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Motivation

Goal
Do stuff on acyclic graphs, but pretend they are only trees.

Primary Application

Abstract Syntax Graphs/Trees:

I type inference

I program analyses

I program transformations

I . . .

2 / 17



Motivation

Goal
Do stuff on acyclic graphs, but pretend they are only trees.

Primary Application

Abstract Syntax Graphs/Trees:

I type inference

I program analyses

I program transformations

I . . .

2 / 17



The Idea
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Why?

I It’s more difficult to get a traversal on graphs right.

I But: it’s more efficient to traverse the graph.
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What’s the Catch?

It doesn’t work in general.

But: it does work for many cases.

Our Contribution

I Identify classes of AGs for which this approach works.

I Prototype implementation in Haskell.

I Case studies and benchmarks.
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A Toy Example

data IntTree = Leaf Int
| Node IntTree IntTree

leavesBelow :: Int → IntTree → Set Int

leavesBelow d (Leaf i)
| d 6 0 = Set.singleton i
| otherwise = Set.empty

leavesBelow d (Node t1 t2) =
leavesBelow (d − 1) t1

∪ leavesBelow (d − 1) t2
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Traversal on Graphs
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But before that, let’s implement it!

data IntTree

F a

= Leaf Int
| Node IntTree IntTree

leavesBelow :: Int → Tree IntTreeF → Set Int
leavesBelow = runAG leavesBelowS leavesBelow I

leavesBelowG :: Int → Dag IntTreeF → Set Int
leavesBelowG = runAGDag min leavesBelowS leavesBelow I

⊕
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Implementing the semantic functions

leavesBelow I :: Inh IntTreeF atts Int
leavesBelow I (Leaf i) = ∅
leavesBelow I (Node t1 t2) = t1 7→ d & t2 7→ d
where d = above − 1

leavesBelowS :: (Int ∈ atts)⇒ Syn IntTreeF atts (Set Int)
leavesBelowS (Leaf i)
| (above :: Int) 6 0 = Set.singleton i
| otherwise = Set.empty

leavesBelowS (Node t1 t2) = below t1 ∪ below t2
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Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) ⊕ an assoc., comm. operator on inherited attributes, and

(3) . such that G is monotone and ⊕ is decreasing w.r.t. ..

If (G ,⊕) terminates on a DAG g with result r ,
then G terminates on U (g) with result r ′ such that r . r ′.
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Example

For the leavesBelow AG, define . as follows:

I on Int: x . y ⇐⇒ x ≤ y

I on Set Int: S . T ⇐⇒ S ⊇ T

=⇒ leavesBelowG d g ⊇ leavesBelow d (U (g))

for leavesBelowG d g ⊆ leavesBelow d (U (g)) see paper
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Termination

I We know: non-circular AGs terminate on any tree.

I But: non-circular AGs may diverge on DAGs.

Example
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Theorem (termination)

Let G , ⊕, and . be as before.

If . is well-founded on inherited attributes,
then (G ,⊕) terminates on any DAG.
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Correspondence Theorem for Copying AGs

Copying AGs

I inherited attributes are just propagated, not changed

I Example: Bird’s repmin problem.

Theorem (copying AGs)

Let

(1) G be a copying, non-circular AG, and

(2) x ⊕ y ∈ {x , y} for all x , y .
Then

(i) (G ,⊕) terminates on any DAG, and

(ii) LG ,⊕M(g) = JGK (U (g)).
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Graph Transformations

I Our framework generalises to tree/DAG-transformations

I Idea: attributes may contain trees/DAGs.
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Example: Bird’s Repmin Problem

newtype MinS = MinS Int; newtype MinI = MinI Int

minS :: Syn IntTreeF atts MinS
minS (Leaf i) = MinS i
minS (Node a b) = min (below a) (below b)

minI :: Inh IntTreeF atts MinI
minI = ∅

rep :: (MinI ∈ atts)⇒ Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let MinI i

′ = above
in Leaf i ′

rep (Node a b) = Node a b

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = runRewrite minS minI rep init

where init (MinS i) = MinI i

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = runRewriteDag const minS minI rep init
where init (MinS i) = MinI i

14 / 17
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Summary

Our Contributions

I Haskell library to run AGs on DAGs

I Correspondence & termination theorems to prove correctness

More in the paper

I Examples: type inference; circuits

I full theory & proofs

I parametric AGs (→ tech report)

I Benchmarks (→ tech report)
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Conclusion

Future and Ongoing Work

I AGs with fixpoint iteration  cyclic graphs

I mutually recursive data types and GADTs

I deep pattern matching in AGs

I corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.

I Haskell library source code

I more examples

I benchmarks

Try the compositional datatypes library

> cabal install compdata-dags
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