
Generalising Tree Traversals to DAGs

Exploiting Sharing without the Pain

Patrick Bahr1 Emil Axelsson2

1University of Copenhagen
paba@diku.dk

2Chalmers University of Technology
emax@chalmers.se

PEPM 2015

Motivation

Goal
Do stuff on acyclic graphs, but pretend they are only trees.

Primary Application

Abstract Syntax Graphs/Trees:

I type inference

I program analyses

I program transformations

I . . .

2 / 17

Motivation

Goal
Do stuff on acyclic graphs, but pretend they are only trees.

Primary Application

Abstract Syntax Graphs/Trees:

I type inference

I program analyses

I program transformations

I . . .

2 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

The Idea

Γ ` p : τ

Result

7

11

8

10

2

9

5

3

u
n

ravels
to

Attribute Grammar

Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.

3 / 17

What’s the Catch?

It doesn’t work in general.

But: it does work for many cases.

Our Contribution

I Identify classes of AGs for which this approach works.

I Prototype implementation in Haskell.

I Case studies and benchmarks.

4 / 17

What’s the Catch?

It doesn’t work

in general.

But: it does work for many cases.

Our Contribution

I Identify classes of AGs for which this approach works.

I Prototype implementation in Haskell.

I Case studies and benchmarks.

4 / 17

What’s the Catch?

It doesn’t work in general.

But: it does work for many cases.

Our Contribution

I Identify classes of AGs for which this approach works.

I Prototype implementation in Haskell.

I Case studies and benchmarks.

4 / 17

What’s the Catch?

It doesn’t work in general.

But: it does work for many cases.

Our Contribution

I Identify classes of AGs for which this approach works.

I Prototype implementation in Haskell.

I Case studies and benchmarks.

4 / 17

What’s the Catch?

It doesn’t work in general.

But: it does work for many cases.

Our Contribution

I Identify classes of AGs for which this approach works.

I Prototype implementation in Haskell.

I Case studies and benchmarks.

4 / 17

A Toy Example

data IntTree = Leaf Int
| Node IntTree IntTree

leavesBelow :: Int → IntTree → Set Int

leavesBelow d (Leaf i)
| d 6 0 = Set.singleton i
| otherwise = Set.empty

leavesBelow d (Node t1 t2) =
leavesBelow (d − 1) t1

∪ leavesBelow (d − 1) t2

d
ep

th

le
av

es

5 / 17

A Toy Example

data IntTree = Leaf Int
| Node IntTree IntTree

leavesBelow :: Int → IntTree → Set Int

leavesBelow d (Leaf i)
| d 6 0 = Set.singleton i
| otherwise = Set.empty

leavesBelow d (Node t1 t2) =
leavesBelow (d − 1) t1

∪ leavesBelow (d − 1) t2

d
ep

th

le
av

es

5 / 17

A Toy Example

data IntTree = Leaf Int
| Node IntTree IntTree

leavesBelow :: Int → IntTree → Set Int

leavesBelow d (Leaf i)
| d 6 0 = Set.singleton i
| otherwise = Set.empty

leavesBelow d (Node t1 t2) =
leavesBelow (d − 1) t1

∪ leavesBelow (d − 1) t2

d
ep

th

le
av

es

5 / 17

Traversal on Graphs

A B

C

d
ep

th
le

av
es

⊕d ′
1 d ′

2

d1 d2

For which traversals is this correct?

6 / 17

Traversal on Graphs

A B

C

d
ep

th
le

av
es

⊕d ′
1 d ′

2

d1 d2

For which traversals is this correct?

6 / 17

Traversal on Graphs

A B

C

d
ep

th
le

av
es

⊕

d ′
1 d ′

2

d1 d2

For which traversals is this correct?

6 / 17

Traversal on Graphs

A B

C

d
ep

th
le

av
es

⊕d ′
1 d ′

2

d1 d2

For which traversals is this correct?

6 / 17

Traversal on Graphs

A B

C

d
ep

th
le

av
es

⊕d ′
1 d ′

2

d1 d2

For which traversals is this correct?

6 / 17

But before that, let’s implement it!

data IntTree

F a

= Leaf Int
| Node IntTree IntTree

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow = runAG leavesBelowS leavesBelow I

leavesBelowG :: Int → Dag IntTreeF → Set Int
leavesBelowG = runAGDag min leavesBelowS leavesBelow I

⊕

7 / 17

But before that, let’s implement it!

data IntTree

F

a = Leaf Int
| Node a a

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow = runAG leavesBelowS leavesBelow I

leavesBelowG :: Int → Dag IntTreeF → Set Int
leavesBelowG = runAGDag min leavesBelowS leavesBelow I

⊕

7 / 17

But before that, let’s implement it!

data IntTreeF a = Leaf Int
| Node a a

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow = runAG leavesBelowS leavesBelow I

leavesBelowG :: Int → Dag IntTreeF → Set Int
leavesBelowG = runAGDag min leavesBelowS leavesBelow I

⊕

7 / 17

But before that, let’s implement it!

data IntTreeF a = Leaf Int
| Node a a

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow = runAG leavesBelowS leavesBelow I

leavesBelowG :: Int → Dag IntTreeF → Set Int
leavesBelowG = runAGDag min leavesBelowS leavesBelow I

⊕

7 / 17

But before that, let’s implement it!

data IntTreeF a = Leaf Int
| Node a a

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow = runAG leavesBelowS leavesBelow I

leavesBelowG :: Int → Dag IntTreeF → Set Int
leavesBelowG = runAGDag min leavesBelowS leavesBelow I

⊕

7 / 17

Implementing the semantic functions

leavesBelow I :: Inh IntTreeF atts Int
leavesBelow I (Leaf i) = ∅
leavesBelow I (Node t1 t2) = t1 7→ d & t2 7→ d
where d = above − 1

leavesBelowS :: (Int ∈ atts)⇒ Syn IntTreeF atts (Set Int)
leavesBelowS (Leaf i)
| (above :: Int) 6 0 = Set.singleton i
| otherwise = Set.empty

leavesBelowS (Node t1 t2) = below t1 ∪ below t2

8 / 17

Implementing the semantic functions

leavesBelow I :: Inh IntTreeF atts Int
leavesBelow I (Leaf i) = ∅
leavesBelow I (Node t1 t2) = t1 7→ d & t2 7→ d
where d = above − 1

leavesBelowS :: (Int ∈ atts)⇒ Syn IntTreeF atts (Set Int)
leavesBelowS (Leaf i)
| (above :: Int) 6 0 = Set.singleton i
| otherwise = Set.empty

leavesBelowS (Node t1 t2) = below t1 ∪ below t2

8 / 17

Correctness

7

11

8

10

2

9

5

3

u
n

ravels
to

Result

&⊕

the same
Attribute Grammar

merge operator

Attribute Grammar

9 / 17

Correctness

7

11

8

10

2

9

5

3

u
n

ravels
to

Result

&⊕

the same
Attribute Grammar

merge operator

Attribute Grammar

9 / 17

Correctness

7

11

8

10

2

9

5

3

u
n

ravels
to

Result

&⊕

the same
Attribute Grammar

merge operator

Attribute Grammar

9 / 17

Correctness

7

11

8

10

2

9

5

3

u
n

ravels
to

Result

&⊕

the same
Attribute Grammar

merge operator

Attribute Grammar

9 / 17

Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) ⊕ an assoc., comm. operator on inherited attributes, and

(3) . such that G is monotone and ⊕ is decreasing w.r.t. ..

If (G ,⊕) terminates on a DAG g with result r ,
then G terminates on U (g) with result r ′ such that r . r ′.

7

11

8

10

2

9

5

3

U
r

r ′

.

& ⊕

10 / 17

Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) ⊕ an assoc., comm. operator on inherited attributes, and

(3) . such that G is monotone and ⊕ is decreasing w.r.t. ..

If (G ,⊕) terminates on a DAG g with result r ,
then G terminates on U (g) with result r ′ such that r . r ′.

7

11

8

10

2

9

5

3

U
r

r ′

.

& ⊕

10 / 17

Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) ⊕ an assoc., comm. operator on inherited attributes, and

(3) . such that G is monotone and ⊕ is decreasing w.r.t. ..

If (G ,⊕) terminates on a DAG g with result r ,
then G terminates on U (g) with result r ′ such that r . r ′.

Example

For the leavesBelow AG, define . as follows:

I on Int: x . y ⇐⇒ x ≤ y

I on Set Int: S . T ⇐⇒ S ⊇ T

=⇒ leavesBelowG d g ⊇ leavesBelow d (U (g))

for leavesBelowG d g ⊆ leavesBelow d (U (g)) see paper

10 / 17

Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) ⊕ an assoc., comm. operator on inherited attributes, and

(3) . such that G is monotone and ⊕ is decreasing w.r.t. ..

If (G ,⊕) terminates on a DAG g with result r ,
then G terminates on U (g) with result r ′ such that r . r ′.

Example

For the leavesBelow AG, define . as follows:

I on Int: x . y ⇐⇒ x ≤ y

I on Set Int: S . T ⇐⇒ S ⊇ T

=⇒ leavesBelowG d g ⊇ leavesBelow d (U (g))

for leavesBelowG d g ⊆ leavesBelow d (U (g)) see paper

10 / 17

Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) ⊕ an assoc., comm. operator on inherited attributes, and

(3) . such that G is monotone and ⊕ is decreasing w.r.t. ..

If (G ,⊕) terminates on a DAG g with result r ,
then G terminates on U (g) with result r ′ such that r . r ′.

Example

For the leavesBelow AG, define . as follows:

I on Int: x . y ⇐⇒ x ≤ y

I on Set Int: S . T ⇐⇒ S ⊇ T

=⇒ leavesBelowG d g ⊇ leavesBelow d (U (g))

for leavesBelowG d g ⊆ leavesBelow d (U (g)) see paper

10 / 17

Termination

I We know: non-circular AGs terminate on any tree.

I But: non-circular AGs may diverge on DAGs.

Example

A

B1 B2

1
2 3

4

A

B

1 2 3 4

Theorem (termination)

Let G, ⊕, and . be as before.

If . is well-founded on inherited attributes,
then (G ,⊕) terminates on any DAG.

11 / 17

Termination

I We know: non-circular AGs terminate on any tree.

I But: non-circular AGs may diverge on DAGs.

Example

A

B1 B2

1
2 3

4

A

B

1 2 3 4

Theorem (termination)

Let G, ⊕, and . be as before.

If . is well-founded on inherited attributes,
then (G ,⊕) terminates on any DAG.

11 / 17

Termination

I We know: non-circular AGs terminate on any tree.

I But: non-circular AGs may diverge on DAGs.

Example

A

B1 B2

1
2 3

4

A

B

1 2 3 4

Theorem (termination)

Let G, ⊕, and . be as before.

If . is well-founded on inherited attributes,
then (G ,⊕) terminates on any DAG.

11 / 17

Correspondence Theorem for Copying AGs

Copying AGs

I inherited attributes are just propagated, not changed

I Example: Bird’s repmin problem.

Theorem (copying AGs)

Let

(1) G be a copying, non-circular AG, and

(2) x ⊕ y ∈ {x , y} for all x , y.
Then

(i) (G ,⊕) terminates on any DAG, and

(ii) LG ,⊕M(g) = JGK (U (g)).

12 / 17

Correspondence Theorem for Copying AGs

Copying AGs

I inherited attributes are just propagated, not changed

I Example: Bird’s repmin problem.

Theorem (copying AGs)

Let

(1) G be a copying, non-circular AG, and

(2) x ⊕ y ∈ {x , y} for all x , y.
Then

(i) (G ,⊕) terminates on any DAG, and

(ii) LG ,⊕M(g) = JGK (U (g)).

12 / 17

Graph Transformations

I Our framework generalises to tree/DAG-transformations

I Idea: attributes may contain trees/DAGs.

7

11

8

10

2

9

5

3

u
n

ravels
to

7

11

8

10

2

9

5

3

& ⊕

u
n

ravels
to

13 / 17

Graph Transformations

I Our framework generalises to tree/DAG-transformations

I Idea: attributes may contain trees/DAGs.

7

11

8

10

2

9

5

3

u
n

ravels
to

7

11

8

10

2

9

5

3

& ⊕

u
n

ravels
to

13 / 17

Graph Transformations

I Our framework generalises to tree/DAG-transformations

I Idea: attributes may contain trees/DAGs.

7

11

8

10

2

9

5

3

u
n

ravels
to

7

11

8

10

2

9

5

3

& ⊕

u
n

ravels
to

13 / 17

Graph Transformations

I Our framework generalises to tree/DAG-transformations

I Idea: attributes may contain trees/DAGs.

7

11

8

10

2

9

5

3

u
n

ravels
to

7

11

8

10

2

9

5

3

& ⊕
u

n
ravels

to

13 / 17

Example: Bird’s Repmin Problem

newtype MinS = MinS Int; newtype MinI = MinI Int

minS :: Syn IntTreeF atts MinS
minS (Leaf i) = MinS i
minS (Node a b) = min (below a) (below b)

minI :: Inh IntTreeF atts MinI
minI = ∅

rep :: (MinI ∈ atts)⇒ Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let MinI i

′ = above
in Leaf i ′

rep (Node a b) = Node a b

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = runRewrite minS minI rep init

where init (MinS i) = MinI i

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = runRewriteDag const minS minI rep init
where init (MinS i) = MinI i

14 / 17

Example: Bird’s Repmin Problem

newtype MinS = MinS Int; newtype MinI = MinI Int

minS :: Syn IntTreeF atts MinS
minS (Leaf i) = MinS i
minS (Node a b) = min (below a) (below b)

minI :: Inh IntTreeF atts MinI
minI = ∅

rep :: (MinI ∈ atts)⇒ Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let MinI i

′ = above
in Leaf i ′

rep (Node a b) = Node a b

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = runRewrite minS minI rep init
where init (MinS i) = MinI i

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = runRewriteDag const minS minI rep init
where init (MinS i) = MinI i

14 / 17

Example: Bird’s Repmin Problem

newtype MinS = MinS Int; newtype MinI = MinI Int

minS :: Syn IntTreeF atts MinS
minS (Leaf i) = MinS i
minS (Node a b) = min (below a) (below b)

minI :: Inh IntTreeF atts MinI
minI = ∅

rep :: (MinI ∈ atts)⇒ Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let MinI i

′ = above
in Leaf i ′

rep (Node a b) = Node a b

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = runRewrite minS minI rep init
where init (MinS i) = MinI i

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = runRewriteDag const minS minI rep init
where init (MinS i) = MinI i 14 / 17

Summary

Our Contributions

I Haskell library to run AGs on DAGs

I Correspondence & termination theorems to prove correctness

More in the paper

I Examples: type inference; circuits

I full theory & proofs

I parametric AGs (→ tech report)

I Benchmarks (→ tech report)

15 / 17

Summary

Our Contributions

I Haskell library to run AGs on DAGs

I Correspondence & termination theorems to prove correctness

More in the paper

I Examples: type inference; circuits

I full theory & proofs

I parametric AGs (→ tech report)

I Benchmarks (→ tech report)

15 / 17

Conclusion

Future and Ongoing Work

I AGs with fixpoint iteration cyclic graphs

I mutually recursive data types and GADTs

I deep pattern matching in AGs

I corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.

I Haskell library source code

I more examples

I benchmarks

Try the compositional datatypes library

> cabal install compdata-dags

16 / 17

http://j.mp/AG-DAG

Conclusion

Future and Ongoing Work

I AGs with fixpoint iteration cyclic graphs

I mutually recursive data types and GADTs

I deep pattern matching in AGs

I corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.

I Haskell library source code

I more examples

I benchmarks

Try the compositional datatypes library

> cabal install compdata-dags

16 / 17

http://j.mp/AG-DAG

Conclusion

Future and Ongoing Work

I AGs with fixpoint iteration cyclic graphs

I mutually recursive data types and GADTs

I deep pattern matching in AGs

I corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.

I Haskell library source code

I more examples

I benchmarks

Try the compositional datatypes library

> cabal install compdata-dags

16 / 17

http://j.mp/AG-DAG

Generalising Tree Traversals to DAGs

Exploiting Sharing without the Pain

Patrick Bahr1 Emil Axelsson2

1University of Copenhagen
paba@diku.dk

2Chalmers University of Technology
emax@chalmers.se

Source Code Repository

http://j.mp/AG-DAG

Haskell Library

> cabal install compdata-dags

http://j.mp/AG-DAG

	Introduction

