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Abstract

Wouter Swierstra’s data types a la carte is a technique to modu-
larise data type definitions in Haskell. We give an alternative im-
plementation of data types a la carte that offers more flexibility in
composing and decomposing data types. To achieve this, we re-
fine the subtyping constraint, which is at the centre of data types
a la carte. On the one hand this refinement is more general, allow-
ing subtypings that intuitively should hold but were not derivable
beforehand. This aspect of our implementation removes previous
restrictions on how data types can be combined. On the other hand
our refinement is more restrictive, disallowing subtypings that lead
to more than one possible injection and should therefore be consid-
ered programming errors. Furthermore, from this refined subtyping
constraint we derive a new constraint to express type isomorphism.
We show how this isomorphism constraint allows us to decompose
data types and to define extensible functions on data types in an
ad hoc manner. The implementation makes essential use of closed
type families in Haskell. The use of closed type families instead
of type classes comes with a set of trade-offs, which we review in
detail. Finally, we show that our technique can be used for other
similar problem domains.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords expression problem; closed type families; two-level
types; modularity

1. Introduction

Data types a la carte (Swierstrd 2008) is a simple, yet powerful
approach to defining data types and functions on them in a modular
fashion. It provides a solution to the expression problem, which is
“to define a datatype by cases, where one can add new cases to the
datatype and new functions over the datatype, without recompiling
existing code, and while retaining static type safety” ).

The elegance of ’s data types a la carte lies in its
simplicity. It can be implemented and explained in a few lines of
Haskell code.
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Central to this technique is the idea to represent a recursive data
type as a two-level type (Sheard and Pasalidl2004) Fiz f consisting
of a signature functor f and a knot-tying fixpoint constructor Fizx.
As a consequence, modularity over the data type Fiz f can be ex-
pressed in terms of the signature functor f. The key components to
achieve this are (1) the sum operator :+: that allows the program-
mer to combine two signatures f and ¢ to form their sum f +: g,
and (2) the binary constraint f <: g to express that a signature f is
subsumed by a signature g.

In this paper we present an alternative definition of the sub-
sumption relation :<:. In its original form it has been defined as
a Haskell type class with two parameters. While this provides a
clean and simple implementation it suffers from a severe restric-
tion of Haskell’s type class resolution: there is no backtracking.

A consequence of this restriction is that we may not derive, for
example, the following subsumption, even though every summand
on the left also occurs on the right:

fH(gth)=<:(f+9)+h

Even the simpler relation g <: (f :+: g) :+: h is out of reach. For
many small scale uses of data types a la carte, this restriction is
not an issue or can be worked around. However, in practice this
restriction creates a number of problems. The most severe of these
problems occur in the form of leaky abstractions: when refactoring
a signature functor f by splitting it into two components fi, fo such
that f ~ fi :4: fo, previous subsumption relations may not hold
anymore.

In order to overcome these restrictions and avoid the problems
that stem from them, we implement the type constraint <: using
the recently introduced closed type families (Eisenberg et all2014).
As we shall show, the resulting subsumption constraint :<: is much
more flexible and powerful. It permits new use cases such as an
isomorphism constraint :~:, which allows the programmer to de-
compose and recombine signatures in an ad hoc manner.

In particular, the contributions of this paper are the following:

e We define a binary type constraint :<: that accurately charac-
terises the intuitive notion of signature subsumption, namely
such that f :<: ¢ iff each of the summands in f is unique and
has a unique counterpart in g.

e We demonstrate that this refinement of [Swierstrd’s original
definition of :<: permits new use cases for data types a la
carte. In particular, it allows us to compose signature functors —
and thus data types — more freely without giving up the utility
provided by the subsumption relation.

With the refined version of :<:, we are able to conservatively
characterise isomorphism of signature functors: we define the
constraint f :~: g as the conjunction of f <: g and g <: f.



e The isomorphism signature constraint :~~: allows the program-
mer to also decompose signatures more flexibly. The fact that a
signature f can be decomposed into g and h can be expressed
as f :>~: g :+: h. We demonstrate the utility of this constraint by
a number of examples.

e We add restrictions to the subsumption constraint :<: in order to
detect and avoid ambiguities that arise in the injection functions
that are derived from instances of f :<:g. Such ambiguities arise
when a summand occurs multiple times in the right-hand side
g, e.g. in the case of the instance f <: f :+: f.

e We give an analysis of the costs and benefits of replacing Swier-
stra’s original implementation with our implementation.

e Our technique is applicable to other similar problem domains.
We illustrate this observation on extensible product types.

The remainder of this paper is structured as follows: in section2]
we recap data types a la carte and demonstrate the problems that we
address in this paper. Section[3is a brief primer on closed type fam-
ilies and their idiosyncrasies. Our implementation of <: is given
in three steps: in section ] we give a simple backtracking variant
of [Swierstrd’s definition; section 5] generalises this implementation
to allow arbitrary compound signatures on the left-hand side; and
section [] presents our final implementation, which provides better
error messages and improves performance. In section [7] we review
the limitations of our implementation, discuss related work, and il-
lustrate other applications of our technique.

The subsumption constraint :<: along with the surrounding in-
frastructure as presented in this paper has been implemented in the
compdata Haskell library available on Hackage
[2014). As the implementation relies essentially on closed type fam-
ilies, it requires the Glasgow Haskell Compiler (GHC) version 7.8.

2. Data Types a la Carte
2.1 Defining Types and Functions
Data types a la carte ) is based on the idea of

splitting a data type definition into a signature functor f and a knot-
tying type constructor Fiz such that Fiz f represents the original
data type:

data Fiz f = In (f (Fiz f))

The benefit of this representation is that it reduces the problem of
extending recursive data types to the problem of extending functors.
The latter is easily achieved by the sum construction:

data (f :+:g) a=Inl (f a) | Inr (g a)

For example, instead of defining a data type of simple arithmetic
expressions by a recursive data type

data Ezpr = Val Int | Add Expr Expr

we define the functor
data Arith a = Val Int | Add a a

and build the desired data type by taking the fixpoint of Arith:
type Ezpr = Fix Arith

Arith is the signature of the type Fxpr.
At a later point we can then extend Ezpr, e.g. with multiplica-
tion, using the sum operator:

data Mult a = Mult a a
type Ezpr’ = Fiz (Arith -+: Mult)

Functions on data types a la carte follow the same two-level
approach as the type definitions. Instead of defining functions by

recursion, they are defined as a fold of an algebra. That is, to define
a function of type Fiz f — ¢, we define a function of type
f ¢ — ¢, called algebra, and lift it to the desired type by the
following combinator:

fold :: Functor f = (f ¢ = ¢) = Fiz f — ¢
fold f = f (fmap (fold f) z)

The definitions of algebras then follow the compositional structure
of signatures. To this end, one defines a type class and instantiates
it for each signature separately. For instance, assume that we want
to define an evaluation function for Ezpr’. We first define a type
class Ewval, which contains an algebra of the appropriate type:

class Fval f where
evalAlg :: f Int — Int

We then define the algebras for each of the atomic signatures by
instantiating Fval:

instance Fval Arith where
evalAlg (Val n) =n
evalAlg (Add z y) =z +y

instance Fval Mult where
evalAlg (Mult z y) =z xy

We then lift the algebras to compound signatures:

instance (Eval f, Eval g) = Ewval (f ++: g) where
evalAlg (Inl z) = evalAlg z
evalAlg (Inr ) = evalAlg z

Eventually, we obtain the following modular definition of an
evaluation function:

eval :: (Eval f, Functor f) = Fiz f — Int
eval = fold evalAlg

Due to its modular definition, eval can be instantiated to work on
both Ezpr and Expr’:

evaly :: Expr — Int
evali = eval

evaly :: BExpr’ — Int
evalo = eval

This ability to define functions on data types a la carte in a
modular fashion is complemented with the ability to build and
deconstruct values of such modular data types, which we shall
describe in section below. The contributions of this paper lie
in this latter part of the infrastructure. However, as we shall see,
the added expressiveness in constructing and deconstructing data
types provides new ways of defining and combining functions on
data types a la carte.

2.2 Signature Subsumption

In order to construct and deconstruct values, data types a la carte
provides a binary type class :<: on signatures that expresses that a
signature is subsumed by another one, e.g.

Arith <: (Arith :+: Mult)

The type class <: is equipped with methods that can be used to
define the following two functions that enable the programmer to
construct and deconstruct values from a compound data type:

ingect :: (f <:g) = f (Fiz g) — Fiz g
project :: (f <:g) =  Fiz g — Maybe (f (Fiz g))
For example, we can use inject, to lift the constructor Val to any

type that at least contains Arith, which yields the following smart
constructor:



val :: (Arith <: f) = Int — Fiz f

val © = inject (Val i)
Similarly, we can use project to pattern match any value of a type
that contains Arith against the Val constructor:

getVal :: (Arith <: f) = Fiz f — Maybe Int
getVal 1 = case project i of

Just (Val i) — Just i

_ — Nothing

To understand the behaviour of data types a la carte, we have to
look at the definition of the type class :<: and its instance declara-
tions. The class declares two methods that form the underpinning
of the implementation of inject and project:

class f <: g where
mj o f a— ga
prj g a — Maybe (f a)
The functions inject and project are defined in terms of these
methods as follows:
ingect :: (f =:g) = f (Fiz g) — Fiz g
inject = In o ing
project :: (f :<: g) = Fiz g — Maybe (f (Fiz g))
project (In g) = prj g
‘What makes the type class :<: work are the instance declarations:

instance f <: f where

inj = id
prj = Just

instance f <: (f :+: g) where
ing = Inl

prj (Inl f) = Just f
prj (Inr g) = Nothing
instance (f <: g) = f <: (h:+: g) where
iy = Inr o inj
prj (Inr g) = prj g
prj (Inl h) = Nothing

For the moment it is not important how inj and prj are imple-
mented. More interesting is how we obtain instances of f <: g. Of
particular importance is the apparent asymmetry of the treatment of
the :4-: operator: while :<: is defined recursively for the right-hand
side of :4:, we only have a non-recursive instance declaration for
the left-hand side of :4-:.

As a consequence, <: can be characterised syntactically as
follows: we have an instance f <: g iff g is of the form

g+ (o (e i gn) L)

and f = g¢; for some 1 < i < n. To match this behaviour of <:,
the operator :+: is declared right-associative. Hence, we have that
f =: g iff g is of the form g1 +: ... :+: g and f = g; for some
1 < i < n. However, we have to be careful as we do not have the
following subsumption for example:

fif=ifit ot fa

The problem is that the right-hand side is parenthesised as fi :+:
(f2 ++: f3). The common workaround for this problem is to split
constraints of the form f; :+: f> <: ¢ into two constraints: f; <: g
and fo :<: g.

In summary: if we want to use :<: in order to express signature
subsumption, we have to make sure that the left-hand side is an
atomic signature (i.e. not formed by :+:) and that the right-hand
side is a right-associative sum.
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In many use cases, these limitations of :<: are unproblematic
or can be worked around. However, as we shall demonstrate, these
limitations do cause trouble for many other realistic use cases.

Let’s start with the restriction that signatures on the right-hand
side of <: must be right-associative sums. While, this seems in-
nocuous at first, it clashes with abstraction and compositionality.
For example, given two concrete signatures Foo and Bar, we may
want to form a new signature FooBar by summation as follows:

type FooBar = Foo +: Bar

However, if Foo was itself defined as the sum A :+: B, then we
would not have that A :<: FooBar. Hence, none of the smart con-
structors of A can be used to construct a value of type Fixz FooBar.
In order to obtain this subsumption relation, we would have to de-
fine FooBar in the following way, which breaks abstraction:

type FooBar = A +: B -+: Bar

Furthermore, this restriction to right-associative sums hinders
refactoring. For instance, we might want to refactor the definition
of the signature Arith into two parts as follows:

data Val a = Val Int
data Add a = Add a a
type Arith = Val :4: Add

In practice, such refactoring may become necessary in order to
avoid duplication. For example, we could now define a type of
values, e.g. to define an evaluation function:

type Value = Fiz Val

The types of the smart constructors for Val and Add are refactored
accordingly, e.g.

val :: (Val <: f) = Int — Fiz f

However, with this refactoring we do not have the anticipated
subsumption relation Val <: Arith :4: Mult, which renders the
smart constructor val useless for constructing expressions of type
Expr’. However, we do have the instance Val :<: Mult :+: Arith.
This counterintuitive behaviour is caused by the asymmetry in the
instance declarations for :<:.

Also the restriction to atomic signatures on the left-hand side
of :<: appears harmless at first. For example, smart constructors,
such as val defined above, always follow this pattern. Similarly,
the project function is typically used for pattern matching, and thus
atomic left-hand sides are sufficient.

However, there are use cases that do require compound signa-
tures on the left hand side. To illustrate this, we give a recursive
variant of inject, which can be considered an upcasting operation:

deepInject :: (f <: g, Functor ) = Fiz f — Fiz g
deepInject = fold inject

The function deeplnject uses the injection derived from [ <:
g to upcast a complete value from signature f to signature g.
For example we could imagine having an expression over integer
literals and multiplication, i.e. of type Fiz (Val :+: Mult) and
want to turn it into an expression of type Ezpr’. We could use
deepInject to do so, provided that Val:+: Mult <: Arith 4: Mult.
Alas, this is not the case, even though we have that Val <: Arith.

Similarly we can define a function deepProject that performs
a downcasting operation (Bahr_and Hvitved 2011). Its utility is
unfortunately equally reduced due to the limitation of :<:.

Another shortcoming of the present implementation of signature
subsumption can be seen in the type of the method prj:

prj i g a — Maybe (f a)



This method tries to cast a value of type g a to the “smaller” type
f a, returning Nothing if it fails. However, returning Nothing is
unsatisfying in some settings. If a value of type g a cannot be cast
to the type f a, we would like a proof of that in the form of a value
of type h a, where f ~ g:+4:h. Given the signature Arith:+: Mult,
for example, we would like prj to have type

(Arith +: Mult) a — Either (Val a) ((Add :+: Mult) a)
instead of just
(Arith +: Mult) a — Maybe (Val a)

This refined projection method could, for example, be used to
implement an evaluation function. We first split out the value part of
the input signature, which is evaluated trivially, and then deal with
the remainder of the signature — where actual evaluation is neces-
sary — separately. In general, a more powerful projection function
as outlined above could be used to define extensible functions in an
ad hoc manner, without the need to use type classes. We shall see
an example of such an ad hoc definition in the form of a desugaring
function in section

In the remainder of this paper we present an alternative imple-
mentation that resolves the issues we have described above. The
implementation is presented in three steps from section M to sec-
tion[6l Since this implementation uses a fairly recent extension to
the Haskell language — closed type families — we give a brief in-
troduction to this new feature in section 3 Readers familiar with
closed type families in Haskell can safely skip that section.

3. Using Closed Type Families

Type families (Chakravarty et all2003) extend the type language of
Haskell to allow the programmer to express limited forms of type-
level computation:

type family Element |

type instance Element [a] = a
type instance Element Text = Char

In the code above we first declare the type family Element that
takes a single type [ as an argument and returns a type. Then
we give two instances of this type family by giving appropriate
mappings. Any list type [a] is mapped to the type a, and the type
Tezt is mapped to the type Char.

Type families are by nature partial, they do not necessarily
provide a mapping for each type. For example the type fam-
ily Element does not provide a mapping for types of the form
Array a. But type families are also open. That is, we can extend
the definition — without recompiling the original code — by another

mapping, e.g.
type instance Element (Array a) = a

This openness of type families makes them quite different from
Haskell functions on the value level.

Recently, [Eisenberg et al! (2014) introduced closed type fam-
ilies and implemented them in the Glasgow Haskell Compiler
(GHCQ). In contrast to their open counterparts, closed type fami-
lies are defined with a fixed sequence of equations that cannot be
extended. Moreover, the order of the equations is relevant — simi-
larly to function definitions in Haskell. For example, the following
code defines a type family Curry that curries a function type of the
appropriate form and otherwise does nothing:

type family Curry t where
Curry ((a,b) - ¢c)=a—b—c
Curry a =a

Note that the two equations are overlapping, e.g. they both ap-
ply to the type (Int,String) — Char. But the equations are
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tried in order, and the first applicable equation is chosen. Hence,
Curry ((Int, String) — Char) is simplified to (Int, String) —
Char. However, the semantics of closed type families is subtle.
For example, given a type variable ¢, the type Curry t does not
simplify to ¢ as one might at first expect. The equations in a type
family are tried from top to bottom. But it is not sufficient that the
left-hand side matches in order to make the equation applicable. In
addition, it is required that none of the equations that appear before
it can match — for any instantiation of type variables[] The example
type ¢ can be instantiated such that it matches the first equation,
namely by instantiating ¢ to (a, b) — c. Therefore, Curry t does
not simplify to ¢. By contrast, Curry (s, t) does indeed simplify
to (s, t).

But closed type families go even beyond simple pattern match-
ing by also allowing non-linear patterns, i.e. type variables may
occur more than once on the left-hand side of equations. For exam-
ple we may define the following type family that turns any product
type of the form (a, a) into a function type Bool — a:

type family Prod t where
Prod (a,a) = Bool — a
Prod a =a

Closed type families are particularly handy for dealing with
types produced by data type promotion (Yorgey et all2012), which
lifts (a limited class of) data types to the kind level. For example
the data type definition for Bool

data Bool = True | False

yields also two types True and False, each of kind Bool. We can
then define type families on types of kind Bool as we would define
functions on type Bool. For example, we can define disjunction:

type family Or a b where
Or False False = False
Or a b = True

As for open type families, we can provide explicit kind annota-
tions to closed type family definitions:

type family Or (a:: Bool) (b :: Bool) :: Bool where
Or False False = Fulse
Or a b = True

An important fact to keep in mind is that the computations per-
formed via type families happen all during compile time. Moreover,
the results of these computations are not available during runtime.
This complicates writing functions and terms that inhabit the types
computed by type families. For instance, reconsider the type family
Prod that we defined above. It maps any type of the form (a, a) to
the type Bool — a and any other type to itself. Thus, we have that
any type ¢ is isomorphic to Prod t. In particular, we should be able
to write a function of type ¢ — Prod t that implements one direc-
tion of this isomorphism. However, the straightforward attempt to
implement this function fails:

prod :: t — Prod t
prod (z,y) = Ab — if b then z else y
prod x =z

GHC will complain that it

couldn’t match expected type ‘t’ with actual
type ‘(t0, t0)’

What we really want is to pattern match on the type ¢ to check
whether it is of the form (a, a) and then return an according

'In practice, GHC only approximates this idea conservatively using the

notion of apartness (cf. 2014)).



mapping from ¢ to Prod t. There are two methods to achieve this
in Haskell: use a GADT that reflects the type-level evidence to the
term level, or use a type class to dispatch on the result of the type
level computation.

For the first approach we introduce a GADT that reflects the
pattern matching we would like to perform on the input type ¢:

data Ty t ' where
IsProd :: Ty (a,a) (Bool — a)
NotProd :: Ty t t

The first argument to Ty is the type we want to pattern match on
and the second argument is the result of applying Prod to that type.
In other words, the inhabitants of type Ty t t' are evidence that
Prod t = t'. We can then write the desired function by pattern
matching on this evidence:

prod' :: Ty t (Prod t) — t — Prod t

prod’ IsProd (z,y) = A\b — if b then z else y
prod’ NotProd x =z

We can then use a type class to infer the evidence automatically:
class GetTy t t' where
getTy :: Ty t t'
instance GetTy (a, a) (Bool — a) where
getTy = IsProd

instance GetTy a a where
getTy = NotProd

Finally, we obtain the definition of the function prod by apply-
ing prod’ to the evidence provided by the function getTy:

prod :: GetTy t (Prod t) = t — Prod t
prod = prod’ getTy

This approach is described by [Eisenberg et all (2014) in their

implementation of a generic zip With function. However, the con-
struction of explicit term-level evidence is unnecessary as it is im-
mediately consumed by prod’. Instead, we can use the type class
GetTy to directly construct the function prod’ getTy:

class GetTy s t where
prod’ ::s — t

instance GetTy (a, a) (Bool — a) where
prod’ (z,y) = Ab — if b then z else y

instance GetTy a a where

prod' © = x
prod :: GetTy t (Prod t) = t — Prod t
prod = prod’

Apart from being clearer, this approach also avoids the additional
pattern matching on the type 7%. The overhead due to this pattern
matching is negligible in this toy example. But as term-level evi-
dence becomes more complex, the overhead from pattern matching
may become significant. Therefore, we shall use direct approach
for the rest of this paper.

4. Implementing Backtracking Subsumption

The fundamental problem that we need to solve to improve the
definition of <: is to make it closed under summation from the left
and right. If we implement :<: as a type class, we have to choose
one over the other, since there is no mechanism to backtrack. That
is, when checking whether f :<: g1 :+: g2, we have to commit to
either checking f <: g1 or f :<: g2. Haskell’s type class system does
not allow us to try one and upon failure try the other.

To implement a backtracking variant of :<: using closed type
families, we implement a type family that takes two signature
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functors and checks whether the first is a summand of the second
one. With the help of the type family Or defined in section 3l we
can implement such a type family quite easily:

type family Elem (e :: * — %) (f :: %« — %) :: Bool where

Elem e e = True
Elem e (I:+: 1) = Or (Elem e l) (Elem e 1)
Elem e f = Fualse

The constraint :<: can then be implemented by defining the
following synonym:

type f <: g = Elem f g ~ True

That is, f is subsumed by g iff Elem f g is equal to True. The
above definition makes use of the ConstraintKinds extension of
Haskell to define f :<: g as a synonym for Elem f g ~ True.

However, the above definition only covers one aspect of the
original definition of <:. The original type class :<: also provided
two functions inj and proj. With the above setup alone we do
not have any concrete type-level evidence to implement these two
functions. Instead of only producing a Boolean as a result, the type
family Elem must also provide evidence of the fact that the first
argument is contained in the second argument. We will represent
such evidence by the following kind Pos, which intuitively denotes
the position of an occurrence found by Elem:

data Pos = Here | Left Pos | Right Pos

Note that we make use of Haskell’s data type promotion facil-
ity [2012) to use Pos as a kind. For example, Left
is used as a type constructor of kind Pos — Pos.

Instead of using the kind Bool, we then use the following kind
Res, which provides the position of the occurrence found in the
second argument of Elem:

data Res = Found Pos | NotFound

The definition of Elem is easily refactored to produce a type-
level evidence of kind Res:

type family Elem (e ::% — %) (p :: x — %) :: Res where

Elem e e = Found Here
Elem e (I:4+:7r) = Choose (Elem e l) (Elem e r)
Elem e p = NotFound

type family Choose (I :: Res) (r :: Res) :: Res where
Choose (Found z) y = Found (Left x)
Choose x (Found y) = Found (Right y)
Choose z Y = NotFound

We replace the type family Or by the type family Choose, which
produces an appropriate type-level evidence.

Using the result produced by Elem, we can derive the inj
and prj function. Following the approach outlined in section 3] we
define the following type class:

class Subsume (res :: Res) f g where
inj :fa—ga
pri’ g a — Maybe (f a)

Subsume is the same as :<: from section 2] except that it has an
additional type parameter of kind Res. With this setup we can
define the instance declarations that we want, namely by recursion
in the left- and the right hand-side of :+:. The additional argument
of kind Res acts as an oracle that tells Haskell’s type instance
resolution which instance declaration to take.

Unfortunately, we cannot use the type class Subsume as it is
defined above since the type res does not occur in the type of either
class methods 4nj’ and prj’. The solution is simple, though: we add
a dummy argument that mentions the type:



data Proxy a = P

class Subsume (res :: Res) f g where
inj’ :: Proxy res — f a — g a
prj’ 2 Prozy res — g a — Maybe (f a)

Providing instance declarations is easy now. The declarations
follow the same idea as the original definition of <: from section[2]
The only exception is that the case for the left summand is now
analogous to the case for the right summand:

instance Subsume (Found Here) f f where
inj’ _ = id
prj’ _ = Just

instance Subsume (Found p) f 1
= Subsume (Found (Left p)) f (I 4: 1) where

inj’ _ = Inl o inj’ (P :: Prozy (Found p))
prj’ _ (Inl £) = prj’ (P :: Prozy (Found p)) x
prj’ _ (Inr _) = Nothing
instance Subsume (Found p) f r
= Subsume (Found (Right p)) f (I :+: r) where

inj’ _= Inr o inj’ (P :: Proxy (Found p))

prj’ _ (Inr z) = prj’ (P :: Prozy (Found p)) x
pri’ _ (Inl _) = Nothing

The subsumption constraint :<: is then defined as follows:
type f <: g = Subsume (Elem f g) f g

This allows us to define the final injection and projection func-
tions as follows:

mjuVfga.(f=ig)=fa—ga

inj = inj’ (P :: Prozy (Elem f g))

prj =V fga.(f=:g)=ga— Maybe (f a)
prj = p?"j, (P i Proa:y (Elemf g))

With this implementation we indeed obtain subsumption rela-

tions of the fornf]

g=:(f4ig)+h
For instance, in the example from section2] we have the anticipated
subsumption Val :<: Arith -+: Mult. Recall that in the type class-
based implementation, we did not have this subsumption, but we
did have the subsumption Val <: Mult -+: Arith. With the above
closed type families-based implementation we get both.

However, this new implementation still suffers from the same
problem of ambiguity as the original type class-based one: we can
still derive subsumptions that permit more than one injection func-
tion, e.g. f <: f :+: f. Such subsumption relations are typically
unintended and we should try to avoid them and instead provide
an error message to the programmer to inform her about the am-
biguity. For instance, we may forget that the Arith signature al-
ready contains the Val signature and try to derive the subsumption
Val <: Arith :4: Val.

The implementation we have given in this section can be easily
extended to check for ambiguity. Firstly, we have to extend the kind
Res by another type to indicate ambiguity:

data Res = Found Pos | NotFound | Ambiguous

Secondly, we extend the definition of the type family Choose by
three additional equations:

type family Choose (I :: Res) (r :: Res) :: Res where
Choose (Found z) (Found y) = Ambiguous

2 The signatures on either sides have to be ground, though. This issue is
discussed in detail in section [Z.1]
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Choose Ambiguous y = Ambiguous

Choose z Ambiguous = Ambiguous
Choose (Found z) y = Found (Left x)
Choose x (Found y) = Found (Right y)
Choose x y = NotFound

The first equation detects ambiguities, while the second and
third equation propagate any ambiguity that we have found. The
remaining equations are the same ones we had before. Also the
other definitions stay the same.

With the thus amended definition, we indeed avoid ambiguous
embeddings from multiple occurrences of the same summand. For
instance, the constraint Val <: Arith :4: Val is no longer satisfied
and is rejected with the error message

No instance for
(Subsume Ambiguous Val (Arith :+: Val))

Rejecting ambiguous subsumptions is not necessary. The law
that we would expect the derived functions inj and prj to sat-

isfy (Delaware et al!l2013) can be formulated as follows:
iff

prj x = Just y mjy=zc (INVERSE)
[Swierstrd’s original implementation as well as the implementation
given here (be it with checking for ambiguity or not) satisfy this
law. Nonetheless we argue that ambiguity is typically undesired
and should be considered an error.

The implementation that we presented in this section resolves
some of the issues that we have identified in section 2l In particu-
lar, the implementation treats :4: symmetrically, and it avoids am-
biguous injections. However, it still does not allow arbitrary sums
on the left hand side. For example, we cannot derive the following

subsumption:
Add +: Mult <: Arith -+: Mult

We should be able to derive the above subsumption since Arith
subsumes Add. However, our implementation as well as the orig-
inal implementation of [Swierstrd can only derive a subsumption if
the left-hand signature appears as a summand in the right-hand side
signature. In the next section we further refine our implementation
to deal with this case.

5. Subsumption for Compound Signatures

In this section we generalise the implementation of the subsump-
tion constraint :<: to allow compound signatures on the left-hand
side. This generalisation proves useful for a number of use cases.
In particular, it will allow us to define an isomorphism constraint
:o~: on signatures. In this section we will give a straightforward im-
plementation of :<: that has these properties. In section[@ we shall
give a revised implementation that provides better error messages
and has better performance properties.

5.1 Decomposing Compound Signatures

Our first approach to generalise the subsumption constraint imple-
mented in section M to compound signatures on the left-hand side
follows a simple recipe: (1) decompose the left-hand side signature
into its atomic summands, and (2) use the subsumption constraint
from section[d on these atomic summands.

The idea is to decompose the left-hand side signature f in a con-
straint f :<: g and then try to obtain an embedding using Elem f’ g
for each component f’ of f. To this end we introduce the following
kind Struc, which describes the structure of a (potentially) com-
pound signature and provides types of kind Res for each atomic
component in that structure:

data Struc = Sum Struc Struc | Atom Res



The following type family GetStruc performs the decomposi-
tion on its first argument and refers to Elem once it has found an
atomic signature:

type family GetStruc f g :: Struc where
GetStruc (fi ++: f2) g = Sum (GetStruc fi g)
(GetStruc f2 g)
GetStruc f g = Atom (Elem [ g)

As before, we use a type class that traverses the evidence pro-
duced by GetStruc in order to define the desired injection and pro-
jection functions:

class Subsume’ (s :: Struc) f g where
inj” :: Prozy s — f a — g a
pri” :: Proxy s — g a — Maybe (f a)
instance Subsume res f g
= Subsume’ (Atom res) f g where
inj" _x =inj’ (P :: Proxy res) =
pri” _x = prj’ (P:: Proxy res) =
instance (Subsume’ s1 fi g, Subsume’ s> fo g)
= Subsume’ (Sum s1 s2) (fi ++: f2) g where
inj"" _ (Inl ) = ing"” (P :: Prozy s1)
inj"" _ (Inr z) = ing” (P :: Prozy $2) x
prj” _x = case prj” (P :: Prozy s1) = of
Just y — Just (Inl y)
_ — case prj” (P :: Prozy s2) z of
Just y  — Just (Inr y)
Nothing — Nothing

For the case of an atomic signature we use the injection and projec-
tion from the corresponding instance of Subsume. Whereas in the
case of a sum we recurse.

We can then redefine the subsumption constraint :<: as follows:

type f <: g = Subsume’ (GetStruc f g) f g
The injection and projection functions are redefined accordingly

injuVfga.(f=<:g)=fa—>ga
inj = inj"" (P :: Prozy (GetStruc f g))

prj =V fga.(f=<:g)=ga— Maybe (f a)
prj = prj” (P :: Prozy (GetStruc f g))

Now we are finally able to derive non-trivial subsumptions with
a compound left-hand side, e.g.

Val :+: Mult <: Arith :+: Mult

For example, we can use the deepInject function from section 2.2]
to upcast any expression over Val :4: Mult into an expression over
Arith 4 Mult:

upcast :: Fiz (Val :+: Mult) — Fiz (Arith +: Mult)
upcast = deepInject

However, this implementation of :<: is still not fully satisfac-
tory. Our implementation avoids ambiguity caused by subsump-
tions with multiple occurrences of the same signature on the right-
hand side, e.g. Val :<: Val :4: Val. Since we now allow compound
signatures on the left-hand side, the converse may happen: our im-
plementation happily derives that Val -+: Val <: Val.

This phenomenon is qualitatively worse than ambiguity, since
it means that the derived functions ¢nj and prj do not satisfy the
[INVERSEllaw. In particular, inj is not injective. The solution to this
problem is simple: we add another constraint to the definition of <:
that checks whether the left-hand side contains duplicates. Figure[I]
contains the implementation of the type family Dupl, which checks
for duplicate occurrences of the same atomic signature in a given

type family Dupl (f :: % — %) (I :: [* — x]) :: Bool where
Dupl (f =+:9) L = Dupl f (g":1)
Dupl f l=Or (Find f 1) (Dupl’ 1)

type family Dupl’ (I:: [* — x]) :: Bool where
Dupl’ (f':1) = Or (Dupl f 1) (Dupl’ 1)
Dupl’ '[] = False

type family Find (f :: x — %) (I :: [x — %]) :: Bool where
Find f (¢':1) = Or (Find' f g) (Find f 1)
Find f'[] = False

type family Find' (f :: % — %) (g :: x — %) : Bool where
Find' f (g1 ++: g2) = Or (Find' f g1) (Find' f g2)
Find' f f = True
Find' f g = False
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Figure 1. Checking for duplicate occurrences of signatures.

signature. To this end, Dupl takes an additional worklist parameter
of kind [* — x], i.e. a list of signatures. Dupl proceeds by
decomposing the argument, recursing on the left summand and
adding the right summand to the worklist. Once it reaches an atomic
signature, it checks whether this atomic signature occurs in one
of the signatures in the work list. Moreover, it repeats the check
for every signature in the worklist. Note that : and '[] denote the
constructors for type-level lists.
We can thus refine the implementation of :<: as follows:

type f <: g = (Subsume’ (GetStruc f g) f g,
Dupl f'[] ~ False)

With this new definition, subsumptions such as Val :4: Val <: Val
are not derivable anymore.

5.2 Signature Isomorphisms

The added generality of :<: brings a new set of use cases for data
types a la carte. As we illustrated in section the type of the
projection function prj is somewhat unsatisfying: given f <: g, the
projection prj either returns a value over signature f or it returns
Nothing. However, if projection into f fails, we have learned that
the input must be coercible into a signature h with g >~ f :4: h.
The new implementation of :<: allows us to do just that by
giving us a means to express g ~ f :4: h constructively. In
particular, we can define the binary constraint :~: on signatures:

type fi~g=(f <:g,9=<:f)

That is, we define signature isomorphism as subsumption in both
directions.

We can now express that a signature f can be split into two
disjoint sub-signatures fi and f> as the constraint f :~: fi :+: fo.
The following function split will allow us to do pattern matching
according to such a decomposition into two disjoint sub-signatures:

split i (f i fi i fo) =
(ia—=b)—=>(ha—=b —=fa—b
split fi f» © = case inj = of
Inl y—fiy
Inry— foy

Note that we, in fact, only need one of the two subsumptions
that make up the isomorphism constraint in order to define split,
namely f <: fi :+: fo. The inj function for this subsumption allows
us tomap f ainto (fi :+: f2) a. The converse subsumption is only
needed to make sure that f; and f> do not contain any “junk”, i.e.
signatures that are not already present in f.



class Desug f g where
desugAlg :: f (Fiz g) — Fiz g
instance (Add <: g) = Desug Dbl g where
desugAlg (Double ) = inject (Add z x)
instance (Desug fi g, Desug f> g)
= Desug (fi :+: f2) g where
desugAlg (Inl z) = desugAlg x
desugAlg (Inr z) = desugAlg x
instance (f <: g) = Desug f g where
desugAlg = inject
desugar :: (Desug f g, Functor f) = Fiz f — Fiz g
desugar = fold desugAlg

Figure 2. Desugaring using type classes.

5.2.1 Example: Desugaring

To illustrate the utility of the isomorphism constraint and in partic-
ular the split combinator, consider the following signature functor

data Dbl a = Double a

with the intended semantics that Double doubles its argument.
This Double operator can be considered syntactic sugar for the
arithmetic expression language Fiz Arith, since we can translate
Double x into Add x x. So we should be able to implement a
desugaring function of type Fiz f — Fiz ¢ such that g is “f
without Dbl” and g contains at least Add. Using the power of data
types a la carte we can implement such a desugaring function.

To do so, however, we have to follow the pattern described in
section 2.1 i.e. define a suitable type class and provide the neces-
sary instance declarations. Figure 2] gives the detailed implementa-
tion. Moreover, the resulting type of the desugaring function will
not immediately describe the relationship between the two signa-
tures f and g. With the new isomorphism constraint :~: we can
do better and give a function with the following type, without any
additional type class infrastructure:

i~ g -+ Dbl, Add <: g, Functor f)
= Fix f — Fiz g

desugar :: (

The type signature explains the relationship between f and g in a
direct and succinct way. The implementation itself is straightfor-
ward. However, we have to give type annotations in order to make
explicit how f should we decomposed:

desugar = fold desugAlg
desugAlg :: (f i~ g ++: Dbl, Add <: g)
= f(Fix g) = Fix g
desugAlg = split (\z — In )
(A(Double z) — inject (Add x z))

The algebra that is used to implement the desugaring uses split to
pattern match according to the isomorphism f:2~: g:+: Dbl. The first
case of this pattern matching performs the trivial transformation
via In whereas the second case performs the desired desugaring of
Double.

5.2.2 Example: Overriding Default Implementation

Consider the implementation of a modular evaluation function eval
shown in Figure B The implementation follows the typical pattern
for defining a function on data types a la carte: a type class that
provides the underlying algebra is declared, instances are declared
for the sum construction and each atomic signature, and finally the
function is defined as a fold over the thus defined modular algebra.
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class Fval f where
evalAlg :: f Int — Int

instance (Eval f, Eval g) = Ewval (f ++: g) where
evalAlg (Inl z) = evalAlg z
evalAlg (Inr x) = evalAlg z

instance Fval Add where
evalAlg (Add z y) =z +y

instance Fval Dbl where
evalAlg (Double ) = = + x

instance Eval Val where
evalAlg (Val n) = n

eval :: (Eval f, Functor f) = Fiz f — Int
eval = fold evalAlg

Figure 3. Modular evaluation function.

This approach yields a modular and extensible function defini-
tion. However, the modularity is restricted as this setup does not
allow us to replace one of the instance declarations. For example,
if we wish to have an alternative evaluation function that evaluates
Double z to 2 * x instead of = + x, we have to define a separate
type class, duplicate all instance declarations (except the one for
Dbl) and provide a new instance declaration for Dbl that imple-
ments the alternative evaluation.

Using the split combinator, we can override the evaluation
implementation for Dbl without writing a new evaluation function
from scratch. To achieve this, we split the signature f into the form
g +: Dbl, use the default implementation for g, and provide a new
implementation for Dbl:

eval' =V f g . (f :=: g +: Dbl, Fval g, Functor f)
= Prozy g — Fiz f — Int
eval’ _ = fold evalAlg’
where evalAlg’ = split (A\(z :: g Int) — evalAlg x)
(A(Double z) — 2 % x)

Note that we have to provide the type g that is used in the split as an
explicit type argument via a proxy. For example we can instantiate
the above evaluation function to a concrete signature as follows:

evaluate :: Fiz (Arith :+: Dbl) — Int
evaluate = eval’ (P :: Proxy Arith)

While use of split in the above two examples produces more
succinct code and avoids code duplication, one might expect that
it incurs a runtime performance penalty since the pattern matching
according to the isomorphism f:~: g:+: Dbl means that values over
f have to be first decomposed and then composed again to obtain
values over g :+: Dbl. To test this hypothesis, we have performed
a number of benchmarks using the Criterion Haskell library. We
tested extended implementations of the desugaring as well the
evaluation example presented above. We were not able to see any
difference in the runtime between the implementations using split
and the implementations using type classes. Surprisingly, this still
holds as we increase the number of summands in the signatures. We
measured the runtime for examples using signatures with up to 25
summands and did not see any difference in runtime performance.

6. Improving Performance and Error Messages

In this section we shall refine the implementation we presented in
section[3]in order to produce more efficient injection and projection
functions as well as more helpful error messages.



data Pos = Here | Left Pos | Right Pos | Sum Pos Pos
data Res = Found Pos | NotFound | Ambiguous
type family Elem (f :: %« — %) (g :: % — %) :: Res where
Elem f f = Found Here
Elem f (g1 :+: g2) = Choose f (g1 ++: g2)
(Elem f ¢1) (Elem [ g2)
Elem f g = NotFound

type family Choose f g (I:: Res) (r :: Res) :: Res where
Choose f g (Found z) (Found y) = Ambiguous
Choose f g Ambiguous y = Ambiguous

Choose f g x Ambiguous = Ambiguous
Choose f g (Found x) y = Found (Left x)
Choose | g x (Found y) = Found (Right y)

Choose (fi ++: f2) g ¢ y = Sum’ (Elem fi g) (Elem fa g)
Choose f g x y = NotFound

type family Sum’ (1 :: Res) (r :: Res) :: Res where
Sum' (Found z) (Found y) = Found (Sum z y)

Sum’ Ambiguous y = Ambiguous
Sum’ Ambiguous = Ambiguous
Sum” x Y = NotFound

Figure 4. Implementation of Elem.

6.1 A More Efficient Implementation

The implementation of <: from section [3lis a straightforward ex-
tension of the simple implementation given in section 4} it decom-
poses the left-hand side of a subsumption constraint into its atomic
components and then uses the simple implementation on each of
these atomic components. In some circumstances this approach
causes the derived implementations of inj and prj to perform un-
necessary decomposition and recomposition of its arguments.

For example, consider the seemingly innocuous subsumption
Arith <: Arith +: Mult. Since Arith is defined as the sum
Val:4: Add, the function inj is effectively implemented as follows:

ing :: Arith a — (Arith -+: Mult) a
ing (Inl x) = Inl (Inl x)
ing (Inr x) = Inl (Inr z)

It pattern matches on its argument only to reconstruct the original
argument again. Instead, inj could be implemented simply as Inl.

In order to achieve this behaviour, we shall refine the imple-
mentation of the type family Subsume such that it interleaves the
deconstruction of the left-hand side signature with the search for an
embedding into the right-hand side. The resulting implementation
of the Elem type family is shown in Figure @

The kind Res is defined as previously, but we have changed the
kind Pos to include a type constructor Sum. This additional type
constructor corresponds to the type constructor of the same name
for the kind Struc (cf. section [3.1)). It indicates that the left-hand
side signature is a sum, and that we need to decompose it into its
two summands in order to find the desired embedding.

The definition of the type family Flem is similar to the original
definition of Elem in section dl The only difference is that it
passes the two original signatures to the Choose type family. These
two additional arguments to Choose are needed for the additional
equation that was added compared to the original definition from
sectiond] namely the equation

Choose (fi +: f2) g x y = Sum’ (Elem fi g) (Elem f> g)

79

class Subsume (e :: Emb) (f :: % — %) (g :: * — *) where
inj’ :: Protzy e — fa—ga
prj’ 2 Prozy e — g a — Maybe (f a)
instance Subsume (Found Here) f f where
inj’ _=id
prj’ _ = Just
instance Subsume (Found p) f ¢
= Subsume (Found (Left p)) f (g ++: ¢') where

inj’ _ = Inl o inj’ (P :: Prozy (Found p))
pri’ —  (Inl x) = prj’ (P :: Prozy (Found p))
prj’ —  _ = Nothing

instance Subsume (Found p) f g
= Subsume (Found (Right p)) f (¢’ :+: g) where
inj’ _ = Inr o inj’ (P :: Prozy (Found p))
pri’ —  (Inr z) = prj’ (P :: Prozy (Found p)) z
prj’ —  _ = Nothing
instance (Subsume (Found p1) fi g,
Subsume (Found p2) fo g)
= Subsume (Found (Sum p1 p2)) (fi :+: f2) g where
inj’ _ (Inl ) = 1nj' (P :: Prozy (Found p1)) =
inj’ _ (Inr ) = inj' (P :: Proxy (Found p2)) =
prj’ _z = case prj’ (P :: Prozy (Found p1)) x of
Just y — Just (Inl y)
— — case prj’ (P :: Prozy (Found p2)) = of
Just y — Just (Inr y)
_ — Nothing

Figure 5. Implementation of Subsume.

Here we try to decompose the left-hand signature in case we were
not able to find an embedding for the whole signature. Elem is
used recursively on the two summands. If both yield a position,
these positions are combined by Sum, otherwise Ambiguous and
NotFound are propagated.

For instance we have the following type equalities

Elem Arith (Arith :+: Mult) ~ Found (Left Here)
Elem (Val :+: Mult) (Arith +: Mult)
~ Found (Sum (Left (Left Here)) (Right Here))

Finally, we need to adjust the type class Subsume to this reim-
plementation of Elem. The implementation of Subsume is shown
in Figure The instance declarations follow the structure of Pos:
Here produces a reflexive subsumption; Left and Right expect a
sum on the right-hand side and recurse on the left resp. the right
summand; and Sum expects a sum on the left-hand side of the sub-
sumption and recurses on both summands.

The definition of the constraint <: itself remains the same. In
particular, we can reuse the type family Dupl for checking for
duplicates on the left-hand side:

type f <: g = (Subsume (Elem f g) f g,
Dupl f'[] ~ False)

One can check that the derived implementations for inj and prj
indeed satisfy the [NVERSE]law.
6.2 Error Messages

Our implementation of :<: already produces quite helpful error
messages. For instance, consider the following function definition:



ingVal :: Val a — (Arith -+: Val) a

ingVal = ing
The use of 4nj requires the subsumption Val <: Arith :+: Val,
which should be rejected since Val occurs twice in the right-hand
side. GHC produces the following error message, which informs
the programmer that Val is not subsumed by Arith 4: Val and
that ambiguity is the culprit:

No instance for
(Subsume Ambiguous Val (Arith :+: Val))
arising from a use of ‘inj’

In the following example we try to use an injection that requires
Dbl <: Mult +: Arith:

ingDbl :: Dbl a — (Mult :+: Arith) a
ingDbl = ing
As this is not the case, GHC produces the following error message,

informing the programmer that Dbl cannot be found in Mult 4
Arith, and thus there is no such subsumption:

No instance for
(Subsume ’NotFound Dbl (Mult :+: Arith))
arising from a use of ‘inj’

Compare this to [Swierstrd’s original type class-based imple-
mentation, which would produce the following error message:

Add)
“inj’

No instance for (Dbl :<:
arising from a use of

This error message is not quite as helpful, since it does not indicate
the original subsumption relation that should be satisfied, namely
Dbl <: Mult +: Arith. Giving this information can be quite
valuable. For example, maybe the error ways caused by accidently
using Mult instead of Dbl in the sum on the right-hand side.
While the Subsume type class produces reasonably helpful
error messages, the second part of the :<: constraint, namely
Dupl f '[] ~ False, does certainly not. If we try to derive a
subsumption relation with duplicates on the left-hand side, e.g.
Val 4 Arith <: Arith, then GHC provides the error message:

Couldn’t match type ’True’ with ’False’
In the expression: inj

To circumvent this problem, we replace the equality check by a
type class that has only one instance, namely for False. In addition,
we also give it the signature that is checked for duplicates as an
argument, so it will show up in error messages:

type f <: g = (Subsume (Elem f g) f g,
NoDupl f (Dupl f '[]))

class NoDupl f s
instance NoDupl f False

With this definition we get the following more helpful error
message:

No instance for (NoDupl (Val :+: Arith) True)
In the expression: inj

Finally, we should note that the refined subsumption constraint
<: defined in this section is more liberal with ambiguous embed-
dings compared its previous version presented in section[3] We re-
defined Elem such that it tries to find embeddings as early as pos-
sible in order to avoid unnecessary decomposition of signatures. As
a consequence, we can derive the following subsumption:

Add +: Val <: (Add :+: Val) :+: Val
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Elem immediately returns Found (Left Here) without further
decomposing the left-hand side signature. However, there are obvi-
ously two ways of embedding Val from the left-hand side into the
right-hand side signature.

This issue can be avoided by also requiring that right-hand sides
do not contain duplicates. Thus we redefine <: one last time:

type f <: g = (Subsume (Elem f g) f g,
NoDupl f (Dupl f '[]),
NoDupl g (Dupl g '[]))

This definition is more restrictive than before as it also disallows
duplication on the right-hand side even though it is not in the image
of the embedding. For instance, we can no longer derive

Val <: Add :+: Add :+: Val

which was possible with the definition of subsumption from sec-
tion[3 As duplication of signatures on either sides of the subsump-
tion relation is almost certainly unintentional, this more restrictive
behaviour is to be preferred.

7. Discussion
7.1 Limitations

The new implementation of the signature subsumption constraint
<: improves the original implementation in many respects as we
have shown throughout the paper. But, unfortunately, replacing
type classes by type families has some drawbacks.

Ground Signatures The most important limitation is that :<: only
works for ground types, i.e. neither side may contain variables.
This is to be excepted since we cannot rule out both ambiguity
and duplication if the signatures on either side of :<: are not fully
instantiated. For example, we may not derive that Val :<: f :+: Val,
since if f were instantiated by Val, then the subsumption would be
ambiguous.

Concretely, this restriction manifests itself in the implicit re-
quirement for apartness in the semantics of closed type fami-
lies (Eisenberg et all[2014). Specifically, an equation of a closed
type family is applied only if it matches and is apart from any other
equation occurring above it (unless it would yield the same result).
Intuitively, the apartness requirement means that there is no possi-
ble instantiation of type variables that would make a previous equa-
tion applicable. (More correctly, it is a conservative approximation
of this intuition.)

For example, if we were to write the function

vallng :: Val a — (f ++: Val) a
vallng = inj

which requires the constraint Val <: f :4: Val to be derivable, the
simplification of the type Elem Val (f :+: Val) gets stuck at

Choose Val (f :+: Val) (Elem Val f) (Found Here)

The fifth equation for the type family Choose (cf. Figure M)
matches. However, if f was instantiated to Val, then the first equa-
tion would match; and if f was instantiated to Val :+: Val the
second equation would match. Therefore, we cannot (and should
not) apply the fifth equation.

This restriction to ground signatures becomes even more appar-
ent for the Dupl type family (cf. Figure[T). Intuitively, it is clear that
we cannot rule out that a signature functor contains duplicates if it
contains a variable summand, as the variable may be instantiated
by Val :+: Val, say. Concretely, this can be seen in the definition
of Dupl. The type Dupl f | cannot be simplified if f is a variable:
the first equation of Dupl does no match, but it may match if f is
instantiated to a sum.



Error Messages Due to the apartness restriction of closed type
families, simplification of types may fail as we have described
above. This may lead to overly verbose error messages. For exam-
ple, if we ask GHC to type check the function definition for vallnj
given above we receive the following error message:

No instance for

(Subsume (Choose Val (f :+: Val)
(Elem Val f) (Found Here))
Val (f :+: Val))

arising from a use of ’inj’

Here the error message is polluted with the type that could not
be simplified further due to lack of apartness as described above.
Nonetheless, the error message still contains the relevant informa-
tion: there is no instance for Subsume (...) Val (f +: Val), i.e.
Val is not subsumed by f +: Val.

Apart from the unnecessary verbosity, error messages like the
one above also expose the user of the library to implementation
details that are not part of the APIL. In particular, the above error
mentions the type class Subsume and the type families Choose
and Elem, with which a user of the library should not be concerned.

As a result, comprehending the error messages for our library
requires some practice. Ideally, as library authors we would like to
adjust the error messages that our library produces such that they
adhere to the abstractions of the API and explain errors in terms of
the domain of the library. Alas, GHC does not provide any interface
that would allow such customisation of error messages.

Recently, ) presented a simple, reflection-
based mechanism to customise error messages in the dependently
typed functional programming language Idris ). With
an customisation interface for error messages similar to Chris-
tiansen’s, we would be able to drastically simplify error messages,
which would make our library much easier to use.

Compile Time Performance Using the implementation from sec-
tion[B] we can easily deal with large signatures comprising 25 sum-
mands without a noticeable delay in type checking. Unfortunately,
we did notice a significant impact on type checking performance
with the implementation from section[@} for a larger program using
signatures consisting of more than 10 summands, type checking
becomes impractically slow (in the order of minutes!).

We found that this performance bottleneck was caused by the
following equation for the Choose type family (cf. Figure [)):

Choose (fi ++: f2) g x y = Sum’ (Elem f1 g) (Elem f> g)

To avoid this problem, we remove this equation and instead add the
following as the second equation for Elem:

Elem (fi :+: f2) g = Sum’ (Elem fi g) (Elem f> g)

This change also makes it possible to remove the first two argu-
ments from Choose, since they become unnecessary.

The resulting implementation would produce the same (subopti-
mal) injection and projection functions as the implementation from
section[3] We can, however, restore the semantics of the original im-
plementation by post-processing the result of Elem appropriately.
This approach also allows us to remove the explicit check for dupli-
cates of the right-hand side signatures of subsumption constraints.
Moreover, checking for duplicates on the left-hand side can be done
by inspecting the result obtained from Elem, which yields an ad-
ditional speedup. As a result we get even better compile time per-
formance than the implementation from section [5 allowing us to
work with large signatures without problems.

7.2 Related Work

The limitation of the original implementation of data types a la
carte is rooted in the fact that Haskell’s search for suitable instances
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does not backtrack. IMorri ned (2010) proposed an alterna-
tive to Haskell’s overlapping type class instances, called instance
chains, that does perform backtracking. As demonstrated by Morris
and Jones (2010), instance chains can be used to give a backtrack-
ing implementation of :<:. In particular, they also give an imple-
mentation that avoids ambiguity, i.e. subsumptions with multiple
possible injections. We expect that their backtracking implementa-
tion :<: can be extended to also allow compound left-hand sides and
to express the isomorphism constraint :~:. Unfortunately, however,
instance chains have not been implemented in Haskell.

The theorem proving assistants Isabelle (Nipkow et al! [2002)
and Coq (Bertot astéran [2004) both implement a type
class system similar to Haskell’s. Both systems, however, resolve
type class instances by backtracking (Nipkow and Snelting [1991;
[Sozeau and Oury 2008). Thus the natural type class-based defini-

tion of :<: can be given directly in these systems.

7.3 Promoting Functions

Our implementation uses data type promotion (Yorgey et all2012),
to promote data types such as Pos and Emb to the kind level
such that we can define closed type families on the resulting kinds.
Recently, [Eisenber tolareK (2014) introduced a library that
promotes function definitions to closed type family definitions.
This function promotion mechanism allows the programmer to
use the familiar syntax of Haskell function definitions to define
closed type families. In particular, the programmer may then use
constructs like case and let, which are not supported in closed
type family definitions.

For example, we may define the type family Sum’ from Fig-
ure[dlin the following way:

$ (promote [d |
sum' :: Emb — Emb — Emb
sum' (Found x) (Found y) = Found (Sum x y)

sum’ Ambiguous y = Ambiguous
sum’ Ambiguous = Ambiguous
sum’ z Y = NotFound )

The above code defines a function sum’ with the specified type.
This definition is then passed to the promote function, which gen-
erates a corresponding definition of a type family Sum’. The result-
ing definition of Sum’ is equivalent to the one given in Figure[dl

Since Sum’ is quite simple, we do not gain any advantage over
the original definition. It would be more helpful if we were able to
write Elem in this style (cf. Figure @). A more natural definition
of Elem would replace the use of the helper type family Choose
with a case expression. Alas, we cannot use function promotion to
define Elem, since Elem is defined on kinds containing the kind x*,
which has no counterpart at the type level. Similarly, also the type
family Dupl in Figure [l works on kinds containing * and is thus
out of reach for a definition via promotion.

7.4 Other Applications

The implementation presented in this paper can be transferred
easily to applications of similar structure. For instance, we can
implement a variant of :<: that works on types of kind * instead
of x — *.

Note that while Haskell provides support for kind polymorphism
), we do need to re-implement :<: and the
underlying machinery essentially for each kind we want to use it
on. This lack of polymorphism is due to the type constructor :+:.
According to the definition of :4:, the kind of signatures can be at
most generalised to the polymorphic kind k£ — *.

More interestingly, we can also transfer :<: from binary sums to
binary products, with the intended semantics that e :<: p indicates
that every component of e is also a component of p. For instance,



(Int, Bool)<:(Bool, (Char, Int)). Using the technique described
in this paper, we can implement put and get functions as follows:

put::(e=<:p)=>p—>e—p
get = (e=<:p)=p—e

These functions satisfy the expected equations:

put p (get p) = p
get (put pe)=ce
put (put p e) e’ = put p e’

This setup is especially useful for implementing automata in a
modular fashion (Bahi2012) as it allows us to easily combine state
spaces of different automata using binary products.

More generally, binary products with automatically derived put
and get functions as described above can be used as a lightweight
alternative to the implementation of extensible records of Kiselyov
et al. (2004). It is lightweight, as it does not require to give type-
level identifiers to the components of the extensible record/product
type. Instead, our implementation uses the type information in
order to select the right component.

Implementing extensible product types by dispatching on the
type information alone is typically not a good choice as it is error-
prone. For example, consider the following selector function:

getInt :: (Age, Int) — Int
getint = get

It may seem obvious what the semantics of get/nt is. But what
happens if Age happens to be defined by

type Age = Int

There is no obvious choice whether get/nt should return the first
or the second component. Luckily, with our implementation this
situation cannot occur. The detection of ambiguities that we imple-
mented for the subsumption constraint on signatures carries over to
this implementation as well. In the above situation, the programmer
would receive an error message. She would then have to resolve the
problem by defining Age as a newtype instead.

Kiselyov et al. (2004) implement a similar idea in the form
type-indexed products. They use type classes to implement a con-
straint that checks for duplication. However, their products are al-
ways list-like and have no additional structure. Our implementa-
tion retains the nested structure of the binary products. As men-
tioned above, we are able to derive the subtyping (Int, Bool) <:
(Bool, (Char, Int)), which thus yields a get function of type
(Bool, (Char, Int)) — (Int, Bool). Using the subtyping con-
straint we can also implement an isomorphism constraint :~~: such
that we have for example

(Int, (Char, Bool)) :==: (Bool, (Char, Int))

together with automatically derived functions that witness the iso-
morphism.

We have used an implementation of extensible product types
as described above in an embedding of attribute grammars in
Haskell (Bahr and Axelsson [2014). The fact that components are
selected according to the type information makes it easier to com-
bine attribute grammar fragments in a modular fashion compared

to an_implementation that uses extensible records a la Kiselyov
et al. (j )% )j) such as the embedding by ).
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