Böhm Reduction in Infinitary Term Graph Rewriting Systems

Patrick Bahr

IT University of Copenhagen
Overview

1. Motivation
 - Why term graphs?
 - Why infinitary term graph rewriting?
 - Why Böhm reduction?

2. Böhm Reduction on Terms

3. Böhm Reduction on Term Graphs
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]

unravel

\[g \quad h \]
\[a \quad g \quad a \]
\[a \]

\[a \rightarrow b \]
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]

\[a \rightarrow b \]

unravel

\[f \]

\[g \]

\[h \]

\[b \]
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]

\[a \rightarrow b \]
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]
From Terms to Term Graphs
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]

unravel

\[f \quad g \quad h \]

\[b \quad g \quad f \]

\[b \quad g \quad h \]

\[b \quad g \]

\[b \quad \rightarrow \quad c \]
From Terms to Term Graphs

\[
f(g(a), h(g(a), a))
\]

unravel

\[
b \rightarrow c
\]
From Terms to Term Graphs

\[f(g(a), h(g(a), a)) \]

unravel

\[b \rightarrow c \]
Soundness & Completeness

Soundness of finite reductions

For every left-linear, left-finite GRS \mathcal{R} we have

$$\begin{align*}
\mathcal{R} & \quad g \\
\mathcal{U}(\cdot) & \quad \downarrow \\
\mathcal{U}(\mathcal{R}) & \quad s \\
\star & \quad h
\end{align*}$$

Soundness & Completeness

Soundness of finite reductions

For every left-linear, left-finite GRS \mathcal{R} we have

\[\mathcal{R} \quad g \quad \rightarrow^* \quad h \]

\[\mathcal{U}(\cdot) \quad \mathcal{U}(\mathcal{R}) \quad s \quad \rightarrow \quad t \]

Soundness & Completeness

Soundness of finite reductions

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\begin{align*}
\mathcal{R} & \quad g \\
\mathcal{U}(\cdot) \downarrow & \\
\mathcal{U}(\mathcal{R}) & \quad s \\
\rightarrow & \\
\rightarrow^* & \quad h \\
\rightarrow & \\
\mathcal{U}(\cdot) \downarrow & \\
\mathcal{U}(\cdot) \uparrow & \\
\mathcal{R} & \quad g \\
\rightarrow & \\
\rightarrow & \quad t \\
\rightarrow & \\
\rightarrow & \quad t
\end{align*}
\]

Completeness property

\[
\begin{align*}
\mathcal{U}(\mathcal{R}) & \quad s \\
\mathcal{U}(\cdot) \uparrow & \\
\mathcal{U}(\cdot) & \quad \text{regular} \\
\rightarrow & \\
\rightarrow & \quad t \\
\rightarrow & \\
\rightarrow & \quad t
\end{align*}
\]

\footnote{R. Kennaway et al. “On the adequacy of graph rewriting for simulating term rewriting”. In: ACM Transactions on Programming Languages and Systems (1994).}
Soundness & Completeness

Soundness of finite reductions

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\begin{align*}
\mathcal{R} & \quad g \\
\mathcal{U}(\cdot) & \downarrow \\
\mathcal{U}(\mathcal{R}) & \quad s
\end{align*}
\xrightarrow{\text{regular}}
\begin{align*}
\quad & \rightarrow \\
\quad & \quad h
\end{align*}
\]

Completeness property

\[
\begin{align*}
\mathcal{U}(\mathcal{R}) & \quad s \\
\mathcal{U}(\cdot) & \uparrow \\
\mathcal{R} & \quad g
\end{align*}
\xrightarrow{\text{regular}}
\begin{align*}
\quad & \rightarrow \\
\quad & \quad t
\end{align*}
\]

\[
\begin{align*}
\mathcal{U}(\cdot) & \downarrow \\
\mathcal{U}(\cdot) & \downarrow \\
\quad & \rightarrow \\
\quad & \quad h
\end{align*}
\]

Soundness & Completeness

Soundness of finite reductions

For every left-linear, left-finite GRS \mathcal{R} we have

\[\mathcal{R} \quad g \quad \mathcal{U}(\cdot) \quad \mathcal{U}(\mathcal{R}) \quad s \quad \rightarrow^* \quad h \]

Completeness property

\[\mathcal{U}(\mathcal{R}) \quad s \quad \rightarrow^{\text{regular}} \quad t \]

\[\mathcal{R} \quad g \quad \rightarrow^* \quad h \]

Soundness & Completeness

Soundness of finite reductions

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\begin{array}{c}
\mathcal{R} \\
\mathcal{U}(\cdot) \\
\mathcal{U}(\mathcal{R})
\end{array}
\xrightarrow{\text{regular}}
\begin{array}{c}
g \\
\mathcal{U}(\cdot) \\
\mathcal{U}(\mathcal{R})
\end{array}
\xrightarrow{*}
\begin{array}{c}
h \\
\mathcal{U}(\cdot) \\
\mathcal{U}(\mathcal{R})
\end{array}
\]

Completeness property

\[
\begin{array}{c}
\mathcal{R} \\
\mathcal{U}(\cdot) \\
\mathcal{U}(\mathcal{R})
\end{array}
\xrightarrow{\text{regular}}
\begin{array}{c}
g \\
\mathcal{U}(\cdot) \\
\mathcal{U}(\mathcal{R})
\end{array}
\xrightarrow{\text{regular}}
\begin{array}{c}
t \\
\mathcal{U}(\cdot) \\
\mathcal{U}(\mathcal{R})
\end{array}
\xrightarrow{*}
\begin{array}{c}
t' \\
\mathcal{U}(\cdot) \\
\mathcal{U}(\mathcal{R})
\end{array}
\]

Infinitary Graph Rewriting – Motivation

- A common formalism
 - study correspondences between infinitary TRSs and finitary GRSs

Infinitary Graph Rewriting – Motivation

- A common formalism
 - study correspondences between infinitary TRSs and finitary GRSs
- Lazy evaluation
 - infinitary term rewriting only covers non-strictness
 - however: lazy evaluation = non-strictness + sharing

Infinitary Graph Rewriting – Motivation

- A common formalism
 - study correspondences between infinitary TRSs and finitary GRSs

- Lazy evaluation
 - infinitary term rewriting only covers non-strictness
 - however: lazy evaluation = non-strictness + sharing

- lambda calculi with letrec\(^2,^3\)
 - these calculi are non-confluent
 - but there is a notion of infinite normal forms

\(^3\)C. Grabmayer and J. Rochel. “Maximal Sharing in the Lambda Calculus with Letrec”. In: ICFP. 2014.
Example: Cyclic Sharing

Term graph rules for \(a :: x \rightarrow b :: a :: x \)

\(\rho_1 : \quad \underline{l} :: \quad \underline{r} :: \)

\(a \quad x \quad b \quad :: \)

\(a \)
Example: Cyclic Sharing

Term graph rules for $a :: x \rightarrow b :: a :: x$

\[
\rho_1 : \quad L :: \quad R ::
\]

\[
\begin{array}{c}
\xymatrix{
a \ar[r]
& x \\
& b \\
& a}
\end{array}
\]

Reductions:

\[
\begin{array}{c}
\xymatrix{
\vdots \ar[r]
& a \\
& b \\
& a
}\end{array}
\]

\[
\begin{array}{c}
\xymatrix{
\vdots \ar[r]^\rho_1
& b \\
& a \\
& b
}\end{array}
\]

\[
\begin{array}{c}
\xymatrix{
\vdots \ar[r]^\rho_1
& b \\
& a \\
& b
}\end{array}
\]

\[
\begin{array}{c}
\xymatrix{
\vdots \ar[r]^\rho_1
& b \\
& a \\
& b
}\end{array}
\]

\[
\begin{array}{c}
\xymatrix{
\vdots \ar[r]^\rho_1
& b \\
& a \\
& b
}\end{array}
\]
Example: Cyclic Sharing

Term graph rules for $a :: x \rightarrow b :: a :: x$

$\rho_1 : \begin{array}{c}
\vdash \\
\vdash
\end{array} \quad \begin{array}{c}
r \\
r
\end{array}

\begin{array}{c}
a \\
a
\end{array} \xrightarrow{\rho_1} \begin{array}{c}
x \\
x \quad b
\end{array} \xrightarrow{\rho_1} \begin{array}{c}
\vdash \\
\vdash
\end{array}

Reductions:

$\vdash \quad \vdash \xrightarrow{\rho_1} \begin{array}{c}
\vdash \\
\vdash
\end{array} \begin{array}{c}
b \\
b \quad a
\end{array} \xrightarrow{\rho_1} \begin{array}{c}
\vdash \\
\vdash
\end{array}$
Example: Cyclic Sharing

Term graph rules for \(a :: x \rightarrow b :: a :: x \)

\[\rho_1 : \downarrow :: \quad r :: \quad \rho_2 : \downarrow :: \quad r :: \]

\[a \quad x \quad b \quad :: \]

Reductions:

\[a \quad \rho_1 \quad b \quad :: \quad \rho_1 \quad b \quad :: \quad \rho_1 \quad b \quad :: \quad \rho_1 \]

\[a \quad :: \quad b \quad \rho_1 \quad a \quad :: \quad b \quad :: \quad \rho_1 \quad a \quad :: \quad b \quad :: \quad \rho_1 \]

\[\cdots \quad b \quad :: \quad \cdots \quad b \quad :: \quad \cdots \quad b \quad :: \quad \cdots \]
Example: Cyclic Sharing

Term graph rules for $a :: x \rightarrow b :: a :: x$

$\rho_1 : \begin{array}{c}
\text{l} :: \\
\text{a} \\
\text{x} \\
\text{b} \\
\text{r} :: \\
\text{a}
\end{array}$

$\rho_2 : \begin{array}{c}
\text{l} :: \\
\text{a} \\
\text{x} \\
\text{b} \\
\text{r} :: \\
\text{a}
\end{array}$

Reductions:
Problems of Infintary Graph Rewriting

Confluence of Orthogonal Systems

\[g \xrightarrow{\cdot} g_2 \xrightarrow{\cdot} g_1 \]
Problems of Infintary Graph Rewriting
Confluence of Orthogonal Systems

\[g \rightarrow g_2 \]
\[g_1 \rightarrow g' \]
Problems of Infintary Graph Rewriting
Confluence of Orthogonal Systems

\[g \rightarrow g_2 \]

\[g_1 \rightarrow _ \rightarrow g \]

\[_ \rightarrow g_1 \rightarrow _ \rightarrow g \]

\[g \rightarrow g_2 \]

\[g_1 \rightarrow _ \rightarrow g \]

\[_ \rightarrow g_1 \rightarrow _ \rightarrow g \]

\[g \rightarrow g_2 \]

\[g_1 \rightarrow _ \rightarrow g \]

\[_ \rightarrow g_1 \rightarrow _ \rightarrow g \]

\[g \rightarrow g_2 \]

\[g_1 \rightarrow _ \rightarrow g \]

\[_ \rightarrow g_1 \rightarrow _ \rightarrow g \]

\[g \rightarrow g_2 \]

\[g_1 \rightarrow _ \rightarrow g \]

\[_ \rightarrow g_1 \rightarrow _ \rightarrow g \]

\[g \rightarrow g_2 \]

\[g_1 \rightarrow _ \rightarrow g \]

\[_ \rightarrow g_1 \rightarrow _ \rightarrow g \]
Problems of Infintary Graph Rewriting
Confluence of Orthogonal Systems

Completeness

\[\mathcal{U}(\mathcal{R}) \quad s \quad \mathcal{U}(\cdot) \quad \uparrow \quad \mathcal{U}(\cdot) \quad t \]
Problems of Infintary Graph Rewriting

Confluence of Orthogonal Systems

Completeness

\[\mathcal{U}(\mathcal{R}) \quad s \quad \overrightarrow{\mathcal{U}(\cdot)} \quad \mathcal{U}(\cdot) \quad \overleftarrow{\mathcal{R}} \quad g \quad \overrightarrow{\mathcal{U}(\cdot)} \quad t \quad \overrightarrow{t'} \quad \mathcal{U}(\cdot) \quad \overleftarrow{\mathcal{R}} \quad h \]
Problems of Infintary Graph Rewriting
Confluence of Orthogonal Systems

Completeness

\[\mathcal{U}(\mathcal{R}) \quad s \quad \mathcal{U}(\cdot) \quad \mathcal{U}(\cdot) \quad t \quad t' \]

\[\mathcal{R} \quad g \quad \mathcal{U}(\cdot) \quad \mathcal{U}(\cdot) \quad h \]
This paper
Study two techniques to solve these problems

- Böhm reduction
- partial order infinitary rewriting

5 B. “Partial Order Infinitary Term Rewriting”. In: *LMCS* (2014).

6 B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: *RTA*. 2012.
This paper

Study two techniques to solve these problems

- Böhm reduction
- partial order infinitary rewriting

In previous work

- both yield confluence for infinitary term rewriting\(^4,5\)
- partial order approach yields completeness property for infinitary term graph rewriting\(^6\)

\(^5\) B. “Partial Order Infinitary Term Rewriting”. In: *LMCS* (2014).

\(^6\) B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: *RTA*. 2012.
Infinitary Term Rewriting
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \quad \text{and} \quad g(x) \rightarrow x \]
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \quad \text{and} \quad g(x) \rightarrow x \]
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \quad g(x) \rightarrow x \]
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \quad \text{and} \quad g(x) \rightarrow x \]
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \quad \text{and} \quad g(x) \rightarrow x \]
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \]

\[g(x) \rightarrow x \]
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \quad g(x) \rightarrow x \]
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \quad g(x) \rightarrow x \]
Failure of Infinitary Confluence
for Orthogonal Term Rewriting Systems

\[f(x) \rightarrow x \quad g(x) \rightarrow x \]
Böhm Reduction

Idea

- terms like f^ω and g^ω are considered meaningless
- for each meaningless term t, add rule $t \rightarrow \bot$
- meaningless terms are characterised by a set of axioms

\[f(g(f(g(\ldots)))) \]

\[f^\omega \]

\[g^\omega \]

Böhm Reduction

Idea

- terms like f^ω and g^ω are considered meaningless
- for each meaningless term t, add rule $t \rightarrow \bot$
- meaningless terms are characterised by a set of axioms

Böhm Reduction

Idea

- terms like \(f^\omega \) and \(g^\omega \) are considered meaningless
- for each meaningless term \(t \), add rule \(t \rightarrow \bot \)
- meaningless terms are characterised by a set of axioms

Böhm reduction = infinitary rewriting with \(\bot \)-rules

Partial Order Infinitary Rewriting

- Alternative characterisation of Böhm reduction
- Changes the notion of convergence instead of adding rules
 (uses a partial order instead of a metric)

°B. “Partial Order Infinitary Term Rewriting”. In: *LMCS* (2014).
Partial Order Infinitary Rewriting

- Alternative characterisation of Böhm reduction
- Changes the notion of convergence instead of adding rules
 (uses a partial order instead of a metric)

The Good & The Bad

+ less ad hoc
+ no need for infinitely many reduction rules
 - captures only a particular set of meaningless terms (namely: root-active terms)

B. “Partial Order Infinitary Term Rewriting”. In: LMCS (2014).
Example: Convergence of a Reduction

\[\mathcal{R} = \{ a \rightarrow g(a) \} \]
Example: Convergence of a Reduction

\[\mathcal{R} = \{ a \rightarrow g(a) \} \]
Example: Convergence of a Reduction

\[\mathcal{R} = \{ a \rightarrow g(a) \} \]
Example: Convergence of a Reduction

\[\mathcal{R} = \{ a \rightarrow g(a) \} \]
Example: Convergence of a Reduction

\[\mathcal{R} = \{ a \rightarrow g(a) \} \]
Example: Convergence of a Reduction

\[\mathcal{R} = \{ a \rightarrow g(a) \} \]
Example: Convergence of a Reduction

\[\mathcal{R} = \{ a \rightarrow g(a) \} \]
Example: Convergence of a Reduction

\[R = \{ a \to g(a) \} \]
Example: Convergence of a Reduction

\[R = \{ a \rightarrow g(a) \} \]
Example: Convergence of a Reduction

\[\mathcal{R} = \{ a \rightarrow g(a) \} \]

\[f(a) \xrightarrow{\omega} \mathcal{R} f(g^\omega) \]
Example: Non-Convergence

\[R = \begin{cases}
 a \rightarrow g(a) \\
 h(x) \rightarrow h(g(x))
\end{cases} \]
Example: Non-Convergence

\[\mathcal{R} = \begin{cases}
 a \rightarrow g(a) \\
 h(x) \rightarrow h(g(x))
\end{cases} \]
Example: Non-Convergence

\[\mathcal{R} = \left\{ \begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array} \right. \]
Example: Non-Convergence

\[\mathcal{R} = \begin{cases}
 a \rightarrow g(a) \\
 h(x) \rightarrow h(g(x))
\end{cases} \]
Example: Non-Convergence

\[\mathcal{R} = \begin{cases}
 a \rightarrow g(a) \\
 h(x) \rightarrow h(g(x))
\end{cases} \]
Example: Non-Convergence

\[\mathcal{R} = \begin{cases}
 a \rightarrow g(a) \\
 h(x) \rightarrow h(g(x))
\end{cases} \]
Example: Non-Convergence

\[R = \begin{cases}
 a \to g(a) \\
 h(x) \to h(g(x))
\end{cases} \]
Example: Non-Convergence

\[\mathcal{R} = \begin{cases}
 a \to g(a) \\
 h(x) \to h(g(x))
\end{cases} \]
Example: Non-Convergence

\[R = \left\{ \begin{array}{l}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array} \right. \]
Example: Non-Convergence

\[\mathcal{R} = \begin{cases}
 a \rightarrow g(a) \\
 h(x) \rightarrow h(g(x))
\end{cases} \]
Example: Non-Convergence

\[\mathcal{R} = \begin{cases}
 a \rightarrow g(a) \\
 h(x) \rightarrow h(g(x))
\end{cases} \]
Example: Non-Convergence

\[R = \begin{cases}
 a \rightarrow g(a) \\
 h(x) \rightarrow h(g(x))
\end{cases} \]
Partial Order Convergence

Eventually stable:

\(\bot \) \text{-converges to} \(\frac{12}{17} \)
eventually stable:
Partial Order Convergence

Eventually stable:

p-converges to $\frac{12}{17}$
Properties of Orthogonal TRS

<table>
<thead>
<tr>
<th>property</th>
<th>metric</th>
<th>Böhm red.</th>
</tr>
</thead>
<tbody>
<tr>
<td>compression</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. strip lemma</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>developments</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>inf. confluence</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>inf. normalisation</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>
Properties of Orthogonal TRS

<table>
<thead>
<tr>
<th>property</th>
<th>metric</th>
<th>Böhm red.</th>
<th>part. order</th>
</tr>
</thead>
<tbody>
<tr>
<td>compression</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>inf. strip lemma</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>developments</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>inf. confluence</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>inf. normalisation</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Properties of Orthogonal TRS

<table>
<thead>
<tr>
<th>property</th>
<th>metric</th>
<th>Böhm red.</th>
<th>part. order</th>
</tr>
</thead>
<tbody>
<tr>
<td>compression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. strip lemma</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>developments</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. confluence</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. normalisation</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Theorem

If \mathcal{R} is an orthogonal TRS and \mathcal{B} the Böhm extension of \mathcal{R} (w.r.t. root-active terms), then

$$s \xrightarrow{R} \mathcal{R} t \iff s \xrightarrow{m} \mathcal{B} t.$$
Term Graph Rewriting
Properties of Orthogonal GRS

<table>
<thead>
<tr>
<th>property</th>
<th>metric</th>
<th>Böhm red.</th>
<th>part. order</th>
</tr>
</thead>
<tbody>
<tr>
<td>compression</td>
<td>✓</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>inf. strip lemma</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>developments</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. normalisation</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. confluence</td>
<td>✗</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Properties of Orthogonal GRS

<table>
<thead>
<tr>
<th>property</th>
<th>metric</th>
<th>Böhm red.</th>
<th>part. order</th>
</tr>
</thead>
<tbody>
<tr>
<td>compression</td>
<td>✓</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>inf. strip lemma</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>developments</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. normalisation</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. confluence</td>
<td>x</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>inf. confluence modulo bisim.</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Properties of Orthogonal GRS

<table>
<thead>
<tr>
<th>property</th>
<th>metric</th>
<th>Böhm red.</th>
<th>part. order</th>
</tr>
</thead>
<tbody>
<tr>
<td>compression</td>
<td>✓</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>inf. strip lemma</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>developments</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. normalisation</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inf. confluence</td>
<td>x</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>inf. confluence modulo bisim.</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Theorem

If \(R \) is an orth. GRS and \(B \) the Böhm extension of \(R \) (w.r.t. root-active term graphs), then

\[
g \xrightarrow{R} h \quad \text{iff} \quad g \xrightarrow{m} B h.
\]
Soundness & Completeness

Soundness of metric convergence
For every left-linear, left-finite GRS \mathcal{R} we have

$$\begin{array}{ccc}
\mathcal{R} & g & \xrightarrow{p} \\
\mathcal{U}(\cdot) & \downarrow & h \\
\mathcal{U}(\mathcal{R}) & s
\end{array}$$

\[10\] B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: RTA. 2012.
Soundness & Completeness

Soundness of metric convergence

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\overbrace{\mathcal{R}}^g \overbrace{\mathcal{U}(\cdot)}^U \overbrace{\mathcal{U}(\mathcal{R})}^s \overset{p}{\longrightarrow} \overbrace{h}^\mathcal{U}(\cdot) \overbrace{\mathcal{U}(\cdot)}^U \overset{p}{\longrightarrow} \overbrace{t}^\mathcal{U}(\cdot)
\]

\[10\]

B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: RTA. 2012.
Soundness & Completeness

Soundness of metric convergence

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\begin{array}{c}
\mathcal{R} \quad g \\
\mathcal{U}(\cdot) & \downarrow \quad \mathcal{U}(\cdot) \\
\mathcal{U}(\mathcal{R}) \quad s & \quad \mathcal{U}(\mathcal{R}) \\
\end{array}
\xrightarrow{p} \quad \begin{array}{c}
\mathcal{R} \\
\mathcal{U}(\cdot) \quad h \\
\mathcal{U}(\cdot) \\
\end{array}
\]

Completeness property

\[
\begin{array}{c}
\mathcal{U}(\mathcal{R}) \quad s \\
\mathcal{U}(\cdot) \quad \uparrow \\
\mathcal{U}(\cdot) \\
\mathcal{R} \\
\end{array}
\xrightarrow{p} \quad \begin{array}{c}
\mathcal{U}(\mathcal{R}) \quad t \\
\mathcal{U}(\cdot) \quad \uparrow \\
\mathcal{U}(\cdot) \\
\end{array}
\]

\[10\] B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: RTA. 2012.
Soundness & Completeness

Soundness of metric convergence

For every left-linear, left-finite GRS \mathcal{R} we have

$$\frac{\mathcal{R} \ g}{\mathcal{U}(\cdot)} \frac{\mathcal{U}(\mathcal{R}) \ s}{\mathcal{U}(\cdot)} \frac{p}{p} \frac{h}{\mathcal{U}(\cdot)} \frac{t}{t}$$

Completeness property

$$\frac{\mathcal{U}(\mathcal{R}) \ s}{\mathcal{U}(\cdot)} \frac{\mathcal{U}(\cdot) \uparrow}{\mathcal{R} \ g} \frac{p}{p} \frac{t}{\mathcal{U}(\cdot) \uparrow} \frac{t'}{p} \frac{h}{\mathcal{U}(\cdot) \uparrow}$$

10B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: RTA. 2012.
Soundness & Completeness

Soundness of metric convergence
For every left-linear, left-finite GRS \mathcal{R} we have

\[\begin{array}{c}
\mathcal{R} \quad g \\
\mathcal{U}(\cdot) \downarrow \\
\mathcal{U}(\mathcal{R}) \quad s
\end{array} \] \quad \mathcal{B} \quad \begin{array}{c}
\mathcal{U}(\cdot) \quad h \\
\mathcal{U}(\mathcal{R}) \quad t
\end{array} \]

Completeness property

\[\begin{array}{c}
\mathcal{R} \quad g \\
\mathcal{U}(\cdot) \uparrow \\
\mathcal{U}(\mathcal{R}) \quad s
\end{array} \] \quad \mathcal{B} \quad \begin{array}{c}
t \quad \mathcal{B} \\
\mathcal{U}(\cdot) \quad t'
\end{array} \quad \begin{array}{c}
\mathcal{R} \quad g \\
\mathcal{U}(\cdot) \uparrow
\end{array} \quad \mathcal{B} \quad \begin{array}{c}
h \quad \mathcal{B}
\end{array} \]

\[^{10} \text{B. “Infinitary Term Graph Rewriting is Simple, Sound and Complete”. In: } \text{RTA. 2012.} \]
Working with Term Graphs

Some Observations

- Term graphs can be messy
 - Very operational style of term graph rewriting
 - Böhm reduction is not left-linear

- But: sharing simplifies some things
 - Reduction produces no duplication
 - Residuals & developments are easier
Working with Term Graphs

Some Observations

- Term graphs can be messy
 - Very operational style of term graph rewriting
 - Böhm reduction is not left-linear

- But: sharing simplifies some things
 - Reduction produces no duplication
 - Residuals & developments are easier

Example \((g(x) \rightarrow f(x, x))\)

\[
\rho: \quad \begin{array}{c}
\downarrow & \quad \downarrow & \quad \downarrow \\
\otimes & \quad \otimes & \quad \otimes \\
\otimes & \quad \otimes & \quad \otimes \\
x & \quad x & \quad x \\
\end{array}
\]

\[
\begin{array}{c}
g \\
\downarrow \\
x \\
\end{array} \quad \xrightarrow{\rho} \quad \begin{array}{c}
f \\
\downarrow \\
c \\
\end{array}
\]
Working with Term Graphs

Some Observations

- Term graphs can be messy
 - Very operational style of term graph rewriting
 - Böhm reduction is not left-linear

- But: sharing simplifies some things
 - Reduction produces no duplication
 - Residuals & developments are easier

- Weak convergence is even weirder than on terms:
Working with Term Graphs

Some Observations

- Term graphs can be messy
 - Very operational style of term graph rewriting
 - Böhm reduction is not left-linear

- But: sharing simplifies some things
 - Reduction produces no duplication
 - Residuals & developments are easier

- Weak convergence is even weirder than on terms:
Future Work

- Infinitary confluence for term graphs
- Coinductive definition of infinitary term graph rewriting
- Axiomatic account of meaningless term graphs
- Partial-order reduction corresponding to Böhm reductions other than root-active terms
Böhm Reduction in Infinitary Term Graph Rewriting Systems

Patrick Bahr

IT University of Copenhagen
The Metric Model of Infinitary Rewriting

Convergence

based on the ‘usual’ complete metric space on terms

\[d(s, t) = 2^{-n} \]

\[n = \text{depth of the shallowest discrepancy of } s \text{ and } t \]
The Metric Model of Infinitary Rewriting

Convergence

based on the ‘usual’ complete metric space on terms

\[d(s, t) = 2^{-n} \]

\(n = \) depth of the shallowest discrepancy of \(s \) and \(t \)

Convergence of reductions

(a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules are applied (eventually) at increasingly large depth
The Metric Model of Infinitary Rewriting

Convergence

based on the ‘usual’ complete metric space on terms

\[d(s, t) = 2^{-n} \]

\(n = \) depth of the shallowest discrepancy of \(s \) and \(t \)

Convergence of reductions

(a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules are applied (eventually) at increasingly large depth

\(\rightsquigarrow \) convergence of a reduction: depth at which the rewrite rules are applied tends to infinity
Partial Order Infinitary Rewriting

Partial order on terms

- **partial terms**: terms with additional constant \perp
- partial order \leq_{\perp} reads as: “is less defined than”
- \leq_{\perp} is a complete semilattice
 (= cpo + glbs of non-empty sets)

Convergence: limit inferior
$\liminf_{\iota \to \alpha} t_{\iota} = \bigsqcup_{\beta < \alpha} d_{\beta} \leq_{\iota < \alpha} t_{\iota}$

Intuition: eventual persistence of nodes in the tree

Strong convergence: limit inferior of the contexts
of the reduction
Partial Order Infinitary Rewriting

Partial order on terms

- partial terms: terms with additional constant \(\bot \)
- partial order \(\leq_\bot \) reads as: “is less defined than”
- \(\leq_\bot \) is a complete semilattice
 (= cpo + glbs of non-empty sets)

Convergence: limit inferior

\[
\liminf_{i \to \alpha} t_i = \bigsqcup_{\beta < \alpha} \prod_{\beta \leq i < \alpha} t_i
\]
Partial Order Infinitary Rewriting

Partial order on terms

- **partial terms**: terms with additional constant \(\perp \)
- **partial order** \(\leq \perp \) reads as: “is less defined than”
- \(\leq \perp \) is a complete semilattice
 (= cpo + glbs of non-empty sets)

Convergence: limit inferior

\[
\liminf_{\iota \to \alpha} t_{\iota} = \bigsqcup_{\beta < \alpha} \bigcap_{\beta \leq \iota < \alpha} t_{\iota}
\]

- intuition: eventual persistence of nodes in the tree
- **strong convergence**: limit inferior of the contexts of the reduction
Metric on Term Graphs

Depth of a node = length of a shortest path from the root to the node.

Metric on term graphs

\[d(g, h) = 2^n \]

Where

\[n = \text{maximum depth } d \text{ s.t. } g^{\perp d} \sim h^{\perp d}. \]
Metric on Term Graphs

Depth of a node $= \text{length of a shortest path from the root to the node.}$

Truncation of term graphs

The truncation $g \uparrow d$ is obtained from g by

- relabelling all nodes at depth d with \bot, and
- removing all nodes that thus become unreachable from the root.
Metric on Term Graphs

Depth of a node $= \text{length of a shortest path from the root to the node.}$

Truncation of term graphs

The truncation $g^\dagger d$ is obtained from g by

- relabelling all nodes at depth d with \perp, and
- removing all nodes that thus become unreachable from the root.

Metric on term graphs

$$d(g, h) = 2^{-n}$$

Where $n = \text{maximum depth } d \text{ s.t. } g^\dagger d \cong h^\dagger d.$
A Partial Order on Term Graphs – How?

⊥-homomorphisms $\phi: g \rightarrow \bot h$

- homomorphism condition suspended on \bot-nodes
- allow mapping of \bot-nodes to arbitrary nodes
A Partial Order on Term Graphs – How?

⊥-homomorphisms \(\phi: g \rightarrow \bot h \)

- homomorphism condition suspended on \(\bot \)-nodes
- allow mapping of \(\bot \)-nodes to arbitrary nodes

Proposition

For all terms \(s, t \): \(s \leq \bot t \) iff \(\exists \phi: s \rightarrow \bot t \)
A Partial Order on Term Graphs – How?

⊥-homomorphisms \(\phi: g \to \perp h \)

- homomorphism condition suspended on \(\perp \)-nodes
- allow mapping of \(\perp \)-nodes to arbitrary nodes

Proposition

For all terms \(s, t \): \(s \leq_{\perp} t \) iff \(\exists \phi: s \to_{\perp} t \)

Definition

For all term graphs \(g, h \), let \(g \leq_{\perp} h \) iff there is some \(\phi: g \to_{\perp} h \).
\[
\mathcal{R} = \{ \ n(x, y) \rightarrow n+1(x, y) \quad | \quad n \in \mathbb{N} \ \}.
\]

\[\mathcal{R} = \{ \ n(x, y) \rightarrow n+1(x, y) \mid n \in \mathbb{N} \ \} \].

\[\begin{array}{c}
0 \\
\\
0 \\
0 \\
0 \\
0 \\
\end{array} \]

\[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
? \\
\end{array} \]

\[\begin{array}{c}
2 \\
2 \\
? \\
? \\
? \\
\end{array} \]

\[\mathcal{R} = \{ \ n(x, y) \rightarrow n+1(x, y) \mid n \in \mathbb{N} \ \} \]

\[
\begin{array}{c}
\begin{array}{c}
0 \\
\downarrow \\
0 \\
\downarrow \\
0
\end{array} & \begin{array}{c}
1 \\
\downarrow \\
1 \\
\downarrow \\
1
\end{array} & \begin{array}{c}
1 \\
\downarrow \\
2 \\
\downarrow \\
2
\end{array}
\end{array}
\rightarrow
\begin{array}{c}
\begin{array}{c}
1 \\
\downarrow \\
2 \\
\downarrow \\
2
\end{array}
\end{array}
\]

\[R. \ Kennaway \ et \ al. \ “On \ the \ adequacy \ of \ graph \ rewriting \ for \ simulating \ term \ rewriting”. \ \text{In:} \ ACM \ Transactions \ on \ Programming \ Languages \ and \ Systems \ (1994). \]
\[R = \{ \ n(x, y) \rightarrow n+1(x, y) \mid n \in \mathbb{N} \ \} . \]

Example: Acyclic Sharing

Term graph rule for $\text{from}(x) \rightarrow x :: \text{from}(s(x))$
Example: Acyclic Sharing

Term graph rule for \(\text{from}(x) \rightarrow x :: \text{from}(s(x)) \)

Reductions:

\[
\text{from} \quad \downarrow
\]

\[
0
\]
Example: Acyclic Sharing

Term graph rule for $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

Reductions:
Example: Acyclic Sharing

Term graph rule for $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

Reductions:
Example: Acyclic Sharing

Term graph rule for \(\text{from}(x) \rightarrow x :: \text{from}(s(x)) \)

Reductions: