ERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Faculty of Science ([]

Composing and Decomposing Data Types
A Closed Type Families Implementation
of Data Types a la Carte

Patrick Bahr

University of Copenhagen,
Department of Computer Science
paba@di.ku.dk

10th ACM SIGPLAN Workshop on Generic Programming, 31st August, 2014
Slide 1

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Experimenting with Closed Type Families

e What can we do with them?
e How do they compare to type classes?

e How do they interact with type classes?

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Experimenting with Closed Type Families

e What can we do with them?
e How do they compare to type classes?

e How do they interact with type classes?

Application: Data Types a la Carte

Specifically: the subtyping constraint <:

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Experimenting with Closed Type Families

e What can we do with them?
e How do they compare to type classes?

e How do they interact with type classes?

Application: Data Types a la Carte

Specifically: the subtyping constraint <:
e Can we get rid of some of the restrictions?
e Can we improve error messages?

e What price do we have to pay?

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]
Idea: Decompose data types into two-level types:

Recursive data type

data Exp = Val Int
| Add Exp Exp

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Fix f = In (f (Fix f)) |= Val Int
— | Add a a

type Exp = Fix Arith

data Exp = Val Int
| Add Exp Exp

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Functors can be combined by coproduct construction :+:

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Functors can be combined by coproduct construction :+:

data Mul a= Mul a a
type Exp’ = Fix (Arith :+: Mul)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp E| data (f+:g)a=Inl (f a)
| iz 2

fFix Arith

Functors can be combined by coproduct construction 4

data Mul a= Mul a a
type Exp’ = Fix (Arith :+: Mul)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— ga
prj:: g a— Maybe (f a)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— g a e.g. Mul <: Arith :+: Mul

prj:: g a— Maybe (f a)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— g a e.g. Mul <: Arith :+: Mul

prj:: g a— Maybe (f a)

Example: smart constructors

add :: (Arith <: f) = Fix f — Fix f — Fix f
add x y = In (inj (Add x y))

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— g a e.g. Mul <: Arith :+: Mul

prj 1 g a — Maybe (f a)

Example: smart constructors

add :: (Arith <: f) = Fix f — Fix f — Fix f
add x y = In (inj (Add x y))

exp :: Fix (Arith :+: Mul)
exp = val 1 'add"' (val 2 ‘mul* val 3)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance (f <: fi) = f <: (i -+) where

instance (f <:) = f <: (fi -+ f2) where

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e Asymmetric treatment of :+:
e Left-hand side is not inspected
e Ambiguity

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e Asymmetric treatment of :+: A=<:A+:(B:+:C)
e Left-hand side is not inspected
e Ambiguity

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e Asymmetric treatment of :+: AA(A+ B)+: C
e Left-hand side is not inspected
e Ambiguity

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e Asymmetric treatment of :+: AA(A+ B)+: C
e Left-hand side is not inspected A+ B=:(A+:B)+C
e Ambiguity

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e Asymmetric treatment of :+: AA(A+ B)+: C
e Left-hand side is not inspected A+ B A A+ (B+:C)
e Ambiguity

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f2) where

instance (f <:) = f <: (fi -+ f2) where

e Asymmetric treatment of :+: AA(A+ B)+: C
e Left-hand side is not inspected A+ BA A+ (B:+:C)
e Ambiguity A=A+ (A+: B)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Contributions

We re-implemented <: such that:
« Subtyping behaves as intuitively expected”

« Ambiguous subtyping is avoided

o We can express isomorphism :~:

* .
terms and conditions may apply
Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

f <:g <= dunique injection from f to g

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

f <:g <= dunique injection from f to g

C+ A=< A+ B:+:C

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

f <:g <= dunique injection from f to g
C+ A=< A+ B+ C

Avoid ambiguous subtyping

Multiple occurrences of signatures are rejected:

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

f <:g <= dunique injection from f to g
C+ A=< A+B+:C

Avoid ambiguous subtyping

Multiple occurrences of signatures are rejected:

A=< A+ A+ C
A+ A=< A+ B

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
f <:g <= dunique injection from f to g

C+ A=< A+ B:+:C

Avoid ambiguous subtyping
Multiple occurrences of signatul injection not unique!

/

A<TA+ A+ C
A+ A=< A+ B

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
f <:g <= dunique injection from f to g

C+ A=< A+ B:+:C

Avoid ambiguous subtyping

Multiple occurrences of signatu(INjection not unique!

AL A+ A+ C
A+ A< A+ B

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
f <:g <= dunique injection from f to g

C+ A=< A+ B:+:C

Avoid ambiguous subtyping

Multiple occurrences of signatu(INjection not unique!

AL A+ A+ C
A+ A< A+ B

‘ “injection” not injective!

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
f <:g <= dunique injection from f to g

C+ A=< A+ B:+:C

Avoid ambiguous subtyping

Multiple occurrences of signatu(INjection not unique!

AL A+ A+ C
A+ A4 A+ B

‘ “injection” not injective!

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Type isomorphism constraint :~~:

We can express isomorphism :~:

f:~:g <= dunique bijection from f to g

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Type isomorphism constraint :~~:

We can express isomorphism :~:

f:~:g <= dunique bijection from f to g

Easy to implement: fg=(f=<g,g=:f)
Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 8

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Type isomorphism constraint :~~:

We can express isomorphism :~:

f:i~g <= 3 unique bijection from f to g

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function

The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Type isomorphism constraint :~~:

We can express isomorphism :~:

f:i~g <= 3 unique bijection from f to g

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function
The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)

With :~: we can do better:
split :: (g :~=: f +:r) = g a — Either (f a) (r a)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Type isomorphism constraint :~~:

We can express isomorphism :~:

f:i~g <= 3 unique bijection from f to g

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function
The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)

With :~: we can do better:
split:: (g~ f:+r)=ga—(fa—b)—(ra—b)—b

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 8

COPENHAGEN

Implementation of <:

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 .
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Idea

Type-level function Embed:
e take two signatures f, g as arguments

e check whether f <: g

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments

e check whether f <: g

Derive implementation of inj and prj: 777

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments

e produce proof object p for f <: g

Derive implementation of inj and prj:

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments

e produce proof object p for f <: g

Derive implementation of inj and prj:
e also use a type class
e But: use proof object as oracle in instance declarations

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments

e produce proof object p for f <: g

Derive implementation of inj and prj:
e also use a type class
e But: use proof object as oracle in instance declarations

No singleton types. This all happens at compile time!

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments

e produce proof object p for f =<: g

Derive implementation of inj and prj:
e also use a type class
e But: use proof object as oracle in instance declarations

No singleton types. This all happens at compile time!

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments
e produce proof object p for f =<: g
e check whether p also proves f <: g

Derive implementation of inj and prj:
e also use a type class

e But: use proof object as oracle in instance declarations

No singleton types. This all happens at compile time!

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

Definition

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f
p:f =g p:f =g
Left p: f =<<: g1+ & Right p: f =<<: g1 -+ &
Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘

Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f

p:f=<:g p:f=<:g
Left p: f =<<: g1+ & Right p: f =<<: g1 -+ &

pi:hi=kg p:h=<g
Sumpr pp: A+ h=:g

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f

p:f=<:g p:f=<:g
Left p: f =<<: g1+ & Right p: f =<<: g1 -+ &

pi:hi=kg p:h=<g
Sumpr pp: A+ h=:g

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f

p:f=<:g p:f=<:g
Left p: f =<<: g1+ & Right p: f =<<: g1 -+ &

pi:hi=kg p:h=<g
Sumpr pp: A+ h=:g

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f

p:f=<:g p:f=<:g
Left p: f =<<: g1+ & Right p: f =<<: g1 -+ &

pi:hi=kg p:h=<g
Sumpr pp: A+ h=:g

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Construct Proof Objects

data Emb = Found Prf | NotFound | Ambiguous

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Construct Proof Objects

data Emb = Found Prf | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Construct Proof Objects

data Emb = Found Prf | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where
Embed f f = Found Refl
Embed (f; :+: f,) g = Sum’ (Embed f; g) (Embed f; g)
Embed f (g1 +: g2) = Choose (Embed f g1) (Embed f g»)
Embed f g = NotFound

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Construct Proof Objects

data Emb = Found Prf | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where
Embed f f = Found Refl
Embed (f; -+: f) g = Sum’ (Embed f; g) (Embed f; g)
Embed f (g1 :+: g2) = Choose (Embed f g1) (Embed f g»)
Embed f g = NotFound

type family Choose (e :: Emb) (ez :: Emb) :: Emb where
Choose (Found p1) (Found py) = Ambiguous

Choose Ambiguous ey = Ambiguous
Choose e; Ambiguous = Ambiguous
Choose (Found p1) e = Found (Left p1)
Choose e; (Found py) = Found (Right p2)

Choose NotFound NotFound = NotFound

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Post-Processing

This is almost what we want.

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 .
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Post-Processing

This is almost what we want.
e We avoid ambiguity on the right-hand side:

A A A+ A+C

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Post-Processing

This is almost what we want.
e We avoid ambiguity on the right-hand side:

A A A+ A+C

e We still have ambiguity on the left-hand side:

A+ A=< A+ B

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Post-Processing

This is almost what we want.
e We avoid ambiguity on the right-hand side:

A A A+ A+C

e We still have ambiguity on the left-hand side:
A+ A=< A+ B
Solution: check for duplicates in Prf

type family Dupl (p :: Prf) :: Bool where

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Post-Processing

This is almost what we want.

e We avoid ambiguity on the right-hand side:

A A A+ A+C

e We still have ambiguity on the

Sum (Left Refl) (Left Refl)

A+ A «/Aﬁ

Solution: check for duplicates in Prf

type family Dupl (p :: Prf) :: Bool where

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘

Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

o Construct proof p for f <<: g
o Check whether p proves f <: g

o Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

« Construct proof p for f <<: g v
o Check whether p proves f <: g

o Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

« Construct proof p for f <<: g v
o Check whether p proves f <: g v

o Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

« Construct proof p for f <<: g v
o Check whether p proves f <: g v

o Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class f <: g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance f=:f where. ..
instance f=:(f + &) where . ..
instance =<2
= f=<:(g:+ &) where. ..
Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘

Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class f <: g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance f=:f
instance f=<g

= f=<(g:+ &)
instance =<2

= f=<:(g1:+ &)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 15

where. ..

where. ..

where. ..

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class f <: g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance f=:f where. ..
instance f=<g

= f=<:(g1:+ &) where . ..
instance f=g

= f=<:(g:+ &) where. ..
instance (=g, fh=<:g)

= (f+: h) :—<:gwhere...@

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘

Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub f g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance Sub f f
instance Sub f &

= Sub f (g4 &)
instance Sub f o

= Sub f (g4 &)
instance (Sub i g,Sub

= Sub (f+h)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 15

where. ..

where. ..

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance Sub ff where. ..
instance Sub f &

= Sub f (g+ &) where . ..
instance Sub f o

= Sub f (g1+ &) where. ..
instance (Sub i g,Sub

= Sub (fi 4 f)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance Sub (Found Refl) f f where. ..

(
instance Sub (Found p) f &
= Sub (Found (Left p)) f (g1 :+: &) where . ..
(
(

instance Sub (Found p) f @
= Sub (Found (Right p)) f (g1 :+: &) where. ..

instance (Sub (Found p1) i g,Sub (Found p2) f» g)
= Sub (Found (Sum p1 p2)) (f+: f) g where...gz

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a — Maybe (f a)

type f <: g = Sub (Embed f g) f g
instance Sub (Found Refl) f f where. ..

(
instance Sub (Found p) f &
= Sub (Found (Left p)) f (g1 :+: &) where . ..
(
(

instance Sub (Found p) f @
= Sub (Found (Right p)) f (g1 :+: &) where. ..

instance (Sub (Found p1) i g,Sub (Found p2) f» g)
= Sub (Found (Sum p1 p2)) (f+: f) g where...gz

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Conclusion

e This approach generalises to similar applications

e Improves type class-based implementation in many
aspects

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT

OF COMPUTER SCIENCE

Conclusion

e This approach generalises to similar applications

e Improves type class-based implementation in many
aspects

e But:

o We need a way to customise error messages.

o Compile time performance unpredictable.

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Conclusion

This approach generalises to similar applications

Improves type class-based implementation in many
aspects

e But:
o We need a way to customise error messages.

o Compile time performance unpredictable.

Implemented in the compdata package

> cabal install compdata

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 16

COPENHAGEN

Discussion

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 .
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Error Messages

e A<:B:+:C?

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 .
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

The original implementation would give:
No instance for (A :<: C)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e AXIA+:B?
Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e a<:a+:B7?

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 18

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e a<:a+:B7?
No instance for
(Sub (Post (Embed a (a :+: B))) a (a :+: B))

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Compile Time Performance

e If done "wrong”, this implementation can be very slow!

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

e If done "wrong”, this implementation can be very slow!

e Implementation presented here: O(n?)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

e If done "wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

e Slightly different implementation: O(2")
(but essentially the same)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

If done “wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

Slightly different implementation: O(2")
(but essentially the same)

micro benchmark:

e derive F <: G
e O summands in F and G

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

If done “wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

Slightly different implementation: O(2")
(but essentially the same)

micro benchmark:
o derive F <: G
e 9 summands in F and G
e Implementation presented here: 0.5s

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN

Compile Time Performance

If done “wrong”, this implementation can be very slow!

DEPARTMENT OF COMPUTER SCIENCE

Implementation presented here: O(n?)

Slightly different implementation: O(2")

(but essentially the same)

micro benchmark:

derive F <: G

9 summands in F and G
Implementation presented here: 0.5s
Naive implementation: 45s

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

If done “wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

Slightly different implementation: O(2")
(but essentially the same)

micro benchmark:

derive F <: G

9 summands in F and G
Implementation presented here: 0.5s
Naive implementation: 45s

Type families on kind * are expensive!

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 19

