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1 The Calculus

1.1 Syntax

We assume countably infinite and mutually disjoint sets of Var term variables, TV, of tick variables
and CV of clock variables.

We define untyped types and terms.

s, t, u, A,B ::= Πx : A.B | Σx : A.B | .α : κ.A | ∀κ.A | 1 | Bool | Nat | U | El (A)

| Π̂x : A.B | Σ̂x : A.B | .̂ α : κ.A | ∀̂κ.A | 1̂ | ˆBool | N̂at
| x | λx : A.t | t u | 〈t, u〉 | π1t | π2t
| λα : κ.t | t [α] | Λκ.t | t[κ]
| dfixκ t | unfoldα t | foldα t
| 〈〉 | true | false | if s t u | 0 | suc t | rec t u v

Where x ranges over the set Var of term variables; κ ranges over the set CV of clock variables;
and α ranges over the set TV∪{�} of tick variables and the tick constant � – except for tick binders
(terms of the form λα : κ.t, .α : κ.A, and .̂ α : κ.A) where α ranges over the set TV of tick variables
only. Given a term t, we write fv(t) for the set of free (term and tick) variables in t, and fc(t) for
the set of all free clock variables in t.

1.2 Reduction

The reduction relation on terms is defined as the least relation closed under contexts (i.e. s t
implies C[s] C[t]) than satisfies the conditions in Figure 1. Note that the side condition α 6∈ fv(t)
in (back-next) and (next-back) is always met for well-typed terms. We write ∗ for the reflexive,
transitive closure, + for the transitive closure, = for the reflexive closure, and ∗ for the
symmetric, transitive closure of .

Lemma 1.1. If s t, then fv(t) ⊆ fv(s) and fc(t) ⊆ fc(s).

Proof. Straightforward by case analysis of s t.
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(λx : A.t)s t [s/x]

(Λκ.t)[κ′] t [κ′/κ]

(λα′ : κ.t) [α] t [α/α′] (back-next)

λα : κ.(t [α]) t if α 6∈ fv(t) (next-back)

(dfixκ t) [�] t (dfixκ t)

fold�t t (fold)

unfold�t t (unfold)

πi 〈t1, t2〉 ti

if true t1 t2 t1

if false t1 t2 t2

rec 0 t s t

rec (suc t1) t2 t3 t3 t1 (rec t1 t2 t3)

(Λκ.t[κ]) t if κ 6∈ fc(t) (clock-eta)

El
(

Π̂x : s. t
)

Πx : El (s) .El (t)

El
(

Σ̂x : s. t
)

Σx : El (s) .El (t)

El
(

N̂at
)

Nat

El
(

1̂
)

1

El
(

ˆBool
)

Bool

El
(
∀̂κ.t

)
∀κ.El (t)

El (.̂ α : κ.t) .α : κ.El (t)

Figure 1: Reduction relation on terms.
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1.3 Typing Rules

Typing judgements are of the form Γ `∆ t : A, where t is a term, A is a type, ∆ is a clock context,
and Γ is a typing context. A clock context ∆ is a finite set of clock variables. A typing context Γ
is a sequence of typings, which are of the form x : A – where x is a term variable and A is a type –
or of the form α : κ – where α is a tick variable and κ is a clock variable. We use the convention
that no (term or tick) variable may occur more than once in a typing context. For instance, in a
context Γ, x : A,Γ′, y : B, we may assume that x 6= y. We write Γ ≤ Γ′ if Γ is a prefix of Γ′, i.e. if
there is some Γ′′ such that Γ′ = Γ,Γ′′.

We write .κA and nextκ t as a shorthand for .α : κ.A and λα : κ.t, respectively, where α does
not occur freely in A and t, respectively.
Contexts:

· `∆

Γ `∆ Γ `∆ A : type

Γ, x : A `∆

Γ `∆ κ ∈ ∆

Γ, α : κ `∆

Ticks:

Γ, α : κ,Γ′ `∆ α : κ

κ ∈ ∆

Γ `∆ � : κ

Universes:

Γ `∆

Γ `∆ U : type

Γ `∆ A : U
Γ `∆ El (A) : type

El

Type formations:

Γ, x : A `∆ B : type

Γ `∆ Πx : A.B : type

Γ, α : κ `∆ A : type κ ∈ ∆

Γ `∆ .α : κ.A : type

Γ `∆,κ A : type Γ `∆

Γ `∆ ∀κ.A : type

Γ `∆

Γ `∆ 1 : type

Γ `∆

Γ `∆ Bool : type

Γ, x : A `∆ B : type

Γ `∆ Σx : A.B : type

Γ `∆

Γ `∆ Nat : type

Codes:

Γ, x : El (A) `∆ B : U
Γ `∆ Π̂x : A.B : U

Γ, α : κ `∆ A : U κ ∈ ∆

Γ `∆ .̂ α : κ.A : U
Γ `∆,κ A : U Γ `∆

Γ `∆ ∀̂κ.A : U
Γ `∆

Γ `∆ 1̂ : U

Γ, x : El (A) `∆ B : U
Γ `∆ Σ̂x : A.B : U

Γ `∆

Γ `∆
ˆBool : U

Γ `∆

Γ `∆ N̂at : U
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Typing rules:

Γ `∆ t : A A ∗ B Γ `∆ B : type

Γ `∆ t : B

Γ, x : A,Γ′ `∆

Γ, x : A,Γ′ `∆ x : A

Γ, x : A `∆ t : B

Γ `∆ λx : A.t : Πx : A.B

Γ `∆ t : Πx : A.B Γ `∆ s : A

Γ `∆ t s : B [s/x]

Γ, α : κ `∆ t : A κ ∈ ∆

Γ `∆ λα : κ.t : .α : κ.A

Γ `∆,κ t : A Γ `∆

Γ `∆ Λκ.t : ∀κ.A

Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A [κ′/κ]

Γ `∆ t : .α : κ.A Γ, α′ : κ,Γ′ `∆

Γ, α′ : κ,Γ′ `∆ t [α′] : A [α′/α]

Γ `∆,κ t : .α : κ.A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A [κ′/κ] [�/α]

Γ `∆

Γ `∆ 〈〉 : 1

Γ `∆ Σx : A.B : type Γ `∆ t : A Γ `∆ s : B [t/x]

Γ `∆ 〈t, s〉 : Σx : A.B

Γ `∆ t : Σx : A.B

Γ `∆ π1 t : A

Γ `∆ t : Σx : A.B

Γ `∆ π2 t : B [π1 t/x]

Γ `∆

Γ `∆ true : Bool

Γ `∆

Γ `∆ false : Bool

Γ `∆ t : Bool Γ `∆ u : A [true/x] Γ `∆ v : A [false/x] Γ `∆ A [t/x] : type

Γ `∆ if t u v : A [t/x]

Γ `∆

Γ `∆ 0 : Nat

Γ `∆ t : Nat

Γ `∆ suc t : Nat

Γ `∆ t : Nat Γ `∆ u : A [0/x] Γ `∆ v : Πx : Nat.A→ A [suc x/x] Γ `∆ A [t/x] : type

Γ `∆ rec t u v : A [t/x]

Γ `∆ t : .κA→ A

Γ `∆ dfixκ t : .κA

Γ `∆ t : El (((dfixκ F ) [α])u) Γ `∆ F : .κ (A→ U)→ (A→ U) Γ `∆ u : A

Γ `∆ unfoldα t : El (F (dfixκ F )u)

Γ `∆ t : El (F (dfixκ F )u) Γ `∆ α : κ

Γ `∆ foldα t : El (((dfixκ F ) [α])u)

We use the notation Γ `∆ t : T , where T is either a type A – in which case the notation refers to
the judgement Γ `∆ t : A – or the symbol type – in which case the notation refers to the judgement
Γ `∆ t : type.

Lemma 1.2. If Γ `∆ t : T , then fv(t), fv(T ) ⊆ dom (Γ) and fc(t), fc(T ) ⊆ ∆.

Proof. By straightforward induction on Γ `∆ t : T .

4



Lemma 1.3. If Γ `∆ t : A, then Γ `∆ A : type, which in turn implies Γ `∆. Moreover, the
derivations of Γ `∆ A : type and Γ `∆ are at most the size of the derivation of Γ `∆ t : A.

Proof. By straightforward induction on Γ `∆ t : A and Γ `∆ A : type, respectively.

Lemma 1.4. If Γ `∆ El (A) : type, then Γ `∆ A : U . Moreover, the derivation of Γ `∆ A : U is
smaller than that of Γ `∆ El (A) : type.

Proof. The judgement Γ `∆ El (A) : type can only be derived by the rules Tick-Exc and refruleEl.
Hence, Γ `∆ El (A) : type is derived by El followed by a number of applications of the Tick-Exc,
which means that we have Γ′ `∆ A : U , where Γ′ is obtained from Γ by swapping neighbouring
ticks n times. By applying Tick-Exc n times we can thus derive Γ `∆ A : U .

Lemma 1.5 (weakening). If Γ `∆ t : T , and Γ,Γ′ `∆, then Γ,Γ′ `∆ t : T .

Proof. We prove the following stronger property: If Γ,Γ′ `∆ t : T , and Γ, Γ̂,Γ′ `∆, then Γ, Γ̂,Γ′ `∆

t : T . Moreover, it suffices to show this property for the case that Γ̂ is a singleton typing context.
Then the more general property follows by an inductive argument on the size of Γ̂.

Given Γ,Γ′ `∆ t : T , and Γ, Γ̂,Γ′ `∆, we can prove Γ, Γ̂,Γ′ `∆ t : T by a straightforward
induction on Γ,Γ′ `∆ t : T : In all cases, Γ, Γ̂,Γ′ `∆ t : T follows immediately from the induction
hypothesis.

1.4 Example

We use the shorthand fixκ t for the term t (dfixκ t). We write A ×̂ B for the term Σ̂x : A.B for some
variable x that does not occur freely in B and similarly A× B for the term Σx : A.B, A →̂ B for
the term Π̂x : A.B, and A→ B for the term Πx : A.B.

We define the type Strκ of guarded streams over natural numbers as follows:

Strκ := El
(

fixκ(λx : .κ U .N̂at ×̂ .̂ α : κ.x [α])
)

The type Strκ reduces to the following normal form

Strκ ∗
nf Nat× .α : κ.Strκα

where
Strκα := El

(
(dfixκ(λx : .κ U .N̂at ×̂ .̂ α : κ.x [α])) [α]

)
Let S = λx : .κ U .N̂at ×̂ .̂ α : κ.x [α], i.e. Strκ = El (fixκS). In a context containing α : κ,

foldα and unfoldα convert between Strκα and Strκ, i.e. given t : Strκ, we have foldα t : Strκα and given
s : Strκα we have unfoldα t : Strκ.

Hence, we can define consκ, tlκ, and hdκ as follows:

consκ : Nat→ .κ Strκ → Strκ

consκ := λx : Nat.λy : .κ Strκ. 〈x, λα : κ.foldα(y [α])〉
hdκ : Strκ → Nat

hdκ := λx : Strκ.π1 x

tlκ : Strκ → .κ Strκ

tlκ := λx : Strκ.λα : κ.unfoldα((π2 x) [α])
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The type Str of coinductive streams is defined by clock quantification:

Str := ∀κ.Strκ

The functions consκ, tlκ, and hdκ are straightforwardly lifted to coinductive streams assuming a
fixed clock constant κ0:

cons : Nat→ Str→ Str

cons := λx : Nat.λy : Str.Λκ.consκ x (nextκ y [κ])

hd : Str→ Nat

hd := λx : Str.hdκ0 (x [κ0])

tl : Str→ .κ Str

tl := λx : Str.Λκ.(tlκ (x [κ])) [�]

We can define the following function eo that removes every other element of the input stream

eoκ : Str→ Strκ

eoκ := fixκ(λf : .κ(Str→ Strκ).λx : Str.consκ (hdx) (λα : κ.(f [α]) (tl (tlx))))

eo : Str→ Str

eo := λx : Str.Λκ.eoκ x

and the function nth that returns the n-th element of a coinductive stream

nth : Nat→ Str→ Nat

nth := λn : Nat.recn (λx : Str.x) (λm : Nat.λf : Str→ Nat.λx : Str.f (tlx))

1.5 Substitutions

We consider two kinds of substitutions. The first kind are clock substitutions σ : ∆→ ∆′, which are
simply mappings between clock contexts ∆ and ∆′. The second kind are term-and-tick substitutions
(or just substitutions for short), which act on term variables and tick variables. We define well-
formed substitutions inductively as follows. We define well-formed clock substitutions σ, and term-
and-tick substitutions γ from a context Γ′ `∆′ to a context Γ `∆, written (σ, γ) : Γ′ `∆′ → Γ `∆:

σ : ∆→ ∆′ Γ′ `∆′

(σ, ·) : Γ′ `∆′ → · `∆

Subst-Empty

(σ, γ) : Γ′ `∆′ → Γ `∆ Γ `∆ A : type Γ′ `∆′ t : (Aσ)γ x 6∈ dom (Γ)

(σ, γ [x 7→ t]) : Γ′ `∆′ → Γ, x : A `∆

Subst-Var

(σ, γ) : Γ′ `∆′ → Γ `∆

α 6∈ dom (Γ) β 6∈ dom (Γ′) Γ′, β : σ(κ),Γ′′ `∆′ κ ∈ ∆

(σ, γ [α 7→ β]) : Γ′, β : σ(κ),Γ′′ `∆′ → Γ, α : κ `∆

Subst-Tick-Var

(σ, γ) : Γ′ `∆′,σ(κ) → Γ `∆ α 6∈ dom (Γ) κ ∈ ∆ κ′ ∈ ∆′ Γ′ `∆′

([κ′/σ(κ)] ◦ σ, (γ [κ′/σ(κ)]) [α 7→ �]) : Γ′ `∆′ → Γ, α : κ `∆

Subst-Tick-Const
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Lemma 1.6. If (σ, γ) : Γ′ `∆′ → Γ `∆, then Γ `∆ and Γ′ `∆′ .

Proof. Straightforward by induction on (σ, γ) : Γ′ `∆′ → Γ `∆.

Lemma 1.7. Given two clock substitutions σ : ∆→ ∆′, τ : ∆′ → ∆′′, we have that (t σ)τ = t(τ ◦σ)
for any term t with fc(t) ⊆ ∆.

Proof. Straightforward induction on the structure of t.

Lemma 1.8. Given a clock substitutions σ and a (term and tick) substitution γ, we have that
(t γ)σ = (t σ)(γ σ), where γ σ is the substitution given as follows: (γ σ)(x) = γ(x)σ for all variables
x ∈ dom (γ) and (γ σ)(α) = γ(α) for all tick variables α ∈ dom (γ). In particular, we have that
(t [s/x])σ = (t σ) [s σ/x].

Proof. Straightforward induction on the structure of t.

Lemma 1.9. If s t, then s σ t σ for any clock substitution σ.

Proof. This property follows by a straightforward case analysis of s t.

Lemma 1.10. If σ : ∆→ ∆′, then

(i) Γ `∆ implies Γσ `∆′ , and

(ii) Γ `∆ t : T implies Γσ `∆′ t σ : T σ.

Proof. We proceed by induction on Γ `∆ and Γ `∆ t : T , respectively. All cases that involve
neither a changing clock environment nor a clock substitution follow immediately from the induction
hypothesis (in some cases with the help of Lemma 1.8). The remaining cases are detailed below:

•
Γ `∆,κ A : type Γ `∆

Γ `∆ ∀κ.A : type
We have that (∀κ.A)σ = ∀κ′.A σ′, where σ′ = σ [κ 7→ κ] for some fresh clock variable κ′, i.e.
σ′ : (∆, κ)→ (∆′, κ′). Hence, by induction hypothesis we have that Γσ′ `∆′,κ′ Aσ′ : type and
Γ, σ `∆′ . Since Γ `∆, we know that Γσ′ = Γσ. Hence, Γσ `∆′,κ′ Aσ : type, which implies
that Γσ `∆′ ∀κ′.A σ′ : type.

•
Γ `∆,κ A : U Γ `∆

Γ `∆ ∀̂κ.A : U ,

Γ `∆,κ t : A Γ `∆

Γ `∆ Λκ.t : ∀κ.A
Both cases follow by a similar argument to the case for ∀κ.A above.

•
Γ `∆ t : A A ∗ B Γ `∆ B : type

Γ `∆ t : B

By Lemma 1.9 A ∗ B implies Aσ ∗ B σ. Hence, Γσ `∆ t σ : B σ follows from the
induction hypotheses.

•
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A [κ′/κ]
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By induction hypothesis we obtain that Γσ `∆′ t σ : ∀κ′′.A σ′ where σ′ = σ [κ 7→ κ′′] for
some fresh clock variable κ′′. Hence, Γσ `∆′ (t σ)[σ(κ′)] : (Aσ′) [σ(κ′)/κ′′]. By Lemma 1.7
we have that (A [κ′/κ])σ = (Aσ′) [σ(κ′)/κ′′], because [σ(κ′)/κ′′] ◦ σ′ = σ ◦ [κ′/κ]. Hence,
Γσ `∆′ (t [κ′])σ : (A [κ′/κ])σ.

•
Γ `∆,κ t : .α : κ.A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A [κ′/κ] [�/α]

Let κ′′ be a fresh clock variable and σ′ = σ [κ 7→ κ′′]. Hence σ′ : (∆, κ) → (∆′, κ′′). By
induction hypothesis, we thus have that Γσ′ `∆′,κ′′ t σ′ : .α : κ′′.A σ′ and Γσ `∆′ . Since
Γ `∆, we have that Γσ′ = Γσ. Hence, Γσ `∆′,κ′′ t σ′ : .α : κ′′.A σ′, and we can thus obtain
that

Γσ `∆′ ((t σ′) [σ(κ′)/κ′′]) [�] : ((Aσ′) [σ(κ′)/κ′′]) [�/α]

Because [σ(κ′)/κ′′] ◦ σ′ = σ ◦ [κ′/κ], we can use Lemma 1.7, to obtain both (A [κ′/κ])σ =
(Aσ′) [σ(κ′)/κ′′] and (t [κ′/κ])σ = (t σ′) [σ(κ′)/κ′′]. Hence, ((A [κ′/κ]) [�/α])σ = ((Aσ′) [σ(κ′)/κ′′]) [�/α]
by Lemma 1.8, and ((t [κ′/κ]) [�])σ = ((t σ′) [σ(κ′)/κ′′]) [�]. We can thus conclude that

Γσ `∆′ ((t [κ′/κ]) [�])σ : ((A [κ′/κ]) [�/α])σ

Corollary 1.11. If ∆ ⊆ ∆′, then

(i) Γ `∆ implies Γ `∆′ , and

(ii) Γ `∆ t : T implies Γ `∆′ t : T .

Proof. Special case of Lemma 1.10, where σ : ∆→ ∆′ is the inclusion map from ∆ to ∆′.

Lemma 1.12. If (σ, γ) : Γ′ `∆′ → Γ `∆ and Γ′,Γ′′ `∆′ , then (σ, γ) : Γ′,Γ′′ `∆′ → Γ `∆.

Proof. We proceed by induction on (σ, γ) : Γ′ `∆′ → Γ `∆.

• The case Subst-Empty follows from the assumption that Γ′,Γ′′ `∆′ .

• The case Subst-Var follows from the induction hypothesis and Lemma 1.5.

• The case Subst-Tick-Var follows immediately from the assumption that Γ′,Γ′′ `∆′ .

• The case Subst-Tick-Const follows from the induction hypothesis and Corollary 1.11.

Lemma 1.13. If (σ, γ) : Γ′ `∆′ → Γ `∆ and τ : ∆′ → ∆′′, then (τ ◦ σ, γ τ) : (∆′′,Γ′ τ)→ (∆,Γ).

Proof. We proceed by induction on (σ, γ) : Γ′ `∆′ → Γ `∆.

• (σ, ·) : Γ′ `∆′ → · `∆, with σ : ∆ → ∆′ and Γ′ `∆′ . Then Γ′ τ `∆′′ by Lemma 1.10. Hence,
(τ ◦ σ, ·) : Γ′ τ `∆′′ → · `∆.
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• (σ, γ [x 7→ t]) : Γ′ `∆′ → Γ, x : A `∆, with (σ, γ) : Γ′ `∆′ → Γ `∆; Γ′ `∆′ t : (Aσ)γ; and
x 6∈ dom (Γ). By Lemma 1.10, Lemma 1.7, and Lemma 1.8, we also have that Γ′ τ `∆′′ t τ :
(A (τ◦σ))(γ τ). Moreover, by induction hypothesis, we have that (τ◦σ, γ τ) : Γ′ τ `∆′′ → Γ `∆.
Consequently, we have that

(τ ◦ σ, (γ τ) [x 7→ t τ ]) : Γ′ τ `∆′′ → Γ, x : A `∆

• (σ, γ [α 7→ β]) : Γ′, β : σ(κ),Γ′′ `∆′ → Γ, α : κ `∆, with (σ, γ) : Γ′ `∆′ → Γ `∆, α 6∈ dom (Γ),
β 6∈ dom (Γ′), Γ′, β : σ(κ),Γ′′ `∆′ , and κ ∈ ∆. By induction hypothesis, we get that (τ ◦
σ, γ τ) : Γ′ τ `∆′′ → Γ `∆, and by Lemma 1.10, we get that Γ′ τ, β : τ(σ(κ)),Γ′′ τ `∆′′ . Hence,
we have that (τ ◦ σ, (γ τ) [α 7→ β]) : Γ′ τ, β : τ(σ(κ)),Γ′′ τ `∆′′ → Γ, α : κ `∆.

• ([κ′/σ(κ)] ◦ σ, (γ [κ′/σ(κ)]) [α 7→ �]) : Γ′ `∆′ → Γ, α : κ `∆, with (σ, γ) : Γ′ `∆′,σ(κ) → Γ `∆,
κ ∈ ∆, and κ′ ∈ ∆′. Let κ′′ be a fresh clock variable and τ ′ = τ [σ(κ) 7→ κ′′]. Then By
induction hypothesis, we have that (τ ′ ◦σ, γ τ ′) : Γ′τ ′ `∆′′,κ′′ → Γ `∆. Since, Γ′ `∆′ according
to Lemma 1.6, we have that Γ′ τ ′ = Γ′ τ . Hence

([τ(κ′)/(τ ′ ◦ σ)(κ)] ◦ τ ′ ◦ σ, ((γ τ ′) [τ(κ′)/(τ ′ ◦ σ)(κ)]) [α 7→ �]) : Γ′τ `∆′′ → Γ `∆

Because τ ′(σ(κ)) = κ′′, we have that [τ(κ′)/(τ ′ ◦ σ)(κ)] ◦ τ ′ = τ ◦ [κ′/σ(κ)]. Thus, we may
conclude that

(τ ◦ [κ′/σ(κ)] ◦ σ, ((γ [κ′/σ(κ)])τ) [α 7→ �]) : Γ′ τ `∆′′ → Γ′, α : κ `∆′

Given a typing context Γ and a substitution γ with dom (Γ) ⊆ dom (Γ), then we write γ � Γ to
denote the substitution γ � dom (Γ).

Lemma 1.14. If (σ, γ) : Γ′ `∆′ → Γ1,Γ2 `∆, then (σ, γ � Γ1) : Γ′ `∆′ → Γ1 `∆.

Proof. We proceed by induction on Γ2.

• Γ2 = ·. Trivial.

• Γ2 = Γ′2, x : A. That is, there is some γ′ with (σ, γ′) : Γ′ `∆′ → Γ1,Γ2 `∆, γ = γ′ [x 7→ t], and
Γ′ `∆′ t : (Aσ)γ′. By induction hypothesis, we have that (σ, γ′ � Γ1) : Γ′ `∆′ → Γ1 `∆. Since
γ′ � Γ1 = γ � Γ1, we obtain that (σ, γ � Γ1) : Γ′ `∆′ → Γ1 `∆.

• Γ2 = Γ′2, α : κ with γ(α) 6= �. Hence, there are some Γ3 and Γ4 with Γ′ = Γ3, β : σ(κ),Γ4, and
some γ′ with γ = γ′ [α 7→ β] and (σ, γ′) : Γ3 `∆′ → Γ1,Γ

′
2 `∆. By induction, we obtain that

(σ, γ′ � Γ1) : Γ3 `∆′ → Γ1 `∆, which is equivalent to (σ, γ � Γ1) : Γ3 `∆′ → Γ1 `∆ as γ′ � Γ1 =
γ � Γ1. Since Γ′ `∆′ , we can then conclude, by Lemma 1.12, that (σ, γ � Γ1) : Γ′ `∆′ → Γ1 `∆.

• Γ2 = Γ′2, α : κ with γ(α) = �. Hence, there is some κ′ ∈ ∆′, some σ′ with σ = [κ′/σ′(κ)] ◦ σ′,
and some γ′ with (σ′, γ′) : Γ′ `∆′,σ′(κ) → Γ1,Γ2 `∆. By induction hypothesis, we obtain that
(σ′, γ′ � Γ1) : Γ′ `∆′,σ′(κ) → Γ1 `∆. From this we obtain by Lemma 1.13, that (σ, (γ′ �
Γ1) [κ′/σ′(κ)]) : Γ′ [κ′/σ′(κ)] `∆′ → Γ1 `∆. Since Γ′ `∆′ by Lemma 1.6, we have that
Γ′ [κ′/σ′(κ)] = Γ. Moreover, we have that (γ′ � Γ1) [κ′/σ′(κ)] = (γ′ [κ′/σ′(κ)]) � Γ1 = γ � Γ1.
Hence, we can conclude that (σ, γ � Γ1) : Γ′ `∆′ → Γ1 `∆.
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Lemma 1.15. If (σ, γ) : Γ′ `∆′ → Γ `∆, κ 6∈ ∆, and κ′ 6∈ ∆′, then (σ [κ 7→ κ′] , γ) : Γ′ `∆′,κ′ →
Γ `∆,κ.

Proof. We proceed by induction on (σ, γ) : Γ′ `∆′ → Γ `∆.

• (σ, γ) : Γ′ `∆′ → · `∆ such that Γ′ `∆′ . Hence, also Γ′ `∆′,κ′ according to Corollary 1.11, and
thus (σ [κ 7→ κ′] , γ) : Γ′ `∆′,κ′ → Γ `∆,κ follows.

• (σ, γ [x 7→ t]) : Γ′ `∆′ → Γ1, x : A `∆ with (σ, γ) : Γ′ `∆′ → Γ1 `∆, and Γ′ `∆′ t : (Aσ)γ′. By
induction hypothesis, we obtain that (σ [κ 7→ κ′] , γ) : Γ′ `∆′,κ′ → Γ1 `∆,κ. Since, Γ1 `∆ A :
type, we have that Aσ = Aσ [κ 7→ κ′], which means that we have Γ′ `∆′ t : (Aσ [κ 7→ κ′])γ,
and by Corollary 1.11, Γ′ `∆′,κ′ t : (Aσ [κ′ 7→ κ])γ. By Corollary 1.11, we also have Γ1 `∆,κ

A : type. We can thus conclude that (σ [κ 7→ κ′] , γ [x 7→ t]) : Γ′ `∆′,κ′ → Γ1, x : A `∆,κ.

• (σ, γ [α 7→ β]) : Γ2, β : σ(κ′′),Γ3 `∆′ → Γ1, α : κ′′ `∆ with κ′′ ∈ ∆, Γ2, β : σ(κ′′),Γ3 `∆′ , γ =,
and (σ, γ) : Γ2 `∆′ → Γ1 `∆. By induction hypothesis, we obtain that (σ [κ 7→ κ′] , γ) : Γ2 `∆′,κ′ →
Γ1 `∆,κ. Since κ 6∈ ∆, we know that κ′′ 6= κ, and thus σ(κ′′) = σ [κ 7→ κ′] (κ′′). Moreover, by
Corollary 1.11, we have that Γ2, β : σ(κ′′),Γ3 `∆′,κ′ . Hence, (σ [κ 7→ κ′] , γ [α 7→ β]) : Γ2, β : σ(κ′′),Γ3 `∆′,κ′ →
Γ1, α : κ′′ `∆,κ.

• (σ◦ [κ′′′/σ(κ′′)] , (γ [κ′′′/σ′(κ′′)]) [α 7→ �]) : Γ′ `∆′ → Γ1, α : κ′′ `∆ with κ′′ ∈ ∆, κ′′′ ∈ ∆′, and
(σ, γ) : Γ′ `∆′,σ(κ′′) → Γ1 `∆. Let κ̂ be a fresh clock variable. Then, (σ [κ′ 7→ κ̂] , γ) : Γ′ `∆′,κ̂,σ(κ′′) →
Γ1 `∆,κ by induction hypothesis. Because κ′′ 6= κ and therefore σ(κ′′) = σ [κ 7→ κ̂] (κ′′), we
can derive that

([κ′′′/σ(κ′′)] ◦ (σ [κ 7→ κ̂]), (γ [κ′′′/σ(κ′′)]) [α 7→ �]) : Γ′ `∆′,κ̂ → Γ1, α : κ′′ `∆,κ

Applying Lemma 1.13 with the clock substitution [κ′/κ̂] : (∆′, κ̂) → (∆′, κ′) to the above
we obtain that (σ̂, γ̂) : Γ′ [κ′/κ̂] `∆′,κ̂ → Γ1, α : κ′′ `∆,κ, where σ̂ = [κ′/κ̂] ◦ [κ′′′/σ(κ′′)] ◦
(σ [κ 7→ κ̂]) and γ̂ = ((γ′ [κ′′′/σ(κ′′)]) [α 7→ �]) [κ′/κ̂]. Since σ̂ = (σ ◦ [κ′′′/σ(κ′′)]) [κ 7→ κ′],
γ̂ = γ, and Γ′ [κ′/κ̂] = Γ′ (since Γ′ `∆′ by Lemma 1.6), we can conclude that ((σ ◦
[κ′′′/σ(κ′′)]) [κ 7→ κ′] , γ) : Γ′ `∆′,κ′ → Γ1, α : κ′′ `∆,κ.

Lemma 1.16. Given a term t, a substitution γ, and a set S with fv(t) ⊆ S ⊆ dom (γ), we have
that t γ = t (γ � S)

Proof. By induction on t.

Lemma 1.17. If s t, then s γ t γ for any substitution γ.

Proof. Straightforward case analysis.

Lemma 1.18. Given two term substitutions γ, γ′ such that dom (γ) = dom (γ′), and for every
x ∈ dom (γ) we have γ(x) ∗ γ′(x), then also t γ ∗ t γ′ for any term t.

Proof. This follows by a straightforward induction on the structure of t: If t is some variable
x ∈ dom (γ), then t γ = γ(x) ∗ γ′(x) = t γ′. If t is some variable x 6∈ γ, then t γ = t γ′. All other
cases follow immediately from the induction hypothesis.
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Lemma 1.19. Let γ, γ′ be two (term and tick) substitutions and t a term such that fv(t) ⊆ dom (γ)
and fv(γ) ⊆ dom (γ′). We write γ γ′ for the composition of the two substitutions, i.e. (γ γ′)(v) =
γ(v) γ′ for all v ∈ dom (γ). Then (t γ)γ′ = t (γ γ′).

Proof. Straightforward induction on t.

Corollary 1.20. Given a (term and tick) substitution γ and two terms s, t, we have that (t [s/x])γ =
(t γ [x 7→ y]) [s γ/y] for any fresh variable y.

Proof. By Lemma 1.19, this equality follows from the fact that [s/x] γ = γ [x 7→ y] [s γ/y], which
can be easily checked.

Lemma 1.21. If (σ, γ) : Γ′ `∆′ → Γ `∆, then Γ `∆ t : T implies Γ′ `∆′ (t σ)γ : (T σ)γ.

Proof. We proceed by induction on the size of the derivation of Γ `∆ t : T . For typing rules
without substitutions and where the typing context and the clock context of the premise and the
conclusion conincide, the argument is a simple application of the induction hypothesis. We cover
the remaining cases below:

•
Γ, x : A `∆ B : type

Γ `∆ Πx : A.B : type

By Lemma 1.3 Γ, x : A `∆ B : type implies that we have Γ, x : A `∆ by an at most equally
large derivation, which in turn implies Γ `∆ A : type. Hence, given (σ, γ) : Γ′ `∆′ → Γ `∆,
we may apply the induction hypothesis to obtain that Γ′ `∆ (Aσ) γ : type. Therefore, Γ′, y :
(Aσ) γ `∆ for some fresh variable y. By Lemma 1.12, we thus have (σ, γ) : Γ′, y : (Aσ) γ `∆′ →
Γ `∆, and therefore (σ, γ [x 7→ y]) : : Γ′, y : (Aσ) γ `∆′ → Γ, x : A `∆. Consequently, we may
apply the induction hypothesis to Γ, x : A `∆ B : type to obtain that Γ, x : (Aσ)γ `∆

(B σ)γ [x 7→ y] : type. Hence, Γ′ `∆ Πy : (Aσ)γ. (B σ)γ [x 7→ y] : type, which is equivalent to
Γ′ `∆ ((Πx : A.B)σ)γ : type.

•
Γ, x : A `∆ B : type

Γ `∆ Σx : A.B : type
By the exact same argument as for Π types above.

•
Γ, α : κ `∆ A : type κ ∈ ∆

Γ `∆ .α : κ.A : type

Since (σ, γ) : Γ′ `∆′ → Γ `∆, we have that (σ, γ [α 7→ β]) : Γ′, β : σ(κ) `∆′ → Γ, α : κ `∆,
where β is some fresh tick variable. By induction hypothesis, we have that

Γ′, β : σ(κ) `∆′ (Aσ)γ [α 7→ β] : type

Since σ(κ) ∈ ∆′, we may thus conclude that

Γ′ `∆′ . β : σ(κ).(Aσ)γ [α 7→ β] : type

which is equivalent to
Γ′ `∆′ (.α : κ.A)σ)γ : type
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•
Γ `∆,κ A : type Γ `∆

Γ `∆ ∀κ.A : type

Given (σ, γ) : Γ′ `∆′ → Γ `∆, we have according to Lemma 1.15 that (σ [κ 7→ κ′] , γ)
sto∆′, κ′Γ′∆, κΓ for some fresh clock variable κ′. Hence, by induction hypothesis, we have that
Γ′ `∆′,κ′ (Aσ [κ 7→ κ′])γ : type. Thus, we can conclude that Γ′ `∆′ ∀κ′.(Aσ [κ 7→ κ′])γ : type,
which equivalent to Γ′ `∆′ ((∀κ.A)σ)γ : type.

• The arguments for the typing rules for codes is the exact same as for the above arguments
for the type formation rules since.

•
Γ, x : A,Γ′ `∆

Γ, x : A,Γ′ `∆ x : A

Given (σ, γ) : Γ′′ `∆′ → Γ, x : A,Γ′ `∆, we have by Lemma 1.14, that (σ, γ � (Γ, x : A)) : Γ′′ `∆′ →
Γ, x : A `∆. Hence, Γ′′ `∆′ γ(x) : (Aσ)(γ � Γ). Since, Γ, x : A,Γ′ `∆, we have that
Γ `∆ A : type and thus by Lemma 1.2 and Lemma 1.16, we have that (Aσ)(γ � Γ) = (Aσ)γ.
We may therefore conclude that Γ′′ `∆′ (xσ)γ : (Aσ)γ.

•
Γ, x : A `∆ t : B

Γ `∆ λx : A.t : Πx : A.B
By an argument similar to the argument for the type formation rule for Πx : A.B.

•
Γ `∆ t : Πx : A.B Γ `∆ s : A

Γ `∆ t s : B [s/x]

This follows from the induction hypotheses and the fact that by Lemma 1.8 and Corollary 1.20,
we have that

((B [s/x])σ)γ = (((B σ)γ [x 7→ y]) [(s σ)γ/y])

for any fresh variable y.

•
Γ, α : κ `∆ t : A κ ∈ ∆

Γ `∆ λα : κ.t : .α : κ.A

By an argument similar to the argument for the type formation rule for .α : κ.A.

•
Γ1 `∆ t : .α : κ.A Γ1, α

′ : κ,Γ2 `∆

Γ1, α
′ : κ,Γ2 `∆ t [α′] : A [α′/α]

By Lemma 1.14, (σ, γ) : Γ′ `∆′ → Γ1, α
′ : κ,Γ2 `∆ implies (σ, γ′) : Γ′ `∆′ → Γ1, α

′ : κ `∆,
where γ′ = γ � (Γ1, α

′ : κ). There are two different cases to consider:

– γ′(α′) 6= �. That is, there is some α̂ ∈ TV, γ′′, and some Γ3, Γ4 such that γ′ =
γ′′ [α′ 7→ α̂], Γ′ = Γ3, α̂ : σ(κ),Γ4, and (σ, γ′′) : Γ3 `∆′ → Γ1 `∆. Hence, we have by
induction hypothesis that

Γ3 `∆′ (t σ)γ′′ : .α′′ : σ(κ).(Aσ)γ′′ [α 7→ α′′]
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where α′′ is a fresh tick variable. By Lemma 1.6, we have that Γ′ `∆′ , and we can thus
conclude that

Γ′ `∆′ ((t σ) [α̂])γ′′ : ((Aσ)γ′′ [α 7→ α′′]) [α̂/α′′]

which is equivalent to
Γ′ `∆′ (t [α′])σ)γ : (Aσ)γ [α 7→ α̂]

because (t σ)γ′′ = (t σ)γ and (Aσ)γ′′ [α 7→ α̂] = (Aσ)γ [α 7→ α̂] by Lemma 1.16, Lemma 1.2
and Lemma 1.10.

– γ′(α′) = �. That is, there are some κ′ ∈ ∆ and (σ′, γ′′) : Γ3 `∆′,σ′(κ) → Γ1 `∆ such
that σ = [κ′/σ′(κ)] ◦ σ′ and γ′ = (γ′′ [κ′/σ′(κ)]) [α′ 7→ �]. Hence, we have by induction
hypothesis that

Γ3 `∆′,σ′(κ) (t σ′)γ′′ : .α′′ : σ′(κ).(Aσ′)γ′′ [α 7→ α′′]

where α′′ is a fresh tick variable. By Lemma 1.6, we have that Γ3 `∆′ , and we can thus
conclude that

Γ3 `∆′ (((t σ′)γ′′) [�]) [κ′/σ′(κ)] : (((Aσ′)γ′′ [α 7→ α′′]) [κ′/σ′(κ)]) [�/α′′]

which is equivalent to
Γ3 `∆′ (t [α′])σ)γ : (Aσ)γ [α 7→ �]

because (t σ)(γ′′ [κ′/σ′(κ)]) = (t σ)γ and (Aσ)(γ′′ [κ′/σ′(κ)]) [α 7→ �] = (Aσ)γ [α 7→ �]
by Lemma 1.16, Lemma 1.2 and Lemma 1.10. By Lemma 1.5, we then have

Γ′ `∆′ (t [α′])σ)γ : (Aσ)γ [α 7→ �]

Since by Lemma 1.6, we have that Γ′ `∆′ .

That is, in either case we have that

Γ′ `∆′ (t [α′])σ)γ : (Aσ)γ [α 7→ γ(α′)]

Since γ [α 7→ γ(α′)] = γ ◦ [α′/α], we can thus conclude that

Γ′ `∆′ (t [α′])σ)γ : ((A [α′/α])σ)γ

•
Γ `∆,κ t : .α : κ.A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [�]) [κ′/κ] : A [κ′/κ] [�/α]

Let κ′′ be a fresh clock variable. Then by Lemma 1.15, we have that (σ, γ) : Γ′ `∆′ →
Γ `∆ implies that (σ [κ 7→ κ′′] , γ) : Γ′ `∆′,κ′′ → Γ `∆,κ. Hence, we may apply the induction
hypothesis to obtain that

Γ′ `∆′,κ′′ (t σ [κ 7→ κ′])γ : .α′ : κ′′.(Aσ [κ 7→ κ′′])γ [α 7→ α′]

where α′ is a fresh tick variable. Consequently, we have that

Γ′ `∆′ (((t σ [κ 7→ κ′])γ) [�]) [σ(κ′)/κ′′] : ((Aσ [κ 7→ κ′′])γ [α 7→ α′]) [σ(κ′)/κ′′] [�/α′]

which is equivalent to

Γ′ `∆′ (((t [κ′/κ]) [�])σ)γ : ((A [κ′/κ] [�/α])σ)γ
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•
Γ `∆,κ t : A Γ `∆

Γ `∆ Λκ.t : ∀κ.A
By an argument similar to the argument for the type formation rule for ∀κ.A.

•
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A [κ′/κ]

By induction hypothesis, we obtain that Γ′ `∆′ (t σ)γ : ∀κ′′.(Aσ [κ 7→ κ′′])γ for some fresh
clock variable κ′′. Thus, we have that Γ′ `∆′ ((t σ)γ)[σ(κ′)] : ((Aσ [κ 7→ κ′′])γ) [κ′/κ]. More-
over, ((t σ)γ)[σ(κ′)] = ((t [κ′])σ)γ and because κ′′ was chosen fresh we have by Lemma 1.8 and
Lemma 1.7 that ((Aσ [κ 7→ κ′′])γ) [κ′/κ] = ((A [κ′/κ])σ)γ. We can thus conclude thatΓ′ `∆′

((t[κ′])σ)γ : ((A [κ′/κ])σ)γ.

•
Γ `∆ Σx : A.B : type Γ `∆ t : A Γ `∆ s : B [t/x]

Γ `∆ 〈t, s〉 : Σx : A.B
This follows from the induction hypotheses and the fact that by Lemma 1.8 and Corollary 1.20,
we have that

((B [t/x])σ)γ = (((B σ)γ [x 7→ y]) [(t σ)γ/y])

for any fresh variable y.

•
Γ `∆ t : Σx : A.B

Γ `∆ π2 t : B [π1 t/x]
This follows from the induction hypotheses and the fact that by Lemma 1.8 and Corollary 1.20,
we have that

((B [π1 t/x])σ)γ = (((B σ)γ [x 7→ y]) [((π1 t)σ)γ/y])

for any fresh variable y.

•
Γ `∆ t : Bool Γ `∆ u : A [true/x] Γ `∆ v : A [false/x] Γ `∆ A [t/x] : type

Γ `∆ if t u v : A [t/x]

Given (σ, γ) : Γ′ `∆′ → Γ `∆, we may assume w.l.o.g. that x does not occur freely in the
range of γ. Hence, we have by induction hypothesis (and Lemma 1.8 and Lemma 1.19) that
Γ′ `∆′ (t σ)γ : Bool, Γ′ `∆′ (uσ)γ : ((Aσ)γ) [true/x], Γ′ `∆′ (v σ)γ : ((Aσ)γ) [false/x], and
Γ′ `∆′ ((Aσ)γ) [(t σ)γ/x] : type. Hence, Γ′ `∆′ ((if t u v)σ)γ) : ((Aσ)γ) [t/x]

•

Γ `∆ t : Nat
Γ `∆ u : A [0/x] Γ `∆ v : Πx : Nat.A→ A [suc x/x] Γ `∆ A [t/x] : type

Γ `∆ rec t u v : A [t/x]
Similar to the case for if above.

Lemma 1.22. If s σ t for some clock substitution σ, then there is a term t′ with s t′ and
t′ σ = t.

Proof. Straightforward case analysis of s σ t.
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Lemma 1.23. Given a term t with fc(t) ⊆ ∆ and a clock substitution σ : ∆ → ∆′, we have that
fc(t σ) ⊆ ∆′

Proof. Straightforward induction on the structure of t.

2 Confluence

Definition 2.1 (parallel reduction ). The relation on terms and types is inductively defined
as follows:

(P1) t t, if t is a variable, or t ∈ {Nat,Bool, 〈〉, 1, 0}.

(P2) A B implies .α : κ.A .α : κ.B, .̂ α : κ.A .̂ α : κ.B, ∀κ.A ∀κ.B, and ∀̂κ.A ∀̂κ.B.

(P3) Ai Bi implies Πx : A1.A2 Πx : B1.B2, Π̂x : A1.A2 Π̂x : B1.B2, Σx : A1.A2 Σx :
B1.B2, and Σ̂x : A1.A2 Σ̂x : B1.B2.

(P4) si ti implies s1s2 t1t2.

(P5) si ti implies (λx : A.s1)s2 t1[t2/x].

(P6) s t, A B implies λx : A.s λx : B.t.

(P7) s t implies if true s s′ t and if false s′ s t.

(P8) s t implies πis πit.

(P9) si ti implies πi〈s1, s2〉 ti.

(P10) si ti implies 〈s1, s2〉 〈t1, t2〉.

(P11) s t implies suc s suc t.

(P12) si ti implies rec s1 s2 s3 rec t1 t2 t3.

(P13) s t implies rec 0 s s′ t.

(P14) si ti and si t′i implies rec (suc s1)s2s3 t′3 t
′
1 (rec t1 t2 t3).

(P15) s ti implies (dfixκ s) [�] t1 (dfixκ t2).

(P16) s t implies dfixκ s dfixκ t.

(P17) s t implies s [α] t [α].

(P18) s t implies λα : κ.s λα : κ.t.

(P19) s t implies (λα′ : κ.s) [α] t [α/α′].

(P20) s t and α 6∈ fv(s) implies λα : κ.(s [α]) t.

(P21) s t implies foldα s foldα t.
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(P22) s t implies unfoldα s unfoldα t.

(P23) s t implies fold� s t.

(P24) s t implies unfold� s t.

(P25) s t implies (Λκ.s)[κ′] t[κ′/κ].

(P26) s t implies Λκ.s Λκ.t.

(P27) s t implies Λκ.(s[κ]) t if κ 6∈ fc(s).

(P28) s t implies s[κ] t[κ].

(P29) s t implies El (s) El (t).

(P30) El
(

N̂at
)

Nat.

(P31) El
(

1̂
)

1.

(P32) El
(

ˆBool
)

Bool.

(P33) si ti implies El
(

Π̂x : s1. s2

)
Πx : El (t1) .El (t2).

(P34) si ti implies El
(

Σ̂x : s1. s2

)
Σx : El (t1) .El (t2).

(P35) s t implies El
(
∀̂κ.s

)
∀κ.El (t).

(P36) s t implies El (.̂ α : κ.s) .α : κ.El (t).

Lemma 2.2. Let γ, γ′ be two substitutions with dom (γ) = dom (γ′), γ(x) γ′(x) for all variables
x ∈ dom (γ), and γ(α) = γ′(α) for all tick variables α ∈ dom (γ). Then we have that s t implies
s γ t γ′.

Proof. By induction on s t.

Lemma 2.3. If s t, then s σ t σ for any clock substitution.

Proof. By induction on s t.

Lemma 2.4. ⊆ ⊆ ∗.

Proof. The implication s t =⇒ s ∗ t can be proved by a straightforward induction on s t.
To prove ⊆ , we first prove that t t for all t. This can be shown by induction on t. Then
we can show that s t implies C[s] C[t] for all contexts C by induction on C. The implication
s t =⇒ s t can then be shown by a case distinction on s t using these two auxiliary
facts.

Lemma 2.5. If s t, then fv(t) ⊆ fv(s) and fc(t) ⊆ fc(s).

Proof. Follows from Lemma 2.4 and Lemma 1.1.
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Definition 2.6 (full parallel reduction). For each type or term t, we define by induction on t the
type or term t∗ as follows:

(F1) t∗ = t if t is a variable, or t ∈ {Nat,Bool, 〈〉, 1, 0}

(F2) (OA)∗ = OA∗ for O ∈
⋃
α∈TV,κ∈CV

{
∀κ., ∀̂κ., . α : κ., .̂ α : κ.

}
(F3) (O x : A.B)∗ = O x : A∗.B∗ for O ∈

{
Π, Π̂,Σ, Σ̂

}
(F4) (λx : A.t)∗ = λx : A∗.t∗

(F5) (s t)∗ =

{
u∗[t∗/x] if s = λx : A.u

s∗t∗ otherwise

(F6) true∗ = true

(F7) false∗ = false

(F8) if s t u =


t∗ if s = true

u∗ if s = false

if s∗ t∗ u∗ otherwise

(F9) 〈s, t〉∗ = 〈s∗, t∗〉

(F10) (πis)
∗ =

{
s∗i if s = 〈s1, s2〉
πis
∗ otherwise

(F11) (suc t)∗ = suc t∗

(F12) (rec s t u)∗ =


t∗ if s = 0

u∗ v∗ (rec v∗ t∗ u∗) if s = suc v

rec s∗ t∗ u∗ otherwise

(F13) (dfixκ s)∗ = dfixκ s∗

(F14) (λα : κ.t)∗ =

{
s∗ if t = s [α] and α 6∈ fv(s)

λα : κ.t∗ otherwise

(F15) (t [α])∗ =


s∗ [α/α′] if t = λα′ : κ.s

s∗(dfixκ s∗) if t = dfixκ s and α = �
t∗ [α] otherwise

(F16) (foldα t)
∗ =

{
t∗ if α = �
foldα.t

∗ otherwise

(F17) (unfoldα t)
∗ =

{
t∗ if α = �
unfoldα t

∗ otherwise
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(F18) (s[κ])∗ =

{
t∗[κ/κ′] if s = Λκ′.t

s∗[κ] otherwise

(F19) (Λκ.s)∗ =

{
t∗ if s = t[κ], κ 6∈ fc(t)

Λκ.s∗ otherwise

(F20) (El (t))∗



Πx : El (u∗) .El (v∗) if t = Π̂x : u. v

Σx : El (u∗) .El (v∗) if t = Σ̂x : u. v

.α : κ.El (s∗) if t = .̂ α : κ.s

Nat if t = N̂at

1 if t = 1̂

Bool if t = ˆBool

El (t∗) otherwise

Lemma 2.7 (triangle property of ). If s t, then t s∗.

Proof. We proceed by induction on s and do a case distinction of s t. The cases (P1) to (P14) as
well as (P29) to (P36) are standard (in particular the cases (P4) and (P5) follow from Lemma 2.2).

The cases (P15), (P16), (P20), (P21), (P22), (P23), (P24), and (P27) follow straightforwardly
from the induction hypothesis. The case (P19) follows from induction hypothesis and Lemma 2.2.
The case (P25) follows from the induction hypothesis and Lemma 2.3.

We consider the remaining cases in detail below:

(P17) s [α] t [α], where s t. We do a case distinction on (s [α])∗:

• (s [α])∗ = u∗ [α/α′], where s = λα′ : κ.u. Hence, λα′ : κ.u t. We do a case distinction
on λα′ : κ.u t:

– t = λα′ : κ.v with u v. By induction hypothesis, we have that v u∗, and thus
t [α] u∗ [α/α′].

– u = v [α′], α′ 6∈ fv(v), v t. Hence, u t [α′], and thus t [α′] u∗ by induction
hypothesis. By Lemma 2.2, we have (t [α]) [α/α′] u∗ [α/α′]. From α′ 6∈ fv(v) and
v t, we can conclude, by Lemma 2.5, that α′ 6∈ fv(t). Hence, t [α/α′] = t and we
thus have t [α] u∗ [α/α′].

• (s [α])∗ = u∗(dfixκ u∗), where α = ∗ and s = dfixκ u. Hence, t = dfixκ v with u v. By
the induction hypothesis we obtain that v u∗ and thus t [α] u∗(dfixκ u∗).

• (s [α])∗ = s∗ [α]. Then t ⇀ s∗ by the induction hypothesis and therefore t [α] ⇀ s∗ [α].

(P18) λα : κ.s λα : κ.t, where s t. We do a case distinction on (λα : κ.s)∗:

• (λα : κ.s)∗ = u∗, where s = u [α] and α 6∈ fv(u). We do a case distinction on u [α] t:

– The case α = � is impossible, since α is bound in λα : κ.s.

– t = v [α] where u v. Then v u∗ by the induction hypothesis and thus λα :
κ.t u∗ because by Lemma 2.5 α 6∈ fv(v).

– u = λα′ : κ.v, where v [α/α′] t. Since α 6∈ fv(u), we know that u = λα : κ.v [α/α′].
Hence, u λα : κ.t and, by induction hypothesis, λα : κ.t u∗.
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• (λα : κ.s)∗ = λα : κ.s∗. By induction hypothesis, we have t s∗ and thus λα : κ.t
λα : κ.s∗.

(P26) Λκ.s Λκ.t, where s t. We do a case distinction on (Λκ.s)∗:

• (Λκ.s)∗ = Λκ.s∗. By induction hypothesis, we have that t s∗ and thus Λκ.t Λκ.s∗.

• (Λκ.s)∗ = u∗, where s = u [κ] and κ 6∈ fc(u). We do a case distinction on u [κ] t:

– t = v [κ], where u v. The latter implies, by Lemma 2.5, that κ 6∈ fc(v), and, by
induction hypothesis, that v u∗. Hence, Λκ.t u∗.

– u = Λκ′.v with v w and t = w [κ/κ′]. Hence, v [κ/κ′] t according to
Lemma 2.3, which in turn implies that Λκ.v [κ/κ′] Λκ.t. Since κ 6∈ fc(v), we
have that Λκ.v [κ/κ′] = Λκ′.v = u. Consequently, u Λκ.t, which means that we
can apply the induction hypothesis to conclude that Λκ.t u∗.

(P28) s[κ] t[κ], where s t. We do a case distinction on (s[κ])∗:

• (s[κ])∗ = s∗[κ]. By induction hypothesis, we have that t s∗ and thus t [κ] s∗ [κ].

• (s[κ])∗ = u∗ [κ/κ′], where s = Λκ′.u. We proceed with a case distinction of s t.

– t = Λκ′.v with u v. By induction hypothesis, we have that v u∗, and thus
t [κ] u∗ [κ/κ′].

– u = v [κ′] with v t and κ′ 6∈ fc(v). Hence, by Lemma 2.5, we have that κ′ 6∈ fc(t).
Moreover, we have that u = v [κ′] t [κ′], and thus, by induction hypothesis,
t [κ′] u∗. By Lemma 2.3, we obtain (t [κ′]) [κ/κ′] u∗ [κ/κ′]. Since κ′ 6∈ fc(t), we
have that (t [κ′]) [κ/κ′] = t [κ], and therefore t [κ] u∗ [κ/κ′].

Theorem 2.8 (confluence of ). If s ∗ t1, s
∗ t2, then t1

∗ t, t2
∗ t for some t.

Proof. By Lemma 2.7, has the diamond property: if s t1 and s t2, then t1 s∗ and
t2 s∗. This property together with Lemma 2.4 yields confluence of .

3 Strong Normalisation

3.1 Weak head reduction

We introduce the notion of weak head reduction and neutral terms, which will be used for the
proof of strong normalisation. In the following we write SN for the set of terms that are strongly
normalising w.r.t. the reduction relation . It is easy to see that SN terms are closed under
reduction. In addition, SN terms are also closed under clock substitution:

Lemma 3.1. If t ∈ SN then t σ ∈ SN for any clock substitution σ.

Proof. This property follows from Lemma 1.22.
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Definition 3.2 (weak head reduction). The weak head reduction relation WH is defined as follows:
s WH t iff s = E[s′], t = E[t′], and s′ 7→ t′, where the evaluation contexts E and the relation 7→
are defined below:

E ::= [ ] | E t | E [α] | E [κ] | πiE | if E t1 t2 | recE t1 t2 | El (E)

where α ranges over TV ∪ {�}.

(λx.s)t 7→ s [t/x] if t ∈ SN

(λα : κ.t) [α′] 7→ t [α′/α] if α′ ∈ TV ∪ {�}
(dfixκ t) [�] 7→ t (dfixκ t)

(Λκ.t)[κ′] 7→ t [κ′/κ]

fold�t 7→ t if F ∈ SN

unfold�t 7→ t if F ∈ SN

if true t1 t2 7→ t1 if t2 ∈ SN

if false t1 t2 7→ t2 if t1 ∈ SN

πi 〈t1, t2〉 7→ ti if t3−i ∈ SN

rec 0 s t 7→ s if t ∈ SN

rec (suc t) v u 7→ u t (rec t v u)

If s WH t, we also say that s is a weak head expansion of t.
An evaluation context E is called SN if every term occurring in E is in SN. That is, E is

obtained from the above grammar, where the form E t is subject to the restriction that t ∈ SN, and
the forms if E t1 t2 and recE t1 t2 are subject to the restriction t1, t2 ∈ SN. A term is called neutral
if it is of the form E[x], E[unfoldα t], or E[(dfixκ t) [α]], where α ∈ TV, E is SN, and t, F ∈ SN.

Lemma 3.3. If s WH t, then s t.

Proof. Immediate.

Lemma 3.4. If s WH t, then s σ WH t σ for any clock substitution.

Proof. By induction on s WH t and using the fact that SN is closed under clock substitution.

Lemma 3.5. If t is neutral, then also s σ is neutral for any clock substitution σ.

Proof. By a straightforward induction argument we can show that given any evaluation context
E that is SN, also E σ is an evaluation context that is SN. Hence, given a neutral term of the
form E[x], E[unfoldα t], or E[(dfixκ t) [α]], we also have that E σ[x], E σ[unfoldα t σ], respectively

E σ[(dfixσ(κ) t σ) [α]] is a neutral term as well.

Lemma 3.6. If s WH t, s s′, there is some t′ such that t ∗ t′ and s′ =
WH t

′.

Proof. By a straightforward induction on s WH t.

Lemma 3.7. If s WH t and t ∈ SN, then s ∈ SN.
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Proof. Let s 7→ t with E[t] ∈ SN. We show that E[s] ∈ SN by induction on E.

• E = []. We do a case distinction on s 7→ t:

– (λx.u) v 7→ u [v/x] with v ∈ SN. Since u [v/x] ∈ SN, we know by Lemma 1.17, that
u ∈ SN too. Hence, any infinite reduction starting from (λx.u) v must be of the form

(λx.u) v ∗ (λx.u′) v′ u′ [v′/x] . . .

with u ∗ u′ and v + v′. However, u′ [v′/x] is SN since u [v/x] ∗ u′ [v′/x] by
Lemma 1.17 and Lemma 1.18.

– (λα : κ.t) [α′] 7→ t [α′/α] . Since t [α′/α] is SN, so is t according to Lemma 1.17. Hence,
any infinite reduction starting from (λα : κ.t) [α′] is of the form

(λα : κ.t) [α′] ∗ (λα : κ.t′) [α′] t′ [α′/α] . . .

However, by Lemma 1.17, t [α′/α] ∈ SN implies t′ [α′/α] ∈ SN.

– (Λκ.t)[κ′] 7→ t [κ′/κ]. Since t [κ′/κ] ∈ SN, we know by Lemma 1.9, that t ∈ SN. Hence,
any infinite reduction starting from (Λκ.t)[κ′] must be of the form

(Λκ.t)[κ′] ∗ (Λκ.t′)[κ′] t′ [κ′/κ] . . .

where t ∗ t′. By Lemma 1.9, we have t [κ′/κ] ∗ t′ [κ′/κ], which means that t′ [κ′/κ]
is SN.

– The remaining cases follow by a similar argument.

• E = E′ u. By assumption E′[t]u is SN. Hence, also E′[t] and u are SN. Since, E′[s] WH

E′[t], we may apply the induction hypothesis to obtain that E′[s] is SN. We now show that
E′[s]u ∈ SN by induction on E′[s], u, w.r.t. the reduction relation + (which is well-founded
because the two terms are SN). To show that E′[s]u is SN we consider each term w with
E′[s]u w and show that w ∈ SN. Since E′[s] cannot be a lambda abstraction, we know
that w is of the form s′ u′ with either E′[s] s′ and u = u′ or E′[s] = s′ and u u′ (hence
we may apply the induction hypothesis to w if we find a weak head reduction to an SN term).
According to Lemma 3.6, we find a term w′ with w =

WH w
′ and E′[t]u ∗ w′, which means

that w′ ∈ SN. If w = w′, w ∈ SN follows immediately. Otherwise, if w WH w
′ we may apply

the induction hypothesis to conclude that w ∈ SN.

• The remaining cases follow by a similar argument.

Lemma 3.8. If s is neutral and s t, then t is also neutral.

Proof. We proceed by induction on the structure of s.

• s = x. Impossible since s is irreducible.

• s = unfoldα u, F, u ∈ SN. Since s cannot be a redex, t = unfoldα v with u = v and F = G.
Hence, G, v ∈ SN, and thus t is neutral.
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• s = (dfixκ u) [α], u ∈ SN. Since neither s nor dfixκ u can be a redex, t = (dfixκ v) [α] with
u v. Hence, v ∈ SN, and thus t is neutral.

• s = s1 s2, s1 neutral, s2 ∈ SN. Since s1 cannot be a lambda abstraction, s is not a redex, and
therefore t = t1 t2 with si

= ti. Hence, t2 ∈ SN and by induction hypothesis t1 is neutral.
Consequently, t is neutral to.

• The remaining cases follow by a similar argument.

Lemma 3.9. Every neutral term is SN.

Proof. Let t be neutral. We prove by induction on the structure of t that t ∈ SN.

• If t = x, t = unfoldα s with F, s ∈ SN, or t = (dfixκ s) [α] with s ∈ SN, then t ∈ SN follows
immediately.

• Let t = u v with u neutral and v ∈ SN. Then, by induction hypothesis, u ∈ SN, too. We
proceed by induction on t and u w.r.t. the reduction relation +. To show that t is SN, we
show that every term s with t s is SN. Since u is neutral, it cannot be a lambda abstraction.
Hence, s = u′ v′ with u = u′ and v = v′. By Lemma 3.8, u′ is neutral, too. Hence, we
may apply the induction hypothesis (w.r.t. the induction using +) to conclude that s is SN.

• The remaining cases follow by a similar argument.

3.2 Semantic Types

Given a clock context ∆, we write Terms(∆) for the set of terms t with fc(t) ⊆ ∆; and Neu(∆)
for the set of all neutral terms in Terms(∆). Similarly, we use the notation SN(∆) for terms in
Terms(∆) that are SN.

We define a category K that will serve as the underlying indexing structure of our notion of
semantic types. The objects are pairs of the form (∆, δ), where ∆ is a clock context, and δ : ∆→ N.
A morphism σ : (∆, δ) → (∆′, δ′) is a clock substitution σ : ∆ → ∆′ such that δ′(σ(κ)) ≤ δ(κ) for
all κ ∈ ∆.

Lemma 3.10. K is a category. In particular, id∆ : (∆, δ) → (∆, δ) is the identity; and given
σ : (∆, δ)→ (∆′, δ′) and τ : (∆′, δ′)→ (∆′′, δ′′), we have that τ ◦ σ : (∆, δ)→ (∆′′, δ′′)

Proof. Its easy to check that id∆ and τ ◦ σ satisfy the properties of morphisms in K; since identity
morphisms are just identity maps and composition is just function composition, K is a category.

Let φ = (φ∆,δ) be a family of partial maps φ∆,δ : Terms(∆) ⇀ P(Terms(∆)), and D = (D∆,δ)
a family of sets D∆,δ ⊆ Terms(∆), both indexed by objects (∆, δ) from the category K. We call
(D, φ) a saturated family if the following conditions hold for all objects (∆, δ) in K:

(S1) D∆,δ = dom (φ∆,δ).

(S2) If A B, then A ∈ D∆,δ iff B ∈ D∆,δ and A ∈ SN(∆).
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(S3) If A B and A,B ∈ D∆,δ, then φ∆,δ(A) = φ∆,δ(B).

(S4) If t ∈ φ∆,δ(A), then t ∈ SN.

(S5) If t ∈ φ∆,δ(A), σ : (∆, δ)→ (∆′, δ′), then t σ ∈ φ∆′,δ′(Aσ).

(S6) If t ∈ φ∆,δ(A), s ∈ Terms(∆) and s WH t, then s ∈ φ∆,δ(A).

(S7) If t ∈ Neu(∆) and A ∈ D∆,δ, then t ∈ φ∆,δ(A).

We write Sat to denote the set of all saturated families.
We define a partial order ≤ on Sat as follows:

(D, φ) ≤ (D′, φ′) iff D∆,δ ⊆ D′∆,δ and φ∆,δ ⊆ φ′∆,δ for all objects (∆, δ) in K

where φ∆,δ ⊆ φ′∆,δ denotes graph inclusion, i.e. φ∆,δ(A) = φ′∆,δ(A) for all A ∈ dom (φ∆,δ).
A pointed, complete partial order (CPPO) is a partially ordered set (S,≤) with a least element

such that every directed subset D of S (i.e. every pair x, y ∈ D has an upper bound in D) has a
least upper bound.

The following two lemmas show that (Sat,≤) forms a CPPO, with least element (D, φ), where
D∆,δ = ∅ and φ∆,δ = ∅.

Lemma 3.11. The pair (D, φ), with D∆,δ = ∅ and φ∆,δ = ∅ for all objects (∆, δ) in K, is a
saturated family.

Proof. (S1) holds because dom (∅) = ∅. The remaining properties are vacuously true.

Lemma 3.12. Given a directed set of saturated families S, the least upper bound
⊔
S of S is a

saturated family.

Proof. Let (D, φ) =
⊔
S, i.e. D∆,δ =

⋃
(D′,φ′)∈S D′∆,δ and φ∆,δ =

⋃
(D′,φ′)∈S φ

′
∆,δ.

(S1): A ∈ D∆,δ ⇐⇒ ∃(D′, φ′) ∈ S.A ∈ D′∆,δ ⇐⇒ ∃(D′, φ′) ∈ S.A ∈ dom
(
φ′∆,δ

)
⇐⇒ A ∈

dom (φ∆,δ).

(S2): Assume A B. Then A ∈ D∆,δ ⇐⇒ ∃(D′, φ′) ∈ S.A ∈ D′∆,δ ⇐⇒ ∃(D′, φ′) ∈ S.B ∈ D′∆,δ
and A ∈ SN ⇐⇒ B ∈ D∆,δ and A ∈ SN.

(S3): Assume A B and A,B ∈ D∆,δ. If t ∈ φ∆,δ(A), then there is some (D′, φ′) ∈ S such that
t ∈ φ′α∆,δ(A), so by (S3) we have that t ∈ φ′∆,δ(B). Therefore φ∆,δ(A) ⊆ φ∆,δ(B), and the
reverse direction is similar.

(S4)-(S7): Follows immediately from the saturation conditions of φ′∆,δ for (D′, φ′) ∈ S.

We can derive the following properties for saturated families:

Lemma 3.13. Given a saturated family (D, φ), we have the following:

(S2’) If A ∗ B, B ∈ D∆,δ, and A ∈ SN(∆), then A ∈ D∆,δ.
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(S3’) If A ∗ B and A ∈ D∆,δ, then B ∈ D∆,δ and φ∆,δ(A) = φ∆,δ(B).

(S4’) If A ∈ D∆,δ, then A ∈ SN; if t ∈ φ∆,δ(A), then A, t ∈ SN.

(S5’) If A ∈ D∆,δ, σ : (∆, δ)→ (∆′, δ′), then Aσ ∈ D∆′,δ′ .

Proof.

(S2’) We proceed by induction on the length of the reduction A ∗ B. The case A = B is trivial.
If A C ∗ B, then Lemma 1.1 also C ∈ SN(∆). Hence, by induction hypothesis C ∈ D∆,δ

and by (S2) A ∈ D∆,δ.

(S3’) We proceed by induction on the length of the reduction A ∗ B. The case A = B is trivial.
If A C ∗ B, then by (S2) also C ∈ D∆,δ and by (S3) φ∆,δ(A) = φ∆,δ(C). Hence, by the
induction hypothesis B ∈ D∆,δ and φ∆,δ(A) = φ∆,δ(C) = φ∆,δ(B).

(S5’) Let A ∈ D∆,δ and σ : (∆,∆) → (∆′, δ′). By (S7), x ∈ φ∆,δ(A) and by (S5) x = xσ ∈
φ∆′,δ′(Aσ). According to (S1), the latter implies that Aσ ∈ D∆,δ.

(S4’) Let A ∈ D∆,δ. If A is irreducible, we know that A ∈ SN. Otherwise, (S2) yields that A ∈ SN.

Let t ∈ φ∆,δ(A). Then t ∈ SN by (S4). Moreover, A ∈ D∆,δ by (S1), which yields A ∈ SN by
the argument above.

We write A ∗
nf B to denote that B is a normal form of A, i.e. A ∗ B and there is no reduction

B C for any C.

Definition 3.14. Let T 0 : Sat→ Sat be defined by T 0(D, φ) = (D′, φ′), where

D′∆,δ =
{
A ∈ SN(∆)

∣∣∃B ∈ D′∆,δ.A ∗
nf B

}
φ′∆,δ(A) = φ′∆,δ(B), if A ∈ SN(∆) and A ∗

nf B

and D′, φ′ are defined on terms and types in normal form in Figure 2, where we use the notation
Swh(∆) to denote the closure of S by weak head extension, i.e. the set {t ∈ Terms(∆) | ∃s ∈ S. t ∗

WH s}.

Lemma 3.15. T 0 is well-defined, i.e., if (D, φ) ∈ Sat, then T 0(D, φ) = (D′, φ′) ∈ Sat.

Proof. (S1): It follows from the construction of (D′, φ′) and (S1) for (D, φ) that A ∈ D′∆,δ if, and

only if, φ′∆,δ(A) is defined. It is then immediate from the definition of D′∆,δ and φ′∆,δ that

D′∆,δ = dom
(
φ′∆,δ

)
.

(S2): Let A B. If A ∈ D′∆,δ, then A ∈ SN(∆) and A has normal form C ∈ D′∆,δ. Since A B, we
know by Theorem 2.8 that B has the same normal form C, and, by Lemma 1.1, B ∈ SN(∆).
Consequently, B ∈ D′∆,δ. Conversely, if B ∈ D′∆,δ and A ∈ SN(∆), then B has normal form

C ∈ D′∆,δ. Hence, also A has normal form C and is therefore in D′∆,δ.

(S3): If A B and A,B ∈ D′∆,δ, then by Theorem 2.8, A and B have the same normal form C.

Hence, φ′∆,δ(A) = φ′∆,δ(C) = φ′∆,δ(B).
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D′∆,δ =
{

1̂, N̂at, ˆBool
}

∪
{

Π̂x : A.B
∣∣∣A ∈ D∆,δ,∀σ : (∆, δ)→ (∆′, δ′), t ∈ φ∆′,δ′(Aσ) : (B σ) [t/x] ∈ D∆′,δ′

}
∪
{

Σ̂x : A.B
∣∣∣A ∈ D∆,δ,∀σ : (∆, δ)→ (∆′, δ′), t ∈ φ∆′,δ′(Aσ) : (B σ) [t/x] ∈ D∆′,δ′

}
∪

.̂ α : κ.A

∣∣∣∣∣∣∣
∀α′ ∈ TV : A [α′/α] ∈ D∆,δ;

∀σ : (∆, δ)→ ((∆′, σ(κ)), δ′), κ′ ∈ ∆′ : δ′(κ′) < δ′(σ(κ))

=⇒ ((Aσ) [κ′/σ(κ)]) [�/α] ∈ D∆′,δ′�∆′


∪
{
∀̂κ.A

∣∣∣ ∀κ′ 6∈ ∆, n ∈ N : A [κ′/κ] ∈ D(∆,κ′),δ[κ′ 7→n]

}
∪ Neu(∆)

φ′∆,δ(1̂) = ({〈〉} ∪ Neu(∆))wh(∆)

φ′∆,δ(
ˆBool) = ({true, false} ∪ Neu(∆))wh(∆)

φ′∆,δ(N̂at) = N (∆)

φ′∆,δ(Π̂x : A.B) ' {t | ∀σ : (∆, δ)→ (∆′, δ′), s ∈ φ∆′,δ′(Aσ). (t σ)s ∈ φ∆′,δ′((B σ) [s/x])}

φ′∆,δ(Σ̂x : A.B) = {t |π1 t ∈ φ∆,δ(A), π2 t ∈ φ∆,δ(B [π1 t/x])} if Σ̂x : A.B ∈ D′∆,δ

φ′∆,δ(.̂ α : κ.A) '

t
∣∣∣∣∣∣∣
∀α′ ∈ TV : t [α′] ∈ φ∆,δ(A [α′/α]);

∀σ : (∆, δ)→ ((∆′, σ(κ)), δ′), κ′ ∈ ∆′ : δ′(κ′) < δ′(σ(κ))

=⇒ ((t σ) [�]) [κ′/σ(κ)] ∈ φ∆′,δ�∆′(((Aσ) [κ′/σ(κ)]) [�/α])


φ′∆,δ(∀̂κ.A) '

{
t
∣∣∀κ′ 6∈ ∆, n ∈ N.t [κ′] ∈ φ(∆,κ′),δ[κ′ 7→n](A [κ′/κ])

}
φ′∆,δ(A) = SN(∆) if A ∈ Neu(∆)

where ' denotes Kleene equality, and N (∆) is inductively defined as follows:

(i) 0 ∈ N (∆)

(ii) t ∈ N (∆) =⇒ suc t ∈ N (∆)

(iii) Neu(∆) ⊆ N (∆)

(iv) t ∈ N (∆), s ∈ Terms(∆), s WH t =⇒ s ∈ N (∆)

Figure 2: Definition of T 0
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(S4)-(S7): Here we do a case analysis on the normal forms of A ∈ D′∆,δ. This is sufficient, because we
may assume (S3’) (which follows from (S2) and (S3)) for (D′, φ′), and because reductions are
closed under clock substitutions according to Lemma 1.9 (which we need for proving (S5)).

– Case Π̂x : A.B:

∗ (S4): Let t ∈ φ′∆,δ(Π̂x : A.B). By (S7) we have that x ∈ φ∆,δ(A), and so t x ∈
φ∆,δ(B). Hence, by (S4) we have that t ∈ SN.

∗ (S5): Let t ∈ φ′∆,δ(Π̂x : A.B). Given σ : (∆, δ)→ (∆′, δ′), we need to show that t σ ∈
φ′∆′,δ′(Π̂x : Aσ.B σ), i.e. given Aσ ∗

nf A
′ and B σ ∗

nf B
′, we have to show that

t σ ∈ φ′∆′,δ′(Π̂x : A′.B′). To that end, we need to show, that for any τ : (∆′, δ′) →
(∆′′, δ′′), s ∈ φ∆′′,δ′′(A

′ τ) we have that ((t σ)τ)s ∈ φ∆′′,δ′′((B
′ τ) [s/x]). Note that

by Lemma 3.10 τ ◦σ : (∆, δ)→ (∆′′, δ′′), and by Lemma 1.7 (t σ)τ = t (τ ◦σ). Since
Πx : A.B ∈ D′∆,δ, we have by definition that (Aσ)τ) = A(τ ◦σ) ∈ D∆′′,δ′′ . Moreover,
by Lemma 1.9 (Aσ)τ ∗ A′ τ . Hence, by (S3’), we have that s ∈ φ∆′′,δ′′(A(τ ◦ σ)).
Hence (t(τ ◦ σ))s ∈ φ∆′′,δ′′((B(τ ◦ σ)) [s/x]). Since (B(τ ◦ σ)) [s/x] ∗ (B′ τ) [s/x],
according to Lemma 1.17 and Lemma 1.9, we may use (S3’) to conclude that (t(τ ◦
σ))s ∈ φ∆′′,δ′′((B

′ τ) [s/x]).

∗ (S6): Let t ∈ φ′∆,δ(Π̂x : A.B) and u ∈ Terms(∆) u WH t. To show that

u ∈ φ′∆,δ(Π̂x : A.B), assume some σ : (∆, δ) → (∆′, δ′), and s ∈ φ∆′,δ′(Aσ). By
Lemma 3.4, we have that uσ WH t σ, and thus (uσ)s WH (t σ)s. Since, by
definition (t σ)s ∈ φ∆′,δ′((B σ) [s/x]), we may apply(S6) to conclude that (uσ)s ∈
φ∆′,δ′((B σ) [s/x]).

∗ (S7): Let t ∈ Neu(∆), σ : (∆, δ)→ (∆′, δ′), and s ∈ φ∆′,δ′(Aσ). Then, by Lemma 3.5
and Lemma 1.23, t σ ∈ Neu(∆′), and thus (t σ)s ∈ Neu(∆′). Hence, by (S7), (t σ)s ∈
φ∆′,δ′((B σ) [s/x]).

– Case .̂ α : κ.A:

∗ (S4): Let t ∈ φ′∆,δ(.̂ α : κ.A). Pick an arbitrary α′ ∈ TV. Then t [α′] ∈ φ∆,δ(A [α′/α]).
Thus, by (S4), t [α′] is SN and therefore so is t.

∗ (S5): Let t ∈ φ′∆,δ(.̂ α : κ.A), σ : (∆, δ)→ (∆′, δ′), and Aσ ∗
nf A

′.

· Let α′ ∈ TV. Since t ∈ φ′∆,δ(.̂ α : κ.A), we have that t [α′] ∈ φ∆,δ(A [α′/α]). By
(S5), we have that (t σ) [α′] ∈ φ∆′,δ′((Aσ) [α′/α]).

· Let τ : (∆′, δ′) → ((∆′′, τ(σ(κ))), δ′′), κ′ ∈ ∆′′, δ′′(κ′) < δ′′(τ(σ(κ))). Hence,
τ ◦ σ : (∆, δ)→ (∆′′, (τ ◦ σ)(κ), δ′′), and

(((t σ)τ) [�]) [κ′/τ(σ(κ))] = ((t(τ ◦ σ)) [�]) [κ′/(τ ◦ σ)(κ])

∈ φ∆′′,δ′′�∆′′(((A(τ ◦ σ)) [κ′/(τ ◦ σ)(κ)]) [�/α])

= φ∆′′,δ′′�∆′′((((Aσ)τ) [κ′/τ(σ(κ))]) [�/α])

By Lemma 1.17 and Lemma 1.9, we have that (((Aσ)τ) [κ′/τ(σ(κ))]) [�/α] ∗

((A′ τ) [κ′/τ(σ(κ))]) [�/α]. Hence, according to (S3’), (((t σ)τ) [�]) [κ′/τ(σ(κ))] ∈
φ∆′′,δ′′�∆′′(((A′ τ) [κ′/τ(σ(κ))]) [�/α]), too.

∗ (S6): Let t ∈ φ′∆,δ(.̂ α : κ.A) and s ∈ Terms(∆) with s WH t. To show that
s ∈ φ′∆,δ(.̂ α : κ.A), let σ : (∆, δ) → (∆′, δ′). Given any κ′ and α′, we know by
Lemma 3.4, that s σ WH t σ and (s σ) [κ′/σ(κ)] WH (t σ) [κ′/σ(κ)], and therefore
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also (s σ) [α′] WH (t σ) [α′] and ((s σ) [κ′/σ(κ)]) [�] WH ((t σ) [κ′/σ(κ)]) [�]. Hence,
s ∈ φ′∆,δ(.̂ α : κ.A) follows from the fact that φ satisfies (S6).

∗ (S7): Let t ∈ Neu(∆). To show that t ∈ φ′∆,δ(.̂ α : κ.A), let σ : (∆, δ) → (∆′, δ′).
Given any κ′ and α′, we know by Lemma 3.5 and Lemma 1.23, that t σ, (t σ) [κ′/σ(κ)] ∈
Neu(∆′), and therefore also (t σ) [α′] ∈ Neu(∆′) and ((t σ) [κ′/σ(κ)]) [�] ∈ Neu(∆′).
Hence, t ∈ φ′∆,δ(.̂ α : κ.A) follows from the fact that φ satisfies (S7).

– Cases 1̂, N̂at, ˆBool:

∗ (S4): By Lemma 3.9 and Lemma 3.7.

∗ (S5): By Lemma 3.4 and Lemma 3.5.

∗ (S6): By construction.

∗ (S7): By construction.

– Case Σ̂x : A.B:

∗ (S4): Let t ∈ φ′∆,δ(Σ̂x : A.B). By (S4) π1 t is SN, so t is also SN.

∗ (S5): Let t ∈ φ′∆,δ(Σ̂x : A.B) and σ : (∆, δ) → (∆′, δ′). To show that, t σ ∈
φ′∆,δ(Σ̂x : Aσ.B σ), we assume Aσ ∗

nf A
′ and B σ ∗

nf B
′, and show that t σ ∈

φ′∆′,δ′(Σ̂x : A′.B′).

To this end, we need to first show that Σ̂x : A′.B′ ∈ D′∆′,δ′ . Since Σ̂x : A.B ∈ D′∆,δ,
we know that A ∈ D∆,δ. Thus by (S5’), we have that Aσ ∈ D∆′,δ′ and, by (S3’),
that A′ ∈ D∆′,δ′ . Let τ : (∆′, δ′)→ (∆′′, δ′′) and s ∈ φ∆′′,δ′′(A

′τ). By (S5’), we have
that (Aσ)τ ∈ D∆′′,δ′′ , by Lemma 1.9, we have that (Aσ)τ ∗ A′ τ , and thus, by
(S3’), we have that s ∈ φ∆′′,δ′′((Aσ)τ). Using the fact that (Aσ)τ = A(τ ◦ σ) and

τ◦σ : (∆, δ)→ (∆′′, δ′′), we can deduce from Σ̂x : A.B ∈ D′∆,δ, that (B(τ◦σ)) [s/x] ∈
D′∆′′,δ′′ . Since by Lemma 1.17 and Lemma 1.9 (B(τ ◦ σ)) [s/x] = ((B σ)τ) [s/x] ∗

(B′ τ) [s/x], we may conclude according to (S3’) that (B′ τ) [s/x] ∈ D∆′′,δ′′ . Hence,

Σ̂x : A′.B′ ∈ D′∆′,δ′ .

From the assumption t ∈ φ′∆,δ(Σ̂x : A.B), we know that π1 t ∈ φ∆,δ(A), and π2 t ∈
φ∆,δ(B [π1 t/x]). Hence, by (S5), we have that π1(t σ) ∈ φ∆′,δ′(A, σ), and π2(t σ) ∈
φ∆′,δ′((B σ) [π1(t σ)/x]). Moreover, by Lemma 1.9, we have that (B σ) [π1(t σ)/x] ∗

B′ [π1(t σ)/x]. SinceAσ ∗ A′, we have therefore, by (S3’), that π1(t σ) ∈ φ∆′,δ′(A
′),

and that π2(t σ) ∈ φ∆′,δ′(B
′ [π1(t σ)/x]).

∗ (S6): Let t ∈ φ′∆,δ(Σ̂x : A.B) and s ∈ Terms(∆) with s WH t. Then π1 s WH π1 t,
and π2 s WH π2 t, so by (S6) π1 s ∈ φ∆,δ(A), and π2 s ∈ φ∆,δ(B [π1 t/x]). By
Lemma 3.3 and Lemma 1.18, we have B [π1 s/x] ∗ B [π1 t/x], so by (S3’) π2 s ∈
φ∆,δ(B [π1 s/x]), provided that B [π1 s/x] ∈ D∆,δ. The latter follows from the fact

that Σ̂x : A.B ∈ D′∆,δ and π1 s ∈ φ∆,δ(A).

∗ (S7): Let t ∈ Neu(∆). Then also π1 t, π2 t ∈ Neu(∆). Hence, by (S7), π1 t ∈ φ∆,δ(A)

and π2 t ∈ φ∆,δ(B [π1 t/x]), which means that t ∈ φ′∆,δ(Σ̂x : A.B).

– Case ∀̂κ.A.

∗ (S4): Given t ∈ φ′∆,δ(∀̂κ.A), pick an arbitrary κ′ 6∈ ∆. Then t [κ′] ∈ φ(∆,κ′),δ[κ′ 7→0],
which by (S4) means that t [κ′] is SN. Hence, so is t.
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∗ (S5): Let t ∈ φ′∆,δ(∀̂κ.A) and σ : (∆, δ) → (∆′, δ′). The normal form of (∀̂κ.A)σ =

∀̂κ′.A σ [κ 7→ κ′] is of the form ∀̂κ′.A′, with Aσ [κ 7→ κ′] ∗
nf A

′ for some fresh clock

variable κ′. Hence, we need to show that t σ ∈ φ′∆′,δ′(∀̂κ′.A′).
First we need to show that ∀̂κ′.A′ ∈ D∆′,δ′ . That is, given some κ′′ 6∈ ∆′ and n ∈ N,
we need to show that A′ [κ′′/κ′] ∈ D(∆′,κ′),δ′[κ′′ 7→n]. Let κ′′′ be a fresh clock variable.

Since ∀̂κ.A ∈ D∆,δ, we know that A [κ′′′/κ] ∈ D(∆,κ′′′),δ[κ′′′ 7→n]. We can derive that
σ [κ′′′ 7→ κ′′] : ((∆, κ′′′), δ [κ′′′ 7→ n]) → ((∆′, κ′′), δ′ [κ′′ 7→ n]). Hence, according to
(S5’), we know that

(Aσ [κ 7→ κ′]) [κ′′/κ′] = (A [κ′′′/κ])σ [κ′′′ 7→ κ′′] ∈ D(∆′,κ′′),δ′[κ′′ 7→n].

Since (Aσ [κ 7→ κ′]) [κ′′/κ′] ∗ A′ [κ′′/κ′] according to Lemma 1.9, we know by
(S3’), that also A′ [κ′′/κ′] ∈ D(∆′,κ′′),δ′[κ′′ 7→n].

To show that t σ ∈ φ′∆′,δ′(∀̂κ′.A′), we assume some κ′′ 6∈ ∆′ and n ∈ N, and show that
t σ[κ′′] ∈ φ(∆′,κ′),δ′[κ′′ 7→n](A

′ [κ′′/κ′]). Let κ′′′ be a fresh clock variable. Since t ∈
φ∆,δ(∀̂κ.A), we know that t[κ′′′] ∈ φ(∆,κ′′′),δ[κ′′′ 7→n](A [κ′′′/κ]). We can derive that
σ [κ′′′ 7→ κ′′] : ((∆, κ′′′), δ [κ′′′ 7→ n]) → ((∆′, κ′′), δ′ [κ′′ 7→ n]). Hence, according to
(S5), we know that

(t σ)[κ′′] = (t[κ′′′])σ [κ′′′ 7→ κ′′] ∈ φ(∆′,κ′′),δ′[κ′′ 7→n]((A [κ′′′/κ])σ [κ′′′ 7→ κ′′])

= φ(∆′,κ′′),δ′[κ′′ 7→n]((Aσ [κ 7→ κ′]) [κ′′/κ′])

Since (Aσ [κ 7→ κ′]) [κ′′/κ′] ∗ A′ [κ′′/κ′] according to Lemma 1.9, we know by
(S3’), that also (t σ)[κ′′] ∈ φ(∆′,κ′′),δ′[κ′′ 7→n](A

′ [κ′′/κ′]).

∗ (S6): Let t ∈ φ′∆,δ(∀̂κ.A) and s WH t with t ∈ Terms(∆). To show that s ∈
φ′∆,δ(∀̂κ.A), assume some κ′ 6∈ ∆ and n ∈ N. Then t [κ′] ∈ φ(∆,κ′),δ[κ′ 7→n](A [κ′/κ]).
Since s [κ′] WH t [κ′], and s [κ′] ∈ Terms((∆, κ′)), we may apply (S6), to conclude
that s [κ′] ∈ φ(∆,κ′),δ[κ′ 7→n](A [κ′/κ]).

∗ (S7): Let t ∈ Neu(∆). For any κ′ 6∈ ∆, we have that t [κ′] ∈ Neu((∆, κ′)). Hence,
by (S7), we have that t [κ′] ∈ φ(∆,κ′),δ[κ′ 7→n] for any n ∈ N, which means that

t ∈ φ′∆,δ(∀̂κ.A).

– Case A ∈ Neu(∆).

∗ (S4): Immediate.

∗ (S5): Given t ∈ φ′∆,δ(A), σ : (∆, δ)→ (∆′, δ′), and Aσ ∗
nf A

′, we need to show that
t σ ∈ φ′∆′,δ′(A

′). By Lemma 3.5 and Lemma 3.8, A′ is neutral, and, by Lemma 1.23
and Lemma 1.1, A′ ∈ Neu(∆′). Hence, it suffices to show that t σ is SN, which,
according to Lemma 3.1, follows from the fact that t is SN.

∗ (S6): By Lemma 3.7.

∗ (S7): By Lemma 3.9.

Lemma 3.16. T 0 is monotone, i.e., if (D1, φ1) ≤ (D2, φ2), then T 0(D1, φ1) ≤ T 0(D2, φ2).
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Proof. Let (D1, φ1) ≤ (D2, φ2) and (∆, δ) an object in K. Let C ∈ D1′
∆,δ. Hence, C ∈ CSN(∆) and

there is some C ′ ∈ D1′
∆,δ with C ∗

nf C
′. We show by a case distinction below that then C ′ ∈ D2′

∆,δ

and φ1′
∆,δ(C

′) = φ2′
∆,δ(C

′). Hence, by definition, also C ∈ D2′
∆,δ and φ1′

∆,δ(C
′) = φ2′

∆,δ(C
′).

• C ′ = 1̂, N̂at, ˆBool ∈ D1′
∆,δ: Then C ′ ∈ D2′

∆,δ, and φ1′
∆,δ(C

′) = φ2′
∆,δ(C

′).

• C ′ = Π̂x : A.B ∈ D1′
∆,δ: Then A ∈ D1

∆,δ ⊆ D2
∆,δ. Let σ : (∆, δ)→ (∆′, δ′) and t ∈ φ2

∆′,δ′(Aσ).

By (S5’) we know that Aσ ∈ D1
∆′,δ′ , so from φ1

∆′,δ′ ⊆ φ2
∆′ we get φ1

∆′,δ′(Aσ) = φ2
∆′,δ′(Aσ).

Thus (B σ) [t/x] ∈ D1
∆′,δ′ ⊆ D2

∆′,δ′ , and therefore Π̂x : A.B ∈ D2′
∆,δ.

Let again σ : (∆, δ)→ (∆′, δ′) be given. Then φ1
∆′,δ′(Aσ) = φ2

∆′,δ′(Aσ), and φ1
∆′,δ′((B σ) [s/x]) =

φ2
∆′,δ′((B σ) [s/x]) for all s ∈ φ1

∆′,δ′(Aσ). Therefore φ1′
∆,δ(Π̂x : A.B) = φ2′

∆,δ(Π̂x : A.B).

• C ′ = Σ̂x : A.B: Then C ′ ∈ D2′
∆,δ by the same argument as for Π̂.

We must have that φ1
∆,δ(A) = φ2

∆,δ(A), and φ1
∆,δ(B [π1 t/x]) = φ2

∆,δ(B [π1 t/x]) for any t, and

therefore φ1′
∆,δ(Σ̂x : A.B) = φ2′

∆,δ(Σ̂x : A.B).

• C ′ = .̂ α : κ.A: First, assume some α′ ∈ TV. Hence, A [α′/α] ∈ D1
∆,δ ⊆ D2

∆,δ. Sec-
ondly, assume some σ : (∆, δ) → ((∆′, σ(κ)), δ′) and κ′ ∈ ∆′ with δ′(κ′) < δ′(σ(κ)). Then

((Aσ) [κ′/σ(κ)]) [�/α] ∈ D1
∆′,δ′�∆′ ⊆ D2

∆′,δ′�∆′ . Consequently, C ′ ∈ D2′
∆,δ.

Given any α′ ∈ TV, we have φ1
∆,δ(A [α′/α]) = φ2

∆,δ(A [α′/α]), and given any σ : (∆, δ) →
((∆′, σ(κ)), δ′) and κ′ ∈ ∆′ with δ′(κ′) < δ′(σ(κ)), we have φ1

∆′,δ′�∆′(((Aσ) [κ′/σ(κ)]) [�/α]) =

φ2
∆′,δ′�∆′(((Aσ) [κ′/σ(κ)]) [�/α]). Hence, φ1′

∆,δ(.̂ α : κ.A) = φ2′
∆,δ(.̂ α : κ.A).

• C ′ = ∀̂κ.A: Given any κ′ 6∈ ∆ and n ∈ N, we have that A [κ′/κ] ∈ D1
(∆,κ′),δ[κ′ 7→n] ⊆

D2
(∆,κ′),δ[κ′ 7→n]. Hence, ∀̂κ.A ∈ D2′

∆,δ.

For any κ′ 6∈ ∆ and n ∈ N, we have that φ1
(∆,κ′),δ[κ′ 7→n](A [κ′/κ]) = φ2

(∆,κ′),δ[κ′ 7→n](A [κ′/κ]).

Hence, φ2′
∆,δ(∀̂κ.A) = φ2′

∆,δ(∀̂κ.A).

• C ′ ∈ Neu(∆): Then C ′ ∈ D2′
∆,δ and φ1′

∆,δ(C
′) = SN(∆) = φ2′

∆,δ(C
′).

Theorem 3.17. Any monotone function on a CPPO has a least fixed point.
Specifically, the least fixed point can be constructed as follows: Given a monotone function

f : X → X be on a CPPO (X,≤), we construct the following transfinite sequence (xα):

x0 = ⊥
xα+1 = f(xα)

xγ =
⊔
α<γ

xα if γ is a limit ordinal

Then there is some ordinal α such that xα is the least fixed point

In the following, let (D0, φ0) denote the least fixed point of T 0 according to Theorem 3.17.
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D′∆,δ = {1,Nat,Bool,U}
∪ {Πx : A.B |A ∈ D∆,δ,∀σ : (∆, δ)→ (∆′, δ′), t ∈ φ∆′,δ′(Aσ) : (B σ) [t/x] ∈ D∆′,δ′ }
∪ {Σx : A.B |A ∈ D∆,δ,∀σ : (∆, δ)→ (∆′, δ′), t ∈ φ∆′,δ′(Aσ) : (B σ) [t/x] ∈ D∆′,δ′ }

∪

.α : κ.A

∣∣∣∣∣∣∣
∀α′ ∈ TV : A [α′/α] ∈ D∆,δ;

∀σ : (∆, δ)→ ((∆′, σ(κ)), δ′),∀κ′ ∈ ∆′ : δ′(κ′) < δ′(σ(κ))

=⇒ ((Aσ) [κ′/σ(κ)]) [�/α] ∈ D∆′,δ′�∆′


∪
{
∀κ.A

∣∣∀κ′ 6∈ ∆, n ∈ N : A [κ′/κ] ∈ D(∆,κ′),δ[κ′ 7→n]

}
∪ Neu(∆)

φ′∆,δ(1) = ({〈〉} ∪ Neu(∆))wh(∆)

φ′∆,δ(Bool) = ({true, false} ∪ Neu(∆))wh(∆)

φ′∆,δ(Nat) = N (∆)

φ′∆,δ(Πx : A.B) ' {t | ∀σ : (∆, δ)→ (∆′, δ′), s ∈ φ∆′,δ′(Aσ). (t σ)s ∈ φ∆′,δ′((B σ) [s/x])}
φ′∆,δ(Σx : A.B) = {t |π1 t ∈ φ∆,δ(A), π2 t ∈ φ∆,δ(B [π1 t/x])} if Σx : A.B ∈ D′∆,δ

φ′∆,δ(.α : κ.A) '

t
∣∣∣∣∣∣∣
∀α′ ∈ TV : t [α′] ∈ φ∆,δ(A [α′/α]);

∀σ : (∆, δ)→ ((∆′, σ(κ)), δ′), κ′ ∈ ∆′ : δ′(κ′) < δ′(σ(κ))

=⇒ ((t σ) [�]) [κ′/σ(κ)] ∈ φ∆′,δ′�∆′(((Aσ) [κ′/σ(κ)]) [�/α])


φ′∆,δ(∀κ.A) '

{
t
∣∣∀κ′ 6∈ ∆, n ∈ N : t [κ′] ∈ φ(∆,κ′),δ[κ′ 7→n](A [κ′/κ])

}
φ′∆,δ(A) = SN(∆) if A ∈ Neu(∆)

φ′∆,δ(U) = D0
∆,δ

Figure 3: Definition of T 1

30



Definition 3.18. Let T 1 : Sat → Sat be defined by T 1(D, φ) = (D′, φ′), where D′, φ′ are defined
on terms and types in normal form in Figure 3.

Lemma 3.19. T 1 is well-defined, i.e., if (D, φ) ∈ Sat, then T 1(D, φ) ∈ Sat.

Proof. The proof is similar to the proof of Lemma 3.15 except for addition of the case of U for
proving (S4)-(S7).

(S4): Follows from (S4’).

(S5): Follows from (S5’).

(S6): Assume that A ∈ φ′∆,δ(U), i.e., A ∈ D0
∆,δ. and that B ∈ Terms(∆) with B WH A. By (S4’)

we know that A ∈ SN, so from Lemma 3.7 we can conclude that B ∈ SN. From Lemma 3.3
we get that B A. These facts together with (S2) gives us that B ∈ D0

∆,δ.

(S7): By construction of D0
∆,δ.

Lemma 3.20. T 1 is monotone, i.e., if (D1, φ1) ≤ (D2, φ2), then T 1(D1, φ1) ≤ T 1(D2, φ2).

Proof. The proof is similar to the proof of Lemma 3.16. The additional case U is trivial.

In the following, let (D1, φ1) denote the least fixed point of T 1 according to Theorem 3.17.
Instead of φ1

∆,δ(A) we write J`∆ AKδ.

Lemma 3.21. D1 and φ1 satisfy the properties in Figure 4.

Proof. For the proof we make use of the fact that (D1, φ1) = T 1(D1, φ1). We begin with the
characterisation of D1. We assume an element C ∈ D̂∆,δ and show that then C ∈ D1

∆,δ.

• Let C ∈ {1,Nat,Bool,U}. Since C is in normal form already, we immediately obtain that
C ∈ D1

∆,δ.

• C = Πx : A.B with A ∈ D1
∆,δ, and for all σ : (∆, δ) → (∆′, δ′) and t ∈ J`∆′ AσKδ′ , we have

that (B σ) [t/x] ∈ D1
∆′,δ′ . Let C ′ be the normal form of C. Hence, C ′ = Πx : A′.B′ with A ∗

A′ and B ∗ B′. By Lemma 1.9 and Lemma 1.17, we also have that (B σ) [t/x] ∗ (B′ σ) [t/x]
and Aσ ∗ A′ σ. Hence, we may apply (S2’) and (S3’) to conclude that A′ ∈ D1

∆,δ that for

all σ : (∆, δ) → (∆′, δ′) and t ∈ J`∆′ A′ σKδ′ , we have that (B′ σ) [t/x] ∈ D1
∆′,δ′ . Hence,

C ∈ D1
∆,δ.

• The argument for the cases C = Σx : A.B, C = ∀κ.A, and C = .α : κ.A are similar to the
argument for the case C = Πx : A.B above.

• C ∈ Neu(∆). Let C ′ be the normal form of C. According to Lemma 3.8 and Lemma 1.1 also
C ′ ∈ Neu(∆) and thus C ∈ D1

∆,δ.

Next we consider the characterisation of J`∆ ·Kδ. By definition, J`∆ CKδ = φ′∆,δ(C
′), where C ′ is

the normal form of C and φ′∆,δ is as given in Figure 3, with D and φ instantiated with D1 and φ1,
respectively.
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D1
∆,δ ⊇ D̂∆,δ where

D̂∆,δ = {1,Nat,Bool} ∪ {U}
∪
{

Πx : A.B
∣∣A ∈ D1

∆,δ,∀σ : (∆, δ)→ (∆′, δ′), t ∈ J`∆′ AσKδ′ : (B σ) [t/x] ∈ D1
∆′,δ′

}
∪
{

Σx : A.B
∣∣A ∈ D1

∆,δ,∀σ : (∆, δ)→ (∆′, δ′), t ∈ J`∆′ AσKδ′ : (B σ) [t/x] ∈ D1
∆′,δ′

}
∪

.α : κ.A

∣∣∣∣∣∣∣
∀α′ ∈ TV : A [α′/α] ∈ D1

∆,δ;

∀σ : (∆, δ)→ ((∆′, σ(κ)), δ′), κ′ ∈ ∆′ : δ′(κ′) < δ′(σ(κ))

=⇒ ((Aσ) [κ′/σ(κ)]) [�/α] ∈ D1
∆′,δ′�∆′


∪
{
∀κ.A

∣∣∣∀κ′ 6∈ ∆, n ∈ N : A [κ′/κ] ∈ D1
(∆,κ′),δ[κ′ 7→n]

}
∪ Neu(∆)

J`∆ 1Kδ = ({〈〉} ∪ Neu(∆))wh(∆)

J`∆ BoolKδ = ({true, false} ∪ Neu(∆))wh(∆)

J`∆ NatKδ = N (∆)

J`∆ Πx : A.BKδ = {t | ∀σ : (∆, δ)→ (∆′, δ′), s ∈ J`∆′ AσKδ′ . (t σ)s ∈ J`∆′ (B σ) [s/x]Kδ′ }
if Πx : A.B ∈ D̂∆,δ

J`∆ Σx : A.BKδ = {t |π1 t ∈ J`∆ AKδ , π2 t ∈ J`∆ B [π1 t/x]Kδ } if Σx : A.B ∈ D̂∆,δ

J`∆ .α : κ.AKδ =

t
∣∣∣∣∣∣∣
∀α′ ∈ TV : t [α′] ∈ J`∆ A [α′/α]Kδ ;

∀σ : (∆, δ)→ ((∆′, σ(κ)), δ′), κ′ ∈ ∆′.δ′(κ′) < δ′(σ(κ))

=⇒ ((t σ) [�]) [κ′/σ(κ)] ∈ J`∆′ ((Aσ) [κ′/σ(κ)]) [�/α]Kδ′�∆′


if .α : κ.A ∈ D̂∆,δ

J`∆ ∀κ.AKδ =
{
t
∣∣∀κ′ 6∈ ∆, n ∈ N.t [κ′] ∈ φ(∆,κ′),δ[κ′ 7→n](A [κ′/κ])

}
if ∀κ.A ∈ D̂∆,δ

J`∆ AKδ = SN(∆) if A ∈ Neu(∆)

J`∆ UKδ = D0
∆,δ

Figure 4: Characterisation of D1 and φ1.
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• Since U is a normal form we have that J`∆ UKδ = φ′∆,δ(U) = D0
∆,δ.

• The argument for 1, Nat, and Bool is the same as the argument for U above.

• Let Πx : A.B ∈ D̂∆,δ and C be the normal form of Πx : A.B. Hence, C = Πx : A′. B′

with A ∗ A′ and B ∗ B′, which means that J`∆ Πx : A.BKδ = φ′∆,δ(Πx : A′. B′).
Hence, t ∈ J`∆ Πx : A.BKδ iff for σ : (∆, δ) → (∆′, δ′) and s ∈ J`∆′ A′ σKδ′ , we have that
(t σ)s ∈ J`∆′ (B′ σ) [s/x]Kδ′ . By Lemma 1.17 and Lemma 1.9, we know that Aσ ∗ A′ σ
and (B σ) [s/x] ∗ (B′ σ) [s/x]. By (S3’), we thus know that t ∈ J`∆ Πx : A.BKδ iff for all
σ : (∆, δ)→ (∆′, δ′) and s ∈ J`∆′ AσKδ′ , we have that (t σ)s ∈ J`∆′ (B σ) [s/x]Kδ′ .

• The argument for the cases Σx : A.B, ∀κ.A, and .α : κ.A are similar to the argument for the
case Πx : A.B above.

• Let C ∈ Neu(∆) and let C ′ be the normal form of C. According to Lemma 3.8 and Lemma 1.1
also C ′ ∈ Neu(∆) and J`∆ CKδ = φ′∆,δ(C

′) = SN(∆).

Given a typing context Γ `∆, a clock substitution σ : ∆ → ∆′, and an object (∆, δ) in K, the
semantic context of Γ `∆ w.r.t. σ, δ, written JΓ `∆Kσ,δ, is a set of finite mappings γ : dom (Γ) →
Terms ∪ TV ∪ {�} inductively defined as follows:

1. ! : ∅ → Terms ∪ TV ∪ {�} ∈ J· `∆Kσ,δ.

2. If γ ∈ JΓ `∆Kσ,δ, then

(a) γ [x 7→ t] ∈ JΓ, x : A `∆Kσ,δ, given that t ∈ J`∆′ (Aσ) γKδ;

(b) γ [α 7→ α′] ∈ JΓ, α : κ `∆Kσ,δ, given that κ ∈ ∆ and α′ ∈ TV; and

(c) (γ [κ′/σ(κ)]) [α 7→ �] ∈ JΓ, α : κ `∆K[κ′/σ(κ)]◦σ,δ�∆′′ , whenever κ′ ∈ ∆′, δ(κ′) < δ(σ(κ)),

and ∆′′ = ∆′ \ {σ(κ)}.

Lemma 3.22. If τ : (∆′, δ)→ (∆′′, δ′), and γ ∈ JΓ `∆Kσ,δ, then γ τ ∈ JΓ `∆Kτ◦σ,δ′ .

Proof. We proceed by induction on Γ.

• The case γ ∈ J· `∆Kσ,δ is trivial.

• Let τ : (∆′, δ) → (∆′′, δ′), and γ [x 7→ t] ∈ JΓ, x : A `∆Kσ,δ, i.e. t ∈ J`∆′ (Aσ)γKδ and γ ∈
JΓ `∆Kσ,δ. By (S5) we have that t τ ∈ J`∆′′ ((Aσ)γ)τKδ′ = J`∆′′ (A (τ ◦ σ))(γ τ)Kδ′ , and
by induction hypothesis we have that γ τ ∈ JΓ `∆Kτ◦σ,δ′ . Hence, we can conclude that
(γ [x 7→ t])τ ∈ JΓ, x : A `∆Kτ◦σ,δ′ .

• Let τ : (∆′, δ) → (∆′′, δ′) and γ [α 7→ α′] ∈ JΓ, α : κ `∆Kσ,δ, i.e. γ ∈ JΓ `∆Kσ,δ and α′ ∈ TV.
Since τ : (∆′, δ) → (∆′′, δ′), we can apply the induction hypothesis, to obtain that γ τ ∈
JΓ `∆Kτ◦σ,δ′ . Hence, we have that (γ [α 7→ α′]) τ ∈ JΓ, α : κ `∆Kτ◦σ′,δ′ .

• Let τ : (∆, δ � ∆) → (∆′′, δ′) and (γ [κ′/σ(κ)]) [α 7→ �] ∈ JΓ, α : κ `∆K[κ′/σ(κ)]◦σ,δ�∆, i.e. γ ∈
JΓ `∆Kσ,δ, κ

′ ∈ ∆′, δ(κ′) < δ(σ(κ)), and ∆ = ∆′ \ {σ(κ)}. Let κ′′ be a fresh clock, τ ′ =
τ [σ(κ) 7→ κ′′], and δ′′ = δ′ [κ′′ 7→ δ(σ(κ))]. Then τ ′ : (∆′, δ) → ((∆′′, κ′′), δ′′). Hence, by
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induction hypothesis, we have that γ τ ′ ∈ JΓ `∆Kτ ′◦σ,δ′′ . Since δ′′(τ(κ′)) ≤ δ(κ′) < δ(σ(κ)) =
δ′′(κ′′), we have that

((γ τ ′) [τ(κ′)/(τ ′ ◦ σ)(κ)]) [α 7→ �] ∈ JΓ, α : κ `∆K[τ(κ′)/(τ ′◦σ)(κ)]◦τ ′◦σ,δ′

Because [τ(κ′)/(τ ′ ◦ σ)(κ)] ◦ τ ′ = τ ◦ [κ′/σ(κ)], the above is equivalent to

((γ [κ′/σ(κ)]) [α 7→ �])τ ∈ JΓ, α : κ `∆Kτ◦[κ′/σ(κ)]◦σ,δ′

Lemma 3.23. Given t ∈ J`∆ AKδ, κ 6∈ ∆, and n ∈ N, we have that t ∈ J`∆,κ AKδ[κ7→n].

Proof. Let σ : ∆→ (∆, κ), be the inclusion map from ∆ to ∆, κ. Then σ : (∆, δ)→ ((∆, κ), δ), and
by (S5), we have that t σ ∈ J`∆,κ AσKδ[κ7→n]. Since t σ = t and Aσ = A, we may conclude that

t ∈ J`∆,κ AKδ[κ7→n].

Lemma 3.24. Let (∆, δ) be an object in K, σ : ∆ → ∆′, κ 6∈ ∆, and κ′ 6∈ ∆′. Then JΓ `∆Kσ,δ ⊆
JΓ `∆,κKσ[κ 7→κ′],δ[κ′ 7→n] for any n ∈ N.

Proof. Straightforward induction using Lemma 3.23 for the case that Γ = Γ, x : A.

Lemma 3.25. If t is SN, then so is El (t).

Proof. We say that a redex is an El (·) redex if it is of the form El (u).
Let s be the normal form of t. Since s is in normal form, the only redex that El (s) contains is

El (s) itself (if any). It is easy to see that the only redexes created by contracting an El (·) redex are
themselves El (·) redexes. Moreover, the newly created redexes occur at a higher depth within the
term than the original term. Lastly, the result of contracting an El (·) redex has the same depth.
Hence, we can construct a normalising reduction starting from El (s) by first contracting all redexes
at depth 0, then at depth 1 and so on until depth d, where d is the depth of the term El (s).

Lemma 3.26. If A ∈ D0
∆,δ, then

(i) El (A) ∈ D1
∆,δ, and

(ii) φ0
∆,δ(A) = φ1

∆,δ(El (A)).

Proof. Let (D0,α, δ0,α) be the transfinite sequence constructed as in Theorem 3.17 using the mono-
tone function T 0. That is, there is some α such that (D0,α, δ0,α) = (D0, δ0). We prove the following
generalisation of this lemma: For all ordinals α, if A ∈ D0,α

∆,δ, then

(i) El (A) ∈ D1
∆,δ, and

(ii) φ0,α
∆,δ(A) = φ1

∆,δ(El (A)).

We proceed by transfinite induction on α: The case α = 0 is trivial since D0,0
∆,δ = ∅. If α

is a limit ordinal, then the statement follows straightforwardly from the induction hypothesis:
A ∈ D0,α

∆,δ implies that A ∈ D0,β
∆,δ for some β < α. Hence, by induction hypothesis, El (A) ∈ D1

∆,δ,

and φ0,β
∆,δ(A) = φ1

∆,δ(El (A)). By construction of φ0,α, we thus have that φ0,α
∆,δ(A) = φ1

∆,δ(El (A)).

The case for α = β + 1 follows by case analysis. Let A ∈ D0,α
∆,δ. That is, A ∈ SN and there is a

normalising reduction A ∗ A′ where A′ is of the following forms:
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• A′ = N̂at: Then El (A) ∗ El (A′) = El
(

N̂at
)

Nat, i.e. El (A) ∈ D1
∆,δ. Moreover φ0,α

∆,δ(A) =

N (∆) = φ1
∆,δ(El (A)).

• A′ ∈
{

1̂, ˆBool
}

: Analogous to the case above.

• A′ = Π̂x : B.C: That is, B ∈ D0,β
∆,δ and for all σ : (∆, δ) → (∆′, δ′) and s ∈ φ0,β

∆′,δ′(B σ), we

have that (C σ) [s/x] ∈ D0,β
∆′,δ′ .

(i) By induction hypothesis, El (B) ∈ D1
∆,δ and by (S5’), we know that B σ ∈ D0,β

∆′,δ′ .

Hence, φ0,β
∆′,δ′(B σ) = φ1

∆′,δ′(El (B σ)), by induction hypothesis. Applying the induction

hypothesis again, then yields that for all σ : (∆, δ) → (∆′, δ′) and s ∈ φ1
∆′,δ′(El (B σ)),

we have that El ((C σ) [s/x]) ∈ D1
∆′,δ′ . Thus, we have that Πx : El (B) .El (C) ∈ D1

∆,δ.

Since El (A) ∗ El
(

Π̂x : B.C
)

Πx : El (B) .El (C), we can thus conclude by (S2’) and

Lemma 3.25 that El (A) ∈ D1
∆,δ.

(ii) We know that t ∈ φ0,α
∆,δ(A) iff for all σ : (∆, δ) → (∆′, δ′) and s ∈ φ0,β

∆′,δ′(B σ), we

have that (tσ)s ∈ φ0,β
∆′,δ′((C σ) [s/x]). By induction hypothesis, this is equivalent to

the statement that for all σ : (∆, δ) → (∆′, δ′) and s ∈ φ1
∆′,δ′(El (Bσ)), we have that

(t σ)s ∈ φ1
∆′,δ′(El ((C σ) [s/x])), which in turn is equivalent to t ∈ φ1

∆,δ(El (A)).

• A′ = Σ̂x : B.C: That is, B ∈ D0,β
∆,δ and for all σ : (∆, δ) → (∆′, δ′) and s ∈ φ0,β

∆′,δ′(B σ), we

have that (C σ) [s/x] ∈ D0,β
∆′,δ′ . Property (i) follows by the same argument as for the case

A′ = Π̂x : B.C. To show property (ii), we observe that t ∈ φ0,α
∆,δ(A) iff π1 t ∈ φ0,β

∆,δ(B) and

π2 t ∈ φ0,β
∆,δ(C [π1 t/x]). By induction hypothesis, this is equivalent to π1 t ∈ φ1

∆,δ(El (B))

and π2 t ∈ φ1
∆,δ(El (C [π1 t/x])), which in turn is equivalent to t ∈ φ1

∆,δ(El (A)), because

El (A) ∗ El
(

Σ̂x : B.C
)

Σx : El (B) .El (C).

• A′ = ∀̂κ.B: That is, for all κ′ 6∈ ∆ and n ∈ N, we have that B [κ′/κ] ∈ D0,β
(∆,κ′),δ[κ′ 7→n].

By induction hypothesis, we then obtain that El (B) [κ′/κ] = El (B [κ′/κ]) ∈ D1
(∆,κ′),δ[κ′ 7→n].

Because El (A) ∗ El
(
∀̂κ.B

)
∀κ.El (B), we thus have that El (A) ∈ D1

∆,δ. To show prop-

erty (ii), we observer that t ∈ φ0,α
∆,δ(A) iff for all κ′ 6∈ ∆ and n ∈ N, we have that t [κ′] ∈

φ0,β
(∆,κ′),δ[κ′ 7→n](B [κ′/κ]). According to the induction hypothesis φ0,β

(∆,κ′),δ[κ′ 7→n](B [κ′/κ]) =

φ1
(∆,κ′),δ[κ′ 7→n](El (B) [κ′/κ]). Since El (A) ∗ ∀κ.El (B), we can thus conclude that t ∈
φ0,α

∆,δ(A) iff t ∈ φ1
∆,δ(El (A)).

• The case for .̂ follows by an argument similar to the one for ∀̂ above.

• A′ ∈ Neu(∆): Then also El (A′) ∈ Neu(∆) and therefore El (A′) ∈ D1
∆,δ. Moreover, φ0,α(A′) =

SN(∆) = φ1(El (A′)).

Lemma 3.27. If γ ∈ JΓ,Γ′ `∆Kσ,δ, then γ � dom (Γ) ∈ JΓ `∆Kσ,δ.

35



Proof. We proceed by induction on Γ′.

• The case Γ′ = · is trivial.

• Let γ [x 7→ t] ∈ JΓ,Γ′, x : A `∆Kσ,δ, with γ ∈ JΓ,Γ′ `∆Kσ,δ. Since γ [x 7→ t] � dom (Γ) = γ �
dom (Γ), we have γ [x 7→ t] � dom (Γ) ∈ JΓ `∆Kσ,δ by induction hypothesis.

• Let γ [α 7→ α′] ∈ JΓ,Γ′, α : κ `∆Kσ,δ, with γ ∈ JΓ,Γ′ `∆Kσ,δ and α′ ∈ TV. Since γ [α 7→ α′] �
dom (Γ) = γ � dom (Γ), we have γ [α 7→ α′] � dom (Γ) ∈ JΓ `∆Kσ,δ by induction hypothesis.

• Let (γ [κ′/σ(κ)]) [α 7→ �] ∈ JΓ,Γ′, α : κ `∆K[κ′/σ(κ)]◦σ,δ�∆′′ , with γ ∈ JΓ,Γ′ `∆Kσ,δ, and ∆′′ =

∆′\{σ(κ)}. Since [κ′/σ(κ)] : (∆′, δ)→ (∆′′, δ � ∆′′), we have by Lemma 3.22 that γ [κ′/σ(κ)] ∈
JΓ,Γ′ `∆K[κ′/σ(κ)]◦σ,δ�∆′′ . By induction hypothesis (γ [κ′/σ(κ)]) � dom (Γ) ∈ JΓ `∆K[κ′/σ(κ)]◦σ,δ�∆′′ .

Hence, ((γ [κ′/σ(κ)]) [α 7→ �]) � dom (Γ) ∈ JΓ `∆K[κ′/σ(κ)]◦σ,δ�∆′′ .

Corollary 3.28. If γ ∈ JΓ `∆Kσ,δ with σ : ∆ → ∆′, then γ(x) ∈ Terms(∆′) for all variables
x ∈ dom (Γ).

Proof. Let Γ = Γ1, x : A,Γ2. Then by Lemma 3.27, γ(x) ∈ J`∆′ (Aσ)(γ � dom (Γ1))Kδ. Hence,
γ(x) ∈ Terms(∆′).

Lemma 3.29. Let t ∈ J`∆ BoolKδ, A [t/x] ∈ D1
∆,δ, u ∈ J`∆ A [true/x]Kδ, and v ∈ J`∆ A [false/x]Kδ.

Then if t u v ∈ J`∆ A [t/x]Kδ.

Proof. Since t ∈ J`∆ BoolKδ = ({true, false} ∪ Neu(∆))wh(∆), we know that t WH t′ with t′ ∈
{true, false} ∪ Neu(∆). We proceed by induction on the length of the reduction t WH t

′.

• t = t′. That is, t ∈ {true, false} ∪ Neu(∆). We consider three cases:

– t ∈ Neu(∆). Then also if t u v is neutral since u, v ∈ SN(∆) by (S4’). Hence, by (S7),
if t u v ∈ J`∆ A [t/x]Kδ since by assumption A [t/x] ∈ D1

∆,δ.

– t = true. Hence, if t u v WH u, since v ∈ SN(∆) by (S4’). Because u ∈ J`∆ A [true/x]Kδ,
we may thus apply (S6), to conclude that if t u v ∈ J`∆ A [t/x]Kδ.

– t = false. Analogous to the case t = true above.

• t WH s WH t
′. Hence, also if t u v WH if s u v and if t u v ∈ Terms(∆), since u, v ∈ SN(∆)

by (S4’). Moreover, by induction hypothesis, we have that if s u v ∈ J`∆ A [s/x]Kδ. We may
thus apply (S6), to obtain that that if t u v ∈ J`∆ A [s/x]Kδ. By Lemma 3.3 and Lemma 1.18
A [s/x] ∗ A [t/x]. Hence, by (S3’) also if t u v ∈ J`∆ A [t/x]Kδ.

Lemma 3.30. Let t ∈ N (∆), A [t/x] ∈ D1
∆,δ, u ∈ J`∆ A [0/x]Kδ, and v ∈ J`∆ Πx : Nat.A→ A [sucx/x]Kδ.

Then rec t u v ∈ J`∆ A [t/x]Kδ.

Proof. We proceed by induction on t ∈ N (∆):

• t = 0. Hence, rec t u v WH u, since v ∈ SN(∆) by (S4’). Because u ∈ J`∆ A [0/x]Kδ, we may
thus apply (S6), to conclude that rec t u v ∈ J`∆ A [t/x]Kδ.
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• t = suc t′ and t′ ∈ N (∆). By definition we have that v t′ ∈ J`∆ (A→ A [suc x/x]) [t′/x]Kδ,
which is equivalent to v t′ ∈ J`∆ A [t′/x]→ A [suc t′/x]Kδ. By induction hypothesis rec t′ u v ∈
J`∆ A [t′/x]Kδ, which means, by definition, that v t′ (rec t′ u v) ∈ J`∆ A [suc t′/x]Kδ. Because
rec t u v WH v t

′ (rec t′ u v), we may therefore by (S6) conclude that rec t u v ∈ J`∆ A [t/x]Kδ.

• t ∈ Neu(∆). Then also rec t u v is neutral since u, v ∈ SN(∆) by (S4). Hence, by (S7),
rec t u v ∈ J`∆ A [t/x]Kδ since by assumption A [t/x] ∈ D1

∆,δ.

• t WH s with t ∈ Terms(∆) and s ∈ N (∆). Hence, also rec t u v WH rec s u v and
rec t u v ∈ Terms(∆), since u, v ∈ SN(∆) by (S4). Moreover, by induction hypothesis,
we have that rec s u v ∈ J`∆ A [s/x]Kδ. We may thus apply (S6), to obtain that that
rec t u v ∈ J`∆ A [s/x]Kδ. By Lemma 3.3 and Lemma 1.18 A [s/x] ∗ A [t/x]. Hence, by
(S3’) also rec t u v ∈ J`∆ A [t/x]Kδ.

Lemma 3.31. If t ∈ J`∆ .κA→ AKδ, then dfixκ t ∈ J`∆ .κAKδ.

Proof. We proceed by induction on δ(κ).

• Given α′ ∈ TV, we need to show that (dfixκ t) [α′] ∈ J`∆ AKδ. Since t ∈ J`∆ .κA→ AKδ, we
know that t ∈ Terms(∆) and by (S4), we know that t is SN. Therefore, (dfixκ t) [α′] ∈ Neu(∆).
According to (S7), it thus remains to be shown that A ∈ D1

∆,δ. Since t ∈ J`∆ .κA→ AKδ,
we know that .κA → A ∈ D1

∆,δ. Because the normal form of .κA → A is not neutral, we

can deduce that .κA ∈ D1
∆,δ, and because the normal form of .κA is not neutral either, we

may conclude that A ∈ D1
∆,δ.

• Let σ : (∆, δ)→ ((∆′, σ(κ)), δ′) and κ′ ∈ ∆′, with δ′(κ′) < δ′(σ(κ)). We need to show that

(dfixκ
′
(t σ′)) [�] ∈ J`∆′ Aσ′Kδ�∆′

where σ′ = [κ′/σ(κ)] ◦ σ. Since (dfixκ
′
(t σ′)) [�] WH (t σ′) (dfixκ

′
(t σ′)) it suffices by (S6), to

show that
(t σ′) (dfixκ

′
(t σ′)) ∈ J`∆′ Aσ′Kδ�∆′

One can easily check that σ′ : (∆, δ) → (∆′, δ′ � ∆′). Hence, we may apply (S5), to obtain

that t σ′ ∈
r
`∆′ .κ

′
Aσ′ → Aσ′

z

δ′�∆′
. Moreover, we have that

(δ′ � ∆′)(κ′) = δ′(κ′) < δ′(σ(κ)) ≤ δ(κ)

which means that we may apply the induction hypothesis to obtain that

dfixκ
′
(t σ′) ∈

r
`∆′ .κ

′
(Aσ′)

z

δ�∆′

Using the fact that t σ′ ∈
r
`∆′ .κ

′
Aσ′ → Aσ′

z

δ′�∆′
, we can then conclude

(t σ′) (dfixκ
′
(t σ′)) ∈ J`∆′ Aσ′Kδ�∆′
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Lemma 3.32. If El (t (dfixκ t)u) is SN, then so is El (((dfixκ t) [�])u).

Proof. Assume that there is an infinite reduction starting from El ((dfixκ t) [�]). Since t and u are
SN (otherwise El (t (dfixκ t)u) would not be SN), we know such an infinite reduction must be of the
form

El (((dfixκ t) [�])u) ∗ El (((dfixκ t′) [�])u) El (t′ (dfixκ t′)u) . . .

with t ∗ t′ and u ∗ u′. However, El (t′ (dfixκ t′)u) must be SN since El (t (dfixκ t)u) is SN and
reduces to it.

Lemma 3.33. If t is SN, then so is foldα t.

Proof. If α 6= �, then any infinite reduction starting from foldα t is due to an infinite reduction
starting from t. If α = �, then any infinite reduction starting from fold� t is of the form

fold� t
∗ foldα t

′ t′ . . .

with t ∗ t′. Hence, there is an infinite reduction starting from t. Both cases contradict the
assumption that t is SN.

Lemma 3.34. If t [u/x] and v are SN, then so is t [π1 〈u, v〉 /x].

Proof. If t has no free occurrences of x, the property follows immediately. Otherwise, suppose that
there is an infinite reduction

t [π1 〈u, v〉 /x] s1 s2 . . .

Only redexes in t or in π1 〈u, v〉 are contracted (i.e. there is no overlap). Hence, we also get an
infinite reduction starting from t or from π1 〈u, v〉. Since, t [u/x] is SN so are t and u and thus so
is π1 〈u, v〉. This contradicts the above infinite reduction.

Lemma 3.35 (Fundamental property). Let (∆, δ) be an object in K, σ : ∆ → ∆′, and γ ∈
JΓ `∆Kσ,δ.

(i) If Γ `∆ A : type, then (Aσ)γ ∈ D1
∆′,δ.

(ii) If Γ `∆ t : A, then (t σ)γ ∈ J`∆′ (Aσ)γKδ.

Proof. We prove both statements simultaneously by induction on (d, n), where d is the size of the
derivation of the judgement Γ `∆ A : type resp. Γ `∆ t : A, and n is 0 if the judgement is of the form
Γ `∆ A : type and 1 if it is of the form Γ `∆ t : A. Hence we may use the induction hypotheses for
strictly smaller derivations, and the induction hypothesis for equally large derivations provided we
are using the induction hypothesis (i) for proving (ii). Moreover, we prove the stronger statement
(Aσ)γ ∈ D̂∆′,δ for (ii), where D̂∆′,δ is defined in Figure 4.

Consequently, for proving item (ii), we may assume that (Aσ) γ ∈ D1
∆′,δ for the following reason:

According to Lemma 1.3, Γ `∆ t : A implies that there is a derivation of Γ `∆ A : type that is at
most the size of the derivation of Γ `∆ t : A. Applying the induction hypothesis for Γ `∆ A : type,
then yields (Aσ) γ ∈ D1

∆′,δ.
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•
Γ `∆

Γ `∆ 1 : type ,

Γ `∆

Γ `∆ Bool : type ,

Γ `∆

Γ `∆ Nat : type ,

Γ `∆

Γ `∆ 1̂ : U ,

Γ `∆

Γ `∆
ˆBool : U ,

Γ `∆

Γ `∆ N̂at : U ,

Γ `∆

Γ `∆ 〈〉 : 1 ,

Γ `∆

Γ `∆ true : Bool ,

Γ `∆

Γ `∆ false : Bool ,

Γ `∆

Γ `∆ 0 : Nat ,

Γ `∆

Γ `∆ U : type

For these cases, the property follows immediately from Lemma 3.21.

•
Γ `∆ t : Nat

Γ `∆ suc t : Nat .
By the induction hypothesis, we have that (t σ)γ ∈ J`∆′ NatKδ = N (∆′). Then, by definition
also suc ((t σ)γ) ∈ N (∆′) = J`∆′ NatKδ.

•
Γ `∆ t : A A ∗ B Γ `∆ B : type

Γ `∆ t : B
By Lemma 1.9 and Lemma 1.17, we know that (Aσ)γ ∗ (B σ)γ, and by Theorem 2.8,
we obtain some C such that (Aσ)γ ∗ C ∗ (B σ)γ. By induction hypothesis, we have
that (t σ)γ ∈ J`∆′ (Aσ)γKδ. Hence, by (S3’), we have that (t σ)γ ∈ J`∆′ CKδ. Moreover, by
induction hypothesis, we also have that (B σ)γ ∈ D1

∆′,δ. Hence, by (S2), we know that also
(t σ)γ ∈ J`∆′ (B σ)γKδ.

•
Γ, x : El (A) `∆ B : U
Γ `∆ Π̂x : A.B : U .

We need to show that Π̂y : (Aσ)γ. (B σ)γ [x 7→ y] ∈ J`∆′ (U σ)γKδ, where y is a fresh variable.

That is, we need to show that Π̂y : (Aσ)γ. (B σ)γ [x 7→ y] ∈ D0
∆′,δ.

By Lemma 1.3, we know that Γ, x : El (A) `∆ by a smaller derivation, which means that
Γ `∆ El (A) : type by a smaller derivation. Hence, we may apply Lemma 1.4, to obtain that
Γ `∆ A : U by a smaller derivation. Consequently, we may apply the induction hypothesis
to obtain that (Aσ)γ ∈ J`∆′ (U σ)γKδ = J`∆′ UKδ = D0

∆′,δ. Let τ : (∆′, δ) → (∆′′, δ′) and

t ∈ φ0
∆′′,δ′(((Aσ)γ)τ). It remains to be shown that ((B σ)γ [x 7→ y])τ) [t/y] ∈ D0

∆′′,δ′ , which

is equivalent to (B (τ ◦ σ))(γ τ) [x 7→ t] ∈ D0
∆′′,δ′ .

By Lemma 3.22, we know that γ τ ∈ JΓ `∆Kτ◦σ,δ′ . By (S5’), we have that ((Aσ)γ)τ ∈ D0
∆′′,δ′ .

Hence, by Lemma 3.26, we have that t ∈ J`∆′′ ((Aσ)γ)τKδ′ = J`∆′′ (A (τ ◦ σ))(γ τ)Kδ′ . Hence,
(γ τ) [x 7→ t] ∈ JΓ, x : El (A) `∆Kτ◦σ,δ′ . Hence, we may apply the induction hypothesis to
conclude that

(B (τ ◦ σ))(γ τ) [x 7→ t] ∈ J`∆′′ (U (τ ◦ σ))(γ τ) [x 7→ t]Kδ′ = J`∆′′ UKδ′ = D0
∆′′,δ′ .

•
Γ, x : A `∆ B : type

Γ `∆ Πx : A.B : type .

We need to show that Πy : (Aσ)γ. (B σ)γ [x 7→ y] ∈ D1
∆′,δ, where y is a fresh variable.

By Lemma 1.3, we know that Γ, x : A `∆ by a smaller derivation, which means that Γ `∆ A :
type by a smaller derivation. Consequently, we may apply the induction hypothesis to obtain
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that (Aσ)γ ∈ D1
∆′,δ. Let τ : (∆′, δ) → (∆′′, δ′) and t ∈ J`∆′′ ((Aσ)γ)τKδ′ . It remains to be

shown that ((B σ)γ [x 7→ y])τ) [t/y] ∈ D1
∆′′,δ′ , which is equivalent to (B (τ ◦ σ))(γ τ) [x 7→ t] ∈

D1
∆′′,δ′ .

By Lemma 3.22, we know that γ τ ∈ JΓ `∆Kτ◦σ,δ′ . Since t ∈ J`∆′′ (A (τ ◦ σ))(γ τ)Kδ′ , we have
that (γ τ) [x 7→ t] ∈ JΓ, x : A `∆Kτ◦σ,δ′ . Hence, we may apply the induction hypothesis to
conclude that

(B (τ ◦ σ))(γ τ) [x 7→ t] ∈ D1
∆′′,δ′ .

•
Γ, x : A `∆ t : B

Γ `∆ λx.t : Πx : A.B
We need to show that ((λx : A.t)σ)γ ∈ J`∆′ ((Πx : A.B)σ)γKδ, i.e. that

λy : (Aσ)γ.(t σ)γ [x 7→ y] ∈ J`∆′ Πy : (Aσ)γ.(B σ)γ [x 7→ y]Kδ

for some fresh variable y. That is, given τ : (∆′, δ)→ (∆′′, δ′) and s ∈ J`∆′′ ((Aσ)γ)τKδ′ , we
need to show that

((λy : (A (τ ◦ σ))(γ τ).(t (τ ◦ σ))(γ τ) [x 7→ y]))s ∈ J`∆′′ (((B (τ ◦ σ))(γ τ) [x 7→ y])) [s/y]Kδ′

The left-hand term weak-head reduces to ((t (τ ◦ σ))(γ τ) [x 7→ y]) [s/y], which is equal to
(t (τ ◦ σ))(γ τ) [x 7→ s]. Hence, by (S6), it suffices to show that

(t (τ ◦ σ))(γ τ) [x 7→ s] ∈ J`∆′′ ((B (τ ◦ σ))(γ τ) [x 7→ s]Kδ′

This follows from the induction hypothesis, if we can show that

(γ τ) [x 7→ s] ∈ JΓ, x : A `∆Kτ◦σ,δ′ .

By Lemma 3.22 we know that
γ τ ∈ JΓ `∆Kτ◦σ,δ′ .

Moreover, by assumption, we have that s ∈ J`∆′ (A (τ ◦ σ))(γ σ)Kδ′ , and thus, we have that

(γ τ) [x 7→ s] ∈ JΓ, x : A `∆Kτ◦σ,δ′ .

•
Γ, x : A `∆ B : type

Γ `∆ Σx : A.B : type
The argument is the same as for Πx : A.B above.

•
Γ `∆ t : Πx : A.B Γ `∆ s : A

Γ `∆ t s : B [s/x]

By induction hypothesis, we have that (t σ)γ ∈ J`∆′ Π(y : Aσ)γ).(B σ)γ [x 7→ y]Kδ, and (s σ)γ ∈
J`∆′ (Aσ)γKδ, for some fresh variable y. Hence, by definition, we have that

((t s)σ)γ = ((t σ)γ) ((s σ)γ) ∈ J`∆′ ((B σ)γ [x 7→ y]) [(s σ)γ/y]Kδ

By Corollary 1.20 and Lemma 1.8, we have that ((B σ)γ [x 7→ y]) [(s σ)γ/y] = ((B [s/x])σ)γ,
which means that we can conclude that ((t s)σ)γ ∈ J`∆′ ((B [s/x])σ)γKδ.
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•
Γ, x : El (A) `∆ B : U
Γ `∆ Σ̂x : A.B : U

The argument is the same as for Π̂x : A.B above.

•
Γ `∆ Σx : A.B : type Γ `∆ t : A Γ `∆ s : B [t/x]

Γ `∆ 〈t, s〉 : Σx : A.B
Let s′ = (s σ)γ and t′ = (t σ)γ. By induction hypothesis, we have s′ ∈ J`∆′ ((B [t/x])σ)γKδ
and t′ ∈ J`∆′ (Aσ)γKδ. By Lemma 1.8 and Corollary 1.20, the former is equivalent to
s′ ∈ J`∆′ B′ [t′/y]Kδ, where B′ = (B σ)γ [x 7→ y] for some fresh variable y. By (S4), both s′

and t′ are SN and we thus have that π1 〈t′, s′〉 WH t
′ and π2 〈t′, s′〉 WH s

′. According to (S6),
we thus have that π1 〈t′, s′〉 ∈ J`∆′ (Aσ)γKδ and that π2 〈t′, s′〉 ∈ J`∆′ B′ [t′/x]Kδ. Moreover,
since π1 〈t′, s′〉 t′, we have by Lemma 1.18 that B′ [π1 〈t′, s′〉 /y] ∗ B′ [t′/y]. By (S4’)
B′ [t′/y] is SN, which means by Lemma 3.34 that also B′ [π1 〈t′, s′〉 /y] is SN. Consequently,
we may apply (S2’) and (S3’) to conclude that π2 〈t′, s′〉 ∈ J`∆′ B′ [π1 〈t′, s′〉 /y]Kδ. Hence,

(〈t, s〉σ)γ = 〈t′, s′〉 ∈ J`∆′ Σy : (Aσ)γ.B′Kδ = J`∆′ ((Σx : A.B)σ)γKδ

•
Γ `∆ t : Σx : A.B

Γ `∆ π1 t : A
By induction hypothesis (t σ)γ ∈ J`∆′ Σy : (Aσ)γ. (B σ)γ [x 7→ y]Kδ for some fresh variable y.
Then π1 ((t σ)γ) ∈ J`∆′ (Aσ)γKδ follows immediately.

•
Γ `∆ t : Σx : A.B

Γ `∆ π2 t : B [π1 t/x]
By induction hypothesis (t σ)γ ∈ J`∆′ Σy : (Aσ)γ. (B σ)γ [x 7→ y]Kδ for some fresh variable
y. Then we have that π2 ((t σ)γ) ∈ J`∆′ ((B σ)γ [x 7→ y]) [π1 ((t σ)γ)/y]Kδ, which by Corol-
lary 1.20 and Lemma 1.8, is equivalent to π2 ((t σ)γ) ∈ J`∆′ ((B [π1 t/x])σ)γKδ.

•
Γ, α : κ `∆ A : U κ ∈ ∆

Γ `∆ .̂ α : κ.A : U

We need to show that .̂ α′ : σ(κ).(Aσ)γ [α 7→ α′] ∈ D0
∆′,δ, where α′ is some fresh tick variable.

Let α′′ ∈ TV. Then γ [α 7→ α′′] ∈ JΓ, α : κ `∆Kσ,δ and we can apply the induction hypothesis
to conclude that

((Aσ)γ [α 7→ α′]) [α′′/α′] = (Aσ)γ [α 7→ α′′] ∈ J`∆′ (U σ)γ [α 7→ α′′]Kδ = J`∆′ UKδ = D0
∆′,δ

Let τ : (∆′, δ)→ ((∆′′, τ(σ(κ))), δ′), κ′ ∈ ∆′′ such that δ′(κ′) < δ′(τ(σ(κ))). By Lemma 3.22,
we have that γ τ ∈ JΓ `∆Kτ◦σ,δ′ , which in turn implies that

(γ τ) [κ′/τ(σ(κ))] [α 7→ �] ∈ JΓ, α : κ `∆K[κ′/τ(σ(κ))]◦τ◦σ,δ′�∆′′ .

This allows us to apply the induction hypothesis to conclude that

(((Aσ)γ [α 7→ α′])τ) [κ′/(τ ◦ σ)(κ)]) [�/α′]
= ((A ([κ′/(τ ◦ σ)(κ)] ◦ τ ◦ σ))((γ τ) [κ′/(τ ◦ σ)(κ)])) [�/α]

∈ J`∆′′ UKδ′ = D0
∆′′,δ′
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•
Γ, α : κ `∆ A : type κ ∈ ∆

Γ `∆ .α : κ.A : type

By an argument similar to the case for .̂ above.

•
Γ, α : κ `∆ t : A

Γ `∆ λα : κ.t : .α : κ.A

We need to show that ((λα : κ.t)σ)γ ∈ J`∆′ ((.α : κ.A)σ)γKδ, i.e. given a fresh tick variable
α′, we need to show that

λα′ : σ(κ).((t σ)γ [α 7→ α′]) ∈ J`∆′ .α′ : σ(κ).(Aσ)γ [α 7→ α′])Kδ .

– Let α′′ ∈ TV. We need to show that

(λα′ : σ(κ).((t σ)γ [α 7→ α′])) [α′′] ∈ J`∆′ ((Aσ)γ [α 7→ α′]) [α′′/α′]Kδ

where α′ is a fresh tick variable. Since

(λα′ : σ(κ)..((t σ)γ [α 7→ α′])) [α′′] WH (t σ)γ [α 7→ α′′]

and ((Aσ)γ [α 7→ α′]) [α′′/α′] = (Aσ)γ [α 7→ α′′], it suffices by (S6), to show that

(t σ)γ [α 7→ α′′] ∈ J`∆′ (Aσ)γ [α 7→ α′′]Kδ

The latter follows from the induction hypothesis because γ ∈ JΓ `∆Kσ,δ implies

γ [α 7→ α′′] ∈ JΓ, α : κ `∆Kσ,δ.

– Let τ : (∆′, δ) → ((∆′′, τ(σ(κ))), δ′) and κ′ ∈ ∆′′ with δ′(κ′) < δ′(τ(σ(κ))). We need to
show that

(λα′ : κ′.((t (τ ′ ◦ σ))(γ τ ′) [α 7→ α′])) [�] ∈ J`∆′′ ((A (τ ′ ◦ σ))(γ τ ′) [α 7→ α′]) [�/α′]Kδ′�∆′′

where α′ is a fresh tick variable and τ ′ = [κ′/τ(σ(κ))] ◦ τ . Since

(λα′ : κ′.((t (τ ′ ◦ σ))(γ τ ′) [α 7→ α′])) [�] WH (t (τ ′ ◦ σ))(γ τ ′) [α 7→ �]

and ((A (τ ′ ◦ σ))(γ τ ′) [α 7→ α′]) [�/α′] = (A (τ ′ ◦ σ))(γ τ ′) [α 7→ �], it suffices by (S6), to
show that

(t (τ ′ ◦ σ))(γ τ ′) [α 7→ �] ∈ J`∆′′ (A (τ ′ ◦ σ))(γ τ ′) [α 7→ �]Kδ′�∆′′

The latter follows from the induction hypothesis because γ ∈ JΓ `∆Kσ,δ implies γ τ ∈
JΓ `∆Kτ◦σ,δ′ by Lemma 3.22, which in turn implies

(γ τ ′) [α 7→ �] = ((γ τ) [κ′/τ(σ(κ))]) [α 7→ �] ∈ JΓ, α : κ `∆K[κ′/τ(σ(κ))]◦τ◦σ,δ′�∆′′

= JΓ, α : κ `∆Kτ ′◦σ,δ′�∆′′

because δ′(κ′) < δ′(τ(σ(κ))).
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•
Γ `∆,κ t : .α : κ.A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A [κ′/κ] [�/α]

By Lemma 3.24, γ ∈ JΓ `∆Kσ,δ implies that γ ∈ JΓ `∆,κKσ,δ′ where σ′ = σ [κ 7→ κ′′], δ′ =

δ [κ′′ 7→ δ(σ(κ′)) + 1], and κ′′ is some fresh clock. Hence, by induction hypothesis, we have
that

(t σ′)γ ∈ J`∆′,κ′′ .α′ : κ′′.(Aσ′)γ [α 7→ α′]Kδ′

where α′ is some fresh tick variable. Since

δ′(σ(κ′)) = δ(σ(κ′)) < δ(σ(κ′)) + 1 = δ′(κ′′) = δ′(σ′(κ))

we have that

(((t σ′)γ) [�]) [σ(κ′)/κ′′] ∈ J`∆′ (((Aσ′)γ [α 7→ α′]) [σ(κ′)/κ′′]) [�/α′]Kδ

Since α′ and κ′′ were chosen fresh, the above is equivalent to

((t σ′′)γ) [�] ∈ J`∆′ (Aσ′′)γ [α 7→ �]Kδ

where σ′′ = σ [κ 7→ σ(κ′)]. Since σ′′ = σ ◦ [κ′/κ] the above is in turn equivalent to

(((t [κ′/κ]) [�])σ)γ ∈ J`∆′ (((A [κ′/κ]) [�/α])σ)γKδ

•
Γ `∆ t : .α : κ.A Γ, α′ : κ,Γ′ `∆

Γ, α′ : κ,Γ′ `∆ t [α′] : A [α′/α]

W.l.o.g. we may assume that α 6∈ dom (Γ), and thus α 6∈ dom (γ). By Lemma 3.27, we
know that γ � dom (Γ, α : κ) ∈ JΓ, α `∆Kσ,δ. Hence, given γ′ = γ � dom (Γ), we have that
γ′ [α 7→ α̂] ∈ JΓ, α : κ `∆Kσ,δ, for some α̂ ∈ TV ∪ {�}.

– If α̂ ∈ TV, then γ′ ∈ JΓ `∆Kσ,δ. Hence, by induction hypothesis, we know that (t σ)γ′ ∈
J`∆′ ((.α : κ.A)σ)γ′Kδ, which by Lemma 1.2 and Lemma 1.16 is equivalent to (t σ)γ ∈
J`∆′ ((.α : κ.A)σ)γKδ. That is, given some fresh tick variable α′′, we have that (t σ)γ ∈
J`∆′ .α′′ : σ(κ).(Aσ)γ [α 7→ α′′]Kδ, and thus

((t σ)γ) [α̂] ∈ J`∆′ ((Aσ)γ [α 7→ α′′]) [α̂/α′′]Kδ = J`∆′ (Aσ)γ [α 7→ α̂]Kδ

– If α̂ = �, then γ′ = γ′′ [κ′/σ′(κ)], with γ′′ ∈ JΓ `∆Kσ′,δ′ , σ
′ : ∆ → (∆′, σ′(κ)) σ =

[κ′/σ′(κ)] ◦ σ′, δ′(κ′) < δ′(σ′(κ)), and δ = δ′ � ∆′. Hence, by induction hypothesis we
obtain that

(t σ′)γ′′ ∈
q
`∆′,σ′(κ) .α

′′ : σ′(κ).(Aσ′)γ′ [α 7→ α′′]
y
δ′

for some fresh tick variable α′′. Therefore,

(((t σ′)γ′′) [�]) [κ′/σ′(κ)] ∈ J`∆′ (((Aσ′)γ′′ [α 7→ α′′]) [κ′/σ′(κ)]) [�/α′′]Kδ

which is equivalent to

((t σ) [�])γ′ ∈ J`∆′ (Aσ)γ′ [α 7→ �]Kδ
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which in turn is equivalent to

((t σ) [�])γ ∈ J`∆′ (Aσ)γ [α 7→ �]Kδ
by Lemma 1.2 and Lemma 1.16 because α 6∈ dom (γ)..

For either case we thus have that

((t [α′])σ)γ = ((t σ)γ) [γ(α′)] ∈ J`∆′ (Aσ)γ [α 7→ γ(α′)]Kδ = J`∆ ((A [α′/α])σ)γKδ

The first and the last equality follow from the fact that = α̂.

•
Γ `∆ t : .κA→ A

Γ `∆ dfixκ t : .κA

According to the induction hypothesis, we have that (t σ)γ ∈
q
`∆ .σ(κ)((Aσ)γ)→ ((Aσ)γ)

y
δ
.

Using Lemma 3.31, we can thus conclude that dfixσ(κ)((t σ)γ) ∈
q
`∆ .σ(κ)((Aσ)γ)

y
δ
.

•
Γ `∆ t : El (((dfixκ F ) [α])u) Γ `∆ F : .κ (A→ U)→ (A→ U) Γ `∆ u : A

Γ `∆ unfoldα t : El (F (dfixκ F )u)

If α 6= �, then α ∈ fv(El ((dfixκ F ) [α])). Hence, by Lemma 1.2, we know that α ∈ dom (γ)∪{�}.
We distinguish two cases (and we write F ′ for (F σ)γ, A′ for (Aσ)γ, u′ for (uσ)γ, and t′ for
(t σ)γ):

– α = � or γ(α) = �. According to the induction hypothesis, we have that

t′ ∈
r
`∆ El

(
((dfixσ(κ) F ′) [�])u′

)z
δ

Since El
(

((dfixσ(κ) F ′) [�])u′
)

El
(
F ′ (dfixσ(κ) F ′)u′

)
, we can thus use (S1), (S2), and

(S3) to conclude that

t′ ∈
r
`∆ El

(
F ′ (dfixσ(κ) F ′)u′

)z
δ

Because unfold� t
′

WH t
′, we can, by (S6), conclude that also

unfold� t
′ ∈

r
`∆ El

(
F ′ (dfixσ(κ) F ′)u′

)z
δ

– α 6= � and γ(α) 6= �. According to the induction hypothesis, we have that

t′ ∈
r
`∆ El

(
((dfixσ(κ) F ′) [γ(α)])u′

)z
δ

and thus, by (S4), t′ is SN. Consequently, unfoldγ(α) t
′ ∈ Neu(∆′). Thus, by (S7), it

suffices to show that El
(
F ′ (dfixσ(κ) F ′)u′

)
∈ D1

∆,δ. By induction hypothesis, we have

that F ′ ∈
q
`∆ .σ(κ) (A′ → U)→ (A′ → U)

y
δ

and u′ ∈ J`∆ A′ → UKδ which according

to Lemma 3.31 implies that dfixσ(κ)F ′ ∈
q
`∆ .σ(κ) (A′ → U)

y
δ
. By definition, this

means that F ′ (dfixσ(κ)F ′)u′ ∈ J`∆ UKδ = D0
∆,δ. Thus, by Lemma 3.26, we have that

El
(
F ′ (dfixσ(κ)F ′)u′

)
∈ D1

∆,δ.
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•
Γ `∆ t : El (F (dfixκ F )u) Γ `∆ α : κ

Γ `∆ foldα t : El (((dfixκ F ) [α])u)

We write F ′ for (F σ)γ, A′ for (Aσ)γ, u′ for (uσ)γ, and t′ for (t σ)γ. According to the induc-

tion hypothesis, we have that t′ ∈
r
`∆ El

(
F ′ (dfixσ(κ) F ′)u′

)z
δ
. Hence, also El

(
F ′ (dfixσ(κ) F ′)u

)
∈

D1
∆,δ by (S1) and therefore, according to (S4’), El

(
F ′ (dfixσ(κ) F ′)u′

)
is SN. Consequently,

also F ′ and u′ are SN.

We distinguish two cases:

– α = � or γ(α) = �. By Lemma 3.32, El
(

((dfixσ(κ) F ′) [�])u′
)

is SN. Hence, by

(S2), El
(

((dfixσ(κ) F ′) [�])u′
)
∈ D1

∆,δ and we can apply (S3) to conclude that t′ ∈
r
`∆ El

(
((dfixσ(κ) F ′) [�])u′

)z
δ
. Since fold� t

′
WH t′, we can, by (S6), conclude that

also unfold� t
′ ∈

r
`∆ El

(
((dfixσ(κ) F ′) [�])u′

)z
δ
.

– α 6= � and γ(α) 6= �. Since F ′ and u′ are SN, we know that

El
(

((dfixσ(κ) F ′) [γ(α)])u′
)
∈ Neu(∆′)

which means that according to (S7) it suffices to show that foldγ(α) t
′ is SN. This fol-

lows from Lemma 3.33 and the fact that t′ is SN according to (S4) and the induction
hypothesis.

•
Γ, x : A,Γ′ `∆

Γ, x : A,Γ′ `∆ x : A

By Lemma 3.27, we know that γ � dom (Γ, x : A) ∈ JΓ, x : A `∆Kσ,δ. Hence, γ(x) ∈ J`∆′ (Aσ)(γ � dom (Γ))Kδ.
Since Γ, x : A,Γ′ `∆, we know that Γ `∆ A : type. Hence, by Lemma 1.2 and Lemma 1.16,
we have that (Aσ)(γ � dom (Γ)) = (Aσ)γ, which means that we can conclude (xσ)γ ∈
J`∆ (Aσ)γKδ.

•
Γ `∆ A : U

Γ `∆ El (A) : type

By induction hypothesis, we have that (Aσ)γ ∈ J`∆ UKδ = D0
∆,δ. Hence, according to

Lemma 3.26 (El (A)σ)γ = El ((Aσ)γ) ∈ D1
∆′,δ.

•
Γ `∆,κ A : U Γ `∆

Γ `∆ ∀̂κ.A : U

We need to show that ∀̂κ′.(Aσ [κ 7→ κ′])γ ∈ D0
∆′,δ, where κ′ is some fresh clock variable. To

this end, let κ′′ 6∈ ∆′ and n ∈ N. Then by Lemma 3.24, we have that γ ∈ JΓ `∆,κKσ[κ7→κ′′],δ[κ′′ 7→n].

According to the induction hypothesis, we thus have

((Aσ [κ 7→ κ′])γ) [κ′′/κ′] = (Aσ [κ 7→ κ′])γ ∈ D0
(∆′,κ′′),δ[κ′ 7→n]
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•
Γ `∆,κ A : type Γ `∆

Γ `∆ ∀κ.A : type

By an argument similar to the case for ∀̂ above.

•
Γ `∆,κ t : A Γ `∆

Γ `∆ Λκ.t : ∀κ.A

We need to show that

Λκ′.(t σ [κ 7→ κ′])γ ∈ J`∆′ ∀κ′.(Aσ [κ 7→ κ′])γKδ

where κ′ is some fresh clock variable. That is given κ′′ 6∈ ∆′ and n ∈ N, we need to show that

(Λκ′.(t σ [κ 7→ κ′])γ)[κ′′] ∈ J`∆′,κ′′ ((Aσ [κ 7→ κ′])γ) [κ′′/κ′]Kδ[κ′′ 7→n]

We have that

(Λκ′.(t σ [κ 7→ κ′])γ)[κ′′] WH ((t σ [κ 7→ κ′])γ) [κ′′/κ′] = (t σ [κ 7→ κ′′])γ

The equality above follows from the fact that κ′ 6∈ ∆′ and thus γ [κ′′/κ′] = γ by Corollary 3.28
and [κ′′/κ′] ◦ (σ [κ 7→ κ′]) = σ [κ 7→ κ′′]. Hence, by (S6), it suffices to show that

(t σ [κ 7→ κ′′])γ ∈ J`∆′,κ′′ (Aσ [κ 7→ κ′′])γKδ[κ′′ 7→n]

which follows from the induction hypothesis, provided we can show that γ ∈ JΓ `∆,κKσ[κ 7→κ′′],δ[κ′′ 7→n].

The latter follows from Lemma 3.24.

•
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A [κ′/κ]

By induction hypothesis, we have that (t σ)γ ∈ J`∆′ ∀κ′′.(Aσ [κ 7→ κ′′])γKδ, where κ′′ is
some fresh clock variable. Hence, ((t σ)γ)[κ′′] ∈ J`∆′,κ′′ (Aσ [κ 7→ κ′′])γKδ′ , where δ′ =
δ [κ′′ 7→ δ(σ(κ′))]. Since [σ(κ′)/κ′′] : ((∆′, κ′′), δ′) → (∆′, δ), we may apply (S5) to obtain
that

(((t σ)γ)[κ′′]) [σ(κ′)/κ′′] ∈ J`∆′ ((Aσ [κ 7→ κ′′])γ) [σ(κ′)/κ′′]Kδ
Since κ′′ is fresh for γ, σ, t, A, the above is equivalent to

((t σ)γ)[σ(κ′)] ∈ J`∆′ (Aσ [κ 7→ σ(κ′)])γKδ = J`∆′ ((A [κ′/κ′])σ)γKδ

•

Γ `∆ t : Nat
Γ `∆ u : A [0/x] Γ `∆ v : Πx : Nat.A→ A [suc x/x] Γ `∆ A [t/x] : type

Γ `∆ rec t u v : A [t/x]

We may assume w.l.o.g. that x does not occur free in t or the range of γ. (If this were not the
case, we could replace x with a fresh variable x′ and A with A [x′/x].) Hence, we may use
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Lemma 1.8 and Lemma 1.19, to conclude that ((A [u/x])σ)γ = ((Aσ)γ) [(s σ)γ/x] for any
term s. Accordingly, we obtain from the induction hypothesis, that (t σ)γ ∈ J`∆′ NatKδ =
N (∆′), (uσ)γ ∈ J`∆′ ((Aσ)γ) [0/x]Kδ, ((Aσ)γ) [(t σ)γ/x] ∈ D1

∆′,δ, and

(v σ)γ ∈ J`∆′ Πy : Nat.(Aσ)γ [x 7→ y]→ ((Aσ)γ [x 7→ y]) [suc y/x]Kδ

where y is a fresh variable. Since x does not occur free in either t or the range of t, we can α
rename such that we obtain

(v σ)γ ∈ J`∆′ Πx : Nat.(Aσ)γ → ((Aσ)γ) [suc x/x]Kδ

We may thus apply Lemma 3.30, to obtain that

rec ((t σ)γ) ((uσ)γ) ((v σ)γ) ∈ J`∆′ ((Aσ)γ) [(t σ)γ/x]Kδ

By Lemma 1.19 this is equivalent to

((rec t u v)σ)γ ∈ J`∆′ ((A [t/x])σ)γKδ

•
Γ `∆ t : Bool Γ `∆ u : A [true/x] Γ `∆ v : A [false/x] Γ `∆ A [t/x] : type

Γ `∆ if t u v : A [t/x]
From the induction hypothesis, we obtain that (t σ)γ ∈ J`∆′ BoolKδ, (uσ)γ ∈ J`∆′ ((Aσ)γ) [true/x]Kδ,
(v σ)γ ∈ J`∆′ ((Aσ)γ) [false/x]Kδ, and ((Aσ)γ) [(t σ)γ/x] ∈ D1

∆′,δ. We may thus apply
Lemma 3.29, to obtain that

if ((t σ)γ) ((uσ)γ) ((v σ)γ) ∈ J`∆′ ((Aσ)γ) [(t σ)γ/x]Kδ

By Lemma 1.19 this is equivalent to

((if t u v)σ)γ ∈ J`∆′ ((A [t/x])σ)γKδ

Theorem 3.36. If Γ `∆ t : T , then t is SN.

Proof. This follows from Lemma 3.35 and (S4’).

4 Subject Reduction

Given a typing context Γ `∆, we write idΓ for the identity map on the set dom (Γ).

Lemma 4.1. For any typing context Γ `∆, we have that (id∆, idΓ) : (∆,Γ)→ (∆,Γ).

Proof. We proceed by induction on the size of Γ.

• If dom (Γ) contains no tick variables, then (id∆, idΓ) : (∆,Γ)→ (∆,Γ) follows by first applying
Subst-Empty and then repeatedly applying Subst-Var for each x : A in Γ.
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• Let Γ = Γ1, α : κ,Γ2, where dom (Γ2) contains no tick variables. By induction hypoth-
esis, we have that (id∆, idΓ1) : (∆,Γ1) → (∆,Γ1). By Subst-Tick-Var, we have that
(id∆, idΓ1,α:κ) : (∆, (Γ1, α : κ)) → Γ). By repeatedly applying Subst-Var, for every x : A in
Γ2, we obtain (id∆, idΓ) : (∆,Γ)→ (∆,Γ).

Lemma 4.2. Given two well-typed terms s and t with El (s) ∗ El (t), we have that s ∗ t.

Proof. By Theorem 3.36, s and t are SN. Let s′ and t′ be the normal forms of s and t, respectively.
Furthermore, let u and v be the normal forms of El (s′) and El (t′), respectively. By Theorem 2.8,
u = v. Moreover, since s′ and t′ are in normal form, all redexes contracted in El (s′) ∗ u and
El (t′) ∗ v must be El (·) redexes. Hence, also s′ = t′, which means that s ∗ t.

Proposition 4.3 (subject reduction). If Γ `∆ s : A and s t, then Γ `∆ t : A.

Proof. We proceed by induction on Γ `∆ s : A. Below we consider the cases that do not follow
from the induction hypothesis (and where s is not a normal form). In doing so we assume w.l.o.g.
that the derivation of Γ `∆ s : A has no repeated applications of the conversion rule.

•
Γ `∆ t : Πx : A.B Γ `∆ s : A

Γ `∆ t s : B [s/x]

We consider three cases for t s u:

– t s t′ s with t t′. Follows immediately from the induction hypothesis.

– t s t s′ with s s′. By induction hypothesis Γ `∆ s′ : A and thus Γ `∆ t s′ : B [s′/x].
By Lemma 1.18, B [s/x] ∗ B [s′/x]. Since, by Lemma 1.3, Γ `∆ B [s/x] : type, we may
apply the conversion rule to obtain that Γ `∆ t s′ : B [s/x].

– t = λx : A′.t′ and t s t′ [s/x]. Then Γ, x : A′ `∆ t′ : B′ with Πx : A.B ∗ Πx :
A′. B′ and Γ `∆ Πx : A′. B′ : type. By confluence we have that A ∗ A′; and from
Γ `∆ Πx : A′. B′ : type, we obtain that Γ `∆ A′ : type. Hence, according to the
conversion rule, we have that Γ `∆ s : A′. Thus, by Lemma 4.1 (id∆, [s/x]) : (∆, (Γ, x :
A′))→ (∆,Γ). Hence, we may apply Lemma 1.21 to obtain that Γ `∆ t′ [s/x] : B′ [s/x].
By Lemma 1.17, we have that B′ [s/x] ∗ B [s/x] and according to Lemma 1.3 Γ `∆

B [s/x] : type. Therefore, we may apply the conversion rule to obtain that Γ `∆ t′ [s/x] :
B [s/x].

•
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t [κ′] : A [κ′/κ]

The case where the reduction t [κ′] → u contracts a redex in t follows immediately from
the induction hypothesis. Otherwise, t = Λκ.s and u = s [κ′/κ]. Hence, Γ `∆,κ s : A′,
∀κ.A ∗ ∀κ.A′, and Γ `∆. By Lemma 1.10, we have that Γ [κ′/κ] `∆ t [κ′/κ] : A′ [κ′/κ].
Since Γ `∆, we know that Γ [κ′/κ] = Γ. Moreover, by confluence, we obtain A ∗ A′ from
∀κ.A ∗ ∀κ.A′, which in turn gives us A [κ′/κ] ∗ A′ [κ′/κ] by Lemma 1.9. Hence, we may
apply the conversion rule, to obtain that Γ `∆ s [κ′/κ] : A [κ′/κ].
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•
Γ `∆,κ t : .α : κ.A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A [κ′/κ] [�/α]

This case follows from Lemma 1.22 and the induction hypothesis.

•
Γ `∆ t : .α : κ.A Γ, α′ : κ,Γ′ `∆

Γ, α′ : κ,Γ′ `∆ t [α′] : A [α′/α]

The case where t [α′] u contracts a redex in t follows immediately from the induction
hypothesis. Otherwise, t = λα : κ.s, with Γ, α̂ : κ̂ `∆ s : A′, .α : κ.A ∗ . α̂ : κ̂.A′, and
κ̂ ∈ ∆. W.l.o.g. we may assume that α̂ = α (otherwise, we α rename accordingly). Moreover,
by confluence, we have that κ̂ = κ and A ∗ A′. Hence, u = s [α′/α]. By Lemma 4.1,
(id∆, idΓ) : (∆,Γ) → (∆,Γ), and thus (id∆, [α

′/α]) : (∆, (Γ, α : κ)) → (∆, (Γ, α′ : κ,Γ′)).
Consequently, by Lemma 1.21, we have that Γ, α′ : κ,Γ′ `∆ s [α′/α] : A [α′/α]

•
Γ `∆ Σx : A.B : type Γ `∆ t : A Γ `∆ s : B [t/x]

Γ `∆ 〈t, s〉 : Σx : A.B

Let 〈t, s〉 u. We consider two cases:

– If u = 〈t′, s〉 with t t′, then Γ `∆ t′ : A by induction hypothesis. Moreover, we
also have by Lemma 1.18 that B [t/x] ∗ B [t′/x]. By Lemma 1.3, we have that
Γ `∆ B [t/x] : type. Applying the induction hypothesis (repeatedly) we thus obtain
that Γ `∆ B [t′/x] : type. Together with the fact that B [t/x] ∗ B [t′/x], we thus
obtain that Γ `∆ s : B [t′/x]. Finally, we can thus conclude that Γ `∆ 〈t′, s〉 : Σx : A.B.

– If u = 〈t, s′〉 with s s′, then Γ `∆ s′ : B [t/x] follows by the induction hypothesis, and
we can thus immediately conclude that Γ `∆ 〈t, s′〉 : Σx : A.B.

•
Γ `∆ t : Σx : A.B

Γ `∆ π1 t : A
If π1 t u contracts a redex in t, then Γ `∆ u : A follows immediately from the induction
hypothesis. Otherwise, t = 〈u, v〉, with Σx : A.B ∗ Σx : A′. B′, and Γ `∆ u : A′. Since
Γ `∆ A : type by Lemma 1.3, and A ∗ A′ by confluence, we may apply the conversion rule
to obtain that Γ `∆ u : A.

•
Γ `∆ t : Σx : A.B

Γ `∆ π2 t : B [π1 t/x]

We consider two cases for π2 t u:

– If u = π2 t
′ with t ∗ t′, then, by induction hypothesis, we obtain that Γ `∆ t′ : Σx :

A.B, which in turn implies that Γ `∆ π2 t
′ : B [π1 t

′/x]. By Lemma 1.3, we know that
Γ `∆ B [π1 t/x] : type and by Lemma 1.18, we know that B [π1 t

′/x] ∗ B [π1 t/x].
Applying the conversion rule we thus obtain that Γ `∆ π2 t

′ : B [π1 t/x].
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– If t = 〈v, u〉, then Γ `∆ u : B′ [v/x] with Σx : A.B ∗ Σx : A′. B′. By confluence
we obtain that B′ ∗ B, which in turn implies by Lemma 1.17 that B′ [v/x] ∗

B [v/x]. Moreover, we have that π1 t v. Hence, by Lemma 1.18, we have that
B [v/x] ∗ B [π1 t/x]. Hence, we have B′ [v/x] ∗ B [π1 t/x] and by Lemma 1.3 we
have that Γ `∆ B [π1 t/x] : type. We may thus apply the conversion rule to conclude
that Γ `∆ u : B [π1 t/x].

•
Γ `∆ t : Bool Γ `∆ u : A [true/x] Γ `∆ v : A [false/x] Γ `∆ A [t/x] : type

Γ `∆ if t u v : A [t/x]

We consider three cases for if t u v s:

– If s = if t′ u v with t t′, then Γ `∆ t′ : Bool by induction hypothesis, which in turn
gives us that Γ `∆ if t′ u v : A [t′/x]. Since Γ `∆ A [t/x] : type and, by Lemma 1.18,
A [t′/x] ∗ A [t/x], we may apply the conversion rule to conclude that Γ `∆ if t′ u v :
A [t/x].

– If s = if t u′ v with u u′, then Γ `∆ u′ : A [true/x] follows from the induction hypoth-
esis, which in turn allows us to conclude that Γ `∆ if t u′ v : A [t/x].

– If s = if t u v′ with v v′, then Γ `∆ v′ : A [false/x] follows from the induction hypoth-
esis, which in turn allows us to conclude that Γ `∆ if t u v′ : A [t/x].

•

Γ `∆ t : Nat
Γ `∆ u : A [0/x] Γ `∆ v : Πx : Nat.A→ A [suc x/x] Γ `∆ A [t/x] : type

Γ `∆ rec t u v : A [t/x]
The argument is analogous to the argument for if above.

•
Γ `∆ t : El (((dfixκ F ) [α])u) Γ `∆ F : .κ (A→ U)→ (A→ U) Γ `∆ u : A

Γ `∆ unfoldα t : El (F (dfixκ F )u)

If unfoldα t t′ contracts a redex in t, then Γ `∆ t′ : El (F (dfixκ F )u) follows immediately
from the induction hypothesis. Otherwise, α = �, and t = t′. Then El (((dfixκ F ) [α])u)
El (F (dfixκ F )u). Since Γ `∆ El (F (dfixκ F )u) : type by Lemma 1.3, we may thus apply the
conversion rule to obtain Γ `∆ t′ : El (F (dfixκ F )u) from Γ `∆ t : El (((dfixκ F ) [α])u).

•
Γ `∆ t : El (F (dfixκ F )u) Γ `∆ α : κ

Γ `∆ foldα t : El (((dfixκ F ) [α])u)

Analogous to the case above.

Lemma 4.4. Every subterm of a well-typed term is also well-typed.

Proof. Let Γ `∆ t : T . We show by induction on Γ `∆ t : T that all subterms of t are well-typed.
The only non-trivial case is the following:

Γ `∆,κ t : .α : κ.A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A [κ′/κ] [�/α]
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By induction all subterms of t are well-typed. Then, by Lemma 1.10, also all subterms of t [κ′/κ]
are well-typed.

5 Canonicity

Definition 5.1 (constructor term). A term is a constructor term if it is in the form of one of the
terms below:

λx : A.t, λα : κ.t,Λκ.t, dfixκ t, foldα t, 〈〉, 〈s, t〉 , true, false, suc t, 0, Π̂x : A.B, Σ̂x : A.B, .̂ α : κ.A, ∀̂κ.A

where α ranges over the set of tick variables.

Lemma 5.2. If Γ `∆ t : A and t is a normal form then, t is a constructor term or neutral.

Proof. We proceed by induction on Γ `∆ t : A. We only need to consider the rules for which t is
not a constructor term. To show that t is neutral, we can ignore the side conditions that ensure
that t is SN, since t is SN by Lemma 3.35 and (S4’).

•
Γ `∆ t : A A ∗ B Γ `∆ B : type

Γ `∆ t : B

By induction hypothesis, t must be neutral.

•
Γ, x : A,Γ′ `∆

Γ, x : A,Γ′ `∆ x : A
By definition x is neutral.

•
Γ `∆ t : Πx : A.B Γ `∆ s : A

Γ `∆ t s : B [s/x]

Since t s is a normal form, so is t. Hence, the induction hypothesis for Γ `∆ t : Πx : A.B
yields that t must be neutral or a constructor term. In the former case, we then know that t s
is neutral. For the latter case, we will show below that t must be a lambda abstraction, and
thus t s is not a normal form, which contradicts the assumption. Consequently, t is neutral.

The introduction rule for Πx : A.B gives us that t is a lambda abstraction. The only other
way to get Γ `∆ t : Πx : A.B is (possibly repeatedly) applying the conversion rule followed by
a different rule. That is, there is some C with C ∗ Πx : A.B and Γ `∆ t : C. By confluence,
there must be a term C ′ with Πx : A.B ∗ C ′ and C ∗ C ′. Hence, C ′ must be of the form
Πx : A′. B′. Therefore, C is either of the form Πx : A′′. B′′ or El (u). In the former case,
Γ `∆ t : C must have been obtained by the introduction rule for Π types and thus we know
that t must be a lambda abstraction. In the latter case, Γ `∆ t : C must have been obtained
by the introduction rule for foldα, i.e. C = El ((dfixκ F )α [α]) for some F . However, this is not
possible since El ((dfixκ F )α [α]) only rewrites to terms of the form El ((dfixκ F ′)α [α]).

•
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A [κ′/κ]
This follows by an argument similar to the case for term application.
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•
Γ `∆ t : .α : κ.A Γ, α′ : κ,Γ′ `∆

Γ, α′ : κ,Γ′ `∆ t [α′] : A [α′/α]

Since t [α′] is a normal form, so is t. Hence, by induction hypothesis t is neutral or a constructor
term. In the former case also t [α′] is neutral. In the latter case, we can show (by a similar
argument as for term application above) that t is either of the form λα : κ.s or dfixκ s. In the
former case, we obtain a contradiction since (λα : κ.s) [α′] is not a normal form, and in the
latter case we obtain that t [α′] is neutral.

•
Γ `∆,κ t : .α : κ.A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A [κ′/κ] [�/α]

Since (t [κ′/κ]) [�] is a normal form, so is t [κ′/κ], and by Lemma 1.9 so is t. Hence, by
induction hypothesis t is neutral or a constructor term. In the former case also t [κ′/κ] is
neutral according to Lemma 3.5 and thus so is (t [κ′/κ]) [�]. In the latter case, we can show
(by a similar argument as for term application above) that t is either of the form λα : κ.s
or dfixκ s. In either case, we obtain a contradiction since neither (λα : κ′.s [κ′/κ]) [�] nor

(dfixκ
′
s [κ′/κ]) [�] is a normal form.

•
Γ `∆ t : Σx : A.B

Γ `∆ π1 t : A

This follows by an argument similar to the case for term application.

•
Γ `∆ t : Σx : A.B

Γ `∆ π2 t : B [π1 t/x]

This follows by an argument similar to the case for term application.

•
Γ `∆ t : Bool Γ `∆ u : A [true/x] Γ `∆ v : A [false/x] Γ `∆ A [t/x] : type

Γ `∆ if t u v : A [t/x]

This follows by an argument similar to the case for term application.

•

Γ `∆ t : Nat
Γ `∆ u : A [0/x] Γ `∆ v : Πx : Nat.A→ A [suc x/x] Γ `∆ A [t/x] : type

Γ `∆ rec t u v : A [t/x]

This follows by an argument similar to the case for term application.

•
Γ `∆ t : El (((dfixκ F ) [α])u) Γ `∆ F : .κ (A→ U)→ (A→ U) Γ `∆ u : A

Γ `∆ unfoldα t : El (F (dfixκ F )u)

Since unfoldα t is a normal form, α 6= �. Hence, unfoldα t is neutral.
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•
Γ `∆ t : El (F (dfixκ F )u) Γ `∆ α : κ

Γ `∆ foldα t : El (((dfixκ F ) [α])u)

Since foldα t is a normal form, α 6= �. Hence, foldα t is a constructor term.

Lemma 5.3. If `∆ t : Nat and t is a normal form, then t is a constructor term.

Proof. By Lemma 5.2, t is neutral or a constructor term. However, if t is neutral then t contains a
free occurrence of a term or a tick variable. According to Lemma 1.2 that is impossible.

Theorem 5.4 (canonicity). If `∆ t : Nat, then t ∗ suc n 0 for some n ∈ N.

Proof. By Theorem 3.36, t is SN. Let s be a normal form of t, i.e. t ∗ s. By Proposition 4.3, we
know that `∆ s : Nat. We show that s is of the form suc n 0 by induction on the size of s.

By Lemma 5.3, s must be a constructor term. Moreover, since `∆ s : Nat, we know that either
s = 0 or s = suc u with `∆ u : Nat. In the former case, we are done. In the latter case, we obtain
that u = sucm 0 for some m ∈ N. Hence, s = sucm+1 0.

6 Translation to GDTT

We first show that advancing a delayed substitution corresponds to application to � in CloTT.
Note that the translation extends to substitutions in the obvious way: ρ[t/x]∗ = ρ∗[t∗/x]. Define
ξ∗� = ξ∗α [�/α], i.e.,

(ξ [x← t])∗� = ξ∗� [x 7→ t∗ [�]].

We write ρ ∗ ρ′ if ρ(x) ∗ ρ′(x) for all x and ρ(κ) = ρ′(κ), ρ(α) = ρ′(α) for all κ and α.

Lemma 6.1. If ξ is a delayed substitution then (advκ∆(ξ))∗ ∗ ξ∗� .

Proof. This follows from the observation that

((prevκ.t)[κ])∗ = (Λκ.t∗ [�])[κ]

t∗ [�]

We note also the following, provable by an easy induction on types.

Lemma 6.2. Let A and t be a GDTT type and term, respectively. Then ft(A∗) = ft(t∗) = ∅.

Proposition 6.3. The translation preserves wellformed judgements in the following sense.

1. If Γ `∆ A type is a wellformed type judgement in GDTT then Γ∗ `∆ A∗ : type is wellformed
in CloTT.

2. If Γ `∆ t : A is a wellformed GDTT typing judgement, then Γ∗ `∆ t∗ : A∗ is wellformed in
CloTT.

53



Definitional type equalities:

.κξ [x← t] .A ≡ .κξ.A (1)

.κξ [x← t, y ← u] ξ′.A ≡ .κξ [y ← u, x← t] ξ′.A (2)

.κξ [x← nextκξ.t] .A ≡ .κξ.A [t/x] (3)

El
(
.̂
κ

(nextκξ.t)
)
≡ .κξ.El (t) (4)

Definitional term equalities:

nextκξ [x← t] .u ≡ nextκξ.u (5)

nextκξ [x← t, y ← u] ξ′.v ≡ nextκξ [y ← u, x← t] ξ′.v (6)

nextκξ [x← nextκξ.t] .u ≡ nextκξ.u [t/x] (7)

nextκξ [x← t] .x ≡ t (8)

prevκ.nextκξ.t ≡ Λκ.t(advκ∆(ξ)) (9)

nextκ((prevκ.t)[κ]) ≡ t (10)

nextκξ.nextκξ′.u ≡ nextκξ′.nextκξ.u (11)

fixκx.t ≡ t [nextκ(fixκx.t)/x] (12)

t : ∀κ.A κ /∈ fc(A)

t[κ′] ≡ t[κ′′]
(13)

Figure 5: Type and term equalities of GDTT. All rules should be read as equalities in a context,
and have the implicit assumption that both sides are wellformed and welltyped in that context. For
example, rules (1) and (5) require that A and u are well-formed in a context without x. Rule (11)
moreover assumes that none of the variables in the codomains of ξ and ξ′ appear in the type of u.

3. If `∆ ξ : Γ
κ
_ Γ′ is a delayed substitution then ξ∗α is a substitution from Γ∗, α : κ `∆ to

Γ∗, α : κ, (Γ′)∗ `∆

Proof. The three statements are proved by simultaneous induction over judgements.
For 1) the only interesting case is that of .κξ.A. By induction hypothesis, Γ∗, (Γ′)∗ `∆ A∗ : type

and ξ∗α is a substitution from Γ∗, α : κ `∆ to Γ∗, α : κ, (Γ′)∗ `∆. By weakening (Lemma 1.5) also
Γ∗, α : κ, (Γ′)∗ `∆ A∗ : type and so by substitution (Lemma 1.21) Γ∗, α : κ `∆ A∗ξ∗α : type, and so
Γ∗ `∆ .α : κ.A∗ ξ∗α : type as desired.

For 2), in the case of .̂
κ
A the induction hypothesis states that Γ∗ `∆ A∗ : .α : κ.U so Γ∗, α :

κ `∆ A∗ [α] : U and so Γ∗ `∆ .̂ α : κ.A∗ [α] : U . The case of nextκξ.t is similar to that of .κξ.A:
the induction hypothesis on t and ξ give that Γ∗, α : κ `∆ t∗ξ∗α : A∗ξ∗α and so

Γ∗ `∆ λα : κ.t∗ξ∗α : .α : κ.A∗ξ∗α.

In the case of prevκ.t the induction hypothesis states that Γ∗ `∆,κ t
∗ : .α : κ.A∗ξ∗α and Γ∗ `∆

so
Γ∗ `∆ t∗ [�] : (A∗ξ∗α) [�/α] .
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By Lemma 6.2 (A∗ξ∗α) [�/α] = A∗ξ∗� . An easy induction on A shows that the translation com-
mutes with substitution, i.e., that (A(advκ∆(ξ)))∗ = A∗(advκ∆(ξ))∗ and so by Lemma 6.1 A∗ξ∗�

∗

(A(advκ∆(ξ)))∗ and so Γ∗ `∆ t∗ [�] : (A(advκ∆(ξ)))∗ as desired.
The case of fixed points follows from the substitution lemma (Lemma 1.21).
For 3), the empty delayed substitution is translated to the identity substitution which clearly is

welltyped. In the case of extension of a delayed substitution ξ [x← t], by the induction hypothesis
ξ∗α is a substitution from Γ∗, α : κ `∆ to Γ∗, α : κ, (Γ′)∗ `∆, and

Γ∗ `∆ t∗ : .α : κ.(A∗ ξ∗α).

The latter implies that Γ∗, α : κ `∆ t∗ [α] : (A∗ ξ∗α) and thus (ξ [x← t])∗α = ξ∗α[x 7→ t∗ [α]] is a
substitution from Γ∗, α : κ `∆ to Γ∗, α : κ, (Γ′)∗, x : A∗ `∆ as desired.

Theorem 6.4. The translation from GDTT to CloTT preserves all the rules of Figure 5 except
(10), (11), (12) and (13).

Proof. We show that for each of the rules, in Figure 5 (except (10), (11), (12) and (13)), the
translation of each side of the equation are in the relation ∗.

Equations (1), (2), (5) and (6) follow straightforwardly from the fact that delayed substitutions
are translated to ordinary (simultaneous) substitutions.

For (3) the left hand side translates to

(.κξ [x← nextκξ.t] .A)∗ = .α : κ.A∗(ξ [x← nextκξ.t])∗

Since

(ξ [x← nextκξ.t])∗ = ξ∗α[(λα : κ.t∗ξ∗α) [α]/x]

ξ∗α[t∗ξ∗α/x]

also

(.κξ [x← nextκξ.t] .A)∗ .α : κ.A∗ξ∗α[t∗ξ∗α/x]

= .α : κ.(A∗ [t∗/x])ξ∗α

= .α : κ.(A [t/x])∗ξ∗α

= (.κξ.A [t/x])∗

Rule (7) follows similarly.
For (4) the left hand side translates to

El
(
.̂
κ

(nextκξ.t)
)∗

= El
(
.̂ α : κ. (nextκξ.t)∗ [α]

)
= El (.̂ α : κ.(λα : κ.t∗ξ∗α) [α])

El (.̂ α : κ.t∗ξ∗α)

.α : κ.El (t∗ξ∗α)

= .α : κ.El (t∗) ξ∗α
= (.κξ.El (t))∗
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For rule (8) the left hand side translates to

(nextκξ [x← t] .x)∗ = λα : κ.x (ξ [x← t])∗

= λα : κ.x (ξ∗α[t∗ [α]/x])

= λα : κ.t∗ [α]

t∗

For (9) we compute

(prevκ.nextκξ.t)∗ = Λκ.(nextκξ.t)∗ [�]
= Λκ.(λα : κ.t∗ξ∗α) [�]

Λκ.t∗ξ∗�

since α is not free in t∗ by Lemma 6.2. Now, by Lemma 6.1

Λκ.t∗ξ∗�
∗ Λκ.t∗(advκ∆(ξ))∗

= Λκ.(t(advκ∆(ξ)))∗

proving the case.
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