SITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Faculty of Science ([]

Calculating Correct Compilers

Patrick Bahr! Graham Hutton?

LUniversity of Copenhagen,
Department of Computer Science
paba@diku.dk

2University of Nottingham,
Functional Programming Laboratory
graham.hutton@nottingham.ac.uk

10th January, 2014
Slide 1

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER ¢

Introduction

Goals

e Derive compiler implementation from denotational semantics

e Derivation by formal calculations

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER ¢

Introduction

Goals

e Derive compiler implementation from denotational semantics
e Derivation by formal calculations

e Result: compiler + virtual machine + correctness proof

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Goals

e Derive compiler implementation from denotational semantics
e Derivation by formal calculations

e Result: compiler + virtual machine + correctness proof

Our approach

e simple, goal-oriented calculations

e little prior knowledge needed
(e.g. “Target machine has a stack.”)

e full correctness proof as a byproduct

e wide variety of language features: arithmetic, exceptions,
state, lambda calculi, loops, non-determinism, interrupts

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Calculate a Compiler in 3 Steps

@ Define evaluation function in compositional manner.

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 .
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Calculate a Compiler in 3 Steps

@ Define evaluation function in compositional manner.

® Calculate a version that uses a stack and continuations.

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Calculate a Compiler in 3 Steps

@ Define evaluation function in compositional manner.
® Calculate a version that uses a stack and continuations.

© Defunctionalise to produce a compiler and a virtual machine.

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

data Expr = Val Int | Add Expr Expr

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

data Expr = Val Int | Add Expr Expr

Semantics

eval .. Expr — Int
eval (Valn) =n
eval (Add x y) = eval x + eval y

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

evalc :: Expr — Cont — Cont

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

evalc :: Expr — Cont — Cont

evalc e cs =c (eval e:s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

evalc :: Expr — Cont — Cont

Specification
evalc e cs =c (eval e:s)

Constructive induction: “prove” specification by induction on e

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack — Stack

evalc :: Expr — Cont — Cont

Specification
evalc e cs =c (eval e:s)
Constructive induction: “prove” specification by induction on e

~~ definition of evalc

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 5

COPENHAGEN

The easy case: Val

evalc (Val n) ¢ s

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 .
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

The easy case: Val

evalc (Val n) ¢ s
= { specification of evalc }
c (eval (Val n):s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The easy case: Val

le (Val n) evalc ecs=c(eval e:5s)
evalc (Val n)cs
= { specification of evalc } —

c (eval (Val n):s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The easy case: Val

evalc (Val n) ¢ s

= { specification of evalc }
c (eval (Val n):s)

= { definition of eval }
c(n:s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The easy case: Val

evalc (Val n) ¢ s
= { specification of eval g4/ (Val n) =n

c (eval (Val n):s)
= { definition of eval } ~

c(n:s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The easy case: Val

evalc (Val n) ¢ s

= { specification of evalc }
c (eval (Val n):s)

= { definition of eval }

c(n:s)
= { define: pushncs=c(n:s)}
pushncs
Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘

Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

evalc (Add xy) cs

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 .
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

evalc (Add xy) cs
= { specification of evalc }
c (eval (Add x y) :s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

e (Add x y) evalc ecs=c (eval e:s)
evalc xy)cs
= { specification of evalc } /

c (eval (Add x y) :s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

evalc (Add xy) cs

= { specification of evalc }
c (eval (Add x y) :s)

= { definition of eval }
c ((eval x + eval y) : s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

evalc (Add xy) cs

= { specification of eval gya/ (Add x y) = eval x + eval y
c (eval (Add x y) :s)
= { definition of eval }
c ((eval x + eval y) : s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

Induction Hypothesis

evalc (Add x y) c s For all ¢’ and s
= { specification of eval evalc x ¢’ s' = ¢’ (eval x : s')
c (eval (Add x y):s) |evalcyc s =c (evaly:s)
= { definition of eval }/

c ((eval x + eval y) : s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

evalc (Add xy) cs
= { specification of evalc }
c (eval (Add x y) :s)
= { definition of eval }
c ((eval x + eval y) : s)
= { define: addc(n:m:s)=c((m+n):s) }
add c (eval y : eval x :s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

evalc (Add xy) cs

= { specification of evalc }
c (eval (Add x y) :s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: addc(n:m:s)=c
add c (eval y : eval x :s)

= { induction hypothesis for y }
evalc y (add c) (eval x : s)

evalcy ¢’ s’ = (eval y : §')

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The interesting case: Add

evalc (Add xy) cs

= { specification of evalc }
c (eval (Add x y) :s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: addc(n:m:s)=c((m+n):s) }
add c (eval y : eval x :s)

= { induction hypothesis for y }

e y (add <) (eval x :) evalc x ' s' = ¢’ (eval x: §')
evalc y (add c) (eval x: s
= { induction hypothesis for x } /

evalc x (evalc y (add c)) s

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS (cont.)

Derived definition

evalc :: Expr — Cont — Cont
evalc (Valn) cs=pushncs
evalc (Add x y) ¢ s = evalc x (evalc y (add c)) s

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS (cont.)

Derived definition

evalc :: Expr — Cont — Cont
evalc (Valn) ¢ =pushnc
evalc (Add x y) ¢ = evalc x (evalc y (add c))

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS (cont.)

Derived definition

evalc :: Expr — Cont — Cont
evalc (Valn) ¢ =pushnc
evalc (Add x y) ¢ = evalc x (evalc y (add c))

push :: Int — Cont — Cont
pushncs=c(n:s)

add :: Cont — Cont

add c(n:m:s)=c((m+n):s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 2: Transformation into CPS (cont.)

Derived definition

evalc :: Expr — Cont — Cont
evalc (Valn) ¢ =pushnc
evalc (Add x y) ¢ = evalc x (evalc y (add c))

push :: Int — Cont — Cont
pushncs=c(n:s)

add :: Cont — Cont

add c(n:m:s)=c((m+n):s)

Identity continuation

evals :: Expr — Cont halt :: Cont
evals e = evalc e halt halts=s

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation

evals :: Expr — Cont
evals e = evalc e halt

evalc :: Expr — Cont — Cont
evalc (Valn) c=pushnc
evalc (Add x y) c = evalc x (evalc y (add c))

halt :: Cont
push :: Int — Cont — Cont
add ::Cont — Cont

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation

evals :: Expr — Cont
evals e = evalc e halt

evalc :: Expr — Cont — Cont
evalc (Valn) c=pushnc
evalc (Add x y) c = evalc x (evalc y (add c))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation

evals :: Expr — Cont
evals e = evalc e halt

evalc :: Expr — Cont — Cont
evalc (Valn) c=pushnc
evalc (Add x y) c = evalc x (evalc y (add c))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Or equivalently:

data Code = HALT | PUSH Int Code | ADD Code Code

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation

evals :: Expr — Code
evals e = evalc e HALT

evalc 1 Expr — Code — Code
evalc (Valn) c¢=PUSHnc
evalc (Add x y) c = evalc x (evalc y (ADD c))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Or equivalently:

data Code = HALT | PUSH Int Code | ADD Code Code

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation

comp :: Expr — Code

comp e = comp' e HALT

comp’ :: Expr — Code — Code

comp’ (Valn) c¢=PUSHnc

comp’ (Add x y) ¢ = comp’ x (comp’ y (ADD ¢))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Or equivalently:

data Code = HALT | PUSH Int Code | ADD Code Code

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation

comp :: Expr — Code
comp e = comp’ e HALT

comp’ :: Expr — Code — Code
comp’ (Valn) c¢=PUSHnc
comp’ (Add x y) ¢ = comp’ x (comp’ y (ADD ¢))

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Example
comp (Val 1'Add" Val 2) ~ PUSH 1$ PUSH 2$ ADD $ HALT @

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation (cont.)

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Type Code represents the function type Cont (= Stack — Stack).

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation (cont.)

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Type Code represents the function type Cont (= Stack — Stack).

Interpretation function

exec :: Code — Cont

exec HALT = halt

exec (PUSH n c) = push n (exec c)
exec (ADD c) = add (exec c)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation (cont.)

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Type Code represents the function type Cont (= Stack — Stack).

Interpretation function

exec :: Code — Cont

exec HALT s =5

exec (PUSH n ¢) s =execc(n:s)

exec (ADD c) (n: m:s) = exec c ((m+n):s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Step 3: Defunctionalisation (cont.)

data Code where
HALT :: Code
PUSH :: Int — Code — Code
ADD :: Code — Code

Type Code represents the function type Cont (= Stack — Stack).
Virtual Machine

exec :: Code — Cont

exec HALT s =S5

exec (PUSH n ¢) s =execc(n:s)

exec (ADD c) (n: m:s) = exec ¢ ((m+ n):s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Compiler Correctness

evalc e c s = c (eval e:s) (Specification)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 .
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compiler Correctness

| proved by constructive induction |

evalcecs=c (evapecification)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Compiler Correctness

evalc e c s = c (eval e:s) (Specification)

exec (comp e) s = evals e s (Defunctionalisation)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘

Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compiler Correctness

evalc e c s = c (eval e:s) (Specification)
exec (comp e) s = evals e s (Defunctionalisation)

evals e = evalc e halt (Definition of evals)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compiler Correctness

evalc e c s = c (eval e:s) (Specification)
exec (comp e) s = evals e s (Defunctionalisation)

evals e = evalc e halt (Definition of evals)

exec (comp e)s=-eval e:s (Compiler correctness)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

A Language with Exceptions

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

A Language with Exceptions

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

eval :: Expr — Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of
Nothing — Nothing
Just n — case eval y of
Nothing — Nothing
Just m — Just (n+ m)
eval Throw = Nothing
eval (Catch x h) = case eval x of
Nothing — eval h
Just n — Just n

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

A Language with Exceptions

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

eval :: Expr — Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of
Nothing — Nothing
Just n — case eval y of
Nothing — Nothing
Just m — Just (n+ m)
eval Throw = Nothing
eval (Catch x h) = case eval x of
Nothing — eval h
Just n — Just n

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Partial Specifications

Partial Type Definition

type Stack = [Elem]
data Elem = VAL Int | ...

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Partial Specifications

Partial Type Definition

type Stack = [Elem]
data Elem = VAL Int | ...

Partial Specification of evalc

evalc e c s =c (eval e:s)

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Partial Specifications

Partial Type Definition

type Stack = [Elem]
data Elem = VAL Int | ...

Partial Specification of evalc

evalcecs=c(VALn:s) if eval e = Just n

evalcecs=17? if eval e = Nothing

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Partial Specifications

Partial Type Definition

type Stack = [Elem]
data Elem = VAL Int | ...

Partial Specification of evalc

evalcecs=c(VALn:s) if eval e = Just n

evalc ecs=fail s if eval e = Nothing

where fail :: Stack — Stack is left unspecified

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Resulting Compiler

comp : Expr — Code

comp e = comp’ e HALT

comp’ :: Expr — Code — Code
comp’ (Val n) ¢ = PUSH nc

comp’ (Add x y) ¢ = comp’ x (comp’ y (ADD c))
comp’ Throw ¢ = FAIL

comp’ (Catch x h) ¢ = MARK (comp’ h ¢) (comp’ x (UNMARK c))

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Resulting Virtual Machine

exec :: Code — Cont
exec (PUSH nc) s =execc(VALn:s)
exec (MARK hc) s = exec ¢ (HAN h:s)

exec FAIL s = fail s

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Resulting Virtual Machine

exec :: Code — Cont
exec (PUSH nc) s =execc(VALn:s)
exec (MARK hc) s = exec ¢ (HAN h:s)

exec FAIL s = fail s

fail :: Cont

fail (VAL n:s) = fail s
fail (HAN h:s) = exec h s
fail [] =]

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Summary

e simple, goal-oriented calculations; no magic

little prior knowledge needed
(by using partial specifications)

full correctness proof

formalisation in Coq
scales to wide variety of language features

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Summary

e simple, goal-oriented calculations; no magic

little prior knowledge needed
(by using partial specifications)

full correctness proof

formalisation in Coq

scales to wide variety of language features

arithmetic

exceptions (synchronous, asynchronous)
state (local, global)

lambda calculi (call-by-value, -name, -need)
loops (bounded, unbounded)
non-determinism

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Future work

Simplify reasoning for “cyclic” features (fixed points, loops)

Simplify reasoning register machines

Support for sharing (i.e. graph structures)

Derivation of compilers for fixed instruction sets

Patrick Bahr, Graham Hutton — Calculating Correct Compilers — 10th January, 2014 ‘
Slide 17

	Calculating Compilers

