Böhm Reduction in Infinitary Term Graph Rewriting Systems

Patrick Bahr

IT University of Copenhagen

Overview

1. Motivation

- Why term graphs?
-Why infinitary term graph rewriting?
- Why Böhm reduction?

2. Böhm Reduction on Terms
3. Böhm Reduction on Term Graphs

From Terms to Term Graphs

$f(g(a), h(g(a), a))$

From Terms to Term Graphs

$f(g(a), h(g(a), a))$

From Terms to Term Graphs

$f(g(a), h(g(a), a))$

From Terms to Term Graphs

$f(g(a), h(g(a), a))$

From Terms to Term Graphs

$$
a \rightarrow b
$$

From Terms to Term Graphs

$$
a \rightarrow b
$$

From Terms to Term Graphs

$$
a \rightarrow b
$$

From Terms to Term Graphs

Soundness \& Completeness
 Soundness of finite reductions

For every left-linear, left-finite GRS \mathcal{R} we have

${ }^{1}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

Soundness \& Completeness

Soundness of finite reductions

For every left-linear, left-finite GRS \mathcal{R} we have

${ }^{1}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

Soundness \& Completeness

Soundness of finite reductions
For every left-linear, left-finite GRS \mathcal{R} we have

Completeness property

$\underline{\mathcal{U}(\mathcal{R})} s$
regular
$\mathcal{U}(\cdot) \uparrow$
ㄱ g
${ }^{1}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

Soundness \& Completeness

Soundness of finite reductions
For every left-linear, left-finite GRS \mathcal{R} we have

Completeness property

${ }^{1}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

Soundness \& Completeness

Soundness of finite reductions
For every left-linear, left-finite GRS \mathcal{R} we have

Completeness property

${ }^{1}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

Soundness \& Completeness

Soundness of finite reductions
For every left-linear, left-finite GRS \mathcal{R} we have

Completeness property

${ }^{1}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

Infinitary Graph Rewriting - Motivation

- A common formalism
- study correspondences between infinitary TRSs and finitary GRSs

[^0]
Infinitary Graph Rewriting - Motivation

- A common formalism
- study correspondences between infinitary TRSs and finitary GRSs
- Lazy evaluation
- infinitary term rewriting only covers non-strictness
- however: lazy evaluation $=$ non-strictness + sharing

[^1]
Infinitary Graph Rewriting - Motivation

- A common formalism
- study correspondences between infinitary TRSs and finitary GRSs
- Lazy evaluation
- infinitary term rewriting only covers non-strictness
- however: lazy evaluation = non-strictness + sharing
- lambda calculi with letrec ${ }^{2,3}$
- these calculi are non-confluent
- but there is a notion of infinite normal forms

[^2]
Example: Cyclic Sharing

Term graph rules for $a:: x \rightarrow b:: a:: x$

Example: Cyclic Sharing

Term graph rules for $a:: x \rightarrow b:: a:: x$

Reductions:

Example: Cyclic Sharing

Term graph rules for $a:: x \rightarrow b:: a:: x$

Reductions:

Example: Cyclic Sharing

Term graph rules for $a:: x \rightarrow b:: a:: x$

Reductions:

Example: Cyclic Sharing

Term graph rules for $a:: x \rightarrow b:: a:: x$

Reductions:

Problems of Infintary Graph Rewriting

Confluence of Orthogonal Systems

$$
\begin{aligned}
& g \longrightarrow g_{2} \\
& \\
& \vdots \\
& g_{1}
\end{aligned}
$$

Problems of Infintary Graph Rewriting

Confluence of Orthogonal Systems

Problems of Infintary Graph Rewriting

Confluence of Orthogonal Systems

Problems of Infintary Graph Rewriting

Confluence of Orthogonal Systems

Completeness

Problems of Infintary Graph Rewriting

Confluence of Orthogonal Systems

Completeness

Problems of Infintary Graph Rewriting

 Confluence of Orthogonal Systems

Completeness

This paper

Study two techniques to solve these problems

- Böhm reduction
- partial order infinitary rewriting

[^3]
This paper

Study two techniques to solve these problems

- Böhm reduction
- partial order infinitary rewriting

In previous work

- both yield confluence for infinitary term rewriting ${ }^{4,5}$
- partial order approach yields completeness property for infinitary term graph rewriting ${ }^{6}$

[^4]Infinitary Term Rewriting

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x
$$

$$
g(x) \rightarrow x
$$

f	
\downarrow	\rightarrow
g	0
\downarrow	-
f	00
\downarrow	-
g	\bigcirc
\downarrow	
f	\bigcirc
\downarrow	${ }^{\text {E }}$
g	$\underbrace{=}$
;	

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x
$$

$$
g(x) \rightarrow x
$$

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x \quad g(x) \rightarrow x
$$

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x \quad g(x) \rightarrow x
$$

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x
$$

$$
g(x) \rightarrow x
$$

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x \quad g(x) \rightarrow x
$$

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x \quad g(x) \rightarrow x
$$

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x \quad g(x) \rightarrow x
$$

Failure of Infinitary Confluence

for Orthogonal Term Rewriting Systems

$$
f(x) \rightarrow x
$$

$$
g(x) \rightarrow x
$$

Böhm Reduction

Idea

- terms like f^{ω} and g^{ω} are considered meaningless
- for each meaningless term
$f(g(f(g(\ldots))))$

- meaningless terms are characterised by a set of axioms

[^5]
Böhm Reduction

Idea

- terms like f^{ω} and g^{ω} are considered meaningless
$f(g(f(g(\ldots))))$
 axioms

[^6]
Böhm Reduction

Idea

- terms like f^{ω} and g^{ω} are considered meaningless

$$
f(g(f(g(\ldots))))
$$

- for each meaningless term t, add rule $t \rightarrow \perp$
- meaningless terms are characterised by a set of axioms

Böhm reduction $=$ infinitary rewriting with \perp-rules

[^7]
Partial Order Infinitary Rewriting

- Alternative characterisation of Böhm reduction
- Changes the notion of convergence instead of adding rules
(uses a partial order instead of a metric)

Partial Order Infinitary Rewriting

- Alternative characterisation of Böhm reduction
- Changes the notion of convergence instead of adding rules
(uses a partial order instead of a metric)
The Good \& The Bad
+ less ad hoc
+ no need for infinitely many reduction rules
- captures only a particular set of meaningless terms (namely: root-active terms)

[^8]
Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

Example: Convergence of a Reduction

Example: Convergence of a Reduction

$$
\begin{aligned}
& \text { A } \\
& \mathcal{R}=\{a \rightarrow g(a)\} \\
& f(a) \rightarrow \underset{\mathcal{R}}{\omega} f\left(g^{\omega}\right)
\end{aligned}
$$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence

$\mathcal{R}=\left\{\begin{aligned} a & \rightarrow g(a) \\ h(x) & \rightarrow h(g(x))\end{aligned}\right.$

Example: Non-Convergence

$\mathcal{R}=\left\{\begin{aligned} a & \rightarrow g(a) \\ h(x) & \rightarrow h(g(x))\end{aligned}\right.$

Example: Non-Convergence

$\mathcal{R}=\left\{\begin{aligned} a & \rightarrow g(a) \\ h(x) & \rightarrow h(g(x))\end{aligned}\right.$

Example: Non-Convergence

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Partial Order Convergence

Partial Order Convergence

Partial Order Convergence

Properties of Orthogonal TRS

property	metric	Böhm red.
compression	\checkmark	\checkmark
inf. strip lemma	\checkmark	\checkmark
developments	X	\checkmark
inf. confluence	X	\checkmark
inf. normalisation	X	\checkmark

Properties of Orthogonal TRS

Properties of Orthogonal TRS

property	metric	Böhm red.	part. order
compression	\checkmark	\checkmark	\checkmark
inf. strip lemma	\checkmark	\checkmark	\checkmark
developments	X	\checkmark	\checkmark
inf. confluence	X	\checkmark	\checkmark
inf. normalisation	X	\checkmark	\checkmark

Theorem

If \mathcal{R} is an orthogonal $T R S$ and \mathcal{B} the Böhm extension of \mathcal{R} (w.r.t. root-active terms), then

$$
s{\xrightarrow{\mathcal{R}_{\mathcal{R}}}}_{\mathcal{R}} t \quad \text { iff } \quad s \xrightarrow{m_{\mathcal{B}}} t
$$

Term Graph Rewriting

Properties of Orthogonal GRS

property	metric	Böhm red.	part. order
compression	\checkmark	$?$	\checkmark
inf. strip lemma	\checkmark	\checkmark	\checkmark
developments	x	\checkmark	\checkmark
inf. normalisation	x	\checkmark	\checkmark
inf. confluence	X	$?$	$?$

Properties of Orthogonal GRS

 property \mid metric Böhm red. part. ordercompression
inf. strip lemma developments inf. normalisation
inf. confluence
inf. confluence modulo bisim.

V x x x
 x

 ?
Properties of Orthogonal GRS

 property \quad metric Böhm red. part. ordercompression inf. strip lemma developments inf. normalisation inf. confluence inf. confluence modulo bisim.

Theorem
If \mathcal{R} is an orth. GRS and \mathcal{B} the Böhm extension of \mathcal{R} (w.r.t. root-active term graphs), then

$$
g{\xrightarrow{P_{\mathcal{R}}}}_{\mathcal{R}} h \quad \text { iff } \quad g \xrightarrow{m} \mathcal{B} h .
$$

Soundness \& Completeness

Soundness of metric convergence
For every left-linear, left-finite GRS \mathcal{R} we have

${ }^{10}$ B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: RTA.

Soundness \& Completeness

Soundness of metric convergence
For every left-linear, left-finite GRS \mathcal{R} we have

${ }^{10}$ B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: RTA.

Soundness \& Completeness

Soundness of metric convergence
For every left-linear, left-finite GRS \mathcal{R} we have

Completeness property

${ }^{10}$ B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: RTA. 2012.

Soundness \& Completeness

Soundness of metric convergence
For every left-linear, left-finite GRS \mathcal{R} we have

Completeness property

${ }^{10}$ B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: RTA. 2012.

Soundness \& Completeness

Soundness of metric convergence
For every left-linear, left-finite GRS \mathcal{R} we have

Completeness property

${ }^{10}$ B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: RTA. 2012.

Working with Term Graphs

Some Observations

- Term graphs can be messy
- Very operational style of term graph rewriting
- Böhm reduction is not left-linear
- But: sharing simplifies some things
- Reduction produces no duplication
- Residuals \& developments are easier

Working with Term Graphs

Some Observations

- Term graphs can be messy
- Very operational style of term graph rewriting
- Böhm reduction is not left-linear
- But: sharing simplifies some things
- Reduction produces no duplication
- Residuals \& developments are easier

Example $(g(x) \rightarrow f(x, x))$

Working with Term Graphs

Some Observations

- Term graphs can be messy
- Very operational style of term graph rewriting
- Böhm reduction is not left-linear
- But: sharing simplifies some things
- Reduction produces no duplication
- Residuals \& developments are easier
- Weak convergence is even weirder than on terms:

Working with Term Graphs

Some Observations

- Term graphs can be messy
- Very operational style of term graph rewriting
- Böhm reduction is not left-linear
- But: sharing simplifies some things
- Reduction produces no duplication
- Residuals \& developments are easier
- Weak convergence is even weirder than on terms:

Future Work

- Infinitary confluence for term graphs
- Coinductive definition of infinitary term graph rewriting
- Axiomatic account of meaningless term graphs
- Partial-order reduction corresponding to Böhm reductions other than root-active terms

Böhm Reduction in Infinitary Term Graph Rewriting Systems

Patrick Bahr

IT University of Copenhagen

The Metric Model of Infinitary Rewriting

Convergence
based on the 'usual' complete metric space on terms

$$
\mathbf{d}(s, t)=2^{-n}
$$

$n=$ depth of the shallowest discrepancy of s and t

The Metric Model of Infinitary Rewriting

Convergence
based on the 'usual' complete metric space on terms

$$
\mathbf{d}(s, t)=2^{-n}
$$

$n=$ depth of the shallowest discrepancy of s and t
Convergence of reductions
(a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules are applied (eventually) at increasingly large depth

The Metric Model of Infinitary Rewriting

Convergence
based on the 'usual' complete metric space on terms

$$
\mathbf{d}(s, t)=2^{-n}
$$

$n=$ depth of the shallowest discrepancy of s and t
Convergence of reductions
(a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules are applied (eventually) at increasingly large depth
\rightsquigarrow convergence of a reduction: depth at which the rewrite rules are applied tends to infinity

Partial Order Infinitary Rewriting

 Partial order on terms- partial terms: terms with additional constant \perp
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice
($=\mathrm{cpo}+\mathrm{glbs}$ of non-empty sets)

Partial Order Infinitary Rewriting

 Partial order on terms- partial terms: terms with additional constant \perp
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice ($=$ cpo + glbs of non-empty sets)

Convergence: limit inferior

$$
\liminf _{\iota \rightarrow \alpha} t_{\iota}=\bigsqcup_{\beta<\alpha} \prod_{\beta \leq \iota<\alpha} t_{\iota}
$$

Partial Order Infinitary Rewriting

 Partial order on terms- partial terms: terms with additional constant \perp
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice
($=\mathrm{cpo}+\mathrm{glbs}$ of non-empty sets)
Convergence: limit inferior

$$
\liminf _{\iota \rightarrow \alpha} t_{\iota}=\bigsqcup_{\beta<\alpha} \prod_{\beta \leq \iota<\alpha} t_{\iota}
$$

- intuition: eventual persistence of nodes in the tree
- strong convergence: limit inferior of the contexts of the reduction

Metric on Term Graphs

Depth of a node $=$ length of a shortest path from the root to the node.

Metric on Term Graphs

Depth of a node $=$ length of a shortest path from the root to the node.
Truncation of term graphs
The truncation $g \dagger d$ is obtained from g by

- relabelling all nodes at depth d with \perp, and
- removing all nodes that thus become unreachable from the root.

Metric on Term Graphs

Depth of a node $=$ length of a shortest path from the root to the node.
Truncation of term graphs
The truncation $g \dagger d$ is obtained from g by

- relabelling all nodes at depth d with \perp, and
- removing all nodes that thus become unreachable from the root.

Metric on term graphs

$$
\mathbf{d}(g, h)=2^{-n}
$$

Where $n=$ maximum depth d s.t. $g \dagger d \cong h \dagger d$.

A Partial Order on Term Graphs - How?

\perp-homomorphisms $\phi: g \rightarrow_{\perp} h$

- homomorphism condition suspended on
\perp-nodes
- allow mapping of \perp-nodes to arbitrary nodes

A Partial Order on Term Graphs - How?

\perp-homomorphisms $\phi: g \rightarrow_{\perp} h$

- homomorphism condition suspended on \perp-nodes
- allow mapping of \perp-nodes to arbitrary nodes

Proposition
For all terms $s, t: \quad s \leq_{\perp} t \quad i f f \quad \exists \phi: s \rightarrow_{\perp} t$

A Partial Order on Term Graphs - How?

\perp-homomorphisms $\phi: g \rightarrow_{\perp} h$

- homomorphism condition suspended on \perp-nodes
- allow mapping of \perp-nodes to arbitrary nodes

Proposition
For all terms $s, t: \quad s \leq_{\perp} t \quad$ iff $\quad \exists \phi: s \rightarrow_{\perp} t$
Definition
For all term graphs g, h, let $g \leq_{\perp} h$ iff there is some $\phi: g \rightarrow_{\perp} h$.

$$
\mathcal{R}=\{\underline{n}(x, y) \rightarrow \underline{n+1}(x, y) \quad \mid \quad n \in \mathbb{N} \quad\} .
$$

${ }^{11}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

$$
\mathcal{R}=\{\underline{n}(x, y) \rightarrow \underline{n+1}(x, y) \quad \mid \quad n \in \mathbb{N} \quad\} .
$$

$$
\begin{aligned}
& C \frac{0}{1} \\
& C \frac{1}{7} \\
& C \frac{2}{2}
\end{aligned}
$$

${ }^{11}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

$$
\mathcal{R}=\{\underline{n}(x, y) \rightarrow \underline{n+1}(x, y) \quad \mid \quad n \in \mathbb{N}\} .
$$

$$
\begin{aligned}
& C \frac{0}{1} \\
& C \frac{1}{7} \\
& C \frac{2}{2}
\end{aligned}
$$

${ }^{11}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

$$
\mathcal{R}=\{\quad \underline{n}(x, y) \rightarrow \underline{n+1}(x, y) \quad \mid \quad n \in \mathbb{N} \quad\} .
$$

${ }^{11}$ R. Kennaway et al. "On the adequacy of graph rewriting for simulating term rewriting". In: ACM Transactions on Programming Languages and Systems (1994).

Example: Acyclic Sharing

Term graph rule for $\operatorname{from}(x) \rightarrow x::$ from $(s(x))$
1 from

Example: Acyclic Sharing

Term graph rule for $\operatorname{from}(x) \rightarrow x::$ from $(s(x))$

Reductions:
1 from

from
\downarrow
0

Example: Acyclic Sharing

Term graph rule for from $(x) \rightarrow x::$ from $(s(x))$

Reductions:
1 from

$\begin{array}{ccc}\text { from } & \rightarrow & : \begin{array}{l}: \\ \downarrow \\ 0\end{array} \\ & 0 & \\ & & \text { from } \\ s\end{array}$

Example: Acyclic Sharing

Term graph rule for from $(x) \rightarrow x::$ from $(s(x))$

Reductions:
I from

\downarrow
$\stackrel{s}{s}$

Example: Acyclic Sharing

Term graph rule for from $(x) \rightarrow x::$ from $(s(x))$

Reductions:
1 from

[^0]: ${ }^{2}$ Z. M. Ariola and S. Blom. "Skew confluence and the lambda calculus with letrec". In: Annals of Pure and Applied Logic (2002).
 ${ }^{3}$ C. Grabmayer and J. Rochel. "Maximal Sharing in the Lambda Calculus with Letrec". In: ICFP. 2014.

[^1]: ${ }^{2}$ Z. M. Ariola and S. Blom. "Skew confluence and the lambda calculus with letrec". In: Annals of Pure and Applied Logic (2002).
 ${ }^{3}$ C. Grabmayer and J. Rochel. "Maximal Sharing in the Lambda Calculus with Letrec". In: ICFP. 2014.

[^2]: ${ }^{2}$ Z. M. Ariola and S. Blom. "Skew confluence and the lambda calculus with letrec". In: Annals of Pure and Applied Logic (2002).
 ${ }^{3}$ C. Grabmayer and J. Rochel. "Maximal Sharing in the Lambda Calculus with Letrec". In: ICFP. 2014.

[^3]: ${ }^{4}$ R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: J. Funct. Logic Programming (1999).
 ${ }^{5}$ B. "Partial Order Infinitary Term Rewriting". In: LMCS (2014).
 ${ }^{6}$ B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: RTA. 2012.

[^4]: ${ }^{4}$ R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: J. Funct. Logic Programming (1999).
 ${ }^{5}$ B. "Partial Order Infinitary Term Rewriting". In: LMCS (2014).
 ${ }^{6}$ B. "Infinitary Term Graph Rewriting is Simple, Sound and Complete". In: RTA.

[^5]: ${ }^{7}$ R. Kennaway et al. "Infinitary lambda calculus". In: Theoretical Computer Science (1997).
 ${ }^{8}$ R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: J. Funct. Logic Programming (1999).

[^6]: ${ }^{7}$ R. Kennaway et al. "Infinitary lambda calculus". In: Theoretical Computer Science (1997).
 ${ }^{8}$ R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: J. Funct. Logic Programming (1999).

[^7]: ${ }^{7}$ R. Kennaway et al. "Infinitary lambda calculus". In: Theoretical Computer Science (1997).
 ${ }^{8}$ R. Kennaway, V. van Oostrom, and F.-J. de Vries. "Meaningless Terms in Rewriting". In: J. Funct. Logic Programming (1999).

[^8]: ${ }^{9}$ B. "Partial Order Infinitary Term Rewriting". In: LMCS (2014).

