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Infinitary Term Rewriting
Assign outcome to (well-formed) infinite reductions.

Example

from(x)→ x :: from(s(x))

from(0)

→ 0 :: from(1)

→ 0 :: 1 :: from(2)

→ 0 :: 1 :: 2 :: from(3)

→ 0 :: 1 :: 2 :: 3 :: from(4)

→ . . .

intuitively this converges to the infinite list
0 :: 1 :: 2 :: 3 :: 4 :: 5 :: . . . .
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Counter Example
for Orthogonal Term Rewriting Systems

f (x)→ x g(x)→ x

f
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f

g

f

g

f
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x ← f (x)

x ← f (x)

x ← f (x)

g(x)→ x

g(x)→ x

g(x)→ x

gω f ω
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Outline

1. Infinitary Term Rewriting

2. Böhm Reduction

3. Partial Order Infinitary Rewriting

4. Term Graph Rewriting



Infinitary Term Rewriting



The Metric Model of Infinitary Rewriting
Convergence
based on the ‘usual’ complete metric space on terms

d(s, t) = 2−n

n = depth of the shallowest discrepancy of s and t

Convergence of reductions
(a.k.a. strong convergence)

I convergence in the metric space, and

I rewrite rules are applied (eventually) at
increasingly large depth

 convergence of a reduction: depth at which the
rewrite rules are applied tends to infinity
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Example: Convergence of a Reduction

1 level
2 levels
3 levels

from

0

from(x)→ x : from(s(x))
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Böhm Reduction



Obtaining Infinitary Confluence

f (g(f (g(. . . ))))

f ω gω

t

Option 1
Disallow systems with more
than one collapsing rule
(i.e. rules of the form t → x)

Option 2
Extend the reduction system so
that f ω � t � gω
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Böhm Reduction

Idea

I terms like f ω and gω are
considered meaningless

I for each meaningless term
t, add rule t → ⊥

f (g(f (g(. . . ))))

f ω gω

⊥
Böhm reduction1, 2

Böhm reduction = infinitary rewriting with ⊥-rules

1R. Kennaway et al. “Infinitary lambda calculus”. In: Theoretical Computer
Science (1997).

2R. Kennaway, V. van Oostrom, and F.-J. de Vries. “Meaningless Terms in
Rewriting”. In: J. Funct. Logic Programming (1999).
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Meaningless Terms

Origins in lambda calculus

I Böhm trees3

I undefined elements4

Intuition

I terms that have no information content

I because they cannot be distinguished from one
another

3H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. 1984.
4H. P. Barendregt. “Representing ’undefined’ in the lambda calculus”. In: Journal

of Functional Programming 2 (1992), pp. 367–374.
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Axiomatic Characterisation

A set of terms U is called meaningless if it satisfies
a number of axioms.5, 6

1. U is closed under rewriting.

2. If a redex t overlaps a subterm in U , then
t ∈ U .

3. U is closed under substitution. (for λ-calculus)

4. If t root-active/hypercollapsing, then t ∈ U .

5. If s
U↔ t, then s ∈ U if and only if t ∈ U .

5Z. M. Ariola et al. “Syntactic definitions of undefined: On defining the
undefined”. In: Theoretical Aspects of Computer Software. 1994.

6R. Kennaway, V. van Oostrom, and F.-J. de Vries. “Meaningless Terms in
Rewriting”. In: J. Funct. Logic Programming (1999).

9 / 32



Properties of Böhm Reduction
I Let R be an orthogonal TRS, and U a set of

meaningless terms.
I Define B = R∪ {t → ⊥| t ∈ U⊥ \ {⊥}}

Theorem

I B is infinitarily confluent,
i.e. t1 �B t �B t2 implies t1 �B t ′ �B t2.

I B is infinitarily normalising, i.e. for each term t
there is a reduction t �B t ′ to a normal form.

Corollary
Each term has a unique infinitary normal form in B
(called Böhm tree).
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Partial Order Infinitary
Rewriting



Partial Order Infinitary Rewriting

I Alternative characterisation of Böhm reduction

I Changes the notion of convergence instead of
adding rules

7

The Good & The Bad

+ less ad hoc

+ no need for infinitely many reduction rules

- captures only a particular set of meaningless
terms

7B. “Partial Order Infinitary Term Rewriting”. In: Logical Methods in Computer
Science (2014).
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Recap: Strong Convergence

R = {a→ g(a)}

f

a
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Example: Non-Convergence

R =

{
a→ g(a)

h(x)→ h(g(x))
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Partial Order Convergence
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How does it work? (I)

Partial order on terms

I partial terms: terms with additional constant ⊥

I partial order ≤⊥ reads as: “is less defined than”
I ⊥ ≤⊥ t,
I s ≤⊥ t =⇒ f (s) ≤⊥ f (t)

I e.g. f (⊥, g(x)) ≤⊥ f (y , g(x))

I ≤⊥ is a complete semilattice
(= cpo + glbs of non-empty sets)

15 / 32



How does it work? (II)

Convergence: limit inferior

lim infι→α tι =
⊔
β<α

d
β≤ι<α tι

I intuition: eventual persistence of nodes in the tree

I strong convergence: limit inferior of the contexts
of the reduction
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Properties of Orthogonal TRS

property metric Böhm red.

part. order

compression 4 4

4

finite approx. 4 4

4

developments 8 4

4

inf. confluence 8 4

4

inf. normalisation 8 4

4
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Partial Order vs. Böhm Reduction

Theorem
If R is an orthogonal TRS and s, t total terms, then

s �p R t iff s �m R t.

Theorem
If R is an orthogonal TRS and B the Böhm
extension of R (w.r.t. root-active terms), then

s �p R t iff s �m B t.
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Term Graph Rewriting



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

a

h

g

a

af

g

b

h

g

b

f

g

a

h

a→ bb → c

unravel
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Soundness & Completeness
Soundness of finite reductions
For every left-linear, left-finite GRS R we have

g h
∗

s

U (·)
U (R)

R

t
m

U (·)

Completeness property

s t
regular

g

U (·)
U (R)

R

h
∗
U (·)

t ′

h
∗
U (·)

regular

8

8R. Kennaway et al. “On the adequacy of graph rewriting for simulating term
rewriting”. In: ACM Transactions on Programming Languages and Systems (1994).
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Infinitary Term Graph Rewriting

I A common formalism
I study correspondences between infinitary TRSs and

finitary GRSs

I Lazy evaluation
I infinitary term rewriting only covers non-strictness
I however: lazy evaluation = non-strictness + sharing

I infinitary lambda calculi with letrec9, 10

I these calculi are non-confluent
I but there is a notion of infinite normal forms

9Z. M. Ariola and S. Blom. “Skew confluence and the lambda calculus with
letrec”. In: Annals of Pure and Applied Logic (2002).

10C. Grabmayer and J. Rochel. “Maximal Sharing in the Lambda Calculus with
Letrec”. In: ICFP. 2014.
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Example: Acyclic Sharing
Term graph rule for from(x)→ x :: from(s(x))

froml

x

::r

from

s

Reductions:

from

0

:

0 from

s

:

0 :

s from

s

:

0 :

s :

s
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Example: Cyclic Sharing
Term graph rules for a :: x → b :: a :: x

::l

a x

::r

b ::

a

ρ1 :

::l

a x

::r

b

ρ2 :

Reductions:
::

a

::

b ::

a

::

b ::

b ::

a

::

b ::

b ::

b

::

b

ρ1 ρ1

ρ
2
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Soundness & Completeness

Soundness
g h

m

s

U (·)
U (R)

R

t
m

U (·)

Completeness property

11

s t
m

g

U (·)
U (R)

R

h
m

U (·)
t ′

h
m

U (·)

m

11B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: RTA.
2012.
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Soundness & Completeness

Soundness
g h
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Completeness property
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11B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: RTA.
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R = { n(x , y)→ n + 1(x , y) | n ∈ N }.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?

12

12R. Kennaway et al. “On the adequacy of graph rewriting for simulating term
rewriting”. In: ACM Transactions on Programming Languages and Systems (1994).
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Confluence Fails
for Orthogonal Term (Graph) Rewriting Systems

f (x)→ x g(x)→ x

f

g

f

g

f

g

g

f

g

f

g

f

f

f

x ← f (x)

x ← f (x)

x ← f (x)

g(x)→ x

g(x)→ x

g(x)→ x

gω f ω

27 / 32



Properties of Orthogonal GRS

property metric Böhm red. part. order
compression 4 ? 4
soundness 4 4 4
completeness 8 4 4
inf. strip lemma 4 4 4
developments 8 4 4
inf. normalisation 8 4 4
inf. confluence 8 ? ?

inf. confluence
modulo bisim.

8 4 4

13

13B. “Böhm Reduction in Infinitary Term Graph Rewriting Systems”. In: FSCD.
2017.
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Partial Order vs. Böhm Reduction
Theorem
If R is an orthogonal GRS and g , h total term
graphs, then

g �p R h iff g �m R h.

Theorem
If R is an orthogonal GRS and B the Böhm
extension of R (w.r.t. root-active term graphs),
then

g �p R h iff g �m B h.

14

14B. “Böhm Reduction in Infinitary Term Graph Rewriting Systems”. In: FSCD.
2017. 29 / 32
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Theorem
If R is an orthogonal GRS and g , h total term
graphs, then

g �p R h iff g �m R h.

Theorem
If R is an orthogonal GRS and B the Böhm
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Metric on Term Graphs
Depth of a node = length of a shortest path from
the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

I relabelling all nodes at depth d with ⊥, and

I removing all nodes that thus become
unreachable from the root.

Metric on term graphs

d(g , h) = 2−n

Where n = maximum depth d s.t. g†d ∼= h†d .
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A Partial Order on Term Graphs – How?

⊥-homomorphisms φ : g →⊥ h

I homomorphism condition suspended on
⊥-nodes

I allow mapping of ⊥-nodes to arbitrary nodes

Proposition
For all terms s, t: s ≤⊥ t iff ∃φ : s →⊥ t

Definition
For all term graphs g , h, let g ≤⊥ h iff there is some
φ : g →⊥ h.
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Working with Term Graphs
Some Observations

I Term graphs can be messy
I Very operational style of term graph rewriting
I Böhm reduction is not left-linear

I But: sharing simplifies some things
I Reduction produces no duplication
I Residuals & developments are easier
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Example (g(x)→ f (x , x))

gl

x

frρ : g

c

f

c

ρ
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I Böhm reduction is not left-linear

I But: sharing simplifies some things
I Reduction produces no duplication
I Residuals & developments are easier

I Weak convergence is even weirder than on terms:

f

c c

f

c

f

c c

f

c

f

c c

32 / 32



Working with Term Graphs
Some Observations

I Term graphs can be messy
I Very operational style of term graph rewriting
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