
ZU064-05-FPR appendix 17 July 2015 14:25

Under consideration for publication in the Journal of Functional Programming 1

Appendix for “Calculating Correct Compilers”

PATRICK BAHR
Department of Computer Science, University of Copenhagen, Denmark

GRAHAM HUTTON
School of Computer Science, University of Nottingham, UK

A Global State

Recall the specification of the compiler:

exec (comp′ x c) (s,q) = case eval x q of (12)
(Just n,q′) → exec c (VAL n : s,q′)
(Nothing,q′) → fail (s,q′)

Below we give the full calculations for the Add and Catch cases.

exec (comp′ (Add x y) c) (s,q)
= { specification (12) }

case eval x q of
(Just n,q′) → case eval y q′ of

(Just m,q′′) → exec c (VAL (n+m) : s,q′′)
(Nothing,q′′)→ fail (s,q′′)

(Nothing,q′)→ fail (s,q′)
= { define: exec (ADD c) (VAL m : VAL n : s,q′′) = exec c (VAL (n+m) : s,q′′) }

case eval x q of
(Just n,q′) → case eval y q′ of

(Just m,q′′) → exec (ADD c) (VAL m : VAL n : s,q′′)
(Nothing,q′′)→ fail (s,q′′)

(Nothing,q′)→ fail (s,q′)
= { define: fail (VAL n : s,q′′) = fail (s,q′′) }

case eval x q of
(Just n,q′) → case eval y q′ of

(Just m,q′′) → exec (ADD c) (VAL m : VAL n : s,q′′)
(Nothing,q′′)→ fail (VAL n : s,q′′)

(Nothing,q′)→ fail (s,q′)
= { induction hypothesis for y }

case eval x q of
(Just n,q′) → exec (comp′ y (ADD c)) (VAL n : s,q′)
(Nothing,q′)→ fail (s,q′)

= { induction hypothesis for x }
exec (comp′ x (comp′ y (ADD c))) (s,q)

ZU064-05-FPR appendix 17 July 2015 14:25

2 Patrick Bahr and Graham Hutton

exec (comp′ (Catch x h) c) (s,q)
= { specification (12) }

case eval x q of
(Just n,q′) → exec c (VAL n : s,q′)
(Nothing,q′)→ case eval h q′ of

(Just m,q′′) → exec c (VAL m : s,q′′)
(Nothing,q′′)→ fail (s,q′′)

= { induction hypothesis for h }
case eval x q of
(Just n,q′) → exec c (VAL n : s,q′)
(Nothing,q′)→ exec (comp′ h c) (s,q′)

= { define: fail (HAN c′ : s,q′) = exec c′ (s,q′) }
case eval x q of
(Just n,q′) → exec c (VAL n : s,q′)
(Nothing,q′)→ fail (HAN (comp′ h c) : s,q′)

= { define: exec (UNMARK c) (VAL n : HAN : s,q′) = exec c (VAL n : s,q′) }
case eval x q of
(Just n,q′) → exec (UNMARK c) (VAL n : HAN (comp′ h c) : s,q′)
(Nothing,q′)→ fail (HAN (comp′ h c) : s,q′)

= { induction hypothesis for x }
exec (comp′ x (UNMARK c)) (HAN (comp′ h c) : s,q)

= { define: exec (MARK c′′ c′) (s,q) = exec c′ (HAN c′′ : s,q) }
exec (MARK (comp′ h c) (comp′ x (UNMARK c))) (s,q)

B Local State

We now consider the local approach to combining exceptions and state, in which the
current state is discarded when an exception is thrown. This idea is reflected in the type for
evaluation by moving the output state ‘inside’ the Maybe type:

eval :: Expr → State → Maybe (Int,State)

That is, if evaluation succeeds then eval returns an integer value and a new state, and if
an exception is thrown it returns Nothing. The definition for eval is similar to the previous
section except there is now no state to propagate when evaluation fails, and in the case for
Catch the handler uses the state from when the catch was entered:

eval (Val n) q = Just (n,q)
eval (Add x y) q = case eval x q of

Just (n,q′)→ case eval y q′ of
Just (m,q′′)→ Just (n+m,q′′)
Nothing → Nothing

Nothing → Nothing
eval Throw q = Nothing
eval (Catch x h) q = case eval x q of

Just (n,q′)→ Just (n,q′)

ZU064-05-FPR appendix 17 July 2015 14:25

Appendix for “Calculating Correct Compilers” 3

Nothing → eval h q
eval Get q = Just (q,q)
eval (Put x y) q = case eval x q of

Just (n,q′)→ eval y n
Nothing → Nothing

For the purposes of the derivation of the compilation function comp′ :: Expr → Code →
Code we use the same types as for the global state semantics:

exec :: Code → Conf → Conf

type Conf = (Stack,State)

type Stack = [Elem]

data Elem = VAL Int

The specification for the desired behaviour of comp′ is essentially the same as for global
state, except that when evaluation fails we no longer have an output state to consider and
hence the function fail only takes a stack as argument:

exec (comp′ e c) (s,q) = case eval e q of (14)

Just (n,q′) → exec c (VAL n : s,q′)

Nothing → fail s

However, to ensure type correctness of the specification, fail must still return a configu-
ration, i.e. fail :: Stack → Conf . An alternative would be to supply the input state q as an
argument to fail, which is a valid choice that would lead to a different compiler. We start
the derivation for comp′ with the cases for Val n, Throw and Get, which are easy:

exec (comp′ (Val n) c) (s,q)
= { specification (14) }

exec c (VAL n : s,q)
= { define: exec (PUSH n c) (s,q) = exec c (VAL n : s,q) }

exec (PUSH n c) (s,q)

exec (comp′ Throw c) (s,q)
= { specification (14) }

fail s
= { define: exec FAIL (s,q) = fail s }

exec FAIL (s,q)

exec (comp′ Get c) (s,q)
= { specification (14) }

exec c (VAL q : s,q)
= { define: exec (LOAD c) (s,q) = exec c (VAL q : s,q) }

exec (LOAD c) (s,q)

The case for Add follows the now familiar pattern:

ZU064-05-FPR appendix 17 July 2015 14:25

4 Patrick Bahr and Graham Hutton

exec (comp′ (Add x y) c) (s,q)
= { specification (14) }

case eval x q of
Just (n,q′)→ case eval y q′ of

Just (m,q′′)→ exec c (VAL (n+m) : s,q′′)
Nothing → fail s

Nothing → fail s
= { define: exec (ADD c) (VAL m : VAL n : s,q′′) = exec c (VAL (n+m) : s,q′′) }

case eval x q of
Just (n,q′)→ case eval y q′ of

Just (m,q′′)→ exec (ADD c) (VAL m : VAL n : s,q′′)
Nothing → fail s

Nothing → fail s
= { define: fail (VAL n : s) = fail s }

case eval x q of
Just (n,q′)→ case eval y q′ of

Just (m,q′′)→ exec (ADD c) (VAL m : VAL n : s,q′′)
Nothing → fail (VAL n : s)

Nothing → fail s
= { induction hypothesis for y }

case eval x q of
Just (n,q′)→ exec (comp′ y (ADD c)) (VAL n : s,q′)
Nothing → fail s

= { induction hypothesis for x }
exec (comp′ x (comp′ y (ADD c))) (s,q)

The case for Catch is more interesting this time. In the calculation for the global state
semantics it was straightforward to bring the configuration arguments into the right form
to apply the induction hypotheses. With local state, however, when an exception handler
is invoked we require access to the state that was in place when the enclosing Catch was
entered, which information we communicate via the stack:

exec (comp′ (Catch x h) c) (s,q)
= { specification (14) }

case eval x q of
Just (n,q′)→ exec c (VAL n : s,q′)
Nothing → case eval h q of

Just (m,q′′)→ exec c (VAL m : s,q′′)
Nothing → fail s

= { induction hypothesis for h }
case eval x q of

Just (n,q′)→ exec c (VAL n : s,q′)
Nothing → exec (comp′ h c) (s,q)

= { define: fail (HAN c′ q : s) = exec c′ (s,q) }
case eval x q of

Just (n,q′)→ exec c (VAL n : s,q′)

ZU064-05-FPR appendix 17 July 2015 14:25

Appendix for “Calculating Correct Compilers” 5

Nothing → fail (HAN (comp′ h c) q : s)
= { define: exec (UNMARK c) (VAL n : HAN : s,q′) = exec c (VAL n : s,q′) }

case eval x q of
Just (n,q′)→ exec (UNMARK c) (VAL n : HAN (comp′ h c) q : s,q′)
Nothing → fail (HAN (comp′ h c) q : s)

= { induction hypothesis for x }
exec (comp′ x (UNMARK c)) (HAN (comp′ h c) q : s,q)

= { define: exec (MARK c′′ c′) (s,q) = exec c′ (HAN c′′ q : s,q) }
exec (MARK (comp′ h c) (comp′ x (UNMARK c))) (s,q)

Note that the new constructor HAN added to the Elem type within this calculation now has
two arguments: one for the handler code (as in previous calculations), and one for the state
to be used if the handler is invoked (for local state). We conclude the calculation with the
case for Put, which proceeds in the same manner as for global state:

exec (comp′ (Put x y) c) (s,q)
= { specification (14) }

case eval x q of
Just (n,q′)→ case eval y n of

Just (m,q′′)→ exec c (VAL m : s,q′′)
Nothing → fail s

Nothing → fail s
= { induction hypothesis for y }

case eval x q of
Just (n,q′)→ exec (comp′ y c) (s,n)
Nothing → fail s

= { define: exec (SAVE c′) (VAL n : s,q′) = exec c′ (s,n) }
case eval x q of

Just (n,q′)→ exec (SAVE (comp′ y c)) (VAL n : s,q′)
Nothing → fail s

= { induction hypothesis for x }
exec (comp′ x (SAVE (comp′ y c))) (s,q)

In summary, collecting together everything that we have learned in the process of the
above calculations, we obtained the following definitions.

Target language:

data Code = HALT | PUSH Int Code | ADD Code |
FAIL | MARK Code Code | UNMARK Code |
LOAD Code | SAVE Code

Compiler:

comp :: Expr → Code
comp x = comp′ x HALT

comp′ :: Expr → Code → Code
comp′ (Val n) c = PUSH n c

ZU064-05-FPR appendix 17 July 2015 14:25

6 Patrick Bahr and Graham Hutton

comp′ (Add x y) c = comp′ x (comp′ y (ADD c))
comp′ Throw c = FAIL
comp′ (Catch x h) c = MARK (comp′ h c) (comp′ x (UNMARK c))
comp′ Get c = LOAD c
comp′ (Put x y) c = comp′ x (SAVE (comp′ y c))

Virtual machine:

data Elem = VAL Int | HAN Code State

exec :: Code → Conf → Conf
exec HALT (s,q) = (s,q)
exec (PUSH n c) (s,q) = exec c (VAL n : s,q)
exec (ADD c) (VAL m : VAL n : s,q) = exec c (VAL (n+m) : s,q)
exec FAIL (s,q) = fail s
exec (MARK h c) (s,q) = exec c (HAN h q : s,q)
exec (UNMARK c) (VAL n : HAN : s,q) = exec c (VAL n : s,q)
exec (LOAD c) (s,q) = exec c (VAL q : s,q)
exec (SAVE c) (VAL n : s,q) = exec c (s,n)

fail :: Stack → Conf
fail [] = ([],0)
fail (VAL n : s) = fail s
fail (HAN h q : s) = exec h (s,q)

Note that, as previously, we added an equation to fail for the case when the stack is
empty in order to make the definition complete. Because fail does not take a state as an
argument, we can only give a fixed output state as the result, for which purposes we simply
return the value 0. As before, the choice for this additional equation has no impact on the
correctness of the above calculations because they do not depend on this choice.

	Global State
	Local State

