
JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.1 (1-35)

Science of Computer Programming ••• (••••) •••–•••
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Generalising tree traversals and tree transformations to DAGs:

Exploiting sharing without the pain

Patrick Bahr a,∗, Emil Axelsson b

a IT University of Copenhagen, Denmark
b Department of Computer Science and Engineering, Chalmers University of Technology, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 June 2015
Received in revised form 25 January 2016
Accepted 15 March 2016
Available online xxxx

Keywords:
Attribute grammars
Sharing
Graph traversal
Graph transformation
Directed acyclic graphs

We present a recursion scheme based on attribute grammars that can be transparently
applied to trees and acyclic graphs. Our recursion scheme allows the programmer to
implement a tree traversal or a tree transformation and then apply it to compact graph
representations of trees instead. The resulting graph traversal or graph transformation
avoids recomputation of intermediate results for shared nodes – even if intermediate
results are used in different contexts. Consequently, this approach leads to asymptotic
speedup proportional to the compression provided by the graph representation. In general,
however, this sharing of intermediate results is not sound. Therefore, we complement our
implementation of the recursion scheme with a number of correspondence theorems that
ensure soundness for various classes of traversals. We illustrate the practical applicability
of the implementation as well as the complementing theory with a number of examples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Functional programming languages such as Haskell excel at manipulating tree-structured data. Using algebraic data types,
we can define functions over trees in a natural way by means of pattern matching and recursion. As an example, we take
the following definition of binary trees with integer leaves, and a function to find the set of leaves at and below a given
depth in the tree:

data IntTree = Leaf Int | Node IntTree IntTree

leavesBelow :: Int → IntTree → Set Int
leavesBelow d (Leaf i)

| d � 0 = Set.singleton i
| otherwise = Set.empty

leavesBelow d (Node t1 t2) = leavesBelow (d − 1) t1 ∪ leavesBelow (d − 1) t2

One shortcoming of tree structures is that they are unable to represent sharing of common subtrees, which occur, for
example, when a compiler substitutes a shared variable by its definition. The following tree t has a shared node a that

* Corresponding author.
E-mail addresses: paba@itu.dk (P. Bahr), emax@chalmers.se (E. Axelsson).
http://dx.doi.org/10.1016/j.scico.2016.03.006
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2016.03.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:paba@itu.dk
mailto:emax@chalmers.se
http://dx.doi.org/10.1016/j.scico.2016.03.006

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.2 (1-35)

2 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
appears twice:

t = let a = Node (Node (Leaf 2) (Leaf 3)) (Leaf 4)

in Node a a

Unfortunately, a function like leavesBelow is unable to observe this sharing, and thus needs to traverse the shared subtree
in t twice.

In order to represent and take advantage of sharing, one could instead use a directed graph representation, such as the
structured graphs of Oliveira and Cook [54]. However, such a change of representation would force us to express leavesBelow
by traversing the graph structure instead of by plain recursion over the Node constructors. If we are only interested in graphs
as a compact representation of trees, this is quite a high price to pay. In an ideal world, one should be able to leave the
definition of leavesBelow as it is, and be able to run it on both trees and graphs.

Oliveira and Cook [54] define a fold operation for structured graphs which makes it possible to define structurally
recursive functions as algebras that can be applied to both trees and graphs. However, leavesBelow is a context-dependent
function that passes the depth parameter down the recursive calls. Therefore, an implementation as a fold – namely by
computing a function from context to result – would not be able to exploit the sharing present in the graph: intermediate
results for shared nodes still have to be recomputed for each context in which they are used. Moreover, it is not possible to
use folds to transform a graph without losing sharing.

This paper presents a method for running tree traversals on directed acyclic graphs (DAGs), taking full account of the
sharing structure. The traversals are expressed as attribute grammars (AGs) using Bahr’s representation of tree automata
in Haskell [6]. The underlying DAG structure is completely transparent to the AGs, which means that the same AG can be
run on both trees and DAGs. The main complication arises for algorithms that pass an accumulating parameter down the
tree. In a DAG this may lead to a shared node receiving conflicting values for the accumulating parameter. Our approach
is to resolve such conflicts using a separate user-provided function. For example, in leavesBelow, the resolution function for
the depth parameter would be min, since we only need to consider the deepest occurrence of each shared subtree. As we
will show, this simple insight extends to many practically relevant computations over trees including program analyses and
program transformations.

The paper makes the following contributions:

• We present an implementation of AGs in Haskell, which allows us to write tree traversals such that they can be applied
to compact DAG representations of trees as well.

• We generalise AGs to parametric AGs in order to implement complex tree transformations that preserve sharing if
applied to DAGs.

• We prove a number of general correspondence theorems that relate the semantics of (parametric) AGs on trees to their
semantics on corresponding DAG representations. These correspondence results allow us to prove the soundness of our
approach for various classes of traversals.

• Our implementation and the accompanying theory covers an important class of algorithms, where an inherited attribute
maintains a variable environment. This makes our method suitable for certain syntactic analyses and manipulations, for
instance in a compiler. We demonstrate this fact by implementing type inference and a size-based simplifier for a
simple functional language.

The rest of the paper is organised as follows: Section 2 presents the running example – a simple expression language
and a type inference algorithm for it. Section 3 introduces recursion schemes based on AGs, and section 4 shows how
to run AGs on DAGs. Section 5 gives the semantics and theoretical results for comparing the semantics of AGs on trees
with the corresponding semantics of AGs on DAGs. Section 6 introduces a generalisation of AGs called parametric attribute
grammars with which we can transparently express transformations of trees and graphs. Section 7 presents an extended
example of our technique – a simplifier for a simple functional language. Section 8 gives the implementation of AGs on
DAGs, and evaluates the performance of different implementations. The theory for this paper is developed in sections 5
and 6.3. Readers that are not interested in the details of the theory may safely skip these sections as the theorems that are
developed there are reproduced in simplified form in the rest of the paper. Some proofs were elided or abridged to save
space. The full proofs are presented in the accompanying technical report [10]. Likewise, the paper does not give the exact
implementation of all recursion schemes. The missing parts are available in an accompanying repository [8].

This paper extends and improves a previous paper that appeared in the proceedings of PEPM 2015 [9]. In particular, the
present paper includes additional examples to illustrate the application of attribute grammars on DAGs; it introduces the
more general notion of parametric attribute grammars, which unifies the theory; it presents a new implementation of our
framework based on a hybrid representation of DAGs; and it provides benchmark results that illustrate the benefit of our
technique.

2. Running example

To illustrate the ideas in this paper, we will use the following simple expression language:

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.3 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 3
data Exp = LitB Bool -- Boolean literal
| LitI Int -- Integer literal
| Eq Exp Exp -- Equality
| Add Exp Exp -- Addition
| If Exp Exp Exp -- Condition
| Var Name -- Variable
| Iter Name Exp Exp Exp -- Iteration

type Name = String

Most constructs in Exp have a straightforward meaning. For example, the following is a conditional expression that corre-
sponds to the Haskell expression if x ≡ 0 then 1 else 2:

If (Eq (Var "x") (LitI 0)) (LitI 1) (LitI 2)

However, Iter requires some explanation. This is a looping construct that corresponds to the following Haskell function:

iter :: Int → s → (s → s) → s
iter 0 s b = s
iter n s b = iter (n − 1) (b s) b

The expression iter n s b applies the b function n times starting in state s. The corresponding expression Iter "x" n s b (where
n, s, b :: Exp) works in the same way. However, since we do not have functions in the Exp language, the first argument of
Iter is a variable name, and this name is bound in the body b. For example, the Haskell expression iter 5 1 (λs → s + 2) is
represented as

Iter "s" (LitI 5) (LitI 1) (Add (Var "s") (LitI 2))

2.1. Type inference

A typical example of a function over expressions that has an interesting flow of information is simple type inference,
defined in Fig. 1. The first argument is the environment – a mapping from bound variables to their types. Most of the cases
just check the types of the children and return the appropriate type. The environment is passed unchanged to the recursive
calls, except in the Iter case, where the bound variable is added to the environment. The only case where the environment
is used is in the Var case, where the type of the variable is obtained by looking it up in the environment.

Note that typeInf has many similarities with leavesBelow from the introduction: It is defined using recursion over the
tree constructors; it passes an accumulating parameter down the recursive calls; it synthesises a result from the results
of the recursive calls. Naturally, it also has the same problems as leavesBelow when applied to an expression with shared
sub-expressions: It will repeatedly infer types for shared sub-expressions each time they occur.

This issue can be resolved by adding a let binding construct to Exp in order to explicitly represent shared sub-expressions.
The type inference algorithm can then be extended to make use of this sharing information. However, let bindings tend to
get in the way of syntactic simplifications, which is why optimising compilers often try to inline let bindings in order to
increase the opportunities for simplification. In general, it is not possible to inline all let bindings, as this can lead to unman-
ageably large ASTs. This leaves the compiler with the tricky problem of inlining enough to trigger the right simplifications,
but not more than necessary so that the AST does not explode.

Ideally, one would like to program syntactic analyses and transformations without having to worry about sharing, espe-
cially if the sharing is only used to manage the size of the AST. The method proposed in this paper makes it possible to
traverse expressions as if all sharing was inlined, yet one does not have to pay the price of duplicated sub-expressions, since
the internal representation of expressions is an acyclic graph.

3. Attribute grammars

In this section we describe the representation and implementation of attribute grammars in Haskell. The focus of our
approach is put on a simple representation of this recursion scheme that at the same time allows us to easily move from
tree-structured data to graph-structured data. To this end, we represent tree-structured data as fixed points of functors:

data Tree f = In (f (Tree f))

For instance, to represent the type Exp, we define a corresponding functor ExpF below, which gives us the type Tree ExpF
isomorphic to Exp (modulo non-strictness):

data ExpF a = LitB Bool | LitI Int | Var Name | Eq a a | Add a a | If a a a | Iter Name a a a

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.4 (1-35)

4 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
data Type = BoolType | IntType deriving (Eq)

type Env a = Map Name (Maybe a)

typeInf :: Env Type → Exp → Maybe Type
typeInf env (LitB) = Just BoolType
typeInf env (LitI) = Just IntType
typeInf env (Eq a b)

| Just ta ← typeInf env a
, Just tb ← typeInf env b
, ta ≡ tb = Just BoolType

typeInf env (Add a b)

| Just IntType ← typeInf env a
, Just IntType ← typeInf env b = Just IntType

typeInf env (If c t f)
| Just BoolType ← typeInf env c
, Just tt ← typeInf env t
, Just tf ← typeInf env f
, tt ≡ tf = Just tt

typeInf env (Var v) = lookEnv v env
typeInf env (Iter v n i b)

| Just IntType ← typeInf env n
, ti′@(Just ti) ← typeInf env i
, Just tb ← typeInf (insertEnv v ti′ env) b
, ti ≡ tb = Just tb

typeInf = Nothing

insertEnv :: Name → Maybe a → Env a → Env a
insertEnv = Map.insert

lookEnv :: Name → Env a → Maybe a
lookEnv v = join.Map.lookup v

Fig. 1. Type inference for example EDSL.

Fig. 2. Propagation of attribute values by an attribute grammar.

Apart from requiring functors such as ExpF to be instances of Functor, we also require them to be instances of the
Traversable type class. This will keep the representation of our recursion scheme on trees simple and is indeed necessary in
order to implement it on DAGs. Haskell is able to provide such instances automatically via its deriving clause.

An attribute grammar (AG) consists of a number of attributes and a collection of semantic functions that compute these
attributes for each node of the tree. One typically distinguishes between inherited attributes, which are computed top–down,
and synthesised attributes, which are computed bottom–up. For instance, if we were to express the type inference algorithm
typeInf as an AG, it would consist of an inherited attribute that is the environment and a synthesised attribute that is the
inferred type.

Fig. 2a illustrates the propagation of attribute values of an AG in a tree. The arrows facing upwards and downwards rep-
resent the propagation of synthesised and inherited attributes, respectively. Due to this propagation, the semantic functions
that compute the attribute values for each node n have access to the attribute values in the corresponding neighbourhood
of n. For example, to compute the inherited attribute value that is passed down from B to D , the semantic function may
use the inherited attributes from A and the synthesised attributes from D and E . This scheme allows for complex interde-
pendencies between attributes. Provided that there are no cyclic dependencies, a traversal through the tree that computes
all attribute values of each node can be executed as illustrated in Fig. 2b.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.5 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 5
3.1. Synthesised attributes

We defer the formal treatment of AGs until section 5 and focus on the implementation in Haskell for now. We start with
the simpler case, namely synthesised attributes. The computation of synthesised attributes follows essentially the same
structure as a fold, i.e. the following recursion scheme:

type Algebra f c = f c → c

fold :: Functor f ⇒ Algebra f c → Tree f → c
fold alg (In t) = alg (fmap (fold alg) t)

The algebra of a fold describes how the value of type c for a node in the tree is computed given that it has already been
computed for its children.

AGs go beyond this recursion scheme: they allow us to use not only values of the attribute of type c being defined but
also other attributes, which are computed by other semantic functions. To express that an attribute of type c is part of a
larger collection of attributes, we use the following type class:

class c ∈ as where
pr :: as → c

Intuitively, c ∈ as means that c is a component of as, and it provides the corresponding projection function. We can give
instance declarations accordingly, which gives us for example that a ∈ (a, b) with the projection function defined as pr =
λ(x, y) → x. Using closed type families [22], the type class ∈ can be defined such that it works on arbitrarily nested product
types, but disallows ambiguous instances such as Int ∈ (Int, (Bool, Int)) for which multiple projections exist. But there are
also simpler implementations of ∈ that only use type classes [6].

We can thus represent the semantic function for a synthesised attribute of type s as follows:

type Syn f as s = (s ∈ as) ⇒ as → f as → s

To compute the attribute of type s we can draw from the complete set of attributes of type as at the current node as well
as its children. Moreover, we can assume that as at least contains s.

For example, the following excerpt gives one case for the synthesised type attribute of type inference (cf. the reference
implementation in Fig. 1):

typeInfS :: Syn ExpF as (Maybe Type)
typeInfS (Add a b)

| Just IntType ← pr a
, Just IntType ← pr b = Just IntType

. . .

However, instead of the above Syn type, we shall use a more indirect representation, which will turn out to be beneficial
for the representation of inherited attributes, and later for parametric AGs. It is based on the isomorphism below, which
follows from the Yoneda Lemma for all functors f and types as, s:

(∀c.(c → as) → (f c → s)) ∼= f as → s

It allows us to define the type Syn f as s alternatively like this:

∀ c.(s ∈ as) ⇒ as → (c → as) → f c → s

This representation corresponds to Mendler-style folds [65].
The benefit of this Mendler-style representation is that it provides an extensible interface for the abstract type c of child

nodes. For now, this interface only has one operation, namely a function of type c → as that returns the attribute values
associated to a given child node. Later we shall extend this interface so that we can also assign inherited attribute values to
child nodes or use a child node to construct a tree or a DAG.

We further transform the above type by turning the first two arguments of type as and c → as into implicit parame-
ters [46], which provides an interface closer to that of AG systems:

type Syn f as s = ∀ c.(?below :: c → as,?above :: as, s ∈ as) ⇒ f c → s

The implicit parameters ? below and ? above provide access to the attribute values at the children and the current node, re-
spectively. Combining the implicit parameters with projection gives us two convenient helper functions for writing semantic
functions:

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.6 (1-35)

6 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
typeInfS :: (Env Type ∈ as) ⇒ Syn ExpF as (Maybe Type)
typeInfS (LitB) = Just BoolType
typeInfS (LitI) = Just IntType
typeInfS (Eq a b)

| Just ta ← typeOf a
, Just tb ← typeOf b
, ta ≡ tb = Just BoolType

typeInfS (Add a b)

| Just IntType ← typeOf a
, Just IntType ← typeOf b = Just IntType

typeInfS (If c t f)
| Just BoolType ← typeOf c
, Just tt ← typeOf t
, Just tf ← typeOf f
, tt ≡ tf = Just tt

typeInfS (Var v) = lookEnv v above
typeInfS (Iter v n i b)

| Just IntType ← typeOf n
, Just ti ← typeOf i
, Just tb ← typeOf b
, ti ≡ tb = Just tb

typeInfS = Nothing

typeInfI :: (Maybe Type ∈ as) ⇒ Inh ExpF as (Env Type)
typeInfI (Iter v n i b) = b �→ insertEnv v ti above

where ti = typeOf i
typeInfI = ∅

Fig. 3. Semantic functions for synthesised and inherited attributes of type inference.

above :: (?above :: as, i ∈ as) ⇒ i
above = pr (?above)

below :: (?below :: a → as, s ∈ as) ⇒ a → s
below a = pr (?below a)

These functions pick out a specific attribute from the compound type as of all attributes. Typically, above is used to access
an inherited attribute (propagated from the parent) and below to access a synthesised attribute (propagated from a child).
But it is not unusual to use above for synthesised attributes (propagated to the parent) and below for inherited attributes
(propagated to the children).

The complete definition of the synthesised type attribute for type inference is given in Fig. 3. The function typeInfI is the
semantic function for the inherited environment attribute. It will be explained in the following subsection. The code uses a
convenient helper function for querying the synthesised type of a sub-expression:

typeOf :: (?below :: c → as,Maybe Type ∈ as) ⇒ c → Maybe Type
typeOf = below

3.2. Inherited attributes

The representation of semantic functions defining inherited attributes is slightly more complicated, which is to say that
there is no representation that is both elegant and convenient to use. We need to represent a mapping that assigns attribute
values to the children of a node. Concretely, given a node of type f c, where type c represents child positions of the node,
we assign inherited attribute values of type i to each such child position. This can be achieved, for example, by a finite
mapping of type Map c i. This would give us the following representation of semantic functions for inherited attributes:

type Inh f as i = ∀ c.(?below :: c → as,?above :: as, i ∈ as,Ord c) ⇒ f c → Map c i

However, instead of choosing a concrete representation of the mapping of child positions to attribute values, such as Map,
we rather want to give an abstract interface. This will also enable us to provide an efficient implementations of inherited
attributes tailored to the specific use cases. In our definition of Inh below, m i is an abstract type that represents finite

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.7 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 7
class Traversable m ⇒ Mapping m k | m → k where

-- operators to construct mappings
(&) :: m v → m v → m v
(�→) :: k → v → m v
∅ :: m v

-- methods for the internal implementation
prodMapWith :: (v1 → v2 → v) → v1 → v2 → m v1 → m v2 → m v
findWithDefault :: a → k → m a → a

Fig. 4. Definition of finite mappings.

mappings from c to i, which is expressed by the type constraint Mapping m c:

type Inh f as i = ∀ m c.(?below :: c → as,?above :: as, i ∈ as,Mapping m c) ⇒ f c → m i

The type class Mapping describes the interface that finite mappings provide. Its definition is given in Fig. 4. For now, only
the first three methods are of interest: The two infix operators �→ and & allow us to construct singleton mappings x �→ y
and construct the union m & n of two mappings. The constant ∅ denotes the empty mapping.

The definition of Inh given above does not ensure that the returned mapping is complete, i.e. that each position is
assigned a value. However, this situation provides the opportunity to allow so-called copy rules. Such copy rules are a
common convenience feature in AG systems and state when inherited attributes are simply propagated to a child. In our
case, we copy an inherited attribute value to a child if no explicit assignment is made in the mapping of the semantic
function.

The semantic function for the inherited environment attribute of type inference is given by typeInfI in Fig. 3. The only
interesting case is Iter, in which the local variable is inserted into the environment. The environment is only updated for
the sub-expression b (because the variable binding only scopes over the body of the loop). Hence, the other sub-expressions
(n and i) will get an unchanged environment by the abovementioned copy rule. Similarly, for all other constructs in the
EDSL, the environment is copied unchanged.

3.3. Combining semantic functions to attribute grammars

Now that we have Haskell representations for semantic functions, we need combinators that allow us to combine them
to form complete AGs.

At first, we define combinators that combine two semantic functions to obtain a semantic function that computes the
attributes of both of them. For synthesised attributes, this construction is simple:

(⊗) :: (s1 ∈ as, s2 ∈ as) ⇒ Syn f as s1 → Syn f as s2 → Syn f as (s1, s2)

(s1 ⊗ s2) t = (s1 t, s2 t)

The implementation for inherited attributes is more difficult as we have to honour the copy rule. That is, given two
semantic functions i1 and i2, where i1 assigns an attribute value for a given child position but i2 does not, the product of
i1 and i2 must assign an attribute value consisting of the value given by i1 and a copy for the second attribute. To this end,
we use the prodMapWith method provided by the Mapping type class.

(�) :: (Functor f , i1 ∈ as, i2 ∈ as) ⇒ Inh f as i1 → Inh f as i2 → Inh f as (i1, i2)
(i1 � i2) t = prodMapWith (λx y → (x,y)) above above (i1 t) (i2 t)

The first argument to prodMapWith is the function that is used to combine values in the two mappings, in this case pairing.
The next two arguments are the default values that are to be used in case only one of the two mappings contains a value
for a given child position. By passing above as the argument here, this implementation honours the copy rule.

Finally, a complete AG is given by a semantic function of type Syn f (s, i) s and another one of type Inh f (s, i) i. That is,
taken together the two semantic functions define the full attribute space (s, i). Moreover, we have to provide an initial value
of the inherited attribute of type i in order to run the AG on an input tree of type Tree f . In general, the initial value of the
inherited attributes does not have to be fixed but may depend on (some of) the synthesised attributes. These constraints
are summarised in the type of the function that implements the run of an AG:

runAG :: Traversable f ⇒ Syn′ f (s, i) s → Inh′ f (s, i) i → (s → i) → Tree f → s

type Syn′ f as s = ∀ c. (?below :: c → as,?above :: as) ⇒ f c → s

type Inh′ f as i = ∀ m c.(?below :: c → as,?above :: as,Mapping m c) ⇒ f c → m i

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.8 (1-35)

8 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
The types Syn′ and Inh′ are like Syn and Inh but without the constraints of the form . . . ∈ as. Those constraints are not
needed here because runAG operates on the full attribute space. Yet it is possible to pass functions of type Syn and Inh to
runAG as we will see in the following example, which defines type inference using runAG.

We define type inference as a run of the AG defined in Fig. 3:

typeInf :: Env Type → Tree ExpF → Maybe Type
typeInf env = runAG typeInfS typeInfI (λ → env)

In this example, the initialisation function for the inherited attribute is simply a constant function that returns the environ-
ment. In section 3.5, we shall see an example that uses the full power of the initialisation function.

The translation of the type inference algorithm into an AG is required to use our framework. However, type checking
algorithms are an excellent class of examples that can benefit from AGs beyond the issue of sharing. Bidirectional type
checking [57] has become increasingly popular for implementing type checking for advanced type systems. A bidirectional
type checking algorithm combines type inference and type checking, i.e. it switches between synthesising type information
and checking type information. AGs provide a convenient framework to implement bidirectional type checking algorithms:
synthesised attributes are used to infer types (as in the example above) and inherited attributes are used to check types.

3.4. Example: leavesBelow

As another example of how to define an AG, we consider the function leavesBelow from the introduction. The first step
is to define a functor corresponding to the type of integer trees:

data IntTreeF a = Leaf Int | Node a a
deriving (Functor, Foldable,Traversable)

The inherited attribute is an integer that corresponds to the accumulated parameter in leavesBelow, i.e. it gives the depth
at which we should start collecting the leaves:

leavesBelowI :: Inh IntTreeF as Int
leavesBelowI (Leaf i) = ∅
leavesBelowI (Node t1 t2) = t1 �→ d′ & t2 �→ d′

where d′ = above − 1

In the first case, there are no children, so we return the empty mapping. In the Node case, the inherited attribute is
decreased by one before being passed on to the children.

The synthesised attribute is the set of leaves at and below the depth given by the inherited attribute:

leavesBelowS :: (Int ∈ as) ⇒ Syn IntTreeF as (Set Int)
leavesBelowS (Leaf i)

| (above :: Int) � 0 = Set.singleton i
| otherwise = Set.empty

leavesBelowS (Node t1 t2) = below t1 ∪ below t2

In the Leaf case, we check whether the leaf should be collected by querying the inherited attribute, and in the Node case,
we simply join the set of leaves from the children.

The two semantic functions can be combined and run using runAG:

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow d = runAG leavesBelowS leavesBelowI (λ → d)

3.5. Example: Richard Bird’s repmin

A classic example of a tree traversal with interesting information flow is Bird’s repmin problem [14]. The problem is the
following: given a tree with integer leaves, compute a new tree of the same shape but where all leaves have been replaced
by the minimal leaf in the original tree. For example, applied to the tree in Fig. 5b, we obtain the tree in Fig. 5c. Bird shows
how this transformation can be implemented by a single traversal in a lazy functional language.

To code repmin as an AG, we introduce two attribute types:

newtype MinS = MinS Int deriving (Eq,Ord)

newtype MinI = MinI Int

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.9 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 9
Fig. 5. Input and output of different versions of repmin.

MinS is the synthesised attribute representing the smallest integer in a subtree, and MinI is the inherited attribute that is
going to be the smallest integer in the whole tree. We also define a convenience function for accessing the MinI attribute:

globMin :: (?above :: as,MinI ∈ as) ⇒ Int
globMin = let MinI i = above in i

The semantic function for the MinS attribute is as follows:

minS :: Syn IntTreeF as MinS

minS (Leaf i) = MinS i
minS (Node a b) = min (below a) (below b)

The MinI attribute should be the same throughout the whole tree, so we define a function that just copies the inherited
attribute:

minI :: Inh IntTreeF as MinI

minI = ∅

Finally, we need to be able to synthesise a new tree that depends on the globally smallest integer available from the MinI
attribute. To do so we define a synthesised attribute of type Tree IntTreeF computed by the following semantic function:

rep :: (MinI ∈ as) ⇒ Syn IntTreeF as (Tree IntTreeF)

rep (Leaf i) = In (Leaf globMin)

rep (Node a b) = In (Node (below a) (below b))

Now we have all the parts needed to define repmin:

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = snd ◦ runAG (minS ⊗ rep) minI init

where init (MinS i,) = MinI i

The init function uses the synthesised smallest integer as the initial inherited attribute value.
Using Haskell’s lazy semantics, runAG computes the attributes of the given AG by a single traversal of the input tree.

Therefore, like Bird’s implementation of repmin, our implementation of repmin above also only traverses the input tree once.

3.6. Informal semantics

Instead of reproducing the implementation of runAG here, we shall informally describe the semantics of an AG and
describe how runAG implements this semantics. The formal semantics and its implementation in Haskell is given later in
sections 5 and 8, respectively.

The semantic functions of an AG describe how to compute the value of an attribute at a node n using the attributes
in the “neighbourhood” of n. For synthesised attributes, this neighbourhood consists of n itself and its children, whereas
for inherited attributes, it consists of n, its siblings, and its parent. Running the AG on a tree t amounts to computing, for
each attribute a, the mapping ρa : N → Da from the set of nodes of t to the set of values of a. In other words, the tree
is decorated with the computed attribute values. We call the collection of all these mappings ρa a run of the AG on t .
In general, there may not be a unique run (including no run at all), since there may be a cyclic dependency between the
attributes. However, if there is no such cyclic dependency, runAG will effectively construct the unique run of the AG on the
input tree, and return the product of all synthesised attribute values at the root of the tree.

Fig. 2b illustrates how runAG may compute the run of a given AG by a traversal through the tree. Such a traversal is,
however, not statically scheduled in advance but rather dynamically – exploiting Haskell’s lazy semantics.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.10 (1-35)

10 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
Fig. 6. Confluence of inherited attributes.

4. Attribute grammars on DAGs

Our goal is to take algorithms intended to work on trees and apply them – without or with only little change – to DAGs
such that we can exploit the sharing for performance gains. The key observation that allows us to do this is the fact that
AGs are unaware of the underlying representation they are working on. Semantic functions simply compute attributes of a
node using attribute values in the neighbourhood of the node. The informal semantics of AGs on trees given in section 3.6
is equally applicable to DAGs.

This straightforward translation of the semantics to DAGs, however, will rarely yield a well-defined run. The problem
is that in the presence of sharing – i.e. there is a node with more than one incoming edge – the semantic function for
an inherited attribute may overlap: it assigns potentially different values to the same attribute at the same node. Fig. 6a
illustrates the problem: the semantic function for the inherited attribute computes for each of the two nodes A and B the
value v1 resp. v2 of the inherited attribute that should be passed down to the child node of A resp. B . However, A and B
share the same child, C , which therefore receives both values for the inherited attribute.

The easiest way to deal with this situation is to traverse the sub-DAG reachable from C multiple times – once for each
of the conflicting attribute values v1 and v2. This is what happens if we would implement traversals as folds in the style of
Oliveira and Cook [54]. But our goal is to avoid such recomputation.

A simple special case is if we know that v1 and v2 are always the same. That happens, for example, if inherited attributes
are only copied downwards as in the repmin example from section 3.5. However, for the type inference AG, this is clearly
not the case. One example that shows the problem is the DAG in Fig. 6b, where the shared variable "x" is used in two
different environments.

Nonetheless, for type inference, as for many other AGs of interest, we can still extend the semantics to DAGs in a mean-
ingful way by providing a commutative, associative operator ⊕ on inherited attributes that combines confluent attribute
values. In the illustration in Fig. 6a, the inherited attribute at C is then assigned the value v1 ⊕ v2. For the type infer-
ence AG, a (provably) sensible choice for ⊕ is the intersection of environments (cf. section 4.3). In Fig. 6b, forming the
intersection of the two environments of the node Var "x" yields the environment {x �→ Int}.

This observation allows us to efficiently run AGs on DAGs. Our implementation provides a corresponding variant of
runAG:

runAGG :: Traversable f ⇒ (i → i → i) →
Syn f (s, i) s → Inh f (s, i) i → (s → i) → Dag f → s

The interface differs in two points from runAG: (1) it takes DAGs as input and (2) it takes a binary operator of type i → i → i,
which is used to combine confluent attributes as described above.

For instance, we may use the type inference AG to implement type inference on DAGs as follows:

typeInfG :: Env Type → Dag ExpF → Maybe Type
typeInfG env = runAGG intersection typeInfS typeInfI (λ → env)

We defer the discussion of the formal semantics of AGs on DAGs as well as the implementation of runAGG until sections 5
and 8, respectively. But we briefly explain how DAGs of type Dag f are represented. We represent DAGs with explicit nodes
and edges, with nodes represented by integers:

type Node = Int

Edges are represented as finite mappings from Node into f Node. In this way, each node is mapped to all its children, but
also its labelling. In addition, each DAG has a designated root node. This gives the following definition of Dag as a record
type:

data Dag f = Dag {root :: Node,
edges :: IntMap (f Node)}

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.11 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 11
Note that acyclicity is not explicitly encoded in this definition of DAGs. Instead, we rely on the combinators to construct
such DAGs to ensure or check for acyclicity. Moreover, finite mappings are represented by the type IntMap, which is Haskell’s
implementation of PATRICIA trees [53].

Following Gill [32], we provide a function that observes the implicit sharing of a tree of type Tree f and turns it into a
DAG of type Dag f :

reifyDag :: Traversable f ⇒ Tree f → IO (Dag f)

As a final example, we turn the repmin function from section 3.5 into a function repminG that works on DAGs.

repminG :: Dag IntTreeF → Tree IntTreeF
repminG = snd ◦ runAGG const (minS ⊗ rep) minI init

where init (MinS i,) = MinI i

The only additional definition we have to provide is the function to combine inherited attribute values, for which we choose
const, i.e. we arbitrarily pick one of the values. The rationale behind this choice is that the value of inherited attribute –
computed by minI – is globally the same since it is copied. The formal justification for this choice is given in section 4.1
below.

The type of repminG indicates that it is not quite the function we had hoped for: it returns a tree rather than a DAG.
For instance, applied to the DAG pictured in Fig. 5a, repminG produces the tree in Fig. 5c. This is the same result we would
obtain if we first unravelled the DAG to a tree (pictured in Fig. 5b) and then applied repmin. In section 6 we will introduce a
generalisation of AGs that can preserve the sharing present in the input DAG and thus produces the DAG pictured in Fig. 5d.
Beyond that we will also be able to make use of the nature of the transformation to introduce additional sharing in the
result (pictured in Fig. 5e).

4.1. Trees vs. DAGs

The most important feature of our approach is that we can express the semantics of an AG on DAGs in terms of the
semantics on trees. This is achieved by two correspondence theorems that relate the semantics of AGs on DAGs to the
semantics on trees. The theorems are discussed and proved in section 5. But we present them here informally and illustrate
their applicability to the examples that we have seen so far.

To bridge the gap between the tree and the DAG semantics of AGs, we use the notion of unravelling (or unsharing) of
a DAG g to a tree U (g), which is the uniquely determined tree U (g) that is bisimilar to g . Since we only consider finite
acyclic graphs g , the unravelling U (g) is always a finite tree. The correspondence theorems relate the result of running an
AG on a DAG g to the result of running it on the unravelling of g . The practical relevance of these theorems stems from the
fact that reifyDag turns a tree t into a DAG g that unravels to t .

The first and simplest correspondence result is applicable to all so-called copying AGs, which are AGs that copy all their
inherited attributes. That is, in concrete terms, the semantic function of each inherited attribute returns the empty map-
ping ∅. Such AGs are by no means trivial, since inherited attributes may still be initialised as a function on the synthesised
attributes. The repmin AG, for example, is copying. The following correspondence theorem is thus applicable to repmin:

Theorem 1 (Sketch). Given a copying AG G, a binary operator ⊕ on inherited attributes with x ⊕ y ∈ {x, y} for all x, y, and a DAG g,
we have that G terminates on U (g) with result r iff (G, ⊕) terminates on g with result r.

In terms of our Haskell implementation, Theorem 1 can be read as follows: given an initialisation function init :: s → i
and semantic functions inh :: Inh f i and syn :: Syn f s such that inh returns ∅ for all inputs, we have the following for all
t :: Tree f :

runAG syn inh init t = runAGG const syn inh init g

where g is the DAG obtained by applying reifyDag to t.
In particular, we can immediately apply Theorem 1 to the repmin AG. We obtain that repminG applied to a DAG g yields

the same result as repmin applied to U (g). That is, we get the same result for repmin t and fmap repminG (reifyDag t).
Before we discuss the second correspondence theorem we have to consider the termination behaviour of AGs on trees

vs. DAGs.

4.2. Termination of attribute grammars

While AGs are quite flexible in the interdependency between attributes they permit – which in general may lead to
cyclic dependencies and thus non-termination – they come with a tool set to check for circular dependencies. Already when
Knuth [42,41] introduced AGs, he gave an algorithm to check for circular dependencies and proved that AGs terminate in
the absence of such circularity.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.12 (1-35)

12 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
Fig. 7. Cyclic dependency in non-circular AG on DAGs.

This result also applies to our AGs. And the example AGs we have considered this far are indeed non-circular – runAG
will terminate for them (given any finite tree as input). Somewhat surprisingly this property does not carry over to acyclic
graphs.

The essence of the phenomenon that causes this problem is illustrated in Fig. 7. Fig. 7a shows a simple DAG consisting
of two nodes, and Fig. 7b its unravelling to a tree. The double arrows illustrate the flow of information from a run of an AG.
The numbers indicate the order in which the information flows: we first pass information from A to B1 (via the inherited
attribute) then from B1 back to A (via the synthesised attribute) and then similarly to and from B2. This is a common
situation, which one e.g. finds in type inference. The underlying AG is non-circular, and the numbering indicates the order
in which attributes are computed and then propagated.

However, in a DAG the two children of A may very well be shared, i.e. represented by a single node B . This causes a
cyclic dependency, which can be observed in Fig. 7a: information flow (2) can only occur after (1) and (3), as only then all
the information coming to B has been collected. But (3) itself depends on (2).

Cyclic dependencies can easily occur with the type inference AG. In the DAG in Fig. 7c the lower Iter loop computes
the initial state of the upper Iter loop, and both loops use the variable "x" for the state. The variable node inherits two
environments – one from each of the Iter nodes – which are resolved by intersection. Thus, the type of the variable depends
on the environment from the upper loop, which depends on the type of the lower loop, which in turn depends on the type
of the variable.

Semantically, the non-termination manifests itself in the lack of a unique run. While the type inference AG has a unique
run on the unravelling of this DAG, there are exactly two distinct runs on the DAG itself: one in which the Var "x" node is
given the synthesised attribute value Nothing and another one in which it is given the value Just IntType. We discuss how to
resolve this issue in the next section.

Note that this issue cannot occur for the repmin example. The repmin AG is non-circular and thus terminates on trees.
By virtue of Theorem 1, it thus terminates on DAGs as well.

4.3. Correspondence by monotonicity

Relating the semantics of the type inference AG on trees to its semantics on DAGs is much more difficult – even if the
issue of termination is sorted out. We do not have a simple equality relation as we have for a copying AG. In fact, it should
be expected that type inference on a DAG g is more restrictive than on its unravelling U (g): a node that is shared in a DAG
can only be assigned a single type, whereas its corresponding copies in the unravelling may have different types.

However, we can prove the following property: if the type inference AG infers a type t for a DAG g , then it infers
the same type t for U (g). This soundness property follows immediately from a more general monotonicity correspondence
theorem.

In order to apply this theorem, we have to find, for each attribute a, a quasi-order � on the values of attribute a, such
that each semantic function f is monotone w.r.t. these quasi-orders. That is, given two sets of inputs A and B , with B
greater than A, also the result of f applied to B is greater than f applied to A. We say that an AG is monotone w.r.t. �, if
each semantic function is. Moreover, we require the binary operator ⊕ on inherited attributes be decreasing w.r.t. the order
�, i.e. x ⊕ y � x, y.

Theorem 2 (Sketch). Let G be a non-circular AG, ⊕ an associative, commutative operator on inherited attributes, and � such that G is
monotone and ⊕ is decreasing w.r.t. �. If (G, ⊕) terminates on a DAG g with result r, then G terminates on U (g) with result r′ such
that r � r′ .

Note that due to the symmetry of Theorem 2, we also know that if ⊕ is increasing, i.e. x, y � x ⊕ y, then we have that
r′ � r. We obtain this corollary by simply considering the inverse of �.

Let’s see how the above theorem applies to the type inference AG. The order � on Env is the usual order on partial
mappings, i.e. the subset order on the graph of partial mappings, and � on Maybe Type is the least quasi-order with
Nothing � t for all t :: Maybe Type. According to these orders, all semantic functions are monotone, and the operator ⊕ =
intersection is decreasing. We thus get the soundness property by applying Theorem 2: if type inference on a DAG g returns
r then it returns r′ on U (g) with r � r′ . In particular, if r = Just t then also r′ = Just t.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.13 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 13
Fig. 8. DAG that is not well-scoped.

As alluded to above, in general, we cannot hope to obtain a completeness property for type inference on DAGs. However,
given a mild restriction, we can, in fact, obtain completeness. The DAG in Fig. 8 provides a counterexample for completeness:
the result for the DAG g is Nothing, while for U (g) it is Just t. The problem is that the variable "x" is shared between two
contexts in which it has different types. That is, intersecting the environments yields the empty environment. However, the
above phenomenon as well as non-termination can only occur if the DAG is not well-scoped in the following sense: a DAG
is well-scoped if no variable node is shared among different binders, or shared between a bound and free occurrence. This
restriction rules out the DAG in Fig. 8 as well as the one in Fig. 7c.

Given this well-scopedness property, we can show that type inference on a well-scoped DAG g produces the same result
as on its unravelling U (g) – provided it terminates. It only remains to be shown that whenever the result r on g is Nothing,
then also the result r′ on U (g) is Nothing. The full version of Theorem 2, as we will see in section 5.4, is much stronger
than stated above: we have the relation � between a run on a DAG and a run on its unravelling not only for the final
results r and r′ but for each attribute at each node. That means if we get a type t for a sub-DAG of g , then we also get
the type t for the corresponding subtree of U (g). Consequently, if we had a type for U (g) but not for g itself, then the
reason could not be a type mismatch. It can only be because a variable was not found in the environment. That, however,
can never happen because of well-scopedness. Hence, also r′ = Nothing.

Finally, we show that typeInfG terminates. Semantically, non-termination means that there is either no run or multiple
different runs on DAGs. While monotonicity does not prove termination in general, it can help us to at least establish the
existence of runs, given that the underlying order is a well-well founded order on inherited attributes. A partial order ≤ is
called well-founded if there is no infinite sequence of elements that is strictly decreasing w.r.t. ≤, that is, there is no infinite
sequence (ei)i∈N with ei+1 < ei for all i ∈N.

Proposition 2 (Sketch). Given G, ⊕, and � as in Theorem 2 such that � is a well-founded partial order on inherited attributes, then
(G, ⊕) has a run on any DAG.

Proposition 2 immediately applies to the type inference AG. Thus it remains to be shown that runs are unique. As we
have seen in Fig. 7c, this is not true in general. However, restricted to well-scoped DAGs it is: if there were two distinct runs
on a DAG g , then the runs can only differ on shared nodes, since runs on U (g) are unique. Moreover, the type attribute
depends only on type attributes of child nodes, except in the case of variables. Hence, there must be a variable node to
which the two runs assign different types. However, well-scopedness makes this impossible.

Thus, we can conclude that typeInfG on a well-scoped DAG g behaves as typeInf on its unravelling U (g).
It is always possible to make a DAG well-scoped by means of alpha-renaming. However, note that renaming on a DAG

may lead to duplication. For example, renaming one of the loops in Fig. 8 would require introducing a new variable node.
As a safe approximation, in particular when using reifyDag, making sure that all binders introduce distinct variable names
guarantees that the DAG is well-scoped.1

Finally, it is important to note that monotonicity is not an intrinsic property of AGs, but depends on the choice of �.2 In
particular, we may choose one order � for using Theorem 2 and another one for proving termination using Proposition 2.

4.4. Observing the sharing

In this paper, we have only looked at AGs for which we want to get the same result when running on a DAG and running
on its unravelling. That is, we have only cared about DAGs as a compact representation of trees, and we want to get the
same result regardless of how the tree is represented.

However, there are cases where we actually want to give meaning to the sharing in the DAG. One such case is when
estimating signal delays in digital circuits. The time it takes for an output of a logic gate to switch depends on how many
other gates are connected to it – i.e. its load. A higher load leads to slower switching.

As a simple example, let us for a while assume that the IntTreeF functor defined in section 3.4 represents digital circuits.
Leaf represents inputs and Node represents nand gates (any n-ary Boolean function can be computed by a network of nand

gates).

1 See the Dag.Rename module in the accompanying repository.
2 For example, any AG is monotone w.r.t the full relation.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.14 (1-35)

14 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
type Circuit = Dag IntTreeF

To implement delay analysis as an AG, we start by defining attributes for delay and load:

newtype Delay = Delay Int deriving (Eq,Ord,Num)

newtype Load = Load Int deriving (Eq,Ord,Num)

The delay attribute can be computed by summing the maximum input delay, some intrinsic gate delay and a load-dependent
term:

gateDelay :: (Load ∈ as) ⇒ Syn IntTreeF as Delay
gateDelay (Leaf) = Delay 0
gateDelay (Node a b) = max (below a) (below b) + Delay 10 + Delay l

where Load l = above

In this simplified delay analysis, we interpret load as the number of connected gates, so the load attribute that is propagated
down is 1 for both inputs:

gateLoad :: Inh IntTreeF as Load
gateLoad (Node a b) = a �→ 1 & b �→ 1
gateLoad = ∅

The delay analysis is completed by running the AG on a circuit DAG using (+) as the resolution function:

delay :: Load → Circuit → Delay
delay l = runAGG (+) gateDelay gateLoad (λ → l)

Note that the semantic function for the load attribute does not do any interesting computation. Instead, it is the resolution
function that “counts” the number of connected gates for each node.

Since the AG defined by the above semantic functions is monotone and + is increasing w.r.t. the natural order on
integers, Theorem 2 gives us the expected result that the delay of a circuit DAG is greater than or equal to the delay of its
unravelling.

The circuit description system Wired [4] implements analyses on circuit DAGs using a generic traversal scheme and
semantic functions similar to the ones above. It should be possible to give a more principled implementation of these
analyses in terms of AGs using monotonicity as a proof principle.

5. Semantics

With the goal of keeping the presentation simple, we give the semantics of AGs in a set theoretic setting. Moreover, in
order to be able to formulate a semantics of AGs on DAGs, we have to restrict ourselves to functors that are representable
by finitary containers [1]. In the Haskell implementation, this assumption corresponds to the restriction to functors that are
instances of the Traversable type class. Traversable functors (that satisfy the appropriate associated laws) are known to be
exactly those that are representable by finitary containers [15].

Definition 1. A finitary container F is a pair (Sh, ar) consisting of a set Sh of shapes, and an arity function ar : Sh → N. Each
finitary container F gives rise to a functor Ext(F) : Set → Set, called the extension of F , that maps each set X to the set of
(dependent) pairs (s, x), where s ∈ Sh and x ∈ Xar(s) . By abuse of notation we also write F for the functor Ext(F).

5.1. Trees and DAGs

Analogously to the way trees and DAGs are parametrised by a (Traversable) functor in our Haskell implementation, we
parametrise the corresponding semantic notions by a finitary container. In the following, we use the shorthand notation
(si)i<l for a tuple (s0, . . . , sl−1) ∈ �i<l Si . Moreover, we use the notation 〈n1, . . . ,nl〉 for finite sequences over N, i.e. in
particular, 〈〉 denotes the empty sequence; and we use the binary operator · to denote the concatenation of finite sequences.

Definition 2. The set of trees Tree(F) over a finitary container F is the least fixed point of Ext(F). That is, each tree t is of
the form (s, (ti)i<l) with ti ∈ Tree(F) for all i < l. The set P (t) of positions of a tree t is the least set of finite sequences over
N such that 〈〉 ∈ P (t) and if p ∈ P

(
t j

)
, then 〈 j〉 · p ∈ P (s, (ti)i<l). Given a position p ∈ P (t), we define the subtree t|p of t

at p as follows: t|〈〉 = t and (s, (ti)i<l)|〈 j〉·p = t j |p for all j < l.

For the formal definition of DAGs, we use a representation similar to the Haskell implementation, viz. a mapping from
nodes to their child nodes.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.15 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 15
Definition 3. A graph g = (N, E, r) over a finitary container F is given by a finite set N of nodes, an edge function E : N →
F (N), and a root node r ∈ N . A graph g induces a reachability relation

g→, which is the least transitive relation
g→ such that

n
g→ n j , whenever E(n) = (s, (ni)i<l). We write

g← for the inverse of
g→. A graph g = (N, E, r) is called a DAG if (a) each

node n ∈ N is reachable from r, i.e. r
g→ n, and (b) g is acyclic, i.e.

g← is well-founded. The set of all DAGs over F is denoted
DAG(F). Given a DAG g = (N, E, r) and a node n ∈ N , the sub-DAG of g rooted in n, denoted g|n , is the DAG (N ′, E ′, n),
where N ′ = {m ∈ N|n

g→ m} is the set of nodes reachable from n in g , and E ′ is the restriction of E to N ′ .

Recall that a strict partial order < is called well-founded iff there is no infinite sequence of elements (ei)i∈N that is
decreasing w.r.t. <, i.e. ei+1 < ei for all i ∈ N. Since DAGs are finite,

g→ is well-founded iff
g← is well-founded. Moreover,

each tree t ∈ Tree(F) gives rise to a DAG G (t) ∈ DAG(F), given by the triple (P (t) , E, 〈〉), where

E(p) = (s, (p · 〈i〉)i<l) if t|p = (s, (ti)i<l).

Conversely, each DAG g = (N, E, r) gives rise to the following tree U (g), called the unravelling of g:

U (g) = (s, (U
(

g|ni

)
)i<l) if E(r) = (s, (ni)i<l)

The mapping U (·) : DAG(F) → Tree(F) is well-defined by the principle of well-founded recursion with the well-founded
relation < given by: g < h iff g = h|n with n a node in h that is not the root. Well-foundedness of < follows from the
well-foundedness of the reachability relation

g← for each DAG g ∈ DAG(F).
Similarly to positions in trees, we define paths in a DAG. Given a DAG g = (N, E, r) and node n ∈ N , the set Pg (n) of

paths to n in g is inductively defined as the least set with (a) 〈〉 ∈ Pg (r), and (b) if p ∈ Pg (n) and E(n) = (s, (ni)i<l), then
p · 〈i〉 ∈Pg (ni) for all i < l. The set of all paths in a DAG g , denoted P (g), is then simply the union

⋃
n∈N Pg (n). This union

is a disjoint union, i.e. for each path p ∈ P (g), there is a unique node n ∈ N such that p ∈ Pg (n). We denote this unique
node n as g [p]. We can observe the close relationship between paths and positions in the unravelling of DAGs: we have
that P (g) =P (U (g)).

5.2. Attribute grammars and their semantics

In the following we will work with families (Da)a∈I of sets and families (fa)a∈I of functions fa : X → Da defined on
them. To work with them conveniently, we make use of the notation D A , with A ⊆ I , for the set �a∈A Da and f A for the
function of type X → D A that maps each x ∈ X to (fa(x))a∈A .

Definition 4. An attribute grammar (AG) G over a finitary container F = (Sh, ar) is a tuple (S, I, D, α, δ) consisting of:

• finite, disjoint sets S, I of synthesised resp. inherited attributes,
• a family D = (Da)a∈S∪I of sets, called attribute domains,
• a family α = (αa : D S → Da)a∈I of initialisation functions,
• a family δ = (δa)a∈S∪I of semantic functions, where

δa : F (D S) × D I → Da if a ∈ S

δa : �
((s,d),d)∈F (D S)×D I

Dar(s)
a if a ∈ I

In other words, δa maps each ((s, d), d) ∈ F (D S) × D I to some e ∈ Da if a ∈ S and to some e ∈ Dar(s)
a if a ∈ I .

The semantics of an AG is defined in terms of runs on a tree or a DAG. A run is simply a decoration of all nodes in the
tree resp. DAG with elements of the attribute domains that is consistent with the semantic and initialisation functions.

Definition 5. Let G = (S, I, D, δ, α) be an AG over F and t ∈ Tree(F). A family ρ = (ρa)a∈S∪I of mappings ρa : P (t) → Da is
called a run of G on t if the following conditions are met:

• αa(ρS (〈〉)) = ρa(〈〉) for all a ∈ I
• For each p ∈P (t) with t|p = (s, (ti)i<l), we have that

δa((s, (ρS(p · 〈i〉))i<l),ρI (p)) =
{
ρa(p) if a ∈ S

(ρa(p · 〈i〉))i<l if a ∈ I

If there is a unique run ρ , we obtain the result ρS (〈〉) ∈ D S , which we denote by �G � (t).

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.16 (1-35)

16 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
For the semantic function δa of an inherited attribute a, we use the notation δa, j for the function that returns the j-th
component of the result of δa . For example, we can reformulate the condition on ρa from the above definition as follows:

δa, j((s, (ρS(p · 〈i〉))i<l),ρI (p)) = ρa(p · 〈 j〉) for all j < l

In general an AG may have multiple runs or no run at all. However, we can give sufficient conditions on AGs that
ensure that a given AG has exactly one run on any tree. One such condition is that the semantic functions have no cyclic
dependencies, which is known as non-circularity in the literature on AGs.

We will not go into the details of deciding non-circularity and instead refer to the algorithm of Knuth [42,41]. An
important consequence of non-circularity is that we can schedule the construction of the unique run of the AG on an input
tree. In particular, given a tree t ∈ Tree(F) and AG G = (S, I, D, δ, α) on F , there is a well-founded order < on the set
(S ∪ I) ×P (t), which describes in which order the run of G on t can be constructed. For example, if (a, 〈0〉) < (b, 〈〉) then
the attribute b of the root of the tree can only be computed after the attribute a of the first child of the root has been
computed.

Below we give the properties that the order < satisfies. For each p ∈ P (t) with t|p = (s, (ti)i<l), we have the following:

• For all a ∈ S and b ∈ I , we have (a, 〈〉) < (b, 〈〉) or αb is independent of a.
• For all a ∈ S , b ∈ I , and i, j < l, we have (a, p · 〈i〉) < (b, p · 〈 j〉) or δb, j((s, ·), ·) is independent of (a, i).
• For all a, b ∈ I , and j < l, we have (a, p) < (b, p · 〈 j〉) or δb, j((s, ·), ·) is independent of a.
• For all a, b ∈ S , and i < l, we have (a, p · 〈i〉) < (b, p) or δb((s, ·), ·) is independent of (a, i).
• For all a ∈ I and b ∈ S , we have (a, p) < (b, p) or δb((s, ·), ·) is independent of a.

We say that αb is independent of a if αa((ec)c∈S) has the same value for each ea ∈ Da and we say that a function
f ((s, ·), ·) : Dl

S × D I → M is independent of (a, j) or a if f ((s, (di)i<l), (eb)b∈I) with di = (di,b)b∈S has the same value for
all d j,a ∈ Da , respectively, for all ea ∈ Da .

In the following, when we say that an AG is non-circular, we assume that a well-founded order as described above exists
for any input tree.

Proposition 1. Every non-circular AG has a unique run on any given tree.

The definition of a run on DAGs is more difficult as a node in a DAG may have multiple parents, which leads to the
situation depicted in Fig. 6, where a node may receive several inherited attribute values. Our approach in this paper is to
assume, for each inherited attribute a, a binary operator ⊕a that combines attribute values. In order to obtain well-defined
notion of a run, we must in general assume that ⊕a is associative and commutative, i.e. it does not matter in which order
inherited attributes are combined:

Definition 6. Let G = (S, I, D, α, δ) be an AG over F , ⊕ = (⊕a : Da × Da → Da)a∈I a family of associative and commutative
binary operators, and g = (N, E, r) ∈ DAG(F). A family ρ = (ρa)a∈S∪I of mappings ρa : N → Da is called a run of G modulo
⊕ on g if the following conditions are met:

• ρa(r) = αa(ρS(r)) for all a ∈ I
• For all n ∈ N with E(n) = (s, (ni)i<l) and a ∈ S , we have

ρa(n) = δa((s, (ρS(ni))i<l),ρI (n))

• For all n ∈ N and a ∈ I , we have

ρa(n) =
⊕

(m, j,s,(ni)i<l)∈M

δa, j((s, (ρS(ni))i<l),ρI (m))

where M is the set of all tuples (m, j, s, (ni)i<l) such that E(m) = (s, (ni)i<l) and n j = n, and the sum is w.r.t. ⊕a .

If there is a unique run ρ , we obtain the result ρS (r) ∈ D S , which we denote by �G, ⊕�(g).

Note that the definition of runs on DAGs generalises the definition of runs on trees in the sense that a run on a tree t is
also a run on the corresponding DAG G (t) and vice versa.

In the following two sections, we shall formally state and prove the correspondence theorems that we used in section 4.

5.3. Copying attribute grammars

At first we consider the case of copying AGs, i.e. AGs whose semantic functions for all inherited attributes simply copy
the value of the attribute from each node to all its child nodes:

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.17 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 17
Definition 7. An AG G = (S, I, D, α, δ) over F is called copying, if δa, j((s, d), (eb)b∈I) = ea for all a ∈ I , (s, d) ∈ F (D S), j < ar(s)
and (eb)b∈I ∈ D I . A family (⊕a : Da × Da → Da)a∈I of binary operators is called copying if d ⊕a e ∈ {d, e} for all a ∈ I and
d, e ∈ Da .

Given a setting as described above, we can show that, for each run of an AG on a DAG g , we find an equivalent run of
the AG on U (g), and vice versa. Equivalence of runs is defined as follows: given an AG G = (S, I, D, α, δ) over F , we say
that a run ρ of G on a DAG g ∈ DAG(F) and a run ρ ′ of G on U (g) are equivalent if ρ ′

a(p) = ρa(g [p]) for all a ∈ S ∪ I and
p ∈P (g).

Theorem 1. Given a copying AG G = (S, I, D, α, δ) over F , a copying ⊕ = (⊕a : Da × Da → Da)a∈I , and a DAG g = (N, E, r) ∈
DAG(F), we have that for each run of G modulo ⊕ on g there is an equivalent run of G on U (g), and vice versa.

Proof sketch. Given a run ρ on g , we construct ρ ′ on U (g) by setting ρ ′
a(p) = ρa(g [p]). Conversely, given a run ρ on

U (g), we construct a run ρ ′ on g by setting ρ ′
a(n) = ρa(p) for some p ∈Pg (n). This is well-defined since ρa is constant for

a ∈ I , and for a ∈ S , we have ρa(p) = ρa(q) whenever U (g) |p = U (g) |q . �
Corollary 1. Given G, ⊕, and g as in Theorem 1 such that G is non-circular, we have that �G, ⊕�(g) = �G � (U (g)).

Proof. Due to the correspondence of runs according to Theorem 1, uniqueness of runs of G on DAGs follows from the
uniqueness of its runs on trees (cf. Proposition 1). Hence, both �G, ⊕�(g) and �G � (U (g)) are defined, and by Theorem 1
they are equal. �

Note that for copying AGs we do not need ⊕ to be commutative and associative to obtain a well-defined semantics on
DAGs – as long as ⊕ is copying, too.

5.4. Correspondence by monotonicity

Next we show that if the attribute domains Da of an AG G are quasi-ordered such that the semantic and initialisation
functions are monotone and ⊕a are decreasing, then the result of any run of G on a DAG g is less than or equal to the
result of the run of G on U (g). We start by making the preconditions of this theorem explicit:

Definition 8. A family of binary operators (⊕a : Da × Da → Da)a∈A on a family of quasi-ordered sets (Da, �a)a∈A is called
decreasing if d1 ⊕a d2 � d1, d2 for all a ∈ A and d1, d2 ∈ Da . A function f : S → T between two quasi-ordered sets (S, �S)

and (T , �T) is called monotone if s1 �S s2 implies f (s1) �T f (s2) for all s1, s2 ∈ S . An AG G = (S, I, D, α, δ) equipped with
a quasi-order �a on Da for each a ∈ S ∪ I , is called monotone if each αa and δa is monotone, where the orders on D S ,
F (D S) × D I and Dn

S are defined pointwise according to (�a)a∈S∪I . That is, e.g. �A on D A is defined by (da)a∈A �A (ea)a∈A
iff da �a ea for all a ∈ A, and � on F (D S) × D I is defined by ((s, (di)i<k), d) � ((t, (ei)i<l), e) iff s = t , di �S ei for all i < l
and d �I e.

Theorem 2. Let G = (S, I, D, α, δ) be a non-circular AG, ⊕ = (⊕a : Da × Da → Da)a∈S∪I associative and commutative operators,
and (�a)a∈S∪I quasi-orders such that G is monotone and ⊕ is decreasing w.r.t. (�a)a∈S∪I . Given a run ρ of G modulo ⊕ on a DAG
g = (N, E, r) and the run ρ ′ of G on U (g), we have ρa(g [p]) �a ρ ′

a(p) for all a ∈ S ∪ I and p ∈P (g).

Proof sketch. Since G is non-circular, there is a well-founded order < on (S ∪ I) ×P (U (g)) compatible with G . The above
inequation can then be shown by well-founded induction using <. �
Corollary 2. Given G, ⊕, (�a)a∈S∪I , and g as in Theorem 2, and given that �G, ⊕�(g) is defined, then �G, ⊕�(g) �S �G � (U (g)).

Proof. Given the unique runs ρ and ρ ′ on g and U (g), respectively, we have the following according to Theorem 2:

�G,⊕�(g) = ρS(r) = ρS(g [〈〉]) �S ρ ′
S(〈〉) = �G � (U (g)) �

Note that while we assume non-circularity of the AG (as in Corollary 1), �G, ⊕�(g) may not be defined (unlike in
Corollary 1). Nonetheless, for the proof of Theorem 2 the assumption of non-circularity is essential since it is the basis of
the induction argument. The issue of non-termination of AGs on DAGs was discussed in section 4.2 exemplified with the
DAG depicted in Fig. 8.

Nevertheless, in case the AG is monotone w.r.t. well-founded orders, we can at least prove the existence of runs on DAGs:

Proposition 2. Given G, ⊕, and (�a)a∈S∪I as in Theorem 2 such that �a is well-founded for every a ∈ I , then, on any DAG there is a
run of G modulo ⊕.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.18 (1-35)

18 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
6. Transforming and constructing DAGs

The definition of repminG from the beginning of section 4 uses runAGG to run the repmin AG on DAGs. While repminG
does take DAGs as input, it produces trees as output. The reason for this is that while the AG is oblivious to whether it runs
on a DAG or a tree, it does explicitly construct a tree as its output.

However, there is no reason why it should do so. The only assumption that is made in constructing the synthesised tree
attribute is that its values can be combined using the constructors of the underlying functor IntTreeF . However, this assump-
tion is true for both the type Tree IntTreeF and Dag IntTreeF. Indeed, by drawing ideas from macro tree transducers [25,11]
our AG recursion scheme can be generalised to preserve sharing in the result of an AG computation. That is, if applied to
trees the AG constructs trees and if applied to a DAG the AG constructs DAGs in its attributes. An important property of this
generalised recursion scheme is that both Theorem 1 and Theorem 2 can be generalised to cover it, too.

For the sake of demonstration we first consider a simple special case that is often sufficient to express transformations
of DAGs. This special case is represented by rewriting attribute grammars (or RAGs for short), which provide an additional
semantic function that allows us to rewrite the input tree respectively DAG. The more general case is covered later in
sections 6.2 and 6.3.

6.1. Special case: simple rewriting

Rewriting attribute grammars (RAGs) extend AGs with a simple “rewrite” function, which is used to transform the input
DAG. This intuition is encoded in the following type that can be seen as a specialisation of Syn:

type Rewrite f as g = ∀ c.(?below :: c → as,?above :: as) ⇒ f c → g c

The difference between Rewrite and Syn is that the latter may produce values of an arbitrary type s, whereas the former
produces values of type g c, where c is the type of child nodes. Intuitively, each node – represented as element of the type
f c – is rewritten to a new node of type g c. In this representation, child nodes – i.e. elements of type c – are not only used
to reference other attribute values via above and below, but also to define how newly constructed nodes are connected to
other nodes.

The semantic function rep, which defines the repmin transformation, has to be modified only superficially to fit the
Rewrite type:

rep′ :: (MinI ∈ as) ⇒ Rewrite IntTreeF as IntTreeF
rep′ (Leaf i) = Leaf globMin
rep′ (Node a b) = Node a b

Note that the parametric polymorphism of the type Rewrite allows us to instantiate the construction performed by rep′
to both trees and DAGs. Apart from this polymorphism, functions of this type are no different from semantic functions for
synthesised attributes. Therefore, we can extend the function runAG such that it takes a rewrite function as an additional
semantic function:

runRewrite :: (Traversable f , Functor g) ⇒ Syn f (s, i) s → Inh f (s, i) i → Rewrite f (s, i) g
→ (s → i) → Tree f → Tree g

The definition of repmin can thus be reformulated:

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = runRewrite minS minI rep′ init

where init (MinS i) = MinI i

The corresponding variant for DAGs, not only takes DAGs as input but also produces DAGs as output:

runRewriteG :: (Traversable f , Functor g) ⇒ (i → i → i) → Syn f (s, i) s → Inh f (s, i) i
→ Rewrite f (s, i) g → (s → i) → Dag f → Dag g

The definition of repminG is adjusted accordingly:

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = runRewriteG const minS minI rep′ init

where init (MinS i) = MinI i

Now repminG has the desired type – and the implementation of runRewriteG has the expected property that sharing of
the input DAG is preserved. For example, repminG transforms the DAG in Fig. 5a into the DAG in Fig. 5d. However, repminG

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.19 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 19
does not produce the same result for a DAG g as repmin does for U (g). But it does produce a DAG that unravels to the
result of repmin, i.e. both are equivalent modulo unravelling. This is an immediate consequence of the corresponding variant
of Theorem 1 for rewriting AGs:

Theorem 3 (Sketch). Given a copying rewriting attribute grammar G, a binary operator ⊕ on inherited attributes with x ⊕ y ∈ {x, y}
for all x, y, and a DAG g, we have that G terminates on U (g) with result t iff (G, ⊕) terminates on g with result h such that U (h) = t.

The above theorem is an instance of the more general Theorem 4 for parametric AGs, which we shall discuss in more
detail in section 6.3.

The type of Rewrite as given above is unnecessarily restrictive, since it requires that each constructor from the input
functor f is replaced by a single constructor from the target functor g. In general, a rewrite function may produce arbitrarily
many layers built from g. This generalisation can be expressed as follows, where Free g is the free monad of g:

type Rewrite f as g = ∀ c.(?below :: c → as,?above :: as) ⇒ f c → Free g c

data Free f a = In (f (Free f a))

| Ret a

The implementation of runRewrite and runRewriteG can be changed to accommodate this more general definition of
Rewrite. In section 7, we shall look at an extended example that uses this more general version of Rewrite to implement a
simplifier for a simple functional language.

Note that it is possible to reimplement Tree approximately in terms of Free by ruling out the use of the Ret constructor:

type Tree f = Free f Zero

data Zero -- empty type

This implementation of Tree will be used throughout the rest of the paper.

6.2. Parametric attribute grammars

The rewriting AGs from the previous section introduced a new type of semantic function – represented by the type
Rewrite – that describes how to transform an input tree or DAG. While this rewrite pattern fits many applications, it is also
quite limited in at least two ways: (a) only a single rewrite transformation is performed, and (b) rewrites are propagated
bottom–up only.

Relaxing both restrictions opens new applications that are essential for program transformations. What we want to
achieve is that tree/DAG transformations as facilitated by Rewriting can be performed and referred to in the same flexible
fashion as synthesised and inherited attribute.

For instance if we wish to implement loop-invariant code motion, i.e. moving code outside of a loop for performance
optimisation, we need to propagate several transformations upwards: (1) a set of code fragments that we want to hoist
out of loops, and (2) the final optimised program. A simple example that requires bottom–up and top–down propagation
of transformations is inlining: code fragments that need to be inlined have to be propagated top–down, while the resulting
transformed program is constructed bottom–up.

In this section we present Parametric AGs (or PAGs for short) as a solution to this problem. PAGs generalise ordinary
AGs by incorporating the idea of RAGs into both synthesised and inherited attributes. In particular, instead of ‘just’ types,
attribute domains become functors in PAGs. Semantic functions for these attribute will then become parametrically poly-
morphic functions – hence the name parametric AGs. As for RAGs, the parametric polymorphism will allow us to instantiate
these semantic functions for both trees and DAGs. In the case for DAGs, this will mean that synthesised and inherited
attributes will allow us to propagate DAGs (or DAG fragments) upwards respectively downwards during the computation.

Since we are generalising AGs, we need to redefine some basic concepts. To clarify where this occurs, we underline the
redefined concepts. For example, we write Syn instead of Syn and ∈ instead of ∈.

The best way to illustrate the representation of PAGs in Haskell is by contrasting it with the representation of ordinary
AGs. In the following we give the definition of Syn for AGs, and right below it the corresponding definition for PAGs:

type Syn f as s = ∀ c. (?below :: c → as, ?above :: as, s ∈ as) ⇒ f c → s
type Syn f as s g = ∀ c n.(?below :: c → as n, ?above :: as n, s ∈ as) ⇒ f c → s (Free g n)

Note that we have chosen to name concepts in PAGs the same as the corresponding concepts in AGs – even though they
may have different types respectively kinds. In particular, ∈ is now a binary type class over types of kind ∗ → ∗ instead
of ∗.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.20 (1-35)

20 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
The first change in the above definition is that Syn now takes an additional argument g :: ∗ → ∗. This argument serves
a purpose similar to the argument g of Rewrite: it is the functor describing the target tree or DAG data structure. Secondly,
attributes are now of kind ∗ → ∗, and the function is parametric in the argument n that is passed to the attribute types. The
idea is that this type n represents the nodes in the tree/DAG data structure. The parametric polymorphism ensures that the
only thing we can do is shuffle nodes around; we cannot inspect them. In particular, we can use these nodes to construct
new trees or DAGs and store them in the synthesised attribute that the semantic function computes. The occurrence of
Free g n in the codomain enables this.

The same intuition applies to the generalisation of the type Inh for PAG:

type Inh f as i = ∀ m c. (?below :: c → as, ?above :: as, i ∈ as,Mapping m c)
⇒ f c → m i

type Inh f as i g = ∀ m c n.(?below :: c → as n, ?above :: as n, i ∈ as,Mapping m c)
⇒ f c → m (i (Free g n))

Similarly to ordinary AGs, we also allow an initialisation function to initialise inherited attributes. However, in accor-
dance with the generalisation provided by PAGs, this initialisation function is parametric in the node type n and allows
construction of trees:

type Init s i g = (∀ n.s n → i (Free g n))

Tying all these components of a PAG together, we obtain the following interface for running a PAG on trees:

runPAG :: ∀ f i s g n.(Traversable f , Functor g, Functor i, Functor s)
⇒ Syn f (s :∗: i) s g → Inh f (s :∗: i) i g → Init s i g
→ Tree f → s (Tree g)

where :∗: is the pointwise product on functors. In analogy to the ordinary product type, we use ffst and fsnd for the first
and second projection on :∗:, respectively.

The interface for running PAGs on DAGs is similar. Like for ordinary AGs, the only addition we need is a conflict resolution
function:

runPAGG :: ∀ f i s g.(Traversable f ,Traversable g,Traversable i,Traversable s)
⇒ (∀ n.i n → i n → i n) → Syn f (s :∗: i) s g → Inh f (s :∗: i) i g → Init s i g
→ Dag f → s (Dag g)

To illustrate PAGs on a simple example we reconsider the repmin transformation from section 3.5. In section 6.1, we have
used a RAG to implement repmin such that it preserves the sharing of the original input. However, the nature of the repmin
transformation provides the opportunity to introduce additional sharing: after the repmin transformation, each leaf node
has the same label. That means in principle we should be able to produce a DAG that has only a single leaf node instead
of many leaf nodes with the same label. Fig. 5e illustrates the desired result DAG. PAGs will allow us to do just that. In the
definition of repminG , we have an inherited attribute, computed by minI , that propagates the minimum label throughout
the DAG. This attribute is then used to relabel all leaf nodes accordingly. With PAGs, we can redefine the inherited attribute
such that instead of the minimum label, it contains a node with the minimum labelling. Then, instead of relabelling each
leaf node, we can replace each leaf node by this single node in the inherited attribute.

To code repmin as a PAG, we first have to change the types of the attributes accordingly:

newtype MinS n = MinS Int deriving (Functor, Foldable,Traversable)
newtype MinI n = MinI n deriving (Functor, Foldable,Traversable)

The type MinS essentially remains the same, but we have to turn it into a type constructor of kind ∗ → ∗. More interesting
is the type MinI : instead of the type Int in the original definition, we use the type variable n. Recall that this type variable
n represents the nodes in the tree/DAG that we want to construct.

The corresponding semantic functions follow the original definition closely:

minS :: Syn IntTreeF as MinS f
minS (Leaf i) = MinS i
minS (Node a b) = MinS (min (unMinS (below a)) (unMinS (below b)))

minI :: Inh IntTreeF as MinI f
minI = ∅

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.21 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 21
However, instead of using the overloaded min function on the type MinS , we have to explicitly use the projection function
unMinS that extracts the integer value from MinS:

unMinS :: MinS a → Int
unMinS (MinS x) = x

The function globMin to retrieve the MinI attribute is also changed accordingly:

globMin :: (?above :: as n,MinI ∈ as) ⇒ n
globMin = let MinI i = above in i

Instead of an integer globMin returns a node.
The actual transformation is achieved similar to the rewrite function we used in section 6.1. Such rewrite functions are

simply a special case of a synthesised attribute with the identity functor as domain:

data I a = I {unI :: a} deriving (Functor, Foldable,Traversable)

Therefore, the transformation function rep has to use I and unI explicitly:

rep :: (MinI ∈ as) ⇒ Syn IntTreeF as I IntTreeF
rep (Leaf) = I (Ret globMin)

rep (Node a b) = I (In ((Node (Ret (unI (below a)))) (Ret (unI (below b)))))

Finally, we can run the thus defined PAG on trees:

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = unI ◦ ffst ◦ runPAG (rep ⊗ minS) minI init

where init (:∗: MinS i) = MinI (In (Leaf i))

The important difference between this definition and the definition in section 6.1 is that here the initialisation function init
constructs the unique leaf node that is used for the whole transformation.

The same PAG can then also be used on DAGs using the runPAGG function. Like for the AG and the RAG version, we use
const as the conflict resolution function:

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = unI ◦ ffst ◦ runPAGG const (rep ⊗ minS) minI init

where init (:∗: MinS i) = MinI (In (Leaf i))

Theorems 1 and 2 generalise to the setting of PAGs. First, consider the PAG version of Theorem 1:

Theorem 4 (Sketch). Given a copying, non-circular PAG G, a binary operator ⊕ on inherited attributes with x ⊕ y ∈ {x, y} for all x, y,
and a DAG g, we have that G terminates on U (g) with result r iff (G, ⊕) terminates on g with result r.

Note that in contrast to Theorem 1 the above theorem assumes non-circularity.
Applied to the above definitions of repmin and repminG , we can conclude that for each DAG g, the unravelling of

repminG g is equal to repmin g.
Next, we look at the PAG version of Theorem 2:

Theorem 5 (Sketch). Let G be a non-circular AG, ⊕ an associative, commutative operator on inherited attributes, and � such that G is
monotone and ⊕ is decreasing w.r.t. �. If (G, ⊕) terminates on a DAG g with result r, then G terminates on U (g) with result r′ such
that U (r) � r′ .

The above formulations of Theorems 4 and 5 are somewhat informal. In particular, the subtlety of the role of para-
metricity is not explicit here: the binary operator ⊕ works on the instantiation of the attribute domains to DAGs, whereas
� works on the instantiation to trees. In addition, we use the unravelling operator U on the result r in Theorem 5, by which
we mean that all DAGs ‘occurring’ in r are unravelled. We will treat these issues more carefully in the next section, which
covers the theory of PAGs.

6.3. Semantics

In this section we give the formal semantics of PAGs and generalise the correspondence theorems from section 5 accord-
ingly. Both ordinary AGs and rewriting AGs arise as a special case of this general theory.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.22 (1-35)

22 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
The idea is to introduce trees in the attributes and in the semantic functions as a type variable that we can instantiate
to the type of trees or the type of DAGs. For the semantics, this means that attribute domains are now functors instead of
sets, and semantic functions are natural transformations between functors instead of functions between sets.

In the definition below we use products and sums on endofunctors. In addition, given a finitary container F , we write F ∗
for the free monad of the functor Ext(F) induced by F . Similar to the notation that we used for families of sets and families
of functions, we use the following notation for families (Da : Set → Set)a∈I of endofunctors and families (fa : D ·→ Da)a∈I

of natural transformations defined on them: we write D A , with A ⊆ I , for the functor �a∈A Da and f A for the natural
transformation of type D ·→ D A that, for each set X , maps each d ∈ D(X) to (fa,X (d))a∈A .

Definition 9. A parametric attribute grammar (PAG) G = (S, I, D, α, δ) from a finitary container F1 = (Sh, ar) to a finitary
container F2 consists of:

• finite, disjoint sets S, I of synthesised resp. inherited attributes,
• a family D = (Da : Set → Set)a∈S∪I of endofunctors (called attribute domains),
• a family α = (αa : D S

·→ Da ◦ F ∗
2)a∈I of natural transformations (called initialisation functions),

• a family δ = (δa)a∈S∪I of semantic functions, where

δa : (F1 ◦ D S) × D I
·→ Da ◦ F ∗

2 if a ∈ S

δa : (F1 ◦ D S) × D I
·→ FM ◦ Da ◦ F ∗

2 if a ∈ I

where FM is the free monoid functor, i.e. for any set X we have that FM(X) = ∑
n≥0 Xn .

Additionally, we require for the case a ∈ I that

δa,X ((s, x), y) ∈ (Da(F ∗
2(X)))ar(s) for all X, s, x, y.

In order to instantiate the semantic functions to trees and DAGs it is not enough to simply instantiate the natural
transformations to the corresponding sets Tree(F2) and DAG(F2). The semantic functions would then have the codomain
Da(F ∗

2 (Tree(F2))) respectively Da(F ∗
2 (DAG(F2))). Instead, we want to obtain functions with codomain Da(Tree(F2)) and

Da(DAG(F2)), respectively. That is easily achieved by composition with functions of type F ∗
2 (Tree(F2)) → Tree(F2) and

F ∗
2(DAG(F2)) → DAG(F2), respectively. In turn, these functions are given by appropriate F2-algebras, i.e. functions of type

F2(Tree(F2)) → Tree(F2) and F2(DAG(F2)) → DAG(F2), respectively. The basis for this construction is the fact that each
F -algebra a : F (X) → X gives rise to an Eilenberg–Moore F ∗-algebra a∗ : F ∗(X) → X (see e.g. Proposition 4.5 in Barr and
Wells [12]). An important property of this construction is that it preserves homomorphisms.

Thus, we only need to give algebras of type F2(Tree(F2)) → Tree(F2) and F2(DAG(F2)) → DAG(F2). The former is simply
the isomorphism inF2 between F2(Tree(F2)) and Tree(F2). The latter is a bit more involved. We define, for each finitary
container F , the function grF : F (DAG(F)) → DAG(F) as follows:

grF (s, (gi)i<l) = (N, E, r) for all (s, (gi)i<l) ∈ F (DAG(F))

where gi = (Ni, Ei, ri) ∈ DAG(F)

N = {r} �
⋃
i<l

Ni

E(r) = (s, (ri)i<l)

E(n) = Ei(n) if n ∈ Ni

In the above construction, we assume that if n ∈ Ni ∩ N j , then Ei(n) = E j(n). If this is not the case nodes are renamed
accordingly.

Lemma 1. For every finitary container F , the unravelling operator U : DAG(F) → Tree(F) is a homomorphism between the
F ∗-algebras gr∗

F and in∗
F , i.e. the following square commutes:

F ∗(DAG(F)) DAG(F)

F ∗(Tree(F)) Tree(F)

F ∗(U) U

gr∗
F

in∗
F

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.23 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 23
Proof. Any F -algebra homomorphism from a to b is also an homomorphism from a∗ to b∗ (see e.g. Proposition 4.5 in Barr
and Wells [12]). Thus, to show commutativity of the above diagram it suffices to show commutativity of the following
diagram:

F (DAG(F)) DAG(F)

F (Tree(F)) Tree(F)

F (U) U

grF

inF

U (grF (s, (gi)i<l))

= { definition of U }
(s, (U

(
grF (s, (gi)i<l)|ri

)
)i<l)

= { definition of grF }
(s, (U (gi))i<l)

= { inF is the identity }
inF (s, (U (gi))i<l) �

The following two definitions describe the instantiation of PAGs to AGs using the F ∗-algebras in∗
F and gr∗

F . The resulting
AGs G T and GG embody the semantics of the original PAG G for tree and DAGs, respectively.

Definition 10. Let G = (S, I, D, α, δ) be a PAG from F1 to F2. We construct an AG G T = (S, I, DT , αT , δT) by instantiating
the attribute domains and semantic functions to Tree(F2) as follows:

DT
a = Da(Tree(F2)) for all a ∈ S ∪ I

αT
a : DT

S → DT
a αT

a = Da(in∗
F2

) ◦ αa,Tree(F2) for all a ∈ I

δT
a : F1(DT

S) × DT
I → DT

a δT
a = Da(in∗

F2
) ◦ δa,Tree(F2) for all a ∈ S

δT
a : F1(DT

S) × DT
I → FM(DT

a) δT
a = FM(Da(in∗

F2
)) ◦ δa,Tree(F2) for all a ∈ I

A run of G on a tree t ∈ Tree(F1) is a run of G T on t .

Definition 11. Let G = (S, I, D, α, δ) be a PAG from F1 to F2. We construct an AG GG = (S, I, DG , αG , δG) by instantiating
the attribute domains and semantic functions to DAG(F2) as follows:

DG
a = Da(DAG(F2)) for all a ∈ S ∪ I

αG
a = Da(gr∗

F2
) ◦ αa,DAG(F2) for all a ∈ I

δG
a = Da(gr∗

F2
) ◦ δa,DAG(F2) for all a ∈ S

δG
a = FM(Da(gr∗

F2
)) ◦ δa,DAG(F2) for all a ∈ I

That is, we have that

αG
a : DG

S → DG
a for all a ∈ I

δG
a : F1(DAG(F2) × DG

S) × DAG(F2) × DG
I → DG

a for all a ∈ S

δG
a : F1(DAG(F2) × DG

S) × DAG(F2) × DG
I → FM(DG

a) for all a ∈ I

Let ⊕ = (⊕a : DG
a × DG

a → DG
a)a∈I be a family of associative and commutative binary operators and g ∈ DAG(F1). A run of G

on g modulo ⊕ is a run of GG modulo ⊕ on g .

The two instantiations G T and GG can be related via unravelling:

Lemma 2. Let G = (S, I, D, α, δ) be a PAG from F1 to F2 . Then we have the following:

(i) For all a ∈ I and d ∈ D S (DAG(F2)),

Da(U)(αG
a (d)) = αT

a (D S(U)(d))

(ii) For all a ∈ I , (s, (di)i<l) ∈ F1(D S (DAG(F2))), e ∈ D I (DAG(F2)), and j < l,

Da(U)(δG
a, j((s, (di)i<l), e)) = δG

a, j((s, (D S(U)(di))i<l), D I (U)(e))

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.24 (1-35)

24 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
(iii) For all a ∈ S, (s, (di)i<l) ∈ F1(D S (DAG(F2))), and e ∈ D I (DAG(F2)),

Da(U)(δG
a ((s, (di)i<l), e)) = δG

a ((s, (D S(U)(di))i<l), D I (U)(e))

Proof. Straightforward calculation. �
The notion of non-circularity of AGs carries over to PAGs in a straightforward manner by instantiation to trees: a PAG G

is non-circular iff the AG G T is non-circular.
As an immediate consequence of the definition of runs of PAGs as runs of AGs, we obtain the following corollary about

non-circular PAGs:

Corollary 3. Every non-circular PAG has a unique run on any given tree.

Also the notion of copying AGs carries over to PAGs:

Definition 12. A PAG G = (S, I, D, α, δ) from F1 to F2 is called copying, if δa, j,A((s, d), (eb)b∈I) = ea for all sets A, a ∈ I ,
(s, d) ∈ F1(D S (A)), j < ar(s) and (eb)b∈I ∈ D I (A).

Given a copying, non-circular PAG G , we can show that, for each run of G on a DAG g , we find an equivalent run of G on
U (g), and vice versa. Equivalence of runs is defined as follows: given a PAG G = (S, I, D, α, δ) from F1 to F2, we say that
a run ρ of G on a DAG g ∈ DAG(F1) and a run ρ ′ of G on U (g) are equivalent if ρ ′

a(p) = Da(U)(ρa(g [p])) for all a ∈ S ∪ I
and p ∈P (g).

Theorem 4. Given a copying, non-circular PAG G = (S, I, D, α, δ) from F1 to F2 , a copying ⊕ = (⊕a : DG
a × DG

a → DG
a)a∈I , and a

DAG g = (N, E, r) ∈ DAG(F1), we have that for each run of G modulo ⊕ on g there is an equivalent run of G on U (g), and vice versa.

Proof sketch. Given a run ρ on g , we construct ρ ′ on U (g) by setting ρ ′
a(p) = Da(U ()) (ρa(g [p])). For the converse

direction, we construct a run ρ ′ on g from scratch according to the semantics of PAGs. The run ρ ′ is defined by well-founded
recursion using the non-circularity of G . We then prove by well-founded induction that any run ρ on U (g) must be
equivalent to ρ ′ . By using Lemma 2, we can reuse large parts of the proof of Theorem 1. �
Corollary 4. Given G, ⊕, and g as in Theorem 4, we have that �G, ⊕�(g) = �G � (U (g)).

Proof. Due to the correspondence of runs according to Theorem 4, uniqueness of runs of G on DAGs follows from the
uniqueness of its runs on trees (cf. Corollary 3). Hence, both �G, ⊕�(g) and �G � (U (g)) are defined, and by Theorem 4 they
are equal. �

Similarly to notion of circularity, we lift the definition of monotonicity to PAGs by instantiation of PAGs to trees. However,
since the conflict resolution operators ⊕a for PAGs are defined on the instantiation of PAGs to DAGs, decreasingness is
defined via unravelling:

Definition 13. Let G = (S, I, D, α, δ) be a PAG equipped with a quasi-order �a on DT
a for each a ∈ S ∪ I . G is called monotone

w.r.t. (�a)a∈S∪I if G T is monotone w.r.t. (�a)a∈S∪I . Moreover, ⊕ = (⊕a : DG
a × DG

a → DG
a)a∈I is called decreasing w.r.t. (�a)a∈I

if we have, for all a ∈ I , that

Da(U)(d1 ⊕a d2) �a Da(U)(d1), Da(U)(d2) for all d1,d2 ∈ DG
a

Having established the necessary terminology, we can generalise Theorem 2 to PAGs:

Theorem 5. Let G = (S, I, D, α, δ) be a non-circular PAG, ⊕ = (⊕a : DG
a × DG

a → DG
a)a∈I associative and commutative, and

(�a)a∈S∪I quasi-orders such that G is monotone and ⊕ is decreasing. Given a run ρ of G modulo ⊕ on a DAG g = (N, E, r) and
the run ρ ′ of G on U (g), we have that

Da(U)(ρa(g [p])) �a ρ ′
a(p) for all a ∈ S ∪ I and p ∈ P (g) .

Proof sketch. Since G is non-circular, there is a well-founded order < on (S ∪ I) ×P (U (g)) compatible with G . The above
inequation can then be shown by well-founded induction using <. �
Corollary 5. Given G, ⊕, (�a)a∈S∪I , and g as in Theorem 5, and provided that �G, ⊕�(g) is defined, we have that D S(U)(�G, ⊕�(g))�S
�G � (U (g)).

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.25 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 25
Proof. Given the unique runs ρ and ρ ′ on g and U (g), respectively, we have the following according to Theorem 5:

D S(U)(�G,⊕�(g)) = D S(U)(ρS(r)) = D S(U)(ρS(g [〈〉])) �S ρ ′
S(〈〉) = �G � (U (g)) �

7. Extended example

As a demonstration of the versatility of our approach, we have implemented a size-based simplifier for a subset of
the Feldspar EDSL [5]. The code is found in the file Feldspar.hs in the accompanying repository [8]. The simplifier is
implemented as a RAG as follows:

simplifyDag :: Dag Feldspar → Dag Feldspar
simplifyDag = runRewriteG intersection (sizeInfS ⊗ constFoldS) sizeInfI simplifier (const Map.empty)

◦ renameFeld

The RAG consists of four parts:

• sizeInfS synthesises a Size attribute, which gives a conservative approximation of the set of values an expression might
take on.

• constFoldS synthesises a Maybe Value attribute, which gives the value of constant expressions of Boolean or integer type.
• sizeInfI computes the inherited environment attribute. The environment gives the size of variables in scope.
• simplifier rewrites a node based on the inferred Size and Value attributes.

We use intersection to resolve inherited attributes for shared nodes, just like for typeInfG . The function renameFeld makes
sure that the DAG is well-scoped according to the definition in section 4.3.

The AG consisting of sizeInfS and sizeInfI is similar in structure to the type inference AG in section 3. Size is represented
as a list of ranges, and a range is a pair of an upper bound and a lower bound:

type Size = [Range]
type Range = (Maybe Integer,Maybe Integer)

Lists of ranges are needed for array expressions. For example, the size [r1, r2, re] is for a two-dimensional array where the
extent of the outer dimension is within r1, the extent of the inner dimension is within r2 and each element is in the
range re.

The additional attribute computed by constFoldS is used to propagate constant values. For integer expressions, constFoldS

falls back to the inferred size, since an expression with a singleton range must be a constant.
The simplifier function makes use of the inferred sizes and constants to rewrite nodes. Here are a few interesting cases:

simplifier :: (Size ∈ as,Maybe Value ∈ as,Env Size ∈ as) ⇒ Rewrite Feldspar as Feldspar
simplifier

| Just (B b) ← above = In (LitB b)

| Just (I i) ← above = In (LitI i)
simplifier (Add a b)

| Just 0 ← valueOfI a = Ret b
| Just 0 ← valueOfI b = Ret a

simplifier (Min a b)

| Just True ← liftA2 (�) ua lb = Ret a
| Just True ← liftA2 (�) ub la = Ret b
where [(la, ua)] = sizeOf a

[(lb, ub)] = sizeOf b

. . .

The following two functions are used to query the synthesised attributes:

sizeOf :: (?below :: a → as, Size ∈ as) ⇒ a → Size
valueOfI :: (?below :: a → as,Maybe Value ∈ as) ⇒ a → Maybe Integer

The first two cases of simplifier rewrite directly to a literal if the expression is constant. The Add cases simplify expres-
sions of the form 0 + b and a + 0. Finally, the case for Min uses the size of the operands to reduce the node statically if
the sizes are disjoint (or overlap by at most one value). The function liftA2 is used to lift the (�) operator to values of type
Maybe Integer such that the result is Nothing whenever either argument is Nothing.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.26 (1-35)

26 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
7.1. Practical relevance

The graph-based simplifier above can simplify Feldspar programs represented as graphs without any loss of sharing. Does
this property of the simplifier have any practical relevance?

An alternative, employed by the current Feldspar implementation, is to represent Feldspar programs as trees and express
the simplifier as a standard recursive function over such trees. As discussed in section 2.1, this approach requires adding a
syntactic let binding construct to manage the size of the ASTs for programs with lot of sharing. A problem with let bindings
is that they get in the way of the simplifier. For example, in order to simplify the Haskell expression let a = 0 in a + x to x
using the rule 0 + x → x, the compiler has to first inline the let binding. Feldspar inlines all bindings in order to maximise
the effect of the simplifier, but this strategy risks blowing up the AST. In general, compilers rely on heuristics to decide
which binders to inline [56], and there is always a risk of missing important simplifications due to let bindings getting in
the way.

It is reasonable to ask to what extent AST blow-up occurs in practice. Can we get away with Feldspar’s inline-always
strategy, or perhaps by relying on explicitly expressing sharing in cases where it matters [40]?

It turns out to be quite easy to accidentally blow up the AST in an embedded DSL. The following function from Feldspar’s
source code (slightly adapted) computes the number of leading zeroes in the bit representation of an integer:

nlz x = bitCount $ complement $ foldl go x $ takeWhile (<32)$ map (2ˆ)$ [(0 :: Integer). .]
where go b s = b .|. (b .�. s)

It performs a left fold of the function go over the list [1, 2, 4, 8, 16]. The operations bitCount, (.|.), etc. operate on
Feldspar’s AST type. For example, (.|.) takes two ASTs, representing the operands, and constructs an AST representing the
bitwise or of the operands. The argument to foldl is a static Haskell list, so the function will unfold at Feldspar’s compile
time, yielding an AST with only primitive Feldspar functions in it.

Note that the argument b of the local function go is used twice in each iteration. This means that the AST produced by
nlz will have a lot of sharing. This problem was not taken into consideration when adding nlz to Feldspar, and it has caused
problems in one of our projects. Feldspar has an implementation of the Fast Fourier Transform (FFT) which uses nlz to
compute the number of stages needed in the FFT. One Feldspar application made use of an FFT followed by an inverse FFT
with some transformations in between. This lead to nested applications of nlz resulting in an AST for which the compiler
effectively did not terminate. Only by accident did we later discover that nlz was the culprit, and the problem could be
solved by sharing the variable b explicitly.

Although the technique in this paper has not made it into the Feldspar implementation, we are confident that it would
have helped in the above situation. As a simple demonstration, the file Feldspar.hs in the accompanying repository [8]
implements nlz and shows that while runRewrite is sensitive to the blow-up caused by nested uses of nlz, runRewriteG
manages just fine.

8. Implementation

8.1. Representation of DAGs

Our implementation represents DAGs by explicit mappings from nodes, which are represented by integers, to their out-
going edges. In section 4, we presented the following definition of the type Dag:

data Dag f = Dag {root :: Node,
edges :: IntMap (f Node)}

The edges field provides a mapping that maps each node to its outgoing edges, which are represented by the type f Node.
However, this naive representation is inefficient. Typical DAGs have a large chunks that are tree-shaped, with some edges

in between that provide sharing. For example, consider the DAG pictured in Fig. 9a. There are only three nodes (A, B , and C)
that have more than one incoming edge and are thus shared. The remaining nodes – with only a single incoming edge each
– can be thought of as nodes in a tree rooted in one of the shared nodes (or the root R of the whole DAG). This idea
is illustrated in Fig. 9b. Each of the shaded areas constitutes a self-contained tree. These trees are connected via edges
between them. This two-level representation – a DAG whose nodes are trees – is more efficient. Only edges between the
trees (pictured as solid arrows) have to be represented explicitly via an IntMap, i.e. a PATRICIA tree [53]. The edges within
the tree structures (pictured as dashed arrows) can be represented using an algebraic data type.

Concretely, instead of representing edges by the type f Node, we shall represent edges using the type f (Free f Node). That
is, we use the free monad Free f to represent the nested tree structures. Apart from that, we also represent the root of the
DAG by the type f (Free f Node), rather than simply Node. In sum, we obtain the following representation:

data Dag f = Dag {root :: f (Free f Node),
edges :: IntMap (f (Free f Node)),
nodeCount :: Int}

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.27 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 27
Fig. 9. Representation of DAGs.

In addition, the Dag data structure also contains the number of (explicit) nodes in the Dag. This information will be helpful
for allocating memory for implementing AGs efficiently.

Note that we could have also chosen to represent edges using the type Free f Node instead of f (Free f Node). However,
with the former, we would also represent “empty” edges, which represent indirection. Such empty edges could potentially
be useful, but we found no application for them in our implementation of AGs.

Apart from an overall more compact representation that allows us to implement AGs more efficiently, the Dag data
structure provides specific benefits for the implementation of both RAGs and PAGs. Transformations on DAGs described by
RAGs and PAGs introduce embedded tree-shaped fragments inside the result DAG by way of the free monad Free f . If we
were to implement RAGs and PAGs using the naive representation of DAGs, we would have to allocate fresh nodes for each
implicit inner node inside a free monad data structure of type Free f Node. Such an implementation would be very inefficient
and would lose a lot of the speedup gains obtained by sharing.

8.2. Implementing attribute grammars on trees and DAGs

8.2.1. Preparations
Before we start with the actual implementation of AGs, we need to implement one important auxiliary functionality: an

instance for the Mapping type class, which is essential for the implementation of inherited attributes. The intention of the
Mapping class is to provide a representation of mappings that assign attribute values to child positions. In the simplest case,
the type Inh is a mapping of type f c → m i, with the type constraint Mapping m c. The idea of implementing an instance of
Mapping is to uniquely number the child nodes of type c. Then a mapping from child positions to attribute values of type v
is provided by a simple integer map of type IntMap v.

For numbering arbitrary values, we introduce the following type Numbered:

data Numbered a = Numbered Int a

unNumbered :: Numbered a → a
unNumbered (Numbered x) = x

There are many different ways of numbering the elements of type c in a structure of type f c, given that f is Traversable.
Here we simply use a state monad to keep track of the counter:

number :: Traversable f ⇒ f c → f (Numbered c)
number x = evalState (Traversable.mapM run x) 0
where run :: c → State Int (Numbered c)

run b = do n ← get
put (n + 1)

return (Numbered n b)

We then wrap the IntMap type in a newtype to construct the type that we use to instantiate the Mapping type class.
Implementing the methods of Mapping is straightforward using the underlying IntMap.

newtype NumMap k v = NumMap (IntMap v) deriving (Functor, Foldable,Traversable)

instance Mapping (NumMap k) (Numbered k) where
. . .

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.28 (1-35)

28 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
runAG :: ∀ f s i.Traversable f ⇒ Syn′ f (s, i) s → Inh′ f (s, i) i → (s → i) → Tree f → s
runAG syn inh init t = sFin where

sFin = run iFin t
iFin = init sFin
run :: i → Tree f → s
run i (In t) = s where

recurse (Numbered n c) = let i′ = lookupNumMap i n m
in Numbered n (run i′ c, i′)

t′ = fmap recurse (number t)
m = explicit inh (s, i) unNumbered t′
s = explicit syn (s, i) unNumbered t′

Fig. 10. Implementation of runAG.

In addition, we provide a lookup function for NumMap, which simply uses the underlying lookup function of the IntMap
type:

lookupNumMap :: a → Int → NumMap t a → a
lookupNumMap d k (NumMap m) = IntMap.findWithDefault d k m

Next we shall see how this implementation of the Mapping interface is used for implementing AGs on trees and DAGs.

8.2.2. Implementing attribute grammars on trees
We first take a look at the simplest case: the implementation of AGs on trees. The implementation of runAG is shown

in Fig. 10. At the top-level, runAG computes sFin and iFin, the synthesised resp. inherited attribute at the root of the tree.
The traversal of the tree is performed by the run function, which takes the inherited attribute value at the current node
and returns the synthesised attribute of the current node. Before applying the semantic functions inh and syn, we number
the child nodes using number and recursively apply run to the child nodes via fmap recurse. In order to apply the semantic
functions, we have to supply the implicit parameters ? above and ? below. To this end, we use the combinator explicit, which
turns these implicit parameters into explicit arguments:

explicit :: ((?above :: q,?below :: a → q) ⇒ b) → q → (a → q) → b
explicit x ab be = x where ?above = ab;?below = be

The ? above parameter is given the value (i, s), consisting of the inherited attribute given as argument to run and the synthe-
sised attribute we have computed. The ? below parameter is provided by the unNumbered function, which simply strips away
the numbering that we have performed earlier, thus exposing the attribute values that have been recursively computed via
recurse.

An important aspect of this implementation is its circular nature. It essentially depends on the non-strict semantics
of Haskell. The circularity can be seen immediately in the definition of sFin and iFin, which refer to each other, and the
definition of s at the bottom, which refers to itself.

8.2.3. Implementing attribute grammars on DAGs
The implementation of AGs on DAGs is a bit more intricate. The main idea, however, is quite simple: We construct

mappings from nodes in the DAG to inherited and synthesised attributes. To this end our implementation assumes that
nodes are numbers from 0 to nodeCount − 1; the latter given by the field nodeCount of the Dag record. We make sure
that all operations that construct DAGs – e.g. reifyDag – or transform DAGs – e.g. runRewriteG – maintain this invariant.
To construct and maintain these mappings between nodes and attribute values, we use two mutable array data structures:
imap of type MVector st (Maybe i) to store the inherited attribute values of type i, and smap of type MVector st s to store the
synthesised attribute values of type s. The type variable st is used for the ST monad to restrict the side effects for dealing
with ephemeral data structures to the runM function.

The difference in the types for imap and smap – the fact that imap uses Maybe – is crucial and characterises the
difference between computing inherited vs. synthesised attributes. As we have illustrated in Fig. 6, we may have to compute
inherited attributes for a given node several times – once for each incoming edge. The Maybe type allows us to keep track
of whether we already computed an attribute value for a given node. If so, we need to use the conflict resolution function
res to combine the previously computed value with a newly incoming value. If not, we can safely store a newly incoming
value as the attribute value of the node. This behaviour is implemented in the runF auxiliary function in Fig. 11.

Apart from this caching of attribute values using arrays, the implementation of runAGG follows a pattern similar to runAG.
The auxiliary function run applies the semantic functions inh and syn using explicit and numbering of child nodes. However,
in contrast to runAG, we do not use the number function to perform the numbering. Instead we make use of the fact that
the ST monad allows us to allocate a single counter reference count, which is then used to do the numbering.

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.29 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 29
runAGG :: ∀ f i s.Traversable f ⇒ (i → i → i) → Syn f (s, i) s → Inh f (s, i) i → (s → i)
→ Dag f → s

runAGG res syn inh init Dag {edges, root,nodeCount} = sFin where
sFin = runST runM
iFin = init sFin
runM :: ∀ st.ST st s
runM = mdo

imap ← MVec.new nodeCount -- construct empty mapping from nodes to inh. attrs.
MVec.set imap Nothing -- set inh. attrs. to Noting
smap ← MVec.new nodeCount -- allocate mapping from nodes to syn. attrs.
count ← newSTRef 0 -- allocate counter for numbering child nodes
let -- run the AG on an edge with the given input inh. attr. and produce

-- the output syn. attr.
run :: i → f (Free f Node) → ST st s
run i t = mdo

-- apply the semantic functions
let s = explicit syn (s, i) unNumbered result

m = explicit inh (s, i) unNumbered result
-- recurses into the child nodes and numbers them

run′ :: Free f Node → ST st (Numbered (s, i))
run′ c = do n ← readSTRef count

writeSTRef count (n + 1)

let i′ = lookupNumMap i n m
s′ ← runF i′ c -- recurse
return (Numbered n (s′, i′))

writeSTRef count 0 -- re-initialise counter
result ← Traversable.mapM run′ t
return s

runF :: i → Free f Node → ST st s -- recurses through the tree structure
runF i (Ret x) = do -- we found a node: update the mapping for inh. attrs.

old ← MVec.unsafeRead imap x
let new = case old of

Just o → res o i
→ i

MVec.unsafeWrite imap x (Just new)

return (smapFin ! x)
runF i (In t) = run i t

-- This function is applied to each edge
iter (n, t) = do s ← run (fromJust (imapFin ! n)) t

MVec.unsafeWrite smap n s
s ← run iFin root -- first apply to the root
mapM _ iter (IntMap.toList edges) -- then apply to the edges

-- finalise the mappings for attribute values
imapFin ← Vec.unsafeFreeze imap
smapFin ← Vec.unsafeFreeze smap
return s

Fig. 11. Implementation of runAGG .

Like runAG, a characteristic feature of runAGG is its circularity; we make essential use of Haskell’s lazy evaluation. To
achieve this circularity in a monadic function definition we use the mdo keyword, which provides a convenient interface
for the underlying MonadFix instance of the ST monad. Like in the definition for runAG, we use circularity for applying the
semantic functions. But in addition, circularity is also used for accessing the final attribute values stored in the two arrays
imap and smap. We use the function unsafeFreeze to turn these two mutable arrays into immutable arrays, which are then
used in the construction of imap and smap.

8.2.4. Implementation of PAGs
The implementation of AGs on trees and DAGs can be readily generalised to PAGs: we simply follow the instantiation of a

PAG G to the AG G T respectively GG as described in section 6.3. This instantiation is straightforward for trees. However, the
instantiation to DAGs, adds considerable complexity. We need to allocate fresh nodes and edges that are described by the
semantic functions of the PAG G . Our hybrid representation of DAGs (cf. section 8.1) makes this process substantially simpler
and more efficient. Nonetheless, we have to make sure that all DAGs that are constructed by the PAG are self-contained and

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.30 (1-35)

30 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
Fig. 12. Benchmark: leavesBelow implemented as AG.

satisfy the invariant that nodes are numbered from 0 to nodeCount − 1. Self-containedness is non-trivial, since during the
run of a PAG, semantic functions have access to all attributes and thus a common pool of DAG nodes and edges. As a
consequence, a single node may end up being shared among several DAGs that are constructed by the PAG. We elide the
implementation details of the PAG implementation and refer the reader to the accompanying source code repository [8].

8.3. Performance results

We have implemented benchmarks to evaluate the efficiency of our approach. The benchmarks are found in the code
associated with this paper [8].

The benchmarks focus on two extreme situations: (1) DAGs with a lot of sharing (each node is shared), and (2) DAGs
with no sharing at all. The assumption behind the paper is that we have structures with a lot of sharing. The first extreme
tests that we succeed in dealing with this case more efficiently. At the same time, the second extreme is meant to show
what is the overhead of working with DAGs in cases when it is not needed.

The measurements were done on balanced trees of different depths. The trees were represented as ordinary trees and
as DAGs (i.e. using the Tree and Dag types). To gauge the performance trade-off that the hybrid DAG representation (as
described in section 8.1) offers, we also measure the performance of the naive DAG representation, which is labelled as
“Simple” in the diagrams.

The DAGs were constructed in two different ways: with sharing at each level and with no sharing at all. A balanced tree
of depth d has 2d − 1 nodes, and thus the DAG without sharing also has 2d − 1 nodes. The DAG with sharing at each level
has d nodes.

At first, we consider the AG implementation of leavesBelow from the introduction. It is computationally inexpensive
(since all leave nodes in the input are labelled the same) and thus provides a measure of the overhead of working with
DAGs. Fig. 12a shows the time that the different implementations of leavesBelow take for different input sizes (measured by
depth). The run time is proportional to the size of the tree: the run time grows exponentially without sharing and linearly
with sharing.

We can see that there is some overhead in using the Dag representation instead of Tree when there is no sharing.
Fig. 12b show the overhead of the DAG representation in case of no sharing. The overhead stays below a factor of 4 for the
hybrid DAG representation, and a factor of 7 for the naive representation. Fig. 12c shows that the run time for large DAGs
with maximal sharing increases roughly linearly even at large depths – with no significant difference between the hybrid
and the naive DAG representation.

The purpose of the measurements in Fig. 12b is to see the overhead of AGs on DAGs in case of little sharing. To this end
we have disabled an optimisation in our implementation that falls back to the tree-based implementation of AGs in case
of no sharing. With this optimisation in place, the overhead of using runAGG instead of runAG is reduced to zero for input
with no sharing. However, this optimisation only works if the input DAG is represented optimally, i.e. using explicit pointers
only if there is sharing. While this property is guaranteed by the DAGs produced by reifyDag, DAGs that are the result of a
transformation e.g. by runRewriteG may not have this property.

Next, we look at the performance of the runRewrite and runRewriteG implementation. To this end, we consider the RAG
implementation of repmin example from section 3.5 using the same input as for the leavesBelow benchmark above. The
resulting measurements, shown in Fig. 13, have the same characteristics as the corresponding measurements from Fig. 12:
the DAG version is asymptotically better than the tree version in case of sharing. In case of no sharing the overhead remains
below a factor of 2.5 for the hybrid DAG representation and around 3 for the naive representation. However, repmin is a
very simple transformation, and the performance of the naive DAG representation regresses considerably if we consider a
variation of repmin that replaces each leaf node with two leaf nodes – one with the global minimum label and one with
the old label – the speedup afforded by the hybrid transformation becomes more pronounced.

We have also considered the performance of the implementation of PAGs: Fig. 14 compares the PAG-based implemen-
tation of repmin – as discussed in section 6.2 – with the RAG- and AG-based implementations. We can see that the PAG

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.31 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 31
Fig. 13. Benchmark: repmin implemented as RAG.

Fig. 14. Benchmark: repmin implemented as AG vs. RAG vs. PAG.

Fig. 15. Benchmark: type inference and Feldspar simplifier.

implementation has a asymptotic run time characteristic similar to the RAG-based implementation. However, we can observe
some overhead of the PAG-based implementation.

Finally, we look at two more realistic computations: the type inference implementation from section 2 and the size-based
simplifier from section 7. We applied each to three small example programs. The results are depicted in Fig. 15. The input
programs are fairly small and only have very little sharing. The examples are too simple to draw any real conclusions from,
but we observe that all three options are of comparable speed, as expected when the amount of sharing is small.

In our benchmarks here we have focused on the difference between AGs on trees and DAGs, and the effect of sharing
on the runtime performance. However, it is important to realise that there is also an overhead associated with AGs –
at least when implemented by leveraging lazy evaluation as we did in this paper. In practical application this overhead
can be substantial. Using our shallow embedding of AGs we have found an overhead amounting to as much as an order
of magnitude. We expect that most of this overhead can be eliminated by implementing AGs using statically scheduled
attribute evaluation. For AG on DAG a scheduling algorithm can be extracted from the proof of Proposition 2. Such a
scheduling algorithm could then be used to compile AG definitions into efficient Haskell code in the style of Kuiper and
Swierstra [44].

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.32 (1-35)

32 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
9. Related work

Graph representations The immediate practical applicability of our recursion schemes is based on Gill’s idea of turning the
implicit sharing information in a Haskell expression into an explicit graph representation [32]; thus making sharing visible.
The twist of our work is, however, that we provide recursion schemes that are – from the outside – oblivious to sharing,
but – under the hood – exploit the sharing information for efficiency.

Oliveira and Cook [54] introduced a purely functional representation of graphs, called structured graphs, using Chlipala’s
parametric higher-order abstract syntax [20]. The recursion scheme that Oliveira and Cook use is a fold generalised to (cyclic)
graphs. For a number of specialised instances, e.g. map on binary trees and fold on streams, the authors provide laws for
equational reasoning. Oliveira and Löh [55] generalised structured graphs to indexed data structures with particular focus
on EDSLs. Bahr [7] used structured graphs to lift compiler implementations and their correctness proofs from trees to
DAGs. However, his approach is limited to folds. While AGs could be implemented as a fold on structured graphs, doing so
would incur a performance penalty due to recomputation as soon as inherited attributes are used. Moreover, the indirect
representation of sharing in structured graphs hinders a direct efficient implementation of AGs.

The Lightweight Modular Staging framework, by Rompf and Odersky [60], allows its internal graph representation to
be traversed through a tree-like interface, and the implementation takes care of the administration of avoiding duplication
in the generated code for shared nodes. However, as far as we know, there is no support for using the tree interface to
write algorithms such as our type inference, which avoids duplicated computations when shared nodes are used in different
contexts.

Buneman et al. [16] introduce the language UnQL for querying graph-structured data. Queries are based on structural
recursion, which means that the user can view the data as a tree, regardless of the underlying representation (which may
even be cyclic). The motivation behind UnQL is similar to ours; however, UnQL does not appear to support propagation and
merging of accumulating parameters (which correspond to our inherited attributes) in recursive functions. More recently,
Hidaka et al. [35] have introduced the language λF G , which is based on the underlying calculus of UnQL (called UnCAL),
but works on ordered graphs. While λF G is more expressive than UnQL, it still lacks the ability to merge accumulating
parameters.

Recursion schemes Generic recursion schemes [50] provide fixed schemes for traversing regular data types. The most com-
mon recursion scheme is the generic fold. Gibbons [31] introduced a recursion scheme for traversals with accumulating
parameters reminiscent of an AG with inherited attributes. Recursion schemes are normally defined for trees and, as such,
do not deal with sharing.

Tree compression We use DAGs as compact representations of trees with the goal of improving runtime performance of
tree traversals and tree transformations. But there are many more approaches to compress trees [62]. For example, tree
grammars have been extensively studied as compact representation for trees [49,47,17]. DAGs can only express repetition
of subtrees (i.e. common subexpressions) in order to achieve compression. Tree grammars, on the other hand, can also
express repetition of tree patterns and thus offer more opportunity for compression, which may result in an exponentially
smaller representation compared to DAGs [47]. Recently, so-called top DAGs have been introduced by Bille et al. [13], which
also can express tree pattern repetition. The downside of these more expressive representations, is the lack of recursion
schemes that both match the expressiveness of attribute grammars and our efficient implementation (cf. the discussion on
automata below). Moreover, the goal of our work is to leverage the sharing information that is already present in embedded
DSL implementations. For this purpose DAGs are sufficient; the more sophisticated compression offered by tree grammars
and top DAGs requires considerable computational effort: although there are fast approximations, finding a minimal tree
grammar is NP-hard [19] while a minimal DAG can be constructed in linear time [21].

Tree and graph automata There is a strong relationship between tree automata and attribute grammars: bottom–up accep-
tors correspond to synthesised attributes and top–down acceptors correspond to inherited attributes. The difference is that
automata are typically used to characterise tree languages and devise decision procedures, i.e. the automaton itself is the
object of interest rather than the results of its computations. Our notion of rewriting attribute grammars is derived from
tree transducers [30], i.e. tree automata that characterise tree transformations, and our representation of these automata in
Haskell is based on Hasuo et al. [33]. Our representation of AGs in Haskell is taken from Bahr’s modular tree automata [6],
which are in turn derived from representations of tree automata based on the work of Hasuo et al. [33]. However, we
slightly adjusted the representation of top–down state propagation to obtain a more abstract interface that allowed us to
implement semantic functions of inherited attributes more efficiently. Moreover, we derived our notion of parametric at-
tribute grammars from Bahr and Day [11], who recognised that the addition of parametricity in the state space corresponds
to the generalisation of tree transducers to macro tree transducers [25].

While a number of generalisations of tree automata to graphs have been studied, a unified notion of graph automata
remains elusive [59]. Only specialised graph automata for particular applications have been proposed thus far, and our notion
of AGs on DAGs falls into this category as well. There are some automata models that come close to our approach. However,
they either cause recomputation in case of conflicting top–down state (instead of providing a resolution operator ⊕) [47,29],
restrict themselves to bottom–up state propagation only [18,3,26], or assume that the in-degree of nodes is fixed for each

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.33 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 33
node label (i.e. data constructor) [37,58]. Either approach is too restrictive for the application we have demonstrated in this
paper. Moreover, none of these automata models allow for interdependency between bottom–up and top–down state.

Kobayashi et al. [43] consider a much more general form of compact tree representations than just DAGs: programs that
produce trees. The authors study and implement tree transducers on such compact tree representations. To this end, they
consider generalised finite state transformations (GFSTs) [24], which subsume both bottom–up and top–down transducers.
However, GFSTs only provide top–down state propagation. Bottom–up state propagation has to be encoded inefficiently and
is restricted to finite state spaces.

Attribute grammars [52] were the first to present an embedding of AGs directly into Haskell with the aim of composition-
ality of AG definitions. Viera et al. [66] presented an improved embedding that also ensured static well-formedness of AG
definitions. They do not rely on a specific representation of trees as we do, but instead make heavy use of Template Haskell
in order to derive the necessary infrastructure. As a result, their approach is applicable to a wider variety of data types. At
the same time, however, this approach excludes transparent execution of thus defined AGs on graph structures. Nonetheless,
one could imagine using Template Haskell to also produce an appropriate, specialised DAG type that corresponds to a given
algebraic data type.

The idea to utilise the structure of attributes that happen to be tree-structured – as our parametric AGs from section 6
do – also appears in the literature on AGs, albeit with a different motivation: so-called higher-order attribute grammars [67]
permit the execution of the AG nested within those tree-structured attributes. By composing parametric AGs sequentially
similarly to the composition of tree transducers [30], we can achieve the same effect.

Higher-order attribute grammars implicitly introduce sharing when duplicating higher-order attributes. Saraiva et al. [63]
exploit this sharing for their implementation of incremental attribute evaluation. Their goal, however, is different from ours:
the sharing structure makes equality tests, which are necessary for incremental evaluation, cheaper and increases cache hits.

There is a large body of work on reference AGs [34,23,48,64,28], an extension of AGs that allows attributes to be refer-
ences to nodes in the tree. This is similar to our notion of parametric AGs, where attributes may be (or contain) references
to nodes in the tree (or DAG). However, the references in reference AGs are to nodes in the original input tree and the se-
mantic functions have access to the attributes of referenced nodes. Thus, reference AGs permit very flexible non-local access
of attributes. In contrast, parametric attributes contain references to nodes in the trees (or DAGs) that are constructed as
output, and such nodes have no attributes themselves. The references in reference AGs are also different from the sharing
structure that we consider in this paper: we consider sharing that is inherent in the input (in the form of a DAG structure),
whereas the sharing in a reference AGs is part of the dynamic behaviour of the AG. Recent implementations of reference
attribute grammars [64,28] use caching that utilises this sharing structure to avoid recomputation of attributes for shared
subtrees.

Data flow analysis Despite the difference in their application, there is some similarity between our correspondence theorems
for simple AGs and the soundness results for data flow analysis (DFA) [2]. In particular, variants of Theorem 2 also appear
in the literature on DFA. In the context of DFA, these soundness results are formulated as follows: the maximum fixpoint
(MFP) is bounded by the meet over all paths (MOP). The MFP roughly corresponds to the run of an AG on a DAG, whereas
the individual paths in the MOP correspond to the run of an AG on a tree. However, there are a number of important
differences.

First of all we only consider acyclic graphs, whereas DFA typically considers cyclic graphs. As a consequence, there are
stronger requirements for DFA, in particular, the ordering has to have finite height. Secondly, AGs perform bidirectional
computations, whereas DFA typically only considers unidirectional problems, i.e. either forward or backwards analyses. But
there are also DFA frameworks that do support bidirectional analyses [38,39].

The differences become more pronounced if we consider the parametric AGs described in section 6, which allow us
to implement sharing-preserving graph transformations. The closest analogue in the DFA literature is an approach that
interleaves unidirectional DFA with transformation steps [45]. However, we are not aware of a DFA framework that combines
bidirectional analyses with graph transformations.

Overloaded projections The ∈ type class and the pr method provide projection of single attributes from a collection of
attributes. Class-based encodings of projections have been used in various other contexts. For example, the “classy optics”
method [68] gives a general way to create functional lenses that focus on sub-structures based on their type rather than
their position in the structure. Lenses are move powerful than pr as they provide both a “getter function” (projection) and
a “setter function” that replaces the sub-structure in focus.

10. Discussion and future work

We have presented a technique that allows us to represent trees as compact DAGs, yet process them as if they were
trees. The distinguishing feature of our approach is that it avoids recomputation for shared nodes even in the case of
interdependent bottom–up and top–down propagation of information. This approach is supported by complementing corre-
spondence theorems to prove the soundness of the shift from trees to DAGs. In particular, correspondence by monotonicity
(Theorems 2 and 5) provides a widely applicable proof principle since it is parametric in the quasi-order. We have presented

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.34 (1-35)

34 P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–•••
four examples for which correspondence by monotonicity gives useful results: leavesBelow, typeInf , gateDelay and simplify
(cf. [10] for the formal argument).

A difficult obstacle in this endeavour is ensuring termination of the resulting graph traversals. As we have shown, for
some instances, such as type inference, termination can only be guaranteed if further assumptions are made on the structure
of the input DAG. A priority for future work is to find more general principles that allow us to reason about termination on
a higher level analogous to the correspondence theorems we presented. We already made some progress in this direction as
Theorem 1, Theorem 3 and, to a limited degree, Proposition 2 allowed us to infer termination of graph traversals. A potential
direction for improvement is a stricter notion of non-circularity that guarantees termination of AGs on DAGs. A simple
approximation of this could be for example a coarser notion of dependency: if an attribute a depends on attribute b, then
b may not depend on a. The resulting notion of non-circularity would for example prove that the AG corresponding to
leavesBelow from the introduction terminates on DAGs.

Another direction for future work is to extend the expressive power of our recursion scheme:

• Extend AGs with fixpoint iteration [51,27,61] to deal with cyclic graphs and to implement analyses based on abstract
interpretation.

• Support a wider class of data types, e.g. mutually recursive data types and GADTs. Both should be possible using
well-known techniques from the literature [36,69].

• Support deep pattern matching in AGs. This can be done by extending the Inh, Syn, and Rewrite type with a param-
eter that can partially uncover nested subtrees. Deep patterns would make it easier to express e.g. rewrite rules in a
compiler.

Acknowledgements

We would like to thank the attendees of PEPM 2015 as well as the anonymous referees for their insightful comments
and suggestions. The first author is funded by the Danish Council for Independent Research, Grant 12-132365. The second
author is funded by the Swedish Foundation for Strategic Research, under grant RAWFP.

References

[1] M. Abbott, T. Altenkirch, N. Ghani, Categories of containers, in: FoSSaCS, 2003.
[2] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools, Addison–Wesley Longman Publishing Co., Inc., Boston, MA, USA,

ISBN 0-201-10088-6, 1986.
[3] S. Anantharaman, P. Narendran, M. Rusinowitch, Closure properties and decision problems of dag automata, Inf. Process. Lett. 94 (5) (2005) 231–240.
[4] E. Axelsson, Functional programming enabling flexible hardware design at low levels of abstraction, PhD thesis, Chalmers University of Technology,

2008.
[5] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård, A. Persson, M. Sheeran, J. Svenningsson, A. Vajda, Feldspar: a domain specific

language for digital signal processing algorithms, in: MEMOCODE, 2010.
[6] P. Bahr, Modular tree automata, in: MPC, 2012.
[7] P. Bahr, Proving correctness of compilers using structured graphs, in: M. Codish, E. Sumii (Eds.), Functional and Logic Programming, in: Lecture Notes

in Computer Science, vol. 8475, Springer International Publishing, 2014, pp. 221–237.
[8] P. Bahr, E. Axelsson, Associated source code repository, https://github.com/emilaxelsson/ag-graph.
[9] P. Bahr, E. Axelsson, Generalising tree traversals to dags: exploiting sharing without the pain, in: Proceedings of the 2015 Workshop on Partial Evalua-

tion and Program Manipulation, ACM, New York, NY, USA, Jan. 2015, pp. 27–38.
[10] P. Bahr, E. Axelsson, Generalising tree traversals to DAGs: exploiting sharing without the pain, Technical report, with full proofs, 2015, available from

authors’ web site http://www.diku.dk/~paba/ag-dag.pdf.
[11] P. Bahr, L.E. Day, Programming macro tree transducers, in: WGP, 2013.
[12] M. Barr, C. Wells, Toposes, Triples and Theories, 1st edition, Springer, New York, 1984.
[13] P. Bille, I.L. Gørtz, G.M. Landau, O. Weimann, Tree compression with top trees, Inf. Comput. 243 (0) (2015) 166–177, 40th International Colloquium on

Automata, Languages and Programming (ICALP 2013).
[14] R. Bird, Using circular programs to eliminate multiple traversals of data, Acta Inform. 21 (3) (1984) 239–250.
[15] R. Bird, J. Gibbons, S. Mehner, J. Voigtländer, T. Schrijvers, Understanding idiomatic traversals backwards and forwards, in: Haskell, 2013.
[16] P. Buneman, M. Fernandez, D. Suciu, UnQL: a query language and algebra for semistructured data based on structural recursion, VLDB J. 9 (1) (2000)

76–110.
[17] G. Busatto, M. Lohrey, S. Maneth, Efficient memory representation of XML document trees, Inf. Syst. (ISSN 0306-4379) 33 (4–5) (2008) 456–474,

Selected Papers from the Tenth International Symposium on Database Programming Languages (DBPL 2005).
[18] W. Charatonik, Automata on DAG representations of finite trees, Research report, Max-Planck-Institut für Informatik, March 1999.
[19] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat, The smallest grammar problem, IEEE Trans. Inf. Theory

(ISSN 0018-9448) 51 (7) (July 2005) 2554–2576.
[20] A. Chlipala, Parametric higher-order abstract syntax for mechanized semantics, in: ICFP, 2008.
[21] P.J. Downey, R. Sethi, R.E. Tarjan, Variations on the common subexpression problem, J. ACM (ISSN 0004-5411) 27 (4) (1980) 758–771, http://dx.doi.org/

10.1145/322217.322228.
[22] R.A. Eisenberg, D. Vytiniotis, S. Peyton Jones, S. Weirich, Closed type families with overlapping equations, in: POPL, 2014.
[23] T. Ekman, G. Hedin, The JastAdd system — modular extensible compiler construction, Sci. Comput. Program. (ISSN 0167-6423) 69 (1–3) (2007) 14–26.
[24] J. Engelfriet, Bottom–up and top–down tree transformations — a comparison, Math. Syst. Theory 9 (2) (1975) 198–231.
[25] J. Engelfriet, H. Vogler, Macro tree transducers, J. Comput. Syst. Sci. 31 (1) (1985) 71–146.
[26] B. Fila, S. Anantharaman, Running tree automata on trees and/or dags, Technical report, LIFO, 2006.
[27] J. Fokker, S.D. Swierstra, Abstract interpretation of functional programs using an attribute grammar system, in: LDTA, 2009.
[28] N. Fors, G. Cedersjö, G. Hedin, JavaRAG: a java library for reference attribute grammars, in: Proceedings of the 14th International Conference on

Modularity, ACM, New York, NY, USA, ISBN 978-1-4503-3249-1, 2015, pp. 55–67.

http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6162626F74743033666F7373616373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib61686F3836626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib61686F3836626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib616E616E74686172616D616E303569706Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6178656C73736F6E32303038706864s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6178656C73736F6E32303038706864s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6178656C73736F6E3230313066656C6473706172s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6178656C73736F6E3230313066656C6473706172s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib62616872323031326D6F64756C6172s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib626168723134666C6F7073s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib626168723134666C6F7073s1
https://github.com/emilaxelsson/ag-graph
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6261687231357065706Ds1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6261687231357065706Ds1
http://www.diku.dk/~paba/ag-dag.pdf
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib626168723133776770s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib626172723834626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib62696C6C6531356963s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib62696C6C6531356963s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib62697264313938347573696E67s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6269726431336861736B656C6Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib62756E656D616E32303030756E716Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib62756E656D616E32303030756E716Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6275736174746F30386973s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6275736174746F30386973s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6368617261746F6E696B3939726570s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib63686172696B6172303569746974s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib63686172696B6172303569746974s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib63686C6970616C61303869636670s1
http://dx.doi.org/10.1145/322217.322228
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib656973656E626572673134706F706Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib656B6D616E3037736370s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib656E67656C667269657437356D7374s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib656E67656C667269657438356A637373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib66696C613036726570s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib666F6B6B657230396C647461s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib666F727331356D6F64756C6172697479s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib666F727331356D6F64756C6172697479s1
http://dx.doi.org/10.1145/322217.322228

JID:SCICO AID:1997 /FLA [m3G; v1.175; Prn:31/03/2016; 15:11] P.35 (1-35)

P. Bahr, E. Axelsson / Science of Computer Programming ••• (••••) •••–••• 35
[29] A. Fujiyoshi, Recognition of directed acyclic graphs by spanning tree automata, Theor. Comput. Sci. 411 (38–39) (2010) 3493–3506.
[30] Z. Fülöp, H. Vogler, Syntax-Directed Semantics: Formal Models Based on Tree Transducers, Springer-Verlag, New York, 1998.
[31] J. Gibbons, Generic downwards accumulations, Sci. Comput. Program. 37 (2000) 37–65.
[32] A. Gill, Type-safe observable sharing in Haskell, in: Haskell, 2009.
[33] I. Hasuo, B. Jacobs, T. Uustalu, Categorical views on computations on trees (extended abstract), in: ICALP, 2007.
[34] G. Hedin, Reference attributed grammars, Informatica (Slovenia) 24 (3) (2000) 301–317.
[35] S. Hidaka, K. Asada, Z. Hu, H. Kato, K. Nakano, Structural recursion for querying ordered graphs, in: Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming, ACM, New York, NY, USA, 2013, pp. 305–318.
[36] P. Johann, N. Ghani, Foundations for structured programming with GADTs, in: POPL, 2008.
[37] T. Kamimura, G. Slutzki, Transductions of dags and trees, Math. Syst. Theory 15 (1) (1981) 225–249.
[38] U.P. Khedker, D.M. Dhamdhere, A generalized theory of bit vector data flow analysis, ACM Trans. Program. Lang. Syst. 16 (5) (1994) 1472–1511.
[39] U.P. Khedker, D.M. Dhamdhere, A. Mycroft, Bidirectional data flow analysis for type inferencing, Comput. Lang. Syst. Struct. (ISSN 1477-8424) 29 (1–2)

(2003) 15–44.
[40] O. Kiselyov, Implementing explicit and finding implicit sharing in embedded DSLs, in: DSL, 2011.
[41] D. Knuth, Semantics of context-free languages: correction, Math. Syst. Theory 5 (2) (1971) 95–96.
[42] D.E. Knuth, Semantics of context-free languages, Theory Comput. Syst. 2 (2) (1968) 127–145.
[43] N. Kobayashi, K. Matsuda, A. Shinohara, K. Yaguchi, Functional programs as compressed data, High.-Order Symb. Comput. (2013) 1–46.
[44] M.F. Kuiper, S.D. Swierstra, Using attribute grammars to derive efficient functional programs, Technical report RUU-CS-86-16, Department of Information

and Computing Sciences, Utrecht University, 1986.
[45] S. Lerner, D. Grove, C. Chambers, Composing dataflow analyses and transformations, in: POPL, 2002, pp. 270–282.
[46] J.R. Lewis, J. Launchbury, E. Meijer, M.B. Shields, Implicit parameters: dynamic scoping with static types, in: POPL, 2000.
[47] M. Lohrey, S. Maneth, The complexity of tree automata and XPath on grammar-compressed trees, Theor. Comput. Sci. (ISSN 0304-3975) 363 (2) (2006)

196–210, Implementation and Application of Automata 10th International Conference on Implementation and Application of Automata (CIAA 2005).
[48] E. Magnusson, G. Hedin, Circular reference attributed grammars — their evaluation and applications, Sci. Comput. Program. (ISSN 0167-6423) 68 (1)

(2007) 21–37, http://www.sciencedirect.com/science/article/pii/S0167642307000767, Special issue on the {ETAPS} 2003 Workshop on Language De-
scriptions, Tools and Applications (LDTA’03).

[49] S. Maneth, G. Busatto, Tree transducers and tree compressions, in: I. Walukiewicz (Ed.), Foundations of Software Science and Computation Structures,
in: Lecture Notes in Computer Science, vol. 2987, Springer, Berlin, Heidelberg, ISBN 978-3-540-21298-0, 2004, pp. 363–377.

[50] E. Meijer, M. Fokkinga, R. Paterson, Functional programming with bananas, lenses, envelopes and barbed wire, in: Functional Programming Languages
and Computer Architecture, in: LNCS, vol. 523, Springer, 1991, pp. 124–144.

[51] A. Middelkoop, Inference with attribute grammars, PhD thesis, Universiteit Utrecht, Feb. 2012.
[52] O.D. Moor, K. Backhouse, S.D. Swierstra, First-class attribute grammars, Informatica 24 (2000) 2000.
[53] D.R. Morrison, PATRICIA—practical algorithm to retrieve information coded in alphanumeric, J. ACM (ISSN 0004-5411) 15 (4) (Oct. 1968) 514–534.
[54] B.C. Oliveira, W.R. Cook, Functional programming with structured graphs, in: ICFP, 2012.
[55] B.C.d.S. Oliveira, A. Löh, Abstract syntax graphs for domain specific languages, in: PEPM, 2013.
[56] S. Peyton Jones, S. Marlow, Secrets of the Glasgow Haskell Compiler inliner, J. Funct. Program. 12 (2002) 393–434.
[57] B.C. Pierce, D.N. Turner, Local type inference, ACM Trans. Program. Lang. Syst. 22 (1) (Jan. 2000) 1–44.
[58] D. Quernheim, K. Knight, Dagger: a toolkit for automata on directed acyclic graphs, in: FSMNLP, 2012.
[59] J.-C. Raoult, Problem #70: design a notion of automata for graphs, http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/70.html, 2005, The RTA list of

open problems.
[60] T. Rompf, M. Odersky, Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs, in: GPCE, 2010.
[61] M. Rosendahl, Abstract interpretation using attribute grammars, in: WAGA, 1990.
[62] S. Sakr, XML compression techniques: a survey and comparison, J. Comput. Syst. Sci. (ISSN 0022-0000) 75 (5) (2009) 303–322.
[63] J. Saraiva, D. Swierstra, M. Kuiper, Functional incremental attribute evaluation, in: Compiler Construction, 2000.
[64] A.M. Sloane, L.C. Kats, E. Visser, A pure embedding of attribute grammars, Sci. Comput. Program. (ISSN 0167-6423) 78 (10) (2013) 1752–1769,

http://dx.doi.org/10.1016/j.scico.2011.11.005, Special section on Language Descriptions Tools and Applications (LDTA’08 & ’09) & Special section on
Software Engineering Aspects of Ubiquitous Computing and Ambient Intelligence (UCAmI 2011).

[65] T. Uustalu, V. Vene, Coding recursion à la Mendler, in: Proceedings of 2nd Workshop on Generic Programming, 2000.
[66] M. Viera, S.D. Swierstra, W. Swierstra, Attribute grammars fly first-class, in: ICFP, 2009.
[67] H.H. Vogt, S.D. Swierstra, M.F. Kuiper, Higher order attribute grammars, in: PLDI, 1989.
[68] G. Wilson, Getting the most out of monad transformers, https://github.com/gwils/next-level-mtl-with-classy-optics (accessed on Jan. 13, 2016).
[69] A.R. Yakushev, S. Holdermans, A. Löh, J. Jeuring, Generic programming with fixed points for mutually recursive datatypes, in: ICFP, 2009.

http://refhub.elsevier.com/S0167-6423(16)00082-4/bib66756A69796F7368693130746373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib66756C6F703938626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib676962626F6E733230303067656E65726963s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib67696C6C3230303974797065s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib686173756F30376963616C70s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib686564696E3030696E666F726D6174696361s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib686964616B61313369636670s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib686964616B61313369636670s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6A6F68616E6E3038706F706Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B616D696D75726138316D7374s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B6865646B65723934746F706C6173s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B6865646B65723033636C7373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B6865646B65723033636C7373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B6973656C796F7632303131696D706C656D656E74696E67s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B6E75746837316D7374s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B6E7574683638746373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B6F626179617368693133687363s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B7569706572383674656368s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6B7569706572383674656368s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6C65726E65723032706F706Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6C657769733030706F706Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6C6F687265793036746373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6C6F687265793036746373s1
http://www.sciencedirect.com/science/article/pii/S0167642307000767
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6D616E6574683034666F7373616373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6D616E6574683034666F7373616373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6D65696A65723139393166756E6374696F6E616Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6D65696A65723139393166756E6374696F6E616Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6D696464656C646F72703132706864s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6D6F6F723030696E66s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6D6F727269736F6E36386A61636Ds1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6F6C6976656972613230313266756E6374696F6E616Cs1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib6F6C69766569726131337065706Ds1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib706579746F6E3230303273656372657473s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib7069657263653030746F706C6173s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib717565726E6865696D313266736D6E6C70s1
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/70.html
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib726F6D7066323031306C69676874776569676874s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib726F73656E6461686C393077616761s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib73616B7230396A637373s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib7361726169766130306363s1
http://dx.doi.org/10.1016/j.scico.2011.11.005
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib75757374616C753030776770s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib7669657261303969636670s1
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib766F67743839706C6469s1
https://github.com/gwils/next-level-mtl-with-classy-optics
http://refhub.elsevier.com/S0167-6423(16)00082-4/bib79616B7573686576303969636670s1

	Generalising tree traversals and tree transformations to DAGs: Exploiting sharing without the pain
	1 Introduction
	2 Running example
	2.1 Type inference

	3 Attribute grammars
	3.1 Synthesised attributes
	3.2 Inherited attributes
	3.3 Combining semantic functions to attribute grammars
	3.4 Example: leavesBelow
	3.5 Example: Richard Bird's repmin
	3.6 Informal semantics

	4 Attribute grammars on DAGs
	4.1 Trees vs. DAGs
	4.2 Termination of attribute grammars
	4.3 Correspondence by monotonicity
	4.4 Observing the sharing

	5 Semantics
	5.1 Trees and DAGs
	5.2 Attribute grammars and their semantics
	5.3 Copying attribute grammars
	5.4 Correspondence by monotonicity

	6 Transforming and constructing DAGs
	6.1 Special case: simple rewriting
	6.2 Parametric attribute grammars
	6.3 Semantics

	7 Extended example
	7.1 Practical relevance

	8 Implementation
	8.1 Representation of DAGs
	8.2 Implementing attribute grammars on trees and DAGs
	8.2.1 Preparations
	8.2.2 Implementing attribute grammars on trees
	8.2.3 Implementing attribute grammars on DAGs
	8.2.4 Implementation of PAGs

	8.3 Performance results

	9 Related work
	10 Discussion and future work
	Acknowledgements
	References

