
Towards Certified Management of Financial

Contracts∗

Patrick Bahr, Jost Berthold and Martin Elsman

University of Copenhagen
Dept. of Computer Science (DIKU)
{paba,berthold,mael}@di.ku.dk

1 Introduction

Banks and financial institutions nowadays of-
ten use domain-specific languages (DSLs) for
describing complex financial contracts, in par-
ticular, for specifying how asset transfers for a
specific contract depend on underlying observ-
ables, such as interest rates, currency rates,
and stock prices.

The seminal work by Peyton-Jones and Eber
on financial contracts [4] shows how an alge-
braic approach to contract specification can
be used for valuation of contracts (when com-
bined with a model of the underlying observ-
ables) and for managing how contracts evolve
under so-called fixings1 and decision-taking,
with the contracts eventually evaporating into
the empty contract, for which no party have
further obligations. The ideas have emerged
into Eber’s company LexiFi, which has become
a leading software provider for a range of fi-
nancial institutions, with all contract manage-
ment operations centralised around a domain-
specific contract language hosted in MLFi [3], a
derivative of the functional programming lan-
guage OCaml.

In this paper, we present a small simple con-
tract language, which rigorously relegates any
artefacts of modelling and computation from
its core. The language shares the same vision
as the previously mentioned work with the ad-
dition that it (a) allows for specifying multi-
party contracts (such as entire portfolios), (b)

∗This work has been partially supported by the
Danish Council for Strategic Research under contract
number 10-092299 (Hiperfit [2]), and the Danish
Council for Independent Research under Project 12-
132365.

1Underlying observables gradually become fixed
when time passes by.

has good algebraic properties, well suited for
formal reasoning, and yet (c) allows for ex-
pressing many interesting contracts appearing
in real-world portfolios, such as various varia-
tions of so-called barrier options.

We show that plenty of information can be
derived from, and useful manipulations de-
fined on, just the symbolic contract specifica-
tion, independent of any stochastic aspects of
the modelled contracts. Contracts modelled
in our language are analysed and transformed
for management according to a precise cash-
flow semantics, modelled and checked using the
Coq proof assistant.

Implementations of the contract language in
Haskell and Coq are available online2 together
with machine-checkable proofs (in Coq) of the
key properties of the contract language.

2 Contract Language

2.1 Language Constructs

Financial contracts essentially define future
transactions (cash-flows) between different
parties who agree on a contract. Amounts in
contracts may be scaled using real-valued ex-
pression (ExprR), which may refer to observable
underlying values, such as foreign exchange
rates, stock prices, or market indexes. Like-
wise, contracts can contain alternatives de-
pending on Boolean predicates (ExprB), which
may refer to these observables, as well as ex-
ternal decisions taken by the parties involved.

Observables and choices in our contract lan-
guage are “observed” with a given offset from
the current day. In general, all definitions use

2See https://github.com/HIPERFIT/contracts.

1

https://github.com/HIPERFIT/contracts


Towards Certified Management of Financial Contracts Bahr, Berthold, Elsman

relative time, aiding the compositionality of
contracts.

A common contract structure is to repeat a
choice between alternatives until a given end
date. As a simple example, consider an FX
option on US dollars: Party X may, within 90
days, decide whether to buy 100 US dollars for
a fixed rate r of Danish Kroner from Party Y.

option = checkWithin(chosenBy(X, 0), 90, trade, zero)

trade = scale(100, both(transfer(Y,X,USD), pay))

pay = scale(r, transfer(X,Y,DKK))

The checkWithin construct which gener-
alises an alternative by iterating the decision
(chosenBy) of party X. If X chooses at one
day before the end (90 days), the trade comes
into effect, consisting of two transfers (both)
between the parties. Otherwise, the contract
becomes empty (zero) after 90 days.

The contracts atoms and combinators of the
language are:

zero : Contr

transfer : Party × Party × Currency→ Contr

scale : ExprR × Contr→ Contr

translate : N× Contr→ Contr

checkWithin : ExprB × N× Contr × Contr→ Contr

both : Contr × Contr→ Contr

translate(n) simply translates a contract n
days into the future.

In the expression language, we also define
a special expression acc which accumulates a
value over a given number of days from today.

acc : (Exprα → Exprα)→ N→ Exprα → Exprα

The accumulator can be used to compute
averages (for so-called Asian options), or more
generally to carry forward a state while com-
puting values.

2.2 Denotational Semantics

The semantics of a contract is given by its cash-
flow, which is a partial mapping from time to
transfers between two parties:

Trans = Party × Party × Currency→ R
Flow = N⇀ Trans

The cash-flow is a partial mapping since
it may not be determined due to insufficient
knowledge about observables and external de-
cisions, provided by an environment ρ ∈ Env:

Env = Z→ X ⇀ R ∪ B
C J·K· : Contr × Env→ Flow

Note that the environment is a partial mapping
from Z, i.e. it may provide information about
the past.

This denotational semantics is the founda-
tion for the formalisation of symbolic contract
analyses, contract management and transfor-
mations.

An important property of the semantics of
contracts is monotonicity, i.e.

C JcKρ1
⊆ C JcKρ2

if ρ1 ⊆ ρ2

where ⊆ denotes the subset inclusion of the
graph of two partial functions.

2.3 Contract Analysis

When dealing with contracts we are interested
in a number of semantic properties of con-
tracts, e.g. causality (Does the cash-flow at
each time t depend only on observables at time
≤ t?), horizon (From which time onwards is
the cash-flow always zero?) and dependen-
cies (Which observables does the cash-flow de-
pend on?). Such properties can be charac-
terised precisely using the denotational seman-
tics. For example a contract c is causal iff for
all t ∈ N and ρ1, ρ2 ∈ Env such that s ≤ t im-
plies ρ1(s) = ρ2(s) for all s ∈ Z, we have that
C JcKρ1

(t) = C JcKρ2
(t). That is, the cash-flows

at any time t do not depend on observables
and decisions after t.

It is in general undecidable whether a con-
tract is causal, but we can provide conservative
approximations. For instance we have an in-
ductively defined predicate Causal such that
if Causal(c), then c is indeed causal. This
is not unlike type checking, which provides a
conservative approximation of type safety.

2



Towards Certified Management of Financial Contracts Bahr, Berthold, Elsman

3 Contract Management
and Transformation

Apart from a variety of analyses our framework
provides functionality to transform contracts
in meaningful ways. The most basic form of
such transformations are provided by algebraic
laws. These laws of the form c1 ≡ c2 state
when it is safe to replace a contract c1 by an
equivalent contract c2. Using our denotational
semantics, these algebraic laws can be proved
in a straightforward manner: we have c1 ≡ c2
iff C Jc1Kρ = C Jc2Kρ for all ρ ∈ Env.

More interesting are transformations that
are based on knowledge about observables and
external decisions. That is, we transform a
contract c based on an environment ρ ∈ Env
that encodes the knowledge that we already
have. We consider two examples, specialisa-
tion and reduction.

3.1 Specialisation

A specialisation function f performs a partial
evaluation of a contract c under a given en-
vironment ρ. The resulting contract f(c, ρ) is
equivalent to c under the environment ρ. More
generally, we have that C Jf(c, ρ)Kρ′ = C JcKρ
for any environment ρ′ ⊆ ρ, including the
empty environment.

3.2 Reduction Semantics

Apart from the denotational semantics our
contract language is also equipped with a re-
duction semantics [1], which advances a con-

tract by one time unit. We write c
τ⇒ρ c

′, to
denote that c is advanced to c′ in the environ-
ment ρ, where τ ∈ Trans indicates the transfers
that are necessary (and sufficient) in order to
advance c to c′.

The reduction semantics can be imple-
mented as a recursive function of type

f⇒ : Contr × Env ⇀ Contr × Trans

f⇒ takes a contract c and an environment ρ,
and returns the residual contract c′ and the
transfers τ such that c

τ⇒ρ c
′. The argument ρ

typically contains the knowledge that we have
about the observables up to the present time,
i.e. for time points ≤ 0.

We can show that the reduction semantics
is sound and complete w.r.t. the denotational
semantics:

Theorem 1. If c
τ⇒ρ c

′, then C JcKρ (0) = τ
and C JcKρ (i + 1) = C Jc′Kρ↑ (i) for all i ∈ N,
where ρ ↑ (i) = ρ(i+ 1). If C JcKρ (0) = τ then

there is some c′ with c
τ⇒ρ c

′.

4 Future Work

For future work we plan to implement and cer-
tify more extensive analyses and transforma-
tions, e.g. scenario generation and “zooming”
(changing the granularity of time). Moreover,
an important goal is to generate from a con-
tract efficient code to calculate its payoff.

At the moment the Haskell implementation
is translated by hand into Coq definitions,
which are the basis for the certification. This
approach is beneficial for rapid prototyping,
but our goal is to turn this process around
and automatically extract Haskell code from
the Coq definitions.

References

[1] J. Andersen, E. Elsborg, F. Henglein, J. G.
Simonsen, and C. Stefansen. Compositional
specification of commercial contracts. Interna-
tional Journal on Software Tools for Technol-
ogy Transfer, 8(6):485–516, 2006.

[2] J. Berthold, A. Filinski, F. Henglein,
K. Larsen, M. Steffensen, and B. Vinter.
Functional High Performance Financial IT –
The HIPERFIT Research Center in Copen-
hagen. In TFP’11 – Revised Selected Papers,
2012.

[3] LexiFi. Contract description language
(MLFi). Web page and white paper.
http://www.lexifi.com/technology/

contract-description-language.

[4] S. Peyton Jones, J.-M. Eber, and J. Seward.
Composing contracts: an adventure in finan-
cial engineering (functional pearl). In ICFP,
2000.

3

http://www.lexifi.com/technology/contract-description-language
http://www.lexifi.com/technology/contract-description-language

	Introduction
	Contract Language
	Language Constructs
	Denotational Semantics
	Contract Analysis

	Contract Management and Transformation
	Specialisation
	Reduction Semantics

	Future Work

