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Introduction

Experimenting with Closed Type Families

e What can we do with them?
e How do they compare to type classes?

e How do they interact with type classes?
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Introduction

Experimenting with Closed Type Families

e What can we do with them?
e How do they compare to type classes?

e How do they interact with type classes?

Application: Data Types a la Carte

Specifically: the subtyping constraint <:
e Can we get rid of some of the restrictions?
e Can we improve error messages?

e What price do we have to pay?
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Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:
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Data Types a la Carte [Swierstra 2008]
Idea: Decompose data types into two-level types:

Recursive data type

data Exp = Val Int
| Add Exp Exp
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Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Fix f = In (f (Fix f)) |= Val Int
— | Add a a

type Exp = Fix Arith
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Recursive data type Fixpoint of functor
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Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Functors can be combined by coproduct construction :+:

data Mul a= Mul a a
type Exp’ = Fix (Arith :+: Mul)

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 3




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte [Swierstra 2008]

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp E| data (f+:g)a=Inl (f a)
| iz 2

fFix Arith

Functors can be combined by coproduct construction 4

data Mul a= Mul a a
type Exp’ = Fix (Arith :+: Mul)
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Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— ga
prj:: g a— Maybe (f a)
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Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— g a e.g. Mul <: Arith :+: Mul

prj:: g a— Maybe (f a)
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Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— g a e.g. Mul <: Arith :+: Mul

prj:: g a— Maybe (f a)

Example: smart constructors

add :: (Arith <: f) = Fix f — Fix f — Fix f
add x y = In (inj (Add x y))
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Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— g a e.g. Mul <: Arith :+: Mul

prj 1 g a — Maybe (f a)

Example: smart constructors

add :: (Arith <: f) = Fix f — Fix f — Fix f
add x y = In (inj (Add x y))

exp :: Fix (Arith :+: Mul)
exp = val 1 'add"' (val 2 ‘mul* val 3)
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Limitations of <:

instance f=:f where
instance (f <: fi) = f <: (i -+ ) where

instance (f <: ) = f <: (fi -+ f2) where
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e Asymmetric treatment of :+:
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Contributions

We re-implemented <: such that:
« Subtyping behaves as intuitively expected”

« Ambiguous subtyping is avoided

o We can express isomorphism :~:

* .
terms and conditions may apply
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Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
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Subtyping <: behaves as intuitively expected

f <:g <= dunique injection from f to g
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AL A+ A+ C
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Type isomorphism constraint :~~:

We can express isomorphism :~:

f:~:g <= dunique bijection from f to g
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Easy to implement: fg=(f=<g,g=:f)
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Type isomorphism constraint :~~:

We can express isomorphism :~:

f:i~g <= 3 unique bijection from f to g

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function

The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)
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f:i~g <= 3 unique bijection from f to g

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function
The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)

With :~: we can do better:
split :: (g :~=: f +:r) = g a — Either (f a) (r a)
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Type isomorphism constraint :~~:

We can express isomorphism :~:

f:i~g <= 3 unique bijection from f to g

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function
The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)

With :~: we can do better:
split:: (g~ f:+r)=ga—(fa—b)—(ra—b)—b
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Implementation of <:
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Idea

Type-level function Embed:
e take two signatures f, g as arguments

e check whether f <: g
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Idea

Type-level function Embed:
e take two signatures f, g as arguments
e produce proof object p for f =<: g
e check whether p also proves f <: g

Derive implementation of inj and prj:
e also use a type class

e But: use proof object as oracle in instance declarations

No singleton types. This all happens at compile time!
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Proof Objects

Definition

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf
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Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘
Slide 11




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f
p:f =g p:f =g
Left p: f =<<: g1+ & Right p: f =<<: g1 -+ &
Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘

Slide 11




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Prf = Refl | Left Prf | Right Prf | Sum Prf Prf

Refl : f =<: f

p:f=<:g p:f=<:g
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Construct Proof Objects

data Emb = Found Prf | NotFound | Ambiguous
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Construct Proof Objects

data Emb = Found Prf | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where
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Construct Proof Objects

data Emb = Found Prf | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where
Embed f f = Found Refl
Embed (f; :+: f,) g = Sum’ (Embed f; g) (Embed f; g)
Embed f (g1 +: g2) = Choose (Embed f g1) (Embed f g»)
Embed f g = NotFound

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 12




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Construct Proof Objects

data Emb = Found Prf | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where
Embed f f = Found Refl
Embed (f; -+: f) g = Sum’ (Embed f; g) (Embed f; g)
Embed f (g1 :+: g2) = Choose (Embed f g1) (Embed f g»)
Embed f g = NotFound

type family Choose (e :: Emb) (ez :: Emb) :: Emb where
Choose (Found p1) (Found py) = Ambiguous

Choose Ambiguous ey = Ambiguous
Choose e; Ambiguous = Ambiguous
Choose (Found p1) e = Found (Left p1)
Choose e; (Found py) = Found (Right p2)

Choose NotFound NotFound = NotFound
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Post-Processing

This is almost what we want.
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Post-Processing

This is almost what we want.
e We avoid ambiguity on the right-hand side:

A A A+ A+C
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Post-Processing

This is almost what we want.
e We avoid ambiguity on the right-hand side:

A A A+ A+C

e We still have ambiguity on the left-hand side:
A+ A=< A+ B
Solution: check for duplicates in Prf

type family Dupl (p :: Prf) :: Bool where
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Post-Processing

This is almost what we want.

e We avoid ambiguity on the right-hand side:

A A A+ A+C

e We still have ambiguity on the

Sum (Left Refl) (Left Refl)

A+ A «/Aﬁ

Solution: check for duplicates in Prf

type family Dupl (p :: Prf) :: Bool where
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Are we there yet?

o Construct proof p for f <<: g
o Check whether p proves f <: g

o Derive inj and prj
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Derive inj and prj

class f <: g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance f=:f where. ..
instance f=:(f + &) where . ..
instance =<2
= f=<:(g:+ &) where. ..
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prj:: g a — Maybe (f a)

instance f=:f where. ..
instance f=<g

= f=<:(g1:+ &) where . ..
instance f=g

= f=<:(g:+ &) where. ..
instance ( =g, fh=<:g)

= (f+: h) :—<:gwhere...@

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014 ‘

Slide 15




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub f g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance Sub f f
instance Sub f &

=  Sub f (g4 &)
instance Sub f o

=  Sub f (g4 &)
instance (Sub i g,Sub

=  Sub (f+h)
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Derive inj and prj

class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance Sub ff where. ..
instance Sub f &

= Sub f (g+ &) where . ..
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=  Sub f (g1+ &) where. ..
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= Sub (fi 4 f)
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class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a — Maybe (f a)

instance Sub (Found Refl) f f where. ..

(
instance Sub (Found p) f &
= Sub (Found (Left p)) f (g1 :+: &) where . ..
(
(

instance Sub (Found p) f @
= Sub (Found (Right p)) f (g1 :+: &) where. ..

instance (Sub (Found p1) i g,Sub (Found p2) f»  g)
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e Improves type class-based implementation in many
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o We need a way to customise error messages.
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Conclusion

This approach generalises to similar applications

Improves type class-based implementation in many
aspects

e But:
o We need a way to customise error messages.

o Compile time performance unpredictable.

Implemented in the compdata package

> cabal install compdata
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Error Messages

e A<:B:+:C?
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Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

The original implementation would give:
No instance for (A :<: C)
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Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))
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Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e AXIA+:B?
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Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e a<:a+:B7?
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Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e a<:a+:B7?
No instance for
(Sub (Post (Embed a (a :+: B))) a (a :+: B))
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Compile Time Performance

e If done "wrong”, this implementation can be very slow!
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Implementation presented here: O(n?)

Slightly different implementation: O(2")

(but essentially the same)

micro benchmark:

derive F <: G

9 summands in F and G
Implementation presented here: 0.5s
Naive implementation: 45s
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Compile Time Performance

If done “wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

Slightly different implementation: O(2")
(but essentially the same)

micro benchmark:

derive F <: G

9 summands in F and G
Implementation presented here: 0.5s
Naive implementation: 45s

Type families on kind * are expensive!

Patrick Bahr — Composing and Decomposing Data Types — WGP '14, 31st August, 2014
Slide 19




