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Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formally verified!
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Contract Language Goals in Detail

I Compositionality.
Contracts are time-relative ⇒ straightforward compositionality

I Multi-party.
Specify obligations and opportunities for multiple parties,
(which opens up the possibility for specifying portfolios)

I Contract management.
Contracts can be managed and symbolically evolved;
a contract gradually reduces to the empty contract.

I Contract utilities (symbolic).
Contracts can be analysed in a variety of ways

I Contract pricing (numerical, staged).
Code for payoff can be generated from contracts
(input to a stochastic pricing engine)
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Example

Contract in natural language

I At any time within the next 90 days,

I party X may decide to

I buy USD 100 from party Y,

I for a fixed rate r of Danish Kroner.

Translation into contract language

if (obsB(X , 0), 90, trade, zero)

where trade = scale(100, both(transfer(Y ,X ,USD), pay))

pay = scale(r , transfer(X ,Y ,DKK))
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Contributions

I Denotational semantics based on cash-flows

I Reduction semantics (sound and complete)

I Correctness proofs for common contract analyses and
transformations

I Formalised in the Coq theorem prover

I Certified implementation via code extraction
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An Overview of the Contract Language

Core Calculus of Contracts

zero : Contr

transfer : Party × Party × Currency→ Contr

both : Contr × Contr→ Contr

scale : ExprR × Contr→ Contr

translate : N× Contr→ Contr

if : ExprB × N× Contr × Contr→ Contr

Expression Language

ExprR, ExprB: real-valued resp. Boolean-valued expressions.

obsα : Labelα × Z→ Exprα

accα : (Exprα → Exprα)× N× Exprα → Exprα
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Example: Asian Option

translate(90, if (obsB(X , 0), 0, trade, zero))

where trade = scale(100, both(transfer(Y ,X ,USD), pay))

pay = scale(rate, transfer(X ,Y ,DKK))

rate =
1

30
· acc(λr .r + obsR(FX USD/DKK, 0), 30, 0)
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Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr

× Env

→ CashFlow

Env

CashFlow = N⇀ Transactions

Transactions = Party × Party × Currency→ R
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Contract Analyses

Examples

I contract dependencies

I contract causality

I contract horizon

Semantics vs. Syntax

I these analyses have precise semantic definition

I they cannot be effectively computed

I we provide sound approximations, e.g. type system
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Contract Transformations

Contract equivalences

When can we replace a sub-contract with another one, without
changing the semantics of the contract?

Reduction semantics
What does the contract look like after n days have passed?

Contract Specialisation

What does the contract look like after we learned the actual value
of some observables?
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Contract Equivalences

translate(d , zero) ' zero

scale(r , zero) ' zero

scale(0, c) ' zero

both(c , zero) ' c

scale(s1, scale(s2, c)) ' scale(s1 · s2, c)

translate(d1, translate(d2, c)) ' translate(d1 + d2, c)

translate(d , both(c1, c2)) ' both(translate(d , c1), translate(d , c2))

scale(x , both(c1, c2)) ' both(scale(x , c1), scale(x , c2))

translate(d , scale(s, c)) ' scale(s/d , translate(d , c))

translate(d , if (b, e, c1, c2)) '
if (b/d , e,translate(d , c1), translate(d , c2))

both(scale(x , transfer(a, b, c)),scale(y , transfer(a, b, c)))

' scale(x + y , transfer(a, b, c))
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Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Code Extraction

Coq formalisation

I Denotational & reduction semantics

I Meta-theory of contracts (causality, monotonicity, . . . )

I Definition of contract transformations and analyses

I Correctness proofs

Extraction of executable Haskell code

I efficient Haskell implementation

I embedded domain-specific language for contracts

I contract analyses and contract management
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Future Work

I improve code extraction

I advanced analyses and transformations
(e.g. scenario generation and “zooming”)

I combine this work with numerical methods
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Conclusion

The code is available from

http://j.mp/contractDSL

including

I full Coq proofs

I code extraction

I Prototype Haskell implementation

I example contracts

I technical report with all details
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