Time-indexed Types for Contracts

Patrick Bahr Jost Berthold Martin Elsman

DIKU
paba@diku.dk

17th July, 2015

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (American Option)
At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (American Option)
At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

- Express such contracts in a formal language
- Symbolic manipulation and analysis of such contracts.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (American Option)
At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

- Express such contracts in a formal language
- Symbolic manipulation and analysis of such contracts.
- Formally verified!

Example: American Option

Contract in natural language

- At any time within the next 90 days,
- party X may decide to
- buy USD 100 from party Y,
- for a fixed rate r of Danish Kroner.

Example: American Option

Contract in natural language

- At any time within the next 90 days,
- party X may decide to
- buy USD 100 from party Y,
- for a fixed rate r of Danish Kroner.

Translation into contract language
if $o b s(X$ exercises option) within 90
then $100 \times(\operatorname{USD}(Y \rightarrow X) \& r \times \operatorname{DKK}(X \rightarrow Y))$
else \emptyset

Overview

- Denotational semantics based on cash-flows
- Type system \rightsquigarrow causality
- Reduction semantics
- Contract specialisation
- Formalised in the Coq theorem prover
- Certified implementation via code extraction

An Overview of the Contract Language

\emptyset empty contract with no obligations
$a\left(p_{1} \rightarrow p_{2}\right) p_{1}$ has to transfer one unit of a to p_{2}
$c_{1} \& c_{2}$ conjunction of c_{1} and c_{2}
$e \times c$ multiply all obligations in c by e
$d \uparrow c$ shift c into the future by d days
let $x=e$ in c observe today's value of e at any time (via x)
if e within d then c_{1} else c_{2}

- behave like c_{1} as soon as e becomes true
- if e does not become true within d days behave like c_{2}

An Overview of the Contract Language

\emptyset empty contract with no obligations
$a\left(p_{1} \rightarrow p_{2}\right) p_{1}$ has to transfer one unit of a to p_{2}
$c_{1} \& c_{2}$ conjunction of c_{1} and c_{2}
$e \times c$ multiply all obligations in c by e
$d \uparrow c$ shift c into the future by d days
let $x=e$ in c observe today's value of e at any time (via x)
if e within d then c_{1} else c_{2}

- behave like c_{1} as soon as e becomes true
- if e does not become true within d days behave like c_{2}

Expression Language
Real-valued and Boolean-valued expressions, extended by obs (I, d) observe the value of I at time d $\operatorname{acc}(f, d, e)$ accumulation over the last d days

Example: Asian Option

$90 \uparrow$ if $o b s(X$ exercises option) within 0 then $100 \times(\operatorname{USD}(Y \rightarrow X) \&($ rate $\times \operatorname{DKK}(X \rightarrow Y)))$ else \emptyset
where

$$
\text { rate }=\frac{1}{30} \cdot a c c(\lambda r . r+o b s(\mathrm{FX}(\mathrm{USD}, \mathrm{DKK})), 30,0)
$$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates. $\mathcal{C} \llbracket \cdot \rrbracket$: Contr $\quad \rightarrow$ CashFlow

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\mathcal{C} \llbracket \cdot \rrbracket .: \text { Contr } \quad \rightarrow \text { CashFlow }
$$

CashFlow $=\mathbb{N} \rightarrow$ Transactions
Transactions $=$ Party \times Party \times Asset $\rightarrow \mathbb{R}$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\begin{gathered}
\mathcal{C} \llbracket \cdot \rrbracket .: \text { Contr } \times \text { Env } \rightarrow \text { CashFlow } \\
\text { Env }=\text { Label } \times \mathbb{Z} \rightarrow \mathbb{B} \cup \mathbb{R}
\end{gathered}
$$

CashFlow $=\mathbb{N} \rightarrow$ Transactions
Transactions $=$ Party \times Party \times Asset $\rightarrow \mathbb{R}$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\begin{aligned}
& \mathcal{C} \llbracket \cdot \rrbracket .: \text { Contr } \times \text { Env } \rightarrow \text { CashFlow } \\
& \mathrm{Env}=\text { Label }_{\alpha} \times \mathbb{Z} \rightarrow \alpha
\end{aligned}
$$

CashFlow $=\mathbb{N} \rightarrow$ Transactions
Transactions $=$ Party \times Party \times Asset $\rightarrow \mathbb{R}$

Contract Equivalences

$$
\begin{array}{rlrl}
e_{1} \times\left(e_{2} \times c\right) & \simeq\left(e_{1} \cdot e_{2}\right) \times c & & d \uparrow \emptyset \\
d_{1} \uparrow\left(d_{2} \uparrow c\right) & \simeq\left(d_{1}+d_{2}\right) \uparrow c & & r \times \emptyset \\
d \uparrow\left(c_{1} \& c_{2}\right) & \simeq\left(d \uparrow c_{1}\right) \&\left(d \uparrow c_{2}\right) & & 0 \times c \\
e \times\left(c_{1} \& c_{2}\right) & \simeq\left(e \times c_{1}\right) \&\left(e \times c_{2}\right) & & c \& \emptyset \\
d \uparrow(e \times c) & \simeq(d \uparrow e) \times(d \uparrow c) & c_{1} \& c_{2} \simeq c_{2} \& c_{1}
\end{array}
$$

$d \uparrow$ if b within e then c_{1} else $c_{2} \simeq$ if $d \Uparrow b$ within e then $d \uparrow c_{1}$ else $d \uparrow c_{2}$
$\left(e_{1} \times a\left(p_{1} \rightarrow p_{2}\right)\right) \&\left(e_{2} \times a\left(p_{1} \rightarrow p_{2}\right)\right) \simeq\left(e_{1}+e_{2}\right) \times a\left(p_{1} \rightarrow p_{2}\right)$

Causality

Definition

A closed contract c is causal iff

$$
\rho_{1}=t \rho_{2} \Longrightarrow \mathcal{C} \llbracket c \rrbracket_{\rho_{1}}(t)=\mathcal{C} \llbracket c \rrbracket_{\rho_{2}}(t) \quad \text { for all } t, \rho_{1}, \rho_{2}
$$

Causality

Definition

A closed contract c is causal iff

$$
\rho_{1}=t \rho_{2} \Longrightarrow \mathcal{C} \llbracket c \rrbracket_{\rho_{1}}(t)=\mathcal{C} \llbracket c \rrbracket_{\rho_{2}}(t) \quad \text { for all } t, \rho_{1}, \rho_{2}
$$

Example

$$
\mathbf{o b s}(\text { FX(USD, } \operatorname{DKK}), 1) \times \operatorname{DKK}(X \rightarrow Y)
$$

Type System - Expressions

$\Gamma \Vdash e: \tau^{t} \quad$ where $t \in \mathbb{Z}_{-\infty}$

$$
\begin{gathered}
\frac{\Gamma \Vdash r: \text { Real }^{t}}{\Gamma \Vdash r: \text { Boor }^{t}} \quad \frac{l \in \operatorname{Label}_{\tau} \quad t \leq t^{\prime}}{\Gamma \Vdash \mathbf{o b s}(l, t): \tau^{t^{\prime}}} \\
\frac{x: \tau^{t} \in \Gamma \quad t \leq t^{\prime}}{\Gamma \Vdash x: \tau^{t^{\prime}}} \\
\frac{\vdash o p: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau \quad \Gamma \Vdash e_{i}: \tau_{i}^{t}}{\Gamma \Vdash o p\left(e_{1}, \ldots, e_{n}\right): \tau^{t}} \\
\frac{\Gamma, x: \tau^{-\infty} \Vdash e_{1}: \tau^{t} \quad \Gamma^{+d} \Vdash e_{2}: \tau^{t+d}}{\Gamma \Vdash \operatorname{acc}\left(\lambda x \cdot e_{1}, d, e_{2}\right): \tau^{t}}
\end{gathered}
$$

Type System - Contracts

$\Gamma \Vdash c:$ Contr t where $t \in \mathbb{Z}_{-\infty}$

$$
\begin{gathered}
\frac{\Gamma^{-d} \Vdash c: \operatorname{Contr}^{t-d}}{\Gamma \Vdash d \uparrow c: \operatorname{Contr}^{t}} \quad \frac{t \leq 0}{\Gamma \Vdash a(p \rightarrow q): \operatorname{Contr}^{t}} \\
\frac{\Gamma \Vdash e \mathbb{R e a l}^{t^{\prime}} \quad \Gamma \Vdash c: \operatorname{Contr}^{t^{\prime}} \quad t \leq t^{\prime}}{\Gamma \Vdash e \times c: \operatorname{Contr}^{t}} \\
\frac{\Gamma \Vdash c_{i}: \operatorname{Contr}^{t}}{\Gamma \Vdash c_{1} \& c_{2}: \operatorname{Contr}^{t}} \quad \frac{\Gamma \Vdash e: \tau^{s} \quad \Gamma, x: \tau^{s} \Vdash c: \operatorname{Contr}^{t}}{\Gamma \Vdash \operatorname{let} x=e \text { in } c: \operatorname{Contr}^{t}} \\
\frac{\Gamma \Vdash e: \text { Bool }^{0} \quad \Gamma \Vdash c_{1}: \operatorname{Contr}^{t} \quad \Gamma^{-d} \Vdash c_{2}: \operatorname{Contr}^{t-d}}{\Gamma \Vdash \text { if } e \text { within } d \text { then } c_{1} \text { else } c_{2}: \text { Contr }^{t}}
\end{gathered}
$$

Type System - Properties

Theorem
If $\Vdash c$: Contr ${ }^{t}$, then c is causal.

Type System - Properties

Theorem
If $\Vdash c$: Contr ${ }^{t}$, then c is causal.
Lemma
(i) If $\Gamma \Vdash e: \tau^{t}$, then $\Gamma \Vdash e: \tau^{s}$ for all $s \geq t$.
(ii) If $\Gamma \Vdash c$: Contr ${ }^{t}$, then $\Gamma \Vdash c$: Contr ${ }^{s}$ for all $s \leq t$.

Type System - Properties

Theorem
If $\Vdash c$: Contr ${ }^{t}$, then c is causal.
Lemma
(i) If $\Gamma \Vdash e: \tau^{t}$, then $\Gamma \Vdash e: \tau^{s}$ for all $s \geq t$.
(ii) If $\Gamma \Vdash c$: Contr ${ }^{t}$, then $\Gamma \Vdash c:$ Contr s for all $s \leq t$.

Theorem (Type inference is sound and complete)
(i) If $\Gamma \nleftarrow c:$ Contr ${ }^{t}$, then $\Gamma \Vdash c:$ Contr s for all $s \leq t$.
(ii) If $\Gamma \Vdash c:$ Contr s, then $\Gamma \mapsto c:$ Contr t for a unique $t \geq s$.

Reduction Semantics

$$
c \stackrel{T}{\Longrightarrow} \rho c^{\prime}
$$

Reduction Semantics

$$
c \stackrel{T}{\Longrightarrow}_{\rho} c^{\prime}
$$

Theorem (Computational adequacy of ${ }^{T}{ }_{\rho}$)
Let \Vdash^{c} : Contr ${ }^{t}$ and $\rho \in$ Envp. $^{\prime}$
(i) If $c \stackrel{T}{\Longrightarrow} c^{\prime}$, then the following holds for all ρ^{\prime} that extend ρ :
(a) $\mathcal{C} \llbracket c \rrbracket_{\rho^{\prime}}(0)=T$, and
(b) $\mathcal{C} \llbracket c \rrbracket_{\rho^{\prime}}(i+1)=\mathcal{C} \llbracket c^{\prime} \rrbracket_{\rho^{\prime} / 1}(i) \quad$ for all $i \in \mathbb{N}$,
(ii) If $c \xlongequal{T} c^{\prime}$, then $\Vdash c^{\prime}:$ Contr $^{t-1}$.
(iii) If ρ is historically complete, then there is a unique c^{\prime} such that $c \stackrel{T}{\Longrightarrow} \rho c^{\prime}$ and $T=\mathcal{C} \llbracket c \rrbracket_{\rho}(0)$.

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, type system, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, type system, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, type system, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Extraction of executable Haskell code

- efficient Haskell implementation
- embedded domain-specific language for contracts
- contract analyses and contract management

Contracts in Haskell - Example

\{-\# LANGUAGE RebindableSyntax \#-\}
import RebindableEDSL

```
american :: Contr
american = if bObs (Decision X "exercise") 0 'within` 90
    then 100 # (transfer Y X USD &
            (6.23 # transfer X Y DKK))
        else zero
```

asian :: Contr
asian $=90$! if bObs (Decision X "exercise") 0
then 100 \# (transfer Y X USD \&
(rate \# transfer X Y DKK))
else zero
where rate $=(\operatorname{acc}(\lambda r \rightarrow r+$
rObs (FX USD DKK) 0) 300) / 30

