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Abstract. Reasoning about programming languages with non-deter-
ministic semantics entails many difficulties. For instance, to prove cor-
rectness of a compiler for such a language, one typically has to split
the correctness property into a soundness and a completeness part, and
then prove these two parts separately. In this paper, we present a set
of proof rules to prove compiler correctness by a single proof in cal-
culational style. The key observation that led to our proof rules is the
fact that the soundness and completeness proof follow a similar pattern
with only small differences. We condensed these differences into a single
side condition for one of our proof rules. This side condition, however,
is easily discharged automatically by a very simple form of proof search.
We implemented this calculation framework in the Coq proof assistant.
Apart from verifying a given compiler, our proof technique can also be
used to formally derive — from the semantics of the source language — a
compiler that is correct by construction. For such a derivation to succeed
it is crucial that the underlying correctness argument proceeds as a sin-
gle calculation, as opposed to separate calculations of the two directions
of the correctness property. We demonstrate our technique by deriving
a compiler for a simple language with interrupts.

1 Introduction

Formally verifying the correctness of compilers is a difficult and expensive en-
deavour [9]. However, the need for formally verified compilers is a corollary of
the need for formal verification of critical pieces of software; for what good is
your formally verified program if it is garbled by a defective compiler.

These challenges notwithstanding, we pursue an even more ambitious goal
than post hoc verification: Not only do we wish to formally verify the correctness
of a given compiler implementation. Beyond that we aim to derive a compiler
implementation that is correct by construction [3]. That is, given the semantics
of the source language and a high-level specification of the compiler, we wish to
systematically derive a compiler implementation that satisfies the specification.
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This idea has been explored in the literature for quite some time; e.g. by Wand
[14], Meijer [10], Ager et al. [I]. Recently, Bahr and Hutton [4] have shown an
approach that derives a compiler directly from the statement of the compiler
correctness property by performing a calculation proof. The parts of the setup
that are not given up front, i.e. the compiler itself and the target language, reveal
themselves during the calculation proof. Taken together, the final result of the
calculation process is a compiler implementation and a (machine checked) formal
proof of its correctness. In addition, also the virtual machine, which defines the
semantics of the target language, falls out of the calculation proof.

A crucial ingredient of the calculation technique of Bahr and Hutton [4] is
that the correctness argument proceeds “in one go”, such that at any point
during the proof we have a complete view of the computational context and
its invariants. So far it was not known how this technique can be applied to
languages with an inherent non-deterministic semantics. The problem that arises
for these languages is that the compiler correctness property is typically split
into a soundness and a completeness part, which are proved independently; for
example, see Hutton and Wright [7]. Another technical challenge arises from
the fact that the equational reasoning style used by Bahr and Hutton [4] is
incompatible with non-deterministic semantics, which are typically given in the
form of a relation (big-step/small-step operational semantics).

In this paper we improve and generalise the technique of Bahr and Hut-
ton [4] for calculating compilers such that we can calculate compilers for non-
deterministic languages. While our approach works also for proofs by hand, it
works particularly well in a proof assistant such as Coq. In addition to calculat-
ing compilers that are correct by construction, our approach is also applicable
to post hoc compiler verification.

The key contributions of this paper are the following:

— We devise a set of general proof rules for compiler correctness proofs for non-
deterministic languages. These proof rules have been verified in Coq and are
the basis for a calculation framework that we developed in Coq.

— We demonstrate the power of our calculation framework on a number of
examples both in this paper and in the accompanying Coq development. In
particular, we show its effectiveness for both post hoc verification of compil-
ers as well as derivation of correct-by-construction compilers in the style of
Bahr and Hutton [4].

— Apart from the ability to deal with non-determinism, the distinguishing fea-
ture of our approach is that we are able to directly derive a small-step opera-
tional semantics of the virtual machine (instead of a tail-recursive function).

To illustrate the problem we are trying to solve we begin with a simple
non-deterministic toy language along with a compiler for it, which we define in
section [2] In section [3] we present our calculation framework and apply it to
the toy language to prove its compiler correct. In section [4, we illustrate how
our framework can also be used to derive a correct-by-construction compiler
from the specification of its correctness property. We then use this knowledge
in section [5|in order to derive a compiler for a simple language with interrupts
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Fig. 1: Semantics of the language.

(taken from Hutton and Wright [7]). Finally, in section m we discuss limitations
of our approach and outline further work to address these limitations.

This paper uses Coq as a meta language and as a tool for proof automation.
However, familiarity with Coq is not required to follow this paper. Section [0]
covers some technical details of the use of proof automation in Coq, which does
require some familiarity with Coq. Nonetheless, the core idea and the main
contributions of this paper are independent of these technical details.

All calculation proofs in this paper can be found in the accompanying Coq
source code, which is available from the author’s web siteﬂ The Coq development
also includes calculations for languages that extend the interrupt language of
Hutton and Wright [7] with state. Moreover, the source code contains proofs for
all theorems presented in this paper including the correctness of the proof rules
of our calculation framework.

2 A Simple Non-Deterministic Language

To illustrate the problem we aim to solve, we begin with a very simple toy
language. The syntax is given by the following inductive type definition:

Inductive Expr : Set:=Val (n : Z) | Add (e; e2 : Expr) | Rnd (e : Expr).

Apart from integer literals (represented using the type Z) and an addition oper-
ator Add, the language has a construct Rnd to generate a random number. The
intended semantics of an expression Rnd e is that it evaluates e to a number n
and then returns a number m with 0 < m < |n|, where |n| denotes the absolute
value of n. For instance, the expression Add (Rnd (Val 5)) (Val 42) generates a
random number between 0 and 5 and adds 42 to it.

We formally define the semantics of this simple language by a big-step op-
erational semantics [§], writing e |} n to mean that the expression e evaluates
to the number n. The binary relation |} is given by the following inductive type
definition:

Inductive eval : Expr — Z — Prop:=

| evalValn :Valn{n

| evalAddxymn : xym — y{n — Addxy | (m+n)
| evalRndxnm :x{n — 0 < m < |n] - Rndx{m

where "x |} y" := (eval xy) .

! Or directly from https://github.com/pa-ba/calc-comp-rell
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A more readable form of this definition is given in Figure[I] From now on, we shall
give inductive semantic definitions in this form, with the tacit understanding that
it can be easily turned into an inductive type family definition in Coq.

Our compiler for the Expr language will target a simple machine that can
store integer values on a stack and that executes the instruction set given by the
following type definition:

Inductive Instr : Set := PUSH (n : Z) | ADD | RND.

The intuitive semantics of the three instructions above is that

— PUSH n pushes the number n onto the stack,

— ADD replaces the two topmost numbers on the stack with their sum, and

— RND replaces the topmost number n on the stack with a number m such
that 0 < m < |n|.

A program for this target machine is simply a sequence of these instructions,
which is captured by the type Code defined below:

Definition Code := list Instr .

We will use the notation [| for the empty list, and x :: xs for the list with a head
element x and a tail list xs.

Before we give the formal semantics of the target language, we present the
compiler that translates expressions of the source language Expr into the target
language Code. To this end, the compilation function takes an additional argu-
ment of type Code that represents a continuation (cf. Hutton [6, Chapter 13]):

Fixpoint comp’ (e : Expr) (¢ : Code) : Code :=
match e with
| Valn = PUSHn:c
| Addxy = comp' x (comp'y (ADD :: c))
| Rndx = comp’ x (RND :: ¢)
end .

The final compiler is obtained by supplying the empty list of instructions [| as
the initial value of the continuation argument:

Definition comp (e : Expr) : Code := comp’ e [].

For instance, the expression Add (Rnd (Val 5)) (Val 42) compiles to the code
[PUSH 5; RND; PUSH 42; ADD).

Finally, we give the semantics of the target language Code in the form of
a virtual machine [2, [I]: a small-step operational semantics, given by the re-
flexive, transitive closure == of a binary relation = on the type of machine
configurations Conf, which is defined below:

Definition Stack : Set := list Z.
Inductive Conf : Set := conf (c : Code) (s : Stack).



(PUSHn:c,s) = (c,n:s) (VM-PusH)
(ADD::¢,m:un:is)y=(c,(n+m):s) (VM-ADD)
(RND ::¢,n:is) = (c, m::'s) if0 < m < |n| (VM-RND)

Fig. 2: Definition of the virtual machine.

Notation "{ ¢ , s )" :=(confcs).

A configuration describes the state of the virtual machine; it is a pair (c, s)
consisting of a code ¢ and a stack s. The binary relation = describes a single
computation step in the virtual machine: if C = C’, then the virtual machine
transitions from configuration C to configuration C' in one step. The inductive
definition of the relation = is presented in Figure

For example, the code [PUSH 5;RND;PUSH 42; ADD] is executed by the
virtual machine starting with the empty stack as follows:

([PUSH 5; RND; PUSH 42; ADD], [])

— ([RND; PUSH 42; ADD], [5]) (by VM-PUsH)
— ([PUSH 42; ADD], [3]) (by VM-RND)
= ([ADD], [42;3]) (by VM-PUSH)
= ([, [45]) (by VM-ADD)

That is, ([PUSH 5;RND; PUSH 42; ADD], []) == ([], [45]). However, this is not
the only possible execution. The rule for RND allows for more than one successor
configuration after ([RND; PUSH 42; ADD], [5]).

3 Correctness Property

Intuitively, the correctness property of the compiler comp states that for each
expression e, running the code comp e produced by the compiler on the virtual
machine yields the same result as evaluating e according to |}. Taking account
of the non-determinism, the correctness property reads as follows: an expression
e may evaluate to n iff running comp e on the virtual machine may produce
the result n. The “only if” direction of this equivalence expresses completeness,
whereas the “if” direction expresses soundness.

More formally, for the completeness property we want that whenever e || n,
then the virtual machine computes the result n as well, i.e. (comp e, [|) ==
([I, [n])- In order to prove this property by induction, we have to generalise it to
arbitrary c :: Code and s :: Stack as follows:

Vencs, e | n — (comp'ec,s) = (c,n:s) (COMPLETENESS)



Conversely, for the soundness property we want that whenever we have
(comp e, [) == C, then we find some C == ([], [n]) with e |} n.In
other words, any run of the virtual machine can be extended such that it ends
in a result value n such that e || n. We have to generalise this property as well,
in order to be able to prove it by induction. However, simply generalising it to
arbitrary c :: Code and s :: Stack as follows is not enough:

Vecs, (compecs) = C — 3In,C = (c,n=s) Aeln

Unfortunately, the above straightforward generalisation is not true. The problem
is that the given run (comp' e c, s) == C may have gone already beyond the
configuration (c, n :: s). That is, we have that

(comp'ec,s) = (c,nus) = C

Thus, we can in general not expect that C == (c, n ::’s).

To take this situation into account, we follow an approach similar to Hutton
and Wright [7]: we formulate the soundness property in terms of the notion that
a machine configuration C : Conf is barred by a set of configurations S : ConfSet,
denoted C « S, cf. Troelstra and van Dalen [I3]. For the moment, we shall remain
informal about what the type ConfSet of sets of configurations is and appeal to
the intuitive notion of sets. Intuitively, C < S means that any sequence of =-
steps starting from C can be extended such that it passes through a configuration

that is in S, i.e. for any sequence Cp — C; = ... = C, with C = (g, we
find a sequence C, — ... =— C,, such that C; € Sforsome 0 < i < m.
Formally, we define <« by the following inductive rules:
cesS vVD,C = D - D «S iD,C = D
HERE-< STEP-<
C«S C«S

We can then use the relation < to capture the soundness property of the
compiler by the following statement:

Vecs, {(comp'ec,s) < {n {(c,n:s) | el n} (SOUNDNESS)

Here we use the set comprehension notation {n, (c, n :zs) | e | n},
which explicitly mentions the existentially quantified variable n, whose scope
ranges over both the expression (c, n :: s) and the predicate e | n. That is,
{n, {c,n:=s) | e | n} denotes the set of configurations of the form (c, n :: s)
such that e | n holds. In an informal set comprehension notation, one would
typically write {{(c, n::s) | e | n} instead.

The above property does indeed imply the desired soundness
property, i.e. that (comp e, [][) == C implies both C == ([], [n]) and e { n
for some n. This implication is a consequence of the following general property
of the relation «:

Proposition 1. Let S : ConfSet be such that all C € S are in normal form,
i.e. there is no D with C = D. If C; < S and C; =5 Cy, then C, = C;
and C3 € S for some Cs.



In other words, any sequence of =-steps starting from a configuration that
is barred by a set of normal forms S can be extended such that it ends in a
configuration in S. This property is general in the sense that it is independent
of the definition of Conf and =.

For the above proposition to be true, it is important that we have 3D, C =
D as a second antecedent in the STEP-< rule. Without it, we would have C < S
for any normal form C, i.e. any C for which there is no D with C = D. In other
words, we would be able to prove “soundness” even though some computations in
the virtual machine might get stuckE| We will review an example that illustrates
this in section [@

Our goal is to prove soundness and completeness for the compiler in a calcu-
lational style. Such a proof was given by Hutton and Wright [7] (for a much more
interesting language, which we will consider in section . They combine the two
relations = and < into a single relation <€ by defining C € S iff C == S and
C < S, where == is lifted to sets by defining C == S iff C == D for all
D € S. Nonetheless, this calculational proof of Hutton and Wright [7] considers
soundness and completeness separately. In order to combine the two proofs into
a single calculational proof, we have to overcome two obstacles:

Firstly, the completeness proof proceeds by induction on (the proof of) e | n,
whereas the soundness proof proceeds by induction on e. This technical hurdle is
overcome by transforming the completeness proof into an induction on e. While
this approach may not be possible for every language, it does not restrict the
applicability of the proof method as a whole, since the soundness proof is already
an induction on e (cf. discussion in section .

Secondly, the two proofs utilise proof principles that are not valid for both
== and <. For example, the completeness proof makes use of the fact that
C = S implies C == S, whereas C = S does not necessarily imply that
C « S. Conversely, the soundness proof makes use of the fact that if S C T, then
C <« S implies C « T, whereas C == S does not necessarily imply C == T.

Overcoming the second hurdle is more difficult. But the underlying idea to
solve this problem is quite simple. We take the completeness proof as our basis.
The only thing that is missing in order to turn this proof into a soundness proof
as well is the fact that we do not have that C = S implies C < S in general.
However, the additional proof obligation necessary to conclude C < S can be
discharged automatically by proof search on the = relation.

The automation of proofs of C « S is particularly important for our goal of
deriving a compiler by calculation, which we will discuss in section [5] In that
setting, both compiler and virtual machine are not fully defined in the beginning
of the calculation. As the calculation progresses we flesh out the definition of the
compiler and the virtual machine. In particular, we add new rules for =>. As a
consequence, a statement of the form C < S, might not hold anymore after we
have extended the virtual machine relation =>. The proof search will extend

2 The side condition 3 D, C = D is absent in the definition of < by Hutton
and Wright [7]. However, their proofs need little change to account for this stronger
version of <, which then yields proper soundness and completeness for their compiler.



the proof to account for the modified definition of =. If this fails, we are
immediately informed that the added rule for = breaks the existing proof.

3.1 Proof Principles

In this section we will present the proof principles for constructing soundness
and completeness proofs. These proof principles are general lemmas about the
two relations = and <, i.e. they are independent of the definition of Conf and
=. Our goal is to have a combined relation, similar to € of Hutton and Wright
[7], that will allow us to prove soundness and completeness in one go. To this
end we will lift both relations to sets of configurations; recall that == is of type
Conf — Conf — Prop, whereas < is of type Conf — ConfSet — Prop.

As a first step we have to define, what a set of configurations is. The corre-
sponding type ConfSet, has to provide the element relation € of type Conf —
ConfSet — Prop. Moreover, we need to be able to construct the empty set
(), form the union S U T of two sets, and define sets using set comprehension
notation like the example {n, (c, n :z's) | e | n} above. In general, set
comprehensions have the form {Z, C | P}, where T is a list of variables that
are existentially quantified in C and P, which in turn are of type Conf and Prop,
respectively. We shall return to the technical issue of representing this notation
in Coq — and more importantly how to reason over it — in section [6]

The inductive rules below lift == and < to the relations = and <, respec-
tively, both of type ConfSet — ConfSet — Prop:

VD,D e T - (3C,C € SAC= D) vC,CeS—>C«aT
S =T S« T

Thatis, S = T iff all configurations in T are reachable from some configuration
in S;and S « T iff all configurations in S are barred by T.

Using these two relations, we can reformulate the soundness and completeness
properties as follows:

Vecs, {(comp'ec,s)}=={n{(c,n=:s)| el n} (COMPLETENESS)
Vecs, {(comp'ec,s)}<«{n, {(c,ns) |e | n} (SOUNDNESS)

We then combine the two relations == and « into the relation => by forming
their intersection, which we express by the following inductive rule:

S=T S« T
S =T

This combined relation allows us to succinctly formulate the correctness prop-
erty of the compiler:

Vecs, {{(comp'ec,s)} => {n {(c,n=s) | e | n} (CORRECTNESS)
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Fig. 3: Proof principles.

Figure [3] lists the proof rules that we can derive from the definition of =>.
Most importantly we have reflexivity, transitivity and closure under union, which
will allow us do calculational proofs. In addition, => is closed under extensional
set equality =, which is defined as follows:

vVC,CeS - CeT
S=T

Lastly, the STEP proof rule in Figure [3] is the only non-structural rule. It
allows us to “advance” one step according to the = relation. In order to avoid
syntactic clutter, the rule is stated somewhat informally: it is implicitly assumed
that P, C and C' are expressions that may contain free variables from X. Formal-
ising and proving this rule in Coq requires some technical effort. But we defer
discussion of this aspect until section [6]

The STEP rule should feel intuitively true: in order to derive

{x, C|]P}YUT = {x,D | P} UT,

we have to show a step C = D and that C <« {Xx, D | P} U T — both in
a context of free variables X and assuming that P is true. In practice, the latter
proof obligation can be discharged automatically by a simple proof search: check
whether C is in the set {X, D | P} U T; if not, then recursively check whether
C <{x,D | P} UT for every C' with C = C".

3.2 Correctness Proof

To illustrate the proof rules we shall prove correctness of the compiler from
section [2] Recall that the correctness property of the compiler is formulated
using => as follows:

Vecs, {(comp'ec,s)} => {n {c,n=s) | e | n}

Unfortunately, this correctness property is not suitable for an induction proof.
The induction hypothesis is not general enough, since the left-hand side of the



=> is always a singleton set. To avoid this issue we generalise the correctness
property as follows:

VecP, {s,(comp'ec,s) | Ps} => {sn,(c,nus) | el nAPs}

Instead of quantifying over stacks s : Stack, we quantify over predicates on
stacks P : Stack — Prop. We can then prove the above property by induction
on e : Expr. The calculations are given in Figure [l Note that we calculate
“backwards”, i.e. from the right-hand side to the left-hand side. This approach
has the benefit that we can let the semantics e | n guide the calculation.
Later in section [5] performing the calculation in this direction becomes crucial:
it allows us to start the proof without having defined the compiler nor the virtual
machine. Instead the definitions of the compiler and the virtual machine fall out
of the calculation process itself.

Before we go into the details of the calculation, we review how it is built
up using the proof rules of Figure [3| Each step of the calculation corresponds
to a relation X <= Y, together with its justification. Instead of <=, we use
the symbol = or <=, if the relation is justified by proof rule IFF or STEP,
respectively. For instance, in the calculation for Val n, we first observe that we
have the set equivalence

{sn,{c,n"zs) | Valn J n" A Ps} = {s,(c,ns) | Ps}

This equivalence is justified by the rule VAL of the semantics (cf. Figure [1)),
according to which Val n || n’ is equivalent to the equation n = n'. Applying
rule IFF, then yields that

{sn,{(c,n"=s) | Valn J n" A Ps} <= {s, (c,n=s) | Ps}
Similarly, the second step of the calculation indicates that
(c,ns) <= (PUSHn:c,s)

due to the rule VM-PuUsH of the virtual machine (cf. Figure. Using proof rule
STEP we then obtain the desired relation

{s,{¢c,ns) | Ps} <= {s,(PUSHn:¢cs) | Ps}
given that the following side condition is met:
Vs, Ps — (PUSHn:c,s) < {s, (c,n:s) | Ps}

As we have mentioned earlier, these side conditions are trivial to check. In this
particular case, {(c, n ::s) is the only successor configuration of (PUSH n :: ¢, s).
Thus the side condition is met.

Finally, the individual calculation steps are combined via the TRANS proof
rule, which yields that

{s, (comp’ (Valn)¢,s) | Ps} = {sn’,{(c,n" sy | Valn § n" A Ps}

10



— Val n:

{sn’,{(c,n" zs) | Valn § n" A Ps}
= { by VAL }
{s, {c,n=s) | Ps}
<= { by VM-PusH }
{s,(PUSHn:c,s) | Ps}
= { definition of comp’ }
{s, (comp’ (Valn)c,s) | Ps}

— Add €1 €7:

{sn,{(c,nus) | Addeie; yn A Ps}
= { by ApD }
{snm,{c,(n+m)us) |eadnAelmAPs}
< {by VM-ADD }
{snm, (ADD::¢,m:=nx=s) | esn AelmAPs}
= { move existential quantifier }
{s'm, (ADD::¢c,m:s") | e{ym A (3sn,etdn As =nus A Ps)}
<= { induction hypothesis for e> }
{s, (comp" ez (ADD ::¢c),s) | 3s'n,e1dn As =nus APs'}
= { move existential quantifier }
{sn, (comp'e> (ADD::¢c),n:=:s) | esdn A Ps}
<= { induction hypothesis for e; }
{s, (comp’ e; (comp’ e; (ADD ::¢)),s) | Ps}
= { definition of comp’ }
{s, (comp’ (Add e1 e2) ¢, s) | Ps}

— Rnd e:

{sm,{(c,m:s) | Rnde{m A Ps}

= { by RND }

{smn,{(c,m:=s) | eln A0 <m< |n APs}
<= { by VM-R~D }

{smn, (RND:cn:us) |eln A0 <m<|n]APs}
= { eliminate tautology 3m,0 < m < |n|
{sn,(RND:c,n:s) | elln A Ps}

<= { induction hypothesis for e }
{s, {(comp"e (RND ::c),s) | Ps}
= { definition of comp’ }
{s, (comp’ (Rnde)c,s) | Ps}

Fig. 4: Correctness proof for compiler comp’

11



and therefore proves the correctness property for the case Val n.

The calculation for Add e; e; illustrates the need to generalise the correctness
property in order to obtain an induction hypothesis that is strong enough. The
induction hypotheses for this case are the following, for each i € {1,2}:

V' P, s, (comp'ec,s) | Ps} => {sn,(c,nus) | & | nAP's}

The calculation step that uses the induction hypothesis for e, instantiates c’
with ADD :: ¢, and the predicate P' with

dsn,egdn As" =nis APs.

The instantiation of the predicate P' in the induction hypothesis allows us to
preserve invariants of the stack. The ability to express such invariants is crucial
for reasoning about compiler correctness.

Our Coq library that implements this calculational reasoning provides a syn-
tax that is very close to the idealised syntax we used in Figure [4l To illustrate
this, Figure [5| shows the full Coq proof of the correctness theorem.

4 Calculating a Compiler

In the previous section, we started out with the definition of the semantics of
both the source and the target language of the compiler, together with the
definition of the compiler itself. We then set out to to prove that this compiler is
correct. The proof by calculation, however, also lends itself to a different setup:
given the source language (including its semantics), we want to derive a suitable
target language and a compiler that satisfies the correctness property. The idea
of deriving a compiler from its specification has been explored in detail by a
number of authors [I4] 10, [T, 4]. Recently, Bahr and Hutton [4] have shown that
such a derivation can be performed by simply stating the correctness property of
the compiler and then performing the calculation proof. The parts of the setup
that are not defined yet, i.e. the compiler itself and the target language, reveal
themselves during the calculation proof.

To illustrate this idea of Bahr and Hutton [4] we reconsider the correctness
proof from section We need to prove the following property about comp’:

VecP, {s, (comp'ec,s) | Ps} = {sn,(c,n=s) | el nAPs}

To do so, the calculation proof “transforms” the right-hand side into the left-
hand side using the proof rules for =>. How can we do this, if the compiler comp’
is not defined yet? The idea is to transform the right-hand side into the form
{s, (c',s) | Ps} for some ¢’ : Code, and then simply take comp’ec = ¢’ as a
defining equation for comp’. The calculation proof in Figure [d] can be read this
way by simply removing the last step in each case of the proof. These are the
only steps that make reference to the definition of comp’. Instead of using the
definition of comp’, we can interpret the final calculation step as the discovery
of how comp’ must be defined such that the calculation proof can be completed.

12



Theorem correctness : forall e P c,

{s, (comp’ec,s) | Ps}=[>{sn,{(c,n = s)|eln/\Ps}
Proof.
induction e;intros.

begin
{sn’ (¢, n” = s) | Valn | n’ /\ P s}).
= { by_eval }

({s, (c,n:: s) | Ps}) .
<== { apply vm_push }
({s, (PUSHn :: ¢, s ) | P s}) .

(-

begin

({sn, (c,n:s) | Addele2{n /\Ps}) .
= { by_eval }

{snm, {(c, (m+m) =s)|etdn/\e2ym/\Ps}) .
<== { apply vm_add }

({snm, ADD :: ¢, m = n :: s) | eldn /\Ne2|m/\Ps}).
= { eauto }

({s"m, (ADD :: c, m =z s ) | e2{ m

/\ (existssn,el yn /\s’=n: s /\Ps)}).

<|= { apply IHe2 }

({?, (comp’}e2 (ADD :: ¢), s ) | existss'n, el {n/\s=n:=s’ /\Ps’}).
= eauto

({s n, (comp’ e2 (ADD :: ¢c), n = s) | el{n/\Ps}).
<|= { apply IHel }

({s, (comp’ el (comp’ €2 (ADD :: c¢)), s ) | Ps }).

(-

begin
({sm, (c, m:: s) |Rnde{m/\Ps} .
= { by_eval }
{smn, (c,m:=s)|elln/\O<=m<=absn/\Ps}).
<== {apply vm_rnd}
{s m:Z) n, (RND :: ¢, n = s) | edn /N\O<=m<=absn /\Ps}).
= {dist’ auto}
({sn, RND :: ¢, n :: s) | edn/\Ps}) .
<|={ apply IHe }
({s, (comp’ e (RND :: ¢), s) | Ps}) .

Qed.

Fig. 5: Correctness proof for compiler comp' in Coq.
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However, we do not only derive the compiler from the calculation but also
the target language and its semantics. The idea is quite simple: we introduce new
elements into the type Instr of instructions and corresponding rules for = such
that we can use the STEP proof rule to manipulate the state of the configuration
such that we can apply the induction hypothesis or arrive at the target pattern
{s, (c',s) | Ps}.

For example, consider the calculation for the case e = Val n. We start, as
in Figure 4 by using the semantics of the source language:

{sn’,{c,n" sy | Valn | n" A Ps}
= {byVaL}
{s,{(¢,nzs) | Ps}

Our goal is to transform {s, (c, n::'s) | P s} by a sequence of calculation steps
into the form {s, (c’, s) | Ps}. That means that we have to get rid of the n on
top of the stack. That is, we need to find a ¢’ such that (c’, s) = (c, n::s). We
could achieve that by simply adding a rule (c, s) = (c, n ::'s) to the definition
of =, i.e. n is chosen non-deterministically. However, if we added this rule, we
would not be able to derive

{s, (¢c,s) | Ps} = {s,{c,n:s) | Ps}

since (c, s) is not barred by {s, (c,n::s) | P s} for all s with P s; cf. rule STEP
in Figure [3] The reason why this fails is that we have (c,s) = (c, m ::'s) for
any m, not only m = n.

Hence, we have to restrict the rule such that it only pushes integers m onto
the stack that are equal to n. The only way we can achieve this is by “storing” the
relevant information — i.e. n itself — in the code part of the configuration. Hence,
we add a constructor PUSH : Z — Instr to the type of instructions, which
allows us to add the rule (PUSH n :: ¢, s) = {(c, n :: s) to the definition of =>.
Using the STEP proof rule, we can then conclude the calculation as follows:

{s, {c,n:s) | Ps}

<= {define (PUSH :¢c,s) = (c,n:s) }
{s,(PUSH:c,n=s) | Ps}

= { define comp’ (Valn)c = PUSHn:c}
{s, {(comp’ (Valn)c,n:s) | Ps}

The same can be done for the other two cases of the Expr language. The only
difference is that we need to use the induction hypothesis. In order to be able
to apply the induction hypothesis, we need to transform the configuration into
the right shape. We do this by adding rules to the definition of = and then
applying the STEP proof rule accordingly. In the end, we arrive at the very same
calculation proof as in Figure [4] But instead of having comp’ and = defined
beforehand and using it in the proof, we discover the definition of comp’ and =
as we do the calculation. In fact, the compiler and the target language presented
in section [2 have been derived using this approach.
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The setup used by Bahr and Hutton [4] to do the calculation is slightly dif-
ferent: the semantics of the source language is given by a structurally recursive
evaluation function eval of type Exp — Value and the virtual machine is for-
mulated as a tail recursive function exec of type Code — Conf’ — Conf'. The
compiler correctness property is then formulated as an equation that relates eval
and exec. Moreover, the Code type is not part of the configuration type Conf’.
However, it is easy to translate eval into a big-step operational semantics — in
fact, Bahr and Hutton [4] do this in their treatment of higher-order languages
— and exec into a big-step operational semantics [5]. The methodology of Bahr
and Hutton [4] can be adapted to the use of a small-step virtual machine =
by reasoning over the reflexive transitive closure = instead of equational rea-
soning. But this approach does not work for non-deterministic languages, since
the calculation would only prove completeness but not soundnessﬂ The example
below illustrates this.

Assume that during the calculation we derived a more general rule for the
RND instruction (instead of the rule VM-RND in Figure :

(RND :ic,nisy = (c, m::s) (VM-RND’)

The above rule omits the side condition 0 < m < |n|. As a result the com-
piler comp is not sound anymore. The virtual machine now allows the following
execution, even though we do not have that RND (Val 0) | 1:

(comp (RND (Val 0)), [I) = ([PUSH 0;RND], []} = ([RND], [0]) = ([I. [1])

The calculation approach of Bahr and Hutton [4] (naively lifted to relational
semantics as describes above) will not detect that the rule VM-RND’ breaks the
soundness property. This calculation approach roughly corresponds to the use of
the proof rules in Figure [3] but with the “barred” side condition removed from
the STEP proof rule. The resulting proof system is admissible for =3 but not for
=p>. Thus the corresponding calculation only proves the completeness property,
but not the soundness property.

The problem illustrated above is easy to recognise for the simple toy language
that we considered here. However, in the next section we will consider a more
complex language, where such problems are much more subtle as we will see. The
novelty of our approach lies in the proof rules for the => relation that combines
the two relations = and <. As a consequence, we are able to formulate soundness
and completeness in one compact statement and calculate in a style similar to
Bahr and Hutton [4].

3 Bahr and Hutton [4] acknowledge that this problem already occurs if the semantics is
not total, e.g. for the untyped lambda calculus. However, if the semantics is at least
deterministic, soundness for the defined fragment of the language can be achieved
easily by ensuring that the derived virtual machine is deterministic.
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5 Calculating a Compiler for a Language with Interrupts

We now turn to a more interesting source language that features asynchronous
exceptions, also known as interrupts. What distinguishes interrupts from ordi-
nary exceptions is the fact that interrupts can potentially arise at (almost) any
point in the execution of a program. As a consequence, the language’s semantics
is non-deterministic — a program’s execution may proceed successfully or be in-
terrupted by an asynchronous exception at any point. In addition, we consider
language constructs that allow the programmer to limit the scope of interrupts,
i.e. blocking interrupts from interfering with some parts of the program.

We consider the language with interrupts of Hutton and Wright [7]. The
syntax of the language is given by the following inductive type:

Inductive Expr : Set :=Val (n : Z) | Add (e; e : Expr)
| Throw | Catch (e h : Expr) | Seqn (e1 e2 : Expr)
| Block (e : Expr) | Unblock (e : Expr) .

As before, we have integer literals (Val) and an addition operation (Add). Fur-
thermore, the language allows us to throw (synchronous) exceptions with Throw
and to catch (synchronous or asynchronous) exceptions with Catch. An expres-
sion of the form Catch e h behaves like e, in case e does not throw any exceptions;
otherwise it behaves like h. We can also sequentially compose expressions using
Seqn. Finally, Block and Unblock are used to control asynchronous exceptions: in
an expression Block e or Unblock e, we allow respectively disallow interruption
in e by asynchronous exceptions.

We give the semantics of the language as a big-step operational semantics
as presented by Hutton and Wright [7]. To describe blocking and unblocking of
interrupts, the semantics uses the following type to indicate the blocking status,
where B indicates that interrupts are blocked and U that interrupts are allowed:

Inductive Status : Set:=B | U.

The relation that embodies the big-step operational semantics is denoted by
|ls, where the subscript s indicates the status, i.e. either blocked or unblocked.
The judgement e |5 v means that e : Expr evaluates to v : option Z given
the status s : Status. Values of type option Z are either of the form Some n,
indicating the result value n, or of the form None, indicating that an exception
occurred. The inference rules for the semantics are shown in Figure [f]

Our goal is to derive a compiler and virtual machine such that the compiler
is correct with respect to the source language’s semantics. To this end, we follow
the calculation approach outlined in section

We start with a partially defined compiler comp:

Fixpoint comp’ (e : Expr) (c : Code) : Code :=
match e with
| = = Admit
end .
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———— VAL —— THROW — INT
Valn |Ji Somen Throw i None x {u None
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x §i Somen CATcH1 x i None y iy CATCH2
Catch xy i Somen Catchxy i v
L _x WY ook
Block x i v Unblock x {i v

Fig. 6: Semantics of the language.

Definition comp (e : Expr) : Code :=comp’e].

Similarly to the compiler in section [2] the above compiler is defined with an
additional argument representing the code that is supposed to be executed after
the generated code. As we do the calculation proof, we will discover equations of
the form comp’ pc = ¢’ for some pattern p. We will then add a corresponding
clause p = ¢’ to the match statement in the above definition. For now it uses
the term Admit as a placeholder. It serves a similar role as the term undefined
in Haskell.

Likewise, we start with an empty definition of the target language and the
virtual machine:

Inductive Instr : Set :=.

Inductive VM : Conf — Conf — Prop :=
where "x ==> y" = (VM xy) .

We then have to formulate the correctness property of the compiler. We adopt
the same form of correctness property as in section [3}

VeciP, {s, (compec,s) | Ps} = {sn {(c,n:s) | el Somen A Ps}

We could now start the calculation. However, we would soon realise that the
above property is not appropriate. We would encounter three problems:

1. The status indicator i only appears in the semantics of the source language
but not the virtual machine. Thus, the above property is too general.
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2. We only consider the case that e |}; Some n, but not the case that e |;
None. Thus, the above property is not general enough.

3. As we do the calculation, we realise that we need to store data other than
just integers on the stack.

The calculation technique of Bahr and Hutton [4] anticipates these problems
and suggests corresponding generalisations, which we shall adopt here as well.
However, we have to translate their approach, which uses a tail-recursive function
instead of a small-step relation for defining the virtual machine. We have to make
the following amendments:

1. Extend the type of configurations with a component of type Status:

Inductive Conf : Set := conf (c : Code) (s : Stack) (i : Status).
Notation "( ¢ , s , i )":=(confcsi).

2. Add a case to the type of configurations that corresponds to the None caseﬁ

Inductive Conf : Set := conf (¢ : Code) (s : Stack) (i : Status)
| fail (s : Stack) (i : Status).

Notation "( ¢ , s , i )" :=(confcsi).

Notation "({ s , i )" = (fail si) .

3. Generalise the type of stack elements and extend the type as necessary:

Inductive Elem : Set := VAL (n : Z).
Definition Stack : Set := list Elem .

The type Stack as defined above is isomorphic to the previous definition. How-
ever, we can now extend the type Elem with additional constructors to store
other kinds of data on the stack.

With these changes we can formulate the correctness property as follows:

VecP, {si, (comp'ec,s i) | Psi} =
{sin,{c, VALn:s,i)|e i Somen A Psi}
U{si, {s, i) |e i None A Psi}

Note that the predicate P is now applied to s and i. We could have started the
calculation with P only covering s, but we would soon realise that we need the
more general version of P in order to apply the induction hypothesis.

An important difference between the above correctness property and the
correctness property we have considered in section [3]is that it involves set union.
As a consequence, we need to use the UNION proof rule from Figure [3] We will

4 Bahr and Hutton [] use tail-recursive functions to represent virtual machines. In
their approach, one has to introduce an additional tail-recursive function fail. In our
approach, this corresponds to a new constructor for the type of configurations.
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always use the UNION rule together with the REFL rule, such that we only change
one component of a union while the others remain constant. For example, given
X = X', we may derive W U X UY = W U X" UY.

Figure [7] shows the calculation for the two cases e = Val nand e =
Catch e; e5. We focus on these two cases to illustrate the calculation. The com-
plete calculation covering the remaining cases as well can be found in the ac-
companying Coq code.

We begin with the case e = Val n. First, we use the definition of |};: we
can derive Val n |l; Some n" iff n = n’; and we can derive Val n }; None
iff i = U. We can then proceed to transform the configuration set such that

it matches the left-hand side of the correctness statement, i.e. it is of the form
{si, {(c',s, i) | Psi}. In particular, we must get rid of the union construction.
The general strategy to achieve this is to transform the union into a form

{si, {c’,s, i) | Pisi} U {si, {c,si) | Pasi}
such that we can replace it with a single set comprehension
{Si, <C’,S, I> | Pisi Vv sti}

In most cases, we have that P; implies P, or vice versa such that we can replace
the union with the right or the left component of the union, respectively.

We first consider the left component of the union. Similarly to the simple
language of section 2] we introduce an instruction PUSH in order to get rid of the
topmost stack element VAL n. In order to apply the above strategy to transform
a union of set comprehensions into a single set comprehension, we must be able
to transform the configuration ((s, U)) into the form (PUSH n :: ¢, s, i") such
that P s U implies P s i'. Hence, we must have s’ = s and i’ = U. We thus
decide to add the rule

(PUSHnn :: ¢, s, U) = (s, U
We could have also added the more general rule
(PUSHn ¢, s, i) = (s, 1))

However, by adding this rule, the calculation step that we did before would not
be correct anymore since we would not have that P s i implies that

(PUSHn i ¢, s,i) < {si, {c, VALn s, i) | Psi} U {s, (s,U)) | PsU}

This phenomenon illustrates the utility of the proof automation of our calculation
framework that discharges side conditions as the one above: by adding new rules
to the definition of the virtual machine, applications of the STEP proof rule have
to be reconsidered and may fail as the side condition is not fulfilled anymore.

The union is almost in the right form now. The right component can be
equivalently written as

{si, (PUSHn:¢c,s,i) | i = U A Psi}
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— Val n:

{sin’,{(c, VALn' ::s,i) | Valn {i Somen’ A Psi}
U {si, {s,i)) | Valn |i None A Psi}
= { by definition of | }
{si,{c, VALn ::s,i) | Psi} U {s, {(s,U) | PsU}
<= {define (PUSHn:c,s,i) = (c,VALn:s, i) }
{si, (PUSHn:c,s i) | Psi} U {s, {s,U) | PsU}
<= {define (PUSHn:c s, U) = (s, U) }
{si,(PUSHn:c,s,i) | Psi} U {s, (PUSHn:¢c,s,U) | PsU}
= { second set of the union is contained in first set }
{si,(PUSHn ¢, s, i) | Psi}

— Catch e; e;:

{sin,{(c, VALn::s,i) | Catche; ez i Somen A Psi}
U {si, {(s, i) | Catcheiex {i None A Psi}
= { by definition of | }
{sin, (¢, VALn:s,i) | e1 {i Somen A Psi}
U {sin, (¢, VALn ::s,i) | e2 {i Somen A (e1 {i None A Psi)}
U {si, (s, i) | e2 i None A (e1 {i None A Psi)}
<= { induction hypothesis for e }
{sin, {(c, VALn ::s,i) | e1 i Somen A Psi}
U {si, (comp'exc,s,i) | e1 {Ji None A Psi}
< { define (HAN h ::s,i)) = (hs,i) }
{sin, {(c, VALn ::s,i) | e1 i Somen A Psi}
U {si, (HAN (comp’e>c) ::s,i)) | e1 i None A Psi}
<= { define (UNMARK ::c, VALn = HAN h::s,i) = (c, VALn s, i) }
{sin, (UNMARK ::c, VAL n :: HAN (comp’ e> ¢) ::s,i) | e1 {i Somen A Psi}
U {si, (HAN (comp’ ez c) ::s,i)) | e1 {i None A Psi}
= { move stack element HAN (comp’ > ¢) into the predicate }
{s"in, (UNMARK ::¢c, VALn ::s',i) | e1 {i Somen A
(3s,s" = HAN (comp’ ez c)::s A Psi)}
U {s"i,{s’,i)) | e2 Ui None A (Is,s" = HAN (comp’exc)::s A Psi)}
<= { induction hypothesis for e; }
{s"i, (comp’ e1 (UNMARK :: c),s", i) | (3s,s" = HAN (comp’ ez c)::s A Psi)}
= { extract stack element HAN (comp’ e ¢) from the predicate }
{si, (comp’ e; (UNMARK :: c), HAN (comp’ ez ¢) ::s,i) | Psi}.
<= { define (MARKh:c,s,i) = (c, HANh:s, i) }
{si, (MARK (comp’ e, c) :: comp’ e1 (UNMARK ::¢),s,i) | Psi}

Fig. 7: Calculation for cases Val and Catch.
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Sincei = U A P siobviously implies P s i, we can replace the union with its
left component.
Finally, we can observe that comp’ (Val n) ¢ must be equal to PUSH n :: ¢
and we thus add the clause Val n = PUSH n :: ¢ to the definition of comp’.
The calculation for the case e = Catch e; e; may use the induction hypothe-
ses for e; and ep, which reads as follows:

Vc' P, {si, (comp'ec's,i) | Psi} =
{sin,{(c, VALn s, i) | ¢ {i Somen A P'si}
U{si, {s i) | e Ui None A P'si}

The calculation is driven by the desire to apply these induction hypotheses,
which means we want to transform the configuration set such that it matches
the right-hand side of one of the induction hypotheses. Achieving this for e, is
easy: we use the definition of |}; to reformulate Catch e; e, i ... in terms of
e; i ...and ey i .... The second set comprehension together with the third
one then already have the right shape for the induction hypothesis for e;,. We
instantiate ¢’ with c and P’ s i with e; {|}; None A Psi.

We then have to transform the resulting union of two set comprehensions
into the right shape for the induction hypothesis for e;. At first we notice that
the second set comprehension has the condition e; {}; None, and thus we
have to transform it such that the configuration is of the shape ((s', i')) and
not {c', s', i'). That means that we need to have a rule for = that transforms
something of the form ((s', i")) into (comp’ e; ¢, s, i). To do so, we need to be able
to draw the code component comp’ e, ¢ of the target configuration from s’ (or i,
but that is not possible). Hence, we introduce a new stack element constructor
HAN : Code — Elem, which is able to store code on the stack. Thus the only
reasonable choice for the new rule is (HAN h s, i)) = (h,s,i).

Next, in order to be able to apply the induction hypothesis, we must ma-
nipulate the stack in the first set comprehension. It is of the form VAL n :: s,
but it needs to be of the form VAL n :: HAN (comp’ e; c) :: s. To this end, we
introduce an instruction UNMARK, which removes the HAN element from the
stack. It is then a simple matter of moving the constraint on the shape of the
stack into the predicate of the set comprehension such that we can apply the
induction hypothesis. After we have applied the induction hypothesis for e;, we
reverse this encoding.

Finally, we need to get rid of the top element of the stack such that the stack
becomes just s. As in previous cases, we introduce an instruction that does this
job. This completes the calculation for this case, and we can now read off the
clause that we need to add to the definition of comp':

Catch e; &2 = MARK (comp’ e; ¢) :: comp’ e; (UNMARK :: ¢)

The other cases of the calculation can be completed using the same strategies
that we have used above. As the result of the calculation, we derive the following
compiler definition:
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Fixpoint comp’ (e : Expr) (c : Code) : Code :=
match e with

| Valn = PUSHn:c
| Add xy = comp’ x (comp’y (ADD :: c))
| Throw = [THROW]
| Catche; e; = MARK (comp’ ez ) :: comp’ &3 (UNMARK :: ¢)
| Seqne; ey = comp'e; (POP :: comp’e; c)
| Block e = BLOCK :: comp’ e (RESET :: ¢)
| Unblocke = UNBLOCK :: comp’e (RESET ::c)
end .

The derived target language is the following:

Inductive Instr : Set := PUSH (n : Z) | ADD | THROW
| UNMARK | MARK (h : list Instr)
| POP | RESET | BLOCK | UNBLOCK.

Moreover, during the calculation we needed to extend the type of stack elements
such that we can store exception handlers and interrupt status on the stack:

Inductive Elem : Set := VAL (n : Z) | HAN (c : Code) | INT (s : Status).

This is almost the same compiler as the one given by Hutton and Wright [7].
There are only two minor differences: [Hutton and Wright/s compiler compiles
Throw to THROW :: ¢ instead of [THROW]; and instead of the two instructions
BLOCK and UNBLOCK they use a single instruction SET, which takes an ar-
gument of type Status such that SET B and SET U correspond to BLOCK and
UNBLOCK, respectively.

However, these differences are rather superficial. More interesting differences
can be found in the virtual machine that we derived from the calculation. The
definition of the virtual machine is shown in Figure 8| The virtual machine used
by Hutton and Wright [7] may go into a fail configuration from any unblocked
configuration, no matter what the current instruction is. In our virtual machine
only the instructions PUSH, THROW and BLOCK may be interrupted. It turns
out that there is some room of freedom in choosing appropriate rules for =—.

We could have equally well made different choices during the calculation
process, which would have resulted in a virtual machine equivalent to [Hutton!
and Wright’sE] For example, for the case e = Val n, we have introduced the rule

(PUSHnn 1 ¢, s, U) = (s, U))

i.e. the PUSH instruction may be interrupted. However, we could have instead
introduced the more general rule

(op:c,s,U) = (s, U)

5 Similarly, we could have chosen to use a single instruction SET instead of BLOCK
and UNBLOCK.
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(PUSHn ::¢,s,i) = (¢, VAL n ::s, i)
(PUSH n :: ¢, s, U) = ((s, U))
(ADD ::c, VALm :: VAL n =i s, i) = (¢, VAL (n + m) == s, i)
(VAL m ::s, i) = ((s, i)
(THROW : ¢, s, i)y = ((s, i)
{(HAN h == s, i)) = (h,s,i)
(UNMARK ::¢c, VALn :: HAN h :: s, i) = (¢, VAL n =i s, i)
(MARK h :: ¢, s, i) = (c, HAN h = s, i)
(POP::c, VAL n i s, i) = (¢, s, i)
(RESET i ¢, VALn : INT i ::s, j) => (¢, VAL n = s, i)
(BLOCK :: ¢, s,i) = (¢, INT i :: s, B)
(BLOCK :: ¢, s, U) = ((s, U))
(UNBLOCK :: ¢, s, i) = (¢, INT i :: s, U)
{(INTi:s, j) = (s.i)

Fig. 8: Definition of the virtual machine.

i.e. any instruction may be interrupted, which is the semantics that [Hutton and
'Wright|chose for their virtual machine. The fact that the calculation is performed
in one go makes this flexibility in the semantics of the virtual machine immedi-
ately apparent. The calculation that yields the compiler and virtual machine of
Hutton and Wright| can be found in the accompanying Coq code.

6 Representation in Coq

In this section, we briefly outline some of the technical setup for our calcula-
tion framework in Coq. In addition to the proof rules that we discussed in this
paper, our calculation framework consists of three essential components: a rep-
resentation of sets of configurations suitable for proof automation, a syntax for
calculation proofs, and proof tactic that is able to prove the “barred” side condi-
tion of the STEP proof rule automatically. This setup — including the proof rules
—is independent of the specific definition of the virtual machine and the compiler
as well as the source and the target language. In particular, the framework is
defined as a functor (i.e. a parametrised module) that takes the definition of the
virtual machine (given by Conf and =) as a parameter.

6.1 Sets and Set Comprehensions

In our calculations, we need to reason over sets of configurations. The most
straightforward and general representation of such sets is provided by the type
Conf — Prop, i.e. the type of predicates over configurations. However, in order
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to prove properties over such sets and — most importantly — to automate proofs,
it is better to define an inductive type ConfSet together with an interpretation
function that maps each such set to a predicate of type Conf — Prop.

At first we define a type of set comprehensions, which is indexed by the list
of types that are available for existential quantification:

Inductive SetCom : list Type — Type :=
| BaseSet : Conf — Prop — SetCom ]
| ExSet {tts} : (t — SetComts) — SetCom (t :: ts).

The first constructor defines a singleton set that consists of a single configuration
that is subject to a predicateﬂ The second constructor adds an existential quan-
tifier. The meaning of these constructors is best explained by the interpretation
function, which defines the membership predicate for each set comprehension:

Fixpoint SetComElem {ts} (C : Conf) (S : SetCom ts) : Prop :=
match S with
| BaseSetC'P = C =CAP
| ExSet _ _e = 3 x, SetComElem C (e x)
end .

For the base case we check whether the configuration equals the configuration
in the set comprehension and whether the predicate is fulfilled. The second
constructor is simply interpreted as existential quantification.

The type ConfSet extends set comprehensions with a union operator. The
corresponding interpretation function ConfElem is straightforward:

Inductive ConfSet : Type :=
| Sing {ts} : SetComts — ConfSet

| Union : ConfSet — ConfSet — ConfSet.
Fixpoint ConfElem (C : Conf) (S : ConfSet) : Prop :=
match S with

| Sing _s = SetComElem C's
| Union S; S, = ConfElem CS; V ConfElem C S,
end .

The equivalence of sets is then simply defined in terms of the above inter-
pretation function, and the union and set comprehension notation is mapped to
the constructors of ConfSet and SetCom:

Notation "S = T" := (V x, ConfElem xS <> ConfElem x T)
(at level 80, no associativity).

Infix "U" := Union (at level 76 , left associativity).

Notation "{ x .. y , C | P }":=
(Sing (ExSet (funx = ... (ExSet (funy = BaseSet CP)) ...)))
(at level 70, x binder, y binder, no associativity) .

5 Thus BaseSet may in fact represent the empty set if the predicate is false.
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Using this setup, we can then formulate and prove the proof rules that we
listed in Figure [3] However, some care has to be taken in formulating the proof
rules in a way that they can be readily applied to a proof goal in a calculation
proof. For instance the STEP proof rule is formulated as follows:

Theorem step : Vts (SS' : SetComts) (T : ConfSet),
(V x, getProp S' x — getConf S x = getConfS'x) —
(V x, getProp S’ x — getProp Sx) —

(V' x, getProp Sx — getConfSx <« SingS" U T) —
SingS U T = SingS" U T.

In the above theorem, we use getProp and getConf to extract the configuration
and the predicate of a given set comprehension. We define getConf as follows:

Fixpoint getConf {ts} (S : SetCom ts) : tuplets — Conf:=
match S with
| BaseSet CP = funxs = C
| ExSet — _ex = funxs = let (x, xs') := xs in getConf (ex x) xs'
end .

The function getProp is defined analogously. The definition uses the type tuple ts,
which is a nested product type of all types in the list ts defined as follows:

Fixpoint tuple (ts : list Type) : Type :=
match ts with
|1 = unit
| tts’ = t*tuplets’
end .

We would not have been able to define getConf and getProp, if we had rep-
resented configuration sets using simply the type Conf — Prop. The ability to
define these functions is crucial in order to formulate the STEP rule in such a
way that the Coq system can readily apply it to a given proof goal.

6.2 Calculation Syntax and Proof Automation

The calculation syntax is quite easy to achieve using Coq’s Tactic Notation com-
mand to define custom tactics. The implementation of our calculation syntax
closely follows the work by Tesson et al. [12]. But we use a somewhat simpler
setup. The details can be found in the accompanying Coq source code.

In our pen-and-paper proofs (e.g. in Figure [4) we use the notations “<=",
“=" and “«<=" to indicate the proof rules that we use. This notation is reflected
in the Coq proofs (cf. Figure|5)), where we have the corresponding tactic notations
“<l={t}8”, “={t} 98", and “<== { t } 8”7, which refer to a tactic t and a
configuration set S.

Given a proof goal of the form T => U, all three tactic notations try to
prove the proof goal S => U. If successful, the original proof goal T = U is
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replaced by T => S using the TRANS proof rule. Once we have transformed
the proof goal into the form S => S, we can use the tactic [], which applies the
REFL proof rule to complete the calculation proof.

The basic tactic <|= { t } s does little proof automation: it tries to prove the
goal S => U using tactic t using the UNION and REFL proof rule, which allows
us to prove goals of the form

SSU...USU...S5, =S U...USU...S,

using tactic t to prove S; => S';.

The tactic = { t } S is even simpler: it tries to prove S => U using the IFF
proof rule, and it uses t to prove S = U.

Finally, <== { t } S applies the proof rule STEP to prove S => U. That is,
the proof goal has to be of the shape

(%, C|PIUS = {%, C | P} US.

The tactic t is then used to discharge the proof obligation for VX, P - C —
C’, whereas it tries to prove the side condition VX, P — C < {x, C' | P} U S’
fully generically. It does so by applying the two rules HERE-< and STEP-< that
define < (cf. section . Successfully applying STEP-< and then HERE-< to all
subsequent subgoals, means that all single step =>-derivations from C reach a
configuration in {X, C' | P} U S'. This combination proves most barred side
conditions and is thus tried first. If that fails, our tactic tries to prove the side
condition by systematically trying all ==-derivations of a bounded length.

7 Concluding Remarks

We presented a framework for deriving correct-by-construction compilers from
formal specifications by means of calculations. The distinguishing feature of our
calculation framework is that it accommodates non-deterministic semantics. The
key ingredient of this framework is the set of proof rules that allows us to prove
the compiler correctness property in one go despite the non-deterministic seman-
tics. The mechanisation of the framework in Coq helps to scale our approach to
more intricate languages. Moreover, this mechanisation allows us to utilise proof
search to discharge side conditions that are subject to the changing virtual ma-
chine semantics.

We conclude this paper with a brief discussion on related work, limitations
of our approach, and possible further work.

Related work To the best of our knowledge, non-deterministic languages have
not been considered in the literature on calculating compilers. Meijer [10] does
consider a language with backtracking semantics, called B, but strictly speaking
it is not a non-deterministic language. The language B has a set-valued semantics
that describes the search space, which the language is able to traverse. However,
non-deterministic languages can be represented using such a set-valued semantics
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as well, and we believe Meijer/s approach can be used to calculate a compiler for
a non-deterministic language. Unfortunately, this setup requires a detour: from
the big-step semantics of the target language we need to calculate an equivalent
set-valued semantics. From that semantics we calculate a compiler and a virtual
machine, which is a tail recursive function on sets of machine configurations.
From this representation of the virtual machine a small-step semantics represen-
tation can be calculated. Bahr and Hutton [4] describe this technique and argue
that it can be used to extend their calculation approach to non-deterministic
languages. In contrast, the calculation framework presented in this paper allows
us to calculate a compiler and a virtual machine directly without pre-processing
the input semantics or post-processing the output semantics.

We also briefly remark on the importance of the antecedent 3 D, C = D
of the STEP-< rule, which is missing in the corresponding definition by Hutton
and Wright [7]. If we removed it, we would be able to prove “correctness” of
compilers that are in fact not correct. For example, assume that we extended
the definition of the virtual machine from section [2] by the following rule

(PUSHn ¢, s) = ([], [42])

Then the calculation in Figure 4] would still be valid even though the compiler
is not correct for this virtual machine. The virtual machine admits the following
single step execution, which computes the result 42 for the expression Val 0:

{comp (Val 0), [I) = ([PUSH O], [I) = ([]. [42])

The underlying problem is that the definition of < by Hutton and Wright [7]
does not satisfy Proposition [I} In particular, their definition allows us to prove
that (comp (Val 0), []) is barred by the singleton set {([], [0]) }. However, we
cannot extend the above execution of the virtual machine such that it ends in
the configuration ([], [0]), which contradicts Proposition

Our implementation of the calculation framework in Coq is derived from the
work of Tesson et al. [12]. A similar framework for writing calculation proofs in
Agda has been developed by Mu et al. [I1]. However, since our approach relies
on proof automation, we prefer the Coq system over Agda.

Future work The calculation proofs that we presented here proceed by induction
on the structure of the source language. This may be a problem if the seman-
tics is not given in a compositional manner. For instance, in their treatment of
lambda calculi Bahr and Hutton [4] start with a compositional semantics, but
then transform it using defunctionalisation. The resulting big-step operational
semantics is not compositional anymore and the calculation proof proceeds by
induction on the big-step operational semantics.

The use of induction on the source language (as opposed to induction on the
semantics) appears to be unavoidable for proving the soundness property for a
non-deterministic language: The very goal of proving soundness is to prove that
e | n holds, given that n is a possible result that the compiled program yields.
Hence, we cannot perform a proof by induction on e | n.
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Another computational feature worth considering is concurrency. We did
consider a language with interrupts — arguably a concurrency feature, albeit a
simple one. However, if we want to deal with “proper” concurrency features, the
calculation framework needs to be able to deal with a semantics for the source
language that is able to properly capture concurrent behaviour, e.g. small-step
operational semantics. Moreover, in a setting of concurrency we need to be able
to reason not only about the result of a computation but also its I/O behaviour.
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