Certified Management of Financial Contracts

Patrick Bahr
DIKU
paba@diku.dk
joint work with
Jost Berthold \& Martin Elsman

10th December, 2014

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

- Express such contracts in a formal language
- Symbolic manipulation and analysis of such contracts.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

- Express such contracts in a formal language
- Symbolic manipulation and analysis of such contracts.
- Formal verification

Contract Language Goals in Detail

- Compositionality.

Contracts are time-relative \Rightarrow facilitates compositionality

- Multi-party.

Specify obligations and opportunities for multiple parties, (which opens up the possibility for specifying portfolios)

- Contract management.

Contracts can be managed and symbolically evolved;
a contract gradually reduces to the empty contract.

- Contract utilities (symbolic).

Contracts can be analysed in a variety of ways

- Contract pricing (numerical, staged).

Code for payoff can be generated from contracts (input to a stochastic pricing engine)

Example

Contract in natural language

- At any time within the next 90 days,
- party X may decide to
- buy USD 100 from party Y,
- for a fixed rate r of Danish Kroner.

Example

Contract in natural language

- At any time within the next 90 days,
- party X may decide to
- buy USD 100 from party Y,
- for a fixed rate r of Danish Kroner.

Translation into contract language
if $o b s(X$ exercises option) within 90
then $100 \times(U S D(Y \rightarrow X) \& r \times \operatorname{DKK}(X \rightarrow Y))$
else \emptyset

Contributions

- Denotational semantics based on cash-flows
- Reduction semantics (sound and complete)
- Correctness proofs for common contract analyses and transformations
- Formalised in the Coq theorem prover
- Certified implementation via code extraction

An Overview of the Contract Language

\emptyset empty contract with no obligations
$a\left(p_{1} \rightarrow p_{2}\right) p_{1}$ has to transfer one unit of a to p_{2}
$c_{1} \& c_{2}$ conjunction of c_{1} and c_{2}
$e \times c$ multiply all obligations in c by e
$d \uparrow c$ shift c into the future by d days
let $x=e$ in c observe today's value of e at any time (via $x)$

An Overview of the Contract Language

\emptyset empty contract with no obligations
$a\left(p_{1} \rightarrow p_{2}\right) p_{1}$ has to transfer one unit of a to p_{2}
$c_{1} \& c_{2}$ conjunction of c_{1} and c_{2}
$e \times c$ multiply all obligations in c by e
$d \uparrow c$ shift c into the future by d days
let $x=e$ in c observe today's value of e at any time (via x)
if e within d then c_{1} else c_{2}

- behave like c_{1} as soon as e becomes true
- if e does not become true within d days behave like c_{2}

An Overview of the Contract Language

\emptyset empty contract with no obligations
$a\left(p_{1} \rightarrow p_{2}\right) p_{1}$ has to transfer one unit of a to p_{2}
$c_{1} \& c_{2}$ conjunction of c_{1} and c_{2}
$e \times c$ multiply all obligations in c by e
$d \uparrow c$ shift c into the future by d days
let $x=e$ in c observe today's value of e at any time (via x)
if e within d then c_{1} else c_{2}

- behave like c_{1} as soon as e becomes true
- if e does not become true within d days behave like c_{2}

Expression Language
Real-valued and Boolean-valued expressions, extended by obs (I, d) observe the value of I at time d $\operatorname{acc}(f, d, e)$ accumulation over the last d days

Example: Asian Option

$90 \uparrow$ if $o b s(X$ exercises option) within 0 then $100 \times(U S D(Y \rightarrow X) \&($ rate $\times \operatorname{DKK}(X \rightarrow Y)))$ else \emptyset
where

$$
\text { rate }=\frac{1}{30} \cdot a c c(\lambda r . r+o b s(F X U S D / D K K), 30,0)
$$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\mathcal{C} \llbracket \cdot \rrbracket . \text { Contr } \quad \rightarrow \text { CashFlow }
$$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\mathcal{C} \llbracket \cdot \rrbracket .: \text { Contr } \quad \rightarrow \text { CashFlow }
$$

CashFlow $=\mathbb{N} \rightarrow$ Transactions
Transactions $=$ Party \times Party \times Asset $\rightarrow \mathbb{R}$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\begin{gathered}
\mathcal{C} \llbracket \cdot \rrbracket .: \text { Contr } \times \text { Env } \rightarrow \text { CashFlow } \\
\text { Env }=\text { Label } \times \mathbb{Z} \rightarrow \mathbb{B} \cup \mathbb{R}
\end{gathered}
$$

CashFlow $=\mathbb{N} \rightarrow$ Transactions
Transactions $=$ Party \times Party \times Asset $\rightarrow \mathbb{R}$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\begin{aligned}
& \mathcal{C} \llbracket \cdot \rrbracket .: \text { Contr } \times \text { Env } \rightarrow \text { CashFlow } \\
& \mathrm{Env}=\text { Label }_{\alpha} \times \mathbb{Z} \rightarrow \alpha
\end{aligned}
$$

CashFlow $=\mathbb{N} \rightarrow$ Transactions
Transactions $=$ Party \times Party \times Asset $\rightarrow \mathbb{R}$

Contract Analyses

Examples

- contract dependencies
- contract causality
- contract horizon

Contract Analyses

Examples

- contract depender obs (FX USD/DKK,1)×DKK $(X \rightarrow Y)$
- contract causality
- contract horizon

Contract Analyses

Examples

- contract dependencies
- contract causality
- contract horizon

Semantics vs. Syntax

- these analyses have precise semantic definition
- they cannot be effectively computed
- we provide sound approximations, e.g. type system

Contract Causality

Refined Types

- e: $\operatorname{Expr}_{\alpha}^{t} \quad$ value of e available at time t (or later)
- c: Contr ${ }^{t}$ no obligations strictly before t

Contract Causality

Refined Types

- e: $\operatorname{Expr}_{\alpha}^{t} \quad$ value of e available at time t (or later)
- c: Contr ${ }^{t}$ no obligations strictly before t

Typing Rules

$$
\frac{t_{1}, t_{2} \in \mathbb{Z} \quad l \in \text { Label }_{\alpha} \quad t_{1} \leq t_{2}}{\Gamma \vdash o b s\left(I, t_{1}\right): \operatorname{Expr}_{\alpha}^{t_{2}}} \quad \frac{p_{1}, p_{2} \in \text { Party } \quad a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \operatorname{Contr}^{0}}
$$

Contract Causality

Refined Types

- e: $\operatorname{Expr}_{\alpha}^{t} \quad$ value of e available at time t (or later)
- c : Contr ${ }^{t}$ no obligations strictly before t

Typing Rules

$$
\begin{aligned}
& \frac{t_{1}, t_{2} \in \mathbb{Z} \quad I \in \text { Label }_{\alpha} \quad t_{1} \leq t_{2}}{\Gamma \vdash \operatorname{obs}\left(I, t_{1}\right): \operatorname{Expr}_{\alpha}^{t_{2}}} \\
& \frac{p_{1}, p_{2} \in \text { Party } \quad a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \text { Contr }^{0}} \\
& \frac{\vdash e: \operatorname{Expr}_{\mathbb{R}}^{t} \quad \vdash c: \text { Contr }^{t}}{\vdash e \times c: \text { Contr }^{t}} \\
& \frac{d \in \mathbb{N} \quad \vdash c: \text { Contr }^{t}}{\vdash d \uparrow c: \text { Contr }^{t+d}}
\end{aligned}
$$

Contract Causality

Refined Types

- e: $\operatorname{Expr}_{\alpha}^{t} \quad$ value of e available at time t (or later)
- c : Contr t no obligations strictly before t

Typing Rules

$$
\begin{aligned}
& \frac{t_{1}, t_{2} \in \mathbb{Z} \quad I \in \text { Label }_{\alpha} \quad t_{1} \leq t_{2}}{\Gamma \vdash \operatorname{obs}\left(I, t_{1}\right): \operatorname{Expr}_{\alpha}^{t_{2}}} \\
& \frac{p_{1}, p_{2} \in \text { Party } \quad a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \text { Contr }^{0}} \\
& \frac{\vdash e: \operatorname{Expr}_{\mathbb{R}}^{t} \quad \vdash c: \text { Contr }^{t}}{\vdash e \times c: \text { Contr }^{t}} \\
& \frac{d \in \mathbb{N} \quad \vdash c: \text { Contr }^{t}}{\vdash d \uparrow c: \text { Contr }^{t+d}}
\end{aligned}
$$

Contract Transformations

Contract equivalences

When can we replace a sub-contract with another one, without changing the semantics of the contract?

Reduction semantics
What does the contract look like after n days have passed?
Contract Specialisation
What does the contract look like after we learned the actual value of some observables?

Contract Equivalences

$$
\begin{array}{rlrl}
e_{1} \times\left(e_{2} \times c\right) & \simeq\left(e_{1} \cdot e_{2}\right) \times c & & d \uparrow \emptyset \\
d_{1} \uparrow\left(d_{2} \uparrow c\right) & \simeq\left(d_{1}+d_{2}\right) \uparrow c & & r \times \emptyset \\
d \uparrow\left(c_{1} \& c_{2}\right) & \simeq\left(d \uparrow c_{1}\right) \&\left(d \uparrow c_{2}\right) & & 0 \times c \\
e \times\left(c_{1} \& c_{2}\right) & \simeq\left(e \times c_{1}\right) \&\left(e \times c_{2}\right) & & c \& \emptyset \\
d \uparrow(e \times c) & \simeq(d \uparrow e) \times(d \uparrow c) & c_{1} \& c_{2} \simeq c_{2} \& c_{1}
\end{array}
$$

$d \uparrow$ if b within e then c_{1} else $c_{2} \simeq$ if $d \Uparrow b$ within e then $d \uparrow c_{1}$ else $d \uparrow c_{2}$
$\left(e_{1} \times a\left(p_{1} \rightarrow p_{2}\right)\right) \&\left(e_{2} \times a\left(p_{1} \rightarrow p_{2}\right)\right) \simeq\left(e_{1}+e_{2}\right) \times a\left(p_{1} \rightarrow p_{2}\right)$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

$$
a\left(p_{1} \rightarrow p_{2}\right) \stackrel{\tau_{a, p_{1}, p_{2}}}{\Longrightarrow} \rho
$$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

$$
\frac{c \xlongequal{\tau}_{\rho}^{\rho} c^{\prime} \quad \mathcal{E} \llbracket e \rrbracket_{\rho}=v}{e \times c \stackrel{v * \tau}{\Longrightarrow}_{\rho}(-1 \Uparrow e) \times c^{\prime}}
$$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

$$
\frac{c \stackrel{\tau}{\Longrightarrow} \rho c^{\prime} \quad \mathcal{E} \llbracket e \rrbracket_{\rho}=v}{e \times c \stackrel{v * \tau}{\Longrightarrow}_{\rho}(-1 \Uparrow e) \times c^{\prime}}
$$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

$$
\frac{c \stackrel{\tau}{\Longrightarrow} \rho c^{\prime} \quad \mathcal{E} \llbracket e \rrbracket_{\rho}=v}{e \times c \stackrel{v * \tau}{\Longrightarrow} \rho(-1 \Uparrow e) \times c^{\prime}}
$$

Theorem (Reduction semantics correctness)
(i) If $c{ }_{\tau}^{\tau} c^{\prime}$, then
(a) $\mathcal{C} \llbracket c \rrbracket_{\rho}(0)=\tau$, and
(b) $\mathcal{C} \llbracket c \rrbracket_{\rho}(i+1)=\mathcal{C} \llbracket c^{\prime} \rrbracket_{1 \Uparrow \rho}(i) \quad$ for all $i \in \mathbb{N}$.
(ii) If $\mathcal{C} \llbracket c \rrbracket_{\rho}(0)=\tau$, then there is a unique c^{\prime} with $c{ }_{\tau}^{\tau} c^{\prime}$.

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, monotonicity, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, monotonicity, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, monotonicity, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Extraction of executable Haskell code

- efficient Haskell implementation
- embedded domain-specific language for contracts
- contract analyses and contract management

Future Work

- improve code extraction
- further analyses and transformations
(e.g. scenario generation and "zooming")
- combine this work with numerical methods

