
un i v er s i ty of copenhagen department of computer sc i ence

Faculty of Science

Proving Correctness of Compilers
Using Structured Graphs

Patrick Bahr
University of Copenhagen,
Department of Computer Science
paba@di.ku.dk

Symposium on Functional and Logic Programming, Kanazawa, Japan; 6th June, 2014

Slide 1

un i v er s i ty of copenhagen department of computer sc i ence

Introduction

Trade-off in software verification:

cleverness of
implementation

ease of
reasoning

vs.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 2

un i v er s i ty of copenhagen department of computer sc i ence

Introduction

Trade-off in software verification:

cleverness of
implementation

ease of
reasoning

vs.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 2

un i v er s i ty of copenhagen department of computer sc i ence

Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:

• Simple but unrealistic compiler (tree shaped code!)
 simple proofs

• More realistic compiler with explicit jumps
 much more complicated proofs

Our Proposal: an intermediate approach

• Transform compiler: use (acyclic) graphs instead of trees

• Lift the correctness property from the tree-based to the
graph-based compiler.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 3

un i v er s i ty of copenhagen department of computer sc i ence

Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:

• Simple but unrealistic compiler (tree shaped code!)
 simple proofs

• More realistic compiler with explicit jumps
 much more complicated proofs

Our Proposal: an intermediate approach

• Transform compiler: use (acyclic) graphs instead of trees

• Lift the correctness property from the tree-based to the
graph-based compiler.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 3

un i v er s i ty of copenhagen department of computer sc i ence

Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:

• Simple but unrealistic compiler (tree shaped code!)
 simple proofs

• More realistic compiler with explicit jumps
 much more complicated proofs

Our Proposal: an intermediate approach

• Transform compiler: use (acyclic) graphs instead of trees

• Lift the correctness property from the tree-based to the
graph-based compiler.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 3

un i v er s i ty of copenhagen department of computer sc i ence

Trade-off in Compiler Verification

Example: Hutton & Wright “Compiling Exceptions Correctly”

Two compilers for a simple language with exceptions:

• Simple but unrealistic compiler (tree shaped code!)
 simple proofs

• More realistic compiler with explicit jumps
 much more complicated proofs

Our Proposal: an intermediate approach

• Transform compiler: use (acyclic) graphs instead of trees

• Lift the correctness property from the tree-based to the
graph-based compiler.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 3

un i v er s i ty of copenhagen department of computer sc i ence

Example: A Simple Language with Exceptions
Based on Hutton & Wright “Compiling Exceptions Correctly”

Source Language

Arithmetic expressions + exceptions:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

Target Language

Instruction set for a simple stack machine:

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 4

un i v er s i ty of copenhagen department of computer sc i ence

Example: A Simple Language with Exceptions
Based on Hutton & Wright “Compiling Exceptions Correctly”

Source Language

Arithmetic expressions + exceptions:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

Target Language

Instruction set for a simple stack machine:

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 4

un i v er s i ty of copenhagen department of computer sc i ence

A Simple Compiler
Targeting A Stack Machine

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h c) (compA x (UNMARK c))

comp :: Expr → Code

comp e = compA e HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 5

un i v er s i ty of copenhagen department of computer sc i ence

A Simple Compiler
Targeting A Stack Machine

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h c) (compA x (UNMARK c))

comp :: Expr → Code

comp e = compA e HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 5

un i v er s i ty of copenhagen department of computer sc i ence

A Simple Compiler
Targeting A Stack Machine

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h c) (compA x (UNMARK c))

comp :: Expr → Code

comp e = compA e HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 5

un i v er s i ty of copenhagen department of computer sc i ence

A Simple Compiler
Targeting A Stack Machine

compA :: Expr → Code → Code

compA (Val n) c = PUSH n . c

compA (Add x y) c = compA x . compA y . ADD . c

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h . c) . compA x . UNMARK . c

comp :: Expr → Code

comp e = compA e . HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 5

un i v er s i ty of copenhagen department of computer sc i ence

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec

eval :: Expr → Maybe Int

exec :: Code → Stack → Stack

Theorem (compiler correctness)

exec (comp e) [] =

{
[Val n] if eval e = Just n

[] if eval e = Nothing

Goal
• Avoid the code duplication produced by the compiler.

• Retain the simple equational reasoning to prove correctness.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 6

un i v er s i ty of copenhagen department of computer sc i ence

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec

eval :: Expr → Maybe Int

exec :: Code → Stack → Stack

data Maybe a = Just a
| Nothing

Theorem (compiler correctness)

exec (comp e) [] =

{
[Val n] if eval e = Just n

[] if eval e = Nothing

Goal
• Avoid the code duplication produced by the compiler.

• Retain the simple equational reasoning to prove correctness.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 6

un i v er s i ty of copenhagen department of computer sc i ence

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec

eval :: Expr → Maybe Int

exec :: Code → Stack → Stack

Theorem (compiler correctness)

exec (comp e) [] =

{
[Val n] if eval e = Just n

[] if eval e = Nothing

Goal
• Avoid the code duplication produced by the compiler.

• Retain the simple equational reasoning to prove correctness.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 6

un i v er s i ty of copenhagen department of computer sc i ence

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec

eval :: Expr → Maybe Int

exec :: Code → Stack → Stack

Theorem (compiler correctness)

exec (comp e) [] =

{
[Val n] if eval e = Just n

[] if eval e = Nothing

Goal
• Avoid the code duplication produced by the compiler.

• Retain the simple equational reasoning to prove correctness.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 6

un i v er s i ty of copenhagen department of computer sc i ence

Semantics & Correctness

Semantics

Given by evaluator eval & virtual machine exec

eval :: Expr → Maybe Int

exec :: Code → Stack → Stack

Theorem (compiler correctness)

exec (comp e) [] =

{
[Val n] if eval e = Just n

[] if eval e = Nothing

Goal
• Avoid the code duplication produced by the compiler.

• Retain the simple equational reasoning to prove correctness.

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 6

un i v er s i ty of copenhagen department of computer sc i ence

How Do We Achieve This?

1 trees ⇒ structured graphs (trees + explicit let bindings)

2 The VM is a fold, i.e.
exec = fold execAlg

3 On graphs, the VM is defined as a fold with the same algebra:
execG = foldG execAlg

4 By parametricity, we obtain:

foldG alg = fold alg ◦ unravel for all alg

5 By simple equational reasoning we show

comp = unravel ◦ compG

6 Hence: exec ◦ comp = execG ◦ compG

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

How Do We Achieve This?

1 trees ⇒ structured graphs (trees + explicit let bindings)

2 The VM is a fold, i.e.
exec = fold execAlg

3 On graphs, the VM is defined as a fold with the same algebra:
execG = foldG execAlg

4 By parametricity, we obtain:

foldG alg = fold alg ◦ unravel for all alg

5 By simple equational reasoning we show

comp = unravel ◦ compG

6 Hence: exec ◦ comp = execG ◦ compG

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

How Do We Achieve This?

1 trees ⇒ structured graphs (trees + explicit let bindings)

2 The VM is a fold, i.e.
exec = fold execAlg

3 On graphs, the VM is defined as a fold with the same algebra:
execG = foldG execAlg

4 By parametricity, we obtain:

foldG alg = fold alg ◦ unravel for all alg

5 By simple equational reasoning we show

comp = unravel ◦ compG

6 Hence: exec ◦ comp = execG ◦ compG

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

How Do We Achieve This?

1 trees ⇒ structured graphs (trees + explicit let bindings)

2 The VM is a fold, i.e.
exec = fold execAlg

3 On graphs, the VM is defined as a fold with the same algebra:
execG = foldG execAlg

4 By parametricity, we obtain:

foldG alg = fold alg ◦ unravel for all alg

5 By simple equational reasoning we show

comp = unravel ◦ compG

6 Hence: exec ◦ comp = execG ◦ compG

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

How Do We Achieve This?

1 trees ⇒ structured graphs (trees + explicit let bindings)

2 The VM is a fold, i.e.
exec = fold execAlg

3 On graphs, the VM is defined as a fold with the same algebra:
execG = foldG execAlg

4 By parametricity, we obtain:

execG = exec ◦ unravel

5 By simple equational reasoning we show

comp = unravel ◦ compG

6 Hence: exec ◦ comp = execG ◦ compG

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

How Do We Achieve This?

1 trees ⇒ structured graphs (trees + explicit let bindings)

2 The VM is a fold, i.e.
exec = fold execAlg

3 On graphs, the VM is defined as a fold with the same algebra:
execG = foldG execAlg

4 By parametricity, we obtain:

execG = exec ◦ unravel

5 By simple equational reasoning we show

comp = unravel ◦ compG

6 Hence: exec ◦ comp = execG ◦ compG

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

How Do We Achieve This?

1 trees ⇒ structured graphs (trees + explicit let bindings)

2 The VM is a fold, i.e.
exec = fold execAlg

3 On graphs, the VM is defined as a fold with the same algebra:
execG = foldG execAlg

4 By parametricity, we obtain:

execG = exec ◦ unravel

5 By simple equational reasoning we show

comp = unravel ◦ compG

6 Hence: exec ◦ comp = execG ◦ compG

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

⇒ Code ' Tree CodeF

Smart Constructors

PUSHT :: Int → Tree CodeF → Tree CodeF
PUSHT n c = In (PUSHF n c)

...

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

⇒ Code ' Tree CodeF

Smart Constructors

PUSHT :: Int → Tree CodeF → Tree CodeF
PUSHT n c = In (PUSHF n c)

...

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data Code a = PUSH Int a | ADD a | HALT
| MARK a a | UNMARK a | THROW

⇒ Code ' Tree CodeF

Smart Constructors

PUSHT :: Int → Tree CodeF → Tree CodeF
PUSHT n c = In (PUSHF n c)

...

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data CodeF a = PUSHF Int a | ADDF a | HALT F

| MARKF a a | UNMARKF a | THROW F

⇒ Code ' Tree CodeF

Smart Constructors

PUSHT :: Int → Tree CodeF → Tree CodeF
PUSHT n c = In (PUSHF n c)

...

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data CodeF a = PUSHF Int a | ADDF a | HALT F

| MARKF a a | UNMARKF a | THROW F

⇒ Code ' Tree CodeF

Smart Constructors

PUSHT :: Int → Tree CodeF → Tree CodeF
PUSHT n c = In (PUSHF n c)

...

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

Code data type

data CodeF a = PUSHF Int a | ADDF a | HALT F

| MARKF a a | UNMARKF a | THROW F

⇒ Code ' Tree CodeF

Smart Constructors

PUSHT :: Int → Tree CodeF → Tree CodeF
PUSHT n c = In (PUSHF n c)

...

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Compiler with Explicit Tree Type

compA :: Expr → Code → Code

compA (Val n) c = PUSH n . c

compA (Add x y) c = compA x . compA y . ADD . c

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h . c)

. compA x . UNMARK . c

comp :: Expr → Code

comp e = compA e . HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Compiler with Explicit Tree Type

compA :: Expr → Tree CodeF → Tree CodeF
compA (Val n) c = PUSH n . c

compA (Add x y) c = compA x . compA y . ADD . c

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h . c)

. compA x . UNMARK . c

comp :: Expr → Tree Code

comp e = compA e . HALT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Compiler with Explicit Tree Type

compA :: Expr → Tree CodeF → Tree CodeF
compA (Val n) c = PUSHT n . c

compA (Add x y) c = compA x . compA y . ADDT . c

compA Throw c = THROW T

compA (Catch x h) c = MARKT (compA h . c)

. compA x . UNMARKT . c

comp :: Expr → Tree Code

comp e = compA e . HALTT

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compA :: Expr → Tree CodeF → Tree CodeF
compA (Val n) c = PUSHT n . c

compA (Add x y) c = compA x . compA y . ADDT . c

compA Throw c = THROW T

compA (Catch x h) c = MARKT (compA h . c)

. compA x . UNMARKT . c
compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compA :: Expr → Tree CodeF → Tree CodeF
compA (Val n) c = PUSHT n . c

compA (Add x y) c = compA x . compA y . ADDT . c

compA Throw c = THROW T

compA (Catch x h) c = MARKT (compA h . c)

. compA x . UNMARKT . c
compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compA :: Expr → Tree CodeF → Tree CodeF
compA (Val n) c = PUSHT n . c

compA (Add x y) c = compA x . compA y . ADDT . c

compA Throw c = THROW T

compA (Catch x h) c = MARKT (compA h . c)

. compA x . UNMARKT . c

compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compA :: Expr → Graph′ CodeF v → Graph′ CodeF v

compA (Val n) c = PUSHT n . c

compA (Add x y) c = compA x . compA y . ADDT . c

compA Throw c = THROW T

compA (Catch x h) c = MARKT (compA h . c)

. compA x . UNMARKT . c

compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ CodeF v → Graph′ CodeF v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG Throw c = THROW G

compAG (Catch x h) c = MARKG (compAG h . c)

. compAG x . UNMARKG . c

compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ CodeF v → Graph′ CodeF v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG Throw c = THROW G

compAG (Catch x h) c = MARKG (compAG h . c)

. compAG x . UNMARKG . c

PUSHG n c = GIn (PUSHF n c)

compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ CodeF v → Graph′ CodeF v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG Throw c = THROW G

compAG (Catch x h) c = MARKG (compAG h . c)

. compAG x . UNMARKG . c

compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ CodeF v → Graph′ CodeF v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG Throw c = THROW G

compAG (Catch x h) c = Let c (λc ′ → MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′)

compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = MkGraph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ CodeF v → Graph′ CodeF v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG Throw c = THROW G

compAG (Catch x h) c = Let c (λc ′ → MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′)

compG :: Expr → Graph Code

compG e = MkGraph (compAG e . HALTG)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Example

comp (Add (Catch (Val 1) (Val 2)) (Val 3))

 MARKT (PUSHT 2 . PUSHT 3 . ADDT . HALTT)
. PUSHT 1 . UNMARKT . PUSHT 3 . ADDT . HALTT

compG (Add (Catch (Val 1) (Val 2)) (Val 3))

 MkGraph (Let (PUSHG 3 . ADDG . HALTG) (λv →
MARKG (PUSHG 2 . Var v)
. PUSHG 1 . UNMARKG . Var v))

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 11

un i v er s i ty of copenhagen department of computer sc i ence

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

exec :: Tree Code → Stack → Stack
exec = fold execAlg

Folds on Graphs

foldG :: Functor f ⇒ (f r → r)→ Graph f → r
foldG alg (Graph g) = fold ′

G g where
fold ′

G (GIn t) = alg (fmap fold ′
G t)

fold ′
G (Let e f) = fold ′

G (f (fold ′
G e))

fold ′
G (Var x) = x

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 12

un i v er s i ty of copenhagen department of computer sc i ence

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

exec :: Tree Code → Stack → Stack
exec = fold execAlg

Folds on Graphs

foldG :: Functor f ⇒ (f r → r)→ Graph f → r
foldG alg (Graph g) = fold ′

G g where
fold ′

G (GIn t) = alg (fmap fold ′
G t)

fold ′
G (Let e f) = fold ′

G (f (fold ′
G e))

fold ′
G (Var x) = x

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 12

un i v er s i ty of copenhagen department of computer sc i ence

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

exec :: Tree Code → Stack → Stack
exec = fold execAlg

Folds on Graphs

foldG :: Functor f ⇒ (f r → r)→ Graph f → r
foldG alg (Graph g) = fold ′

G g where
fold ′

G (GIn t) = alg (fmap fold ′
G t)

fold ′
G (Let e f) = fold ′

G (f (fold ′
G e))

fold ′
G (Var x) = x

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 12

un i v er s i ty of copenhagen department of computer sc i ence

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

execG :: Graph Code → Stack → Stack
execG = foldG execAlg

Folds on Graphs

foldG :: Functor f ⇒ (f r → r)→ Graph f → r
foldG alg (Graph g) = fold ′

G g where
fold ′

G (GIn t) = alg (fmap fold ′
G t)

fold ′
G (Let e f) = fold ′

G (f (fold ′
G e))

fold ′
G (Var x) = x

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 12

un i v er s i ty of copenhagen department of computer sc i ence

Correctness Argument for compG

Since, we know that comp is correct, it suffices to show that

execG ◦ compG = exec ◦ comp

Proof.

execG ◦ compG
(1)
= exec ◦ unravel ◦ compG

(2)
= exec ◦ comp

Theorem

foldG alg = fold alg ◦ unravel (1)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 13

un i v er s i ty of copenhagen department of computer sc i ence

Correctness Argument for compG

Since, we know that comp is correct, it suffices to show that

execG ◦ compG = exec ◦ comp

Proof.

execG ◦ compG
(1)
= exec ◦ unravel ◦ compG

(2)
= exec ◦ comp

Theorem

foldG alg = fold alg ◦ unravel (1)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 13

un i v er s i ty of copenhagen department of computer sc i ence

Correctness Argument for compG

Since, we know that comp is correct, it suffices to show that

execG ◦ compG = exec ◦ comp

Proof.

execG ◦ compG
(1)
= exec ◦ unravel ◦ compG

(2)
= exec ◦ comp

Theorem

foldG alg = fold alg ◦ unravel (1)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 13

un i v er s i ty of copenhagen department of computer sc i ence

Correctness Argument for compG

Since, we know that comp is correct, it suffices to show that

execG ◦ compG = exec ◦ comp

Proof.

execG ◦ compG
(1)
= exec ◦ unravel ◦ compG
(2)
= exec ◦ comp

Theorem

foldG alg = fold alg ◦ unravel (1)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 13

un i v er s i ty of copenhagen department of computer sc i ence

Proof of (2)

Lemma

unravel (compG e) = comp e

Proof.

By induction on e.
The interesting part:

unravel (Let c (λc ′ →
MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′))

= MARKT (compA h . unravel c)

. compA x . UNMARKT . unravel c

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 14

un i v er s i ty of copenhagen department of computer sc i ence

Proof of (2)

Lemma

unravel (compG e) = comp e

Proof.

By induction on e.

The interesting part:

unravel (Let c (λc ′ →
MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′))

= MARKT (compA h . unravel c)

. compA x . UNMARKT . unravel c

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 14

un i v er s i ty of copenhagen department of computer sc i ence

Proof of (2)

Lemma

unravel (compG e) = comp e

Proof.

By induction on e.
The interesting part:

unravel (Let c (λc ′ →
MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′))

= MARKT (compA h . unravel c)

. compA x . UNMARKT . unravel c

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 14

un i v er s i ty of copenhagen department of computer sc i ence

Summary

Our Approach

• Replace tree type with graph type

• Relate semantics of graph-based compiler via unravelling

• Exploit parametricity to drastically simplify proof

Motivation: Derive Compiler from Specification

• Compilers can be derived by formal calculation

• The result is often unsatisfactory (e.g. code duplication)

• Goal: improve compilers by simple equational reasoning

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 15

un i v er s i ty of copenhagen department of computer sc i ence

Summary

Our Approach

• Replace tree type with graph type

• Relate semantics of graph-based compiler via unravelling

• Exploit parametricity to drastically simplify proof

Motivation: Derive Compiler from Specification

• Compilers can be derived by formal calculation

• The result is often unsatisfactory (e.g. code duplication)

• Goal: improve compilers by simple equational reasoning

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 15

un i v er s i ty of copenhagen department of computer sc i ence

Open Questions / Future Work

Beyond folds

• What if the virtual machine is not a fold?

• This seems impossible with HOAS-style graphs

• Ad hoc reasoning for “Names for free”-style graphs possible

Cyclic graphs

• Our method is restricted to acyclic graphs.

• Cyclic graphs require different reasoning principle.
(fixed-point induction?)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 16

un i v er s i ty of copenhagen department of computer sc i ence

Open Questions / Future Work

Beyond folds

• What if the virtual machine is not a fold?

• This seems impossible with HOAS-style graphs

• Ad hoc reasoning for “Names for free”-style graphs possible

Cyclic graphs

• Our method is restricted to acyclic graphs.

• Cyclic graphs require different reasoning principle.
(fixed-point induction?)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 16

un i v er s i ty of copenhagen department of computer sc i ence

Faculty of Science

Proving Correctness of Compilers
Using Structured Graphs

Patrick Bahr
University of Copenhagen,
Department of Computer Science
paba@di.ku.dk

Symposium on Functional and Logic Programming, Kanazawa, Japan; 6th June, 2014

Slide 17

un i v er s i ty of copenhagen department of computer sc i ence

Bonus Slides

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 18

un i v er s i ty of copenhagen department of computer sc i ence

Example

comp (Add (Val 2) (Val 3))

 PUSH 2 . PUSH 3 . ADD . HALT

comp (Catch (Val 2) (Val 3))

 MARK (PUSH 3 . HALT) . PUSH 2 . UNMARK . HALT

comp (Catch Throw (Val 3))

 MARK (PUSH 3 . HALT) . THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 19

un i v er s i ty of copenhagen department of computer sc i ence

Example

comp (Add (Val 2) (Val 3))

 PUSH 2 . PUSH 3 . ADD . HALT

comp (Catch (Val 2) (Val 3))

 MARK (PUSH 3 . HALT) . PUSH 2 . UNMARK . HALT

comp (Catch Throw (Val 3))

 MARK (PUSH 3 . HALT) . THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 19

un i v er s i ty of copenhagen department of computer sc i ence

Example

comp (Add (Val 2) (Val 3))

 PUSH 2 . PUSH 3 . ADD . HALT

comp (Catch (Val 2) (Val 3))

 MARK (PUSH 3 . HALT) . PUSH 2 . UNMARK . HALT

comp (Catch Throw (Val 3))

 MARK (PUSH 3 . HALT) . THROW

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 19

un i v er s i ty of copenhagen department of computer sc i ence

Short Cut Fusion for Graphs

Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) for all b :: ∀ c . (f c → c)→ c

• For any g :: Graph f , instantiate b = λa→ foldG a g :

(λa→ foldG a g) alg = fold alg ((λa→ foldG a g) In)

• After beta reduction:

foldG alg g = fold alg (foldG In g)

• By definition of unravel :

foldG alg g = fold alg (unravel g)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 20

un i v er s i ty of copenhagen department of computer sc i ence

Short Cut Fusion for Graphs

Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) for all b :: ∀ c . (f c → c)→ c

• For any g :: Graph f , instantiate b = λa→ foldG a g :

(λa→ foldG a g) alg = fold alg ((λa→ foldG a g) In)

• After beta reduction:

foldG alg g = fold alg (foldG In g)

• By definition of unravel :

foldG alg g = fold alg (unravel g)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 20

un i v er s i ty of copenhagen department of computer sc i ence

Short Cut Fusion for Graphs

Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) for all b :: ∀ c . (f c → c)→ c

• For any g :: Graph f , instantiate b = λa→ foldG a g :

(λa→ foldG a g) alg = fold alg ((λa→ foldG a g) In)

• After beta reduction:

foldG alg g = fold alg (foldG In g)

• By definition of unravel :

foldG alg g = fold alg (unravel g)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 20

un i v er s i ty of copenhagen department of computer sc i ence

Short Cut Fusion for Graphs

Theorem (Short Cut Fusion Law)

b alg = fold alg (b In) for all b :: ∀ c . (f c → c)→ c

• For any g :: Graph f , instantiate b = λa→ foldG a g :

(λa→ foldG a g) alg = fold alg ((λa→ foldG a g) In)

• After beta reduction:

foldG alg g = fold alg (foldG In g)

• By definition of unravel :

foldG alg g = fold alg (unravel g)

Patrick Bahr — Proving Correctness of Compilers Using Structured Graphs — FLOPS ’14, 6th June, 2014

Slide 20

