
Certified Management of Financial Contracts

Patrick Bahr Jost Berthold Martin Elsman

University of Copenhagen, Department of Computer Science
(DIKU)

26th Nordic Workshop on Programming Theory, 2014



Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formally verified!

2 / 15



Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formally verified!

2 / 15



Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formally verified!

2 / 15



Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formally verified!

2 / 15



Contract Language Goals in Detail

I Compositionality.
Contracts are time-relative ⇒ straightforward compositionality

I Multi-party.
Specify obligations and opportunities for multiple parties,
(which opens up the possibility for specifying portfolios)

I Contract management.
Contracts can be managed and symbolically evolved;
a contract gradually reduces to the empty contract.

I Contract utilities (symbolic).
Contracts can be analysed in a variety of ways

I Contract pricing (numerical, staged).
Code for payoff can be generated from contracts
(input to a stochastic pricing engine)

3 / 15



Example

Contract in natural language

I At any time within the next 90 days,

I party X may decide to

I buy USD 100 from party Y,

I for a fixed rate r of Danish Kroner.

Translation into contract language

if (obsB(X , 0), 90, trade, zero)

where trade = scale(100, both(transfer(Y ,X ,USD), pay))

pay = scale(r , transfer(X ,Y ,DKK))

4 / 15



Example

Contract in natural language

I At any time within the next 90 days,

I party X may decide to

I buy USD 100 from party Y,

I for a fixed rate r of Danish Kroner.

Translation into contract language

if (obsB(X , 0), 90, trade, zero)

where trade = scale(100, both(transfer(Y ,X ,USD), pay))

pay = scale(r , transfer(X ,Y ,DKK))

4 / 15



Contributions

I Denotational semantics based on cash-flows

I Reduction semantics (sound and complete)

I Correctness proofs for common contract analyses and
transformations

I Formalised in the Coq theorem prover

I Certified implementation via code extraction

5 / 15



An Overview of the Contract Language

Core Calculus of Contracts

zero : Contr

transfer : Party × Party × Currency→ Contr

both : Contr × Contr→ Contr

scale : ExprR × Contr→ Contr

translate : N× Contr→ Contr

if : ExprB × N× Contr × Contr→ Contr

Expression Language

ExprR, ExprB: real-valued resp. Boolean-valued expressions.

obsα : Labelα × Z→ Exprα

accα : (Exprα → Exprα)× N× Exprα → Exprα

6 / 15



An Overview of the Contract Language

Core Calculus of Contracts

zero : Contr

transfer : Party × Party × Currency→ Contr

both : Contr × Contr→ Contr

scale : ExprR × Contr→ Contr

translate : N× Contr→ Contr

if : ExprB × N× Contr × Contr→ Contr

Expression Language

ExprR, ExprB: real-valued resp. Boolean-valued expressions.

obsα : Labelα × Z→ Exprα

accα : (Exprα → Exprα)× N× Exprα → Exprα

6 / 15



An Overview of the Contract Language

Core Calculus of Contracts

zero : Contr

transfer : Party × Party × Currency→ Contr

both : Contr × Contr→ Contr

scale : ExprR × Contr→ Contr

translate : N× Contr→ Contr

if : ExprB × N× Contr × Contr→ Contr

Expression Language

ExprR, ExprB: real-valued resp. Boolean-valued expressions.

obsα : Labelα × Z→ Exprα

accα : (Exprα → Exprα)× N× Exprα → Exprα

6 / 15



Example: Asian Option

translate(90, if (obsB(X , 0), 0, trade, zero))

where trade = scale(100, both(transfer(Y ,X ,USD), pay))

pay = scale(rate, transfer(X ,Y ,DKK))

rate =
1

30
· acc(λr .r + obsR(FX USD/DKK, 0), 30, 0)

7 / 15



Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr

× Env

→ CashFlow

Env

CashFlow = N⇀ Transactions

Transactions = Party × Party × Currency→ R

8 / 15



Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr

× Env

→ CashFlow

Env

CashFlow = N⇀ Transactions

Transactions = Party × Party × Currency→ R

8 / 15



Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr × Env→ CashFlow

Env = Label× Z⇀ B ∪ R

CashFlow = N⇀ Transactions

Transactions = Party × Party × Currency→ R

8 / 15



Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr × Env→ CashFlow

Env = Labelα × Z⇀ α

CashFlow = N⇀ Transactions

Transactions = Party × Party × Currency→ R

8 / 15



Contract Analyses

Examples

I contract dependencies

I contract causality

I contract horizon

Semantics vs. Syntax

I these analyses have precise semantic definition

I they cannot be effectively computed

I we provide sound approximations, e.g. type system

9 / 15



Contract Analyses

Examples

I contract dependencies

I contract causality

I contract horizon

Semantics vs. Syntax

I these analyses have precise semantic definition

I they cannot be effectively computed

I we provide sound approximations, e.g. type system

9 / 15



Contract Transformations

Contract equivalences

When can we replace a sub-contract with another one, without
changing the semantics of the contract?

Reduction semantics
What does the contract look like after n days have passed?

Contract Specialisation

What does the contract look like after we learned the actual value
of some observables?

10 / 15



Contract Equivalences

translate(d , zero) ' zero

scale(r , zero) ' zero

scale(0, c) ' zero

both(c , zero) ' c

scale(s1, scale(s2, c)) ' scale(s1 · s2, c)

translate(d1, translate(d2, c)) ' translate(d1 + d2, c)

translate(d , both(c1, c2)) ' both(translate(d , c1), translate(d , c2))

scale(x , both(c1, c2)) ' both(scale(x , c1), scale(x , c2))

translate(d , scale(s, c)) ' scale(s/d , translate(d , c))

translate(d , if (b, e, c1, c2)) '
if (b/d , e,translate(d , c1), translate(d , c2))

both(scale(x , transfer(a, b, c)),scale(y , transfer(a, b, c)))

' scale(x + y , transfer(a, b, c))

11 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

transfer(p1, p2, c)
τp1,p2,c=⇒ ρ zero

c
τ

=⇒ρ c ′ E JeKρ = v

scale(e, c)
v∗τ
=⇒ρ scale(e/−1, c ′)

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′Kρ/1 (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

12 / 15



Code Extraction

Coq formalisation

I Denotational & reduction semantics

I Meta-theory of contracts (causality, monotonicity, . . . )

I Definition of contract transformations and analyses

I Correctness proofs

Extraction of executable Haskell code

I efficient Haskell implementation

I embedded domain-specific language for contracts

I contract analyses and contract management

13 / 15



Code Extraction

Coq formalisation

I Denotational & reduction semantics

I Meta-theory of contracts (causality, monotonicity, . . . )

I Definition of contract transformations and analyses

I Correctness proofs

Extraction of executable Haskell code

I efficient Haskell implementation

I embedded domain-specific language for contracts

I contract analyses and contract management

13 / 15



Code Extraction

Coq formalisation

I Denotational & reduction semantics

I Meta-theory of contracts (causality, monotonicity, . . . )

I Definition of contract transformations and analyses

I Correctness proofs

Extraction of executable Haskell code

I efficient Haskell implementation

I embedded domain-specific language for contracts

I contract analyses and contract management

13 / 15



Future Work

I improve code extraction

I advanced analyses and transformations
(e.g. scenario generation and “zooming”)

I combine this work with numerical methods

14 / 15



Conclusion

The code is available from

http://j.mp/contractDSL

including

I full Coq proofs

I code extraction

I Prototype Haskell implementation

I example contracts

I technical report with all details

15 / 15

http://j.mp/contractDSL

