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Abstract
The confluence properties of lambda calculus and orthogonal term rewriting do not generalise to
the corresponding infinitary calculi. In order to recover the confluence property in a meaningful
way, Kennaway et al. [11, 10] introduced Böhm reduction, which extends the ordinary reduction
relation so that ‘meaningless terms’ can be contracted to a fresh constant ⊥. In previous work,
we have established that Böhm reduction can be instead characterised by a different mode of
convergences of transfinite reductions that is based on a partial order structure instead of a metric
space.

In this paper, we develop a corresponding theory of Böhm reduction for term graphs. Our
main result is that partial order convergence in a term graph rewriting system can be truthfully
and faithfully simulated by metric convergence in the Böhm extension of the system. To prove
this result we generalise the notion of residuals and projections to the setting of infinitary term
graph rewriting. As ancillary results we prove the infinitary strip lemma and the compression
property, both for partial order and metric convergence.
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1 Introduction

A meaningless term (originally called ‘undefined element’ by Barendregt [6]) is a term that in
some sense does not provide any information because it cannot be suitably distinguished from
other meaningless terms. In their seminal work on infinitary lambda calculus, Kennaway
et al. [11] recognised that infinitary confluence of the infinitary lambda calculus can be
established if all meaningless terms are equated. This idea can be elegantly expressed by
extending the reduction relation with rules of the form t→ ⊥ for all meaningless terms of
a certain kind. The resulting reduction was coined Böhm reduction. Later, Kennaway et
al. [10] applied this idea to first order term rewriting as well.

In previous work [1, 2], we have introduced an alternative approach to deal with mean-
ingless terms that leaves the original reduction relation intact (i.e. no additional rules of the
form t→ ⊥ are needed) but instead changes the underlying model of convergence. Infinitary
rewriting, both in the lambda calculus and first-order term rewriting, originally has been
based on a metric space to model convergence of transfinite reductions. We showed that
if we change the underlying structure from a metric space to a partial order, the resulting
infinitary term rewriting system is – under mild assumptions – equivalent to the metric-based
system extended to Böhm reduction [1].
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In this paper we seek out to develop a corresponding theory of Böhm reduction for term
graph rewriting systems in the sense of Barendregt et al. [7] and use it to compare metric-
and partial order-based notions of convergence in a similar way. To this end, we use the
theory of infinitary term graph rewriting that was shown to be sound and complete w.r.t.
infinitary term rewriting [3]. In this paper, we investigate this approach to infinitary term
graph rewriting further and study confluence and convergence properties as well as the
relation between the partial order-based and the metric-based mode of convergence.

The main result of this paper is that either mode of convergence can be simulated by
the other one if we add rules of the form g → ⊥, where g is a root-active term graph. This
construction is analogous to the Böhm reduction outlined above, and our findings mirror a
corresponding result in infinitary term rewriting [2].

As our main proof method we develop a theory of residuals and projections. Some of
the theory becomes considerably simpler – compared to infinitary term rewriting – simply
because redexes cannot be duplicated by term graph rewriting but are ’shared’ instead. On
the other hand, many proofs become more tedious as the application of rewrite rules is more
complicated than in term rewriting. The theory is put to use in proving the infinitary strip
lemma and the compression property, which form the cornerstones in the proof of the main
result.

The remainder of this paper is structured as follows: In Section 2, we introduce basic
notions of term graphs. Then, in Section 3, we present our infinitary term graph rewriting
calculi including their fundamental properties. In Section 4, we develop the theory of
residuals and projections, which we then apply to prove the infinitary strip lemma as well the
compression lemma; the full account of this development is given in Appendix C. Finally, in
Section 5, we use these results in order to prove the equivalence of partial order convergence
and metric convergence modulo Böhm extensions as described above. Many proofs in this
paper are abridged or have been omitted due to lack of space. All missing full proofs can be
found in the appendix.

2 Term Graphs and Modes of Convergence

In this section, we briefly present our notion of term graphs (based on Barendregt et al.[7])
together with the metric and the partial order that are used to formalise infinitary term graph
rewriting. For a more thorough exposition, the reader is referred to previous work [3, 4].

Sequences. A sequence over a set A of length α is a mapping from an ordinal α into A and
is written as (aι)ι<α, which indicates the mapping ι 7→ aι; the notation |(aι)ι<α| denotes the
length α of the sequence. A sequence is called open if its length is a limit ordinal; otherwise
it is called closed. If (aι)ι<α is finite it is also written as 〈a0, . . . , aα−1〉; in particular, 〈〉
denotes the empty sequence. A∗ denotes the set of finite sequences over A. We write S · T
for the concatenation of two sequences S and T ; S is called a (proper) prefix of T , denoted
S ≤ T (resp. S < T ) if there is a (non-empty) sequence S′ such that S ·S′ = T . The uniquely
determined prefix of a sequence S of length β < |S| is denoted by S|β .

Graphs and Term Graphs. A signature Σ is a finite set of symbols together with an
associated arity function ar(·). A graph over Σ is a triple g = (N, lab, suc) consisting of a set
N (of nodes), a labelling function lab : N → Σ, and a successor function suc : N → N∗ such
that |suc(n)| = ar(lab(n)) for each node n ∈ N , i.e. a node labelled with a k-ary symbol has
precisely k successors. The graph g is called finite whenever the underlying set N of nodes is
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finite. If suc(n) = 〈n0, . . . , nk−1〉, then we write suci(n) for ni. The successor function suc
defines, for each node n, directed edges from n to suci(n). A path from a node m to a node
n in a graph is a finite sequence 〈e0, . . . , el〉 of numbers such that n = sucel(. . . suce0(m)), i.e.
n is reached from m by first taking the e0-th edge, then the e1-th edge etc.

Given a signature Σ, a term graph g over Σ is a tuple (N, lab, suc, r) consisting of an
underlying graph (N, lab, suc) over Σ whose nodes are all reachable from the root node r ∈ N .
The term graph g is called finite if the underlying graph is finite. The class of all term graphs
over Σ is denoted G∞(Σ); the class of all finite term graphs over Σ is denoted G(Σ). We use
the notation Ng, labg, sucg and rg to refer to the respective components N ,lab, suc and r of
g. Given a graph or a term graph h and a node n in h, we write h|n to denote the sub-term
graph of h rooted in n.

Paths, Positions, Term Trees. Let g ∈ G∞(Σ) and n ∈ Ng. A position of n is a path in
the underlying graph of g from rg to n. The set of all positions in g is denoted P(g); the
set of all positions of n in g is denoted Pg(n). The depth of n in g, denoted depthg(n), is
the minimum of the lengths of the positions of n in g, i.e. depthg(n) = min {|π| |π ∈ Pg(n)}.
For a position π ∈ P(g), we write nodeg(π) for the unique node n ∈ Ng with π ∈ Pg(n), and
g(π) for labg(nodeg(π)), i.e. the labelling of g at π. The term graph g is called a term tree if
each node in g has exactly one position.

Homomorphisms. The notion of homomorphisms is central for dealing with term graphs.
For greater flexibility, we will parametrise this notion by a set of constant symbols ∆ for
which the homomorphism condition is suspended. This will allow us to deal with variables
and partiality appropriately. Given g, h ∈ G∞(Σ), a ∆-homomorphism φ from g to h, denoted
φ : g →∆ h, is a function φ : Ng → Nh with φ(rg) = rh that satisfies the following equations
for all for all n ∈ Ng with labg(n) 6∈ ∆:

labg(n) = labh(φ(n)) (labelling)
φ(sucgi (n)) = suchi (φ(n)) for all 0 ≤ i < ar(labg(n)) (successor)

For ∆ = ∅, we get the usual notion of homomorphisms on term graphs and from that the
notion of isomorphisms. Nodes labelled with symbols in ∆ can be thought of as holes in the
term graphs (e.g. variables or ⊥). Homomorphisms also give us a way to describe differences
in sharing: given two term graphs g and h, we say that g has less sharing than h, written
g ≤S h, if there is a homomorphism φ : g → h.

Canonical Form, Unravelling, Bisimilarity. We do not want to distinguish between iso-
morphic term graphs. Therefore, we use a well-known trick [13] to obtain canonical repres-
entatives of isomorphism classes: a term graph g is called canonical if n = Pg(n) holds for
each n ∈ Ng. The set of all (finite) canonical term graphs over Σ is denoted G∞C (Σ) (resp.
GC(Σ)). For each term graph h ∈ G∞C (Σ), its canonical representative C(h) is obtained from
h by replacing each node n in h by Ph(n).

We consider the set of terms T ∞(Σ) as the subset of canonical term trees of G∞C (Σ).
With this correspondence in mind, we can define the unravelling of a term graph g as the
unique term U (g) such that there is a homomorphism φ : U (g)→ g. Two term graphs g, h
are called bisimilar, denoted g ' h, if U (g) = U (h).

Labelled Quotient Tree. We shall use an alternative representation that describes term
graphs uniquely up to isomorphism. To this end, we define the binary relation ∼g on positions
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in the term graph g as follows: π1 ∼g π2 iff nodeg(π1) = nodeg(π2). That is, positions are
related if they lead to the same node. The triple (P(g), g(·),∼g), called labelled quotient tree,
consisting of the mapping g(·) : P(g)→ Σ and the binary relation ∼g over P(g) as defined
above characterises the term graph g up to isomorphism. In particular, each canonical term
graph is uniquely determined by exactly one labelled quotient tree. The name is derived
from the fact that (P(g), g(·)) describes a labelled tree and ∼g is a congruence on the set of
nodes in this tree.

Metric Space. Next we present the partial order and the metric on term graphs that give
us the modes of convergence needed for infinitary rewriting. The metric d† on term graphs
is defined analogously to the metric that is used in infinitary term rewriting [8]. We define
d†(g, h) = 0 if g = h and otherwise d†(g, h) = 2−d, where d is the minimal depth at which g
and h differ. More precisely, d is defined as the largest number e such that g and h become
isomorphic if all nodes at depth e are relabelled with a fresh symbol ⊥ and their outgoing
edges are removed (along with all nodes that become unreachable). We can give a concise
characterisation of limits in the resulting metric space using labelled quotient trees:

I Theorem 2.1 ([3, 4]). (G∞C (Σ),d†) is a complete ultrametric space, and the limit of each
Cauchy sequence (gι)ι<α is given by the labelled quotient tree (P, l,∼) with

P = lim inf
ι→α

P(gι) =
⋃
β<α

⋂
β≤ι<α

P(gι) ∼ = lim inf
ι→α

∼gι =
⋃
β<α

⋂
β≤ι<α

∼gι

l(π) = gβ(π) if ∃β < α∀β ≤ ι < α : gι(π) = gβ(π) for all π ∈ P

Intuitively, the limit of a Cauchy sequence (gι)ι<α is the tree consisting of all nodes that
become eventually stable in (U (gι))ι<α (i.e. remain unchanged in the unravelling from some
point onwards), but quotiented to a graph by sharing all nodes that eventually remain shared
in (U (gι))ι<α. An example is depicted in Figure 1c.

Partial Order. To define a partial order on term graphs, we consider signatures of the form
Σ⊥ that extend a signature Σ with a fresh constant symbol ⊥. We call term graphs over
Σ⊥ partial, and term graphs over Σ total. We then use ∆-homomorphisms with ∆ = {⊥} –
also called ⊥-homomorphisms – to define the simple partial order ≤S

⊥ on G∞C (Σ⊥) as follows:
g ≤S
⊥ h iff there is a ⊥-homomorphism φ : s→⊥ t. Using labelled quotient trees, we get the

following alternative characterisation:

I Corollary 2.2 (characterisation of ≤S
⊥, [3, 4]). Let g, h ∈ G∞C (Σ⊥). Then g ≤S

⊥ h iff, for all
π, π′ ∈ P(g), we have

(a) π ∼g π′ =⇒ π ∼h π′ and (b) g(π) = h(π) if g(π) ∈ Σ.

The partially ordered set (G∞C (Σ⊥),≤S
⊥) forms a complete semilattice, i.e. it has a least

element ⊥, each directed set D in (G∞C (Σ⊥),≤S
⊥) has a least upper bound (lub)

⊔
D, and

every non-empty set B in (G∞C (Σ⊥),≤S
⊥) has greatest lower bound (glb)

d
B. In particular,

this means that for any sequence (gι)ι<α in (G∞C (Σ⊥),≤S
⊥), its limit inferior, defined by

lim infι→α gι =
⊔
β<α

(d
β≤ι<α gι

)
, exists.
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I Theorem 2.3 ([3, 4]). (G∞C (Σ⊥),≤S
⊥) is a complete semilattice. In particular, the limit

inferior of a sequence (gι)ι<α is given by the labelled quotient tree (P,∼, l) with

P =
⋃

β<α
{π ∈ P(gβ) | ∀π′ < π∀β ≤ ι < α : gι(π′) = gβ(π′)}

∼ = (P × P ) ∩
⋃

β<α

⋂
β≤ι<α

∼gι

l(π) =
{
gβ(π) if ∃β < α∀β ≤ ι < α : gι(π) = gβ(π)
⊥ otherwise

for all π ∈ P

The limit inferior generalises the limit of Cauchy sequences to arbitrary sequences. Similarly
to the limit, the limit inferior of a sequence (gι)ι<α is also the tree consisting of all nodes
that become eventually stable in (U (gι))ι<α, quotiented to a graph by sharing nodes that
become eventually shared in (gι)ι<α. But since (gι)ι<α is not necessarily Cauchy, some nodes
never become stable and are thus replaced by ⊥-nodes in the limit inferior construction. For
an example, consider the sequence (gι)ι<α from Figure 1c, but where the label f is replaced
by h in g0, g2, g4 etc. The resulting sequence is not Cauchy anymore; its limit inferior can be
obtained from gω in Figure 1c, by replacing the label f with ⊥.

Another example of a complete semilattice is the prefix order ≤ on sequences, which
allows us to generalise concatenation as follows: Let (Sι)ι<α be a sequence of sequences over
some set A. The concatenation of (Sι)ι<α, written

∏
ι<α Sι, is recursively defined as the

empty sequence 〈〉 if α = 0,
(∏

ι<β Sι

)
· Sβ if α = β + 1, and

⊔
γ<α

∏
ι<γ Sι if α is a limit

ordinal.

3 Term Graph Rewriting

In this paper, we adopt the term graph rewriting framework of Barendregt et al. [7]. To
represent placeholders in rewrite rules, we use variables – in a manner that is very similar
to term rewrite rules. To this end, we consider a signature ΣV = Σ ] V that extends the
signature Σ with a countably infinite set V of nullary variable symbols.

I Definition 3.1 (term graph rewriting systems). Given a signature Σ, a term graph rule ρ
over Σ is a triple (g, l, r) where g is a graph over ΣV and l, r ∈ Ng such that all nodes in g
are reachable from l or r. We write ρl and ρr to denote the left- and right-hand side of ρ,
respectively, i.e. the term graph g|l and g|r, respectively. Additionally, we require that for
each variable v ∈ V there is at most one node n in g labelled v and that n is different from l

but still reachable from l. ρ is called left-linear (resp. left-finite) if ρl is a term tree (resp. is
finite). A term graph rewriting system (GRS) R is a pair (Σ, R) consisting of a signature Σ
and a set R of term graph rules over Σ. R is called left-linear (resp. left-finite) if each rule of
R is left-linear (resp. left-finite).

The requirement that the root l of the left-hand side is not labelled with a variable
symbol is analogous to the requirement that the left-hand side of a term rule is not a variable.
Similarly, the restriction that nodes labelled with variable symbols must be reachable from
the root of the left-hand side corresponds to the restriction on term rewrite rules that every
variable occurring on the right-hand side must also occur on the left-hand side.

I Example 3.2. Figure 1a shows two term graph rules which both unravel to the term rule
ρ : Y x→ x (Y x). Note that sharing of nodes is used both to refer from the right-hand side
to variables on the left-hand side, and in order to simulate duplication.
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@l

Y x

@r

@

Y
(ρ1)

@l

Y x

@r

(ρ2)

(a) Term graph rules that unravel to Y x→ x (Y x).

@

Y f

(g0)

@

f

(h0)

ρ2

(b) A single ρ2-step.

@

Y f

(g0)

@

f @

Y

(g1)

@

f @

@

Y

(g2)

@

f @

@

(gω)

ρ1 ρ1 ρ1

(c) A strongly m-convergent term graph reduction over ρ1.

Figure 1 Implementation of the fixed point combinator as a term graph rewrite rule.

The notion of unravelling term graphs to terms straightforwardly extends to term graph
rules: The unravelling of a term graph rule ρ, denoted U (ρ), is the term rule U (ρl)→ U (ρr).
The unravelling of a GRS R = (Σ, R), denoted U (R), is the TRS (Σ, {U (ρ) | ρ ∈ R}).

Without going into all details of the construction, we describe the application of a rewrite
rule ρ with root nodes l and r to a term graph g in four steps: at first a suitable sub-term
graph g|n of g rooted in some node n of g is matched against the left-hand side of ρ. This
matching amounts to finding a V-homomorphism φ from the left-hand side ρl to g|n. The
term graph g|n is called a redex, and the pair (n, ρ) is called a redex occurrence in g; abusing
notation we write (π, ρ) for the redex occurrence (nodeg(π), ρ). The V-homomorphism φ

instantiates variables in the rule with sub-term graphs of the redex. In the second step, nodes
and edges in ρ that are not in ρl are copied into g, such that each edge pointing to a node m
in ρl is redirected to φ(m). In the next step, all edges pointing to the root n of the redex are
redirected to the root n′ of the contractum, which is either r or φ(r), depending on whether
r has been copied into g or not (because it is reachable from l in ρ). Finally, all nodes not
reachable from the root of (the now modified version of) g are removed. With h the result of
the this construction, we obtain a pre-reduction step ψ : g 7→n,ρ,n′ h from g to h.

Figure 1b and 1c illustrate how the two rules in Figure 1a are applied to a term graph.
In order to define convergence on infinite reductions, we require that all term graphs are

in canonical form. Therefore, we define a reduction step as a pre-reduction step as described
above, where both term graphs have been turned into their canonical form:

I Definition 3.3 (reduction steps). Let R = (Σ, R) be GRS, ρ ∈ R and g, h ∈ G∞C (Σ)
with n ∈ Ng and m ∈ Nh. A tuple φ = (g, n, ρ,m, h) is called a reduction step, written
φ : g →n,ρ,m h, if there is a pre-reduction step φ′ : g′ 7→n′,ρ,m′ h

′ with C(g′) = g, C(h′) = h,
n = Pg′(n′), and m = Ph′(m′). We use the shorthand notation φ : g →n,ρ h and φ : g →n h

if φ : g →n,ρ,m h for some m (and ρ). We write φ : g →R h to indicate R.

In this paper, we focus on the strong variant of convergence [3]. This variant of convergence
takes into account the position of contracted redexes. For metric convergence, only the depth
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of the contracted redex is needed; for the partial order variant, we need an appropriate notion
of reduction contexts, which is provided with the help of local truncations:

I Definition 3.4 (local truncation). Let g ∈ G∞(Σ⊥) and M ⊆ Ng. The local truncation of g
at M , denoted g\M , is obtained from g by labelling all nodes in M with ⊥ and removing all
outgoing edges from nodes in M (also removing all nodes that thus become unreachable from
the root). Instead of g\ {n} and g\ {nodeg(π)}, we also write g\n and g\π, respectively.

Most of the time we will use the characterisation of local truncations in terms of labelled
quotient trees instead of the definition above:

I Lemma 3.5 ([3]). For each g ∈ G∞(Σ⊥) and M ⊆ Ng, the local truncation g\M has the
following labelled quotient tree (P, l,∼):

P = {π ∈ P(g) | ∀π′ < π : nodeg(π′) 6∈M }
∼ = ∼g ∩ P × P

l(π) =
{
g(π) if nodeg(π) 6∈M
⊥ if nodeg(π) ∈M

Now we have everything in place to define our notions of convergence:

I Definition 3.6 ([3]). Let R = (Σ, R) be a GRS.

(i) The reduction context c of a graph reduction step φ : g →n h is the term graph C(g\n).
We write φ : g →c h to indicate the reduction context c.

(ii) A reduction in R, is a sequence (φι : gι →R gι+1)ι<α of rewrite steps in R.
(iii) Let S = (φι : gι →nι gι+1)ι<α be a reduction in R. S is m-continuous in R if limι→λ gι =

gλ and (depthgι(nι))ι<λ tends to infinity for each limit ordinal λ < α. S m-converges to
g in R, denoted S : g0 �m R g, if it is m-continuous and either S is closed with g = gα or
S is open with g = limι→α gι and (depthgι(nι))ι<α tending to infinity.

(iv) Let S = (φι : gι →cι gι+1)ι<α be a reduction in R⊥ = (Σ⊥, R). S is p-continuous in
R if lim infι→λ cι = gλ for each limit ordinal λ < α. S p-converges to g in R, denoted
S : g0 �p R g, if it is p-continuous and either S is closed with g = gα or S is open with
g = lim infι→α cι.

Note that we have to extend the signature of R to Σ⊥ for the definition of p-convergence.
We obtain the total fragment of p-convergence if we restrict ourselves to total term graphs:
A reduction (gι →R⊥ gι+1)ι<α p-converging to g is called p-converging to g in G∞C (Σ) if g as
well as each gι is total, i.e. {gι | ι < α} ∪ {g} ⊆ G∞C (Σ).

We have the following correspondence between m- and p-convergence:

I Theorem 3.7 ([3]). Let R be a GRS and S a reduction in R⊥. We then have that

S : g �m R h iff S : g �p R h in G∞C (Σ).

Most of our results will be restricted to GRSs with (weakly) non-overlapping rules:

I Definition 3.8 ((weakly) non-overlapping, [7]). Let (n, ρ) and (n′, ρ′) be redex occurrences
in a term graph g, with corresponding matching V-homomorphisms φ : ρl → g|n and
φ′ : ρ′l → g|n′ .

(i) (n, ρ) and (n′, ρ′) are called disjoint if n′ 6∈ φ(N) and n 6∈ φ′(N ′), where N and N ′ are
the non-variable nodes in ρl and ρ′l, respectively.

(ii) (n, ρ) and (n′, ρ′) are called weakly disjoint if they are either (a) disjoint, or (b) n = n′ and
contracting both redexes results in isomorphic term graphs, i.e. g 7→n,ρ h ∼= h′ ← [n′,ρ′ g.

FSCD 2017
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A GRS R is non-overlapping resp. weakly non-overlapping if for every term graph g in
R, every two distinct redex occurrences are disjoint resp. weakly disjoint. A GRS that is
non-overlapping and left-linear is called orthogonal.

Below we summarise the soundness and completeness property of infinitary term graph
rewriting in terms of infinitary term rewriting.

I Theorem 3.9 (soundness & completeness, [3]). Let R be a left-finite GRS.

(i) If R is left-linear, then g �p R h implies U (g)�p U(R) U (h).
(ii) If R is orthogonal, then U (g)�p U(R) t implies g �p R h and t�p U(R) U (h).

The complete semilattice structure that underlies the definition of p-convergence ensures
that every p-continuous reduction also p-converges – a property that distinguishes it from
m-convergence. In other words, any open well-formed reduction can be uniquely completed
to a closed well-formed reduction in the partial order model. A consequence of Theorem 3.7
is that a p-convergent reduction that does not m-converges must produce nodes labelled ⊥.
In the following, we analyse this formation of ⊥-nodes and characterise it in terms of volatile
positions, which are positions repeatedly contracted in a reduction:

I Definition 3.10 (volatility). Let S = (gι →nι gι+1)ι<λ be an open p-converging reduction.
A position π is said to be volatile in S if, for each α < λ, there is some α ≤ β < λ such
that π ∈ nβ . If π is volatile and no proper prefix of it is volatile in S, then π is called
outermost-volatile in S.

Moreover, we need to characterise positions that are affected by rewrite steps:

I Definition 3.11. Let π be a position and n a node in a term graph g. Then π is said to
pass through n in g if there is a prefix π′ ≤ π with π′ ∈ Pg(n), and π is said to properly pass
through n in g if there is a proper prefix π′ < π with π′ ∈ Pg(n).

Using Lemma 3.5 and Theorem 2.3 we can give the following characterisation of the
formation ⊥-nodes, where P6⊥(g) denotes the positions of nodes in a term graph g ∈ G∞(Σ⊥)
that are not labelled with ⊥:

I Lemma 3.12 (volatility). Let S = (gι →nι gι+1)ι<λ be an open reduction p-converging to
gλ. Then, for every position π, we have the following:

(i) If π is volatile in S, then π 6∈ P6⊥(gλ).
(ii) gλ(π) = ⊥ iff (a) π is outermost-volatile in S, or (b) there is some α < λ such that

gα(π) = ⊥ and, for all α ≤ ι < λ, π does not pass through nι in gι.

Volatile positions give us the vocabulary to formulate the following variant of Theorem 3.7:

I Corollary 3.13. For every GRS R, g ∈ G∞C (Σ), and reduction S in R⊥, we have that
S : g �p R h and no open prefix of S has a volatile position iff S : g �m R h.

Proof. This follows straightforwardly from Theorem 3.7 using Lemma 3.12 (ii). J

4 Residuals and Projections

In this section, we develop the theory of residuals and projections for infinitary term
graph rewriting.1 We then use this machinery to prove the infinitary strip lemma and

1 This section is heavily abridged; see Appendix C for the full theory and all proofs.
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the compression lemma for both p- and m-convergence. We start by recapitulating the
basic definitions and properties of residuals and projections for single reduction steps from
Barendregt et al. [7].

Given two disjoint redex occurrences (n, ρ) and (n′, ρ′) in a term graph g, with matching
V-homomorphisms φ and φ′, respectively, and a pre-reduction step g 7→n,ρ h, we know that
either n′ is not a node in h, or there is a redex occurrence (n′, ρ′) in h [7]. This finding
motivates the definition of residuals and projections:

I Definition 4.1 (reduction step residuals,[7]). Let ψ : g →n,ρ h be a reduction step,
ψ : g 7→n,ρ h the underlying pre-reduction step, and (n′, ρ′) a redex occurrence in g weakly
disjoint from (n, ρ); let n′ be the node corresponding to n′ in g, i.e. n′ = φ(n′), where φ is
the isomorphism from g to g.

(i) The residual of (n′, ρ′) by ψ, denoted (n′, ρ′)//ψ, is either

(a) the empty set ∅ if (n′, ρ′) and (n, ρ) are not disjoint or n′ 6∈ Nh, or
(b) Ph(n′) if (n′, ρ′) and (n, ρ) are disjoint and n′ ∈ Nh.

(ii) The projection of the reduction step ψ′ : g →n′,ρ′ h
′ by ψ, denoted ψ′/ψ, is either

(a) the empty reduction if (n′, ρ′)//ψ = ∅, or
(b) the single step reduction contracting the ρ-redex rooted in (n′, ρ′)//ψ in h otherwise.

Note that the residual (n′, ρ′)//ψ is either the empty set or a node in h, namely Ph(n′). This
property generalises to residuals by reductions of arbitrary length:

I Definition 4.2 (residuals). Let R be a weakly non-overlapping GRS, S : g0 �p R gα, and
(n, ρ) a redex occurrence in g0 with ρ a rule in R. The residual of (n, ρ) by S, denoted
(n, ρ)//S, is inductively defined on the length of S as follows:

S is empty: (n, ρ)//S = n

S = T · 〈ψ〉: (n, ρ)//S =
{
∅ if (n, ρ)//T = ∅
(m, ρ)//ψ if (n, ρ)//T = m 6= ∅

S is open: (n, ρ)//S = P 6⊥(gα) ∩ lim infι→α(n, ρ)//S|ι,
that is π ∈ (n, ρ)//S iff π ∈ P6⊥(gα) and ∃β < α∀β ≤ ι < α : π ∈ (n, ρ)//S|ι.

Note that since m-convergence is just a special case of p-convergence, according to
Theorem 3.7, the definition of residuals also applies to m-convergent reductions. For open
m-convergent reductions, however, we can simplify the characterisation by omitting the
explicit requirement that a residual position has to be in P6⊥(gα).

Likewise, we can also generalise the notion of projections (cf. Figure 2). The basis for
this generalisation is that given a reduction S : g0 �p R gα in a weakly non-overlapping GRS
R, and (n, ρ) a redex occurrence in g0, we have that if (n, ρ)//S = m is non-empty, then
(m, ρ) is a redex occurrence in gα:

I Definition 4.3 (projections). Let R be a weakly non-overlapping GRS, φ : g →n,ρ h a
reduction step in R, and S = (ψι : gι → gι+1)ι<α a p-converging reduction in R. The
projection of φ by S, denoted φ/S, is (a) the empty reduction if (n, ρ)//S = ∅, and (b) the
single step reduction contracting the ρ-redex rooted in (n, ρ)//S in h otherwise. The projection
of S by φ, denoted S/φ, is defined as the concatenation

∏
ι<α ψι/ (φ/S|ι).

One can show that projections commute for both m- and p-convergent reductions given
that one of the reductions is finite:
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g0 g1 gβ gβ+1 gα

h0 h1 hβ hβ+1 hα

ψ0

T0 T1 = T0/ψ0

≤
1

ψβ

Tβ

≤
1

Tβ+1 = Tβ/ψβ ≤
1

Tα = φ/S

≤
1

ψ0/T0

≤1

ψβ/Tβ

≤1

S :

S/φ :

Figure 2 The Infinitary Strip Lemma.

I Theorem 4.4 (infinitary strip lemma: p-convergence). Let R be a weakly non-overlapping
GRS, φ : g0 →n,ρ h0 a reduction step in R, S : g0 �p R gα, and φ/S : gα →≤1

R hα. Then we
have that S/φ : h0 �p R hα.

Note that the strip lemma for term graph rewriting is simpler than for term rewriting as a
redex has at most one residual and, thus, we do not have to deal with complete developments.
The proof of the strip lemma constructs the commuting diagram shown in Figure 2. For the
basic squares we can use the result of Barendregt et al. [7] who showed that projections of
single reduction steps commute.

From the above infinitary strip lemma, one can derive the corresponding variant for
m-convergence using Corollary 3.13 fairly easily:

I Theorem 4.5 (infinitary strip lemma: m-convergence). Let R be a weakly non-overlapping
GRS, φ : g0 →n,ρ h0 a reduction step in R, S : g0 �m R gα, and φ/S : gα →≤1 hα. Then we
have that S/φ : h0 �m R hα.

The definition of projections can be generalised to projections S/T of arbitrary pairs of
reductions S, T in the obvious way (by extending Figure 2 vertically). While we conjecture
that these general projections of p-convergent reductions commute as well, which means that
we have infinitary confluence, the same cannot be said for m-convergence: the counterexample
of Kennaway et al. [9] applies here as well.

The infinitary strip lemmas are a powerful tool as we shall see. Below we will apply
them to prove that reductions can be compressed to length at most ω – a useful property in
its own right. To this end, we need the two lemmas below. The first one states that any
redex obtained by an open reduction must already occur in an earlier term graph, which
is subsequently unaffected by reduction. The second lemma states that also all positions
within the redex itself remain untouched.

I Lemma 4.6. Given an open reduction S = (gι →nι gι+1)ι<λ p-converging to gλ and a
redex occurrence (π, ρ) in gλ with ρ left-finite, there is a position π ∈ P(gλ) and some α < λ

such that (π, ρ) is a redex occurrence in gι, and π does not pass through nι in gι for any
α ≤ ι < λ.

I Lemma 4.7. Let S : g �p h be a p-converging reduction in a weakly non-overlapping GRS
R and (n, ρ) a redex occurrence in g. For each π ∈ Pg(n) such that π does not pass through
the root of any redex contracted in S, we have that π ∈ (n, ρ)//S.

Proof. Straightforward induction on the length of S. J

The proof of the full compression property for p-convergent reductions is tricky. For now,
we only show that infinite, closed reductions can be compressed. This property will turn out
to be sufficient for our purposes and later in Section 5, we can use our main result to extend
it to full compression much more easily.
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g g1 g′ h

g2 h

Lem. 4.6
T1 T2

T2/ψ

T ′

ψ ψ/T2 = φ by Lem. 4.7

φ

Thm. 4.4

Figure 3 Compression of closed transfinite reductions.

I Proposition 4.8 (compression of closed transfinite reductions). Let S : g �p R h in a weakly
non-overlapping, left-finite GRS R. Then there is a reduction T : g �p R h that is finite or
open but not longer than S.

Proof sketch. We proceed by induction on the length of S. The only non-trivial case is
where S = S′ · 〈φ〉 with S′ : g �p g′ and φ : g′ → h. By induction hypothesis there is
a finite or open reduction T ′ : g �p g′ of length at most |S′|. If T ′ is finite, then so is
T ′ · 〈φ〉 : g �p h. Otherwise, let (π, ρ) be the redex occurrence contracted in φ and construct
the diagram illustrated in Figure 3, where ψ contracts (π, ρ) in g1. This gives us a reduction
T3 = T1 · 〈ψ〉 · T2/ψ with T3 : g �p h and |T3| < |S|. Thus, we may apply the induction
hypothesis to T3 to obtain a finite or open reduction T : g �p h J

The above proof carries over to m-convergent reductions by using Theorem 4.5 instead of
Theorem 4.4. Moreover, we can strengthen it to obtain full compression for m-convergent
reductions:

I Proposition 4.9. Let S : g �m h in a weakly non-overlapping, left-finite GRS. Then there
is a reduction T : g �m h of length at most ω.

Proof. By the proof of Lemma 5.1 in [9] it suffices to show the property for |S| = ω+1, which
can be done analogously to Proposition 4.8 but using Theorem 4.5 instead of Theorem 4.4. J

We conclude this section by deriving a compression property for reductions p-converging
to ⊥. To this end, we need the following lemma, which states that any term graph that
reduces to ⊥ must also reduce to a redex:

I Lemma 4.10. For each reduction S : g �p R ⊥ in a weakly non-overlapping, left-finite GRS
R with g 6= ⊥, we find a finite reduction g →∗R h to a redex h.

Proof sketch. There is at least one step in S contracting a redex at the root, i.e. a proper
prefix T of S p-converges to a redex. By induction on the length of T , we show that there is
a finite reduction from g to a redex: By Proposition 4.8, we may assume that T is finite or
open. If T is finite, we are done. Otherwise, we use Lemma 4.6 to find a proper prefix of T
that p-converges to a redex. The induction hypothesis then yields the finite reduction to a
redex. J

Given this property we can compress any reduction to ⊥ to a length of at most ω:

I Proposition 4.11. For each reduction S : g �p R ⊥ in a weakly non-overlapping, left-finite
GRS R, there is a reduction T : g �p R ⊥ of length at most ω.

Proof. Let g0 �p R ⊥ with g0 6= ⊥. Then we may apply Lemma 4.10 to obtain a reduction
g0 →∗ h0 → g1 whose last rewrite step is at the root. By Theorem 4.4, there is also a
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reduction g1 �p ⊥. Hence, we may repeat this construction to obtain a reduction of the form
g0 →∗ h0 → g1 →∗ h1 → g2 →∗ . . . Either the construction stops at some i < ω because
gi = ⊥ in which case we have found a finite reduction T : g0 →∗ ⊥, or there is no such i
with gi = ⊥ and we have found a reduction T of length ω with a volatile position 〈〉. Hence,
T : g0 �p ⊥ according to Lemma 3.12. J

5 Böhm Reduction

Recall Theorem 3.7, which states that p-convergence and m-convergence coincide if we restrict
ourselves to total term graphs. In this section, we show that the remaining gap between
p- and m-convergence is bridged by adding rewrite rules that contract certain term graphs
directly to ⊥, thereby simulating reductions of the form g �p ⊥. We give two characterisations
of such term graphs:

I Definition 5.1. Let R be a GRS. A partial term graph g in R is called fragile if there is
an open reduction S : g �p R ⊥. A total term graph g in R is called root-active if for each
reduction g →∗R h there is a reduction h →∗R h′ to a redex h′. We write RAR, or simply
RA, to denote the set of root-active terms in R.

As it turns out the above two concepts – fragility and root-activeness – coincide on total
term graphs. The following observation will help us to establish that:

I Corollary 5.2. A total term graph g in a weakly non-overlapping, left-finite GRS R is
fragile in R iff there is a reduction g �p R ⊥.

Proof. The “only if” direction follows by definition, whereas the “if” direction follows from
Proposition 4.11 and the fact that total term graphs cannot reduce to ⊥ in finitely many
steps. J

I Proposition 5.3. Let g be a total term graph in a weakly non-overlapping, left-finite GRS
R. Then g is root-active iff g is fragile.

Proof. If g is root-active, then we can construct a reduction of length ω that infinitely often
contracts a redex at the root and thus p-converges to ⊥. For the converse direction assume
some finite reduction g →∗ h. If g is fragile, then there is a reduction g �p R ⊥, according
to Corollary 5.2. By iterating Theorem 4.4, we thus find a reduction h �p R ⊥. Moreover,
since g is total, so is h. Hence, by Corollary 5.2, h is fragile, too. That means, according to
Lemma 4.10 that there is a finite reduction from h to a redex. J

To bridge the gap between p- and m-convergence, we adopt the notion of Böhm extensions
from term rewriting [10], which is a construction that extends TRSs by rules of the form
t→ ⊥. The definition on GRS is analogous:

I Definition 5.4 (Böhm extension). Let R = (Σ, R) be a GRS, and U ⊆ G∞C (Σ).

(i) A U-instance of a term graph h ∈ G∞C (Σ⊥) is a term graph g ∈ G∞C (Σ) that is obtained
from h by replacing each occurrence of ⊥ in g with some term graph in U , i.e. there is a
set M ⊆ Ng with g|m ∈ U for all m ∈M , and h ∼= g\M .

(ii) U⊥ is the set of term graphs in G∞C (Σ⊥) that have a U -instance in U . In other words, U⊥
contains all those term graphs that can be obtained by taking a term graph g from U
and replacing some sub-term graphs of g that are themselves in U with ⊥.
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(iii) The Böhm extension of R w.r.t. U is the GRS B = (Σ⊥, R ∪B), where

B =
{

(g ] ⊥, rg, r⊥)
∣∣ g ∈ U⊥ \ {⊥}} .

That is, B consists of rules with left-hand side g ∈ U⊥ \ {⊥} and right-hand side ⊥. The
rules in B are called ⊥-rules w.r.t. U and we write g →⊥ h for a reduction step using
such a rule in B and call it a ⊥-step.

In the remainder of this section we prove that g �p R h is equivalent to g �m B h, where B
is the Böhm extension of R w.r.t. RAR.

The semantics of term graph rewriting makes the behaviour of Böhm extensions slightly
different compared to term rewriting. Not only term graphs in U⊥ are contracted to ⊥ but
also term graphs that have more sharing than those in U⊥:

I Lemma 5.5. Let g →n,ρ,m h be a reduction step of a ⊥-rule ρ w.r.t. a set of term graphs
U ⊆ G∞C (Σ). Then there is some g′ ∈ U⊥ \ {⊥} with g′ ≤S g|n and h = g\n.

Proof. The equality h = g\n follows from fact that the right-hand side of ρ is by definition
⊥. Since the rewrite step takes place at node n in g, we find a matching V-homomorphism
φ : ρl →V g|n. By definition of ⊥-rules, the left-hand side ρl of ρ is some term graph
g′ ∈ U⊥ \{⊥}. Hence, φ : g′ →V g|n. Since term graphs in U do not contain variables, g′ does
not contain variables either. Therefore, φ is a homomorphism. Consequently, g′ ≤S g|n. J

In general, this is a problem as root-active term graphs are not closed under increase of
sharing. Consider the following example:

I Example 5.6. f

a a

f

a a

ρ1 :
f

a

a
ρ2 :

In the GRS consisting of the two rules above, the left-hand side g of ρ1 is root-active while
the left-hand side h of ρ2 is not, even though g ≤S h. However, if we consider orthogonal
systems, this phenomenon cannot occur:

I Lemma 5.7. Let R be an orthogonal, left-finite GRS and g, h two partial term graphs in
R that are bisimilar. Then g �p ⊥ iff h�p ⊥.

Proof. As bisimilarity is symmetric we only need to show one direction. Assume that g ' h
and that g �p R ⊥. By Theorem 3.9(i), we find a reduction U (g)�p U(R) ⊥, since U (⊥) = ⊥.
Since g ' h, we know that U (g) = U (h), which means that U (h) �p U(R) ⊥. Since ⊥ is a
normal form in U (R), we find, according to Theorem 3.9(ii), a reduction h�p R ⊥. J

Thus, fragility and, by Proposition 5.3, root-activeness is preserved by bisimilarity. By a
similar argument, we have preservation by p-converging reductions as well:

I Lemma 5.8. Let g �p R h and g �p R ⊥ be a reduction in an orthogonal, left-finite GRS R.
Then there is a reduction h�p ⊥.

Proof. By Theorem 3.9 (i), we have U (g) �p U(R) U (h) and U (g) �p U(R) ⊥. Since R is
orthogonal and left-finite, so is U (R). Because orthogonal, left-finite TRSs are known to be
infinitary confluent w.r.t. p-convergence [2], we know that there is a reduction U (h)�p U(R) ⊥.
Since ⊥ is a normal form in U (R), we may apply Theorem 3.9 (ii) to obtain a term graph
reduction h�p R ⊥. J

Next, we show that for each RA-instance g of a term graph h, we have g �p h.
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I Lemma 5.9. If g is a total term graph in a GRS R that is an RA-instance of a term
graph h, then g �p h.

Proof sketch. We know that h = g\M for some set of nodes M and g|m ∈ RA for all
m ∈M . We then construct a reduction S : g0 �p

ω g1 �p
ω g2 �p

ω . . . gω starting in g0 = g and
p-converging to gω. Each reduction gi �p ω gi+1 in S rewrites a root-active sub-term graph g|m
to ⊥. If M is finite, gω = h follows easily. Otherwise, one can show that lim infi→ω gi+1 = gω,
which implies h ≤S

⊥ gω since h ≤S
⊥ gi for all i < ω. Using Corollary 2.2 we can then show

with the help of Theorem 2.3 that gω ≤S
⊥ h. Hence S : g �p h. J

According to Proposition 5.3, each term graph g ∈ RA is characterised by a reduction
g �p ⊥. With the above lemma, this property generalises to RA⊥.

I Proposition 5.10. In orthogonal, left-finite GRSs, we have g ∈ RA⊥ iff g �p ⊥.

Proof. If g ∈ RA⊥, then there is some h ∈ RA that is an RA-instance of g. According to
Lemma 5.9, we thus find a reduction h�p g. By Proposition 5.3, there is a reduction h�p ⊥.
Applying Lemma 5.8, we find a reduction g �p ⊥.

For the converse direction we show that if g �p ⊥ and h ∈ G∞C (Σ) is an RA-instance of g,
then h is root-active. By Lemma 5.9, we find a reduction g �p h, which means, according to
Lemma 5.8, that there is a reduction h�p ⊥. By Corollary 5.2, we know that h is fragile,
which implies, by Proposition 5.3, that h is root-active. J

Finally, we have everything in place to prove our main result:

I Theorem 5.11. Let R be an orthogonal, left-finite GRS and B its Böhm extension w.r.t.
RA. Then we have that g �p R h iff g �m B h.

Proof sketch. B is a GRS over the signature Σ′ = Σ ] {⊥}, i.e. term graphs containing ⊥
are considered total in B, which justifies our use of Corollary 3.13 and Theorem 3.7 below.

Given a reduction S : g �m B h, we know that, by Theorem 3.7, S : g �p B h, too. We
construct a reduction T from S by replacing each ⊥-step ĝ →⊥,n ĥ in S by a reduction
S′ : ĝ �p R ĥ. For each such ⊥-step there is, by Lemma 5.5, some g ∈ RA⊥\{⊥} with g ≤S ĝ|n
and ĥ = ĝ\n. Hence, by Proposition 5.10 and Lemma 5.7, we find a reduction ĝ|n �p R ⊥.
By embedding this reduction in ĝ at node n, we obtain the desired reduction S′ : ĝ �p R ĥ.
Using Theorem 2.3, one can show that the thus obtained reduction T p-converges to h.

Given S : g �p R h, we construct a reduction T : g �p B h, without any volatile positions.
For each open prefix S|λ with an outermost-volatile position π, we find some β < λ such that
no step between β and λ takes place strictly above π. We then remove all reduction steps
between β and λ at π or below and replace them with a single ⊥-step gβ →⊥ g′β , which is
justified by Proposition 5.10 and Lemma 5.5. Using Lemma 3.12 (ii), one can show that the
resulting reduction T p-converges to the same term graph h. By construction, no prefix of T
contains a volatile position. Thus, we may apply Corollary 3.13 to conclude T : g �m B h. J

Using the above correspondence, we can leverage the compression property for m-
converging reductions to obtain full compression for p-converging reductions:

I Proposition 5.12. For every reduction S : g �p R h in an orthogonal, left-finite GRS R,
there is a reduction T : g �p R h of length at most ω.

Proof sketch. According to Theorem 5.11, g �p R h implies g �m B h. One can show that
the latter reduction can be reordered to the form g �m R g′ �m ⊥ h that performs the ⊥-steps
at the very end (cf. Lemma 27 from Kennaway et al. [10]). By Proposition 4.9 there is a
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reduction S : g �m R g′ of length at most ω. Moreover, we can show that there is a reduction
T : g′ �m ⊥ h of length at most ω (cf. Lemma 7.2.4 from Ketema [12]). As in the proof of
Theorem 5.11, we can replace each application of a ⊥-rule r → ⊥ in T with a reduction
derived from a corresponding reduction r �p R ⊥, which according to Proposition 4.11 has
length at most ω. The thus obtained reduction T ′ : g′ �p R h has length at most ω · ω. If
S is finite, then we interleave the reduction steps in T ′ to obtain a reduction T ′′ : g′ �p R h

of length at most ω, and thus we get a reduction S · T ′′ : g �p R h of length at most ω.
Otherwise, if S is of length ω, then we can interleave the steps in T ′ into S as shown in the
successor case of the proof of the Compression Lemma in [9] to obtain a reduction g �p R h

of length ω. J

Using the above compression result, we can strengthen the correspondence result of
Theorem 3.7 for orthogonal GRSs as follows:

I Corollary 5.13. Given an orthogonal, left-finite GRS R and two total term graphs g, h in
R, we have g �m h iff g �p h.

Proof. The “only if” direction follows from Theorem 3.7. By Proposition 5.12, we may
assume that g �p h is not longer than ω. Since g is total, and totality is preserved by
reduction steps, we may apply Theorem 3.7 to conclude that g �m h. J

That is, reachability between total term graphs is independent from the choice between m-
and p-convergence.

6 Concluding Remarks

Böhm extensions already entail some technical complications in term rewriting, which require
some care, e.g. the additional rewrite rules may have infinite left-hand sides (which breaks
the precondition of the compression lemma for example). In term graph rewriting we get
additional complications: a redex may have sharing that is different from the rule’s left-hand
side that it instantiates. This phenomenon motivated the restriction to left-linear systems
as we illustrated in Example 5.6. However, we conjecture that the issue illustrated in
Example 5.6 does not occur in weakly non-overlapping systems – making the left-linearity
restriction superfluous.

For the proof of our main result in Section 5, we also moved from weakly non-overlapping to
non-overlapping systems, which made it possible to leverage the soundness and completeness
properties from Theorem 3.9 in the proofs of Lemma 5.7 and Lemma 5.8. We conjecture that
this additional restriction is not essential and merely simplified the proof at these two points.

A question that remains unanswered is whether orthogonal GRSs are confluent w.r.t.
p-convergence. We conjecture that this is the case, but the technical difficulties that we
already encountered in the proof of the infinitary strip lemmas appear to multiply when
analysing the general case of constructing a tiling diagram.

Note that confluence of p-converging term graph reductions modulo bisimilarity can be
easily obtained using the soundness and completeness properties from Theorem 3.9. Given two
reductions g �p R hi, i ∈ {1, 2} in a left-finite orthogonal GRS R, we have U (g)�p U(R) U (hi).
Since U (R) is normalising and confluent w.r.t. p-convergence [2], we thus find reductions
U (hi)�p U(R) t to a normal form t. By completeness, we then have reductions hi �p R gi with
U (gi) = t, i.e. g1 ' g2. Due to the correspondence result of Theorem 5.11, this confluence
property also carries over to m-convergence in the corresponding Böhm extension.
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A Term Graphs and Modes of Convergence

In the following we use the notation g|π for g|nodeg(π), and arg(n) for the arity ar(lab(n)) of n.

A.1 Term Graphs
We mention some auxiliary lemmas from Bahr [4] that we need later on.

We start with an alternative characterisation of ∆-homomorphisms:

I Lemma A.1 ([4]). Given two term graphs g, h ∈ G∞(Σ), a function φ : Ng → Nh is a
∆-homomorphism φ : g →∆ h iff the following holds for all n ∈ Ng:

(a) Pg(n) ⊆ Ph(φ(n)), and (b) labg(n) 6∈ ∆ =⇒ labg(n) = labh(φ(n)).

Labelled quotient trees play an important role in our treatment of term graphs as they
provide a convenient characterisation of ∆-homomorphisms and isomorphisms:

I Lemma A.2 ([4]). Given g, h ∈ G∞(Σ), there is a φ : g →∆ h iff for all π, π′ ∈ P(g),

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

I Lemma A.3 ([4]). Given g, h ∈ G∞(Σ), g ∼= h iff ∼g = ∼h, and g(π) = h(π) for all
π ∈ P(g).

The definition of canonical term graphs indeed yields a canonical representation of
isomorphism classes, which is stated more precisely as follows:

I Proposition A.4 ([4]). For g, h ∈ G∞(Σ), we have g ∼= C(g), and g ∼= h iff C(g) = C(h).

For the poof of Lemma 4.6, we need the notion of essential positions.

I Definition A.5 ([4]). A position π ∈ P(g) in a term graph g ∈ G∞(Σ) is called redundant
if there are π1, π2 ∈ P(g) with π1 < π2 < π such that π1 ∼g π2. A position that is not
redundant is called essential. The set of all essential positions of g are denoted Pe(g).

Intuitively, the set of essential positions of a term graph is a minimal set of positions that
still describes its structure (up to isomorphism) completely. In particular, any repetition due
to cycles is omitted. The following proposition confirms that essential positions are indeed
sufficient to describe the full structure of a term graph (up to isomorphism):

I Proposition A.6 ([4]). Given two term graphs g, h ∈ G∞(Σ), there is a ∆-homomorphism
φ : g →∆ h iff, for all π, π′ ∈ Pe(g), we have

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

A corollary of the above proposition is that labelled quotient trees restricted to essential
positions are unique representative of term graphs up to isomorphism (in the same way that
labelled quotient trees are). However, essential positions form a more compact representation
in the following sense:

I Proposition A.7 ([4]). A term graph g ∈ G∞(Σ) is finite iff Pe(g) is finite.

The above characterisation is not true for the set of all position P(g), since P(g) is infinite
whenever g has a cycle – independent of whether g is infinite or not.
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A.2 Modes of Convergence
The following lemma will help us to prove that the limit inferior of two sequences coincides.

I Lemma A.8. An open sequence (aι)ι<α and a sequence (bι)ι<β in a complete semilattice
have the same limit inferior whenever there is a function f : β → α such that (a) f is
monotone; (b) for each γ < α, there is some δ < β such that f(δ) = γ and aγ = bδ; and
(c) for each γ < β, we have that af(γ) ≤ bγ .

Proof. Let (A,≤) be the underlying complete semilattice. We show the equality using the
antisymmetry of ≤.

Let γ < α. By (b), we find some δ < β with f(δ) = γ. By monotonicity of f we
know that γ ≤ f(ι) < α for all δ ≤ ι < β. Hence, by (c), we have that, for each
δ ≤ ι < β, there is a γ ≤ ι′ < α such that aι′ ≤ bι. Consequently,

d
γ≤ι<α aι is a

lower bound of {bι | δ ≤ ι < β }. Since
d
δ≤ι<β bι is the greatest such lower bound, we

have that
d
γ≤ι<α aι ≤

d
δ≤ι<β bι. That means that

⊔
δ<β

d
δ≤ι<β bι is an upper bound of{d

γ≤ι<α aι

∣∣∣ γ < α
}
. Since

⊔
γ<α

d
γ≤ι<α aι is the least such upper bound, we can conclude

that⊔
γ<α

l

γ≤ι<α

aι ≤
⊔
δ<β

l

δ≤ι<β

bι,

i.e. lim infι→α aι ≤ lim infι→β bι.
Let δ < β. By monotonicity of f , we have that f(δ) ≤ f(ι) < α whenever δ ≤ ι < β.

Moreover, by (b) we find for each f(δ) + 1 ≤ ι′ < α some δ ≤ ι < β with f(ι) = ι′ and
aι′ = bι. Consequently,

d
δ≤ι<β bι is a lower bound of {aι | f(δ) + 1 ≤ ι < α}. Since α is a

limit ordinal, {aι | f(δ) + 1 ≤ ι < α} is non-empty, which means that the glb
d
f(δ)+1≤ι<α aι

exists. Since
d
f(δ)+1≤ι<α aι is the greatest lower bound of {aι | f(δ) + 1 ≤ ι < α}, we

have that
d
f(δ)+1≤ι<α aι ≥

d
δ≤ι<β bι. Hence,

⊔
γ<α

d
γ≤ι<α aι is an upper bound of{d

δ≤ι<β bι

∣∣∣ δ < β
}
. Because

⊔
δ<β

d
δ≤ι<β bι is the least such upper bound, we can conclude

that⊔
γ<α

l

γ≤ι<α

aι ≥
⊔
δ<β

l

δ≤ι<β

bι,

i.e. lim infι→α aι ≥ lim infι→β bι. J

B Term Graph Rewriting

B.1 Properties of Local Truncations
We start by giving the complete definition of local truncations:

Definition 3.4. Let g ∈ G∞(Σ⊥) and M ⊆ Ng. The local truncation of g at M , denoted
g\M , is obtained from g by labelling all nodes in M with ⊥ and removing all outgoing edges
from nodes in M as well as all nodes that thus become unreachable from the root:

Ng\M is the least set N satisfying (a) rg ∈ N , and
(b) n ∈ N \M =⇒ sucg(n) ⊆ N .

rg\M = rg

labg\M (n) =
{

labg(n) if n 6∈M
⊥ if n ∈M
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sucg\M (n) =
{

sucg(n) if n 6∈M
〈〉 if n ∈M

Instead of g\ {n}, we also write g\n, and instead of g\nodeg(π), we also write g\π.
The following Proposition from [3] shows that local truncations yield an appropriate

definition for reduction contexts in terms of the abstract framework of Bahr [1]:

I Proposition B.1 ([3]). Given g ∈ G∞C (Σ⊥) and n ∈ Ng, we have that

(i) g\n ≤S
⊥ g, and (ii) g\n ≤S

⊥ h for each reduction step g →n h.

The following lemma shows that local truncations only remove positions from a term
graph but do not alter them:

I Lemma B.2. Let g ∈ G∞(Σ⊥), M ⊆ Ng and π ∈ P(g\M). Then nodeg(π) = nodeg\M (π).

Proof. We proceed by induction on the length of π. The case π = 〈〉 follows from the
definition rg\M = rg. If π = π′ · 〈i〉, we can use the induction hypothesis to obtain that
nodeg(π′) = nodeg\M (π′). As π′ · 〈i〉 ∈ P(g\M), we know that nodeg\M (π′) 6∈M . Hence:

nodeg(π) = sucgi (nodeg(π′)) = sucgi (nodeg\M (π′)) = sucg\Mi (nodeg\M (π′))
= nodeg\M (π)

J

From the above lemma we can derive the following characterisation:

I Lemma B.3. Let g ∈ G∞(Σ⊥), M ⊆ Ng and π ∈ P(g\M). Then we have that

g\ (M ∪ {nodeg(π)}) = (g\M)\π.

Proof. We start by showing that Ng\M∪{nodeg(π)} = N (g\M)\π. For the “⊆” direction,
we show that N (g\M)\π satisfies (a) and (b) of Definition 3.4 for the local truncation
g\M∪{nodeg(π)}. (a) is immediate. For (b), we assume some n ∈ N (g\M)\π\M∪{nodeg(π)}
and show that then sucg(n) ⊆ N (g\M)\π:

n ∈ N (g\M)\π \M ∪ {nodeg(π)}
=⇒ {since {nodeg(π)} ⊆M ∪ {nodeg(π)}}

n ∈ N (g\M)\π \ {nodeg(π)} and n 6∈M
=⇒ {nodeg(π) = nodeg\M (π) by Lemma B.2, since π ∈ P(g\M)}

n ∈ N (g\M)\π \
{

nodeg\M (π)
}

and n 6∈M
=⇒ {by (b) for (g\M)\π}

sucg\M (n) ⊆ N (g\M)\π and n 6∈M

=⇒ {sucg(n) = sucg\M (n) by definition, since n 6∈M}

sucg(n) ⊆ N (g\M)\π

For the “⊇” direction, we show that Ng\M∪{nodeg(π)} satisfies (a) and (b) of Defini-
tion 3.4 for the local truncation (g\M)\π. (a) is immediate. For (b), we assume some
n ∈ Ng\M∪{nodeg(π)} \ {nodeg(π)} and show that then sucg\M (n) ⊆ Ng\M∪{nodeg(π)}:

If n ∈M , then sucg\M (n) = 〈〉, which means that sucg\M (n) ⊆ Ng\M∪{nodeg(π)} is vacu-
ously true. Otherwise, if n 6∈M , then n ∈ Ng\M∪{nodeg(π)} \M ∪ {nodeg(π)}. Consequently,
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we can apply (b) for the local truncation g\M ∪ {nodeg(π)} to obtain that sucg(n) ⊆
Ng\M∪{nodeg(π)}. And since n 6∈M , we then have that sucg\M (n) ⊆ Ng\M∪{nodeg(π)}.

The equality of the root nodes of g\M ∪ {nodeg(π)} and (g\M)\π follows immediately
from Definition 3.4.

According to Definition 3.4, to show that the labelling and successor functions of
g\M ∪ {nodeg(π)} and (g\M)\π coincide, it suffices to show that M ∪ {nodeg(π)} =
M ∪

{
nodeg\M (π)

}
. This equality follows from the equality nodeg(π) = nodeg\M (π), which

is a consequence of Lemma B.2. J

The following lemma generalises the characterisation of local truncations in [3] to the
more general notion of local truncations that we use here.
Lemma 3.5. For each g ∈ G∞(Σ⊥) andM ⊆ Ng, the local truncation g\M has the following
labelled quotient tree (P, l,∼):

P = {π ∈ P(g) | ∀π′ < π : nodeg(π′) 6∈M }
∼ = ∼g ∩ P × P

l(π) =
{
g(π) if nodeg(π) 6∈M
⊥ if nodeg(π) ∈M

Proof of Lemma 3.5. We will show in the following that the labelled quotient trees (P, l,∼)
and (P(g\M), g\M(·),∼g\M ) coincide.

By Lemma B.2 P(g\M) ⊆ P(g). Therefore, in order to prove that P(g\M) ⊆ P , we
assume some π ∈ P(g\M) and show by induction on the length of π that no proper prefix of
π is a position of a node from M in g. The case π = 〈〉 is trivial as 〈〉 has no proper prefixes.
If π = π′ · 〈i〉, we can assume by induction that no proper prefix of π′ is a position of a node
in M . It thus remains to be shown that nodeg(π′) 6∈M . Since π′ · 〈i〉 ∈ P(g\M), we know
that sucg\Mi (nodeg\M (π′)) is defined. Therefore, nodeg\M (π′) cannot be in M , and since, by
Lemma B.2, nodeg\M (π′) = nodeg(π′), neither can nodeg(π′).

For the converse direction P ⊆ P(g\M), assume some π ∈ P . We will show by induction
on the length of π, that then π ∈ P(g\M). The case π = 〈〉 is trivial. If π = π′ · 〈i〉, then also
π′ ∈ P which, by induction, implies that π′ ∈ P(g\M). Let m = nodeg\M (π′). Since π ∈ P ,
we have that nodeg(π′) 6∈M . Consequently, as Lemma B.2 implies m = nodeg(π′), we can
deduce that m 6∈ M . That means, according to the definition of g\M , that sucg\M (m) =
sucg(m). Hence, π′ · 〈i〉 ∈ Pg\M (sucg\Mi (m)) and thus π ∈ P(g\M).

For the equality ∼ = ∼g\M , assume some π1, π2 ∈ P . Since P = P(g\M), we then have
the following equivalences:

π1 ∼ π2 ⇐⇒ π1 ∼g π2

⇐⇒ nodeg(π1) = nodeg(π2)
⇐⇒ nodeg\M (π1) = nodeg\M (π2) (Lemma B.2)
⇐⇒ π1 ∼g\M π2

For the equality l = g\M(·), consider some π ∈ P(g\M). We can thus reason as follows:

g\M(π) = labg\M (nodeg\M (π)) Lem. B.2= labg\M (nodeg(π))

=
{
g(π) if nodeg(π) 6∈M
⊥ if nodeg(π) ∈M

J
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To conclude we show that a local truncation g\M is independent of nodes in M that are
dominated by other nodes in M in the following sense:

I Definition B.4. Let g ∈ G∞(Σ), M ⊆ Ng, and n ∈ Ng. Then M is said to dominate n in
g if every position π ∈ Pg(n) passes through a node m ∈M in g.

To prove this observation about local truncations, we need the following auxiliary lemma:

I Lemma B.5. Given g ∈ G∞(Σ), M ⊆ Ng, n ∈ Ng, we have n 6∈ Ng\M whenever there is
some M ′ ⊆M that dominates n in g but does not contain n.

Proof. In this proof we make use of the fact that if a set M does not dominate a node
n, then no subset of M does. We prove the contraposition of this lemma by showing that
Ng\M ⊆ N

where N = {n ∈ Ng |M \ {n} does not dominate n in g } .

To do this, we show that N satisfies (a) and (b) from Definition 3.4. Since Ng\M is the
smallest such set, the inclusion follows. (a) is trivial since the root of a term graph cannot be
dominated by set of nodes not containing the root. For (b) assume some n ∈ N \M . That
means that M does not dominate n. Consequently, for each 0 ≤ i < arg(n), we have that
M \{sucgi (n)} does not dominate n and thus does not dominate sucgi (n) either. Consequently,
sucgi (n) ∈ N . J

Finally, we prove that local truncations are independent of nodes that are dominated by
other nodes of the truncation:

I Lemma B.6. Let g ∈ G∞(Σ) and M ⊆ N ⊆ Ng such that each n ∈ N is dominated by M
in g. Then g\M = g\N .

Proof. We show this by proving that Ng\M = Ng\N . For the direction Ng\M ⊇ Ng\N

we show that Ng\M satisfies (a) and (b) of Definition 3.4 for g and N . Since Ng\N is the
smallest such set the inclusion follows. (a) is trivial. For (b) assume that n ∈ Ng\M \N .
Since M ⊆ N , we then have that n ∈ Ng\M \M . According to the definition of g\M , we
thus have that sucg(n) ⊆ Ng\M .

We show the converse inclusion in the same way. Again (a) is trivial. For (b) assume
that n ∈ Ng\N \M . By Lemma B.5, we then know that M does not dominate n in g.
Consequently, n 6∈ N according to the assumption. That is, n ∈ Ng\N \ N and thus
sucg(n) ⊆ Ng\N follows from the definition of g\N . J

B.2 Open Reductions
In this section, we prove properties about the labelling and sharing of the result of open
p-converging reductions:

I Lemma B.7 (labelling in open reductions). Let S = (gι →nι gι+1)ι<λ be an open reduction
p-converging to gλ.

(i) If there is some α < λ such that π ∈ P(gα) and, for all α ≤ ι < λ, π does not pass
through nι in gι, then gι(π) = gα(π) for all α ≤ ι ≤ λ.

(ii) If π ∈ P 6⊥(gλ), then there is some α < λ such that, for all α ≤ ι < λ, gι(π) = gλ(π) and
π does not pass through nι in gι.
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Proof. For each ι < λ, let cι be the reduction context of step ι, i.e. cι ∼= gι\nι.
(i) Given the premise of clause (i), we have, according to Lemma 3.5, that π′ ∈ P(cα) for

all π′ ≤ π. We shall show the conclusion of clause (i) using the following claim:

cβ(π′) = cα(π′) for all π′ ≤ π, α ≤ β < λ. (∗)

We proceed with the proof of (∗) by induction on β.
The case β = α is trivially true. For the case β = γ + 1 > α, we may reason as follows

for all π′ ≤ π:

cα(π′) (1)= cγ(π′) (2)= gγ+1(π′) (3)= cγ+1(π′) = cβ(π′)

Equality (1) follows from the induction hypothesis. Proposition B.1 yields that cγ ≤S
⊥ gγ+1,

which implies equality (2) by Corollary 2.2 because cα(π′) 6= ⊥. Equality (3) follows from
Lemma 3.5 because π′′ 6∈ nγ+1 for all π′′ ≤ π′.

If β is a limit ordinal, we can reason as follows for all π′ ≤ π:

cα(π′) (1)= gβ(π′) (2)= cβ(π′)

By induction hypothesis, we have that cγ(π′′) = cα(π′′) for all π′′ ≤ π′ and α ≤ γ < β.
Hence, according to Theorem 2.3, we have the equality (1) above. Equality (2) follows from
Lemma 3.5 because π′′ 6∈ nβ for all π′′ ≤ π′.

This concludes the proof of (∗). Since π does not pass through nι in gι for all α ≤ ι < λ,
we can derive from (∗) that gι(π) = cα(π) for all α ≤ ι < λ. Moreover, using (∗), we obtain,
by Theorem 2.3, that gλ(π) = cα(π), too. That is, gι(π) = cα(π) for all α ≤ ι ≤ λ, or put
differently, gι(π) = gα(π) for all α ≤ ι ≤ λ.

(ii) Assume that π ∈ P6⊥(gλ). By Theorem 2.3, we thus obtain some α < λ such that
cι(π) = gλ(π) for all α ≤ ι < λ. Since gλ(π) 6= ⊥, we know, according to Lemma 3.5, that π
does not pass through nι in gι and that cι(π) = gι(π) for all α ≤ ι < λ. The latter implies
that gι(π) = gλ(π) for all α ≤ ι < λ. J

Lemma 3.12 (volatility). Let S = (gι →nι gι+1)ι<λ be an open reduction p-converging to
gλ. Then, for every position π, we have the following:

(i) If π is volatile in S, then π 6∈ P6⊥(gλ).
(ii) gλ(π) = ⊥ iff

(a) π is outermost-volatile in S, or
(b) there is some α < λ such that gα(π) = ⊥ and, for all α ≤ ι < λ, π does not pass

through nι in gι.

Moreover, if (b) holds, then gι(π) = ⊥ for all α ≤ ι < λ.

Proof of Lemma 3.12. For each ι < λ, let cι be the reduction context of step ι, i.e. cι ∼=
gι\nι.

(i) This follows from Lemma B.7(ii).
(ii) In order to prove the “only if” direction, we assume that gλ(π) = ⊥ and show that

(b) holds whenever (a) fails. Since gλ(π) = ⊥, we have that π′ ∈ P6⊥(gλ) for all π′ < π.
By clause (i), this implies that no proper prefix of π is volatile in S. Because π is not
outermost-volatile, according to our assumption that (a) fails, we in thus know that π is
in fact not volatile in S at all. In sum, no prefix of π is volatile in S. That means, there
is some α < λ such that π does not pass through nι in gι for all α ≤ ι < λ. Moreover, by
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Theorem 2.3, we know that we can choose α large enough such that π ∈ P(cα), which in turn
implies π ∈ P(gα) by Lemma 3.5. Consequently, according to Lemma B.7(i), gα(π) = gλ(π),
i.e. gα(π) = ⊥.

For the “if” direction, we show that both (a) and (b) independently imply that gλ(π) = ⊥.
If π is outermost-volatile, then we know, according to clause (i), that π 6∈ P6⊥(gλ). Hence,

it remains to be shown that π ∈ P(gλ). The case π = 〈〉 is trivial. If, on the other hand,
π = π′ · 〈i〉, we know that π′ is not volatile in S since π is outermost-volatile in S. The
non-volatility of π′ combined with the volatility of π yields some α < λ such that π ∈ nα
and π′ does not pass through nι in gι for all α ≤ ι < λ. The former implies that π ∈ P(gα),
i.e. gα(π′) = f with ar(f) > i. Since π′ does not pass through nι in gι for all α ≤ ι < λ, we
may apply Lemma B.7(i) to obtain that gλ(π′) = f , too. Consequently, due to ar(f) > i, we
have that π ∈ P(gλ).

The implication from (b) to gλ(π) = ⊥ as well as the remark about (b) follow immediately
from Lemma B.7(i). J

We also give a characterisation of the sharing that we observe in an open p-convergent
reduction:

I Lemma B.8. Let S = (gι →nι gι+1)ι<λ be an open reduction p-converging to gλ and
π1 ∼gλ π2. Then there is some α < λ such that π1 ∼gι π2 for all α ≤ ι < λ.

Proof. Straightforward consequence of Theorem 2.3 and Lemma 3.5. J

C Residuals and Projections

In this appendix we give the full proofs for the theory of residuals and projections. However,
the proofs of the infinitary strip lemmas are in Appendix E.

C.1 Residuals
We first mention the key properties that motivate the definition of residuals and projections:

I Proposition C.1 (pre-reduction step residuals, [7]). Let (n, ρ) and (n′, ρ′) be disjoint redex
occurrences in a term graph g, with matching V-homomorphisms φ and φ′, respectively, and
let g 7→n,ρ h. Then n′ is not a node in h, or there is a redex occurrence (n′, ρ′) in h.

I Proposition C.2 (reduction step projections, [7]). Given two reduction steps ψ : g → h

and ψ′ : g → h′ contracting two weakly disjoint redex occurrences, there are two reductions
ψ′/ψ : h→≤1 g′ and ψ/ψ′ : h′ →≤1 g′.

The following proposition confirms the claim that, for m-convergent reductions, the
definition can be simplified by omitting the requirement that residual positions have to be in
the set of non-⊥ positions of the final term graph.

I Proposition C.3. Let R be a weakly non-overlapping GRS R, S : g0 �m
α
R gα open, and

(n, ρ) a redex occurrence in g0 with ρ a rule in R. Then lim infι→α(n, ρ)//S|ι ⊆ P6⊥(gα).

Proof. Let nι = (n, ρ)//S|ι for each ι < α. To prove that lim infι→α nι ⊆ P6⊥(gα), we assume
some π ∈ lim infι→α nι and show that π ∈ P(gα). Then π ∈ P6⊥(gα) follows as gα is total.
Since π ∈ lim infι→α nι, there is some β < α such that π ∈ nι for all β ≤ ι < α. According
to Proposition C.5, each nι is a node in gι, and, therefore, we have that π ∈ P(gι) for all
β ≤ ι < α. According to Theorem 2.1, this means that π ∈ P(gα). J
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I Lemma C.4. Let R be a weakly non-overlapping GRS R, S : g0 �m R gα, and (n, ρ) a
redex occurrence in g0 with ρ a rule in R. If (n, ρ)//T = ∅ for some prefix T of S, then
(n, ρ)//S = ∅.

Proof. Let α = |S| and β = |T |, i.e. T = S|β . We show by induction on γ ≤ α that
(n, ρ)//S|γ = ∅ if β ≤ γ.

The case γ ≤ β is trivial. Let γ = γ′ + 1 > β. Since γ′ ≥ β, we obtain by induction
hypothesis that (n, ρ)//S|γ′ = ∅. Hence, (n, ρ)//S|γ = ∅, too. Let γ > β be a limit ordinal.
According to the induction hypothesis, we know that (n, ρ)//S|ι = ∅ for all β ≤ ι < γ. Hence,
(n, ρ)//S|γ = ∅, too. J

The following proposition confirms the that our generalisation of projections to reductions
of arbitrary length is well-defined:

I Proposition C.5. Let R be a weakly non-overlapping GRS R, S : g0 �p R gα, and (n, ρ) a
redex occurrence in g0 with ρ a rule in R. If (n, ρ)//S = m is non-empty, then (m, ρ) is a
redex occurrence in gα.

Proof. Let S = (gι →nι gι+1)ι<α, and let cι = gι\nι be the reduction context for each step
at ι < α. We proceed by an induction on α.

The case α = 0 is trivial. If α = β + 1, then the statement follows from the induction
hypothesis according to Proposition C.1.

Let α be a limit ordinal, and let mι = (n, ρ)//S|ι for all ι < α.
Since m 6= ∅, we know, by Lemma C.4, that mι 6= ∅ for all ι < α. Hence, we may invoke

the induction hypothesis to obtain that (mι, ρ) is a redex occurrence in gι for each ι < α,
which means that we have matching V-homomorphisms φι : ρl →V gι|mι for all ι < α.

By definition, m is a set of positions in gα, but we have to show that m is also a node in
gα. If π1, π2 ∈ m, then there is some β < α such that π1, π2 ∈ mι for all β ≤ ι < α. Since
mι is a node in gι, we thus have π1 ∼gι π2 for all β ≤ ι < α. Moreover, π1, π2 ∈ m implies
that π1, π2 ∈ P(gα), which means, according to Theorem 2.3, that we can choose β large
enough such that π1, π2 ∈ P(cι) for all β ≤ ι < α. By Lemma 3.5, this means that, π1 ∼gι π2
implies π1 ∼cι π2 for all β ≤ ι < α. Consequently, by Theorem 2.3, we have that π1 ∼gα π2.
Hence, all positions in m are in the same ∼gα-equivalence class, which means that there is
some node m′ in gα with m ⊆ m′.

Before we show the converse inclusion, we choose some π∗ ∈ m. By the inclusion m ⊆ m′
proved above, we know that then π∗ ∈ m′ as well. Moreover, there is some β < α such that
π∗ ∈ mι for all β ≤ ι < α. We assume some π ∈ m′ and show that then π ∈ m. Since
π∗, π ∈ m′, we know that π∗ ∼gα π, which means, by Theorem 2.3, that we can choose β
large enough such that π∗ ∼cι π for all β ≤ ι < α. According to Lemma 3.5, we thus have
that π∗ ∼gι π for all β ≤ ι < α. Since we know that π∗ ∈ mι, we can conclude that also
π ∈ mι for all β ≤ ι < α. We then have π ∈ m because the requirement that π ∈ P 6⊥(gα)
follows from π∗ ∼gα π and π∗ ∈ P6⊥(gα).

By combining both inclusions, we obtain that m = m′, i.e. m is a node in gα.
Before we continue, we shall prove an auxiliary claim. To this end, we pick some π∗ ∈ m.

According to the definition of residuals, we then have that π∗ ∈ P6⊥(gα) and that there is
some β < α with π∗ ∈ mι for all β ≤ ι < α. By Theorem 2.3, the former implies that we can
chose β large enough such that π∗ ∈ P 6⊥(cι) for all β ≤ ι < α. By Lemma 3.5, this means
that cι(π∗) = gι(π∗) and that π∗ 6∈ nι for all β ≤ ι < α. Note that the latter means that
nι 6= mι for all β ≤ ι < α. Since R is weakly non-overlapping, this implies that the redex
occurrences at nι and mι must be disjoint for all β ≤ ι < α.
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We now proceed to prove the following claim for all π ∈ P(ρl):

π∗ · π ∈ P(gα) and if ρl(π) 6∈ V, then gα(π∗ · π) = ρl(π). (1)

We prove this claim by induction on the length of π.
If π = 〈〉, then we know, according to the definition of term graph rules, that ρl(π) 6∈ V.

Hence, using Lemma A.2, we can deduce from the matching V-homomorphisms φι : ρl →V
gι|mι that gι|mι(π) = ρl(π) for all ι < α. This means that gι(π∗ · π) = ρl(π) for all
β ≤ ι < α. Moreover, since π∗ · π = π∗ and cι(π∗) = gι(π∗), we know that π∗ · π ∈ P(gα)
and that cι(π∗ · π) = ρl(π) for all β ≤ ι < α. Consequently, by Theorem 2.3, we have that
gα(π∗ · π) = ρl(π).

If π = π′ · 〈i〉, then we know that ρl(π′) is not a nullary symbol and, thus, not in V. By
applying the induction hypothesis, we then obtain that π∗ ·π′ ∈ P(gα) and that gα(π∗ ·π′) =
ρl(π′). Taken together these two facts imply that π∗ · π ∈ P(gα). If ρl(π) 6∈ V, then we
may apply Lemma A.2, to obtain from the matching V-homomorphisms φι : ρl →V gι|mι
that gι|mι(π) = ρl(π) for all ι < α. Since π∗ ∈ mι for all β ≤ ι < α, we thus have that
gι(π∗ · π) = ρl(π) for all β ≤ ι < α. As we have derived above, the redex occurrences at mι

and nι are disjoint for all β ≤ ι < α. Consequently, π∗ · π does not pass through nι in gι,
which according to Lemma 3.5 implies that cι(π∗ · π) = gι(π∗ · π) for all β ≤ ι < α. The
resulting equality cι(π∗ ·π) = ρl(π) for all β ≤ ι < α together with the fact that π∗ ·π ∈ P(gα)
yields, by Theorem 2.3, that gα(π∗ · π) = ρl(π). That concludes the proof of (1).

Finally, we show that gα|m is a ρ-redex. To this end we show the existence of a V-
homomorphisms φ : ρl →V gα|m using Lemma A.2.

(a) Let π1 ∼ρl π2. For each ι < α, the matching V-homomorphism φ : ρl →V gι|mι yields,
according to Lemma A.2, that π1 ∼gι|mι π2. Consequently, π∗ · π1 ∼gι π∗ · π2 for all
β ≤ ι < α. Since π∗ · π1, π

∗ · π2 ∈ P(gα) by (1), there is, according to Theorem 2.3, some
β ≤ β′ < α such that π∗ · π1, π

∗ · π2 ∈ P(cι) for all β′ ≤ ι < α. Hence, by Lemma 3.5,
π∗ · π1 ∼gι π∗ · π2 implies π∗ · π1 ∼cι π∗ · π2 for all β′ ≤ ι < α. Again using the fact that
π∗ · π1, π

∗ · π2 ∈ P(gα), we can apply Theorem 2.3 to obtain that π∗ · π1 ∼gα π∗ · π2.
Therefore, π1 ∼gα|m π2 as π∗ ∈ m.

(b) Let ρl(π) 6∈ V. According to (1), we then have that gα(π∗ · π) = ρl(π). Since π∗ ∈ m, we
thus have that gα|m(π) = ρl(π).

J

C.2 Compression Property
In this section, we give the missing proofs for the auxiliary lemmas used to prove the
compression property.
Lemma 4.6. Given an open reduction S = (gι →nι gι+1)ι<λ p-converging to gλ and a redex
occurrence (π, ρ) in gλ with ρ left-finite, there is a position π ∈ P(gλ) and some α < λ

such that (π, ρ) is a redex occurrence in gι, and π does not pass through nι in gι for any
α ≤ ι < λ.

Proof of Lemma 4.6. Since (π, ρ) is a redex occurrence in gλ, there is a matching V-
homomorphism φ : ρl →V gλ|π. By Proposition A.6, this means that, for all π1, π2 ∈ Pe(ρl),
we have

π1 ∼ρl π2 =⇒
π · π1 ∼gλ π · π2, and
ρl(π1) = gλ(π · π1) whenever ρl(π1) 6∈ V.

(1)
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By definition of term graph rules, we know that ρl(〈〉) 6∈ V. Hence, gλ(π) = ρl(〈〉) and
therefore gλ(π) 6= ⊥. Hence, we may apply Lemma B.7(ii) to obtain some α < λ such that
π ∈ P(gι) and π does not pass through nι in gι for all α ≤ ι < λ. It remains to be shown
that there is some α ≤ γ < λ such that (π, ρ) is a redex occurrence in gι for all γ ≤ ι < λ.

Since ρ is left-finite, ρl is finite, which means, by Proposition A.7, that Pe(ρl) is finite.
Consequently, the set P = {π · π′ |π′ ∈ Pe(ρl)} is finite as well. Hence, we may repeatedly
apply Lemma B.8 (once for each pair π · π1, π · π2 ∈ P ) to obtain some α ≤ β < λ such that

π · π1 ∼gλ π · π2 implies π · π1 ∼gι π · π2 for all π1, π2 ∈ Pe(ρl) and β ≤ ι < λ (2)

Likewise, we may repeatedly apply Lemma B.7(ii) to obtain some β ≤ γ < λ such that

gλ(π · π1) = gι(π · π1) for all π1 ∈ Pe(ρl) with ρl(π1) 6∈ V and γ ≤ ι < λ (3)

Note that we may use Lemma B.7(ii) since rules do not contain ⊥ and by (1) above we know
that gλ(π · π1) = ρl(π1) for all π1 ∈ Pe(ρl) with ρl(π1) 6∈ V.

Using both (2) and (3), we can derive from (1), that for all π1, π2 ∈ Pe(ρl) and γ ≤ ι < λ

π1 ∼ρl π2 =⇒
π · π1 ∼gι π · π2, and
ρl(π1) = gι(π · π1) whenever ρl(π1) 6∈ V.

By Proposition A.6, the above finding implies the existence of a V-homomorphism φι : ρl →V
gι|π for all γ ≤ ι < λ, i.e. (π, ρ) is a redex occurrence in gι. J

Proposition 4.8. Let S : g �p R h in a weakly non-overlapping, left-finite GRS R. Then
there is a reduction T : g �p R h that is finite or open but not longer than S.

Proof of Proposition 4.8. We proceed by induction on the length of S. The only non-trivial
case is where |S| is a successor ordinal greater than ω. That is, S = S′ · 〈φ〉 with S′ : g �p g′

and φ : g′ → h. By induction hypothesis there is a T ′ : g �p g′ of length at most |S′|. If T ′ is
finite, then so is T ′ · 〈φ〉 : g �p h. Otherwise, T ′ is an open reduction. Let (π, ρ) be the redex
occurrence contracted in φ. We will construct the diagram illustrated in Figure 3.

According to Lemma 4.6, T ′ can be factorised into T1 : g �p g1 and T2 : g1 �p g′ such
that (π, ρ) is a redex occurrence in g1 and π does not pass through the root of any redex
contracted in T2. Consequently, according to Lemma 4.7, π ∈ (π, ρ)//T2, which means that
the corresponding projection ψ//T2, where ψ : g1 → g2 contracts the redex occurrence (π, ρ)
in g1, coincides with the single step reduction φ. According to Theorem 4.4, the projection
T2/ψ is of type g2 �p h. In sum, we have a reduction T̂ = T1 · 〈ψ〉 · T2/ψ with T̂ : g �p h.
Since by construction T2/ψ is not longer than T2 and since T2 is of limit ordinal length, we
know that |〈ψ〉 · T2/ψ| ≤ |T2|. Consequently,

∣∣∣T̂ ∣∣∣ < |S|. Thus, we may apply the induction

hypothesis to T̂ to obtain a reduction T : g �p h of finite or limit ordinal length. J

Lemma 4.10. For each reduction S : g �p R ⊥ in a weakly non-overlapping, left-finite GRS
R with g 6= ⊥, we find a finite reduction g →∗R h to a redex h.

Proof of Lemma 4.10. By Proposition 4.8, we may assume that S is finite or open. If S is
finite, then S is non-empty since g 6= ⊥. Consequently, we have that S = T · 〈φ〉 with φ a
reduction step contracting a redex at the root. That is, T is a finite reduction from g to a
redex. If S is open, we can apply Lemma 3.12 (ii), to obtain that either there is a proper
prefix T of S that p-converges to ⊥, or 〈〉 is volatile in S. The first case is impossible since
⊥ is a normal form. In the second case, there is a proper prefix T of S that p-converges to a
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redex. We show by induction on the length of T , that if T p-converges to a redex, then there
is a finite reduction g →∗R h to a redex. By Proposition 4.8, we may assume that T is finite
or open. In the first case, we are done. In the second case, we may apply Lemma 4.6 to
obtain a proper prefix T ′ of T that p-converges to a redex. We can then apply the induction
hypothesis to T ′ to obtain a finite reduction from g to a redex. J

D Böhm Reduction

Lemma 5.9. If g is a total term graph in a GRS R that is a RA-instance of a term graph
h, then g �p h.

Proof of Lemma 5.9. Let M be the set of nodes such that g\M = h and g|m ∈ RA for all
m ∈ M . Since the nodes in a term graph are countable, we may assume that there is an
injective enumeration mi ∈M , i < |M | of the nodes in M . By Lemma B.6, we may assume
that M is chosen such that no node mi in M is dominated by a set of nodes in M different
from mi. Hence, for each mi ∈M , there is some πi ∈ Pg(mi) such that if πi passes through
some mj ∈M in g, then i = j.

We now construct a reduction S : g0 �p
ω g1 �p

ω g2 �p
ω . . . , where g0 = g and for each

mi ∈M , gi+1 = gi\πi. The constituent reductions Si : gi �p ω gi+1 are reductions g|πi �p ω ⊥
embedded at position πi in gi. The reductions g|πi �p ω ⊥ exist since g|πi is root-active.
Well-formedness of S follows from the fact that we have gi|πi = g|πi for all i < |M |, which in
turn is a consequence of the fact that gi+1 = gi\πi .

It remains to be shown that S p-converges to h. If M is finite then S p-converges to g|M |.
By iterating Lemma B.3, we may derive that g|M | = g\M , i.e. g|M | = h.

Otherwise, S is of length ω · ω. Since S is p-continuous, we know by Theorem 2.3 that
it p-converges to some term graph gω. Let (cι)ι<ω·ω be the reduction contexts of S, i.e.
lim infι→ω·ω cι = gω, and, for each i < ω, (cω·i+j)j<ω are the reduction contexts for the
reduction Si : gi �p ω gi+1. In each reduction Si only redexes at position πi or below are
contracted, but infinitely many contractions at position πi. That means, for each i, j < ω,
we have that gi+1 ≤S

⊥ cω·i+j and for each i < ω, there is some j < ω such that gi+1 = cω·i+j .
Therefore, we can apply Lemma A.8 to obtain that lim infi→ω gi+1 = gω. Since, for all i < ω,
we have that h ≤S

⊥ gi, we thus know that h ≤S
⊥ gω.

We conclude by showing that gω ≤S
⊥ h, using Corollary 2.2. For (a), we assume that

p1 ∼gω p2. According to Theorem 2.3 there is some n < ω such that p1 ∼gi p2 for all
n ≤ i < ω. Therefore, we can conclude that p1 ∼h p2. The argument for (b) is analogous. J

Theorem 5.11. Let R be an orthogonal, left-finite GRS and B its Böhm extension w.r.t.
RA. Then we have that g �p R h iff g �m B h.

Proof of Theorem 5.11. B is a GRS over the extended signature Σ′ = Σ ] {⊥}, i.e. term
graphs containing ⊥ are considered total in B, which justifies our use of Corollary 3.13 and
Theorem 3.7 below.

We start with the “if” direction. Given a reduction S : g �m B h, we know that, by
Theorem 3.7, S : g �p B h, too. From S, we construct a reduction T by replacing each ⊥-step
ĝ →⊥ ĥ by a reduction S′ : ĝ �p R ĥ. Whenever there is such a rewrite step ĝ →n,ρ,m ĥ w.r.t.
some ⊥-rule ρ, then we know, according to Lemma 5.5, that there is some g ∈ RA⊥ \ {⊥}
with g ≤S ĝ|n and ĥ = ĝ\n. Since g ∈ RA⊥, we find, by Proposition 5.10 , a reduction
g �p R ⊥. Applying Lemma 5.7, we find a reduction ĝ|n �p R ⊥. By embedding this reduction
in ĝ at node n, we obtain the desired reduction S′ : ĝ �p R ĥ.
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Let T = (ψι : hι →dι hι+1)ι<β be the reduction thus obtained from the original reduction
S = (φι : gι →cι gι+1)ι<α. We need to show that T : g �p R h, too. At first we show
that S is p-continuous. To this end we assume some limit ordinal β′ < β and show that
lim infι→β′ dι = hβ′ . We distinguish between two cases.

1. β′ is “inside” a reduction ĝ �p R ĥ, i.e. there is an ordinal β < β′ such that the segment
T |[β,β′), which consists of the steps of T from β to β′, is a prefix of a reduction S′ : ĝ �p R ĥ

constructed from a ⊥-step as described above. Then lim infι→β′ dι = hβ′ follows from
the p-convergence of S′.

2. β′ corresponds to a limit ordinal α′ < α from S. That is, there are α < α′ and β < β′

together with a function f : (β′ − β)→ (α′ − α) such that f , (cι)α≤ι<α′ , and (dι)β≤ι<β′
satisfy the preconditions of Lemma A.8. We can then conclude that the limit inferior
of the two sequences coincides, and therefore also lim infι→α′ cι = lim infι→β′ dι. By
construction of T , we know that hβ′ = gα′ , and, by p-convergence of S, we know that
gα′ = lim infι→α′ cι. Hence, we may conclude that lim infι→β′ dι = hβ′ .

Consequently, by Theorem 2.3, T p-converges to some term graph h′. If β is 0 or a successor
ordinal, then h′ = h follows immediately from the construction of T . Otherwise, we may
argue with the same case distinction as above (with β instead of β′) to conclude that h′ = h.

For the “only if” direction, assume a reduction S = (φι : gι →nι gι+1)ι<α with S : g �p R h.
We construct a reduction T : g �p B h, that has no volatile positions (in any of its prefixes)
and, thus, also m-converges to h. To do so we remove from each open prefix of S those steps
that cause volatility and insert ⊥-steps in their stead.

Let S|λ be an open prefix of S, and let n be a node in gλ that has a position π that is
outermost-volatile in S|λ. Then there is some ordinal β < λ such that no step between β and
λ takes place strictly above π, i.e. π does not strictly pass through nι in gι for all β ≤ ι < λ.2
A simple induction argument using Theorem 2.1 then shows that π ∈ P(gι) for all β ≤ ι < λ.
Moreover, w.l.o.g. we may assume that π ∈ Pgβ (nβ). We inductively construct a sequence
Tλ from S|λ and show that it is p-continuous. The construction proceeds as follows:

1. All steps before β remain the same.
2. Replace φβ with a ⊥-step at π. As π is outermost-volatile in S|λ, we know that there

is a reduction gβ |π �p ⊥. According to Proposition 5.10, gβ |π ∈ RA⊥, and since φβ is a
step at π, we know that gβ |π 6= ⊥. Hence, by Lemma 5.5, there is such a ⊥-step from gβ
at π.

3. For steps φι : gι →nι,ρι gι+1 with β ≤ ι < λ, we have two cases:
a. If {nodegι(π)} dominates nι in gι, then remove the step φι.
b. Otherwise, replace the step φι by a step ψι of the same rule. Assuming, by induction,

that the sequence Tλ is constructed and p-continuous up to length ι, we have that
ψι : hι →mι,ρι hι+1, where hι is the term graph that Tλ|ι p-converges to and mι is a
node in hι such that Phι(mι) ∩ Pgι(nι) 6= ∅.

For the accompanying induction proof, we show, for all β ≤ ι ≤ λ, that hι = gι\π, where
hι is the term graph that Tλ|ι p-converges to. The proof uses Lemma A.8 for the limit ordinal
case and Lemma B.6 for the successor ordinal case. This equality validates case 3 in the
construction above. Moreover, as a special case we obtain that T p-converges to gλ\π. Since
π is outermost-volatile in S|λ, we know by Lemma 3.12 (ii), that gλ|π = ⊥, i.e. gλ\π = gλ.
Therefore, we have that Tλ p-converges to the same term graph as S|λ.

2 But there may be positions π′ ∈ Pgλ (n) such that π′ strictly passes through nι in gι for some β ≤ ι < λ.
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The above construction can be performed in parallel for all nodes in gλ with an outermost-
volatile position. This construction then also removes all volatile positions in S|λ. By
performing the construction for all open prefixes of S, we obtain a reduction T that p-
converges to the same term graph as S, i.e. T : g �p B h. Since no prefix of T contains a
volatile position, we may apply Corollary 3.13 to conclude that T : g �m B h. J

E Full Proofs of the Infinitary Strip Lemmas

E.1 Auxiliary Lemmas
E.1.1 Residuals
I Lemma E.1. Let R be a weakly non-overlapping GRS, ρ a rule in R, S = (gι →nι gι+1)ι<λ
an open reduction p-converging to gλ, (n, ρ) a redex occurrence in g0, (n, ρ)//S 6= ∅ and
π ∈ P(gλ). If π does not pass through (n, ρ)//S in gλ, then there is some α < λ such that π
does not pass through (n, ρ)//S|ι in gι for all α ≤ ι < λ.

Proof. For each ι ≤ λ, let mι = (n, ρ)//S|ι.
We will prove the contrapositive of the above implication. To this end, we assume that,

for each α < λ, there is some α ≤ ι < λ and π′ ≤ π with π′ ∈ mι and show that then π
passes through mλ in gλ. Since π has only finitely many prefixes we may apply the infinite
pigeonhole principle to derive that there is a prefix π∗ ≤ π such that

for each α < λ there is some α ≤ ι < λ with π∗ ∈ mι. (1)

Since π ∈ P(gλ), we know that π′ ∈ P 6⊥(gλ) for each π′ < π. According to Lemma 3.12, this
means that no π′ < π is volatile. Since there are only finitely many proper prefixes π′ < π,
we thus find some β < λ such that

π′ 6∈ nι for all π′ < π and β ≤ ι < λ. (2)

By (1), we may assume that β is chosen such that π∗ ∈ mβ .
We conclude this proof by proving the following claim for all β ≤ γ ≤ λ:

π∗ ∈ mγ , and π∗ does not pass through nι in gι for all β < ι < γ (3)

Given that (3) is true, we have that π∗ ∈ mλ. That is, π passes through mλ in gλ.
We proceed with the proof of (3) by induction on γ. The case γ = β is trivial. For the

case γ = γ′ + 1, assume that π∗ passes through nγ′ in gγ′ . By (2), this can only be the case
if π∗ = π and π ∈ nγ′ . Since, π∗ ∈ mγ′ , according to the induction hypothesis, π∗ ∈ nγ′
implies that mγ′ = nγ′ . Consequently, we have that mγ = ∅, which, according to Lemma C.4,
contradicts the assumption that mλ is non-empty. Thus, we know that π∗ does not pass
through nγ′ . Therefore, we can derive from the induction hypothesis, viz. π∗ ∈ mγ′ , that
π∗ ∈ mγ .

If γ is a limit ordinal, we have by the induction hypothesis that π∗ ∈ mι for all β < ι < γ.
Hence, π∗ ∈ lim infι→γmι and it only remains to be shown that π∗ ∈ P6⊥(gγ). For each
ι + 1 with β < ι < γ, we may apply the induction hypothesis since β < ι + 1 < γ, too.
Hence, π∗ does not pass through nι′ in gι′ for all β < ι′ < ι+ 1, i.e. in particular π∗ does
not pass through nι in gι. Combined with the fact that π∗ ∈ mβ and, thus, π∗ ∈ P(gβ),
this means, according to Lemma B.7, that gγ(π∗) = gβ(π∗). By Proposition C.5, (mβ , ρ)
is a redex occurrence in gβ . Hence, gβ(π∗) 6= ⊥. Consequently, gγ(π∗) 6= ⊥ and, therefore,
π∗ ∈ P6⊥(gγ). J
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E.1.2 Single Reduction Steps
I Lemma E.2. Let g →n,ρ,m h be a reduction step and π ∈ N∗. Then π passes through n in
g iff π passes through m in h. Moreover, when this is the case, there is a prefix π′ ≤ π that
witnesses both, i.e. π′ ∈ Pg(n) ∩ Ph(m).

Proof. Let π pass through n in g. Let π′ ≤ π be a shortest prefix of π in Pg(n). Hence, π′
is not affected by the reduction step, which means that π′ ∈ Ph(m). The converse direction
follows analogously. J

I Lemma E.3. Let g →n,ρ,n′ h be a reduction step and π = π1 ·π2, π
′ = π′1 ·π′2 two positions

with π1, π
′
1 ∈ Pg(n) ∩ Ph(n′). Then we have the following:

(a) If π2, π
′
2 ∈ P(ρr) and nodeρr (π2) 6∈ Nρl , then

for all g′ →m,ρ,m′ h
′ with π1, π

′
1 ∈ Pg′(m) ∩ Ph′(m′): π ∼h π′ ⇐⇒ π ∼h′ π′

(b) If π2, π
′
2 ∈ P(ρr), and nodeρr (π2) ∈ Nρl , then π ∼h π′ iff

P ′ 6= ∅ and ∀p ∈ P, p′ ∈ P ′ : π1 · p ∼g π′1 · p′

where P = Pρl(nodeρr (π2)), and P ′ = Pρl(nodeρr (π′2)).
(c) If π2, π

′
2 6∈ P(ρr), then π ∼h π′ iff

π2 = π3 · π4,

π′2 = π′3 · π′4,
π3, π

′
3 ∈ PV(ρr),

∀π5 ∈ Pρl(nodeρr (π3)),
∀π′5 ∈ Pρl(nodeρr (π′3))

: π1 · π5 · π4 ∼g π′1 · π′5 · π′4

(d) If π2 ∈ P(ρr) and π′2 6∈ P(ρr), then π ∼h π′ iff

Pρl(nodeρr (π2)) 6= ∅,
π′2 = π′3 · π′4, π′3 ∈ PV(ρr)

∀p ∈ Pρl(nodeρr (π2)),
∀π′5 ∈ Pρl(nodeρr (π′3))

: π1 · p ∼g π′1 · π′5 · π′4

Proof. (a) Let g′ →m,ρ,m′ h
′ be some reduction with π1, π

′
1 ∈ Pg′(m) ∩ Ph′(m′). Due to

the symmetry, it suffices to show one direction. If π ∼h π′, then we know that also
nodeρr (π′2) 6∈ Nρl and that π2 ∼ρr π′2. Consequently, π2 ∼h′|m′ π

′
2, which implies, because

of π1, π
′
1 ∈ Ph′(m′), that π1 · π2 ∼h′ π′1 · π′2.

(b) We may assume for both sides of the equality that P ′ 6= ∅ since if π ∼h π′, then we know
that nodeρr (π′2) ∈ Nρl and thus P ′ 6= ∅. Let φ be the matching V-homomorphism of the
reduction step. We can then reason as follows, where the equivalences (1) and (3) are
due to the fact that π1, π

′
1 ∈ Ph(n′) respectively π1, π

′
1 ∈ Pg(n), and equivalence (2) is

due to the fact that nodeρr (π2), nodeρr (π′2) ∈ Nρl

π ∼h π′
(1)⇐⇒ π2 ∼h|n′ π

′
2

(2)⇐⇒ φ(nodeρr (π2)) = φ(nodeρr (π′2))
Lem. A.1⇐⇒ ∀p ∈ P, p′ ∈ P ′ : p ∼g|n p

′

(3)⇐⇒ ∀p ∈ P, p′ ∈ P ′ : π1 · p ∼g π′1 · p′
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(c) If π ∼h π′, then π2, π
′
2 each pass through a variable node, i.e. π2 = π3 · π4, π

′
2 = π′3 · π′4

with π3, π
′
3 ∈ PV(ρr). Since variable nodes must be reachable from the left-hand side

root as well, Pρl(nodeρr(π3)) and Pρl(nodeρr(π′3)) are non-empty. Moreover, whenever
we have the above decomposition of π2 and π′2, as well as π5 ∈ Pρl(nodeρr(π3)) and
π′5 ∈ Pρl(nodeρr (π′3)), then we have the following equivalence:

π ∼h π′ ⇐⇒ π1 · π3 · π4 ∼h π′1 · π′3 · π′4 ⇐⇒ π1 · π5 · π4 ∼g π′1 · π′5 · π′4

(d) If π ∼h π′ then nodeρr(π2) ∈ Nρl . Hence, we can assume that Pρl(nodeρr(π2)) is non-
empty throughout. Additionally, we know that π′2 = π′3 · π′4 with π′3 ∈ PV(ρr) and since
variable nodes must be reachable from the right-hand side root of ρ, we also have some
π′5 ∈ Pρl(nodeρr (π′3)). Hence, for either of the two sides of the equivalence to be proved,
the above situation holds true. Let φ be the matching V-homomorphism of the reduction
step. We can then reason as follows, where the equivalences (1) and (3) are due to the
fact that π1, π

′
1 ∈ Ph(n′) respectively π1, π

′
1 ∈ Pg(n), and equivalence (2) is due to the

fact that nodeρr (π2) ∈ Nρl :

π ∼h π′
(1)⇐⇒ π2 ∼h|n′ π

′
3 · π′4

(2)⇐⇒ φ(nodeρr (π2)) = nodeg|n(π′5 · π′4)
Lem. A.1⇐⇒ ∀p ∈ Pρl(nodeρr (π2)) : p ∼g|n π

′
5 · π′4

(3)⇐⇒ ∀p ∈ Pρl(nodeρr (π2)) : π1 · p ∼g π′1 · π′5 · π′4

J

I Lemma E.4. Let g →n,ρ,n′ h be a reduction step, π, π′ two positions that do not pass
through n in g. Then π ∼g π′ iff π ∼h π′.

Proof. By Lemma E.2, π, π′ do not pass through n′ in h either. Hence, no node either
position passes through in g or h is affected by the reduction step. Hence, the two positions
lead to the same node in g iff they do in h. J

I Lemma E.5. Let g →n,ρ,n′ h be a reduction step, a position π = π1 · π2 with π1 ∈
Pg(n) ∩ Ph(n′), and π′ a position that does not pass through n in g.

(a) If π2 ∈ P(ρr), then

π ∼h π′ ⇐⇒ Pρl(nodeρr (π2)) 6= ∅ and ∀p ∈ Pρl(nodeρr (π2)) : π1 · p ∼g π′

(b) If π2 6∈ P(ρr), then

π ∼h π′ ⇐⇒ π2 = π3 · π4, π3 ∈ PV(ρr),∀π5 ∈ Pρl(nodeρr (π3)) : π1 · π5 · π4 ∼g π′

Proof. (a) Either sides of the equivalence imply that m = nodeρr(π2) ∈ Nρl and that
m′ = nodeg(π′) ∈ Ng|n . Let p ∈ Pρl(π2), p′ ∈ Pg|n(m′) and let φ be the matching
V-homomorphism of the reduction step.

π ∼h π′ ⇐⇒ φ(m) = m′
Lem. A.1⇐⇒ p ∼g|n p

′ π1∈Pg(g)⇐⇒ π1 · p ∼g π1 · p′

π1·p′∼gπ′⇐⇒ π1 · p ∼g π′

Note that π1 · p′ ∼g π′ because π1 ∈ Pg(n) and p′ ∈ Pg|n(nodeg(π′)).
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(b) If π ∼h π′, then π2 = π3 · π4 with π3 ∈ PV(ρr). Since variable nodes must also be
reachable from the right-hand side node of ρ, we know that Pρl(nodeρr (π3)) is non-empty.
Hence, for either of the two sides of the equivalence to be proved, we have the above
decomposition of π2. Hence, we may reason as follows for all π5 ∈ Pρl(nodeρr (π3)):

π ∼h π′ ⇐⇒ π1 · π3 · π4 ∼h π′ ⇐⇒ π1 · π5 · π4 ∼g π′

J

E.2 The p-Convergence Case
Theorem 4.4 (infinitary strip lemma: p-convergence). Let R be a weakly non-
overlapping GRS, φ : g0 →n,ρ h0 a reduction step in R, S : g0 �p R gα, and φ/S : gα →≤1

R hα.
Then we have that S/φ : h0 �p R hα.

Proof of Theorem 4.4. We prove the statement by showing that the diagram depicted in
Figure 2 commutes. To this end, let S = (ψι : gι →mι,cι gι+1)ι<α, and, for each ι ≤ α, let
nι = (n, ρ)//S|ι, let Tι : gι →≤1 hι+1 be the reduction contracting nι if nι is non-empty and
otherwise the empty reduction. According to the definition of projections, the reduction
S/φ is the concatenation

∏
ι<α ψι/Tι. We will show that S/φ indeed p-converges to hα by

induction on α.
The case α = 0 is trivial.
If α = β + 1, we know by induction hypothesis that S|β/φ p-converges to hβ . It thus

remains to be shown that ψβ/Tβ : hβ →≤1 hβ+1. We have two cases to consider:

(i) If Tβ is the empty reduction, then Tβ+1 is empty and ψβ/Tβ = ψβ . Hence, hβ = gβ ,
hβ+1 = gβ+1, and ψβ/Tβ : gβ →≤1 gβ+1. Therefore, ψβ/Tβ : hβ →≤1 hβ+1.

(ii) If Tβ is non-empty, then ψβ/Tβ : hβ →≤1 hβ+1 follows from Proposition C.2.

Let α be a limit ordinal. We may assume by induction that S|ι/φ : h0 �p R hι for all ι < α.
If S/φ is closed, then there is some β < α such that ψι/Tι is the empty reduction for all

β ≤ ι < α and S/φ : h0 �p hβ . Then, Tι and, thus, nι is non-empty for all β ≤ ι < α. This
can only be the case if, for each β ≤ ι < α, the redex contracted in ψι : gι → hι is below a
variable position of the redex occurrence (nι, ρ) contracted in Tι. Hence, we also find a single
step reduction T ′ι : cι → hι for each β ≤ ι < α. Since all hι coincide for β ≤ ι < α, we have
that T ′ι : cι → hβ . Moreover, we then know that nα is non-empty and, thus, Tα : gα → hα is
non-empty, too. Since gα = lim infι→α cι we can show using Theorem 2.3 that also hα = hβ .

If S/φ is open, then, for each T < S/φ, there is some T ′ < S such that T ′ < T ′/φ. Since
each T ′/φ is p-convergent, by the induction hypothesis, we thus know that each T < S/φ

is p-convergent. Consequently, S/φ is p-continuous. By Theorem 2.3, we then know that
S/φ p-converges to some term graph h′α. That h′α = hα can be shown by establishing an
isomorphism h′α

∼= hα using Lemma A.3, which then yields the desired equality according to
Proposition A.4.

Note that we may assume w.l.o.g. that there is some β < α such that for all β ≤ ι < α

each ψι/Tι is non-empty. If this would not be the case, then for arbitrary large γ < α we
would have that ψγ contracts a redex that is in a variable position in the ρ-redex contracted
in Tγ for a variable that does not occur on the right-hand side of ρ. However, all nodes
affected by such a step ψγ can be discarded as they are either pushed arbitrarily deep in the
course of S (viz. if nα is empty) or these nodes get discarded by the reduction Tα (viz. if
nα is non-empty). Since we are only interested in the convergence behaviour, we only need
to consider the suffix starting from β, in which all projections ψι/Tι are non-empty. That
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is why we may assume for the rest of the proof that S/φ = (ψ′ι : hι →m′ι,c
′
ι
hι+1)ι<α, where

each step ψ′ι is the projection ψι/Tβ .
At first we consider the case that nα is non-empty. Hence, by Lemma C.4, nι is non-

empty for each ι < α. This means that, for each ι < α, S|ι/φ : gι →nι,ρ,n′ι
hι is a single step

reduction, with a corresponding matching V-homomorphism φι : ρl →V gι|nι . We shall use
Lemma A.3, to prove that hα ∼= h′α.

At first we show that whenever π ∈ P(hα) and f = hα(π), then h′α(π) = f . We will show
this by induction on the length of π. We can therefore use the induction hypothesis that, for
all π′ < π, hα(π′) = h′α(π′). Since we assume that π ∈ P(hα), we know that hα(π′) 6= ⊥ for
all π′ < π. Consequently, also h′α(π′) 6= ⊥ for all π′ < π, which means that we may apply
Lemma B.7(ii) to obtain some β < α such that hι(π′) = h′α(π′) for all π′ < π and β ≤ ι < α.
According to Theorem 2.3, we thus have that π ∈ P(h′α).

To show that h′α(π) = f , we distinguish two cases:

(i) If π passes through nα in gα, then by Lemma E.2, π = π1 · π2 with π1 ∈ nα ∩ n′α. Hence,
there is some β < α such that π1 ∈ nι for all β ≤ ι < α. Moreover, by Lemma E.1, β
can be chosen large enough such that, for all β ≤ ι < α, none of the proper prefixes of π1
pass through nι in gι. Hence, π1 ∈ n′ι for all β ≤ ι < α as well.

(a) If π2 ∈ P(ρr), then ρr(π2) = f . Hence, as π1 ∈ nι ∩ n′ι, we have that hι(π) =
hι(π1 · π2) = f for all β ≤ ι < α. Note that no proper prefix of π can be volatile in
S/φ, because otherwise π would not be in P(h′α) according to Lemma 3.12(i). Also
π itself cannot be volatile since that would either mean that the redex at nι in gι
would be contracted for some β ≤ ι < α (viz. if π2 = 〈〉), which contradicts that nα
is non-empty; or we would have a non-trivial overlapping of redexes (viz. if π2 6= 〈〉),
which contradicts that R is weakly non-overlapping. In sum, we have that no prefix of
π is volatile in S/φ, which, according to Lemma B.7(i), means that h′α(π) = f .

(b) If π2 6∈ P(ρr), then π2 = π3 · π4 with π3 ∈ PV(ρr). Let π5 ∈ Pρl(nodeρr(π3)). Since
π1 ∈ nα ∩ n′α, we know that gα(π1 · π5 · π4) = f . Moreover, because π1 ∈ nι ∩ n′ι for
all β ≤ ι < α, we know that π1 · π5 · π4 is volatile in S iff π1 · π3 · π4 is volatile in S/φ.

If f = ⊥, then, according to Lemma 3.12(ii) there are two cases:
If π1 ·π5 ·π4 is volatile in S, then π = π1 ·π3 ·π4 is volatile in S/φ. Consequently,
according to Lemma 3.12(i), h′α(π) = ⊥ since π ∈ P(h′α).
Otherwise, we may assume that β is chosen such that gι(π1 · π5 · π4) = ⊥ for
all β ≤ ι < α. Thus, since π1 ∈ nι ∩ n′ι, we also have hι(π1 · π3 · π4) = ⊥ for all
β ≤ ι < α. Moreover, π1 ·π3 ·π4 is not volatile in S/φ (as π1 ·π5 ·π4 is not volatile
in S). Also no proper prefix of π1 ·π3 ·π4 is volatile in S/φ as this would contradict
the fact that π1 · π3 · π4 ∈ P(h′α) according to Lemma 3.12(i). Consequently,
we may assume that β is chosen large enough such that π1 · π3 · π4 does not
pass through the root node of the redex contracted in hι. Hence according to
Lemma 3.12(ii), we have that hα(π1 · π3 · π4) = ⊥.

If f 6= ⊥, then, by Lemma B.7(ii) we may assume that β is chosen such that
gι(π1 · π5 · π4) = f and π1 · π5 · π4 does not pass through the root node of the
redex contracted in gι for all β ≤ ι < α. This implies, due to π1 ∈ nι ∩ n′ι, that
hι(π) = hι(π1 · π3 · π4) = f π1 · π3 · π4 does not pass through the root node of the
redex contracted in hι for all β ≤ ι < α. According to Lemma B.7(ii) this implies
that h′α(π) = f .

(ii) If π does not pass through nα in gα, then we have gα(π) = f as well. Since π does not
pass through nα in gα, we may assume, due to Lemma E.1, that β is chosen large enough
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such that, for all β ≤ ι < α, we have that π does not pass through nι in gι. h′α(π) = f

follows by a case distinction similar to the case (i)(b) above.

Since we have shown that π ∈ P(hα) implies hα(π) = h′α(π), we know that P(hα) = P(h′α).
Let π, π′ ∈ P(hα). We distinguish three cases to show that π ∼hα π′ iff π ∼h′α π

′.

(i) π, π′ pass through nα in gα. By Lemma E.2, π = π1 · π2 and π′ = π′1 · π′2 such that
π1, π

′
1 ∈ nα ∩ n′α. Then there is some β < α with π1, π

′
1 ∈ nι for all β ≤ ι < α. Since

π1, π
′
1 can be chosen such that none of their proper prefixes pass through nα in gα and

π1, π
′
2 ∈ P(g), we may assume by Lemma E.1, that β is chosen large enough such that,

for all β ≤ ι < α, none of the proper prefixes of π1 and π′1 pass through nι in gι. Hence,
π1, π

′
1 ∈ n′ι for all β ≤ ι < α.

(a) If π2, π
′
2 ∈ P(ρr), and nodeρr (π2) 6∈ Nρl , then the equivalence π ∼hα π′ ⇐⇒ π ∼h′α π

′

follows immediately from Lemma E.3(a)

(b) If π2, π
′
2 ∈ P(ρr), and nodeρr (π2) ∈ Nρl , then we can reason as follows:

π ∼hα π′

⇐⇒ {Lemma E.3(b)}
P ′ 6= ∅ and ∀p ∈ P, p′ ∈ P ′ : π1 · p ∼gα π′1 · p′

where P = Pρl(nodeρr (π2)), P ′ = Pρl(nodeρr (π′2))
⇐⇒ {Theorem 2.3}

P ′ 6= ∅ and ∃β ≤ β′ < α∀p ∈ P, p′ ∈ P ′, β′ ≤ ι < α : π1 · p ∼cι π′1 · p′

⇐⇒ {Lemma 3.5}
P ′ 6= ∅ and ∃β ≤ β′ < α∀p ∈ P, p′ ∈ P ′, β′ ≤ ι < α : π1 · p ∼gι π′1 · p′

π1 · p, π′1 · p′ do not properly pass through mι in gι
⇐⇒ {Lemma E.3(b)}

∃β ≤ β′ < α∀β′ ≤ ι < α : π ∼hι π′

π, π′ do not properly pass through m′ι in hι
⇐⇒ {Lemma 3.5}

∃β ≤ β′ < α∀β′ ≤ ι < α : π ∼c′ι π
′

⇐⇒ {Theorem 2.3}
π ∼h′α π

′

Note that the firs application of Theorem 2.3 above is justified by the fact that for each
p ∈ P and p′ ∈ P ′, π1 · p, π′1 · p′ ∈ P(gα). Likewise the second application of Theorem 2.3
is justified since π, π′ ∈ P(h′α).
If (c) π2, π

′
2 6∈ P(ρr), or (d) exactly one of π2, π

′
2 is in P(ρr) , then we can reason as in

(a) above using Lemma E.3(c) respectively Lemma E.3(d) instead of Lemma E.3(b).

(ii) π, π′ do not pass through nα in gα. Hence, according Lemma E.4, π, π′ ∈ P(hα) implies
that π, π′ ∈ P(gα), too. Consequently, we may apply Lemma E.1 to obtain some β < α

such that, for all β ≤ ι < α, we have that π, π′ do not pass through nι in gι. Hence, we
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have the following:

π ∼hα π′
Lem. E.4⇐⇒ π ∼gα π′

Thm. 2.3⇐⇒ ∃β ≤ β′ < α∀β′ ≤ ι < α : π ∼cι π′

Lem. 3.5⇐⇒ ∃β ≤ β′ < α∀β′ ≤ ι < α : π ∼gι π′, and
π, π′ do not properly pass through mι in gι

Lem. E.4⇐⇒ ∃β ≤ β′ < α∀β′ ≤ ι < α : π ∼hι π′, and
π, π′ do not properly pass through m′ι in hι

Lem. 3.5⇐⇒ ∃β ≤ β′ < α∀β′ ≤ ι < α : π ∼c′ι π
′

Thm. 2.3⇐⇒ π ∼h′α π
′

Note that both applications of Theorem 2.3 above are justified since we both have
π, π′ ∈ P(gα) and π, π′ ∈ P(h′α).

(iii) Exactly one of π and π′ passes through nα in gα. W.l.o.g. we assume that π passes
through nα in gα and π′ does not. Hence, by Lemma E.2, π = π1 · π2 with π1 ∈ nα ∩ n′α.
Then there is some β < α with π1 ∈ nι for all β ≤ ι < α. Since π′1 can be chosen such
that none of its proper prefixes passes through nα in gα, we may assume by Lemma E.1,
that β is chosen large enough such that, for all β ≤ ι < α, none of the proper prefixes of
π1 passes through nι in gι. Hence, π1 ∈ n′ι for all β ≤ ι < α. Moreover, since π′ does not
pass through nα in gα and π′ ∈ P(gα), we can, according to Lemma E.1, choose β large
enough such that π′ does not pass through nι in gι for all β ≤ ι < α.
We consider two cases:

(a) If π2 ∈ P(ρr), we obtain the following:

π ∼hα π′

Lem. E.5(a)⇐⇒ P 6= ∅ and ∀p ∈ P : π1 · p ∼gα π′, where P = Pρl(nodeρr (π2))
Thm. 2.3⇐⇒ P 6= ∅ and ∃β ≤ β′ < α∀p ∈ P, β′ ≤ ι < α : π1 · p ∼cι π′

Lem. 3.5⇐⇒ P 6= ∅, and ∃β ≤ β′ < α∀p ∈ P, β′ ≤ ι < α : π1 · p ∼gι π′, and
π1 · p, π′ do not properly pass through mι in gι

Lem. E.5(a)⇐⇒ ∃β ≤ β′ < α∀β′ ≤ ι < α : π ∼hι π′, and
π, π′ do not properly pass through m′ι in hι

Lem. 3.5⇐⇒ ∃β ≤ β′ < α∀β′ ≤ ι < α : π ∼c′ι π
′

Thm. 2.3⇐⇒ π ∼h′α π
′

Again both applications of Theorem 2.3 are justified by the fact that π1 · p ∈ P(gα)
for all p ∈ P , that π′ ∈ gα, and that π, π′ ∈ P(h′α).

(b) If π2 ∈ P(ρr), we can reason as for (a) above using Lemma E.5(b) instead of
Lemma E.5(a).

It remains to be shown that we have an isomorphism hα ∼= h′α for the case that nα = ∅. This
amounts to a proof that is merely a special case of the one above, viz. the case that the
positions π, π′ do not pass through nα. J



CONTENTS 8:37

E.3 The m-Convergence Case
In order to derive the corresponding infinitary strip lemma for m-convergence, we shall make
use of the following lemma.

I Lemma E.6. For each rule ρ, there is a function f : N→ N such that for all pre-reduction
steps ψ : g 7→m,ρ,m′ h and for all d ∈ N, n ∈ Ng ∩Nh with depthg(n) ≥ f(d), we have that
depthh(n) ≥ d.

Proof. Define f(d) = d+ f(d), where

f(d) = max
{

depthρl(v)
∣∣ v ∈ V<d} , and

V<d =
{
v ∈ Nρr

∣∣ labρr (v) ∈ V, depthρl(v) < d
}
.

Assume that d ∈ N, n ∈ Ng ∩ Nh with depthg(n) ≥ f(d). In order to show that
depthh(n) ≥ d, we assume some π ∈ Ph(n) and show that |π| ≥ d. We consider two cases.

If π does not pass through m′ in h, then π ∈ Pg(n), too. Hence,

|π| ≥ depthg(n) ≥ f(d) ≥ d.

Otherwise, if π does pass through m′ in h, then π = π1 · π2 · π3 such that π1 ∈ Ph(m′)
and π2 ∈ Pρr(v) for some variable node v in ρr. If |π2| ≥ d, then |π| ≥ d. Otherwise, if
|π2| < d, then we know that depthρr (v) < d. Hence, v ∈ V<d and, thus, f(d) ≥ depthρl(v).

Let π′2 be a shortest position of v in ρl, i.e. depthρl(v) = |π′2| and π′ = π1 ·π′2 ·π3 ∈ Pg(n).
Consequently,

|π′| ≥ depthg(n) ≥ f(d) = d+ f(d) ≥ d+ |π′2| .

By subtracting |π′2| on both sides of the resulting inequation, we obtain that |π′| − |π′2| ≥ d:

|π| ≥ |π1|+ |π3| = |π′| − |π′2| ≥ d.

J

From the infinitary strip lemma for p-convergence, we can then rather easily derive the
corresponding infinitary strip lemma for m-convergence.
Theorem 4.5 (infinitary strip lemma: m-convergence). Let R be a weakly non-
overlapping GRS, φ : g0 →n,ρ h0 a reduction step in R, S : g0 �m R gα, and φ/S : gα →≤1 hα.
Then we have that S/φ : h0 �m R hα.

Proof of Theorem 4.5. By Theorem 3.7, S is also p-converging to gα, which, according
to Theorem 4.4, yields that S/φ : h0 �p R hα. Thus it remains to be shown that S/φ also
m-converges to hα. By Corollary 3.13 it suffices to show that no open prefix of S has volatile
positions.

Let T = (h′ι →mι h
′
ι+1)ι<β be an open prefix of S/φ. Then there is some open prefix

S′ = (gι →nι gι+1)ι<γ of S such that T = S′/φ. We show that T has no volatile positions
by showing that (depthh′ι(mι))ι<β tends to infinity.

Each mι is a residual of some nι′ by a ρ-reduction step or an empty reduction. Let
τ : β → γ be the corresponding function such that mι = nτ(ι)//Tτ(ι), i.e. mι is the residual
of nτ(ι) by the reduction Tτ(ι) = φ/S|τ(ι). According to Lemma E.6, we thus find a function
f : N→ N such that depthh′ι(mι) ≥ d for each d with depthgτ(ι)

(nτ(ι)) ≥ f(d). Thus, the fact
that, by m-convergence of S′, (depthgι(nι))ι<γ tends to infinity implies that (depthh′ι(mι))ι<β
tends to infinity. J
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