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Motivation

Goal
Do stuff on acyclic graphs, but pretend they are only trees.
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Motivation

Goal

Do stuff on acyclic graphs, but pretend they are only trees.

Primary Application

Abstract Syntax Graphs/Trees:
> type inference
> program analyses

» program transformations
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> It's more difficult to get a traversal on graphs right.

Why?

» But: it's more efficient to traverse the graph.
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It doesn’t work in general.
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What's the Catch?

It doesn’t work in general.

But: it does work for many cases.

Our Contribution

» Identify classes of AGs for which this approach works.

> Prototype implementation in Haskell.

» Case studies and benchmarks.
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A Toy Example

data IntTree = Leaf Int
| Node IntTree IntTree

leavesBelow :: Int — IntTree — Set Int

leavesBelow d (Leaf i)
| d <0 = Set.singleton i
| otherwise = Set.empty
leavesBelow d (Node t; tp) =
leavesBelow (d — 1) t;
U leavesBelow (d — 1) t2
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Traversal on Graphs
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Traversal on Graphs

For which traversals is this correct?
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But before that, let's implement it!

data IntTree = Leaf Int
| Node IntTree IntTree

17



But before that, let's implement it!

data IntTree a = Leaf Int
| Node a a

/17



But before that, let's implement it!

data IntTreeF a = Leaf Int
| Node a a

/17



But before that, let's implement it!

data IntTreeF a = Leaf Int
| Node a a

leavesBelow :: Int — Tree IntTreeF — Set Int
leavesBelow = runAG leavesBelow s leavesBelow,
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But before that, let's implement it!

data IntTreeF a = Leaf Int
| Node a a

leavesBelow :: Int — Tree IntTreeF — Set Int
leavesBelow = runAG leavesBelow s leavesBelow,

leavesBelowg :: Int — Dag IntTreeF — Set Int
leavesBelow ¢ = runAGDag min leavesBelow s leavesBelow,
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Implementing the semantic functions

leavesBelow :: Inh IntTreeF atts Int

leavesBelow, (Leaf i) =0

leavesBelow| (Node t; tp) =t — d & tp — d
where d = above — 1
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Implementing the semantic functions

leavesBelow :: Inh IntTreeF atts Int

leavesBelow, (Leaf i) =0

leavesBelow| (Node t; tp) =t — d & tp — d
where d = above — 1

leavesBelows :: (Int € atts) = Syn IntTreeF atts (Set Int)
leavesBelows (Leaf i)

| (above :: Int) <0 = Set.singleton i

| otherwise = Set.empty
leavesBelows (Node t; ty) = below t1 U below t;
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Correctness
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Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) @ an assoc., comm. operator on inherited attributes, and
(3) < such that G is monotone and & is decreasing w.r.t. <.

If (G, ®) terminates on a DAG g with result r,
then G terminates on U (g) with result r' such that r < r'.
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Correspondence Theorems
Theorem (Monotone AGs)
Let
(1) G be a non-circular AG,
(2) @ an assoc., comm. operator on inherited attributes, and
(3) < such that G is monotone and & is decreasing w.r.t. <.

If (G, ®) terminates on a DAG g with result r,
then G terminates on U (g) with result r' such that r < r'.

Example
For the leavesBelow AG, define < as follows:
»onint: xSy < x<y
»onSetnt: SST < SDOT
=  leavesBelow¢ d g DO leavesBelow d (U (g))
for leavesBelow d g C leavesBelow d (U (g)) see paper
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Termination

» We know: non-circular AGs terminate on any tree.

» But: non-circular AGs may diverge on DAGs.
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Termination

» We know: non-circular AGs terminate on any tree.

» But: non-circular AGs may diverge on DAGs.

Example

(A) (A)
Jof/ANG|
P <©<%

Theorem (termination)
Let G, ®, and < be as before.

If < is well-founded on inherited attributes,
then (G, @) terminates on any DAG.
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Correspondence Theorem for Copying AGs
Copying AGs

> inherited attributes are just propagated, not changed

» Example: Bird's repmin problem.
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Correspondence Theorem for Copying AGs

Copying AGs

> inherited attributes are just propagated, not changed

» Example: Bird's repmin problem.

Theorem (copying AGs)
Let
(1) G be a copying, non-circular AG, and
(2) x®y e{x,y} forall x,y.
Then
(i) (G,®) terminates on any DAG, and

(i) (G, ®)(g) =[G (U (g))-

12 /17



Graph Transformations

» Our framework generalises to tree/DAG-transformations
» |dea: attributes may contain trees/DAGs.
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Graph Transformations

» Our framework generalises to tree/DAG-transformations
» |dea: attributes may contain trees/DAGs.
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Example: Bird's Repmin Problem

newtype Mins = Mins Int; newtype Min; = Min; Int

miny :: Inh IntTreeF atts Min,

ming :: Syn IntTreeF atts Ming mins = (
[ =

ming (Leaf i) = Ming i
mins (Node a b) = min (below a) (below b)

rep :: (Min; € atts) = Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let Min; i’ = above

in Leaf i’
rep (Node a b) = Node a b
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rep :: (Min; € atts) = Rewrite IntTreeF atts IntTreeF
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Example: Bird's Repmin Problem

newtype Mins = Mins Int; newtype Min; = Min; Int

miny :: Inh IntTreeF atts Min,

ming :: Syn IntTreeF atts Ming mins = (
[ =

ming (Leaf i) = Ming i
mins (Node a b) = min (below a) (below b)

rep :: (Min; € atts) = Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let Min; i’ = above

in Leaf i’
rep (Node a b) = Node a b

repmin :: Tree IntTreeF — Tree IntTreeF
repmin = runRewrite mins min; rep init
where init (Mins i) = Min; i

repming :: Dag IntTreeF — Dag IntTreeF
repming = runRewriteDag const mins min; rep init

where init (Mins i) = Min; i 1



Summary

Our Contributions

» Haskell library to run AGs on DAGs

» Correspondence & termination theorems to prove correctness
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Summary

Our Contributions

» Haskell library to run AGs on DAGs

» Correspondence & termination theorems to prove correctness

More in the paper

» Examples: type inference; circuits

v

full theory & proofs

v

parametric AGs (— tech report)

v

Benchmarks (— tech report)
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Conclusion
Future and Ongoing Work

» AGs with fixpoint iteration ~~ cyclic graphs
» mutually recursive data types and GADTs
» deep pattern matching in AGs

» corresponding notion of non-circularity for AGs on DAGs
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v

deep pattern matching in AGs

v

corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.
» Haskell library source code
> more examples

» benchmarks

Try the compositional datatypes library
> cabal install compdata-dags
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