed by taking
the union of l from the children, the value of l at each node in g must be a subset of r′, too – including the
root of g. Hence, r ⊆ r′.

This leaves us to prove that the AG has unique runs on any tree, which means that leavesBelowG

terminates. This is an immediate consequence of the fact that l depends on d but not vice versa. Thus the
unique run is constructed by first computing d top-down, and then l bottom-up.

56

	Introduction
	Running Example
	Type Inference

	Attribute Grammars
	Synthesised Attributes
	Inherited Attributes
	Combining Semantic Functions to Attribute Grammars
	Example: leavesBelow
	Example: Richard Bird's repmin
	Informal Semantics

	Attribute Grammars on DAGs
	Trees vs. DAGs
	Termination of Attribute Grammars
	Correspondence by Monotonicity
	Observing the Sharing

	Semantics
	Trees and DAGs
	Attribute Grammars and Their Semantics
	Copying Attribute Grammars
	Correspondence by Monotonicity

	Transforming and Constructing DAGs
	Special Case: Simple Rewriting
	Parametric Attribute Grammars
	Semantics

	Extended Example
	Implementation
	Representation of DAGs
	Implementing Attribute Grammars on Trees and DAGs
	Preparations
	Implementing Attribute Grammars on Trees
	Implementing Attribute Grammars on DAGs
	Implementation of PAGs

	Performance Results

	Related Work
	Discussion and Future Work
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Existence of Unique Runs of Non-Circular AGs
	Proof of Proposition 2
	Proof of Theorem 4
	Proof of Theorem 5
	leavesBelow as Attribute Grammar

