Generalising Tree Traversals to DAGs

Exploiting Sharing without the Pain

Patrick Bahr! Emil Axelsson?

LUniversity of Copenhagen
paba@diku.dk

2Chalmers University of Technology
emax@Qchalmers.se

PEPM 2015

Motivation

Goal
Do stuff on acyclic graphs, but pretend they are only trees.

/17

Motivation

Goal

Do stuff on acyclic graphs, but pretend they are only trees.

Primary Application

Abstract Syntax Graphs/Trees:
> type inference
> program analyses

» program transformations

17

The ldea

3/17

The ldea

/17

The ldea

The ldea

The ldea

The ldea

The ldea

The ldea

¥
‘ |\
ANy

Attribute Grammar %
»

The ldea

00
01 S|aAeJIUN

‘ Result
Attribute Grammar %
»

> It's more difficult to get a traversal on graphs right.

Why?

» But: it's more efficient to traverse the graph.

What's the Catch?

/17

What's the Catch?

It doesn’t work

17

What's the Catch?

It doesn’t work in general.

/17

What's the Catch?

It doesn’t work in general.

But: it does work for many cases.

17

What's the Catch?

It doesn’t work in general.

But: it does work for many cases.

Our Contribution

» Identify classes of AGs for which this approach works.

> Prototype implementation in Haskell.

» Case studies and benchmarks.

17

A Toy Example

data IntTree = Leaf Int
| Node IntTree IntTree

leavesBelow :: Int — IntTree — Set Int

leavesBelow d (Leaf i)
| d <0 = Set.singleton i
| otherwise = Set.empty
leavesBelow d (Node t; tp) =
leavesBelow (d — 1) t;
U leavesBelow (d — 1) t2

5/17

A Toy Example

data IntTree = Leaf Int
| Node IntTree IntTree

leavesBelow :: Int — IntTree — Set Int

leavesBelow d (Leaf i)
| d <0 = Set.singleton i
| otherwise = Set.empty
leavesBelow d (Node t; tp) =
leavesBelow (d — 1) t;
U leavesBelow (d — 1) t2

leaves

5/17

A Toy Example

data IntTree = Leaf Int
| Node IntTree IntTree

leavesBelow :: Int — IntTree — Set Int

leavesBelow d (Leaf i)
| d <0 = Set.singleton i
| otherwise = Set.empty
leavesBelow d (Node t; t) = " AT TTTTAT T
leavesBelow (d — 1) t;
U leavesBelow (d — 1) to

leaves

5/17

Traversal on Graphs

6/17

Traversal on Graphs

6/17

Traversal on Graphs

6/17

Traversal on Graphs

6/17

Traversal on Graphs

For which traversals is this correct?

6/17

But before that, let's implement it!

data IntTree = Leaf Int
| Node IntTree IntTree

17

But before that, let's implement it!

data IntTree a = Leaf Int
| Node a a

/17

But before that, let's implement it!

data IntTreeF a = Leaf Int
| Node a a

/17

But before that, let's implement it!

data IntTreeF a = Leaf Int
| Node a a

leavesBelow :: Int — Tree IntTreeF — Set Int
leavesBelow = runAG leavesBelow s leavesBelow,

17

But before that, let's implement it!

data IntTreeF a = Leaf Int
| Node a a

leavesBelow :: Int — Tree IntTreeF — Set Int
leavesBelow = runAG leavesBelow s leavesBelow,

leavesBelowg :: Int — Dag IntTreeF — Set Int
leavesBelow ¢ = runAGDag min leavesBelow s leavesBelow,

2]

Implementing the semantic functions

leavesBelow :: Inh IntTreeF atts Int

leavesBelow, (Leaf i) =0

leavesBelow| (Node t; tp) =t — d & tp — d
where d = above — 1

17

Implementing the semantic functions

leavesBelow :: Inh IntTreeF atts Int

leavesBelow, (Leaf i) =0

leavesBelow| (Node t; tp) =t — d & tp — d
where d = above — 1

leavesBelows :: (Int € atts) = Syn IntTreeF atts (Set Int)
leavesBelows (Leaf i)

| (above :: Int) <0 = Set.singleton i

| otherwise = Set.empty
leavesBelows (Node t; ty) = below t1 U below t;

Correctness

Result

Ry

unravels to v *

17

Correctness

0} s|eAeJuN

<

.

Result

2
23
\ Attribute Grammar

17

Correctness

0} s|eAeJuN

<

*

Foo

Result

2
23
K Attribute Grammar

17

Correctness

the same
R 4 / Attribute Grammar
D)
T

o * & @ —— merge operator
c
S5
]
5 Result
(%]
t
(o)

<

*

K Attribute Grammar

Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) @ an assoc., comm. operator on inherited attributes, and
(3) < such that G is monotone and & is decreasing w.r.t. <.

If (G, ®) terminates on a DAG g with result r,
then G terminates on U (g) with result r' such that r < r'.

17

Correspondence Theorems
Theorem (Monotone AGs)
Let
(1) G be a non-circular AG,
(2) @ an assoc., comm. operator on inherited attributes, and
(3) < such that G is monotone and & is decreasing w.r.t. <.

If (G, ®) terminates on a DAG g with result r,
then G terminates on U (g) with result r' such that r < r'.

%\»

J

#'/V

10/17

Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) @ an assoc., comm. operator on inherited attributes, and
(3) < such that G is monotone and & is decreasing w.r.t. <.

If (G, ®) terminates on a DAG g with result r,
then G terminates on U (g) with result r' such that r < r'.

Example

For the leavesBelow AG, define < as follows:
»onint: xSy < x<y
»onSetnt: SST < SDOT

10/17

Correspondence Theorems

Theorem (Monotone AGs)

Let

(1) G be a non-circular AG,

(2) @ an assoc., comm. operator on inherited attributes, and
(3) < such that G is monotone and & is decreasing w.r.t. <.

If (G, ®) terminates on a DAG g with result r,
then G terminates on U (g) with result r' such that r < r'.

Example

For the leavesBelow AG, define < as follows:
»onint: xSy < x<y
»onSetnt: SST < SDOT

= leavesBelow¢ d g DO leavesBelow d (U (g))

10/17

Correspondence Theorems
Theorem (Monotone AGs)
Let
(1) G be a non-circular AG,
(2) @ an assoc., comm. operator on inherited attributes, and
(3) < such that G is monotone and & is decreasing w.r.t. <.

If (G, ®) terminates on a DAG g with result r,
then G terminates on U (g) with result r' such that r < r'.

Example
For the leavesBelow AG, define < as follows:
»onint: xSy < x<y
»onSetnt: SST < SDOT
= leavesBelow¢ d g DO leavesBelow d (U (g))
for leavesBelow d g C leavesBelow d (U (g)) see paper

10/17

Termination

» We know: non-circular AGs terminate on any tree.

» But: non-circular AGs may diverge on DAGs.

11 /17

Termination

» We know: non-circular AGs terminate on any tree.

» But: non-circular AGs may diverge on DAGs.

Example

(A) (A)
Jof/ANG|
P <©<%

11 /17

Termination

» We know: non-circular AGs terminate on any tree.

» But: non-circular AGs may diverge on DAGs.

Example

(A) (A)
Jof/ANG|
P <©<%

Theorem (termination)
Let G, ®, and < be as before.

If < is well-founded on inherited attributes,
then (G, @) terminates on any DAG.

11 /17

Correspondence Theorem for Copying AGs
Copying AGs

> inherited attributes are just propagated, not changed

» Example: Bird's repmin problem.

12 /17

Correspondence Theorem for Copying AGs

Copying AGs

> inherited attributes are just propagated, not changed

» Example: Bird's repmin problem.

Theorem (copying AGs)
Let
(1) G be a copying, non-circular AG, and
(2) x®y e{x,y} forall x,y.
Then
(i) (G,®) terminates on any DAG, and

(i) (G, ®)(g) =[G (U (g))-

12 /17

Graph Transformations

» Our framework generalises to tree/DAG-transformations
» |dea: attributes may contain trees/DAGs.

13 /17

Graph Transformations

» Our framework generalises to tree/DAG-transformations
» |dea: attributes may contain trees/DAGs.

g&@

@

>

% ‘ 03 S|oAeIUN

13 /17

Graph Transformations

» Our framework generalises to tree/DAG-transformations
» |dea: attributes may contain trees/DAGs.

g&@

03 s|pAeJIUN

$gr g

13/17

Graph Transformations

» Our framework generalises to tree/DAG-transformations
» |dea: attributes may contain trees/DAGs.

g&@

%

0} s|2AeJun

% 03 s|pAeJIUN
-
\ 4

1,

13 /17

Example: Bird's Repmin Problem

newtype Mins = Mins Int; newtype Min; = Min; Int

miny :: Inh IntTreeF atts Min,

ming :: Syn IntTreeF atts Ming mins = (
[=

ming (Leaf i) = Ming i
mins (Node a b) = min (below a) (below b)

rep :: (Min; € atts) = Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let Min; i’ = above

in Leaf i’
rep (Node a b) = Node a b

14 /17

Example: Bird's Repmin Problem

newtype Mins = Mins Int; newtype Min; = Min; Int

miny :: Inh IntTreeF atts Min,

ming :: Syn IntTreeF atts Ming mins = (
[=

ming (Leaf i) = Ming i
mins (Node a b) = min (below a) (below b)

rep :: (Min; € atts) = Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let Min; i’ = above

in Leaf i’
rep (Node a b) = Node a b

repmin :: Tree IntTreeF — Tree IntTreeF
repmin = runRewrite ming min; rep init
where init (Mins i) = Min; i

14 /17

Example: Bird's Repmin Problem

newtype Mins = Mins Int; newtype Min; = Min; Int

miny :: Inh IntTreeF atts Min,

ming :: Syn IntTreeF atts Ming mins = (
[=

ming (Leaf i) = Ming i
mins (Node a b) = min (below a) (below b)

rep :: (Min; € atts) = Rewrite IntTreeF atts IntTreeF
rep (Leaf i) = let Min; i’ = above

in Leaf i’
rep (Node a b) = Node a b

repmin :: Tree IntTreeF — Tree IntTreeF
repmin = runRewrite mins min; rep init
where init (Mins i) = Min; i

repming :: Dag IntTreeF — Dag IntTreeF
repming = runRewriteDag const mins min; rep init

where init (Mins i) = Min; i 1

Summary

Our Contributions

» Haskell library to run AGs on DAGs

» Correspondence & termination theorems to prove correctness

15 /17

Summary

Our Contributions

» Haskell library to run AGs on DAGs

» Correspondence & termination theorems to prove correctness

More in the paper

» Examples: type inference; circuits

v

full theory & proofs

v

parametric AGs (— tech report)

v

Benchmarks (— tech report)

15 /17

Conclusion
Future and Ongoing Work

» AGs with fixpoint iteration ~~ cyclic graphs
» mutually recursive data types and GADTs
» deep pattern matching in AGs

» corresponding notion of non-circularity for AGs on DAGs

16 /17

http://j.mp/AG-DAG

Conclusion

Future and Ongoing Work

v

AGs with fixpoint iteration ~~ cyclic graphs

v

mutually recursive data types and GADTs

v

deep pattern matching in AGs

v

corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.
» Haskell library source code
> more examples

» benchmarks

16 /17

http://j.mp/AG-DAG

Conclusion

Future and Ongoing Work

v

AGs with fixpoint iteration ~~ cyclic graphs

v

mutually recursive data types and GADTs

v

deep pattern matching in AGs

v

corresponding notion of non-circularity for AGs on DAGs

Implementation

Available from http://j.mp/AG-DAG.
» Haskell library source code
> more examples

» benchmarks

Try the compositional datatypes library
> cabal install compdata-dags

16 /17

http://j.mp/AG-DAG

Generalising Tree Traversals to DAGs

Exploiting Sharing without the Pain

Patrick Bahr! Emil Axelsson?

LUniversity of Copenhagen
paba@diku.dk

2Chalmers University of Technology
emax@chalmers.se

Source Code Repository Haskell Library
http://j.mp/AG-DAG > cabal install compdata-dags

http://j.mp/AG-DAG

	Introduction

