ITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Faculty of Science ([]

Proving Correctness of Compilers
Using Structured Graphs

Patrick Bahr

University of Copenhagen,
Department of Computer Science
paba@di.ku.dk

Symposium on Functional and Logic Programming, Kanazawa, Japan; 6th June, 2014
Slide 1

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Trade-off in software verification:

cleverness of VS. ease of
implementation reasoning

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Introduction

Trade-off in software verification:

cleverness of vs. ease of
implementation reasoning
Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘

Slide 2

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 3

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:

e Simple but unrealistic compiler (tree shaped code!)
~~ simple proofs

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 3

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:
e Simple but unrealistic compiler (tree shaped code!)
~~ simple proofs
e More realistic compiler with explicit jumps
~~» much more complicated proofs

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 3

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:
e Simple but unrealistic compiler (tree shaped code!)
~~ simple proofs
e More realistic compiler with explicit jumps
~~» much more complicated proofs

Our Proposal: an intermediate approach

e Transform compiler: use (acyclic) graphs instead of trees
e Lift the correctness property from the tree-based to the
graph-based compiler.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 3

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Example: A Simple Language with Exceptions

Based on Hutton & Wright “Compiling Exceptions Correctly”

Source Language

Arithmetic expressions + exceptions:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example: A Simple Language with Exceptions
Based on Hutton & Wright “Compiling Exceptions Correctly”

Source Language

Arithmetic expressions + exceptions:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

Target Language
Instruction set for a simple stack machine:

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 4

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

A Simple Compiler

Targeting A Stack Machine

comp” :: Expr — Code — Code

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 .
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER ¢

A Simple Compiler

Targeting A Stack Machine

comp” :: Expr — Code — Code

comp :: Expr — Code

comp e = comp™ e HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

A Simple Compiler

Targeting A Stack Machine

comp” :: Expr — Code — Code

comp® (Val n) c=PUSHnnc

comp” (Add x y) ¢ = comp” x (comp” y (ADD c))

comp”™ Throw ¢ = THROW

comp” (Catch x h) ¢ = MARK (comp™ h c) (comp” x (UNMARK c))

comp :: Expr — Code
comp e = comp” e HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

A Simple Compiler

Targeting A Stack Machine

comp” :: Expr — Code — Code

comp® (Val n) ¢ = PUSH n>c

comp” (Add x y) ¢ = comp” x> comp” y> ADD 1> ¢

comp” Throw ¢ = THROW

comp® (Catch x h) ¢ = MARK (comp” h> c) > comp” x> UNMARK 1> ¢

comp :: Expr — Code
comp e = comp™ e> HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 5

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec
eval :: Expr — Maybe Int

exec :: Code — Stack — Stack

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Semantics & Correctness
data Maybe a = Just a

. | Nothing
Given by evaluator eval —rrrorcTTTe—CrroT
eval :: Expr — Maybe Int
exec :: Code — Stack — Stack
Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘

Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec
eval :: Expr — Maybe Int

exec :: Code — Stack — Stack

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec
eval :: Expr — Maybe Int

exec :: Code — Stack — Stack

Theorem (compiler correctness)

[Val n] if eval e = Just n
exec (comp e) [] =))
[] if eval e = Nothing

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec
eval :: Expr — Maybe Int

exec :: Code — Stack — Stack

Theorem (compiler correctness)

[Val n] if eval e = Just n
exec (comp e) [] =))
[] if eval e = Nothing

Goal

e Avoid the code duplication produced by the compiler.

e Retain the simple equational reasoning to prove correctness.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 .
Slide 6

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 .
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

® On graphs, the VM is defined as a fold with the same algebra:
execg = foldg execAlg

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

® On graphs, the VM is defined as a fold with the same algebra:
execg = foldg execAlg

O By parametricity, we obtain:

foldg alg = fold alg o unravel for all alg

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

® On graphs, the VM is defined as a fold with the same algebra:
execg = foldg execAlg

O By parametricity, we obtain:

execg = exec o unravel

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

® On graphs, the VM is defined as a fold with the same algebra:
execg = foldg execAlg

O By parametricity, we obtain:
execg = exec o unravel
® By simple equational reasoning we show

comp = unravel o compg

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

How Do We Achieve This?

@ trees = structured graphs (trees + explicit let bindings)

® The VM is a fold, i.e.
exec = fold execAlg

® On graphs, the VM is defined as a fold with the same algebra:
execg = foldg execAlg

O By parametricity, we obtain:
execg = exec o unravel

® By simple equational reasoning we show

comp = unravel o compg

® Hence: exec o comp = execg o compg

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 7

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Explicit Representation of Tree Types

Tree Type: fixed point of a functor
data Tree f = In (f (Tree f))

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Code a = PUSH Int a | ADD a | HALT
| MARK a a | UNMARK a | THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Coder a = PUSHE Int a | ADDg a | HALT ¢
| MARKEa a | UNMARKra | THROWE

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Coder a = PUSHE Int a | ADDg a | HALT ¢
| MARKEa a | UNMARKra | THROWE

= Code ~ Tree Codef

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Coder a = PUSHE Int a | ADDg a | HALT ¢
| MARKEa a | UNMARKra | THROWE

= Code ~ Tree Codef

Smart Constructors

PUSH :: Int — Tree Coder — Tree Codef
PUSH+t n c = In (PUSHE n c)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 8

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compiler with Explicit Tree Type

comp” :: Expr — Code — Code
comp”® (Val n) c=PUSH nvc
comp? (Add x y) ¢ = comp” x> comp” y>ADD ¢
comp® Throw ¢ = THROW
comp” (Catch x h) c = MARK (comp” h c)
> comp™ x> UNMARK ¢

comp :: Expr — Code
comp e = comp™ e HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compiler with Explicit Tree Type

compA .. Expr — Tree Codep — Tree Codef
comp”® (Val n) c=PUSH nrc
comp? (Add x y) ¢ = comp” x> comp” y>ADD ¢
comp® Throw ¢ = THROW
comp” (Catch x h) c = MARK (comp” h c)
> comp™ x> UNMARK ¢

comp :: Expr — Tree Code
comp e = comp™ e HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘

Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Compiler with Explicit Tree Type

compA .. Expr — Tree Codep — Tree Codef
comp”® (Val n) ¢ = PUSHT nrc
comp? (Add x y) ¢ = comp” x> comp” y> ADDt > c
comp® Throw c = THROW+
comp” (Catch x h) ¢ = MARKT (comp” h¢)
> comp™ x> UNMARK T > ¢

comp :: Expr — Tree Code
comp e = comp™ e HALT 1

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 9

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)
data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv
newtype Graph f = MkGraph (¥ v . Graph' f v)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

comp® :: Expr — Tree Coder — Tree Codep
comp”® (Val n) c=PUSHT n>c
comp” (Add x y) ¢ = comp” x> comp® y > ADDt > c
comp® Throw ¢ = THROW+
comp” (Catch x h) c = MARKT (comp™ h ¢)

> comp” x> UNMARK T > ¢

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

comp® :: Expr — Graph' Coder v — Graph' Codef v
comp”® (Val n) c=PUSHT n>c
comp” (Add x y) ¢ = comp” x> comp® y > ADDt > c
comp® Throw ¢ = THROW+
comp” (Catch x h) c = MARKT (comp™ h ¢)

> comp” x> UNMARK T > ¢

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Codeg v — Graph' Codef v
compg (Val n) c=PUSHg n>c
compé (Add x y) c= compé X D> compé y>ADD¢g > ¢
compé Throw ¢ = THROWq
compg (Catch x h) c = MARK ¢ (compg h® c)

> compé x> UNMARKg > ¢

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 10

UNIVERSITY OF COPENHAGEN

DEPARTMENT

OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)

| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Coder

compg (Val n) ¢ = PUSHg

PUSHg n ¢ = GIn (PUSHE n c)

! cowcEv
;l> c

compé (Add x y) c= compé X D> compé y>ADD¢g > ¢
compé Throw ¢ = THROWq
compg (Catch x h) c = MARK ¢ (compg h® c)

> compé x> UNMARKg > ¢

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Codeg v — Graph' Codef v
compg (Val n) c=PUSHg n>c
compé (Add x y) c= compé X D> compé y>ADD¢g > ¢
compé Throw ¢ = THROWq
compg (Catch x h) c = MARK ¢ (compg h® c)

> compé x> UNMARKg > ¢

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Codeg v — Graph' Codef v

compg (Val n) c=PUSHg n>c

compé (Add x y) c= compé X D> compé y>ADD¢g > ¢

compé Throw ¢ = THROW g

compg (Catch x h) ¢ = Let ¢ (\¢' - MARK¢ (compg h> Var ¢’)
> compg x> UNMARK g > Var c’)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Structured Graphs (Oliveira & Cook, 2012)

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)
| Varv

newtype Graph f = MkGraph (¥ v . Graph' f v)

compf :: Expr — Graph' Codeg v — Graph' Codef v

compg (Val n) c=PUSHg n>c

compé (Add x y) c= compé X D> compé y>ADD¢g > ¢

compé Throw ¢ = THROW g

compg (Catch x h) ¢ = Let ¢ (\¢' - MARK¢ (compg h> Var ¢’)

> compg x> UNMARK g > Var c’)
compg :: Expr — Graph Code

compg e = MkGraph (comp e > HALT)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 10

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example

comp (Add (Catch (Val 1) (Val 2)) (Val 3))

~+ MARKT (PUSHT 2> PUSHT 31> ADDt > HALT 1)
> PUSHT 1> UNMARK+ > PUSHT 31> ADD1 > HALT 1

compg (Add (Catch (Val 1) (Val 2)) (Val 3))

~+ MkGraph (Let (PUSHg 3> ADDg > HALT) (Av —
MARK¢ (PUSHg 2> Var v)
> PUSH¢ 1> UNMARK G & Var v))

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 11

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f = (f r — r) — Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f = (f r — r) — Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

exec :: Tree Code — Stack — Stack
exec = fold execAlg

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f = (f r — r) — Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

exec :: Tree Code — Stack — Stack
exec = fold execAlg

Folds on Graphs

foldg :: Functor f = (f r — r) — Graph f — r
foldg alg (Graph g) = fold; g where

foldg (GIn't) = alg (fmap foldg, t)

foldg, (Let e) = foldg, (f (foldg €))

foldg, (Var x) = x

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f = (f r — r) — Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

execg :: Graph Code — Stack — Stack
execg = foldg execAlg

Folds on Graphs

foldg :: Functor f = (f r — r) — Graph f — r
foldg alg (Graph g) = fold; g where

foldg (GIn't) = alg (fmap foldg, t)

foldg, (Let e) = foldg, (f (foldg €))

foldg, (Var x) = x

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 12

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Correctness Argument for compg

Since, we know that comp is correct, it suffices to show that

execg © compg = exec o comp

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Correctness Argument for compg

Since, we know that comp is correct, it suffices to show that

execg © compg = exec o comp

@)
execg 0 compg = exec o unravel o compg

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Correctness Argument for compg

Since, we know that comp is correct, it suffices to show that

execg © compg = exec o comp

@)
execg 0 compg = exec o unravel o compg

foldg alg = fold alg o unravel (1)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 13

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Correctness Argument for compg

Since, we know that comp is correct, it suffices to show that

execg © compg = exec o comp

@)
execg 0 compg = exec o unravel o compg

(@)

= exec o comp

foldg alg = fold alg o unravel (1)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 13

F COMPU

Proof of (2)

unravel (compg €) = comp e

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Proof of (2)

unravel (compg €) = comp e

By induction on e.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Proof of (2)

unravel (compg €) = comp e

By induction on e.
The interesting part:

unravel (Let ¢ (A’ —
MARK g (compg h Var c’)
> compg x> UNMARK g > Var c'))
= MARK (comp® h unravel c)
> comp® x> UNMARK > unravel ¢

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 14

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Summary

Our Approach

e Replace tree type with graph type
e Relate semantics of graph-based compiler via unravelling

e Exploit parametricity to drastically simplify proof

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Summary

Our Approach

e Replace tree type with graph type
e Relate semantics of graph-based compiler via unravelling

e Exploit parametricity to drastically simplify proof

Motivation: Derive Compiler from Specification

e Compilers can be derived by formal calculation
e The result is often unsatisfactory (e.g. code duplication)

e Goal: improve compilers by simple equational reasoning

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 15

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Open Questions / Future Work

Beyond folds

e What if the virtual machine is not a fold?
e This seems impossible with HOAS-style graphs
e Ad hoc reasoning for “Names for free"-style graphs possible

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 16

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Open Questions / Future Work

Beyond folds

e What if the virtual machine is not a fold?
e This seems impossible with HOAS-style graphs
e Ad hoc reasoning for “Names for free"-style graphs possible

Cyclic graphs

e Our method is restricted to acyclic graphs.

e Cyclic graphs require different reasoning principle.
(fixed-point induction?)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 16

ITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Faculty of Science ([]

Proving Correctness of Compilers
Using Structured Graphs

Patrick Bahr

University of Copenhagen,
Department of Computer Science
paba@di.ku.dk

Symposium on Functional and Logic Programming, Kanazawa, Japan; 6th June, 2014
Slide 17

COPENHAGEN

Bonus Slides

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 .
Slide 18

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER ¢

Example

comp (Add (Val 2) (Val 3))
~» PUSH 21> PUSH 31> ADD > HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example

comp (Add (Val 2) (Val 3))
~» PUSH 21> PUSH 31> ADD > HALT

comp (Catch (Val 2) (Val 3))
~ MARK (PUSH 31> HALT) > PUSH 2> UNMARK > HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example

comp (Add (Val 2) (Val 3))
~» PUSH 21> PUSH 31> ADD > HALT

comp (Catch (Val 2) (Val 3))
~ MARK (PUSH 31> HALT) > PUSH 2> UNMARK > HALT

comp (Catch Throw (Val 3))
~+ MARK (PUSH 3> HALT) > THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 19

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Short Cut Fusion for Graphs
Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) forallb::Vc.(fc—c)—c

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 20

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Short Cut Fusion for Graphs
Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) forallb::Vc.(fc—c)—c

e For any g :: Graph f, instantiate b = A\a — foldg a g:

(Aa — foldg a g) alg = fold alg ((A\a — foldg a g) In)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 20

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Short Cut Fusion for Graphs
Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) forallb::Vc.(fc—c)—c

e For any g :: Graph f, instantiate b = A\a — foldg a g:

(Aa — foldg a g) alg = fold alg ((A\a — foldg a g) In)

e After beta reduction:

foldg alg g = fold alg (foldg In g)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014 ‘
Slide 20

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Short Cut Fusion for Graphs
Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) forallb::Vc.(fc—c)—c

e For any g :: Graph f, instantiate b = A\a — foldg a g:

(Aa — foldg a g) alg = fold alg ((A\a — foldg a g) In)

e After beta reduction:

foldg alg g = fold alg (foldg In g)

e By definition of unravel:

foldg alg g = fold alg (unravel g)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS 14, 6th June, 2014
Slide 20

