Böhm Reduction in Infinitary Term Graph Rewriting Systems

Patrick Bahr

IT University of Copenhagen

Overview

1. Motivation

- Why term graphs?
- Why infinitary term graph rewriting?
- Why Böhm reduction?

2. Böhm Reduction on Terms

3. Böhm Reduction on Term Graphs

 $a \rightarrow b$

 $a \rightarrow b$

 $a \rightarrow b$

For every left-linear, left-finite GRS ${\mathcal R}$ we have

¹R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

For every left-linear, left-finite GRS ${\mathcal R}$ we have

¹R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Completeness property

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Completeness property

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Completeness property

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Completeness property

Infinitary Graph Rewriting – Motivation

- A common formalism
 - study correspondences between infinitary TRSs and finitary GRSs

 $^{^2} Z.$ M. Ariola and S. Blom. "Skew confluence and the lambda calculus with letrec". In: Annals of Pure and Applied Logic (2002).

³C. Grabmayer and J. Rochel. "Maximal Sharing in the Lambda Calculus with Letrec". In: *ICFP*. 2014.

Infinitary Graph Rewriting – Motivation

- A common formalism
 - study correspondences between infinitary TRSs and finitary GRSs
- Lazy evaluation
 - infinitary term rewriting only covers non-strictness
 - however: lazy evaluation = non-strictness + sharing

 $^{^2} Z.$ M. Ariola and S. Blom. "Skew confluence and the lambda calculus with letrec". In: Annals of Pure and Applied Logic (2002).

³C. Grabmayer and J. Rochel. "Maximal Sharing in the Lambda Calculus with Letrec". In: *ICFP*. 2014.

Infinitary Graph Rewriting – Motivation

- A common formalism
 - study correspondences between infinitary TRSs and finitary GRSs
- Lazy evaluation
 - infinitary term rewriting only covers non-strictness
 - however: lazy evaluation = non-strictness + sharing
- ► lambda calculi with letrec^{2,3}
 - these calculi are non-confluent
 - but there is a notion of infinite normal forms

 $^{^2} Z.$ M. Ariola and S. Blom. "Skew confluence and the lambda calculus with letrec". In: Annals of Pure and Applied Logic (2002).

 $^{^{3}\}text{C.}$ Grabmayer and J. Rochel. "Maximal Sharing in the Lambda Calculus with Letrec". In: *ICFP*. 2014.

5/17

This paper

Study two techniques to solve these problems

- Böhm reduction
- partial order infinitary rewriting

⁴R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: *J. Funct. Logic Programming* (1999).

⁵B. "Partial Order Infinitary Term Rewriting". In: LMCS (2014).

⁶B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: *RTA*. 2012.

This paper

Study two techniques to solve these problems

- Böhm reduction
- partial order infinitary rewriting

In previous work

- both yield confluence for infinitary term rewriting^{4,5}
- partial order approach yields completeness property for infinitary term graph rewriting⁶

⁴R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: *J. Funct. Logic Programming* (1999).

⁵B. "Partial Order Infinitary Term Rewriting". In: LMCS (2014).

⁶B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: *RTA*. 2012.

Infinitary Term Rewriting

for Orthogonal Term Rewriting Systems

$$f(x) \to x$$
 $g(x) \to x$

g

g

g

$$f(g(f(g(f(g(\cdots)))))))$$

for Orthogonal Term Rewriting Systems

 $f(x) \rightarrow x$

 $g(x) \rightarrow x$

for Orthogonal Term Rewriting Systems

 $f(x) \rightarrow x$

 $g(x) \rightarrow x$

for Orthogonal Term Rewriting Systems

for Orthogonal Term Rewriting Systems

Böhm Reduction

Idea

- ▶ terms like f^ω and g^ω are considered meaningless
- for each meaningless term t, add rule $t \rightarrow \bot$
- meaningless terms are characterised by a set of axioms

⁷R. Kennaway et al. "Infinitary lambda calculus". In: *Theoretical Computer Science* (1997).

⁸R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: *J. Funct. Logic Programming* (1999).

Böhm Reduction

Idea

- ▶ terms like f^ω and g^ω are considered meaningless
- for each meaningless term t, add rule $t \rightarrow \bot$
- meaningless terms are characterised by a set of axioms

⁷R. Kennaway et al. "Infinitary lambda calculus". In: *Theoretical Computer Science* (1997).

⁸R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: *J. Funct. Logic Programming* (1999).

Böhm Reduction

Idea

- ▶ terms like f^ω and g^ω are considered meaningless
- for each meaningless term t, add rule $t \rightarrow \bot$
- meaningless terms are characterised by a set of axioms

Böhm reduction = infinitary rewriting with \perp -rules

⁷R. Kennaway et al. "Infinitary lambda calculus". In: *Theoretical Computer Science* (1997).

⁸R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: *J. Funct. Logic Programming* (1999).

Partial Order Infinitary Rewriting

- Alternative characterisation of Böhm reduction
- Changes the notion of convergence instead of adding rules
 - (uses a partial order instead of a metric)

⁹B. "Partial Order Infinitary Term Rewriting". In: LMCS (2014).

Partial Order Infinitary Rewriting

- Alternative characterisation of Böhm reduction
- Changes the notion of convergence instead of adding rules (uses a partial order instead of a metric)

The Good & The Bad

- + less ad hoc
- + no need for infinitely many reduction rules
 - captures only a particular set of meaningless terms (namely: root-active terms)

⁹B. "Partial Order Infinitary Term Rewriting". In: LMCS (2014).

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

Example: Convergence of a Reduction f

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

Example: Convergence of a Reduction Λ

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

Example: Convergence of a Reduction f ้ล G а

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

$$\mathcal{R} = egin{cases} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ h(x) o h(\mathsf{g}(x)) \end{cases}$$

а h

$$\mathcal{R} = egin{cases} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{cases}$$

$$\mathcal{R} = egin{cases} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{cases}$$

$$\mathcal{R} = egin{cases} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{cases}$$

$$\mathcal{R} = egin{cases} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{cases}$$

$$\mathcal{R} = egin{cases} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{cases}$$

$$\mathcal{R} = egin{cases} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{cases}$$

$$\mathcal{R} = egin{cases} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{cases}$$

$$\mathcal{R} = \begin{cases} a o g(a) \\ h(x) o h(g(x)) \end{cases}$$

$$\mathcal{R} = \begin{cases} a \to g(a) \\ h(x) \to h(g(x)) \end{cases}$$

Example: Non-Convergence

Partial Order Convergence

Partial Order Convergence

Partial Order Convergence

Properties of Orthogonal TRS

property	metric	Böhm red.	
compression	~	 ✓ 	
inf. strip lemma	v	 ✓ 	
developments	×	 Image: A set of the set of the	
inf. confluence	×	 Image: A second s	
inf. normalisation	×	 	

Properties of Orthogonal TRS

property	metric	Böhm red.	part. order
compression	v	 ✓ 	V
inf. strip lemma	V	 ✓ 	 ✓
developments	×	 ✓ 	 ✓
inf. confluence	×	 ✓ 	 ✓
inf. normalisation	×	 Image: A set of the set of the	~

Properties of Orthogonal TRS

property	metric	Böhm red.	part. order
compression	 ✓ 	 ✓ 	 ✓
inf. strip lemma	v	 ✓ 	 ✓
developments	×	 ✓ 	 Image: A set of the set of the
inf. confluence	×	 ✓ 	 Image: A set of the set of the
inf. normalisation	×	 Image: A set of the set of the	~

Theorem

If \mathcal{R} is an orthogonal TRS and \mathcal{B} the Böhm extension of \mathcal{R} (w.r.t. root-active terms), then

$$s \xrightarrow{P}_{\mathcal{R}} t$$
 iff $s \xrightarrow{m}_{\mathcal{B}} t$.

Term Graph Rewriting

Properties of Orthogonal GRS			
property	metric	Böhm red.	part. order
compression	 ✓ 	?	 ✓
inf. strip lemma	 ✓ 	 ✓ 	 ✓
developments	×	 ✓ 	 Image: A set of the set of the
inf. normalisation	×	 ✓ 	 Image: A set of the set of the
inf. confluence	×	?	?

Properties of Or	thogon	al GRS	
property	metric	Böhm red.	part. order
compression	 ✓ 	?	 Image: A start of the start of
inf. strip lemma	 ✓ 	 ✓ 	 ✓
developments	×	 ✓ 	 ✓
inf. normalisation	×	 ✓ 	 ✓
inf. confluence	×	?	?
inf. confluence modulo bisim.	×	~	v

Properties of Orthogonal GRS			
property	metric		part. order
compression	 ✓ 	?	 ✓
inf. strip lemma	 ✓ 	 ✓ 	 ✓
developments	×	V	 ✓
inf. normalisation	X		 ✓
inf. confluence	×	?	?
inf. confluence modulo bisim.	×	v	~

Theorem

If \mathcal{R} is an orth. GRS and \mathcal{B} the Böhm extension of \mathcal{R} (w.r.t. root-active term graphs), then

 $g \xrightarrow{\mathcal{B}}_{\mathcal{R}} h$ iff $g \xrightarrow{\mathcal{M}}_{\mathcal{B}} h$.

Soundness & Completeness Soundness of metric convergence For every left-linear, left-finite GRS R we have

¹⁰B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: *RTA*. 2012.

Soundness & Completeness Soundness of metric convergence For every left-linear, left-finite GRS \mathcal{R} we have

 $\frac{\mathcal{R}}{\mathcal{U}(\cdot)} \stackrel{g}{\underset{\substack{\downarrow}{(\mathcal{R})}}{}} \stackrel{g}{\underset{s}{\overset{p}{\longrightarrow}}} \stackrel{h}{\underset{\substack{\nu}{(\cdot)}}{}} \stackrel{h}{\underset{p}{\longrightarrow}} \stackrel{h}{\underset{\substack{\nu}{(\cdot)}}{}} \stackrel{h}{\underset{r}{\longrightarrow}} \stackrel{h}{\underset{t}{\longrightarrow}} \stackrel{h}{\underset{t}{\longrightarrow}} \stackrel{h}{\underset{r}{\longrightarrow}} \stackrel{h}{\underset{t}{\longrightarrow}} \stackrel{h}{\underset{t$

¹⁰B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: *RTA*. 2012.

Soundness & Completeness Soundness of metric convergence

For every left-linear, left-finite GRS ${\cal R}$ we have

Completeness property

$$\frac{\mathcal{U}(\mathcal{R})}{\mathcal{U}(\cdot)} \stackrel{s}{\stackrel{p}{\longrightarrow}} t$$

$$\frac{\mathcal{R}}{\mathcal{R}} \quad g$$

¹⁰B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: *RTA*. 2012.

Soundness & Completeness Soundness of metric convergence

For every left-linear, left-finite GRS ${\mathcal R}$ we have

¹⁰B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: *RTA*. 2012. 15/17 Soundness & Completeness Soundness of metric convergence For every left-linear, left-finite GRS R we have

¹⁰B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: *RTA*. 2012. 15/17

Some Observations

- Term graphs can be messy
 - Very operational style of term graph rewriting
 - Böhm reduction is not left-linear
- But: sharing simplifies some things
 - Reduction produces no duplication
 - Residuals & developments are easier

Some Observations

- Term graphs can be messy
 - Very operational style of term graph rewriting
 - Böhm reduction is not left-linear
- But: sharing simplifies some things
 - Reduction produces no duplication
 - Residuals & developments are easier

Example $(g(x) \rightarrow f(x, x))$

Some Observations

- Term graphs can be messy
 - Very operational style of term graph rewriting
 - Böhm reduction is not left-linear
- But: sharing simplifies some things
 - Reduction produces no duplication
 - Residuals & developments are easier
- Weak convergence is even weirder than on terms:

Some Observations

- Term graphs can be messy
 - Very operational style of term graph rewriting
 - Böhm reduction is not left-linear
- But: sharing simplifies some things
 - Reduction produces no duplication
 - Residuals & developments are easier
- Weak convergence is even weirder than on terms:

Future Work

- Infinitary confluence for term graphs
- Coinductive definition of infinitary term graph rewriting
- Axiomatic account of meaningless term graphs
- Partial-order reduction corresponding to Böhm reductions other than root-active terms

Böhm Reduction in Infinitary Term Graph Rewriting Systems

Patrick Bahr

IT University of Copenhagen

The Metric Model of Infinitary Rewriting Convergence

based on the 'usual' complete metric space on terms

$$\mathbf{d}(s,t)=2^{-n}$$

n = depth of the shallowest discrepancy of s and t

The Metric Model of Infinitary Rewriting Convergence

based on the 'usual' complete metric space on terms

$$\mathbf{d}(s,t)=2^{-n}$$

n = depth of the shallowest discrepancy of s and tConvergence of reductions (a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules are applied (eventually) at increasingly large depth

The Metric Model of Infinitary Rewriting Convergence

based on the 'usual' complete metric space on terms

$$\mathbf{d}(s,t)=2^{-n}$$

n = depth of the shallowest discrepancy of s and tConvergence of reductions (a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules are applied (eventually) at increasingly large depth
- convergence of a reduction: depth at which the rewrite rules are applied tends to infinity
 18/17

Partial Order Infinitary Rewriting Partial order on terms

- partial terms: terms with additional constant \perp
- ▶ partial order \leq_{\perp} reads as: "is less defined than"
- ≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Partial Order Infinitary Rewriting Partial order on terms

- partial terms: terms with additional constant \perp
- partial order \leq_{\perp} reads as: "is less defined than"
- ≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence: limit inferior

 $\liminf_{\iota \to \alpha} t_{\iota} = \bigsqcup_{\beta < \alpha} \prod_{\beta \le \iota < \alpha} t_{\iota}$

Partial Order Infinitary Rewriting Partial order on terms

- partial terms: terms with additional constant \perp
- partial order \leq_{\perp} reads as: "is less defined than"
- ≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence: limit inferior

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes in the tree
- strong convergence: limit inferior of the contexts of the reduction

Metric on Term Graphs

Depth of a node = length of a shortest path from the root to the node.

Metric on Term Graphs

Depth of a node = length of a shortest path from the root to the node.

- Truncation of term graphs
- The truncation $g \dagger d$ is obtained from g by
 - relabelling all nodes at depth d with \perp , and
 - removing all nodes that thus become unreachable from the root.

Metric on Term Graphs

Depth of a node = length of a shortest path from the root to the node.

- Truncation of term graphs
- The truncation $g \dagger d$ is obtained from g by
 - relabelling all nodes at depth d with \perp , and
 - removing all nodes that thus become unreachable from the root.

Metric on term graphs

$$\mathbf{d}(g,h)=2^{-n}$$

Where n = maximum depth d s.t. $g \dagger d \cong h \dagger d$.

A Partial Order on Term Graphs – How?

 \perp -homomorphisms $\phi: g \rightarrow_{\perp} h$

- homomorphism condition suspended on ⊥-nodes
- ► allow mapping of *⊥*-nodes to arbitrary nodes

A Partial Order on Term Graphs – How?

 \perp -homomorphisms $\phi: g \rightarrow_{\perp} h$

- homomorphism condition suspended on ⊥-nodes
- ► allow mapping of *⊥*-nodes to arbitrary nodes

Proposition

For all terms $s, t: s \leq_{\perp} t$ iff $\exists \phi: s \rightarrow_{\perp} t$

A Partial Order on Term Graphs – How?

 \perp -homomorphisms $\phi: g \rightarrow_{\perp} h$

- homomorphism condition suspended on ⊥-nodes
- ► allow mapping of *⊥*-nodes to arbitrary nodes

Proposition

For all terms $s, t: s \leq_{\perp} t$ iff $\exists \phi : s \rightarrow_{\perp} t$

Definition

For all term graphs g, h, let $g \leq_{\perp} h$ iff there is some $\phi: g \rightarrow_{\perp} h$.

$\mathcal{R} = \{ \underline{n}(x, y) \rightarrow \underline{n+1}(x, y) \mid n \in \mathbb{N} \}.$

¹¹R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

$$\mathcal{R} = \{ \underline{n}(x, y) \rightarrow \underline{n+1}(x, y) \mid n \in \mathbb{N} \}.$$

¹¹R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

¹¹R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

¹¹R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

Reductions:

from † 0

Reductions:

