Generalising Tree Traversals to DAGs

Exploiting Sharing without the Pain

Patrick Bahr¹ Emil Axelsson²

¹University of Copenhagen paba@diku.dk

²Chalmers University of Technology emax@chalmers.se

PEPM 2015

Motivation

Goal Do stuff on acyclic graphs, but pretend they are only trees.

Motivation

Goal

Do stuff on acyclic graphs, but pretend they are only trees.

Primary Application

Abstract Syntax Graphs/Trees:

- type inference
- program analyses
- program transformations

▶ ...

Why?

- It's more difficult to get a traversal on graphs right.
- But: it's more efficient to traverse the graph.

It doesn't work

It doesn't work in general.

It doesn't work in general.

But: it does work for many cases.

It doesn't work in general.

But: it does work for many cases.

Our Contribution

- Identify classes of AGs for which this approach works.
- Prototype implementation in Haskell.
- Case studies and benchmarks.

A Toy Example

```
data IntTree = Leaf Int
| Node IntTree IntTree
```

A Toy Example

data IntTree = Leaf Int | Node IntTree IntTree

A Toy Example

data IntTree = Leaf Int | Node IntTree IntTree

For which traversals is this correct?

data IntTree = Leaf Int | Node IntTree IntTree

data IntTreeF a = Leaf Int | Node a a

data IntTreeF a = Leaf Int | Node a a

leavesBelow :: Int \rightarrow Tree IntTreeF \rightarrow Set Int *leavesBelow* = runAG leavesBelow₅ leavesBelow₁

data IntTreeF a = Leaf Int | Node a a

leavesBelow :: Int \rightarrow Tree IntTreeF \rightarrow Set Int *leavesBelow* = runAG leavesBelow₅ leavesBelow₁

Implementing the semantic functions

 $\begin{array}{ll} \textit{leavesBelow}_{I} :: \textit{Inh IntTreeF atts Int} \\ \textit{leavesBelow}_{I} (\textit{Leaf i}) &= \emptyset \\ \textit{leavesBelow}_{I} (\textit{Node } t_{1} \ t_{2}) = t_{1} \mapsto d \& t_{2} \mapsto d \\ \textit{where } d = above - 1 \end{array}$

Implementing the semantic functions

 $leavesBelow_{I} :: Inh IntTreeF atts Int$ $leavesBelow_{I} (Leaf i) = \emptyset$ $leavesBelow_{I} (Node t_{1} t_{2}) = t_{1} \mapsto d \& t_{2} \mapsto d$ where d = above - 1

 $\begin{array}{ll} \textit{leavesBelow}_{S} :: (\textit{Int} \in \textit{atts}) \Rightarrow \textit{Syn IntTreeF atts} (\textit{Set Int}) \\ \textit{leavesBelow}_{S} (\textit{Leaf } i) \\ & \mid (\textit{above} :: \textit{Int}) \leqslant 0 & = \textit{Set.singleton } i \\ & \mid \textit{otherwise} & = \textit{Set.empty} \\ \textit{leavesBelow}_{S} (\textit{Node } t_{1} \ t_{2}) = \textit{below } t_{1} \cup \textit{below } t_{2} \end{array}$

Correctness

Correctness

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) \oplus an assoc., comm. operator on inherited attributes, and

(3) \lesssim such that G is monotone and \oplus is decreasing w.r.t. \lesssim .

If (G, \oplus) terminates on a DAG g with result r,

then G terminates on $\mathcal{U}(g)$ with result r' such that $r \lesssim r'$.

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) \oplus an assoc., comm. operator on inherited attributes, and (3) \lesssim such that G is monotone and \oplus is decreasing w.r.t. \lesssim . If (G, \oplus) terminates on a DAG g with result r, then G terminates on $\mathcal{U}(g)$ with result r' such that $r \lesssim r'$.

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) \oplus an assoc., comm. operator on inherited attributes, and (3) \lesssim such that G is monotone and \oplus is decreasing w.r.t. \lesssim . If (G, \oplus) terminates on a DAG g with result r, then G terminates on $\mathcal{U}(g)$ with result r' such that $r \lesssim r'$.

Example

For the *leavesBelow* AG, define \lesssim as follows:

• on Int:
$$x \lesssim y \iff x \leq y$$

• on Set Int: $S \lesssim T \iff S \supseteq T$

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) \oplus an assoc., comm. operator on inherited attributes, and (3) \lesssim such that G is monotone and \oplus is decreasing w.r.t. \lesssim . If (G, \oplus) terminates on a DAG g with result r, then G terminates on $\mathcal{U}(g)$ with result r' such that $r \lesssim r'$.

Example

For the *leavesBelow* AG, define \lesssim as follows:

• on Int:
$$x \lesssim y \iff x \leq y$$

• on Set Int: $S \lesssim T \iff S \supseteq T$

 \implies leavesBelow $_{G}$ d $g \supseteq$ leavesBelow d $(\mathcal{U}(g))$

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) \oplus an assoc., comm. operator on inherited attributes, and (3) \lesssim such that G is monotone and \oplus is decreasing w.r.t. \lesssim . If (G, \oplus) terminates on a DAG g with result r, then G terminates on $\mathcal{U}(g)$ with result r' such that $r \lesssim r'$.

Example

For the *leavesBelow* AG, define \lesssim as follows:

• on Int:
$$x \leq y \iff x \leq y$$

• on Set Int:
$$S \lesssim T \iff S \supseteq T$$

 $\implies \quad \textit{leavesBelow}_{G} \ d \ g \supseteq \textit{leavesBelow} \ d \ (\mathcal{U}(g))$

for $\mathit{leavesBelow}_{G} d g \subseteq \mathit{leavesBelow} d (\mathcal{U}(g))$ see paper

Termination

- ▶ We know: non-circular AGs terminate on any tree.
- But: non-circular AGs may diverge on DAGs.

Termination

- ▶ We know: non-circular AGs terminate on any tree.
- But: non-circular AGs may diverge on DAGs.

Example

Termination

- ▶ We know: non-circular AGs terminate on any tree.
- But: non-circular AGs may diverge on DAGs.

Example

Theorem (termination)

Let G, \oplus , and \lesssim be as before.

If \leq is well-founded on inherited attributes, then (G, \oplus) terminates on any DAG. Correspondence Theorem for Copying AGs

Copying AGs

- inherited attributes are just propagated, not changed
- Example: Bird's repmin problem.

Correspondence Theorem for Copying AGs

Copying AGs

- inherited attributes are just propagated, not changed
- Example: Bird's repmin problem.

Theorem (copying AGs)

Let

(1)
$$G$$
 be a copying, non-circular AG, and

(2)
$$x \oplus y \in \{x, y\}$$
 for all x, y .

Then

(i) (G, \oplus) terminates on any DAG, and (ii) $(G, \oplus)(g) = [G](\mathcal{U}(g)).$

- Our framework generalises to tree/DAG-transformations
- Idea: attributes may contain trees/DAGs.

- Our framework generalises to tree/DAG-transformations
- Idea: attributes may contain trees/DAGs.

- Our framework generalises to tree/DAG-transformations
- Idea: attributes may contain trees/DAGs.

- Our framework generalises to tree/DAG-transformations
- Idea: attributes may contain trees/DAGs.

Example: Bird's Repmin Problem

newtype $Min_S = Min_S Int;$ **newtype** $Min_I = Min_I Int$

 $min_{S} :: Syn IntTreeF atts Min_{S}$ $min_{S} (Leaf i) = Min_{S} i$ $min_{S} (Node a b) = min (below a) (below b)$ $min_{I} :: Inh IntTreeF atts Min_{I}$ $min_{I} = \emptyset$

 $\begin{array}{l} {\it rep:::(Min_l \in atts) \Rightarrow Rewrite \ IntTreeF \ atts \ IntTreeF} \\ {\it rep(Leafi) = let \ Min_l \ i' = above} \\ {\it in \ Leaf \ i'} \\ {\it rep(Node \ a \ b) = Node \ a \ b} \end{array}$

Example: Bird's Repmin Problem

newtype $Min_S = Min_S Int;$ **newtype** $Min_I = Min_I Int$

 $min_{S} :: Syn IntTreeF atts Min_{S}$ $min_{S} (Leaf i) = Min_{S} i$ $min_{S} (Node a b) = min (below a) (below b)$ $min_{I} :: Inh IntTreeF atts Min_{I}$ $min_{I} = \emptyset$

 $\begin{array}{l} {\it rep:::(Min_l \in atts) \Rightarrow Rewrite \ IntTreeF \ atts \ IntTreeF} \\ {\it rep(Leafi) = let \ Min_l \ i' = above \\ {\it in \ Leaf \ i'} \\ {\it rep(Node \ a \ b) = Node \ a \ b} \end{array}$

repmin :: Tree IntTreeF \rightarrow Tree IntTreeF repmin = runRewrite min_S min_I rep init where init (Min_S i) = Min_I i

Example: Bird's Repmin Problem

newtype $Min_S = Min_S Int;$ **newtype** $Min_I = Min_I Int$

min_s :: Syn IntTreeF atts Min_s min_s (Leaf i) = Min_s i min_s (Node a b) = min (below a) (below b) $min_{I} :: Inh IntTreeF atts Min_{I}$ $min_{I} = \emptyset$

 $\begin{array}{l} {\it rep:::(Min_l \in atts) \Rightarrow Rewrite \ IntTreeF \ atts \ IntTreeF} \\ {\it rep(Leafi) = let \ Min_l \ i' = above \\ {\it in \ Leaf \ i'} \\ {\it rep(Node \ a \ b) = Node \ a \ b} \end{array}$

repmin :: Tree IntTreeF \rightarrow Tree IntTreeF repmin = runRewrite min_S min_I rep init where init (Min_S i) = Min_I i

 $repmin_G :: Dag IntTreeF \rightarrow Dag IntTreeF$ $repmin_G = runRewriteDag const min_S min_I rep init$ where init (Min_S i) = Min_I i

Summary

Our Contributions

- Haskell library to run AGs on DAGs
- Correspondence & termination theorems to prove correctness

Summary

Our Contributions

- Haskell library to run AGs on DAGs
- Correspondence & termination theorems to prove correctness

More in the paper

- Examples: type inference; circuits
- full theory & proofs
- parametric AGs (\rightarrow tech report)
- ▶ Benchmarks (→ tech report)

Conclusion

Future and Ongoing Work

- ► AGs with fixpoint iteration ~→ cyclic graphs
- mutually recursive data types and GADTs
- deep pattern matching in AGs
- corresponding notion of non-circularity for AGs on DAGs

Conclusion

Future and Ongoing Work

- ► AGs with fixpoint iteration ~→ cyclic graphs
- mutually recursive data types and GADTs
- deep pattern matching in AGs
- corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.

- Haskell library source code
- more examples
- benchmarks

Conclusion

Future and Ongoing Work

- ► AGs with fixpoint iteration ~→ cyclic graphs
- mutually recursive data types and GADTs
- deep pattern matching in AGs
- corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.

- Haskell library source code
- more examples
- benchmarks

Try the compositional datatypes library

> cabal install compdata-dags

Generalising Tree Traversals to DAGs Exploiting Sharing without the Pain

Patrick Bahr¹ Emil Axelsson²

¹University of Copenhagen paba@diku.dk

²Chalmers University of Technology emax@chalmers.se

Source Code Repository http://j.mp/AG-DAG

Haskell Library

> cabal install compdata-dags