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Introduction

Goals

e Derive compiler implementation from denotational semantics

e Derivation by formal calculations

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 2




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER ¢

Introduction

Goals

e Derive compiler implementation from denotational semantics
e Derivation by formal calculations

e Result: compiler + virtual machine + correctness proof

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 2




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Goals

e Derive compiler implementation from denotational semantics
e Derivation by formal calculations

e Result: compiler + virtual machine + correctness proof

Our approach

e simple, goal-oriented calculations

e little prior knowledge needed
(e.g. “Target machine has a stack.”)

e full correctness proof as a byproduct

e wide variety of language features: arithmetic, exceptions,
state, lambda calculi, loops, non-determinism, interrupts
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Calculate a Compiler in 3 Steps

@ Define evaluation function in compositional manner.
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Calculate a Compiler in 3 Steps

@ Define evaluation function in compositional manner.
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Calculate a Compiler in 3 Steps

@ Define evaluation function in compositional manner.
® Calculate a version that uses a stack and continuations.

© Defunctionalise to produce a compiler and a virtual machine.
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Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

data Expr = Val Int | Add Expr Expr
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Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

data Expr = Val Int | Add Expr Expr

Semantics

eval .. Expr — Int
eval (Valn) =n
eval (Add x y) = eval x + eval y
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Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack
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Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

evalc :: Expr — Cont — Cont
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Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

evalc :: Expr — Cont — Cont

evalc e cs =c (eval e:s)
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Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

evalc :: Expr — Cont — Cont

Specification
evalc e cs =c (eval e:s)

Constructive induction: “prove” specification by induction on e
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Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

evalc :: Expr — Cont — Cont

Specification
evalc e cs =c (eval e:s)
Constructive induction: “prove” specification by induction on e

~~ definition of evalc
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COPENHAGEN

The easy case: Val

evalc (Val n) ¢ s
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The easy case: Val

evalc (Val n) ¢ s
= { specification of evalc }
c (eval (Val n):s)
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The easy case: Val

le (Val n) evalc ecs=c(eval e:5s)
evalc (Val n)cs
= { specification of evalc } —

c (eval (Val n):s)
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The easy case: Val

evalc (Val n) ¢ s

= { specification of evalc }
c (eval (Val n):s)

= { definition of eval }
c(n:s)
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The easy case: Val

evalc (Val n) ¢ s
= { specification of eval g4/ (Val n) =n

c (eval (Val n):s)
= { definition of eval } ~

c(n:s)
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The easy case: Val

evalc (Val n) ¢ s

= { specification of evalc }
c (eval (Val n):s)

= { definition of eval }

c(n:s)
= { define: pushncs=c(n:s)}
pushncs
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The interesting case: Add

evalc (Add xy) cs
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The interesting case: Add

evalc (Add xy) cs
= { specification of evalc }
c (eval (Add x y) :s)
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The interesting case: Add

e (Add x y) evalc ecs=c (eval e:s)
evalc xy)cs
= { specification of evalc } /

c (eval (Add x y) :s)
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The interesting case: Add

evalc (Add xy) cs

= { specification of evalc }
c (eval (Add x y) :s)

= { definition of eval }
c ((eval x + eval y) : s)
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The interesting case: Add

evalc (Add xy) cs

= { specification of eval gya/ (Add x y) = eval x + eval y
c (eval (Add x y) :s)
= { definition of eval }
c ((eval x + eval y) : s)
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The interesting case: Add

Induction Hypothesis

evalc (Add x y) c s For all ¢’ and s
= { specification of eval evalc x ¢’ s' = ¢’ (eval x : s')
c (eval (Add x y):s) |evalcyc s =c (evaly:s)
= { definition of eval }/

c ((eval x + eval y) : s)
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The interesting case: Add

evalc (Add xy) cs
= { specification of evalc }
c (eval (Add x y) :s)
= { definition of eval }
c ((eval x + eval y) : s)
= { define: addc(n:m:s)=c((m+n):s) }
add c (eval y : eval x :s)
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The interesting case: Add

evalc (Add xy) cs

= { specification of evalc }
c (eval (Add x y) :s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: addc(n:m:s)=c
add c (eval y : eval x :s)

= { induction hypothesis for y }
evalc y (add c) (eval x : s)

evalcy ¢’ s’ = (eval y : §')
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The interesting case: Add

evalc (Add xy) cs

= { specification of evalc }
c (eval (Add x y) :s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: addc(n:m:s)=c((m+n):s) }
add c (eval y : eval x :s)

= { induction hypothesis for y }

e y (add <) (eval x : ) evalc x ' s' = ¢’ (eval x: §')
evalc y (add c) (eval x: s
= { induction hypothesis for x } /

evalc x (evalc y (add c)) s
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Step 2: Transformation into CPS (cont.)

Derived definition

evalc :: Expr — Cont — Cont
evalc (Valn) cs=pushncs
evalc (Add x y) ¢ s = evalc x (evalc y (add c)) s
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Step 2: Transformation into CPS (cont.)

Derived definition

evalc :: Expr — Cont — Cont
evalc (Valn) ¢ =pushnc
evalc (Add x y) ¢ = evalc x (evalc y (add c))
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Step 2: Transformation into CPS (cont.)

Derived definition

evalc :: Expr — Cont — Cont
evalc (Valn) ¢ =pushnc
evalc (Add x y) ¢ = evalc x (evalc y (add c))

push :: Int — Cont — Cont
pushncs=c(n:s)

add :: Cont — Cont

add c(n:m:s)=c((m+n):s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 8




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS (cont.)

Derived definition

evalc :: Expr — Cont — Cont
evalc (Valn) ¢ =pushnc
evalc (Add x y) ¢ = evalc x (evalc y (add c))

push :: Int — Cont — Cont
pushncs=c(n:s)

add :: Cont — Cont

add c(n:m:s)=c((m+n):s)

Identity continuation

evals :: Expr — Cont halt :: Cont
evals e = evalc e halt halts=s
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Step 3: Defunctionalisation

evals :: Expr — Cont
evals e = evalc e halt

evalc :: Expr — Cont — Cont
evalc (Valn) c=pushnc
evalc (Add x y) c = evalc x (evalc y (add c))

halt :: Cont
push :: Int — Cont — Cont
add ::Cont — Cont
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Step 3: Defunctionalisation

evals :: Expr — Cont
evals e = evalc e halt

evalc :: Expr — Cont — Cont
evalc (Valn) c=pushnc
evalc (Add x y) c = evalc x (evalc y (add c))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code
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Step 3: Defunctionalisation

evals :: Expr — Cont
evals e = evalc e halt

evalc :: Expr — Cont — Cont
evalc (Valn) c=pushnc
evalc (Add x y) c = evalc x (evalc y (add c))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Or equivalently:

data Code = HALT | PUSH Int Code | ADD Code Code
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Step 3: Defunctionalisation

evals :: Expr — Code
evals e = evalc e HALT

evalc 1 Expr — Code — Code
evalc (Valn) c¢=PUSHnc
evalc (Add x y) c = evalc x (evalc y (ADD c))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Or equivalently:

data Code = HALT | PUSH Int Code | ADD Code Code
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Step 3: Defunctionalisation

comp :: Expr — Code

comp e = comp' e HALT

comp’ :: Expr — Code — Code

comp’ (Valn) c¢=PUSHnc

comp’ (Add x y) ¢ = comp’ x (comp’ y (ADD ¢))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Or equivalently:

data Code = HALT | PUSH Int Code | ADD Code Code
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Step 3: Defunctionalisation

comp :: Expr — Code
comp e = comp’ e HALT

comp’ :: Expr — Code — Code
comp’ (Valn) c¢=PUSHnc
comp’ (Add x y) ¢ = comp’ x (comp’ y (ADD ¢))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Example
comp (Val 1'Add" Val 2) ~ PUSH 1$ PUSH 2$ ADD $ HALT @
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Step 3: Defunctionalisation (cont.)

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Type Code represents the function type Cont (= Stack — Stack).
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Step 3: Defunctionalisation (cont.)

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Type Code represents the function type Cont (= Stack — Stack).

Interpretation function

exec :: Code — Cont

exec HALT = halt

exec (PUSH n c) = push n (exec c)
exec (ADD c) = add (exec c)
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Step 3: Defunctionalisation (cont.)

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Type Code represents the function type Cont (= Stack — Stack).

Interpretation function

exec :: Code — Cont

exec HALT s =5

exec (PUSH n ¢) s =execc(n:s)

exec (ADD c) (n: m:s) = exec c ((m+n):s)
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Step 3: Defunctionalisation (cont.)

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Type Code represents the function type Cont (= Stack — Stack).
Virtual Machine

exec :: Code — Cont

exec HALT s =S5

exec (PUSH n ¢) s =execc(n:s)

exec (ADD c) (n: m:s) = exec ¢ ((m+ n):s)
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Compiler Correctness

evalc e c s = c (eval e:s) (Specification)
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Compiler Correctness

| proved by constructive induction |

evalcecs=c (evapecification)
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Compiler Correctness

evalc e c s = c (eval e:s) (Specification)

exec (comp e) s = evals e s (Defunctionalisation)
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Compiler Correctness

evalc e c s = c (eval e:s) (Specification)
exec (comp e) s = evals e s (Defunctionalisation)

evals e = evalc e halt  (Definition of evals)
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Compiler Correctness

evalc e c s = c (eval e:s) (Specification)
exec (comp e) s = evals e s (Defunctionalisation)

evals e = evalc e halt  (Definition of evals)

exec (comp e)s=-eval e:s (Compiler correctness)
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A Language with Exceptions

data Expr = Val Int | Add  Expr Expr
| Throw | Catch Expr Expr
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A Language with Exceptions

data Expr = Val Int | Add  Expr Expr
| Throw | Catch Expr Expr

eval :: Expr — Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of
Nothing — Nothing
Just n  — case eval y of
Nothing — Nothing
Just m — Just (n+ m)
eval Throw = Nothing
eval (Catch x h) = case eval x of
Nothing — eval h
Just n  — Just n
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A Language with Exceptions

data Expr = Val Int | Add  Expr Expr
| Throw | Catch Expr Expr

eval :: Expr — Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of
Nothing — Nothing
Just n  — case eval y of
Nothing — Nothing
Just m — Just (n+ m)
eval Throw = Nothing
eval (Catch x h) = case eval x of
Nothing — eval h
Just n  — Just n
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Partial Specifications

Partial Type Definition

type Stack = [Elem]
data Elem = VAL Int | ...
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Partial Specifications

Partial Type Definition

type Stack = [Elem]
data Elem = VAL Int | ...

Partial Specification of evalc

evalc e c s =c (eval e:s)
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Partial Specifications

Partial Type Definition

type Stack = [Elem]
data Elem = VAL Int | ...

Partial Specification of evalc

evalcecs=c(VALn:s) if eval e = Just n

evalcecs=17? if eval e = Nothing
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Partial Specifications

Partial Type Definition

type Stack = [Elem]
data Elem = VAL Int | ...

Partial Specification of evalc

evalcecs=c(VALn:s) if eval e = Just n

evalc ecs=fail s if eval e = Nothing

where fail :: Stack — Stack is left unspecified
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Resulting Compiler

comp : Expr — Code

comp e = comp’ e HALT

comp’ :: Expr — Code — Code
comp’ (Val n) ¢ = PUSH nc

comp’ (Add x y) ¢ = comp’ x (comp’ y (ADD c))
comp’ Throw ¢ = FAIL

comp’ (Catch x h) ¢ = MARK (comp’ h ¢) (comp’ x (UNMARK c))
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Resulting Virtual Machine

exec :: Code — Cont
exec (PUSH nc) s =execc(VALn:s)
exec (MARK hc) s = exec ¢ (HAN h:s)

exec FAIL s = fail s
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Resulting Virtual Machine

exec :: Code — Cont
exec (PUSH nc) s =execc(VALn:s)
exec (MARK hc) s = exec ¢ (HAN h:s)

exec FAIL s = fail s

fail :: Cont

fail (VAL n:s) = fail s
fail (HAN h:s) = exec h s
fail [] =]
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Summary

e simple, goal-oriented calculations; no magic

little prior knowledge needed
(by using partial specifications)

full correctness proof

formalisation in Coq
scales to wide variety of language features
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Summary

e simple, goal-oriented calculations; no magic

little prior knowledge needed
(by using partial specifications)

full correctness proof

formalisation in Coq

scales to wide variety of language features

arithmetic

exceptions (synchronous, asynchronous)
state (local, global)

lambda calculi (call-by-value, -name, -need)
loops (bounded, unbounded)
non-determinism
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Future work

Simplify reasoning for “cyclic” features (fixed points, loops)

Simplify reasoning register machines

Support for sharing (i.e. graph structures)

Derivation of compilers for fixed instruction sets
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