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1 The Calculus

1.1 Syntax

We assume countably infinite and mutually disjoint sets of Var term variables, TV, of tick variables
and CV of clock variables.
We define untyped types and terms.

s, t,u, A, B Iz : AB|Yz:AB|va:kA|Ve.A|1l|Bool| Nat | U | EI(A)
[z:AB|Sz:AB|ba:kA|VkA|1|Bool| Nat

x| Ax: At | tu| (t,u) | mt | ot

Aa: k.t | ta] | Akt | t[K]

dfix” ¢ | unfold,, t | fold, ¢

() | true | false | if stw | O | suct | rectuw

Where x ranges over the set Var of term variables; xk ranges over the set CV of clock variables;
and a ranges over the set TVU{o} of tick variables and the tick constant ¢ — except for tick binders
(terms of the form A« : k.t, > : k. A, and B« : k.A) where « ranges over the set TV of tick variables
only. Given a term t, we write fv(t) for the set of free (term and tick) variables in ¢, and fc(t) for
the set of all free clock variables in ¢.

1.2 Reduction

The reduction relation — on terms is defined as the least relation closed under contexts (i.e. s —> ¢
implies C[s] — C[t]) than satisfies the conditions in Figure|l} Note that the side condition « & fv(t)
in (BACK-NEXT]) and (NEXT-BACK]) is always met for well-typed terms. We write —* for the reflexive,
transitive closure, —T for the transitive closure, -~ for the reflexive closure, and «>* for the
symmetric, transitive closure of —.

Lemma 1.1. If s > t, then fv(t) C fv(s) and fc(t) C fc(s).

Proof. Straightforward by case analysis of s — ¢. O



(Ax : At)s > t[s/x]
(Ak.t)[K'] —> t [ /K]
(A 1 k.t) [a] > ta/d]
Aa: k.(ta]) >t if o ¢ fu(t)
(dfix™ t) [o] — t (dfix" t)
foldot — ¢
unfold,t — ¢
i (t, ta) — b
if truet; ta —> t1
if falsety tog — to
recO0ts —t
rec (suc t1) tat3 — t3 ¢y (recty tats)
(Ak.t[k]) > t if Kk ¢ fe(t)

Figure 1: Reduction relation — on terms.
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1.3 Typing Rules

Typing judgements are of the form I' - ¢ : A, where ¢t is a term, A is a type, A is a clock context,
and I is a typing context. A clock context A is a finite set of clock variables. A typing context I'
is a sequence of typings, which are of the form x : A — where x is a term variable and A is a type —
or of the form a : Kk — where « is a tick variable and & is a clock variable. We use the convention
that no (term or tick) variable may occur more than once in a typing context. For instance, in a
context I',z : A,TV,y : B, we may assume that x # y. We write ' < TV if I" is a prefix of IV, i.e. if
there is some I' such that IV =T, T".

We write > A and next”t as a shorthand for >« : k.A and A« : k.t, respectively, where o does
not occur freely in A and ¢, respectively.

Contexts:
I'ka I'Fa A:type T'ka k€A
'l_A F,.”L’ZAI—A F,Oz:KJI—A
Ticks:
k€A
Na:xI"Faa:k FFao:k
Universes:
I'kFa F'FA AU E
_— L
LA U :type I'Fa EI(A) : type
Type formations:
I'z: AFA B : type I'a:kbaA A:type k€A kA A:type T'Fa
I'FaTlz: A. B : type F'Faba:k.A:type I'FA VE.A: type
T'Fa T'kFa Iz: AFA B :type T'kFa
I'FaA1:type I' FA Bool : type kA X2 : A. B : type I' FA Nat : type
Codes:
Ix:El(A) kA B:U Na:kba A:U  KeEA Pbax AU Tha I'ka
FI—Aﬂx:A.B:U I'taba:kA: U FI—AQ/{.A:U FI—Ai:U
Dix:El(A) kA B: U I'ka T'kFaA
TkaSz:AB:U T A Bool : U I'Fa Nat: i



Typing rules:

THaAt: A A" B I'FA B :type Iz: AT Fa Iz:AFAt: B
I'bat: B Nz: AT Faz: A TbaX:At:Tlx: A B
I'bat:1lz: A.B I'tas: A Na:kkat: A k€A Fbagt: A I'kFa
kA ts: Bls/z] F'Fada:kt:pa:kA I'a Akt :VE.A
FFaAt:Vk.A K €A F'Fat:vpa:k.A Lo x5, T A
[ o ts'] s AR /K] o kT Fatld]: Ald/a]
F}—AﬁtZDOzZH.A I'kFa K eA I'ka
Tha ([ /6] 0] : AlK' /K] [0/q] Fka():1
I'ta Xz: A B : type IF'Fat: A kA s: B [t/z] IF'Fat:Xx: A B
Tha(t,s): Xx: A.B FFamt:A
I'bat:Xx: A B I'ka I'a
Dhamot: Blmt/x] T' FA true : Bool I" kA false : Bool

T'Fa t: Bool T'Fa u: A [true/z] T'Fav: A [false/z] T'Ha A [t/x] - type
Thaiftuv: A ft/x]

I'kFa I'ka t: Nat
I'FA 0: Nat I'FA suc t: Nat

I'at: Nat F'Fawu:AJ0/z] I'Fa v:Ilz: Nat.A — A [suc z/x] I'Fa A [t/x] - type
Tharectuv: A [t/x]

T'kFat:pFA— A
IFadfix®t:p"A

I'Fat: EN(((dfix" F) [a]) w) kA F:p®(A—=U) = (A= U) FFau:A
I Fa unfold,, ¢ : EI (F (dfix" F)) u)

[kat: EI(F (dfix" F)u) Fbaa:k
T k4 folda ¢ : EL(((dfix" F) [a]) u)

We use the notation I' = ¢ : T, where T is either a type A — in which case the notation refers to

the judgement I"' Fa ¢t : A — or the symbol type — in which case the notation refers to the judgement
I'Fa t: type.

Lemma 1.2. IfT'Fat: T, then fv(t),fv(T) C dom (T') and fc(t), fc(T) C A.
Proof. By straightforward induction on I' Fa £ : T. O



Lemma 1.3. If ' Fa t: A, then ' Fa A : type, which in turn implies T’ Fa. Moreover, the
derivations of I Fa A : type and I FaA are at most the size of the derivation of T'Fa t: A.

Proof. By straightforward induction on I' o ¢ : A and I' Fa A : type, respectively. O

Lemma 1.4. IfT A EI(A) : type, then T Fa A : U. Moreover, the derivation of T Fa A : U is
smaller than that of T Fa EI(A) : type.

Proof. The judgement I" o EI(A) : type can only be derived by the rules TICK-EXC and refruleEL
Hence, I' Fa EI(A) : type is derived by EL followed by a number of applications of the Tick-EXC,
which means that we have IV Fao A : U, where I is obtained from I' by swapping neighbouring
ticks n times. By applying TICK-EXC n times we can thus derive I' o A : U. O

Lemma 1.5 (weakening). If TFat: T, and T,T" Fa, then T, TV Fa t: T.

Proof. We prove the following stronger property: If I, I" Fa ¢ : T, and T', I, T’ F A, then I', ', I” 4
t : 7. Moreover, it suffices to show this property for the case that isa singleton typing context.
Then the more general property follows by an inductive argument on the size of I.

Given I',I” Fa ¢ : T, and I,I',T” Fa, we can prove I',I',T" Fa t : T by a straightforward
induction on I',I” Fa t: 7+ In all cases, I, T, I" Fa ¢ : T follows immediately from the induction
hypothesis. O

1.4 Example

We use the shorthand fix™ ¢ for the term ¢ (dfix” ). We write A X B for the term Sz : A.B for some
variable z that does not occur freely in B and similarly A x B for the term Yz : A.B, A > B for
the term Ilz : A.B, and A — B for the term Iz : A.B.

We define the type Str" of guarded streams over natural numbers as follows:

Str" := El (fix”()\x > UNat X Ba: k. [a]))
The type Str® reduces to the following normal form
Str™ —r: Nat x b o : 5.5trl

where

[}

Strl .= El ((dfix'{()\x > UNat X Ba:kalal)) [a])

Let S = Az : p"UNat x Sa : kala], ie. Str™ = El(fix®S). In a context containing « : &,
fold, and unfold, convert between Str, and Str", i.e. given ¢ : Str”, we have fold,, ¢ : Str}, and given
s : Str, we have unfold, ¢ : Str”.

Hence, we can define cons®, tI", and hd” as follows:

cons” : Nat — >" Str”® — Str”
cons™ := Az : Nat. Ay : p" Str. (x, Ao : k.fold, (y [o]))
hd"™ : Str" — Nat
hd” := X : Str.m o
1% Str — " Str”
tl" := Az : Str. Aa : k.unfold, ((m2 x) [])



The type Str of coinductive streams is defined by clock quantification:
Str := Vk.Str"

The functions cons®, tI*, and hd” are straightforwardly lifted to coinductive streams assuming a
fixed clock constant kq:

cons : Nat — Str — Str
cons := Az : Nat.\y : Str.Ax.cons” z (next™ y [K])
hd : Str — Nat
hd := Az : Str.hd™ (2 [xo])
tl: Str — > Str
th:= Az : Str. Ak (81" (2 [K])) [0]

We can define the following function eo that removes every other element of the input stream

eo” : Str — Str”

eo” 1= fix"(Af : " (Str — Str®). Az : Str.cons” (hd z) (M : .(f []) (tl (tl2))))
eo : Str — Str
eo := Az : Str.Ak.e0” x

and the function nth that returns the n-th element of a coinductive stream

nth : Nat — Str — Nat
nth := An : Nat.recn (Ax : Str.z) (Am : Nat.Af : Str — Nat. Az : Str. f (tlz))

1.5 Substitutions

We consider two kinds of substitutions. The first kind are clock substitutions c: A — A/, which are
simply mappings between clock contexts A and A’. The second kind are term-and-tick substitutions
(or just substitutions for short), which act on term variables and tick variables. We define well-
formed substitutions inductively as follows. We define well-formed clock substitutions o, and term-
and-tick substitutions « from a context IV A+ to a context T' Fa, written (o,v): IV Far — T Fa:

o A — A IV Fa

SUBST-EMPTY
(0’, ) F/ FA/ — FA

(0,7): T"Far = T ka F'ka Aitype T'hart:(Ao)y & dom (D)

SUBST-VAR
(o,y[z—=1t]): T kar =Tz Aba

(0,7): " Far = T ka
a & dom (T) B & dom (I) I, B:0(k), I Far K EA

; 7 SuBST-TICK-VAR
(o,7[a—8]): T, 8:0(k),T"Far > T a: kba

(0,7): T Faroey = T ha a & dom (T) keEA K eA T'ka

(W /oWl oo. (v /oD [ o): T Far = Tt ma SusTcreConst




Lemma 1.6. If (0,7): T'Far = T ka, then T Fa and TV Far.
Proof. Straightforward by induction on (o,7): IV Far = T Fa. O

Lemma 1.7. Given two clock substitutions o: A — A, 7: A’ — A" we have that (to)T = t(700)
for any term t with fc(t) C A.

Proof. Straightforward induction on the structure of ¢. O

Lemma 1.8. Given a clock substitutions o and a (term and tick) substitution -y, we have that
(ty)o = (to)(yo), where vy o is the substitution given as follows: (yo)(x) = v(x) o for all variables
x € dom () and (yo)(a) = v(a) for all tick variables o € dom (). In particular, we have that

(t [s/x])o = (to)[so/x].
Proof. Straightforward induction on the structure of ¢. O
Lemma 1.9. If s > t, then so — to for any clock substitution o.
Proof. This property follows by a straightforward case analysis of s — t. O
Lemma 1.10. Ifo: A — A/, then

(i) T ba implies To bas, and

(ii) TEat: T impliesToba to:To.

Proof. We proceed by induction on I' Fao and T' Fa ¢ : T, respectively. All cases that involve
neither a changing clock environment nor a clock substitution follow immediately from the induction
hypothesis (in some cases with the help of Lemma|1.8]). The remaining cases are detailed below:

FI—A,NA:type T'ka

) I'Fa VKA : type
We have that (Vk.A)o = Vk'.Ao’, where o/ = o [k — £] for some fresh clock variable ', i.e.
o': (A, k) = (A, k). Hence, by induction hypothesis we have that T'o’ Far v Ao’ : type and
I'o Far. Since I' Fa, we know that I'o’ = T'oc. Hence, I'c Fa/ v Ao : type, which implies
that T'o Far VK'.A 0o’ : type.

kA AU T'Fa F'Fart: A I'kFa

o TI'haVedA:U , Thalkt:VeA
Both cases follow by a similar argument to the case for Vk.A above.

F'bat: A A<*B ' A B : type
L] Fl—At:B

By Lemma A <* B implies Ao <* Bo. Hence, 'c Fa to : Bo follows from the
induction hypotheses.

Dhat:VeA K eA
I'at[s']: AR /K]




By induction hypothesis we obtain that T'c Fas to : V&”.A¢’ where ¢/ = o[k — k"] for
some fresh clock variable x”. Hence, I'c bas (to)[o(x')] : (Ao’)[o(x’)/r"]. By Lemma [L.7]
we have that (A [x'/k])o = (Ao’)[o(k")/K"], because [o(k')/k"] 0 0’ = o o [k'/K]. Hence,
Toba (L))o : (A [K'/K])o.

Phast:iba:kA I'ka K €A
° Tk (t [k /K]) [0] - A[K' /K] [0/a]

Let k" be a fresh clock variable and ¢/ = o[k — k”]. Hence o’: (A,k) — (A',k"). By
induction hypothesis, we thus have that I'o’ Fas v to’ :>a: K. Ao’ and T'o Fas. Since
I' Fa, we have that 'o’ =T'o. Hence, I'o Fa/r o to’ i > : k7. Ao’, and we can thus obtain

that
Lot ((to’) [o()/"]) [o] - (Ad") [o(k')/K"]) [o/a]
Because [o(k')/k"] 0 0/ = o o [&'/K], we can use Lemma to obtain both (A [&'/k])o =

[k
(A0") [o(x)/r"and (¢ [+’ /K])o = (to’) [o(x")/K"]. Hence, ((A [&'/K]) [o/a])o = ((Ad’) [o(x")/K"]) [o/a]
by Lemma and ((¢ ['/k]) [0])o = ((tc’) [o(k")/K"]) [¢]. We can thus conclude that

Lo bar ((t [6'/6]) [o)o : (A [+'/x]) [o/a])o

Corollary 1.11. If A C A/, then
(i) T ba implies T bas, and
(ii) TEAt: T impliesT bart: T.
Proof. Special case of Lemma[1.10} where o: A — A’ is the inclusion map from A to A’. O
Lemma 1.12. If (0,7): " Far = T kA and TV, T" bar, then (0,7): IV, 7" Faor > T Fa.
Proof. We proceed by induction on (o,7): IV Far = T Fa.
e The case SUBST-EMPTY follows from the assumption that IV, T Fa-.
e The case SUBST-VAR follows from the induction hypothesis and Lemma
e The case SUBST-TICK-VAR follows immediately from the assumption that I, T Fa:.
e The case SUBST-TICK-CONST follows from the induction hypothesis and Corollary
O
Lemma 1.13. If (0,7): IV Far = T Fa and 7: A" - A", then (Too,v7): (A", I'7) = (A,T).
Proof. We proceed by induction on (o,7): IV Far = T Fa.

e (0,)): T"Fa — -Fa, with 0: A = A’ and TV Fas. Then IV 7 Far by Lemmam Hence,
(too,): VT kar — - Fa.



o (o,y[x—=1t]): TVka — Tyax: Aba, with (6,7): TVFar = Tha; TV Far t: (Ao)y; and
x & dom (T"). By Lemma Lemma and Lemma we also have that TV 7 barv t7 :
(A (100))(yT). Moreover, by induction hypothesis, we have that (roo,y7): IV 7 bar — T FA.
Consequently, we have that

(too,(yr)[x—t7]): TV 7har 5T,z : Aba

o (o,7[am—p]):TV,8:0(k), T Far = T,a: kb, with (0,7): TV Far = T'ka, a & dom (T),
B & dom (I), TV, 8 : o(k),I” Fas, and kK € A. By induction hypothesis, we get that (7 o
0,77): I 7 an = ' Fa, and by Lemma[1.10} we get that I' 7, 8 : 7(c(k)), I 7 Fav. Hence,
we have that (oo, (y7)[a— B]): V7,8 :7(0(k)), T 7Far = T, : k Fa.

o ([v'/o(k)]oa, (v [ /o(k)]) [ar o]): I"Far = T, a: kba, with (0,7): IV Far e = T Fa,
k € A, and k' € A’. Let £” be a fresh clock variable and " = 7[o(k) — £”]. Then By
induction hypothesis, we have that (7'oo,v7'): I'7' Fan v — I' Fa. Since, I'' Far according
to Lemma [1.6] we have that TV 7" = I 7. Hence

([r()/ (7 e o) (K)o 00, (y7) [r() /(7" 0 ) (8)]) [+ o]} : T'T A = T ha

Because 7 (0(k)) = ", we have that [7(k’)/(7' 0 0)(k)] o 7/ = 7o [k /o(k)]. Thus, we may
conclude that

(tolk Jo(r)] oo, ((v [ /o(k))T)[aro]): TV Thar = TV a: k Far

O

Given a typing context I' and a substitution v with dom (I') C dom (T'), then we write v [ I' to
denote the substitution 7 [ dom (T').

Lemma 1.14. If (0,7): IV Far = T1,To ba, then (0,7 [ T1): TV Far = T Fa.
Proof. We proceed by induction on I's.
e 'y = -. Trivial.

e I'y =TY%, 2 : A. That is, there is some 7/ with (0,7'): I Far = T1,To Fa, v =7 [z — t], and
IV Fart: (Ao)y'. By induction hypothesis, we have that (o,7' [ T'1): IV Far — T'y Fa. Since
~' 1Ty =~ | 'y, we obtain that (o,7 [ T1): TV Far = T FAa.

e I'y =T, a: k with y(a) # ©. Hence, there are some I's and I’y with IV =T3, 8 : 0(k), T4, and
some ' with v = v [a — f] and (0,7'): T's Far — I'1, T4 Fa. By induction, we obtain that
(0,7 I T1): T's Far = 'y Fa, which is equivalent to (0,7 [ T1): T bar > T1 Faasy’ [T =
~ | T'1. Since IV Fas, we can then conclude, by Lemma that (o, [T1): IV Far = T Fa.

o I'y =TY%, a: k with y(a) = ¢. Hence, there is some k' € A’, some ¢’ with o = [r'/o’(k)] 0 0’,
and some v with (0/,7"): I" Fas o/(x) = I'1,T'2 Fa. By induction hypothesis, we obtain that
(', I T1): TV Farpe)y = I'ibFa. From this we obtain by Lemma that (o, (¢ |
) [k /o' (K)]): TV [ /o' (k)]Far — T1ka. Since IV Far by Lemma we have that
I [¥'/o’ (k)] = T. Moreover, we have that (7' [ T'1) [x' /o’ (k)] = (v [¢'/o'(K)]) [T1 =~ I T;.
Hence, we can conclude that (0,7 [ T'1): TV Far — T'1 Fa.



O

Lemma 1.15. If (0,7): I"kar = Tha, 6 € A, and " € A/, then (o [k K],7): T Fare —
| R NP

Proof. We proceed by induction on (o,v): IV Far — T' Fa.

o (0,7): I"Far — - Fa such that IV Far. Hence, also I'V Fa/ s according to Corollary and
thus (o [k = K],7): " Farw — T Fa , follows.

o (o,y[x—=1t]): T"Fa = T1,2: Aba with (0,7): TV Far =5 Ty Fa,and IV Far t: (Ao)y'. By
induction hypothesis, we obtain that (o [k — '],7): I" Farw — T'1 Fa k. Since, I't Fa A
type, we have that Ao = Ao [k +— k'], which means that we have IV Fas t: (Ao [k — K'])7,
and by Corollary I"barw t: (Ao [k — k])y. By Corollary we also have I'; Fa x
A : type. We can thus conclude that (o [k — '], v[x = t]): IV Farw = T1,2 0 Aba .

b (U,’Y [Oé = 6]) FQ?B : J(H/,)arfi FA’ — Fl,a Kk FA with " S Aa FQaﬂ : U(H,/),F.?o FA’? )

and (0,7): I's Far = I'1 Fa. By induction hypothesis, we obtain that (o [k — '], 7): Ta Far e —

I'y Fak. Since k € A, we know that £ # k, and thus o(k”) = o [k — K] (k”). Moreover, by

Corollary|1.11} we have that I's, 8 : 0(k”),T's Far w. Hence, (o [k — K], v[ao— B]): T, 8 : o(K”

. "
IMN,oa: k" Fa .

o (ool [a(&")], (v [")o' (")) ][ar]): TV Far = T,a: k" Fa withs” € A, k" € A’, and

), Ta bare —

(0,7): " Far oy = T'1 Fa. Let & be a fresh clock variable. Then, (o [x" = &],7): IV Far i o) =

I'y Fa,x by induction hypothesis. Because k" # k and therefore o(k”) = o [k — &] (k"), we
can derive that

(["" o (k")) o (o [k &]), (v [ Jo(K)]) [a—o]): T Farzg = Ti,a: 6" Fa

Applying Lemma [[.13] with the clock substitution [x'/&]: (A',#) — (A’, ') to the above
we obtain that (6,4): IV [&'/k] Fars — Th,a: k" Fa g, where 6 = [k'/R] o [ /o(k")] o
(olwr> &]) and § = (7' [¢"/0(k")]) [a = o]) [8'/R]. Since & = (o o [x"/a(k")]) [k = ),
4 =, and I [¢'/k] = I (since IV Fas by Lemma [1.6), we can conclude that ((c o
(K" /o (&")]) [k = &'],7): T Farw = T 67 Fag

O

Lemma 1.16. Given a term t, a substitution v, and a set S with fv(t) C S C dom (), we have
thatty =t (y [ S)

Proof. By induction on t. O
Lemma 1.17. If s > t, then sy — t~y for any substitution ~y.
Proof. Straightforward case analysis. O

Lemma 1.18. Given two term substitutions ,~' such that dom () = dom ('), and for every
x € dom (y) we have y(x) >* v'(x), then also ty —>* t~' for any term t.

Proof. This follows by a straightforward induction on the structure of ¢: If ¢ is some variable
x € dom (), then ty = v(x) >* v/(x) = t+'. If ¢ is some variable x ¢ 7, then ty = t+’. All other
cases follow immediately from the induction hypothesis. 0

10



Lemma 1.19. Let v, be two (term and tick) substitutions and t a term such that fv(t) C dom (v)
and fv(y) C dom (v'). We write v+ for the composition of the two substitutions, i.e. (yv')(v) =
~y(v) " for all v € dom (y). Then (tv)y' =t (vv').

Proof. Straightforward induction on ¢. O

Corollary 1.20. Given a (term and tick) substitution vy and two terms s,t, we have that (t [s/z])y =
(tvy [z — y]) [sv/y] for any fresh variable y.

Proof. By Lemma this equality follows from the fact that [s/x] v = v [z — y] [s7/y], which
can be easily checked. O

Lemma 1.21. If (0,7): IV bar = T Ea, then T A t: T implies T bar (to)y : (T o)y.

Proof. We proceed by induction on the size of the derivation of I' Fo ¢t : 7. For typing rules
without substitutions and where the typing context and the clock context of the premise and the
conclusion conincide, the argument is a simple application of the induction hypothesis. We cover
the remaining cases below:

I'x: AFA B : type
e I'FAlIlx: A B : type

By Lemma [L3| I,z : Ata B : type implies that we have I,z : A ba by an at most equally
large derivation, which in turn implies I' Fo A : type. Hence, given (0,7): TV Far — T' k4,
we may apply the induction hypothesis to obtain that TV Fa (A o)~ : type. Therefore, I,y :
(Ac)~y Fa for some fresh variable y. By Lemmal[l.12] we thus have (o,7): I,y : (Ao) vy Far —
I' kA, and therefore (o,y[x —y]): : TV,y: (Ao)yFa — T,z : AFa. Consequently, we may
apply the induction hypothesis to I';z : A Fa B : type to obtain that I,z : (Ao)y Fa
(Bo)y|xw— y] : type. Hence, IV Fa Ty : (Ao)y. (Bo)y [z — y] : type, which is equivalent to
I"ba (TIz - A. B)o)y : type.

I'z: AFA B : type
e 'Fa Xz : A B :type
By the exact same argument as for II types above.

Ia:kka A:type k€A

° TF'Faba:k.A: type

Since (0,7): I"Far — T'ka, we have that (o,v[a— 8]): IV,8:0(k)Far — T,a:kta,
where [ is some fresh tick variable. By induction hypothesis, we have that

I, B:0(k) Fa (Ao)y|a (] : type
Since o(k) € A’, we may thus conclude that
I"FarbBio(k).(Ao)y[a— 8] : type

which is equivalent to
IMbar (ba:k.A)o)y : type

11



I'Fa, A:type T'Fa
I'FA VE.A : type

Given (0,7): I'" Far = I' Fa, we have according to Lemma [L.15] that (o [k — /], )

stoA’, k'T"A, kT for some fresh clock variable x’. Hence, by induction hypothesis, we have that
IV Far e (Ao [k K'])7y : type. Thus, we can conclude that IV Far V&' .(Ao [k — K'])7 : type,
which equivalent to IV Fas ((Vk.A)o)7y : type.

The arguments for the typing rules for codes is the exact same as for the above arguments
for the type formation rules since.

Iz: AT Fa
IFz: AT Faz: A

Given (0,7): T Far = T,z : A,T" Fa, we have by Lemmall.14} that (o, | (T,z : A)): TV Far —
I'o: AFa. Hence, I Far y(z) : (Ao)(y | T). Since, I'z : A T" Fa, we have that
I'Fa A :type and thus by Lemma|1.2| and Lemma we have that (Ao)(y [ T) = (Ao)y.
We may therefore conclude that I Far (z o)y : (Ao)y.
I'z:AFAt: B

F'Fa X :At:1Ix: A.B
By an argument similar to the argument for the type formation rule for Ilx : A. B.
I'tat:IIz: A.B I'tas: A

kA ts: Bls/x]

This follows from the induction hypotheses and the fact that by Lemma[I.8land Corollary [1.20]
we have that

((B [s/x])o)y = (Bo)ylz—y]) [(so)v/y])
for any fresh variable y.
Na:kkat: A k€A
T'bada:kt:pa:k.A

By an argument similar to the argument for the type formation rule for >« : k. A.

IiFat:pa: kA I'i,o : &k, T ba
I, k5, Tabatld]: Ald/a]

By Lemma m (0,7): TV Far = T1,0 : Kk, Ty b implies (0,9"): TV Far — Ty,0 : K Fa,
where v/ = [ (I'1,a’ : k). There are two different cases to consider:

— v (a’) # o. That is, there is some & € TV, 4", and some I's, 'y such that v =
Yo' = a], TV = T3,& : 0(k),Ty, and (0,7”): T'sFar — T'1 Fa. Hence, we have by
induction hypothesis that

T3kar (to)y v’ i o(k).(Ao)y [a— o]
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where o is a fresh tick variable. By Lemma [1.6] we have that I Fa/, and we can thus
conclude that

I Ear ((to) [6])7" : (Ao)y" [ = a”]) [6/a”]

which is equivalent to
I Far (tla])o)y: (Ao)yla— 4]

because (to)y” = (to)yand (Ao)y” [a+— &) = (Ao)y[a > &] by Lemma[l.16, Lemmal[l.2]
and Lemma [L.10l

— 9/(a/) = o. That is, there are some x" € A and (0/,7"): I's Fas o7(s) = I't Fa such
that o = [k'/o'(k)] o ¢’ and v = (¥ [«'/0’(k)]) [&/ — ©]. Hence, we have by induction
hypothesis that

Lsbarom (ta' )Y 0”10’ (k).(Ad" )Y [a— o]

where o' is a fresh tick variable. By Lemma [1.6] we have that I'3 A/, and we can thus
conclude that

Ts Far (((E0")y") [o) [5'/0" ()] = (A0 [ = o)) [ /0" (K)]) [0/ "]

which is equivalent to
I3 bar (t[a])o)y : (Ao)ya - o]

because (£0)(y" [/ (x))) = (t0)y and (Ao)(r" [&'/o"(R)]) o = o] = (A )y [o s o]
by Lemma [[.16] Lemma [T.2] and Lemma By Lemma [I.5| we then have

IEar (ta])o)y: (Ao)y[a o]
Since by Lemma [1.6] we have that TV .
That is, in either case we have that
I Far (ta])o)y: (Ao)y[am y(d)]
Since 7y [ —= y(a/)] = vy o [&/a], we can thus conclude that
I Ear (t[a])o)y : (A o /e])o)y

Phart:ba:kA [ha K eA
Tba (t[o]) [&'/k] « A[K'/K][o/q]

Let k" be a fresh clock variable. Then by Lemma we have that (o,7): IV Far —
I' kA implies that (o [k +— £"],7): IV Far wr — T'Fa .. Hence, we may apply the induction
hypothesis to obtain that

UVbarr (tols— &)y :pd k(Ao [k K])y[a— ]
where o' is a fresh tick variable. Consequently, we have that
IEa (((to [k &) ) [o(r)/6"] : (Ao [k = &)y [a = o)) [o (k') /6"] [o/ o]
which is equivalent to

I Ear (¢ [K/6]) [oD)o)y : (A [ /s] [o/a])a)y

13



FFAﬁt:A N

o TI'FaArt:Vk.A
By an argument similar to the argument for the type formation rule for Vk.A.

FFat:Ve.A K €A
o T hatl]: Alx'/K]

By induction hypothesis, we obtain that IV Fas (to)y : V&”.(Ao [k +— K"])y for some fresh
clock variable £”. Thus, we have that IV Fa/ ((to)y)[o(x")] : (Ao [k — K"])y) [«'/K]. More-
over, ((to)y)[o(k')] = ((t[+'])o)y and because " was chosen fresh we have by Lemma[l.8|and
Lemma |l.7]that (Ao [k — k"])7) [«'/k] = (A [£'/K])o)y. We can thus conclude thatl’ b/

((t[sT)o)y = (Alx'/r])a)y.
A Xz : A B : type That: A kA s: B [t/x]
. Tha (t,s): X2: A.B
This follows from the induction hypotheses and the fact that by Lemma[l.8 and Corollary
we have that

((B [t/z])o)y = (Bo)y[z = y]) [(to)v/y])

for any fresh variable y.

I'bat:X2:A.B
o kA mat: Blmt/z]
This follows from the induction hypotheses and the fact that by Lemma[I.8/and Corollary [1.20]
we have that

((B [mt/z])a)y = ((Bo)y [z — y]) [((m1t)o)v/y])

for any fresh variable y.

I'Fa t: Bool Dhau: A [true/z] I'Fav: A [false/x] DA Aft/x] : type
o Thaiftuv: A ft/x]

Given (0,7): IV Far — I'Fa, we may assume w.l.o.g. that « does not occur freely in the
range of 7. Hence, we have by induction hypothesis (and Lemma and Lemma that
IV Far (to)y : Bool, TV Far (wo)y : ((Ao)y) [true/z], TV Far (vo)y : ((Ao)y) [false/x], and
I"Far ((Ao)y) [(to)vy/x] : type. Hence, IV Far ((iftuv)o)y) : ((Ao)y) [t/ ]
I'a t: Nat

F'kawu:Al0/z] I'Fav: Tz : Nat.A — A [suc z/x] T'ka A [t/x] : type

. I'Farectuv: A [t/x]
Similar to the case for if above.

O

Lemma 1.22. If sc — t for some clock substitution o, then there is a term t' with s - t' and
to=t.

Proof. Straightforward case analysis of so — t. O
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Lemma 1.23. Given a term t with fc(t) C A and a clock substitution o: A — A’, we have that
fc(to) C A/

Proof. Straightforward induction on the structure of ¢. O

2 Confluence

Definition 2.1 (parallel reduction <>). The relation <> on terms and types is inductively defined
as follows:

(P1) t->t,if t is a variable, or ¢t € {Nat, Bool, (), 1,0}.

(P2) A= Bimpliesba:kA-oba:kB ba: kAo ba: kB, ViAo Vi.B, and Vk.A < Vk.B.

(P3) Az > Bz 1mphes IIx : A1.42 o Ilx : Bl.BQ, ﬂCE : Al.Ag > f.[.’E : Bl.BQ, Y Al.AQ o NI
31.327 and X : Al.AQ o> Y : Bl.BQ.

s; o> t; implies s159 > t1to.

s; o> t; implies (A\x : A.s1)sq = t1[ta/x].

s> t, A~ Bimplies Az : A.s = Az : B.t.

s o>t implies if true s s’ o> ¢t and if false s’ s o> £.
s => t implies ;s > m;t.

s; o> t; implies ;(s1, s2) o> t;.

s; o> t; implies (s1, s9) o> (t1,t2).

s => t implies suc s - suct.

s; o> t; implies rec s1 Sg S3 o> recty tots.

s > t implies rec0s s’ o> t.

s; <> t; and s; <> ¢} implies rec (suc s1)sa83 o> t5t) (recty tats).
s o> t; implies (dfix” s) [0] o> t1 (dfix" t3).

s o> t implies dfix" s o> dfix" ¢.

s >t implies s [a] > t[a].

s => t implies A« : k.s = Ao : K.t.

s >t implies (A : k.5) [a] = t [a/].

s>t and o & fv(s) implies A : k.(s[a]) => t.

s => t implies fold,, s <> fold,, t.
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s <> t implies unfold, s <> unfold, t.
s <> t implies fold, s <> ¢.
s <> t implies unfold, s <> ¢.
s >t implies (Ak.s)[x'] = t[r'/K].
s <>t implies Ak.s <> Ak.t.
s =t implies Ak.(s[k]) = t if Kk & fc(s).
s >t implies s[k] > t[x].
s <> t implies El (s) <> El (¢).
El (Nat) = Nat.
(P31) EI () o 1.
El(

(P32) Béol) <> Bool.

(P33) s; = t; implies El (f[x :S1. 52) <> IIx : El(¢1) . El (t2).
(P34) s; = t; implies El (f]x TR 32> <> Y : El(t1) . El (t2).

(P35) s -t implies El (9&.3) - Vi.El(2).
(P36) s -t implies El (S« : k.5) => >a: k.EI ().

Lemma 2.2. Let vy, be two substitutions with dom (v) = dom (v'), v(x) => ~'(x) for all variables
x € dom (), and y(a) = ~'(a) for all tick variables oo € dom (). Then we have that s - t implies
sy -ty

Proof. By induction on s > t. O
Lemma 2.3. If s e>t, then so > to for any clock substitution.

Proof. By induction on s o> t. O
Lemma 2.4. > C o C —>*,

Proof. The implication s >t = s —* t can be proved by a straightforward induction on s > ¢.
To prove - C - we first prove that ¢ <> t for all £. This can be shown by induction on ¢. Then
we can show that s <> ¢ implies C[s] => C[t] for all contexts C' by induction on C. The implication
s >t = s < t can then be shown by a case distinction on s — t using these two auxiliary
facts. O

Lemma 2.5. If s = t, then fv(t) C fv(s) and fc(t) C fc(s).
Proof. Follows from Lemma [2.4] and Lemma [I.1] O
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Definition 2.6 (full parallel reduction). For each type or term ¢, we define by induction on ¢ the
type or term t* as follows:

(F1) t* =t if ¢ is a variable, or ¢ € {Nat, Bool, (), 1,0}

(F2) (OA)* =0A" for O € Uty necy {VH.,@H.,Da CRL B n.}

(F3) (Oa: AB)* = Oz : A*.B* for O € {anz}
(F4) (Ax: A)* =z : A* ™

57t otherwise
(F6) true* = true
(F7) false™ = false

t if s = true
(F8) ifstu={ u* e

if s*t*u* otherwise

(F9) (s,t)" = (s*,t")

(F10) (m;s)* = {52‘ if s = (s1,52)

;8% otherwise

(F11) (suc t)* = suc t*

ifs=0
(F12) (recstu)* (recv*t*u*) if s =sucw
recs*t* u* otherwise

(F13) (dfix™ s)* = dfix"

(F14) (A : k.t)* s if t = s[a] and o & fv(s)
Ao k.t

otherwise
s* la/d] ift =X : k.s
(F15) (tla])* = ¢ s*(dfix"s*) ift =dfix"sand a = o
t* [a] otherwise
t* ifa=9

(F16) (folda t)* = {

fold,.t* otherwise

(F17) (unfold, t)* = {t ifa=o

unfold, t* otherwise
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t*[k/K'] if s= Akt

s*[K] otherwise

(FB)@%D“={

t* if s =t[k],k & fc(t)
Ak.s* otherwise

(F19) (Ak.s)* = {

Iz : El (u*) . El(v*) ift =TIz :u.v

Sa: El(u*) . El(v*) ift=3z:uv

>a: k.El(s%) ift=>ta:k.s
(F20) (EI(t))* { Nat if t = Nat

1 if t =1

Bool if ¢ = Bool

El (t%) otherwise

Lemma 2.7 (triangle property of =>). If s o> t, then t -> s*.
Proof. We proceed by induction on s and do a case distinction of s <> t. The cases|(P1)[to|(P14) as

well as tandard (in particular the cas andfollow from Lemma [2.2]).
The cases [(P15)] [(P16)} [(P20)} [(P21)} |(P22)] [(P23)} [(P24)] and |(P27)| follow straightforwardly
from the induction hypothesis. The case |(P19)| follows from induction hypothesis and Lemma
The case follows from the induction hypothesis and Lemma
We consider the remaining cases in detail below:

s[a] = t[a], where s - t. We do a case distinction on (s [a])*:

o (s[a])* = u*[a/d/], where s = A&’ : k.u. Hence, Ao’ : k.u <> t. We do a case distinction
on Ao : K. o> t:
— t = Aa’ : kK with u > v. By induction hypothesis, we have that v -> «*, and thus
t[a] - u* [a/d].
—u=vwld], & & fv(v), v o t. Hence, u > t[a'], and thus ¢ [a/] = u* by induction
hypothesis. By Lemma we have (t[a]) [a/d/] > u* [a/a’]. From o’ & fv(v) and
v > ¢, we can conclude, by Lemma [2.5] that o’ ¢ fv(t). Hence, t[a/o/] =t and we
thus have ¢ [a] = u* [a/d/].
o (s[a])* = u*(dfix" u*), where o = % and s = dfix" u. Hence, t = dfix" v with v - v. By
the induction hypothesis we obtain that v - u* and thus ¢ [a] > w* (dfix"” u*).

e (s[a])* = s*[a]. Then t — s* by the induction hypothesis and therefore ¢ [a] — s* [a].
(P18) A : k.s = A : k.t, where s -> t. We do a case distinction on (A« : K.5)*:

o (A :k.s)* =u*, where s = u[a] and a & fv(u). We do a case distinction on u [a] <> ¢:
— The case a = ¢ is impossible, since « is bound in A\« : k.s.
— t = v[a] where u => v. Then v = u* by the induction hypothesis and thus A« :
k.t = u* because by Lemma [2.5] o & fv(v).
— u = A : K., where v [a/a/] = t. Since a & fv(u), we know that u = Aa : k.v [a/a].
Hence, u > Ao : k.t and, by induction hypothesis, Ao : k.t - u*.
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e (Aa: K.5)* = A : k.s*. By induction hypothesis, we have ¢ -> s* and thus Aa : k.t -
A K.s*.

(P26)| Ak.s o> Ax.t, where s> t. We do a case distinction on (Ak.s)*:

o (Ak.s)* = Ak.s*. By induction hypothesis, we have that ¢ - s* and thus Ak.t o Ak.s*.
o (Ak.s)* = u*, where s = u [k] and k ¢ fc(u). We do a case distinction on u [k] <> t:

— t = v[k], where u <> v. The latter implies, by Lemma that x & fc(v), and, by
induction hypothesis, that v - u*. Hence, Ax.t <> u*.

—u = Ar’.v with v = w and t = w [k/k/]. Hence, v [k/K'] = t according to
Lemma which in turn implies that Ax.v [k/K'] = Ak.t. Since x ¢ fc(v), we
have that Ak.v [k/k'] = Ak’.v = u. Consequently, u > Ak.t, which means that we
can apply the induction hypothesis to conclude that Ax.t o> u*.

s[k] = t[k], where s > t. We do a case distinction on (s[])*:

e (s[k])* = s*[«]. By induction hypothesis, we have that ¢ -> s* and thus ¢ [s] = s* [k].
o (s[k])* = u* [k/K'], where s = Ar’.u. We proceed with a case distinction of s -> ¢.

— t = Ax’.v with u > v. By induction hypothesis, we have that v - u*, and thus
t[K] o> u* [k/K].

— u=v|[x'] with v o>t and k' & fc(v). Hence, by Lemma we have that <" & fc(t).
Moreover, we have that u = v[k/] = t[x'], and thus, by induction hypothesis,
t[x'] = u*. By Lemma[2.3] we obtain (¢ [x']) [k/K'] o> u* [k/K']. Since ' & fc(t), we
have that (¢ [«']) [x/k'] = t[k], and therefore ¢ [r] - u* [k/K'].

O
Theorem 2.8 (confluence of —). If s >* t1,5 >* Lo, then ¢, >* ¢, t; —>* ¢ for some ¢.

Proof. By Lemma <> has the diamond property: if s = t; and s <> to, then t; < s* and
ty o> s*. This property together with Lemma [2.4] yields confluence of —. O

3 Strong Normalisation

3.1 Weak head reduction

We introduce the notion of weak head reduction and neutral terms, which will be used for the
proof of strong normalisation. In the following we write SN for the set of terms that are strongly
normalising w.r.t. the reduction relation —. It is easy to see that SN terms are closed under
reduction. In addition, SN terms are also closed under clock substitution:

Lemma 3.1. Ift € SN then to € SN for any clock substitution o.

Proof. This property follows from Lemma [1.22 O
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Definition 3.2 (weak head reduction). The weak head reduction relation -y is defined as follows:
s »>wn t iff s = E[¢], t = E[t'], and s’ — ¢/, where the evaluation contexts F and the relation —
are defined below:

E:=[]|Et| B[] | Es] | m E|if Etits | rec Ety ts | EI(E)

where « ranges over TV U {o}.

(Az.s)t — s[t/z] if £ € SN
@ k.t)[o] = t[a' /] if o/ € TVU {0}
(dfix" ) [o] +> ¢ (dfix" t)
(Ak.t)[K] = t [k /K]

foldot — ¢t if € SN
unfoldet — t if F' € SN
if truety to — ¢ if t € SN
if falsety to > 9 if t; € SN
T (t, ta) > & if t5_; € SN
recOst — s if t € SN

rec (suc t) vu — ut (rectvu)

If s >wn t, we also say that s is a weak head expansion of ¢.

An evaluation context E is called SN if every term occurring in E is in SN. That is, E is
obtained from the above grammar, where the form FE 't is subject to the restriction that t € SN, and
the forms if E 1ty and rec E't; to are subject to the restriction ¢1,t; € SN. A term is called neutral
if it is of the form E[z], E[unfold, t], or E[(dfix" t) [a]], where « € TV, F is SN, and ¢, F' € SN.

Lemma 3.3. If s >wy t, then s > t.

Proof. Immediate. O
Lemma 3.4. If s >wy t, then so ->wy t o for any clock substitution.

Proof. By induction on s »>wy t and using the fact that SN is closed under clock substitution. [
Lemma 3.5. Ift is neutral, then also so is neutral for any clock substitution o.

Proof. By a straightforward induction argument we can show that given any evaluation context
E that is SN, also E o is an evaluation context that is SN. Hence, given a neutral term of the
form E[x], Flunfold, t], or E[(dfix"t)[a]], we also have that F o[z], F olunfold, t o], respectively

E o[(dfix?™ t ) [a]] is a neutral term as well. O
Lemma 3.6. If s >wn ¢, s > &, there is some t' such that t >* t' and s’ >3, t'.
Proof. By a straightforward induction on s —>wy t. O

Lemma 3.7. If s >wn t and t € SN, then s € SN.
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Proof. Let s — t with E[t] € SN. We show that E[s] € SN by induction on E.
e F =[]. We do a case distinction on s + t:

— (Az.w)v — uv/z] with v € SN. Since u[v/z] € SN, we know by Lemma that

u € SN too. Hence, any infinite reduction starting from (Az.u)v must be of the form
Az.u)v =" Avu)v > o' [ /2] —> ...

with v ->* o' and v —>T o'. However, v’ [v'/z] is SN since u[v/z] —>* u'[v'/x] by
Lemma [.T7 and Lemma [L18]

— (A : k.t) [o] — t]o//a]. Since t[a//a] is SN, so is t according to Lemma [1.17 Hence,
any infinite reduction starting from (A« : k.t) [@'] is of the form

Ma: k) [] >* Qa:kt) ][] >t [ /a] > ...

However, by Lemma t[a//a] € SN implies ¢ [o//a] € SN.

— (Ak.t)[K'] — t [&'/K]. Since t [r//k] € SN, we know by Lemma [1.9] that ¢ € SN. Hence,
any infinite reduction starting from (Ak.t)[x’] must be of the form

(Ak.t)[K'] =>* (At [K] >t [k /K] > ...

where ¢ >* /. By Lemma[I.9] we have ¢ ['/x] —>* ' [x/k], which means that ¢’ [x//x]
is SN.

— The remaining cases follow by a similar argument.

e F = F'u. By assumption E'[t]u is SN. Hence, also E’'[t] and u are SN. Since, E’[s] >wn
E'[t], we may apply the induction hypothesis to obtain that E’[s] is SN. We now show that
E'[s]u € SN by induction on E’[s], u, w.r.t. the reduction relation -* (which is well-founded
because the two terms are SN). To show that E’[s]u is SN we consider each term w with
E'[s]u - w and show that w € SN. Since E'[s] cannot be a lambda abstraction, we know
that w is of the form s’ «’ with either E'[s] > s’ and uw = v’ or E’'[s] = s/ and u — v’ (hence
we may apply the induction hypothesis to w if we find a weak head reduction to an SN term).
According to Lemma [3.6] we find a term w’ with w -3, w’ and E’[t]u —* w’, which means
that w’ € SN. If w = w’, w € SN follows immediately. Otherwise, if w —wy w’ we may apply
the induction hypothesis to conclude that w € SN.

e The remaining cases follow by a similar argument.

Lemma 3.8. If s is neutral and s — t, then t is also neutral.
Proof. We proceed by induction on the structure of s.
e s = x. Impossible since s is irreducible.

e s = unfold, u, F,u € SN. Since s cannot be a redex, t = unfold, v with u >~ v and F -~ G.
Hence, G,v € SN, and thus ¢ is neutral.
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e s = (dfix"u)[a], u € SN. Since neither s nor dfix" u can be a redex, t = (dfix" v) [a] with
u — v. Hence, v € SN, and thus ¢ is neutral.

® s = 81 82, 81 neutral, s € SN. Since s; cannot be a lambda abstraction, s is not a redex, and
therefore t = t; to with s; >~ t;. Hence, to € SN and by induction hypothesis ¢; is neutral.
Consequently, ¢ is neutral to.

e The remaining cases follow by a similar argument.

Lemma 3.9. FEvery neutral term is SN.
Proof. Let t be neutral. We prove by induction on the structure of ¢ that ¢ € SN.

o If t =z, t = unfold, s with F,s € SN, or ¢t = (dfix" s) [a] with s € SN, then ¢ € SN follows
immediately.

e Let t = uv with u neutral and v € SN. Then, by induction hypothesis, u € SN, too. We
proceed by induction on t and u w.r.t. the reduction relation —*. To show that ¢ is SN, we
show that every term s with t — s is SN. Since w is neutral, it cannot be a lambda abstraction.
Hence, s = v/v' with u >~ ¢/ and v >~ v/. By Lemma [3.8] u’ is neutral, too. Hence, we
may apply the induction hypothesis (w.r.t. the induction using —T) to conclude that s is SN.

e The remaining cases follow by a similar argument.

3.2 Semantic Types

Given a clock context A, we write Terms(A) for the set of terms ¢ with fc(t) C A; and Neu(A)
for the set of all neutral terms in Terms(A). Similarly, we use the notation SN(A) for terms in
Terms(A) that are SN.

We define a category K that will serve as the underlying indexing structure of our notion of
semantic types. The objects are pairs of the form (A, §), where A is a clock context, and §: A — N.
A morphism o: (A,d§) — (A’,¢) is a clock substitution o: A — A’ such that §'(c(k)) < §(k) for
all k € A.

Lemma 3.10. K is a category. In particular, ida: (A,0) — (A,0) is the identity; and given
o: (A8) = (A, and 7: (A',8") = (A", §"), we have that Too: (A,§) = (A”,§")

Proof. Its easy to check that ida and 7 o ¢ satisfy the properties of morphisms in /C; since identity
morphisms are just identity maps and composition is just function composition, K is a category. [

Let ¢ = (¢a,5) be a family of partial maps ¢ s: Terms(A) — P(Terms(A)), and D = (Das)
a family of sets Da s C Terms(A), both indexed by objects (A,d) from the category K. We call
(D, ¢) a saturated family if the following conditions hold for all objects (A, §) in K:

(S1) Da,s = dom (¢as)-
(82) If A—> B, then A € Das iff B e Da,s and Ae SN(A)
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S3) If A-> B and A,B € Da,s, then ¢A,6(A) = ¢A’5(B).
S4 Ift€¢A5 A), then ¢t € SN.

(S3)

(54) (

(S5) Ift € pas(A), 0: (A, 6) — (A',0"), then to € dar 5 (A0).
(S6) If t € pa,5(A), s € Terms(A) and s »>wn t, then s € pa 5(A).
(S7)

S7) If t € Neu(A) and A € Da s, then t € ¢pa s(A).

We write Sat to denote the set of all saturated families.
We define a partial order < on Sat as follows:

(D,¢) < (D', ¢") iff Das € Da s and ¢ s € da 5 for all objects (A, d) in K

where ¢a 5 C ¢ 5 denotes graph inclusion, i.e. ga 5(A) = ¢ 5(A) for all A € dom (¢as).

A pointed, complete partial order (CPPO) is a partially ordered set (S, <) with a least element
such that every directed subset D of S (i.e. every pair z,y € D has an upper bound in D) has a
least upper bound.

The following two lemmas show that (Sat, <) forms a CPPO, with least element (D, ¢), where
Da,s =0 and ¢pa,5 = 0.

Lemma 3.11. The pair (D, $), with Das = O and ¢as = O for all objects (A,d) in K, is a
saturated family.

Proof. [(S1)| holds because dom (@) = (). The remaining properties are vacuously true. O

Lemma 3.12. Given a directed set of saturated families S, the least upper bound | |S of S is a
saturated family.

Proof. Let (D, ¢) =S, i.e. Das = U ¢1es Pas and ¢as = Uipr pr)es Pas-
(S} A € Day < ID,¢) € SAeDy; «— ID,¢) € S.A € dom (¢'A,5) = Ac
dom (¢A,5)~

(S2)t Assume A —> B. Then A € Dpas <= (D', ¢') € SA€Dy; <= (D', ¢') € SBED);
and A € SN < B € Dp s and A € SN.

(S3)f Assume A - B and A,B € Das. If t € ¢a 5(A), then there is some (D', ¢’) € S such that
t € ¢R 5(A), so by we have that t € ¢y 5(B). Therefore ¢a s(A) C ¢as(B), and the
reverse direction is similar.

(SH(S7)} Follows immediately from the saturation conditions of ¢y 5 for (D', ¢') € S

We can derive the following properties for saturated families:
Lemma 3.13. Given a saturated family (D, ¢), we have the following:
(S2°) If A>* B, B € Das, and A € SN(A), then A € Das.
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(S3°) If A—>* B and A € Da s, then B € Da s and da 5(A) = da s(B).
(S4’) If A€ Das, then A€ SN; if t € pa s5(A), then A,t € SN.

(S5)) If A€ Das, o: (A, 8) = (A',8), then Ao € Dar 5.

Proof.

(S2’)] We proceed by induction on the length of the reduction A —>* B. The case A = B is trivial.
If A—> C —-* B, then Lemma also C' € SN(A). Hence, by induction hypothesis C' € Da s

and by Ae 'DA75.

(S3’)] We proceed by induction on the length of the reduction A —»* B. The case A = B is trivial.
If A— C —* B, then by also C € Da s and by da.5(A) = ¢as(C). Hence, by the
induction hypothesis B € Da 5 and ¢a 5(A) = ¢a 5(C) = ¢a 5(B).

(S57)| Let A € Das and o : (A, A) — (A',8'). By[([ST) © € ¢as(A) and by [S5)] z = z0 €
oar 5 (Ao). According to the latter implies that Ao € Da 5.

(S4)| Let A € Da 5. If A is irreducible, we know that A € SN. Otherwise, yields that A € SN.

Let ¢t € ¢a,5(A). Then t € SN by Moreover, A € Da s by which yields A € SN by
the argument above.

O

We write A -7 B to denote that B is a normal form of A, i.e. A —* B and there is no reduction
B — C for any C.

Definition 3.14. Let T°: Sat — Sat be defined by T%(D, ¢) = (D’, ¢'), where

QM(A) = ¢/A,5(B)a if A€ SN(A) and A —4 B
and D', ¢’ are defined on terms and types in normal form in Figure [2] where we use the notation
SWh(A) to denote the closure of S by weak head extension, i.e. the set {t € Terms(A)|3s € S.t >y, s }.
Lemma 3.15. TY is well-defined, i.e., if (D, ¢) € Sat, then T°(D, ¢) = (D', ¢') € Sat.

Proof. |(S1); Tt follows from the construction of (D', ¢') and for (D, ¢) that A € D), 5 if, and
only if, ¢y 5(A) is defined. It is then immediate from the definition of D'as and ¢/ 5 5 that

ﬁA)(S = dom (aA,(S)'
(S52)} Let A— B. If A € D} 5, then A € SN(A) and A has normal form C' € D), 5. Since A > B, we

know by Theorem that B has the same normal form C, and, by Lemfna B € SN(A).
Consequently, B € D ;. Conversely, if B € D) ; and A € SN(A), then B has normal form

Ce D’Ay s Hence, also A has normal form C' and is therefore in D/A, 5

(S3)} If A— B and A, B € Dy ;, then by Theorem A and B have the same normal form C.
Hence, aA,(S(A) = ¢/A,5(C) = aA,a(B)
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/
D s

1 Nat Bool}

{1
U {Hx A B‘A € Das,Vo: (A,5) = (A, 0),t € dar5(Ac) : (Bo)[t/z] € Dary
{z

U {Sz AB‘AepM,va (A,8) = (A, 8'),t € dar5(Ao) : (Bo) [t/x]EDAgg/}
Vo € TV: A [ /a] € Das;
Sa:k.A

Vo: (A,6) = (A, o(k)), ),k € A": §'(k') < §'(0(k))
= ((Ao)[v'/o(r)]) [o/a] € Darsiar

{VHA‘VH #An € N: AR /K] € Diaw) st |

U Neu(A)

#a.s(1) = ({0} U Neu(a))*")
N s(Bool) = ({true, false} U Neu(A))*h(4)
#a,s(Nat) = N(A)
)
)=

$as(lle: A B) = {t|Vo: (A,8) = (A,8'),5 € pars(A0). (to)s € a5 ((Bo) [s/a])}

P s(Bz: A B) = {t|mt € pas(A),mot € pas(B[mt/z])}  ifXx:A BeDy,
Vol € TV : t[d'] € ¢pas(A [ /a));
drsBa:krA)~ {t Vo: (A, 6) = (A, o(k)), "),k € A": §'(k") < §'(o(k)) }
= ((to)[o]) [ /o(k)] € pars1a(((A0) [ /o (r)]) [o/a])
Op5(VeA) = {t| V6 & A,n € Nt [K'] € d(a,m opnon) (A [K//]) }
¢ s(A) =SN(A)  if A€ Neu(A)

where ~ denotes Kleene equality, and N'(A) is inductively defined as follows:

(i) 0 e N(A)

(iii

)
(ii) t e N(A) = suct e N(A)
) Neu(A) CN(A)

)

(iv) t e N(A),s € Terms(A),s >wn t = s € N(A)

Figure 2: Definition of T°
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(SHH(ST)} Here we do a case analysis on the normal forms of A € DA 5. This is sufficient, because we
may assume (which follows from |(S2)|and |[(S3))) for (D’ ¢'), and because reductlons are
closed under clock bubstltutlons accordmg to Lemma [1.9] (which we need for proving

— Case Iz : A.B:

% |(S4) Let t € ¢y 4(Ilz : A.B). By [(S7)| we have that = € ¢a5(A), and so tz €
da,5(B). Hence, bywe have that £ € SN.

x [(SH)F Let t € qb’A)(;(f[x : A.B). Giveno: (A,9) — (A’, ), we need to show that t o €
EA,’(;/(IQI:E : Ao.Bo), i.e. given Ao —»* A" and Bo - B’, we have to show that
to € qS’A,’é,(ﬁz : A’.B’). To that end, we need to show, that for any 7: (A’,§") —
(A"”,8"),s € par 51 (A’ T) we have that ((to)7)s € ¢par s ((B' 7)[s/x]). Note that
by Lemma[3.10] 7o 0: (A,8) — (A”,8"), and by Lemmal[l.7] (t0)T = t (T o). Since
IIz : A.B € DA 5+ we have by definition that (A o)1) = A(T00) € Dar . Moreover,
by Lemma [T.9] (A o)r —»* A’ 7. Hence, by we have that s € ¢ar, 5//( (troa)).
Hence (t(7 o a))s € oarn 5 ((B(To0))[s/x]). Since (B(r 0 0)) [s/z] »* (B'7)[s/x],
according to Lemma and Lemma [1.9) we may use to conclude that (¢(7 o
0))s € dar 5 ((B'7)[s/x]).

* |(S6)f Let t € ¢’A75(ﬂx : A.B) and u € Terms(A) v —wn t. To show that
u € ¢/A,5(ﬂ$ : A.B), assume some o: (A, ) — (A}d'), and s € ¢par5(Ac). By
Lemma we have that uo —wn to, and thus (uo)s »wn (to)s. Since, by
definition (to)s € ¢ar s ((Bo)[s/x]), we may appl to conclude that (uo)s €
$ar 5 ((Bo)[s/x]).

* [(ST)} Let t € Neu(A), 0: (A,8) — (A',4'), and s € par,5(Ao). Then, by Lemmal3.5]
and Lemma[1.23] to € Neu(A’), and thus (to)s € Neu(A'). Hence, by [(S7)| (to)s €
¢ar5((Bo)[s/x]).

— Case ba: k.A:
* Lett € ¢’A’5(l§a : k.A). Pick an arbitrary o’ € TV. Thent [/] € ¢a s(A [/ /a]).
us, by |[(S4)} ¢ [a/] is SN and therefore so is t.
ﬂ Lett€¢A5(>a k.A), o: (A, 0) = (A,d'), and Ao —F A’

- Let o/ € TV. Since t € ¢y 5(°a : k.A), we have that t[a'] € ¢a s(A [o//a]). By
we have that (to) [« ] € oar 5 ((Ao)[a/al).

- Let 7: (A, d") — (A", 7(0(k))),d"), ¥ € A", §" (k") < §"(7(0(k))). Hence,
Too: (A8) = (A", (too)(k),d"”), and

(((to)7) [oD) [£'/7(o (k)] = ((t(7 © 0)) [o]) [/ (7 0 &) (x])
€ ¢arsmar (AT o a)) [/(T 0 0)(k)]) [o/a])
= ¢arsar ((Ao)7) [/ (0 (k))]) [o/al)

By Lemma [1.17| and Lemma [1.9] we have that ((( o)1) [k [T(c(K))]) [o/a] =*
(A7) [ /(0 (k))]) [o/a]. Hence, according to[(S3T} (((to)7) [o]) [’ /7(c(k))] €
bar ar1an (A7) [/ /(o (R)]) [o/al), too.
Let t € ¢\ s(>a : k.A) and s € Terms(A) with s »wn t. To show that
5 € PhsGa: kA),let o: (A5 — (A',d). Given any «' and o/, we know by
Lemma m that s »wn to and (so) [k'/o(k)] >wn (to) [/ /o(k)], and therefore
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also (50) [o'] wn (to) [o'] and ((s o) [/ (k)]) [o] »wh ((t o) [+ /o (x)]) [o]. Hence,

8 € ¢p 5Bt k.A) follows from the fact that ¢ satisfies

Let t € Neu(A). To show that ¢ € ¢ ;B : k.A), let o: (A,0) — (A", d).
en any £’ and o/, we know by Lemmaand Lemmal[l.23] that ¢ o, (ta ['/o(k)] €

Neu(A) and therefore also (to)[a/] € Neu(A') and ((to) [«'/o(k)]) [¢] € Neu(A').

Hence, t € ¢ 5(>a: k.A) follows from the fact that ¢ satisfies

— Cases 1, NAat, Bool:

*

*

*

(S4) By Lemma |3.9) and Lemma
(S5)f By Lemma and Lemma
(S6)F By construction.

* By construction.
— Case Yz : A.B:
% |(S4)t Let t € d)/A,(;(i.’L‘ : A.B). By |(S4)| 71 ¢ is SN, so ¢ is also SN.

*

(S5)F Let t € (;S’A’é(fix : AB) and o: (A,§) — (A',d). To show that, to €
aAﬁé(ix : Ao.Bo), we assume Ao —' A" and Bo —* B’, and show that to €

Sy (S 2 ALB).

To this end, we need to first show that Yz : A’.B’ € D), - Since Sa: A.B €Dy,
we know that A € Da 5. Thus by we have that Ao € DA/ s and, by
that A" € Dars. Let 71 (A, 0) — (A7, 5”) and s € par 50 (A'T) Bym we have
that (Ao)r € Dar s, by Lemmau we have that (Ao)r ->* A’ 7, and thus, by
m we have that s € ¢parn 57 ((Ao)T). Using the fact that (Ao)r = A(t o0) and
Too: (A,8) = (A", "), we can deduce from 3z : A.B € D)\ 50 that (B(ro0)) [s/z] €
Dy gn- Since by Lemma and Lemma (B(t00))[s/z] = (Bo)7)[s/z] -
(B’ 7)[s/z], we may conclue according to m] that (B'T) [s/x] € Dar . Hence,
Sa: A'.B € D), o

From the assumption t € ¢/s 5(3x : A.B), we know that 71 ¢ € ¢a 5(A), and mot €
¢a,s(B [m1t/x]). Hence, bym we have that m1(to) € par s (A, 0), and ma(t 0)
dar5((Bo) [mi(to)/x]). Moreover, by Lemmall.9] we have that (B o) [m(to)/2] —

B’ [m1(to)/x]. Since Ao —* A’, we have therefore, by[(S37)] that 71 (t 0) € a5 (A )
and that ma(t o) € dar 5 (B’ [71'1 to)/x]).

* Let t € ¢/ (f]x A.B) and s € Terms(A) with s >wy t. Then 71 s >wn ™ ¢,

7r23 —>WH 7r2t so by |(S6)| m1 s € ¢as(A), and w2 s € ¢pas(B[mt/x]). By
Lemma and Lemma [1.18] we have B [m; s/x] =* B[mt/z], so by Tg s €
oa,5(B[m s/x]), provided that B[m s/z] € Das. The latter follows from the fact

that Sz : A.B € D’A,é and m1 s € ¢a s(A).

* Let t € Neu(A). Then also 71 ¢, m2t € Neu(A). Hence, by Tt € oas(A)

and ot € ¢ 5(B [m1 t/x]), which means that ¢ € ¢’A75(ix : A.B).

— Case V. A.

(S4) Given t € ¢ 6(fo A), pick an arbitrary &' ¢ A. Then t[K'] € d(a k1,605 0]
ich by [(S4)| means that ¢ [x'] is SN. Hence, so is t.
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* |(S5) Let t € ¢/A75(9I€.A) and a: (A,5) = (A',8). The normal form of (Vk.A)o =
V' Ao [k K] is of the form Vk'.A’, with Ao [k — &] =% A’ for some fresh clock
variable k’. Hence, we need to show that to € ¢/A/76/(91€/.A’).

First we need to show that Vx’.A’ € D/ 5. That is, given some £ ¢ A’ and n € N,
we need to show that A’ [k /K'] € D(as xr),6/[n)- Let £ be a fresh clock variable.

Since Vk.A € D5, we know that A [k"/k] € D(a ) s[wsn)- We can derive that
o[ — k" ((AK"),8[K" — n]) = ((A",&"),8 [s" — n]). Hence, according to

(S57), we know that
(Ao [k K]) ["/&"] = (A [ /6])o [K"" = "] € Diar oy s imrsn]-

Since (Ao [k — K])[r"/'] =»* A’ [s"/K] according to Lemma we know by
that also A’ [HII/HI] S D(A/J{//)’g/[,{u,_}n].

To show that t o € ¢)p, 5 (9/{’.14’), we assume some £ € A’ and n € N, and show that
tolk"] € darw)sinrsn) (A" [K"/K']). Let £ be a fresh clock variable. Since ¢ €
da.5(Vr.A), we know that t[x"’] € Bawmy,olsisn] (A [" /K]). We can derive that
o — k" (A K"),8[K" = n]) = (A", "), [&” — n]). Hence, according to

we know that
(L) K] = (L") 7 [ = K] € b onyrienesag (A [ /i) [ 5 )
= d(arwr)oiwon) (Ao [k = &) [K7/K])

Since (Ao [k K'])[r"/K] =>* A’ ["/K'] according to Lemma we know by

@ that also (t0)[k"] € d(ar k)5 [xron) (A [ /K']).

x [(S6)F Let t € ¢’A’5(‘3/{.A) and s —>wy t with ¢ € Terms(A). To show that s €
¢IA75(9K.A), assume some &' ¢ A and n € N. Then t [r'] € ¢(a x). 5[ —n] (A [K'/K]).
Since s [&'] »wn t[K'], and s[k'] € Terms((A, «’)), we may apply to conclude
that s [k'] € d(a,w)6kn) (A [K'/K]).

* t t € Neu(A). For any ' ¢ A, we have that t ['] € Neu((A, x’)). Hence,

by we have that t[x'] € ¢(a x),sk—sn) for any n € N, which means that
t € @y 5(Vr.A).
— Case A € Neu(A).

* [(S4)f Immediate.
* Given t € ¢s 5(A), 0: (A,6) — (A",d'), and Ao -} A’, we need to show that

to € ¢ns 5/(A'). By Lemma and Lemma A’ is neutral, and, by Lemma
and Lemma A’ € Neu(A”). Hence, it suffices to show that to is SN, which,

according to Lemma [3.1] follows from the fact that ¢ is SN.

* By Lemma [3.7]
* By Lemma [3.9]

Lemma 3.16. TV is monotone, i.e., if (D', ¢') < (D?,¢?), then TO(D!, ¢') < T°(D?, ¢?).
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Proof. Let (D', ¢') < (D2, ¢?) and (A, §) an object in K. Let C € DV o 5. Hence, C € CSN(A) and
/

there is some C’ € ’DllA’(; with C' - C’. We show by a case distinction below that then C’ € D? ;
and ¢1/A’5(C’) = ¢2/A’5(C”). Hence, by definition, also C' € D25 5 and ¢!’ 5(C") = ¢*' 5 5(C").

o (' =1,Nat,Bool € D', 5: Then €’ € D%} 4, and ¢!y 5(C") = %4 5(C").

o O'=Tlz: AB€ D'z Then A€ D} ; C D3 ;. Let o: (A,5) — (A, 6') and t € ¢34, 5 (A0).
By we know that Ao € Dy, 5, so from ¢, 5 C ¢A, we get ¢p, 5 (Ad) = dA, 5 (A0).
Thus (Bo) [t/z] € DlA,’(;, - ’DzA,’(;/, and therefore Iz : A.B € DQ/A,(;.

Let again o: (A,8) — (A’,8") be given. Then ¢, 5 (Ac) = ¢4, 5 (A0), and ¢, 5 (B o) [s/x]) =
¢2A,75,((B o) [s/x]) for all s € (blA,,(;, (A o). Therefore ¢1'A75(f[aj : A.B) = ¢2'A75(f[a: : A.B).

e ' =%z:AB: Then C' € D2/A75 by the same argument as for I1.
We must have that ¢ 5(A) = ¢4 5(A), and ¢ 5(B[m t/x]) = ¢ 5(B[m1 t/x]) for any ¢, and
therefore '\ 5(Sx : A.B) = ¢*5 5(X2 : A.B).

). Then

e ¢ = ba : kA: First, assume some o/ € TV. Hence, A [a'/a] € Dj s
k) < K))

ondly, assume some o: (A,§) = ((A';0(k)),d") and ' € A’ with §'(
((Ao)[s'/a(r)]) [o/a] € DA sijar € Das si1ar- Consequently, C' € DQIA’(;

Given any o’ € TV, we have ¢ s(A [o//a]) = ¢ 5(A [a’/a]), and given any o: (A,§) —
(A", 0(k)),8") and &' € A’ with §'(x") < 0'(0(k)), we have dp, 54 (A 0) [K'/o(K)]) [o/al)

S 51a(A0) [W [o(r)]) [o/a]). Hence, ¢' 5 a : r.A) = ¢*5 5B : k. A),

e ' = VYr.A: Given any ' ¢ A and n € N, we have that A [&'/k] € DA n.6]nvsm]

DA o 5]nvsm)- Hence, Vk.A € DQ/A,(;.

For any ' ¢ A and n € N, we have that qb%A’H,))&[H,Hn} (A [x'/K]) = ¢%A,n’),6[n’r—>n] (A [r'/K]).
Hence, ¢2IA’5(9/$.A) = ¢2/A75(9n.A).

cp
/O_(

% s Sec-
&'(o(k)

o C" € Neu(A): Then C" € D? 5 and ¢!\ 5(C") = SN(A) = ¢* 5(C").
O

Theorem 3.17. Any monotone function on a CPPO has a least fixed point.
Specifically, the least fixed point can be constructed as follows: Given a monotone function
f:X — X be on a CPPO (X, <), we construct the following transfinite sequence (z,,):

To = L
Tat1 = f(Ta)

Ty = |_| ZTa if v is a limit ordinal
a<y

Then there is some ordinal « such that z, is the least fixed point

In the following, let (DY, ¢") denote the least fixed point of T° according to Theorem
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Dx s = {1,Nat,Bool, U}

U {Ilz: A.B|A € Das,Vo: (A,0) = (A',d'),t € par5(Ac): (Bo)[t/z] € Dars }
U {Z:L‘:A.B|AEDA’5,VO' ( )—>(A/ / tEqu/,(;/(AO’):(BU) [t/ ]

VO&IETV:A[ /a]GDA(;
Uba:k.A

Vo: (A,0) = (A o(k)),d8"),V&' € A" 8 (k') < 8 (0(K))
U {Vk.4A ’ Ve' & A,n € N: Al /K] € DA wr) sinsn) |

= ((4 )[ 'fo(r)]) [o/a] € Darsiar

U Neu(A)
das(1)={)}rU Neu(A))wh(&)
N 5(Bool ({true, false} U Neu(A))Wh(A)

a5z 2 A.B) ~ {t|Vo: (A,0) = (A",8"),s € par5/(A0). (to)s € par s ((Bo) [s/x]) }
(ZSA(;(Zx A B)={t|mte oars(A),mat € pas(B[mt/z])} ifo:A.BE'D/A,(S
Vo! € TV : t[a'] € das(A [ /0]); }

)=

)=
¢as(Nat) = N'(A)

)

)

Vo: (A,6) = (A, o(k)), ),k € A" : §(K') < ' (o(k))
= ((to)[o]) [&'/o(r)] € pars1a(((A0) [ /o (k)]) [o/a])
d)/A,é(vH.A) ~ {t | V' ¢ AineN:t[x] e B(Ak7,6]r"—n) (A [n'/n])}
¢ s(A) =SN(A) if A € Neu(A)
as(U) =DR 5

P s> mA) >~ {t

Figure 3: Definition of T
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Definition 3.18. Let T': Sat — Sat be defined by T'(D, ¢) = (D', ¢'), where D', ¢’ are defined
on terms and types in normal form in Figure
Lemma 3.19. T* is well-defined, i.e., if (D, ¢) € Sat, then T*(D, ¢) € Sat.

Proof. The proof is similar to the proof of Lemma [3.15] except for addition of the case of U for

proving
(S4)t Follows from

(S5)F Follows from [(S5’)|

(S6)F Assume that A € ¢/ 5(U), i.e., A€ D} 5. and that B € Terms(A) with B »wu A. By|(S4’)
we know that A € SN, so from Lemma we can conclude that B € SN. From Lemma [3.3
we get that B — A. These facts together with |(S2)| gives us that B € DOA,(S'

(S7); By construction of DOA7 5

Lemma 3.20. T is monotone, i.e., if (D', ¢') < (D?,¢?), then T (D', ¢') < TH(D?, ¢?).
Proof. The proof is similar to the proof of Lemma[3.16] The additional case U is trivial. O

In the following, let (D!, ¢!) denote the least fixed point of T according to Theorem
Instead of ¢ s(A) we write [Fa Al

Lemma 3.21. D! and ¢' satisfy the properties in Figure |Z|

Proof. For the proof we make use of the fact that (D',¢') = T*'(D',¢'). We begin with the
characterisation of D!. We assume an element C € Da,s and show that then C € DlA’ 5

e Let C € {1,Nat,Bool,U{}. Since C is in normal form already, we immediately obtain that
C € Dj 4.

o C =TIz : A.B with A € Dj ;, and for all o: (A,d) — (A',d) and t € [Far Aoy, we have
that (B o) [t/z] € D, 5. Let C’ be the normal form of C. Hence, C' = Ilz : A’.B’ with A —>*

A’ and B -* B'. By L:emma and Lemmal/l.17] we also have that (B o) [t/z] »* (B’ o) [t/z]
and Ao —* A’g. Hence, we may apply |(S2’){and [(S3’)| to conclude that A" € D} ; that for

all o: (A,6) — (A',6") and t € [Far A'0]s, we have that (B'o)[t/z] € Dy 5. Hence,
C € Dj 5.

e The argument for the cases C = Yz : A.B, C =Vk.A, and C =« : k.A are similar to the
argument for the case C'=Ilz : A.B above.

e C € Neu(A). Let C’ be the normal form of C. According to Lemma [3.8]and Lemma [1.1] also
C" € Neu(A) and thus C' € D 4.

Next we consider the characterisation of [-a -J5. By definition, [Fa C[; = ¢y 5(C"), where C” is
the normal form of C' and ¢’A’ s is as given in Figure 3] with D and ¢ instantiated with D! and ¢!,
respectively.
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D1A75 ) f)Aﬁ where

Das = {1,Nat,Bool} U {U/}
U {Hz : A. B|A€DA5,V0 ,0) = (A, 8), te[Fa Acls - (Bo) |t
U {Sz:A.B|A€ D}, Vo: §) = (A",d8"),t € [Fa Aoy : (Bo) [t

/
/
Vo! € TV : A [o//a] € Dp 4
U {Da t kA }
= ((Ao)[w'/a(r)]) [o/a] € Dps s1ar

Vo: (A,8) = (A, o(k)), ), € A §(k') <8 (o(k))
(%
U {VFL.A ‘ Vi' @ A,n € N: A[K' /K] € D{ ) snrsn] }

U Neu(A)

IE] S ’DlAlvél }

(A
(A, 2] € Do )

[Fa 105 = ({0} UNeu(A))*")
[Fa Bool]; = ({true, false} U Neu(A))"")
[Fa Nat]; = N(A)
[Fa Oz : A.B]; = {t|Vo: (A,0) = (A",¢),s € [Far Aoy . (to)s € [Far (Bo) [s/z]]s }
if Iz : A. B € Das
[FaSa: A.B]y={t|mte[ra Aly,mte[Fa Blmit/z]ly}  ifXz:A BeDags
Vo/ e TV :t[a'] € [Fa A [ /a]]s;
Vo: (A, 6) = (A, o(k)),d), k" € A6 () < 6'(0(k)) }
= ((to)[e ]) [K'/o(k)] € [Far (Ao) [5'/o(k)]) [o/all5 A
ifcpa:kAce DA’[;
[Fa Ve.Als = {t| Vs € An € Nt [K'] € da ) spwsn) (A [ /K]) }
if Vi.A € Dags
[Fa AJ; = SN(A)  if A € Neu(A)
IFa uﬂg = DOA,J

[Fava:kAl;= {t

Figure 4: Characterisation of D! and ¢'.
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e Since U is a normal form we have that [Fa U] = ¢s 5(U) = DY 5.
e The argument for 1, Nat, and Bool is the same as the argument for U above.

e LetIlz : A B € ZA)A’(; and C be the normal form of IIx : A.B. Hence, C = Ilx : A’. B’
with A -* A" and B —* B’, which means that [Fa Ilz: A. B]; = qb’A’é(Hx . A.B).
Hence, t € [Fa Iz : A. B]s iff for 0: (A,9) — (A’,¢') and s € [Far A’ o]s, we have that
(to)s € [Far (B'o) [s/z]]5. By Lemma and Lemma we know that Ao ->* Ao
and (Bo) [s/x] >* (B’ o) [s/z]. By we thus know that ¢ € [Fa Iz : A. B]; iff for all
o: (A,6) = (A',¢') and s € [Far Aoy, we have that (to)s € [Far (Bo) [s/z]] -

e The argument for the cases Yz : A.B, Vk.A, and >« : k. A are similar to the argument for the
case I1x : A.B above.

e Let C € Neu(A) and let C’ be the normal form of C. According to Lemma[3.8 and Lemmal 11|
also C" € Neu(A) and [a CJ; = ¢/s 5(C") = SN(A).

O

Given a typing context ' Fa, a clock substitution o: A — A’, and an object (A, ) in K, the

semantic context of I' ko w.r.t. 0,d, written [I' '_A]]o-,é’ is a set of finite mappings ~v: dom (T') —
Terms U TV U {0} inductively defined as follows:

L 10— TermsUTV U {o} € [ Fal, s
2. If vy € [I' Fa], 5, then
(a) yjz—tle[lz: A '_A]]a,57 given that ¢t € [Far (Ao)v]s;
(b) vl o] €[l a: kFa], s given that k € A and o' € TV; and
(c) (v [K'/o(r)]) [ o] € [Tt kAl o(m)j00,s51a7> Whenever k' € A, 6(k") < 6(0(k)),
and A” = A"\ {o(k)}.

Lemma 3.22. If 7: (A",8) — (A",d'), and v € [I' Fa], 5, then y7 € [I'Fa]

T00,0"*

Proof. We proceed by induction on T'.
e The case v € [- Fa], 5 is trivial.

o Let 7: (A,6) — (A”,¢), and y[z—t] € [[x: AFA], s le. t € [Fa (Ao)y]s; and v €
[I'Fal, s By @ we have that t7 € [Far ((AO‘)’Y)T]];;, = [Far (A(to0))(v7)]s, and
by induction hypothesis we have that y7 € [I'Fa] Hence, we can conclude that
[z )T el x: AFAa]

T00,0""

T00,0""

o Let 7: (A",6) — (A", 0") and y[a > '] € [I a:kba], 5 le. v € [['Fa], 5 and o/ € TV.
Since 7: (A’,d) — (A”,d), we can apply the induction hypothesis, to obtain that v7 €
[I' Al o - Hence, we have that (y[a— o/])7 € [I'a: £ Fa]

Too’, 8"

o Let 7: (A0 | A) — (A”,§) and (v [/ /o(k)]) [ = o] € [T,a: k Falie jo)joo,s180 1€ 7 €
[LFal, s & € A" 6(k") < d(o(k)), and A = A\ {o(k)}. Let " be a fresh clock, 7/ =
7[o(k) = k"], and §" = &' [" — §(o(k))]. Then 7': (A';0) — ((A”,£"),6"”). Hence, by
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induction hypothesis, we have that v 7’ € [T’ Fa] Since 6" (7(k')) < (k') < §(o(k)) =

0" (k"), we have that

T'00,6" "

(Y7 [r(K)/(T" 0 0)(K)]) [ = o] € [T, vt & '_A]][‘r(n/)/(‘r’oa')(K)]O‘r’oo',é’
Because [7(K)/(7" o 0)(k)] o 7" = 7 o [k /o (K)], the above is equivalent to

(v [&/o(m)]) [a = oD)7 € [Ty a: k Falope jo(m)jon.s

Lemma 3.23. Givent € [Fa Als, « € A, and n € N, we have that t € [Fa A]]é[

K—=n]”

Proof. Let 0: A — (A, k), be the inclusion map from A to A, k. Then o: (A,d) = ((A, k), ), and
by we have that to € [Fa Aaﬂé[m_m]. Since to =t and Ao = A, we may conclude that
telFax Aﬂé[m—m]' O

Lemma 3.24. Let (A,6) be an object in K, o: A = A", k ¢ A, and " ¢ A'. Then [I'Fa], 5 C
[[F FA7K’HU[H}—)K/],6[H”—>H] fO’I’ any n € N.

Proof. Straightforward induction using Lemma for the case that I' =T,z : A. O

Lemma 3.25. Ift is SN, then so is El (¢).

Proof. We say that a redex is an El () redex if it is of the form El (u).

Let s be the normal form of ¢. Since s is in normal form, the only redex that El(s) contains is
El (s) itself (if any). It is easy to see that the only redexes created by contracting an El (-) redex are
themselves El (-) redexes. Moreover, the newly created redexes occur at a higher depth within the
term than the original term. Lastly, the result of contracting an El(-) redex has the same depth.
Hence, we can construct a normalising reduction starting from El (s) by first contracting all redexes
at depth 0, then at depth 1 and so on until depth d, where d is the depth of the term El (s). O

Lemma 3.26. If A € DOA’(;, then
(i) El(A) € D} 5, and

(i1) ¢ 5(A) = ¢a 5(EI(A)).

Proof. Let (D%, 6%%) be the transfinite sequence constructed as in Theorem using the mono-
tone function 7°. That is, there is some « such that (D%, §%%) = (DY, §%). We prove the following

generalisation of this lemma: For all ordinals «, if A € D&O:S, then

(i) EI(A) € DY 4, and

(i) ¢x%(4) = @) 5(El (4)).

We proceed by transfinite induction on «: The case a = 0 is trivial since D&% =0. If
is a limit ordinal, then the statement follows straightforwardly from the induction hypothesis:
Ae D&,O:S implies that A € D&g for some 8 < «. Hence, by induction hypothesis, El (A4) € D1A75,
and ¢>&{35(A) = ¢a s(EI (A)). By construction of ¢**, we thus have that (b&% (A) = ¢p s(EI(A)).

The case for a = 8 4 1 follows by case analysis. Let A € D&%. That is, A € SN and there is a
normalising reduction A —»* A’ where A’ is of the following forms:
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o A’ = Nat: Then EI (A) —* EI (A’) = EI (Nst) — Nat, i.c. EI(A) € D} ;. Moreover ¢pX%(4) =
N(A) = ¢j 5(EI(A)).

o A€ {i, Baol}: Analogous to the case above.

e A/ =Tz : B.C: That is, B € DOA(s and for all o: (A,0) — (A/,4") and s € (]5&?6:5/(30'), we
have that (Co)[s/z] € DA, 5

(i) By induction hypothesis, El(B) € Dj s and by |(S5’), we know that Bo & D&,B,(;,.
Hence, ¢0Ai’,6)75/(B o) = ¢1A,75,(E| (B o)), by induction hypothesis. Applying the induction
hypothesis again, then yields that for all o: (A,8) — (A’,§") and s € ¢}, 5 (El (Bo)),
we have that EI ((C'o)[s/z]) € Dj, 5. Thus, we have that Iz : EI(B) .EI(C) € Dy 4.
Since EI (A) —»* El (f[x : B.C’) — IIz : EI(B) .EI(C), we can thus conclude by |(S2’)| and

Lemmathat El(A) € D} 5.

(i) We know that t € ¢X%(A) iff for all o: (A,0) — (A, §) and s € ¢X/5(Ba), we
have that (to)s € (/)A, 5((Co)[s/z]). By induction hypothesis, this is equivalent to
the statement that for all o: (A,0) — (A',d') and s € ¢}, 5(EI(Bo)), we have that
(to)s € ppr 5 (EI((C o) [s/x])), which in turn is equivalent to t € ¢ 5(EI(A)).

e A’ =3z : B.C: Thatis, B € DOA(; and for all o: (A,§) — (A’,¢) and s € (bA, 5 (Bo), we
have that (C'o)[s/z] € DA, - Property (i) follows by the same argument as for the case
A’ = Iz : B.C. To show property (ii), we observe that ¢ € ¢A,5( )iff mt € (ZSA,(;( ) and
ot € (ZS&%(C [r1t/x]). By induction hypothesis, this is equivalent to m ¢ € ¢ 5(El(B))
and myt € ¢p 5(EI(C [m1t/z])), which in turn is equivalent to ¢t € ¢j 5(EI(A)), because
El (A) >* ElI (Ez : B.C) — Yz : EI(B) .EI(O).

e A/ = Vk.B: That is, for all ¥ ¢ A and n € N, we have that B [//x] € D(A W) bl
By induction hypothesis, we then obtain that El (B) [x'/k] = EI (B [s'/k]) € D(A)N )6l
Because El (A) —* El (‘9&.3) — Vk.El (B), we thus have that ElI(A) € DlA’(;. To show prop-

erty (ii), we observer that t € qS&%(A) iff for all ¥ ¢ A and n € N, we have that t[x'] €
¢(A )6l (B [k'/K]). According to the induction hypothesis gi)?f’ﬁ,)’é[ﬁ,'_m] (B [x'/K]) =
¢(AH Sl (B (B) [s'/k]). Since ElI(A) —»* Vk.EI(B), we can thus conclude that ¢t €

SRS (A) iff t € ¢4 5(EI(A)).
e The case for & follows by an argument similar to the one for v above.

e A’ € Neu(A): Then also EI (A’) € Neu(A) and therefore EI (A’) € D} 5. Moreover, ¢*(A") =
SN(A) = 61 (EI (4))

Lemma 3.27. Ify € [[,T" FA] then v [ dom (') € [I' Fa], 5-

7,0’
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Proof. We proceed by induction on I".
e The case IV = - is trivial.

o Let vz t] € [II,2: AFA], 5, with v € [, I Fa], 5. Since y[z—¢t] [ dom (I') = v |
dom ('), we have ~ [z — t] | dom (T') € [I Fal,s by induction hypothesis.

o Let y[a— o] € [I\IV,a:kka], 5 with v € [I,I" Fa], s and o/ € TV. Since y[a = o] |
dom (T') = v | dom ('), we have 7 [a — /] | dom (T') € [T I—A]][”S by induction hypothesis.

o Let ("y [K’/O’(H)]) [(X — 0} S [[F,F/,Oé KR FAH[I{’/G’(H)]OG’,(S[A”’ with Y S [[F,F FA]]O’,(S’ and AN =

A\{o(k)}. Since[ 'Jo(k)] : (A, 8) = (A”,6 | A”), we have by Lemma[3.22|that v [x'/o (k)] €
[T, T Falier /o (s)]00,61a7- By induction hypothesis (v [+'/o(x)]) [ dom (I') € [I' Fa] i /o(x)j0msrar
Hence, ((v [x '/U(f‘i)]) [a = ¢]) [ dom (I) € [I' "Aﬂ[n /o (K)]oo, 5 A" -
U
Corollary 3.28. If v € [I'Fa], s with o0 A — A, then y(z) € Terms(A') for all variables
x € dom (T).

Proof. Let T' = ',z : A,T';. Then by Lemma v(z) € [Far (Ao)(y [ dom(I'y))]s. Hence,
~v(z) € Terms(A"). O
Lemma 3.29. Lett € [Fa Bools, A [t/z] € Dj 5, u € [Fa A [true/z]]5, andv € [Fa A [false/]] 5.
Then iftuv € [Fa A [t/z]];.

Proof. Since t € [-a Bool]; = ({true, false} U Neu(A))"" (&) we know that ¢t —wy ' with ¢/ €
{true, false} U Neu(A). We proceed by induction on the length of the reduction t —>wy t'.

e t =1'. That is, t € {true,false} UNeu(A). We consider three cases:

— t € Neu(A). Then also if tuv is neutral since u,v € SN(A) by [(S4’)l Hence, by [(ST)}
iftuv € [Fa A [t/x]]; since by assumption A [t/z] € Dy 4.

— t = true. Hence, if tuv —wh u, since v € SN(A) by [(S4)} Because u € [Fa A [true/z]];,
we may thus apply [(S6)} to conclude that |ftuv € [Fa At/x]];.

— t = false. Analogous to the case t = true above.

e t >wh s >wn t'. Hence, also iftuv >wy if suv and if tuv € Terms(A), since u,v € SN(A)
by Moreover, by induction hypothesis, we have that if suv € [Fa A [s/z]];. We may
thus apply [(S6)} to obtain that that if tuv € [Fa A [s/a]];. By Lemma [3.3]and Lemma [1.1§]
A [s/x] >* ATt/z]. Hence, by [(S37)] also if tuv € [Fa A [t/z]];.

O

Lemma 3.30. Lett € N(A), A [t/z] € Dp 5, u € [Fa A[0/z]]5, andv € [-a Tz : Nat.A — A [sucz/z]] .
Then rectuv € [Fa A [t/x]];.

Proof. We proceed by induction on t € N (A):

e t = 0. Hence, rectuv —wn u, since v € SN(A) by [(S4)] Because u € [Fa A [0/z]]5, we may
thus apply m to conclude that rectuv € [Fa A [t/x]];.
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e t =suct' and t' € N(A). By definition we have that vt € [Fa (A — A [suc z/z]) [t'/x]],,
which is equivalent to vt € [Fa A [t'/x] — A [suc t’/z]];. By induction hypothesis rect’ uv €
[Fa A [t'/z]];, which means, by definition, that vt (rect’ uv) € [Fa A [suc t’/z]];. Because
rectuv —>wn vt (rect’ wv), we may therefore by conclude that rectuv € [Fa A [t/z]];.

e t € Neu(A). Then also rectuv is neutral since u,v € SN(A) by Hence, by [(S7)}
rectuv € [Fa A [t/x]]5 since by assumption A [t/x] € Dy 5.

et >wy s with ¢ € Terms(A) and s € N(A). Hence, also rectuv —>wn recsuv and
rectuv € Terms(A), since u,v € SN(A) by Moreover, by induction hypothesis,
we have that recsuv € [Fa A [s/z]];. We may thus apply to obtain that that
rectuv € [Fa A [s/z]]s. By Lemma and Lemma A [s/x] »* A [t/x]. Hence, by
[(S37)] also rectuwv € [Fa A [t/]].

U
Lemma 3.31. Ift € [Fa " A — A, then dfix"t € [Fa > A];.
Proof. We proceed by induction on 0(k).

e Given o/ € TV, we need to show that (dfix"t) [a'] € [Fa A];. Since t € [Fa b A — A, we
know that ¢ € Terms(A) and by we know that ¢ is SN. Therefore, (dfix" t) [o/] € Neu(A).
According to [(S7)} it thus remains to be shown that A € Dj ;5. Since t € [Fa > A — Alj,

we know that " A — A € Dj 5. Because the normal form of >* A — A is not neutral, we
can deduce that b A € D1A7 5> and because the normal form of >* A is not neutral either, we
may conclude that A € Dy ;.

o Let o: (A, 6) = ((A',0(k)),d") and k" € A', with §' (k") < §'(0(k)). We need to show that
(dfix"'(t0")) [o] € [Far Aco']s A/

where o/ = [x'/o(k)] o 0. Since (dfix”/ (ta’)) [¢] >wn (to’) (dfix”,(t 0')) it suffices by to
show that )
(to’) (dfix™ (ta")) € [Far Ao']5ar

One can easily check that o’: (A,§) — (A’,¢" | A’). Hence, we may apply to obtain
that to’ € [[I—A/ or Ao — AO’I]] siar Moreover, we have that

(0" T AN (K") = 0'(r") < ' (a(k)) < d(k)
which means that we may apply the induction hypothesis to obtain that

dfix*’ (t ") € [[I—A, > (A a’)]](w

Using the fact that to’ € [[I—A/ ot Ao’ — AO'/]] srar W CAD then conclude
/l‘ 7

(to") (dfix" (t o)) € [Far Ao']sar
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Lemma 3.32. If El (¢ (dfix" t) u) is SN, then so is El (((dfix" t) [¢]) u).

Proof. Assume that there is an infinite reduction starting from EI ((dfix" ¢) [¢]). Since ¢ and u are
SN (otherwise El (¢ (dfix" t) ) would not be SN), we know such an infinite reduction must be of the
form

El(((dfix" £) [o]) u) —* EI(((dfix" ¢') [o]) u) — EI (¢' (dfix" ') u) — ...

with ¢ »* ¢ and u -* «'. However, El (¢ (dfix™t') u) must be SN since El (¢ (dfix" ¢t) u) is SN and
reduces to it. O

Lemma 3.33. Ift is SN, then so is fold, t.

Proof. If a@ # o, then any infinite reduction starting from fold, ¢t is due to an infinite reduction
starting from ¢. If a = ¢, then any infinite reduction starting from fold, ¢ is of the form

foldg t =»* fold, t' =t — ...

with ¢ ->* t/. Hence, there is an infinite reduction starting from ¢. Both cases contradict the
assumption that ¢ is SN. O

Lemma 3.34. Ift [u/x] and v are SN, then so is t [m1 (u,v) /x].

Proof. If t has no free occurrences of x, the property follows immediately. Otherwise, suppose that
there is an infinite reduction
t |7 (u,v) /2] > 81 > 82 > ...

Only redexes in ¢ or in 7 (u,v) are contracted (i.e. there is no overlap). Hence, we also get an
infinite reduction starting from ¢ or from my (u,v). Since, t [u/x] is SN so are ¢t and v and thus so
is m1 (u,v). This contradicts the above infinite reduction. O

Lemma 3.35 (Fundamental property). Let (A,d) be an object in K, 0: A — A, and v €
[[F FA:”O' 5

(i) If T Fa A:type, then (Ao)y € Dy, 5.
(it) IfT Fat: A, then (to)y € [Far (Ao)y]s-

Proof. We prove both statements simultaneously by induction on (d,n), where d is the size of the
derivation of the judgement I' Fa A : typeresp. ' Fa ¢ : A, and n is 0 if the judgement is of the form
I'FA A:type and 1 if it is of the form I' Fa ¢ : A. Hence we may use the induction hypotheses for
strictly smaller derivations, and the induction hypothesis for equally large derivations provided we
are using the induction hypothesis |(i)| for proving Moreover, we prove the stronger statement
(Ao)y € Das s for m where Da/ 4 is defined in Figure

Consequently, for proving item we may assume that (4 ¢)~y € DX 1 5 for the following reason:
According to Lemma [[.3] T' 4 ¢ : A implies that there is a derivation of I - A : type that is at
most the size of the derivation of I' Fa ¢ : A. Applying the induction hypothesis for I' Fao A : type,
then yields (Ao)y € Dy 4.
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I'Fa NN I N I'a T'ka I'kFa
Lhal:type, DA Bool: type, I'Fa Nat:type, Do 1:U, I'Fa Bool : U, T'Fa Nat: U,
T'ka T'ka T'ka I'ka T'ka
I'Fa (): 1, T'Fa true: Bool, T' Fa false : Bool, I'Fa 0: Nat, I' A U : type
For these cases, the property follows immediately from Lemma [3.21]

I'Fat: Nat
I' A suc ¢t : Nat.
By the induction hypothesis, we have that (t o)y € [Fas Nat]; = N(A’). Then, by definition
also suc ((to)y) € N(A’) = [Far Nat],.

'Fat: A A" B T'FA B :type

I'kFat:B
By Lemma and Lemma we know that (Ao)y <* (Bo)y, and by Theorem
we obtain some C such that (Ac)y ->* C «<* (Bo)y. By induction hypothesis, we have
that (to)y € [Far (Ao)y]s. Hence, by |(S3’), we have that (to)y € [Far C];. Moreover, by
induction hypothesis, we also have that (Bo)y € DIA,)é. Hence, by [(S2)} we know that also

(to)y € [Far (Bo)yls
Tz :El(A) kA B:U
Tallz:A.B:U .

We need to show that Tly : (A o). (Bo)y [z — y] € [Far (U o)7]s, where y is a fresh variable.
That is, we need to show that Iy : (Ao)y. (Bo)y |z — y] € DY 5.

By Lemma we know that I'yz : EI(A) Fa by a smaller derivation, which means that
I' A EI(A) : type by a smaller derivation. Hence, we may apply Lemma to obtain that
I' FA A : U by a smaller derivation. Consequently, we may apply the induction hypothesis
to obtain that (Ao)y € [Far Uo)]s = [Far U]y = DX 5. Let 7: (A, 6) — (A”,d’) and
t € ¢Qn 5 (((Ac)y)7). Tt remains to be shown that ((B o)y [z — y])7)[t/y] € DX, 5, which
is equivalent to (B (1 00))(y7) [z — t] € DX, 5.

By Lemma we know that y7 € [I'Fa],,, 5. By|(S5"), we have that ((Ao)y)T € DOA,,,(;,.
Hence, by Lemma [3.26] we have that ¢ € [Far ((A0)y)7]; = [Far (A(T00))(y7)]s. Hence,
(y7)[x—=t] € [I,z:EI(A)Fal, ., s Hence, we may apply the induction hypothesis to
conclude that ’

(B(roo)(y7) o t] € [rar U(T00)(y7) [z = s = [Far Uls = Dan o-

I'xz: AFA B : type
A llz: A B : type.

We need to show that Iy : (Ao)y. (Bo)y[z — y] € DlA,w(;, where y is a fresh variable.

By Lemmal|l.3] we know that I, x : A Fa by a smaller derivation, which means that ' Fa A :
type by a smaller derivation. Consequently, we may apply the induction hypothesis to obtain
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that (Ao)y € Das. Let 7: (A,8) — (A”,0') and t € [Far ((A0)7)7]s. It remains to be
shown that ((B o)y [z — y])7) [t/y] € DAs 5, which is equivalent to (B (100))(y7) [z t] €
Dpn gi-

By Lemma we know that y7 € [I" Fa]
that (y7) [z —¢] € [T,z : AFa]
conclude that

roos Since t € [Fan (A(100))(y7)]s, we have
Hence, we may apply the induction hypothesis to

T00,0""
(B(tooa))(y7)[z—1t] € DlA//,(;/.
Mz:AFaAt: B

I'badxt:1lz: A B
We need to show that ((Az : A.t)o)y € [Far (Hz : A.B)o)7];, i.e. that

Ny (Aa)y.(to)ylz =yl € [Far Ty : (Ao)y.(Bo)y [z — yl];

for some fresh variable y. That is, given 7: (A’,§) = (A”,d") and s € [Far ((Ao)y)7]s, we
need to show that

((Ay = (A(To0))(v7).(t(Toa)(yT) [z = y])s € [Far (B(To0)(y7) [z = yl) [s/ylls

The left-hand term weak-head reduces to ((t (7 o 0))(y7) [z — y])[s/y], which is equal to
(t(ro0))(y7)[x+— s]. Hence, by [(S6)} it suffices to show that

(t(roo))(y7) x> s| € [Far (B(roo))(y7)[z— s,
This follows from the induction hypothesis, if we can show that

(yr)[x— sl elz: AFA]

700,60 *

By Lemma we know that
YT € [[P FA]]

Moreover, by assumption, we have that s € [Fas (A(700))(y0)]s, and thus, we have that

T00,0" *

(yr)[x— sl elz: AFA]

700,60 *

D,x: Aba B :type
I'ba Y2 : A. B : type
The argument is the same as for I1x : A. B above.
I'kat:Ilz: A B T'bas: A
kA ts: Bls/x]

By induction hypothesis, we have that (t o)y € [Far II(y : Ao)y).(Bo)y [z — y]ls, and (so)y €
[Far (Ao)y]s, for some fresh variable y. Hence, by definition, we have that

((ts)o)y = ((to)y) ((so)y) € [Far (Bo)y[z = y]) [(so)v/ylls

By Corollary and Lemma we have that ((Bo)y[z — y]) [(so)y/y] = (B [s/x])o)7,
which means that we can conclude that ((ts)o)y € [Far ((B [s/x])o)7];s-
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oz :El(A)FA B:U
ThaXz:AB:U
The argument is the same as for Iz : A. B above.

I'Fa Xz : A B : type Fkat: A I'Fas: B [t/z]
kA (t,s):Xz: A.B

Let s = (so)y and t' = (to)y. By induction hypothesis, we have s € [Fa: ((B [t/x])o)v];
and t' € [Far (Ao)y]s;. By Lemma and Corollary the former is equivalent to
s' € [Far B" [t'/y]]s, where B’ = (B o)y [z +— y] for some fresh variable y. By both s’
and t’ are SN and we thus have that m (', ') >wn t’ and w3 (', ') >wn §'. According to
we thus have that m; (t',s") € [Far (Ao)y]s and that m (t',s") € [Far B [t'/z]];. Moreover,
since my (t',s') — t', we have by Lemma [1.18| that B’ [r (t',s") /y] -»* B’ [t'/y]. By
B’ [t'/y] is SN, which means by Lemma [3.34] that also B’ [my (', s") /y] is SN. Consequently,
we may apply and to conclude that my (t',s) € [Far B’ [m1 (t', ") /y]]s. Hence,

({t.s) o)y = (t',s') € [Fa Sy : (Ao)y. Bl = [Far (Sa: A B)o)l

I'kat:YXx:A.B

Tkamt: A
By induction hypothesis (t o)y € [Far Xy : (Ao)y. (B o)y [z — y]]s for some fresh variable y.
Then 7 ((to)y) € [Far (Ao)y], follows immediately.

I'kat:YXx:A.B
Thamot: Blm t/z)
By induction hypothesis (to)y € [Far Xy : (Ao)y.(Bo)y[z — y]]s for some fresh variable
y. Then we have that m ((to)y) € [Far (Bo)y[z = y])[m1 ((to)y)/ylls, which by Corol-

lary and Lemma is equivalent to w2 ((to)y) € [Far (B [m1t/x])o)7]s-

Ia:kba A:U k€A
TFaBa:kA:U

We need to show that &' : o(k).(A o)y e o] € DY, 5, where o is some fresh tick variable.

Let o € TV. Then y[a = o] € [I'a: K Fa], 5 and we can apply the induction hypothesis
to conclude that

(Ao)yfa— o))" /o] = (Ao)y[a = a"] € [rar U o)yla o]l = [Far Uls = Dar s

Let 7: (A, 8) = ((A”,7(0(k))),d'), k' € A” such that § (k') < '(7(0(k))). By Lemma [3.22]
we have that y7 € [I' Fa] which in turn implies that

T00,0")
(y7) [K'/T(0 (k)] [a = o] € [Tt & "Aﬂ[n//r(a(n))]oroa,& VN
This allows us to apply the induction hypothesis to conclude that
(Ao)y[o—= D7) [K'/(T 0 o) (K)]) [o//]

= (A([+'/(roa) ()] oToa)((yT) [&/(T o) (k) [o/a]
€ [Far Uly = Doy
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I'a:kba A:type k€A
. IF'Fava:k.A:type

By an argument similar to the case for & above.

INa:kkat: A
o 'Faolda:kt:>a:k.A

We need to show that ((Aa : k.t)o)y € [Far (>a: k.A)o)7];, i.e. given a fresh tick variable
o', we need to show that

A io(k).((to)y[a—d]) € [Farpa 1 o(k).(Ao)y[a— o).
— Let o' € TV. We need to show that
(A’ o(k).((Eo)y[am o)) [0"] € [Far (Ao)y[a— o)) [a”/a/]],
where o’ is a fresh tick variable. Since
A i o(k)..((to)y[a— ) [@"] >wh (to)y[a— o]
and ((Ao)y[a— o)) [ /a/] = (Ao)y[a — a”], it suffices by [(S6)| to show that
(to)ylam ] € [Far (Ao)y[a o]

The latter follows from the induction hypothesis because v € [I' - A]]m s implies
yla= o'l €la:kbal, s

— Let 7: (A,6) = (A", 7(0(K))),0") and k' € A with ¢'(k") < 0'(7(0(k))). We need to
show that

(A" 6 ((E (0 0))(v7) [ = ])) o] € [Far (A (770 0)(y ) [a = @) [0/l an
where o is a fresh tick variable and 7/ = [x'/7(0(k))] o 7. Since
(A" & ((t (7" 0 0))(v7') [ = ])) [o] mwn (E (7" 0 0))(v7") [ = <]

a}rlld ((ﬁ (T"oo))(ym) [ar— &) [e/a'] = (A(7 0 0))(v7) [a — o], it suffices by to
show that

(t(r"oa))(y7)[a o] € [Far (A(T"00))(v7) [a = o5 an

The latter follows from the induction hypothesis because v € [I'Fa], 5 implies 77 €
[I' Al 0o by Lemma which in turn implies

(v a = o] =((v1) [ /T(a(r)]) [a = o] € [[a:k "A]][n//f(g(n))]oroa,& NG

= [[F, oK l_A]]T/Oa',(s’ TAY

because §' (k') < ¢’ (T(0(k))).
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FFA7Ht:l>Oz:I€.A I'kFA K €A
I'ba (t[K'/k]) [o] - A[K' /K] [o/a]

By Lemma v € [I'Fa], s implies that v € [['Fa k], 5 where o' = o[k — "], &' =
0" — 6(c(k")) + 1], and £” is some fresh clock. Hence, by induction hypothesis, we have
that

(to")yeFarw pa k" (Ad")y|a = ]],

where o/ is some fresh tick variable. Since

§'(o(k") = d(o (k') < d(o (k) +1 =0"(x") = &'(c" (k)

we have that

(")) [eD) [o()/K"] € [Far (Ao )y [ &) [o(x") /&"]) [o/a/]] 5
Since o’ and k" were chosen fresh, the above is equivalent to
((ta")y)[o] € [Far (Ad")y[a = o]
where 0" = o [ — o(x')]. Since 0" = o o [’ /«] the above is in turn equivalent to
(((t [&'/&]) [o])o)y € [Far (A [K'/K]) [o/a))o )]s

FFat:pa:k.A Lo 5T Fa
o kT Fatld]: Ald/a]

W.lo.g. we may assume that o ¢ dom (I'), and thus o ¢ dom (). By Lemma we
know that v [ dom (T',a: k) € [I',aFa], 5. Hence, given o/ = v [ dom ('), we have that
v'ladal €I a:kkal, s for some & € TVU {o}.

— If & € TV, then v’ € [I' Fa], 5. Hence, by induction hypothesm we know that (to)y' €
[Fa ((l>a k.A)o)Y ], which by Lemma and Lemma 1s equivalent to (to)y €
[Far (>a:k.A)o)y]s. That is, given some fresh tick Varlable o', we have that (to)y €
[Far>a” :o(k).(Ao)y[a — o/’]ﬂg, and thus

(to)y)[a] € [Far (Ao)yla = ")) [a/a"]]; = [Far (Ao)y o — &,
— If & = o, then +/
(k

['/o' (k)] 0 o', &

obtain that

= " [&' /o' (w)], with " € [[Fal, 5, o't A = (A d'(k) 0 =
"y < ¢'(0'(k)), and 6 = & | A’. Hence, by induction hypothesis we

(to" )" € [[FA/J/(K) s’ o' (k).(Ad )Y [a— o//]]] 5

for some fresh tick variable o”’. Therefore,

(((ta" ") [o]) [+ /o' (k)] € TFar (Aa")Y" o ")) /0" (K)]) [o/ "5

which is equivalent to

(o) o)y € [Far (Ao)y [ 9lls
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which in turn is equivalent to
((to)[o])y € [Far (Ao)ya = <]
by Lemma [1.2] and Lemma because a ¢ dom (7)..

For either case we thus have that

(tla]a)y = (to)y) [v(@)] € [Far (Ao)y[a = v(a)]l; = [Fa (A [ /a])o)v];s
The first and the last equality follow from the fact that = a.

F'kat:pFA— A
I'FAdfix®t:p"A

According to the induction hypothesis, we have that (to)y € [Fa > ((Ao)y) = ((Ao)7)]
Using Lemma , we can thus conclude that dfix”"™)((t o)) € [Fa 57 ((A o)) 5
T'Fat: EI(((dfix" F) [a]) w) THFA F:p" (A= U)— (A= U) Fkau:A

I A unfold,, t : EI(F (dfix™ F) u)

5

If a # o, then a € fv(El ((dfix* F) [a])). Hence, by Lemmal[l.2] we know that a € dom (7)U{o}.
We distinguish two cases (and we write F’ for (F o)y, A’ for (Ao)y, v for (uo)y, and ' for

(to)y):

— a =90 or y(«a) = o. According to the induction hypothesis, we have that

t e [[m El (((dfix"(”) F')[o]) u')]]é

Since El (((dﬁxa(ﬁ) F)el) ul) —H (F/ (dfix”) ) “/), we can thus use [(S1)} [(S2)} and
to conclude that

t e [[I—A El (F’ (dfix”() F") u’)ﬂ )
Because unfold, t’ >wn t/, we can, by conclude that also

unfold, ' € [[m El (F’ (dfix” ) B u')L

— a # o and y(«a) # o. According to the induction hypothesis, we have that

t e [[m El (((dfix"(“) F') [y(a)) u)L

and thus, by t" is SN. Consequently, unfold, )" € Neu(A’). Thus, by it
suffices to show that El (F’ (dfix? (%) F) u’) € DlAyé. By induction hypothesis, we have
that F' € [Fa b7 (A" = U) — (A’ — U)] s and v’ € [Fa A’ = U]; which according
to Lemma [3.31 implies that dfix”™)F" € [la 57 (4’ = U)],. By definition, this
means that F’ (dfix” ™ F) v’ € [Fa Uls = DX 5. Thus, by Lemma we have that
Bl (F (dfix @ F")u') € D} 5.
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['Fat: EI(F (dfix" F)u) Fkaa:k
. Tk fold, ¢ : EI(((dfix™ F) [a]) )

We write F' for (F o)y, A’ for (Ao)y, v for (wo)y, and t’ for (to)y. According to the induc-
tion hypothesis, we have that ¢’ € [[I—A El (F' (dfix”®) F) u’)]] 5 Hence, also El (F’ (dfix” ) ) u) €

D} 5 by |(S1)| and therefore, according to |(S47)} El (F’ (dfix"™) F) u’) is SN. Consequently,

also F’ and v’ are SN.

We distinguish two cases:

—a = o or y(a) = o. By Lemma [3.32, El (((dfix”(“) F") [o])u') is SN. Hence, by

(S2), El (((dfix”(“) F) [o])u’) € Djs and we can apply [(S3)[ to conclude that ¢’ €

[[I—A El (((dfix”(”) F') [o]) u’)]]é. Since folds ¢’ —wn t’', we can, by |(S6)| conclude that

also unfold, ¢’ € [[I—A El (((dfix”(“) F')[e]) u’)]]é.

— a# o and y(a) # o. Since F’ and u’ are SN, we know that

El (((dfix"(’"") F') [y(a)) u’) € Neu(A)

which means that according to it suffices to show that fold. ) ¢' is SN. This fol-
lows from Lemma and the fact that ¢’ is SN according to |(S4)| and the induction
hypothesis.
T,z: AT Fa
e INz: AT Faz: A

By Lemma3.27, we know that v [ dom (I',z : A) € [I',z : AFA], 5. Hence, v(z) € [Far (Ao)(y [ dom (I'))] ;-
Since I', z : A, 1" Fa, we know that T' Fao A : type. Hence, by Lemma and Lemma [1.16]
we have that (Ao)(y | dom(T')) = (Ao)y, which means that we can conclude (zo)y €

[Fa (Ao)y]s-
I'ba AU
o T'Ha EI(A): type
By induction hypothesis, we have that (Ao)y € [Fa U]; = DOA,a- Hence, according to
Lemma (El(A) o)y = EI((A0)y) € Dp, 5.
ThapnA:U  Tha
° I'ka Ve AU

We need to show that V&'.(Ao [k — k'])y € DQ, 5, where ' is some fresh clock variable. To
this end, let &/ ¢ A" and n € N. Then by Lemma 3.24|, we have that v € [I'Fa k], (o s1s7sm)
According to the induction hypothesis, we thus have

(Ao [k &) [ /6] = (Ao [k = £1)Y € Diar or) sfwrsn)
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I'Fa, A:type T'Fa
I'FA VE.A : type

By an argument similar to the case for ¥ above.

FFaxt:A T'ka
T'baA Akt : VKA

We need to show that
Ak (to ke &)y € Fa VE (Ao [k — K)v]s
where k' is some fresh clock variable. That is given £” € A’ and n € N, we need to show that
(AR (0 I = WD) € Irarer (A0 [ o £D9) 1K/ Dpn
We have that
(AR (£ [ > WD) —wn (£ [ o> &) [57/6] = (0 [ 6]}y

The equality above follows from the fact that £’ ¢ A’ and thus v [k”/k'] = v by Corollary
and [k”/k'] o (o [k — K']) = 0 [k — &"]. Hence, by [(S6)} it suffices to show that

(tolk— K"y elrarw (Ao[k— H//])’yﬂé[n”}—)n]

which follows from the induction hypothesis, provided we can show that v € [I' Fa ]
The latter follows from Lemma [3.24

IF'bat:Vk.A k€A
ko tls]: Al'/K]

olk—k"],8[k"—n]"

By induction hypothesis, we have that (to)y € [Fa/ V&".(Ao [k — £"])v]s, where £ is
some fresh clock variable. Hence, ((to)y)[x"] € [Farw (Ao [k &"])7]s, where ¢ =
0" = 6(c(K))]. Since [o(k')/K"]: (A, K"),d8") = (A',§), we may apply [(S5)| to obtain
that

(o)D" [0 /5] € [ ar (Ao = ")) [o (') /",

Since k” is fresh for v, o, t, A, the above is equivalent to
(to)N[e()] € [Far (Ao [k = o())]; = [Far (A ['/6])o)],

I'FaA t: Nat
IF'bauw:AJ[0/x] IF'kav:Iz: Nat.A — A [suc z/x] Tk A [t/x] : type
IF'karectuv: A [t/x]

We may assume w.l.o.g. that & does not occur free in ¢ or the range of . (If this were not the
case, we could replace z with a fresh variable ' and A with A [2'/z].) Hence, we may use

46



Lemma and Lemma to conclude that ((A [u/z])o)y = ((Ao)y)[(so)vy/z] for any
term s. Accordingly, we obtain from the induction hypothesis, that (to)y € [Far Nat]; =

N(A), (wo)y € [Far ((Ao)y) [0/z]], ((Ao)y) [(to)y/x] € Dp, 5, and
(vo)y € [Far Iy : Nat.(Ao)y [z = y] = ((Ao)y [z — y]) [suc y/z]]5

where y is a fresh variable. Since & does not occur free in either ¢ or the range of ¢, we can «
rename such that we obtain

(vo)y € [Far Iz : Nat.(Ao)y — ((Ao)y) [suc z/x]]
We may thus apply Lemma to obtain that
rec(to)1) (wo)) (v0)) € [Far (Aoy) [(to)/alls
By Lemma [I.19] this is equivalent to

((rectuv)o)y € [Far ((A [t/z])o)v];

['Fa t: Bool Dhau: A ftrue/z] I'Fawv: A [false/x] DA At/x]: type
o Thaiftuv: A ft/x]

From the induction hypothesis, we obtain that (t o)y € [Fa’ Bool]s, (uo)y € [Far ((Ao)y) [true/z]];,

(vo)y € [Far ((Ao)y)[false/z]]s, and ((Ao)y)[(to)y/x] € DlA,’(;. We may thus apply
Lemma to obtain that

it ((to)y) (wo)y) (vo)y) € [Far (Ao)y) [(Ea)y/x]]s

By Lemma this is equivalent to

((iftuv)o)y € [Far ((A [t/x])o)]s

O
Theorem 3.36. If ' A ¢ : T, then ¢ is SN.
Proof. This follows from Lemma and O

4 Subject Reduction

Given a typing context I' ko, we write idp for the identity map on the set dom (T').

Lemma 4.1. For any typing context T' Fa, we have that (ida,idr): (A, T) — (A, T).

Proof. We proceed by induction on the size of T'.

e If dom (T") contains no tick variables, then (ida,idr): (A,T') — (A, T) follows by first applying
SUBST-EMPTY and then repeatedly applying SUBST-VAR for each z : A in T'.
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e Let I' = T'j, : k,T'2, where dom (I'y) contains no tick variables. By induction hypoth-
esis, we have that (ida,idr,): (A,T1) — (A,T1). By SUBST-TICK-VAR, we have that
(ida,idr, ai): (A, (T'1, @ : k) — T'). By repeatedly applying SUBST-VAR, for every z : A in
[y, we obtain (ida,idr): (A, T) — (A, T).

O
Lemma 4.2. Given two well-typed terms s and t with El(s) <>* El(t), we have that s <>* t.

Proof. By Theorem s and t are SN. Let s’ and ¢’ be the normal forms of s and ¢, respectively.
Furthermore, let u and v be the normal forms of El (s’) and El (¢'), respectively. By Theorem [2.8]
u = v. Moreover, since s’ and ¢ are in normal form, all redexes contracted in El(s") »* u and
El (') >* v must be El () redexes. Hence, also s’ = ¢/, which means that s <>* . O

Proposition 4.3 (subject reduction). If T'Fa s: A and s > ¢, then T Fa t: A.

Proof. We proceed by induction on I' Fa s : A. Below we consider the cases that do not follow
from the induction hypothesis (and where s is not a normal form). In doing so we assume w.l.o.g.
that the derivation of I" -a s : A has no repeated applications of the conversion rule.

I'bat:IIz: A.B I'tas: A
o I'kats: Bls/x]

We consider three cases for ¢t s — u:

— ts —>t's with ¢t > t'. Follows immediately from the induction hypothesis.

— ts—>ts with s > s’. By induction hypothesis I' A s’ : A and thus I'Fa ts' : B[s'/x].
By Lemmal[l.18] B[s/z] »>* B|[s'/z]. Since, by Lemma[.3] I Fa B[s/z] : type, we may
apply the conversion rule to obtain that T' Fa ¢’ : B[s/x].

—t=MXx: At and ts > t'[s/z]. Then I';x : A’ Fa ¢/ : B’ with llx : A.B «* Ilzx :
A""B and T' bp IIz : A’. B’ : type. By confluence we have that A <* A’; and from
I' ba Iz : A’. B’ : type, we obtain that I Fo A’ : type. Hence, according to the
conversion rule, we have that I' -5 s : A’. Thus, by Lemma [i.1] (ida, [s/x]): (A, (T, z :
A")) = (A,T). Hence, we may apply Lemma[1.21] to obtain that T o ¢’ [s/z] : B’ [s/x].
By Lemma we have that B’ [s/z] «<>* B [s/z] and according to Lemma [L.3| " Fa
B [s/x] : type. Therefore, we may apply the conversion rule to obtain that T' Fa ' [s/z] :
B [s/x].

T'FaAt:Vk.A K eA
o T hatlr]:Als/K]

The case where the reduction ¢[x'] — wu contracts a redex in ¢ follows immediately from
the induction hypothesis. Otherwise, ¢t = Ax.s and u = s [k'/k]. Hence, I' Fa , s : A/,
Vi.A <* Vk.A', and T . By Lemma [I.10} we have that I' [&'/k] ba t [&//K] : A" [K//K].
Since I' Fa, we know that T' [«'/k] = T'. Moreover, by confluence, we obtain A «<>* A’ from
Vk.A <>* Vk.A’, which in turn gives us A ['/k] <>* A’ [x'/k] by Lemma[L.9] Hence, we may
apply the conversion rule, to obtain that I' Fa s [x'/k] : A [K'/K].
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FFA7Ht:l>Oz:I€.A I'kFA K €A
I'ba (t[s/6]) [o]  A[K'/k][o/a]

This case follows from Lemma and the induction hypothesis.

F'Fat:da:kA o k5T Fa
Io kT Fatld]: Ald/a]

The case where t[a’] - u contracts a redex in ¢ follows immediately from the induction
hypothesis. Otherwise, t = Aa : k.5, with ;& : R Fa s : A, pa: kA o* >a: kA, and
k€ A. W.lo.g. we may assume that & = « (otherwise, we « rename accordingly). Moreover,
by confluence, we have that # = k and A «* A’. Hence, u = s [@//a]. By Lemma
(ida,idr): (A,T) — (A,T), and thus (ida,[o'/a]): (A, (T,a : k) = (AT, o : k,T7)).
Consequently, by Lemma [1.21] we have that I',o/ : ,I" Fa s [/ /a] : A/ /o]

I'ba Xx: A. B : type Pkat: A kA s: B [t/z]
Phka (t,s): Xx: A B

Let (t,s) - u. We consider two cases:

—Ifu=(t',s) with ¢t > ¢/, then ' Fao ¢ : A by induction hypothesis. Moreover, we
also have by Lemma that B [t/z] -»* B [t'/z]. By Lemma we have that
I' FA B [t/x] : type. Applying the induction hypothesis (repeatedly) we thus obtain
that T' Fa B [t'/x] : type. Together with the fact that B [t/z] «>* B [t'/x], we thus
obtain that I' Fa s : B [t'/z]. Finally, we can thus conclude that T Fa (', s) : Sz : A. B.
— Ifu=(t,s') with s > ', then T' -5 s’ : B [t/z] follows by the induction hypothesis, and
we can thus immediately conclude that I' Fa (¢, ') : ¥z : A. B.
I'bat:Xz:A.B
T }_A 7T1t cA
If 71t - u contracts a redex in ¢, then I' Fa u : A follows immediately from the induction
hypothesis. Otherwise, t = (u,v), with ¥z : A. B «* Yz : A.B’, and T' ko w : A’. Since
I' Fa A : type by Lemma and A «—* A’ by confluence, we may apply the conversion rule
to obtain that I' Fa u : A.
I'kat:YXxz: A.B
Thamot: Blmt/z)

We consider two cases for mo t — u:

— If u = mot/ with ¢ -* ¢/, then, by induction hypothesis, we obtain that I' FA ' : Yz :
A. B, which in turn implies that T' Fa mat’ : B[m t'/z]. By Lemma we know that
I' o Bmt/z] : type and by Lemma we know that B[m t'/x] <>* B[mt/z].
Applying the conversion rule we thus obtain that I' Fa mo t’ : B [my t/x].
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—Ift = (v,u), then T' Fa u : B’ [v/z] with Xz : A. B «<* Xz : A’. B’. By confluence
we obtain that B’ «<>* B, which in turn implies by Lemma that B’ [v/z] <*
118

B [v/x]. Moreover, we have that m3 ¢ — v. Hence, by Lemma [1.18] we have that
B [v/x] «* B [m t/x]. Hence, we have B’ [v/x] «<>* B [r t/x] and by Lemma we
have that ' Fo B[m t/z] : type. We may thus apply the conversion rule to conclude
that T Fa w: Bm t/x].
T'Fa t: Bool IFa u: A [true/z] IF'Fav: A [false/z] ILFa A [t/x] : type
. Dhaiftuv: A t/x]

We consider three cases for if tuv — s:

—If s = ift'uv with t > t/, then I" kA ' : Bool by induction hypothesis, which in turn
gives us that I' Fa ift'uv : A [t'/z]. Since I' Fa A [t/x] : type and, by Lemma
A [t'/z] «* A [t/z], we may apply the conversion rule to conclude that T' Fa if ' uv :
A [t/z].

— If s=iftu' v with u > u/, then T' Fa ' : A [true/z] follows from the induction hypoth-
esis, which in turn allows us to conclude that I' Fa iftw' v : A [t/z].

— If s =iftuv’ with v > v/, then T' b v’ : A [false/z] follows from the induction hypoth-
esis, which in turn allows us to conclude that T' Fa iftuv’ : A [t/x].
I'FaA t: Nat

IF'bauw:AJ0/x] IF'kav:Iz: Nat.A — A [suc z/x] THa A [t/x] : type
o I'karectuv: A [t/x]

The argument is analogous to the argument for if above.

T Fat: EI(((dfix" F) [a]) v) F'Fa F:ip"(A—=U)—= (A= U) F'Fau:A
. I A unfold, ¢ : El (F (dfix"™ F) u)

If unfold, t — ¢’ contracts a redex in ¢, then T' Fa ¢ : El (F (dfix" F') u) follows immediately
from the induction hypothesis. Otherwise, &« = ¢, and ¢ = ¢. Then El (((dfix" F) [a]) u) —
El (F (dfix" F) u). Since I' Fa EI (F (dfix® F) u) : type by Lemma [1.3] we may thus apply the
conversion rule to obtain I' Fa ¢ : El (F (dfix™ F') u) from T k4 ¢ : El (((dfix" F) [a]) u).

T'Fa t: EI(F (dfix® F) u) 'Faa:k
o Tk, fold, t : EI(((dfix™ F) [a]) u)

Analogous to the case above.

Lemma 4.4. FEvery subterm of a well-typed term is also well-typed.

Proof. Let T'Fa t : T. We show by induction on I" Fa ¢ : T that all subterms of ¢ are well-typed.
The only non-trivial case is the following;:
Fhagt:ba:kA I'ka K eA
I'ba (t[s/6])[o]  A[s'/k][o/c]
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By induction all subterms of ¢ are well-typed. Then, by Lemma also all subterms of ¢ ['/k]
are well-typed. O

5 Canonicity

Definition 5.1 (constructor term). A term is a constructor term if it is in the form of one of the
terms below:

Az At A k., Akt dfix™ ¢, fold, ¢, (), (s, t) , true, false, suc ¢, 0, lz: AB,Sz: ABba: kA VKA
where a ranges over the set of tick variables.

Lemma 5.2. IfI'Fat: A andt is a normal form then, t is a constructor term or neutral.

Proof. We proceed by induction on I' Fa ¢ : A. We only need to consider the rules for which ¢ is
not a constructor term. To show that t is neutral, we can ignore the side conditions that ensure

that ¢ is SN, since ¢ is SN by Lemma and
F'Fat: A A<*B T'FA B : type
o I'Fat:B

By induction hypothesis, t must be neutral.

Lz: AT Fa
e I 2:AT'Faz: A
By definition x is neutral.
I'tat:IIz: A.B I'tas: A
o I'kats: Bls/x]
Since t s is a normal form, so is ¢t. Hence, the induction hypothesis for ' Fao ¢ : Ilz : A. B
yields that ¢ must be neutral or a constructor term. In the former case, we then know that ¢ s

is neutral. For the latter case, we will show below that ¢ must be a lambda abstraction, and
thus ¢ s is not a normal form, which contradicts the assumption. Consequently, ¢ is neutral.

The introduction rule for Ilx : A. B gives us that ¢ is a lambda abstraction. The only other
way to get ' t: Ilz : A. B is (possibly repeatedly) applying the conversion rule followed by
a different rule. That is, there is some C with C «* Iz : A. Band "' A t : C. By confluence,
there must be a term C’ with Iz : A. B —»* C' and C -* C’. Hence, C' must be of the form
Iz : A'. B’. Therefore, C is either of the form IIz : A”. B” or El(u). In the former case,
I' Fa t : C must have been obtained by the introduction rule for IT types and thus we know
that ¢ must be a lambda abstraction. In the latter case, I' Fa t : C' must have been obtained
by the introduction rule for fold,, i.e. C' = El ((dfix" F)a [«]) for some F. However, this is not
possible since El ((dfix” F)a [a]) only rewrites to terms of the form El ((dfix” F")a [a]).

Lhat:VeA K eA
o T rat[s]:Al'/K]
This follows by an argument similar to the case for term application.
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F'Fat:pa:k.A o kT Fa
Io kT Fatld]: Ald/a]

Since ¢ ['] is a normal form, so is t. Hence, by induction hypothesis ¢ is neutral or a constructor
term. In the former case also t[a/] is neutral. In the latter case, we can show (by a similar
argument as for term application above) that ¢ is either of the form A« : k.s or dfix" s. In the
former case, we obtain a contradiction since (A« : k.s) [@'] is not a normal form, and in the
latter case we obtain that ¢ [@'] is neutral.

F'Fart:da:k.A I'ka K €A
Ik (t[6'/5]) [o] Al /K] [o/a]

Since (¢ [x'/k])[¢] is a normal form, so is ¢ [r'/k], and by Lemma so is t. Hence, by
induction hypothesis ¢ is neutral or a constructor term. In the former case also t [k'/k] is
neutral according to Lemma [3.5| and thus so is (¢ [£'/k]) [¢]. In the latter case, we can show
(by a similar argument as for term application above) that ¢ is either of the form Aa : k.s
or dfix™s. In either case, we obtain a contradiction since neither (A« : k’.s [k'/k]) [¢] nor

(dfix”ls [£'/k]) [¢] is a normal form.

I'kat:YXxz:A.B
Tkamt: A

This follows by an argument similar to the case for term application.

I'kat:YXxz:A.B
Tha mot: Bmt/z)

This follows by an argument similar to the case for term application.

I'a t: Bool Lhaw: A [true/z] A v: A [false/x] LA Alt/x]: type
Phaiftuv: A ft/x]

This follows by an argument similar to the case for term application.
I'FaA t: Nat
Fkau:Af0/z] I'Fawv:Ilz: Nat.A — A [suc x/x] A At/x]: type
Tharectuv: A [t/x]

This follows by an argument similar to the case for term application.

I Fa t: EI(((dfix" F) [a]) u) F'Fa F:p®"(A—=U) = (A—>U) FFau:A
I Fa unfold,, t : EI(F (dfix™ F) u)

Since unfold, t is a normal form, « # ¢. Hence, unfold,, ¢ is neutral.
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['Fat: EI(F (dfix" F)u) Fkaa:k
o Tk fold, ¢ : EI(((dfix™ F) [a]) )

Since fold,, t is a normal form, a # ¢. Hence, fold, t is a constructor term.

Lemma 5.3. IfFa t: Nat and t is a normal form, then t is a constructor term.

Proof. By Lemma [5.2] ¢ is neutral or a constructor term. However, if ¢ is neutral then ¢ contains a
free occurrence of a term or a tick variable. According to Lemma that is impossible. O

Theorem 5.4 (canonicity). If Fa ¢ : Nat, then ¢ >* suc™ 0 for some n € N.

Proof. By Theorem [3.36} ¢ is SN. Let s be a normal form of ¢, i.e. t >* s. By Proposition we
know that Fa s: Nat. We show that s is of the form suc™ 0 by induction on the size of s.

By Lemma [5.3] s must be a constructor term. Moreover, since - s : Nat, we know that either
s =0 or s =suc u with Fa u : Nat. In the former case, we are done. In the latter case, we obtain
that v = suc™ 0 for some m € N. Hence, s = suc™*10. O

6 Translation to GDTT

We first show that advancing a delayed substitution corresponds to application to ¢ in CloTT.
Note that the translation extends to substitutions in the obvious way: p[t/z]* = p*[t*/x]. Define

£ =¢& o/l e,
(lz = t])s = &lz =t [0]].

We write p «* p' if p(z) ©* p/(x) for all x and p(k) = p/(k), p(a) = p'(a) for all k and «.
Lemma 6.1. If ¢ is a delayed substitution then (advix (§))* <* &;.

Proof. This follows from the observation that

((preve.t)[k])" = (Ak.t™ [¢])[K]
1 o]

We note also the following, provable by an easy induction on types.
Lemma 6.2. Let A and t be a GDTT type and term, respectively. Then ft(A*) = ft(t*) = 0.
Proposition 6.3. The translation preserves wellformed judgements in the following sense.

1. If T'Fa A type is a wellformed type judgement in GDTT then I'* o A* : type is wellformed
in CloTT.

2. IfT'Fa t: A is a wellformed GDTT typing judgement, then T'* Fa t* : A* is wellformed in
CloTT.
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Definitional type equalities:

e [x +—t] A= (A (

DR r iy« ul & A=p"Ey v,z t] €A (
B¢ [z + nextE.t] A = EAt/ ] (3

El (5" (next®¢.t)) = > E.EI(t) (

Definitional term equalities:

next™¢ [z < t] .u = next™E.u (5)

next™& [z < t,y <+ u| &' v = next"E [y + u,w + t] € v (6)
next"¢ [z < next™&.t] .u = next"&.u [t/z] (7)
next¢ [z« tl.x =t (8)
previ.next®¢.t = Ax.t(adv’k (€)) (9)

next™ ((prevk.t)[k]) =t (10)
next®£.next™¢’ .u = next®¢’ .next™€.u (11)

fix"x.t =t [next™ (fix"z.t) /z] (12)

t:Vk.A K ¢ fc(A)
t[x'] = t[K"]

(13)

Figure 5: Type and term equalities of GDTT. All rules should be read as equalities in a context,
and have the implicit assumption that both sides are wellformed and welltyped in that context. For
example, rules and require that A and u are well-formed in a context without z. Rule (11
moreover assumes that none of the variables in the codomains of ¢ and ¢’ appear in the type of u.

8. If kA £: T 5 Tisa delayed substitution then & is a substitution from I'*,a : Kk Fa to
M a:k, (I)* Fa

Proof. The three statements are proved by simultaneous induction over judgements.

For [1]) the only interesting case is that of >*¢.A. By induction hypothesis, I'*, (I)* o A* : type
and &, is a substitution from I'*,a : k Fa to I'*,a : K, (I")* Fa. By weakening (Lemma [L.5) also
I «a:k, (I'")* Fa A* : type and so by substitution (Lemma I a: kA A% : type, and so
I'*Fava:kA*E : type as desired.

For [2)), in the case of 5% A the induction hypothesis states that T'* o A* :>a: kU so I, «a:
kba A*[a] : U and so T* Fa Ba : k.4 [a] : U. The case of next®&.¢ is similar to that of p"¢.A:
the induction hypothesis on ¢t and & give that I'*, a : kK Fa t*E) : A*EX and so

D" Fa Ao kt¥E iba: k.AME.

In the case of prevs.t the induction hypothesis states that I'* Fa ., t* : pa : K.A*E and I Fa
SO
I Fath[o]: (A*E) [o/q].
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By Lemma (A*¢X) [o/a] = A*€:. An easy induction on A shows that the translation com-
mutes with substitution, i.e., that (A(adva(€)))* = A*(advx (§))* and so by Lemma [6.1] A*s «—*
(A(adva (£)))* and so T* Fa t* o] : (A(advix (£)))* as desired.

The case of fixed points follows from the substitution lemma (Lemma [1.21)).

For , the empty delayed substitution is translated to the identity substitution which clearly is
welltyped. In the case of extension of a delayed substitution & [z +— t], by the induction hypothesis
&* is a substitution from I', o : k Fa to T* @ k, (I')* Fa, and

T* Fat* iba: k(A€

The latter implies that T, a0 : & Fa t*[a] : (A* &%) and thus ({ [z < t])E = iz — t*[a]] is a
substitution from I'* o : Kk Fa to T*, « s k, (IV)*, 2 : A* b A as desired. O

Theorem 6.4. The translation from GDTT to CloTT preserves all the rules of Figure [5| except

(0D, (1), (12) and (T3).
Proof. We show that for each of the rules, in Figure [5| (except , , and ), the

translation of each side of the equation are in the relation <>*.

Equations , , and @ follow straightforwardly from the fact that delayed substitutions
are translated to ordinary (simultaneous) substitutions.

For the left hand side translates to

(>R [x +— next™Et] A) =pa: k. AY(€ [x + next™E.t])”
Since

(€ [z < next"&.t])" = (A : w8760 [a] /7]
= &a[t°¢5 /]

also

(> [x + next®Et] A) > pa: K AYE[EEL /2]
=b>a: k(A [t"/x])EL
=ba:k(At/z])"E
= (P"EA[t/z])"

Rule @ follows similarly.
For the left hand side translates to

El (5" (next“f.t))* =El (ba: k. (next"¢.t)" [o])
=El(Ga:k(Aa:kt™E)|a))
—> El(Sa: kit E))
—>p>a:kEN(°E)
=>a:kEI(t")E
— (B"EEI (1))
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For rule the left hand side translates to

(next™¢ [z + t] .x)* = da: k. (E ]z + t])”
= Aa: k. (§5[t" [o]/x])
=l : k.t" [

— t*
For (ED we compute

(previ.next®E.t)" = Ak.(next™£.t)" [o]
= Ak.(Aa: K.E°EL) [0]
- Ark.t*E;

since « is not free in t* by Lemma[6.2] Now, by Lemma [6.1]

Art"E < Axt*(advik (€))*
= Ak.(t(adv'x (€)))*

proving the case.
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