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Introduction

Trade-off in software verification:

cleverness of VS. ease of
implementation reasoning
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Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:
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Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:

e Simple but unrealistic compiler (tree shaped code!)
~~ simple proofs
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Example: Hutton & Wright “Compiling Exceptions Correctly”
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e Simple but unrealistic compiler (tree shaped code!)
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Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:
e Simple but unrealistic compiler (tree shaped code!)
~~ simple proofs
e More realistic compiler with explicit jumps
~~» much more complicated proofs

Our Proposal: an intermediate approach

e Transform compiler: use (acyclic) graphs instead of trees
e Lift the correctness property from the tree-based to the
graph-based compiler.
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Example: A Simple Language with Exceptions

Based on Hutton & Wright “Compiling Exceptions Correctly”

Source Language

Arithmetic expressions + exceptions:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr
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Example: A Simple Language with Exceptions
Based on Hutton & Wright “Compiling Exceptions Correctly”

Source Language

Arithmetic expressions + exceptions:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

Target Language
Instruction set for a simple stack machine:

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW
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A Simple Compiler

Targeting A Stack Machine

comp” :: Expr — Code — Code
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A Simple Compiler

Targeting A Stack Machine

comp” :: Expr — Code — Code

comp :: Expr — Code

comp e = comp™ e HALT
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A Simple Compiler

Targeting A Stack Machine

comp” :: Expr — Code — Code

comp® (Val n) c=PUSHnnc

comp” (Add x y) ¢ = comp” x (comp” y (ADD c))

comp”™ Throw ¢ = THROW

comp” (Catch x h) ¢ = MARK (comp™ h c) (comp” x (UNMARK c))

comp :: Expr — Code
comp e = comp” e HALT
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A Simple Compiler

Targeting A Stack Machine

comp” :: Expr — Code — Code

comp® (Val n) ¢ = PUSH n>c

comp” (Add x y) ¢ = comp” x> comp” y> ADD 1> ¢

comp” Throw ¢ = THROW

comp® (Catch x h) ¢ = MARK (comp” h> c) > comp” x> UNMARK 1> ¢

comp :: Expr — Code
comp e = comp™ e> HALT
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Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec
eval :: Expr — Maybe Int

exec :: Code — Stack — Stack
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Semantics & Correctness
data Maybe a = Just a

. | Nothing
Given by evaluator eval —rrrorcTTTe—CrroT
eval :: Expr — Maybe Int
exec :: Code — Stack — Stack
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Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec
eval :: Expr — Maybe Int

exec :: Code — Stack — Stack

Theorem (compiler correctness)

[Val n] if eval e = Just n
exec (comp e) [] = ) )
[] if eval e = Nothing

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 6




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec
eval :: Expr — Maybe Int

exec :: Code — Stack — Stack

Theorem (compiler correctness)

[Val n] if eval e = Just n
exec (comp e) [] = ) )
[] if eval e = Nothing

Goal

e Avoid the code duplication produced by the compiler.

e Retain the simple equational reasoning to prove correctness.
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How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)
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® The VM is a fold, i.e.
exec = fold execAlg
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How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

® On graphs, the VM is defined as a fold with the same algebra:
execg = foldg execAlg

O By parametricity, we obtain:

foldg alg = fold alg o unravel for all alg
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@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

® On graphs, the VM is defined as a fold with the same algebra:
execg = foldg execAlg

O By parametricity, we obtain:
execg = exec o unravel
® By simple equational reasoning we show

comp = unravel o compg
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How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

® On graphs, the VM is defined as a fold with the same algebra:
execg = foldg execAlg

O By parametricity, we obtain:
execg = exec o unravel

® By simple equational reasoning we show

comp = unravel o compg

® Hence: exec o comp = execg o compg
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Explicit Representation of Tree Types

Tree Type: fixed point of a functor
data Tree f = In (f (Tree f))
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Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW
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Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Code a = PUSH Int a | ADD a | HALT
| MARK a a | UNMARK a | THROW
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Explicit Representation of Tree Types

Tree Type: fixed point of a functor
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| MARKEa a | UNMARKra | THROWE

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 8




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Coder a = PUSHE Int a | ADDg a | HALT ¢
| MARKEa a | UNMARKra | THROWE

= Code ~ Tree Codef
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Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Coder a = PUSHE Int a | ADDg a | HALT ¢
| MARKEa a | UNMARKra | THROWE

= Code ~ Tree Codef

Smart Constructors

PUSH :: Int — Tree Coder — Tree Codef
PUSH+t n c = In (PUSHE n c)
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Compiler with Explicit Tree Type

comp” :: Expr — Code — Code
comp”® (Val n) c=PUSH nvc
comp? (Add x y) ¢ = comp” x> comp” y>ADD ¢
comp®  Throw ¢ = THROW
comp” (Catch x h) c = MARK (comp” h c)
> comp™ x> UNMARK ¢

comp :: Expr — Code
comp e = comp™ e HALT
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Compiler with Explicit Tree Type

compA .. Expr — Tree Codep — Tree Codef
comp”® (Val n) c=PUSH nrc
comp? (Add x y) ¢ = comp” x> comp” y>ADD ¢
comp®  Throw ¢ = THROW
comp” (Catch x h) c = MARK (comp” h c)
> comp™ x> UNMARK ¢

comp :: Expr — Tree Code
comp e = comp™ e HALT
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Compiler with Explicit Tree Type

compA .. Expr — Tree Codep — Tree Codef
comp”® (Val n) ¢ = PUSHT nrc
comp? (Add x y) ¢ = comp” x> comp” y> ADDt > c
comp®  Throw c = THROW+
comp” (Catch x h) ¢ = MARKT (comp” h¢)
> comp™ x> UNMARK T > ¢

comp :: Expr — Tree Code
comp e = comp™ e HALT 1
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Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv
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Structured Graphs (Oliveira & Cook, 2012)
data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv
newtype Graph f = MkGraph (¥ v . Graph' f v)
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> comp” x> UNMARK T > ¢

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 10




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

comp® :: Expr — Graph' Coder v — Graph' Codef v
comp”® (Val n) c=PUSHT n>c
comp” (Add x y) ¢ = comp” x> comp® y > ADDt > c
comp®  Throw ¢ = THROW+
comp” (Catch x h) c = MARKT (comp™ h ¢)

> comp” x> UNMARK T > ¢

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 10




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Codeg v — Graph' Codef v
compg (Val n) c=PUSHg n>c
compé (Add x y) c= compé X D> compé y>ADD¢g > ¢
compé Throw ¢ = THROWq
compg (Catch x h) c = MARK ¢ (compg h® c)

> compé x> UNMARKg > ¢
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Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)

| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Coder

compg (Val n) ¢ = PUSHg

PUSHg n ¢ = GIn (PUSHE n c)

! cowcEv
;l> c

compé (Add x y) c= compé X D> compé y>ADD¢g > ¢
compé Throw ¢ = THROWq
compg (Catch x h) c = MARK ¢ (compg h® c)

> compé x> UNMARKg > ¢
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Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Codeg v — Graph' Codef v

compg (Val n) c=PUSHg n>c

compé (Add x y) c= compé X D> compé y>ADD¢g > ¢

compé Throw ¢ = THROW g

compg (Catch x h) ¢ = Let ¢ (\¢' - MARK¢ (compg h> Var ¢’)
> compg x> UNMARK g > Var c’)
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Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Codeg v — Graph' Codef v

compg (Val n) c=PUSHg n>c

compé (Add x y) c= compé X D> compé y>ADD¢g > ¢

compé Throw ¢ = THROW g

compg (Catch x h) ¢ = Let ¢ (\¢' - MARK¢ (compg h> Var ¢’)

> compg x> UNMARK g > Var c’)
compg :: Expr — Graph Code

compg e = MkGraph (comp e > HALT )
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Example

comp (Add (Catch (Val 1) (Val 2)) (Val 3))

~+ MARKT (PUSHT 2> PUSHT 31> ADDt > HALT 1)
> PUSHT 1> UNMARK+ > PUSHT 31> ADD1 > HALT 1

compg (Add (Catch (Val 1) (Val 2)) (Val 3))

~+ MkGraph (Let (PUSHg 3> ADDg > HALT ) (Av —
MARK¢ (PUSHg 2> Var v)
> PUSH¢ 1> UNMARK G & Var v))
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Virtual Machine as a Fold

Fold over Trees

fold :: Functor f = (f r — r) — Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)
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Virtual Machine as a Fold

Fold over Trees

fold :: Functor f = (f r — r) — Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

exec :: Tree Code — Stack — Stack
exec = fold execAlg
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Virtual Machine as a Fold

Fold over Trees

fold :: Functor f = (f r — r) — Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

exec :: Tree Code — Stack — Stack
exec = fold execAlg

Folds on Graphs

foldg :: Functor f = (f r — r) — Graph f — r
foldg alg (Graph g) = fold; g where

foldg (GIn't) = alg (fmap foldg, t)

foldg, (Let e ) = foldg, (f (foldg €))

foldg, (Var x) = x
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Virtual Machine as a Fold

Fold over Trees

fold :: Functor f = (f r — r) — Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

execg :: Graph Code — Stack — Stack
execg = foldg execAlg

Folds on Graphs

foldg :: Functor f = (f r — r) — Graph f — r
foldg alg (Graph g) = fold; g where

foldg (GIn't) = alg (fmap foldg, t)

foldg, (Let e ) = foldg, (f (foldg €))
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Correctness Argument for compg

Since, we know that comp is correct, it suffices to show that

execg © compg = exec o comp
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Correctness Argument for compg

Since, we know that comp is correct, it suffices to show that

execg © compg = exec o comp

@)
execg 0 compg = exec o unravel o compg
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Correctness Argument for compg

Since, we know that comp is correct, it suffices to show that

execg © compg = exec o comp

@)
execg 0 compg = exec o unravel o compg

foldg alg = fold alg o unravel (1)
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Correctness Argument for compg

Since, we know that comp is correct, it suffices to show that

execg © compg = exec o comp

@)
execg 0 compg = exec o unravel o compg

(@)

= exec o comp

foldg alg = fold alg o unravel (1)
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Proof of (2)

unravel (compg €) = comp e
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Proof of (2)

unravel (compg €) = comp e

By induction on e.
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Proof of (2)

unravel (compg €) = comp e

By induction on e.
The interesting part:

unravel (Let ¢ (A’ —
MARK g (compg h Var c’)
> compg x> UNMARK g > Var c'))
= MARK (comp® h unravel c)
> comp® x> UNMARK > unravel ¢
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Summary

Our Approach

e Replace tree type with graph type
e Relate semantics of graph-based compiler via unravelling

e Exploit parametricity to drastically simplify proof
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Summary

Our Approach

e Replace tree type with graph type
e Relate semantics of graph-based compiler via unravelling

e Exploit parametricity to drastically simplify proof

Motivation: Derive Compiler from Specification

e Compilers can be derived by formal calculation
e The result is often unsatisfactory (e.g. code duplication)

e Goal: improve compilers by simple equational reasoning
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Open Questions / Future Work

Beyond folds

e What if the virtual machine is not a fold?
e This seems impossible with HOAS-style graphs
e Ad hoc reasoning for “Names for free"-style graphs possible
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Open Questions / Future Work

Beyond folds

e What if the virtual machine is not a fold?
e This seems impossible with HOAS-style graphs
e Ad hoc reasoning for “Names for free"-style graphs possible

Cyclic graphs

e Our method is restricted to acyclic graphs.

e Cyclic graphs require different reasoning principle.
(fixed-point induction?)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 16




ITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Faculty of Science ([ ]

Proving Correctness of Compilers
Using Structured Graphs

Patrick Bahr

University of Copenhagen,
Department of Computer Science
paba@di.ku.dk

Symposium on Functional and Logic Programming, Kanazawa, Japan; 6th June, 2014
Slide 17




COPENHAGEN

Bonus Slides

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 .
Slide 18




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER ¢

Example

comp (Add (Val 2) (Val 3))
~» PUSH 21> PUSH 31> ADD > HALT
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Example

comp (Add (Val 2) (Val 3))
~» PUSH 21> PUSH 31> ADD > HALT

comp (Catch (Val 2) (Val 3))
~ MARK (PUSH 31> HALT) > PUSH 2> UNMARK > HALT
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Example

comp (Add (Val 2) (Val 3))
~» PUSH 21> PUSH 31> ADD > HALT

comp (Catch (Val 2) (Val 3))
~ MARK (PUSH 31> HALT) > PUSH 2> UNMARK > HALT

comp (Catch Throw (Val 3))
~+ MARK (PUSH 3> HALT) > THROW
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Short Cut Fusion for Graphs
Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) forallb::Vc.(fc—c)—c
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Short Cut Fusion for Graphs
Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) forallb::Vc.(fc—c)—c

e For any g :: Graph f, instantiate b = A\a — foldg a g:

(Aa — foldg a g) alg = fold alg ((A\a — foldg a g) In)
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Short Cut Fusion for Graphs
Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) forallb::Vc.(fc—c)—c

e For any g :: Graph f, instantiate b = A\a — foldg a g:

(Aa — foldg a g) alg = fold alg ((A\a — foldg a g) In)

e After beta reduction:

foldg alg g = fold alg (foldg In g)
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Short Cut Fusion for Graphs
Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) forallb::Vc.(fc—c)—c

e For any g :: Graph f, instantiate b = A\a — foldg a g:

(Aa — foldg a g) alg = fold alg ((A\a — foldg a g) In)

e After beta reduction:

foldg alg g = fold alg (foldg In g)

e By definition of unravel:

foldg alg g = fold alg (unravel g)
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