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Overview

1. Motivation
I Why term graphs?
I Why infinitary term graph rewriting?
I Why Böhm reduction?

2. Böhm Reduction on Terms

3. Böhm Reduction on Term Graphs
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Soundness & Completeness
Soundness of finite reductions
For every left-linear, left-finite GRS R we have
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1R. Kennaway et al. “On the adequacy of graph rewriting for simulating term
rewriting”. In: ACM Transactions on Programming Languages and Systems (1994).
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Infinitary Graph Rewriting – Motivation

I A common formalism
I study correspondences between infinitary TRSs and

finitary GRSs

I Lazy evaluation
I infinitary term rewriting only covers non-strictness
I however: lazy evaluation = non-strictness + sharing

I lambda calculi with letrec2, 3

I these calculi are non-confluent
I but there is a notion of infinite normal forms

2Z. M. Ariola and S. Blom. “Skew confluence and the lambda calculus with
letrec”. In: Annals of Pure and Applied Logic (2002).

3C. Grabmayer and J. Rochel. “Maximal Sharing in the Lambda Calculus with
Letrec”. In: ICFP. 2014.
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Example: Cyclic Sharing
Term graph rules for a :: x → b :: a :: x
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Problems of Infintary Graph Rewriting
Confluence of Orthogonal Systems
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This paper
Study two techniques to solve these problems

I Böhm reduction

I partial order infinitary rewriting

In previous work

I both yield confluence for infinitary term
rewriting4, 5

I partial order approach yields completeness
property for infinitary term graph rewriting6

4R. Kennaway, V. van Oostrom, and F.-J. de Vries. “Meaningless Terms in
Rewriting”. In: J. Funct. Logic Programming (1999).

5B. “Partial Order Infinitary Term Rewriting”. In: LMCS (2014).
6B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: RTA.
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Infinitary Term Rewriting
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Böhm Reduction

Idea

I terms like f ω and gω are
considered meaningless

I for each meaningless term
t, add rule t → ⊥

I meaningless terms are
characterised by a set of
axioms

f (g(f (g(. . . ))))

f ω gω

⊥

Böhm reduction7, 8
Böhm reduction = infinitary rewriting with ⊥-rules

7R. Kennaway et al. “Infinitary lambda calculus”. In: Theoretical Computer
Science (1997).

8R. Kennaway, V. van Oostrom, and F.-J. de Vries. “Meaningless Terms in
Rewriting”. In: J. Funct. Logic Programming (1999).
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Partial Order Infinitary Rewriting

I Alternative characterisation of Böhm reduction

I Changes the notion of convergence instead of
adding rules

9

(uses a partial order instead of a metric)

The Good & The Bad

+ less ad hoc

+ no need for infinitely many reduction rules

- captures only a particular set of meaningless
terms (namely: root-active terms)

9B. “Partial Order Infinitary Term Rewriting”. In: LMCS (2014).
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Example: Convergence of a Reduction

R = {a→ g(a)}
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Example: Non-Convergence

R =

{
a→ g(a)

h(x)→ h(g(x))
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Partial Order Convergence
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Properties of Orthogonal TRS
property metric Böhm red.

part. order

compression 4 4

4

inf. strip lemma 4 4

4

developments 8 4

4

inf. confluence 8 4

4

inf. normalisation 8 4

4

Theorem
If R is an orthogonal TRS and B the Böhm
extension of R (w.r.t. root-active terms), then

s �p R t iff s �m B t.

13 / 17



Properties of Orthogonal TRS
property metric Böhm red. part. order
compression 4 4 4
inf. strip lemma 4 4 4
developments 8 4 4
inf. confluence 8 4 4
inf. normalisation 8 4 4

Theorem
If R is an orthogonal TRS and B the Böhm
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property metric Böhm red. part. order
compression 4 ? 4
inf. strip lemma 4 4 4
developments 8 4 4
inf. normalisation 8 4 4
inf. confluence 8 ? ?

inf. confluence
modulo bisim.

8 4 4

Theorem
If R is an orth. GRS and B the Böhm extension of
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Soundness & Completeness
Soundness of metric convergence
For every left-linear, left-finite GRS R we have
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Working with Term Graphs
Some Observations

I Term graphs can be messy
I Very operational style of term graph rewriting
I Böhm reduction is not left-linear

I But: sharing simplifies some things
I Reduction produces no duplication
I Residuals & developments are easier

16 / 17



Working with Term Graphs
Some Observations

I Term graphs can be messy
I Very operational style of term graph rewriting
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Future Work

I Infinitary confluence for term graphs

I Coinductive definition of infinitary term graph
rewriting

I Axiomatic account of meaningless term graphs

I Partial-order reduction corresponding to Böhm
reductions other than root-active terms
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The Metric Model of Infinitary Rewriting
Convergence
based on the ‘usual’ complete metric space on terms

d(s, t) = 2−n

n = depth of the shallowest discrepancy of s and t

Convergence of reductions
(a.k.a. strong convergence)

I convergence in the metric space, and

I rewrite rules are applied (eventually) at
increasingly large depth

 convergence of a reduction: depth at which the
rewrite rules are applied tends to infinity
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Partial Order Infinitary Rewriting
Partial order on terms

I partial terms: terms with additional constant ⊥
I partial order ≤⊥ reads as: “is less defined than”

I ≤⊥ is a complete semilattice
(= cpo + glbs of non-empty sets)

Convergence: limit inferior
lim infι→α tι =

⊔
β<α

d
β≤ι<α tι

I intuition: eventual persistence of nodes in the tree

I strong convergence: limit inferior of the contexts
of the reduction
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Metric on Term Graphs
Depth of a node = length of a shortest path from
the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

I relabelling all nodes at depth d with ⊥, and

I removing all nodes that thus become
unreachable from the root.

Metric on term graphs

d(g , h) = 2−n

Where n = maximum depth d s.t. g†d ∼= h†d .
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A Partial Order on Term Graphs – How?

⊥-homomorphisms φ : g →⊥ h

I homomorphism condition suspended on
⊥-nodes

I allow mapping of ⊥-nodes to arbitrary nodes

Proposition
For all terms s, t: s ≤⊥ t iff ∃φ : s →⊥ t

Definition
For all term graphs g , h, let g ≤⊥ h iff there is some
φ : g →⊥ h.
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R = { n(x , y)→ n + 1(x , y) | n ∈ N }.
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11R. Kennaway et al. “On the adequacy of graph rewriting for simulating term
rewriting”. In: ACM Transactions on Programming Languages and Systems (1994).
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Example: Acyclic Sharing
Term graph rule for from(x)→ x :: from(s(x))

froml

x

::r

from

s

Reductions:
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0

::

0 from

s

::

0 ::
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0 ::

s :

s
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