RSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Faculty of Science ([]

Composing and Decomposing Data Types
Data Types a la Carte with Closed Type Families

Patrick Bahr

University of Copenhagen,
Department of Computer Science
paba@di.ku.dk

20th June, 2014
Slide 1

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Improve Haskell implementation of Data Types a la Carte:
e More flexible
e Improved error reporting

e New use cases

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Improve Haskell implementation of Data Types a la Carte:
e More flexible
e Improved error reporting

e New use cases

How?
Using closed type families

e New feature in latest version of GHC
e Type-level functions
e Pattern matching similar(-ish) to term-level functions

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Data Types a la Carte

Idea: Decompose data types into two-level types:

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte
Idea: Decompose data types into two-level types:

Recursive data type

data Exp = Val Int
| Add Exp Exp

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

— : = Val Int
data Exp = Val It |93t Fix £ = In ((Fix f)) | Addiaa

| Add Exp Exp

type Exp = Fix Arith

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Functors can be combined by coproduct construction :+:

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp Exp ; i
type Exp = Fix Arith

Functors can be combined by coproduct construction :+:

data Mul a= Mul a a
type Exp’ = Fix (Arith :+: Mul)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte

Idea: Decompose data types into two-level types:

Recursive data type Fixpoint of functor

data Arith a = Val Int
data Exp = Val Int — | Add a a

| Add Exp E| data (f+:g)a=Inl (f a)
| iz 2

fFix Arith

Functors can be combined by coproduct construction 4

data Mul a= Mul a a
type Exp’ = Fix (Arith :+: Mul)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— ga
prj:: g a— Maybe (f a)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— ga
prj:: g a— Maybe (f a)

Example: smart constructors

add :: (Arith <: f) = Fix f — Fix f — Fix f
add x y = In (inj (Add x y))

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Data Types a la Carte (cont.)

Subtyping constraint <:

class f <: g where
inj::f a— ga
prj:: g a— Maybe (f a)

Example: smart constructors

add :: (Arith <: f) = Fix f — Fix f — Fix f
add x y = In (inj (Add x y))

exp :: Fix (Arith -+: Mul)
exp = val 1 'add"' (val 2 ‘'mul* val 3)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance (f <: fi) = f <: (i -+) where

instance (f <:) = f <: (fi -+ f2) where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance (f <: fi) = f <: (i -+) where

instance (f <:) = f <: (fi -+ f2) where

e No backtracking!

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e No backtracking!

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e No backtracking!
e Asymmetric treatment of :+:

e Left-hand side is not inspected

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e No backtracking!
e Asymmetric treatment of :+: A=A+ (B:+: C)
e Left-hand side is not inspected

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

instance f=:f where
instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

e No backtracking!
e Asymmetric treatment of :+: AA(A+B)+: C
e Left-hand side is not inspected

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

Definition of <:
instance f=:f where

instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

¢ No backtracking!
e Asymmetric treatment of :+: AA(A+B)+: C
e Left-hand side is not inspected A+ B=:(A+:B)+C

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Limitations of <:

Definition of <:
instance f=:f where

instance f <:(f +: f) where

instance (f <:) = f <: (fi -+ f2) where

¢ No backtracking!
e Asymmetric treatment of :+: AA(A+B)+: C
e Left-hand side is not inspected A+ BA A+ (B+:C)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Contributions

We re-implemented <: such that:
 Subtyping behaves as intuitively expected

o Ambiguous subtyping are avoided

o We can express isomorphism :~:

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

f<:g <= ‘setof signaturesin f" C “set of signatures in g"

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

f<:g <= ‘setof signaturesin f" C “set of signatures in g"

C+ A=< A+ B:+:C

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

f<:g <= ‘setof signaturesin f" C “set of signatures in g"
C+ A=< A+ B+ C

Avoid ambiguous subtyping

Multiple occurrences of signatures are rejected:

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected

f<:g <= ‘setof signaturesin f" C “set of signatures in g"
C+ A=< A+B+:C

Avoid ambiguous subtyping

Multiple occurrences of signatures are rejected:

A=< A+ A+ C
A+ A=< A+ B

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
f<:g <= ‘setof signaturesin f" C “set of signatures in g"

C+ A=< A+ B:+:C

Avoid ambiguous subtyping

Multiple occurrences of signatul injection not unique!

/

A<TA+ A+ C
A+ A=< A+ B

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
f<:g <= ‘setof signaturesin f" C “set of signatures in g"

C+ A=< A+ B:+:C

Avoid ambiguous subtyping

Multiple occurrences of signatu(INjection not unique!

AL A+ A+ C
A+ A< A+ B

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
f<:g <= ‘setof signaturesin f" C “set of signatures in g"

C+ A=< A+ B:+:C

Avoid ambiguous subtyping

Multiple occurrences of signatu(INjection not unique!

AL A+ A+ C
A+ A< A+ B

‘ “injection” not injective!

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Improved subtyping constraint =<:

Subtyping <: behaves as intuitively expected
f<:g <= ‘setof signaturesin f" C “set of signatures in g"

C+ A=< A+ B:+:C

Avoid ambiguous subtyping

Multiple occurrences of signatu(INjection not unique!

AL A+ A+ C
A+ A4 A+ B

‘ “injection” not injective!

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Type isomorphism constraint :~~:

We can express isomorphism :~:

f:~g <= ‘“setof signatures in f" = “set of signatures in g"
Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Type isomorphism constraint :~~:

We can express isomorphism :~:

f:~g <= ‘“setof signatures in f" = “set of signatures in g"
Easy to implement: fg=(f=<g,g=:f)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014

Slictieﬂ posine posing bata e) ‘

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Type isomorphism constraint :~~:

We can express isomorphism :~:

fi~g <= ‘set of signatures in f" = "“set of signatures in g”

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function

The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Type isomorphism constraint :~~:

We can express isomorphism :~:

fi>~ g <= “set of signatures in f" = “set of signatures in g"

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function
The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)

With :~: we can do better:

split :: (g :~=: f +:r) = g a — Either (f a) (r a)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Type isomorphism constraint :~~:

We can express isomorphism :~:

fi>~ g <= “set of signatures in f" = “set of signatures in g"

Easy to implement: fg=(f=<g,g=:f)

Use case: improved projection function
The type of the projection function is unsatisfying:

prj:: (f <:g) = g a— Maybe (f a)

With :~: we can do better:

split:: (g~ f:+r)=ga—(fa—b)—(ra—b)—b

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Example: Desugaring

data Dbl a = Double a

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example: Desugaring

data Dbl a = Double a

class Desug f g where
desugAlg :: f (Fix g) — Fix g

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example: Desugaring

data Dbl a = Double a

class Desug f g where
desugAlg :: f (Fix g) — Fix g

instance (Desug f; g, Desug f, g) = Desug (fi :+: f,) g where
desugAlg (Inl x) = desugAlg x
desugAlg (Inr x) = desugAlg x

instance (Arith <: g) = Desug Dbl g where
desugAlg (Double x) = add x x

instance (f <: g) = Desug f g where
desugAlg = In . inj

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example: Desugaring

data Dbl a = Double a

class Desug f g where
desugAlg :: f (Fix g) — Fix g

instance (Desug f; g, Desug f, g) = Desug (fi :+: f,) g where
desugAlg (Inl x) = desugAlg x
desugAlg (Inr x) = desugAlg x

instance (Arith <: g) = Desug Dbl g where
desugAlg (Double x) = add x x

instance (f <: g) = Desug f g where
desugAlg = In . inj

desugar :: (Desug f g, Functor f) = Fix f — Fix g
desugar = fold desugAlg

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example: Desugaring

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014

data Dbl a = Double a

class Desug f g where
desugAlg :: f (Fix g) — Fix g

instance (Desug f; g, Desug f, g) = Desug (fi :+: f,) g where
desugAlg (Inl x) = desugAlg x
desugAlg (Inr x) = desugAlg x

instance (Arith <: g) = Desug Dbl g where
desugAlg (Double x) = add x x

instance (f <: g) = Desug f g where
desugAlg = In . inj

desugar :: Fix (Dbl -+: Arith :4: Mul) — Fix (Arith +: Mul)
desugar = fold desugAlg

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example: Desugaring (cont.)

desugar :: (f :~: g :+: Dbl, Arith <: g, Functor f) =
Fix f — Fix g
desugar = fold desugAlg

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example: Desugaring (cont.)

desugar :: (f :~: g :+: Dbl, Arith <: g, Functor f) =
Fix f — Fix g
desugar = fold desugAlg

desugAlg :: (f :~: g :+: Dbl, Arith <: g) = f (Fix g) — Fix g
desugAlg e = split e (Ax — In x)
(M(Double x) — add x x)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example: Desugaring (cont.)

desugar :: (f :~: g :+: Dbl, Arith <: g, Functor f) =
Fix f — Fix g
desugar = fold desugAlg

desugAlg :: (f :~: g :+: Dbl, Arith <: g) = f (Fix g) — Fix g
desugAlg e = split e (Ax — In x)
(M(Double x) — add x x)

desugAlg’ :: (f :~: g -+: Dbl, Arith <: g, Mul <: g) =
f(Fixg)— Fix g
desugAlg’ e = split e (Ax — In x)
(A(Double x) — mul (val 2) x)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 10

COPENHAGEN

Implementation of <:

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Idea

Type-level function Embed:
e take two signatures f, g as arguments

e check whether f <: g

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments

e check whether f <: g

Derive implementation of inj and prj: 777

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments
e check whether f <: g

e if check is successful: produce proof object for f <: g

Derive implementation of inj and prj:

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments
e check whether f <: g

e if check is successful: produce proof object for f <: g

Derive implementation of inj and prj:
e also use a type class
e But: use proof object as oracle in instance declarations

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea

Type-level function Embed:
e take two signatures f, g as arguments
e check whether f <: g
e if check is successful: produce proof object for f <: g

Derive implementation of inj and prj:
e also use a type class

e But: use proof object as oracle in instance declarations

No singleton types. This all happens at compile time!

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

Definition

data Pos = Here | Left Pos | Right Pos | Sum Pos Pos

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Pos = Here | Left Pos | Right Pos | Sum Pos Pos

Here : f <: f

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Pos = Here | Left Pos | Right Pos | Sum Pos Pos

Here : f <: f
p:f=g p:f=ig
Left p: f <: g1+ g Right p: f <: g1+ g
Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘@

Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Pos = Here | Left Pos | Right Pos | Sum Pos Pos

Here : f <: f

p:f=g p:f=<g
Left p: f <: g1+ g Right p: f <: g1+ g

pr:h<ig ppih<ig
Sumpipp: i+ h=<g

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Pos = Here | Left Pos | Right Pos | Sum Pos Pos

Here : f <: f

p:f=g p:f=<g
Left p: f <: g1+ g Right p: f <: g1+ g

pr:h<ig ppih<ig
Sumpipp: i+ h=<g

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Pos = Here | Left Pos | Right Pos | Sum Pos Pos

Here : f <: f

p:f=g p:f=<g
Left p: f <: g1+ g Right p: f <: g1+ g

pr:h<ig ppih<ig
Sumpipp: i+ h=<g

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Proof Objects

data Pos = Here | Left Pos | Right Pos | Sum Pos Pos

Here : f <: f

p:f=g p:f=<g
Left p: f <: g1+ g Right p: f <: g1+ g

pr:h<ig ppih<ig
Sumpipp: i+ h=<g

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Construct Proof Objects

data Emb = Found Pos | NotFound | Ambiguous

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Construct Proof Objects

data Emb = Found Pos | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Construct Proof Objects

data Emb = Found Pos | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where
Embed f f = Found Here
Embed (f; :+: f,) g = Sum’ (Embed f; g) (Embed f; g)
Embed f (g1 +: g2) = Choose (Embed f g1) (Embed f g»)
Embed f g = NotFound

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Construct Proof Objects

data Emb = Found Pos | NotFound | Ambiguous

type family Embed (f :: x — %) (g :: x — %) :: Emb where
Embed f f = Found Here
Embed (f; -+: f) g = Sum’ (Embed f; g) (Embed f; g)
Embed f (g1 :+: g2) = Choose (Embed f g1) (Embed f g»)
Embed f g = NotFound

type family Choose (e :: Emb) (ez :: Emb) :: Emb where
Choose (Found p1) (Found p1) = Ambiguous

Choose Ambiguous ey = Ambiguous
Choose e; Ambiguous = Ambiguous
Choose (Found p1) e = Found (Left p1)
Choose e; (Found py) = Found (Right p2)

Choose NotFound NotFound = NotFound

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Post-Processing

This is almost what we want.

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Post-Processing

This is almost what we want.
e We avoid ambiguity on the right-hand side:

A A A+ A+C

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Post-Processing

This is almost what we want.
e We avoid ambiguity on the right-hand side:

A A A+ A+C

e We still have ambiguity on the left-hand side:

A+ A=< A+ B

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Post-Processing

This is almost what we want.
e We avoid ambiguity on the right-hand side:

A A A+ A+C

e We still have ambiguity on the left-hand side:
A+ A=< A+ B
Solution: check for duplicates in Pos

type family Dupl (p :: Pos) :: Bool where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 15

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Post-Processing

This is almost what we want.

e We avoid ambiguity on the right-hand side:

A A A+ A+C

e We still have ambiguity on the

Sum (Left Here) (Left Here)

A+ A «/Aﬁ

Solution: check for duplicates in Pos

type family Dupl (p :: Pos) :: Bool where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘

Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

o Check whether f <: g
« Construct proof for f <: g

o Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

o Check whether f <: g v
« Construct proof for f <: g

o Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

o Check whether f <: g v
« Construct proof for f <: g vV

o Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

o Check whether f <: g v
« Construct proof for f <: g vV

e Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class f <: g where
inj::f a— ga
prj:: g a— Maybe (f a)

instance f=:f where.. ..
instance f=:(f +: g») where. ..
instance f=<o

= f=:(g +: g») where. ..

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 17

OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN DEPARTMENT

Derive inj and prj

class Sub f g where
inj::f a— ga
prj:: g a— Maybe (f a)

instance Sub f f where.. ..
instance Sub fo(f +: g») where. ..
instance Sub f o

= Sub f (& +: g») where. ..

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub f g where
inj::f a— ga
prj:: g a— Maybe (f a)

instance Sub f f where. ..
instance Sub f a1

= Sub f (& +: g») where. ..
instance Sub f &

= Sub f (& +: g») where. ..

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub f g where
inj::f a— ga
prj:: g a— Maybe (f a)

instance Sub f f where. ..
instance Sub f a1

= Sub f (& +: g») where. ..
instance Sub f &

= Sub f (& +: g») where. ..
instance (Sub fi g, Sub fg)

= Sub (h+h)g where . o

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a— Maybe (f a)

instance Sub f f where. ..
instance Sub f a1

= Sub f (& +: g») where. ..
instance Sub f &

= Sub f (& +: g») where. ..
instance (Sub fi g, Sub fg)

= Sub (h+h)g where . o

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

Here : f <: f

class Sub (e:: Emb) f g where

inj::f a— ga

prj:: g a— Maybe (f a)
instance Sub (Found Here) ff where. ..
instance Sub f a1

= Sub f (& +: g») where. ..
instance Sub f &

= Sub f (& +: g») where. ..
instance (Sub fi g, Sub fg)

= Sub (h+h)g where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

p:f=<:g

Derive inj and prj
J Pl Left p: f <:g1:+: g

class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a— Maybe (f a)

instance Sub (Found Here) ff where. ..
instance Sub (Found p) f &

= Sub (Found (Left p)) f (& +: g2) where. ..
instance Sub f o

= Sub f (& +: g») where. ..
instance (Sub fi g, Sub fg)

= Sub (h+h)g where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

p:f=<g

Derive inj and prj
J) P Right p : f <: g1+ &

class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a— Maybe (f a)

instance Sub (Found Here) ff where. ..
instance Sub (Found p) f &

= Sub (Found (Left p)) f (& +: g2) where. ..
instance Sub (Found p) f o

= Sub (Found (Right p)) f (&1 +: g») where. ..
instance (Sub fi g, Sub fg)

= Sub (h+h)g where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

pr:h=g p:h=<g
Sumpi pp: i+ h=<g

Derive inj and prj

class Sub (e:: Emb) f g where
inj::f a— ga
prj:: g a— Maybe (f a)

instance Sub (Found Here) ff where. ..
instance Sub (Found p) f &

= Sub (Found (Left p)) f (& +: g2) where. ..
instance Sub (Found p) f o

= Sub (Found (Right p)) f (&1 +: g») where. ..

instance (Sub (Found p1) fi g, Sub (Found p) £, g)
= Sub (Found (Sum p1 p2)) (h:+ f)g where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Derive inj and prj

class Sub (e:: Emb) f g where
inj:: Proxye—f a— ga
prj :: Proxy e — g a — Maybe (f a)

instance Sub (Found Here) f f where. ..
instance Sub (Found p) f &

= Sub (Found (Left p)) f (& +: g2) where. ..
instance Sub (Found p) f o

= Sub (Found (Right p)) f (&1 +: g») where. ..

instance (Sub (Found p1) fi g, Sub (Found py) £, g)
= Sub (Found (Sum p1 p2)) (h:+ f)g where

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 17

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

o Check whether f <: g v
o Construct proof for f <: g

o Derive inj and prj

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

o Check whether f <: g v
o Construct proof for f <: g

o Derive inj and prj v

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Are we there yet?

o Check whether f <: g v
o Construct proof for f <: g

o Derive inj and prj v (sort of)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Final Implementation of <:

class Sub (e :: Emb) f g where
inf :Proxye—fa—ga
prj :: Proxy e — g a — Maybe (f a)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Final Implementation of <:

class Sub (e :: Emb) f g where
inf :Proxye—fa—ga
prj :: Proxy e — g a — Maybe (f a)

type f :<: g = Sub (Post (Embed f g)) f g

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Final Implementation of <:

class Sub (e :: Emb) f g where
inj’ :: Proxy e - fa—ga
prj' :: Proxy e — g a — Maybe (f a)

type f :<: g = Sub (Post (Embed f g)) f g

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Final Implementation of <:

class Sub (e :: Emb) f g where
inj’ :: Proxy e - fa—ga
prj' :: Proxy e — g a — Maybe (f a)

type f <: g = Sub (Post (Embed f g)) f g

injr:(f<=:g)=fa—ga

inj = inj' (P :: Proxy (Post (Embed f g)))
prj:: (f <:g) = g a— Maybe (f a)

prj = prj’ (P :: Proxy (Post (Embed f g)))

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘

Slide 19

Type-Level Programming in Haskell

Type-Level Programming in Haskell

e Now <: has the properties we
want / expect

e Avoid “ambiguous” subtyping

e New isomorphism constraint :~~:

Type-Level Programming in Haskell

Now <: has the properties we
want / expect

Avoid “ambiguous” subtyping

New isomorphism constraint :~:

You can try it:
> cabal install compdata

Type-Level Programming in Haskell

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Compile Time Performance

e If done "wrong”, this implementation can be very slow!

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 22

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

e If done "wrong”, this implementation can be very slow!

e Implementation presented here: O(n?)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 22

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

e If done "wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

e Slightly different implementation: O(2")
(but essentially the same)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 22

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

If done “wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

Slightly different implementation: O(2")
(but essentially the same)

micro benchmark:

e derive F <: G
e O summands in F and G

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 22

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

If done “wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

Slightly different implementation: O(2")
(but essentially the same)

micro benchmark:
o derive F <: G
e 9 summands in F and G
e Implementation presented here: 0.5s

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 22

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

If done “wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

Slightly different implementation: O(2")
(but essentially the same)

micro benchmark:

derive F <: G

9 summands in F and G
Implementation presented here: 0.5s

[]
[]
[]
e Naive implementation: 45s

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 22

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compile Time Performance

If done “wrong”, this implementation can be very slow!
e Implementation presented here: O(n?)

Slightly different implementation: O(2")
(but essentially the same)

micro benchmark:

derive F <: G

9 summands in F and G
Implementation presented here: 0.5s

[]
[]
[]
e Naive implementation: 45s

Type families on kind * are expensive!

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014
Slide 22

Type-Level Programming in Haskell

Type-Level Programming in Haskell

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 .
Slide 24

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 24

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

The original implementation would give:
No instance for (A :<: C)

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 24

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 24

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e AXIA+:B?
Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 24

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e a<:a+:B7?

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 24

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Error Messages

e A<:B:+:C?
No instance for
(Sub NotFound A (B :+: C))

e A A<:A+:B?
No instance for
(Sub Ambiguous (A :+: A) (A :+: B))

e a<:a+:B7?
No instance for
(Sub (Post (Embed a (a :+: B))) a (a :+: B))

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 24

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Conclusion

e We can do cool stuff with closed type families.

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 25

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Conclusion

e We can do cool stuff with closed type families.

e But:
o Compile time performance unpredictable.

o We need a way to customise error messages.

Patrick Bahr — Composing and Decomposing Data Types — 20th June, 2014 ‘
Slide 25

