

Faculty of Science

Proving Correctness of Compilers Using Structured Graphs

Patrick Bahr University of Copenhagen, Department of Computer Science paba@di.ku.dk

Introduction

Trade-off in software verification:

Introduction

Trade-off in software verification:

Example: Hutton & Wright "Compiling Exceptions Correctly"

Two compilers for a simple language with exceptions:

Example: Hutton & Wright "Compiling Exceptions Correctly"

Two compilers for a simple language with exceptions:

Simple but unrealistic compiler (tree shaped code!)
 \$\simple\$ simple proofs

Example: Hutton & Wright "Compiling Exceptions Correctly"

Two compilers for a simple language with exceptions:

- Simple but <u>unrealistic</u> compiler (tree shaped code!)
 \$\simple\$ simple proofs
- More realistic compiler with explicit jumps
 much more complicated proofs

Example: Hutton & Wright "Compiling Exceptions Correctly"

Two compilers for a simple language with exceptions:

- Simple but <u>unrealistic</u> compiler (tree shaped code!)
 \$\simple\$ simple proofs
- More realistic compiler with explicit jumps
 much more complicated proofs

Our Proposal: an intermediate approach

- Transform compiler: use (acyclic) graphs instead of trees
- Lift the correctness property from the tree-based to the graph-based compiler.

Example: A Simple Language with Exceptions

Based on Hutton & Wright "Compiling Exceptions Correctly"

Source Language

Arithmetic expressions + exceptions:

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr

Example: A Simple Language with Exceptions

Based on Hutton & Wright "Compiling Exceptions Correctly"

Source Language

Arithmetic expressions + exceptions:

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr

Target Language

Instruction set for a simple stack machine:

data Code = PUSH Int Code | ADD Code | HALT | MARK Code Code | UNMARK Code | THROW

Targeting A Stack Machine

 $\mathit{comp}^{\mathsf{A}} :: \mathit{Expr} \to \mathit{Code} \to \mathit{Code}$

Targeting A Stack Machine

 $comp^{A} :: Expr \rightarrow Code \rightarrow Code$

 $comp :: Expr \rightarrow Code$ $comp \ e = comp^{A} \ e \ HALT$

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 5

Targeting A Stack Machine

$$\begin{array}{ll} comp^{A} :: Expr \rightarrow Code \rightarrow Code \\ comp^{A} \left(Val \ n \right) & c = PUSH \ n \ c \\ comp^{A} \left(Add \ x \ y \right) & c = comp^{A} \ x \left(comp^{A} \ y \ (ADD \ c) \right) \\ comp^{A} \ Throw & c = THROW \\ comp^{A} \left(Catch \ x \ h \right) \ c = MARK \ (comp^{A} \ h \ c) \left(comp^{A} \ x \ (UNMARK \ c) \right) \end{array}$$

 $comp :: Expr \rightarrow Code$ $comp \ e = comp^{A} \ e \ HALT$

Targeting A Stack Machine

$$\begin{array}{ll} comp^{A} :: Expr \rightarrow Code \rightarrow Code \\ comp^{A} (Val \ n) & c = PUSH \ n \triangleright c \\ comp^{A} (Add \ x \ y) & c = comp^{A} \ x \triangleright comp^{A} \ y \triangleright ADD \triangleright c \\ comp^{A} \ Throw & c = THROW \\ comp^{A} (Catch \ x \ h) \ c = MARK \ (comp^{A} \ h \triangleright c) \triangleright comp^{A} \ x \triangleright UNMARK \triangleright c \end{array}$$

 $comp :: Expr \rightarrow Code$ $comp \ e = comp^{A} \ e \triangleright HALT$

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 5

Semantics

Given by evaluator eval & virtual machine exec

 $\textit{eval} :: \textit{Expr} \rightarrow \textit{Maybe Int}$

 $\textit{exec} :: \textit{Code} \rightarrow \textit{Stack} \rightarrow \textit{Stack}$

Semantics

Given by evaluator eval & virtual machine exec

 $\textit{eval} :: \textit{Expr} \rightarrow \textit{Maybe Int}$

 $\textit{exec} :: \textit{Code} \rightarrow \textit{Stack} \rightarrow \textit{Stack}$

Semantics

Given by evaluator eval & virtual machine exec eval :: $Expr \rightarrow Maybe$ Int exec :: $Code \rightarrow Stack \rightarrow Stack$

Theorem (compiler correctness)

$$exec (comp e) [] = \begin{cases} [Val n] & if eval e = Just n \\ [] & if eval e = Nothing \end{cases}$$

Semantics

Given by evaluator eval & virtual machine exec eval :: $Expr \rightarrow Maybe$ Int exec :: $Code \rightarrow Stack \rightarrow Stack$

Theorem (compiler correctness)

$$exec (comp e) [] = \begin{cases} [Val n] & if eval e = Just n \\ [] & if eval e = Nothing \end{cases}$$

Goal

- Avoid the code duplication produced by the compiler.
- Retain the simple equational reasoning to prove correctness.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 6

1 trees \Rightarrow structured graphs (trees + explicit let bindings)

- 1 trees \Rightarrow structured graphs (trees + explicit let bindings)
- The VM is a fold, i.e.

 $exec = fold \ execAlg$

- 1 trees \Rightarrow structured graphs (trees + explicit let bindings)
- The VM is a fold, i.e. exec = fold execAlg
- On graphs, the VM is defined as a fold with the same algebra: exec_G = fold_G execAlg

- 1 trees \Rightarrow structured graphs (trees + explicit let bindings)
- 2 The VM is a fold, i.e. exec = fold execAlg
- On graphs, the VM is defined as a fold with the same algebra: exec_G = fold_G execAlg
- **4** By parametricity, we obtain:

$$fold_G alg = fold alg \circ unravel$$
 for all alg

- 1 trees \Rightarrow structured graphs (trees + explicit let bindings)
- The VM is a fold, i.e. exec = fold execAlg
- On graphs, the VM is defined as a fold with the same algebra: exec_G = fold_G execAlg
- Ø By parametricity, we obtain:

 $exec_{G} = exec \circ unravel$

- 1 trees \Rightarrow structured graphs (trees + explicit let bindings)
- The VM is a fold, i.e. exec = fold execAlg
- On graphs, the VM is defined as a fold with the same algebra: exec_G = fold_G execAlg
- Ø By parametricity, we obtain:

 $exec_{G} = exec \circ unravel$

By simple equational reasoning we show

 $comp = unravel \circ comp_{\mathsf{G}}$

- 1 trees \Rightarrow structured graphs (trees + explicit let bindings)
- The VM is a fold, i.e. exec = fold execAlg
- On graphs, the VM is defined as a fold with the same algebra: exec_G = fold_G execAlg
- Ø By parametricity, we obtain:

 $exec_{G} = exec \circ unravel$

By simple equational reasoning we show

 $comp = unravel \circ comp_{G}$

6 Hence: $exec \circ comp = exec_G \circ comp_G$

Tree Type: fixed point of a functor

data Tree f = ln (f (Tree f))

Tree Type: fixed point of a functor

data Tree f = ln (f (Tree f))

Code data type

data Code PUSH Int Code | ADD Code | HALT MARK Code Code | UNMARK Code | THROW Code | T

Tree Type: fixed point of a functor

data Tree f = ln (f (Tree f))

Code data type						
data Code a = Pl	USH Int	a	ADD	a	HALT	
M	ARK a	a	UNMARK	a	THROW	

Tree Type: fixed point of a functor

data Tree f = ln (f (Tree f))

Code data typedata $Code_F a = PUSH_F$ Inta $| ADD_F$ a $| HALT_F$ $| MARK_F a$ a $| UNMARK_F a$ $| THROW_F$

Tree Type: fixed point of a functor

data Tree f = ln (f (Tree f))

Code data typedata $Code_F a = PUSH_F$ Inta $| ADD_F$ a $| HALT_F$ $| MARK_F a$ a $| UNMARK_F a$ $| THROW_F$

 \Rightarrow Code \simeq Tree Code_F

Tree Type: fixed point of a functor

data Tree f = ln (f (Tree f))

Code data type

data $Code_F a = PUSH_F$ Int	а	ADD _F a	HALT _F
MARK _F a	а	UNMARK _F a	THROW _F

$$\Rightarrow$$
 Code \simeq Tree Code_F

Smart Constructors

 $PUSH_T :: Int \rightarrow Tree \ Code_F \rightarrow Tree \ Code_F$ $PUSH_T \ n \ c = In \ (PUSH_F \ n \ c)$

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 8

Compiler with Explicit Tree Type

$$\begin{array}{ll} comp^{A} :: Expr \to Code & \to Code \\ comp^{A} (Val \ n) & c = PUSH \quad n \triangleright c \\ comp^{A} (Add \ x \ y) & c = comp^{A} \ x \triangleright comp^{A} \ y \triangleright ADD \quad \triangleright c \\ comp^{A} \ Throw & c = THROW \\ comp^{A} (Catch \ x \ h) \ c = MARK \ (comp^{A} \ h \triangleright c) \\ & \triangleright \ comp^{A} \ x \triangleright \ UNMARK \quad \triangleright c \\ comp \ :: Expr \to Code \end{array}$$

$$comp \ e = comp^{A} \ e \triangleright HALT$$

Compiler with Explicit Tree Type

$$\begin{array}{ll} comp^{A} :: Expr \to Tree \ Code_{F} \to Tree \ Code_{F} \\ comp^{A} \ (Val \ n) & c = PUSH \quad n \triangleright c \\ comp^{A} \ (Add \ x \ y) & c = comp^{A} \ x \triangleright comp^{A} \ y \triangleright ADD \quad \triangleright c \\ comp^{A} \ Throw & c = THROW \\ comp^{A} \ (Catch \ x \ h) \ c = MARK \ (comp^{A} \ h \triangleright c) \\ & & & & & & \\ \rho \ comp^{A} \ x \triangleright UNMARK \quad \triangleright c \\ \end{array}$$

$$comp \ e = comp^{A} \ e \triangleright HALT$$

Compiler with Explicit Tree Type

$$comp \ e = comp^{A} \ e \triangleright HALT_{T}$$

Definition

data Graph'
$$f v = Gln (f (Graph' f v))$$

 $| Let (Graph' f v) (v \rightarrow Graph' f v)$
 $| Var v$

Definition

data Graph'
$$f v = Gln (f (Graph' f v))$$

 $| Let (Graph' f v) (v \rightarrow Graph' f v)$
 $| Var v$

Definition

data Graph' f
$$v = Gln (f (Graph' f v))$$

| Let (Graph' f v) $(v \rightarrow Graph' f v)$
| Var v

$$\begin{array}{lll} comp^{A} :: Expr \to Tree & Code_{F} \to Tree & Code_{F} \\ comp^{A} (Val \ n) & c = PUSH_{T} & n \triangleright c \\ comp^{A} (Add \ x \ y) & c = comp^{A} \ x \triangleright comp^{A} \ y \triangleright ADD_{T} \triangleright c \\ comp^{A} & Throw & c = THROW_{T} \\ comp^{A} (Catch \ x \ h) \ c = MARK_{T} (comp^{A} \ h \triangleright c) \\ & \triangleright \ comp^{A} \ x \triangleright UNMARK_{T} \triangleright c \end{array}$$

Definition

data Graph' f
$$v = Gln (f (Graph' f v))$$

| Let (Graph' f v) $(v \rightarrow Graph' f v)$
| Var v

$$\begin{array}{ll} comp^{A} :: Expr \to Graph' \ Code_{\mathsf{F}} \ v \to Graph' \ Code_{\mathsf{F}} \ v \\ comp^{A} \ (Val \ n) & c = PUSH_{\mathsf{T}} \quad n \triangleright c \\ comp^{A} \ (Add \ x \ y) & c = comp^{A} \ x \triangleright comp^{A} \ y \triangleright ADD_{\mathsf{T}} \triangleright c \\ comp^{A} \ Throw & c = THROW_{\mathsf{T}} \\ comp^{A} \ (Catch \ x \ h) \ c = MARK_{\mathsf{T}} \ (comp^{A} \ h \triangleright c) \\ & \triangleright \ comp^{A} \ x \triangleright \ UNMARK_{\mathsf{T}} \triangleright c \end{array}$$

Definition

data Graph' f
$$v = Gln (f (Graph' f v))$$

| Let (Graph' f v) $(v \rightarrow Graph' f v)$
| Var v

$$\begin{array}{ll} comp_{G}^{A} ::: Expr \rightarrow Graph' \ Code_{F} \ v \rightarrow Graph' \ Code_{F} \ v \\ comp_{G}^{A} \ (Val \ n) & c = PUSH_{G} \quad n \triangleright c \\ comp_{G}^{A} \ (Add \ x \ y) & c = comp_{G}^{A} \ x \triangleright comp_{G}^{A} \ y \triangleright ADD_{G} \triangleright c \\ comp_{G}^{A} \ Throw & c = THROW_{G} \\ comp_{G}^{A} \ (Catch \ x \ h) \ c = MARK_{G} \ (comp_{G}^{A} \ h \triangleright c) \\ & \triangleright \ comp_{G}^{A} \ x \triangleright UNMARK_{G} \triangleright c \end{array}$$

Definition

data Graph' f
$$v = Gln (f (Graph' f v))$$

| Let (Graph' f v) $(v \rightarrow Graph' f v)$
| Var v

$$\begin{array}{l} comp_{G}^{A} :: Expr \rightarrow Graph' \ Code_{F} & \overrightarrow{PUSH_{G}} \ n \ c = Gln \left(PUSH_{F} \ n \ c \right) \\ comp_{G}^{A} \left(Val \ n \right) & c = PUSH_{G} \quad n \triangleright c \\ comp_{G}^{A} \left(Add \ x \ y \right) & c = comp_{G}^{A} \ x \triangleright comp_{G}^{A} \ y \triangleright ADD_{G} \triangleright c \\ comp_{G}^{A} \ Throw & c = THROW_{G} \\ comp_{G}^{A} \left(Catch \ x \ h \right) \ c = MARK_{G} \left(comp_{G}^{A} \ h \triangleright c \right) \\ & \triangleright \ comp_{G}^{A} \ x \triangleright UNMARK_{G} \triangleright c \end{array}$$

Definition

data Graph' f
$$v = Gln (f (Graph' f v))$$

| Let (Graph' f v) $(v \rightarrow Graph' f v)$
| Var v

$$\begin{array}{ll} comp_{G}^{A} ::: Expr \rightarrow Graph' \ Code_{F} \ v \rightarrow Graph' \ Code_{F} \ v \\ comp_{G}^{A} \ (Val \ n) & c = PUSH_{G} \quad n \triangleright c \\ comp_{G}^{A} \ (Add \ x \ y) & c = comp_{G}^{A} \ x \triangleright comp_{G}^{A} \ y \triangleright ADD_{G} \triangleright c \\ comp_{G}^{A} \ Throw & c = THROW_{G} \\ comp_{G}^{A} \ (Catch \ x \ h) \ c = MARK_{G} \ (comp_{G}^{A} \ h \triangleright c) \\ & \triangleright \ comp_{G}^{A} \ x \triangleright UNMARK_{G} \triangleright c \end{array}$$

Definition

data Graph' f
$$v = Gln (f (Graph' f v))$$

| Let (Graph' f v) ($v \rightarrow$ Graph' f v)
| Var v

Definition

data Graph'
$$f v = Gln (f (Graph' f v))$$

| Let (Graph' $f v$) ($v \rightarrow$ Graph' $f v$)
| Var v

newtype Graph $f = MkGraph (\forall v . Graph' f v)$

$$\begin{array}{ll} comp_{G}^{A} ::: Expr \rightarrow Graph' \ Code_{F} \ v \rightarrow Graph' \ Code_{F} \ v \\ comp_{G}^{A} \ (Val \ n) & c = PUSH_{G} \quad n \triangleright c \\ comp_{G}^{A} \ (Add \ x \ y) & c = comp_{G}^{A} \ x \triangleright comp_{G}^{A} \ y \triangleright ADD_{G} \triangleright c \\ comp_{G}^{A} \ Throw & c = THROW_{G} \\ comp_{G}^{A} \ (Catch \ x \ h) \ c = Let \ c \ (\lambda c' \rightarrow MARK_{G} \ (comp_{G}^{A} \ h \triangleright Var \ c') \\ & \triangleright \ comp_{G}^{A} \ x \triangleright UNMARK_{G} \triangleright Var \ c') \\ comp_{G} :: Expr \rightarrow Graph \ Code \\ comp_{G} \ e = MkGraph \ (comp_{G}^{A} \ e \triangleright HALT_{G}) \end{array}$$

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 10

 $\begin{array}{l} comp_{G} \left(\textit{Add} \left(\textit{Catch} \left(\textit{Val 1} \right) \left(\textit{Val 2} \right) \right) \left(\textit{Val 3} \right) \right) \\ \rightsquigarrow \textit{MkGraph} \left(\textit{Let} \left(\textit{PUSH}_{G} \ 3 \triangleright \textit{ADD}_{G} \triangleright \textit{HALT}_{G} \right) \left(\lambda \textit{v} \rightarrow \textit{MARK}_{G} \left(\textit{PUSH}_{G} \ 2 \triangleright \textit{Var v} \right) \right) \\ \triangleright \textit{PUSH}_{G} \ 1 \triangleright \textit{UNMARK}_{G} \triangleright \textit{Var v} \right) \end{array}$

Fold over Trees

fold :: Functor
$$f \Rightarrow (f \ r \rightarrow r) \rightarrow$$
 Tree $f \rightarrow r$
fold alg (In t) = alg (fmap (fold alg) t)

Fold over Trees

fold :: Functor
$$f \Rightarrow (f \ r \rightarrow r) \rightarrow$$
 Tree $f \rightarrow r$
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

exec	:: Tree	$\mathit{Code} ightarrow \mathit{Stack} ightarrow \mathit{Stack}$
exec	= fold	execAlg

Fold over Trees

fold :: Functor
$$f \Rightarrow (f \ r \rightarrow r) \rightarrow$$
 Tree $f \rightarrow r$
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

$$exec :: Tree Code \rightarrow Stack \rightarrow Stack$$

 $exec = fold execAlg$

Folds on Graphs

$$\begin{array}{l} \text{fold}_{G} :: \text{Functor } f \Rightarrow (f \ r \rightarrow r) \rightarrow \text{Graph } f \rightarrow r \\ \text{fold}_{G} \ alg \ (\text{Graph } g) = \text{fold}'_{G} \ g \ \textbf{where} \\ \text{fold}'_{G} \ (\text{Gln } t) = alg \ (\text{fmap fold}'_{G} \ t) \\ \text{fold}'_{G} \ (\text{Let } e \ f) = \text{fold}'_{G} \ (f \ (\text{fold}'_{G} \ e)) \\ \text{fold}'_{G} \ (\text{Var } x) = x \end{array}$$

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 12

Fold over Trees

fold :: Functor
$$f \Rightarrow (f \ r \rightarrow r) \rightarrow$$
 Tree $f \rightarrow r$
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

$$exec_{G} :: Graph \ Code \rightarrow Stack \rightarrow Stack$$

 $exec_{G} = fold_{G} \ execAlg$

Folds on Graphs

$$\begin{array}{l} \text{fold}_{G} :: \text{Functor } f \Rightarrow (f \ r \rightarrow r) \rightarrow \text{Graph } f \rightarrow r \\ \text{fold}_{G} \ alg \ (\text{Graph } g) = \text{fold}'_{G} \ g \ \textbf{where} \\ \text{fold}'_{G} \ (\text{Gln } t) = alg \ (\text{fmap fold}'_{G} \ t) \\ \text{fold}'_{G} \ (\text{Let } e \ f) = \text{fold}'_{G} \ (f \ (\text{fold}'_{G} \ e)) \\ \text{fold}'_{G} \ (\text{Var } x) = x \end{array}$$

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 12

Correctness Argument for *comp*_G

Since, we know that *comp* is correct, it suffices to show that

 $\mathsf{exec}_{\mathsf{G}} \circ \mathsf{comp}_{\mathsf{G}} = \mathsf{exec} \circ \mathsf{comp}$

Correctness Argument for *comp*_G

Since, we know that *comp* is correct, it suffices to show that

 $\mathsf{exec}_{\mathsf{G}} \circ \mathsf{comp}_{\mathsf{G}} = \mathsf{exec} \circ \mathsf{comp}$

$$\mathsf{exec}_{\mathsf{G}} \circ \mathsf{comp}_{\mathsf{G}} \stackrel{(1)}{=} \mathsf{exec} \circ \mathsf{unravel} \circ \mathsf{comp}_{\mathsf{G}}$$

Correctness Argument for *comp*_G

Since, we know that *comp* is correct, it suffices to show that

 $\mathsf{exec}_{\mathsf{G}} \circ \mathsf{comp}_{\mathsf{G}} = \mathsf{exec} \circ \mathsf{comp}$

$$fold_{G} alg = fold alg \circ unravel$$

(1)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 13

(1)

Correctness Argument for *comp*_G

Since, we know that *comp* is correct, it suffices to show that

 $\mathsf{exec}_{\mathsf{G}} \circ \mathsf{comp}_{\mathsf{G}} = \mathsf{exec} \circ \mathsf{comp}$

Theorem

$$\mathit{fold}_{\mathsf{G}} \mathit{alg} = \mathit{fold} \mathit{alg} \circ \mathit{unravel}$$

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 13

Proof of (2)

Lemma

unravel
$$(comp_G e) = comp e$$

Proof of (2)

Lemma

$$unravel (comp_G e) = comp e$$

Proof.

By induction on e.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 14

Proof of (2)

Lemma

$$unravel (comp_G e) = comp e$$

Proof.

By induction on *e*. The interesting part:

$$unravel (Let c (\lambda c' \rightarrow MARK_{G} (comp_{G}^{A} h \triangleright Var c')) \\ \triangleright comp_{G}^{A} \times \triangleright UNMARK_{G} \triangleright Var c')) \\ = MARK_{T} (comp^{A} h \triangleright unravel c) \\ \triangleright comp^{A} \times \triangleright UNMARK_{T} \triangleright unravel c \\ \end{cases}$$

Summary

Our Approach

- Replace tree type with graph type
- Relate semantics of graph-based compiler via unravelling
- Exploit parametricity to drastically simplify proof

Summary

Our Approach

- Replace tree type with graph type
- Relate semantics of graph-based compiler via unravelling
- Exploit parametricity to drastically simplify proof

Motivation: Derive Compiler from Specification

- Compilers can be derived by formal calculation
- The result is often unsatisfactory (e.g. code duplication)
- Goal: improve compilers by simple equational reasoning

Open Questions / Future Work

Beyond folds

- What if the virtual machine is not a fold?
- This seems impossible with HOAS-style graphs
- Ad hoc reasoning for "Names for free"-style graphs possible

Open Questions / Future Work

Beyond folds

- What if the virtual machine is not a fold?
- This seems impossible with HOAS-style graphs
- Ad hoc reasoning for "Names for free"-style graphs possible

Cyclic graphs

- Our method is restricted to acyclic graphs.
- Cyclic graphs require different reasoning principle. (fixed-point induction?)

Faculty of Science

Proving Correctness of Compilers Using Structured Graphs

Patrick Bahr University of Copenhagen, Department of Computer Science paba@di.ku.dk

Symposium on Functional and Logic Programming, Kanazawa, Japan; 6th June, 2014 Slide 17 $\,$

Bonus Slides

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 18

comp (Add (Val 2) (Val 3)) $\rightsquigarrow PUSH 2 \triangleright PUSH 3 \triangleright ADD \triangleright HALT$

comp (Add (Val 2) (Val 3)) $\rightsquigarrow PUSH 2 \triangleright PUSH 3 \triangleright ADD \triangleright HALT$

comp (Catch (Val 2) (Val 3)) \rightsquigarrow MARK (PUSH 3 \triangleright HALT) \triangleright PUSH 2 \triangleright UNMARK \triangleright HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 19

comp (Add (Val 2) (Val 3)) $\rightsquigarrow PUSH 2 \triangleright PUSH 3 \triangleright ADD \triangleright HALT$

comp (Catch (Val 2) (Val 3)) \rightsquigarrow MARK (PUSH 3 \triangleright HALT) \triangleright PUSH 2 \triangleright UNMARK \triangleright HALT

comp (Catch Throw (Val 3)) → MARK (PUSH 3 ▷ HALT) ▷ THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 19

Theorem (Short Cut Fusion Law)

b alg = fold alg (b ln) for all $b :: \forall c . (f c \rightarrow c) \rightarrow c$

Theorem (Short Cut Fusion Law)

b alg = fold alg (b ln) for all $b :: \forall c . (f c \rightarrow c) \rightarrow c$

• For any g :: Graph f, instantiate $b = \lambda a \rightarrow fold_G a g$:

 $(\lambda a \rightarrow \textit{fold}_{\mathsf{G}} a g) alg = \textit{fold} alg ((\lambda a \rightarrow \textit{fold}_{\mathsf{G}} a g) ln)$

Theorem (Short Cut Fusion Law)

b alg = fold alg (b ln) for all $b :: \forall c . (f c \rightarrow c) \rightarrow c$

• For any g :: Graph f, instantiate $b = \lambda a \rightarrow fold_{\mathsf{G}} a g$:

 $(\lambda a \rightarrow \textit{fold}_{\mathsf{G}} \textit{ a g}) \textit{ alg} = \textit{fold} \textit{ alg} ((\lambda a \rightarrow \textit{fold}_{\mathsf{G}} \textit{ a g}) \textit{ In})$

• After beta reduction:

$$fold_{G} alg g = fold alg (fold_{G} ln g)$$

Theorem (Short Cut Fusion Law)

b alg = fold alg (b ln) for all $b :: \forall c . (f c \rightarrow c) \rightarrow c$

- For any g :: Graph f, instantiate b = λa → fold_G a g:
 (λa → fold_G a g) alg = fold alg ((λa → fold_G a g) ln)
- After beta reduction:

$$fold_{G} alg g = fold alg (fold_{G} ln g)$$

• By definition of *unravel*:

$$fold_G alg g = fold alg (unravel g)$$

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS '14, 6th June, 2014 Slide 20

