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Abstract. We present an approach to compiler implementation using
Oliveira and Cook’s structured graphs that avoids the use of explicit
jumps in the generated code. The advantage of our method is that it
takes the implementation of a compiler using a tree type along with
its correctness proof and turns it into a compiler implementation using
a graph type along with a correctness proof. The implementation and
correctness proof of a compiler using a tree type without explicit jumps
is simple, but yields code duplication. Our method provides a convenient
way of improving such a compiler without giving up the benefits of simple
reasoning.

1 Introduction

Verification of compilers — like other software — is difficult [I3]. In such an en-
deavour one typically has to balance the “cleverness” of the implementation with
the simplicity of reasoning about it. A concrete example of this fact is given by
Hutton and Wright [I0] who present correctness proofs of compilers for a simple
language with exceptions. The authors first present a naive compiler implemen-
tation that produces a tree representing the possible control flow of the input
program. The code that it produces is essentially the right code, but the com-
piler loses information since it duplicates code instead of sharing it. However,
the simplicity of the implementation is matched with a clean and simple proof by
equational reasoning. |[Hutton and Wright| also present a more realistic compiler,
which uses labels and explicit jumps, resulting in a target code in linear form and
without code duplication. However, the cleverer implementation also requires a
more complicated proof, in which one has to reason about the freshness and
scope of labels.

In this paper we present an intermediate approach, which is still simple, both
in its implementation and in its correctness proof, but which avoids the loss of
information of the simple approach described by Hutton and Wright [I0]. The
remedy for the information loss of the simple approach is obvious: we use a graph
instead of a tree structure to represent the target code. The linear representation
with labels and jumps is essentially a graph as well — it is just a very inconvenient
one for reasoning. Instead of using unique names to represent sharing, we use the
structured graphs representation of Oliveira and Cook [I§]. This representation



of graphs uses parametric higher-order abstract syntax [5] to represent binders,
which in turn are used to represent sharing. This structure allows us to take
the simple compiler implementation using trees, make a slight adjustment to it,
and obtain a compiler implementation using graphs that preserves the sharing
information.

In essence our approach teases apart two aspects that are typically combined
in code generation: (1) the translation into the target language, and (2) generat-
ing fresh (label) names for representing jumps in the target language. By keeping
the two aspects separate, we can implement further transformations, e.g. code
optimisations, without having to deal with explicit jumps and names. Only in
the final step, when the code is linearised, names have to be generated in order
to produce explicit jump instructions. Consequently, the issues that ensue in this
setting can be dealt with in isolation — separately from the actual translation
and subsequent transformation steps.

Our main goal is to retain the simplicity of the correctness proof of the tree-
based compiler. The key observation making this possible is that the semantics of
the tree-based and the graph-based target language, i.e. their respective virtual
machines, are equivalent after unravelling of the graph structure. More precisely,
given the semantics of the tree-based and the graph-based target language as
erect and execg, respectively, we have the following equation:

execg = exect o unravel

We show that this correspondence is an inherent consequence of the recursion
schemes that are used to define these semantics. In fact, this correspondence fol-
lows from the correctness of short cut fusion [8,[12]. That is, the above property
is independent of the target language of the compiler. As a consequence, the
correctness proof of the improved, graph-based compiler is reduced to a proof
that its implementation is equivalent to the tree-based implementation modulo
unravelling. More precisely, it then suffices to show that

compt = unravel o compg

which is achieved by a straightforward induction proof.

In sum, the technique that we propose here improves existing simple com-
piler implementations to more realistic ones using a graph representation for the
target code. This improvement requires minimal effort — both in terms of the
implementation and the correctness proof. The fact that we consider both the
implementation and its correctness proof makes our technique the ideal com-
panion to improve a compiler that has been obtained by calculation [16]. Such
calculations derive a compiler from a specification, and produce not only an im-
plementation of the compiler but also a proof of its correctness. The example
compiler that we use in this paper has in fact been calculated in this way by Bahr
and Hutton [3], and we have successfully applied our technique to other com-
pilers derived by Bahr and Hutton [3], which includes compilers for languages
with features such as (synchronous and asynchronous) exceptions, (global and
local) state and non-determinism. Thus, despite its simplicity, our technique



is quite powerful, especially when combined with other techniques such as the
abovementioned calculation techniques.
In short, the contributions of this paper are the following;:

— From a compiler with code duplication we derive a compiler that avoids
duplication using a graph representation.

— Using short cut fusion, we prove that folds over graphs are equal to corre-
sponding folds over the unravelling of the input graphs.

— Using the above result, we derive the correctness of the graph-based compiler
implementation from the correctness of the tree-based compiler.

— We further simplify the proof by using free monads to represent tree types
together with a corresponding monadic graph type.

Throughout this paper we use Haskell [14] as the implementation language.

2 A Simple Compiler

The example language that we use throughout the paper is a simple expression
language with integers, addition and exceptions:

data FEzpr = Val Int | Add  Exzpr Ezpr
| Throw | Catch Expr Exzpr

The semantics of this language is defined using an evaluation function that
evaluates a given expression to an integer value or returns Nothing in case of an
uncaught exception:

eval :: Expr — Maybe Int
eval (Val n) = Just n
eval (Add z y) = case eval z of
Nothing — Nothing
Just n  — case eval y of
Nothing — Nothing
Just m  — Just (n + m)
eval Throw = Nothing
eval (Catch z h) = case eval = of
Nothing — eval h
Just n  — Just n

This is the same language and semantics used by Hutton and Wright [10]. Like
Hutton and Wright, we chose a simple language in order to focus on the essence
of the problem, which in our case is control flow in the target language and the
use of duplication or sharing to represent it. Moreover, this choice allows us to
compare our method to the original work of [Hutton and Wright| whose focus was
on the simplicity of reasoning.

The target for the compiler is a simple stack machine with the following
instruction set:



data Code = PUSH Int Code | ADD Code | HALT
| UNMARK Code | MARK Code Code | THROW

The intended semantics (which is made precise later) for the instructions is:

— PUSH n pushes the integer value n on the stack,

— ADD expects two integers on the stack and replaces them with their sum,

MARK c pushes the exception handler code ¢ on the stack,

— UNMARK removes such a handler code from the stack,

— THROW unwinds the stack until an exception handler code is found, which
is then executed, and

— HALT stops the execution.

For the implementation of the compiler we deviate slightly from the presen-
tation of Hutton and Wright [10] and instead write the compiler in a style that
uses an additional accumulation parameter ¢, which simplifies the proofs [9]:

comp™ :: Expr — Code — Code

comp™ (Val n) ¢c=PUSH n ¢

comp” (Add © y) ¢ = comp™ x (comp™ y (ADD c))

comp™ Throw ¢c= THROW

comp™ (Catch z h) ¢ = MARK (comp™ h ¢) (comp” z (UNMARK c))

Since the code generator is implemented in this code continuation passing style,
function application corresponds to concatenation of code fragments. To stress
this reading, we shall use the operator >, which is simply defined as function
application and is declared to associate to the right with minimal precedence:

>):(a—=b)—>a—b

frx=fz
For instance, the equation for the Add case of the definition of comp” then reads:
comp® (Add z y) ¢ = comp™ x> comp” y> ADD > ¢

To obtain the final code for an expression, we supply HALT as the initial
value of the accumulator of comp®. The use of the > operator to supply the
argument indicates the intuition that HALT is placed at the end of the code
produced by comp”:

comp :: Expr — Code
comp e = comp™ e> HALT

The following examples illustrate the workings of the compiler comp:

comp (Add (Val 2) (Val 3)) ~ PUSH 2> PUSH 3> ADD > HALT
comp (Catch (Val 2) (Val 3)) ~ MARK (PUSH 3> HALT)

> PUSH 2> UNMARK > HALT
comp (Catch Throw (Val 3)) ~ MARK (PUSH 3> HALT)> THROW



For the virtual machine that executes the code produced by the above com-
piler, we use the following type for the stack:

type Stack = [Item]
data Item = VAL Int | HAN (Stack — Stack)

This type deviates slightly from the one for the virtual machine defined by
Hutton and Wright [10]. Instead of having the code of an exception handler on
the stack (constructor HAN), we have the continuation of the virtual machine
on the stack. This will simplify the proof as we shall see later on. However, this
type and the accompanying definition of the virtual machine that is given below
is exactly the result of the calculation given by Bahr and Hutton [3] just before
the last calculation step (which then yields the virtual machine of Hutton and
Wright [10]). The virtual machine that works on this stack is defined as follows:

exec :: Code — Stack — Stack
exec (PUSH n ¢) s = execc(VALn:s)
exec (ADD c) s = case s of
(VAL m: VAL n:t) — exec ¢ (VAL (n+m):1t)
exec THROW s = unwind s
exec (MARK h ¢) s = exec ¢ (HAN (exec h): s)
exec (UNMARK c¢) s =case s of (z: HAN _:t) — exec ¢ (z : t)
exec HALT s=s

unwind :: Stack — Stack
unwind [] =]
unwind (VAL _: s) = unwind s
unwind (HAN h:s)=hs

The virtual machine does what is expected from the informal semantics that we
have given above. The semantics of MARK , however, may seem counterintuitive
at first: as mentioned above, MARK does not put the handler code on the stack
but rather the continuation that is obtained by executing it. Consequently, when
the unwinding of the stack reaches a handler h on the stack, this handler A is
directly applied to the remainder of the stack. This slight deviation from the
semantics of Hutton and Wright [I0] makes sure that exec is in fact a fold.

We will not go into the details of the correctness proof for the compiler comp.
One can show that it satisfies the following correctness property [3]:

Theorem 1 (compiler correctness).
exec (comp e) [] = conv (eval e) for all e :: Expr

where conv (Just n) = [Val n]
conv Nothing = []

That is, in particular, we have that

exec (comp e) []=[Valn] <=  eval e = Justn



While the compiler has the nice property that it can be derived from the
language semantics, the code that it produces is quite unrealistic. Note the du-
plication that occurs for generating the code for Catch: the continuation code ¢
is inserted both after the handler code (in comp” h ¢) and after the UNMARK
instruction. This is necessary since the code ¢ may have to be executed regardless
whether an exception is thrown in the scope x of the Catch or not.

This duplication can be avoided by using explicit jumps in the code. Instead
of duplicating code, jumps to a single copy of the code are inserted. However,
this complicates both the implementation of the compiler and its correctness
proof [10]. Also the derivation of such a compiler by calculation is equally cum-
bersome.

The approach that we suggest in this paper takes the above compiler and
derives a slightly different variant that instead of a tree structure produces a
graph structure. Along with the compiler we derive a virtual machine that also
works on the graph structure. The two variants of the compiler and its companion
virtual machine only differ in the sharing that the graph variant provides. This
fact allows us to derive the correctness of the graph-based compiler very easily
from the correctness of the original tree-based compiler.

3 From Trees to Graphs

Before we derive the graph-based compiler and the corresponding virtual ma-
chine, we restructure the definition of the original compiler and the corresponding
virtual machine. This will smoothen the process and simplify the presentation.

3.1 Preparations

Instead of defining the type Code directly, we represent it as the initial algebra
of a functor. To distinguish this representation from the graph representation
we introduce later, we use the name Tree for the initial algebra construction.

data Tree f = In (f (Tree f))

The functor that induces the initial algebra that we shall use for representing
the target language is easily obtained from the original Code data type:

data Coder a = PUSHg Int a | ADDE a | HALTE
| MARKr a a | UNMARKF a | THROW ¢

The type representing the target code is thus Tree Codeg, which is isomorphic
to Code modulo non-strictness. We proceed by reformulating the definition of
comp to work on the type Tree Codeg instead of Code:

comp? :: Expr — Tree Coder — Tree Coder
compy (Val n) c=PUSHy nv>c
compy (Add x y) ¢ = compy x> compy y> ADDb>c



comp$ Throw ¢c= THROW

compy (Catch z h) ¢ = MARKT (comph h>¢) > comphy x> UNMARKT > ¢
comp :: Expr — Tree Coder

compt e = comp} e> HALT

Note that we do not use the constructors of Codeg directly, but instead we use
smart constructors that also apply the constructor In of the type constructor
Tree. These smart constructors serve as drop-in replacements for the constructors
of the original Code data type. For example, PUSH 1 is defined as follows:

PUSH~ :: Int — Tree Coder — Tree Coder
PUSHt i ¢c=1In (PUSHE i c)

Lastly, we also reformulate the semantics of the target language, i.e. we define the
function exec on the type Tree Codeg. To do this, we use the following definition
of a fold on an initial algebra:

fold :: Functor f = (f r = r) = Tree f — r
fold alg (In t) = alg (fmap (fold alg) t)

The definition of the semantics is a straightforward transcription of the def-
inition of exec into an algebra:

execAlg :: Coder (Stack — Stack) — Stack — Stack
evecAlg (PUSHrnc) s=c¢(VALn:s)
execAlg (ADDk c) s = case s of
(VAL m:VALn:t)— ¢ (VAL (n4+m):t)
execAlg THROW g s = unwind s
execAlg (MARKr h ¢) s=c (HAN h:s)
evecAlg (UNMARKF ¢) s =case sof (z: HAN _:t) —» ¢ (z:1)
execAlg HALTE s
exect :: Tree Coder — Stack — Stack
exect = fold execAlg

=S

From the correctness of the original compiler from as expressed in
we obtain the correctness of our reformulation of the implementation:

Corollary 1 (correctness of compr).
exect (compr €) [| = conv (eval e) for all e :: Expr

Proof. Let ¢ :: Code — Tree Codeg be the function that recursively maps each
constructor of Code to the corresponding smart constructor of Tree Coder. We
can easily check that comp; and exect are equivalent to the original functions
comp respectively exec via ¢, i.e.

compt = ¢ocomp and exect o = exec

Consequently, we have that exect o compt = exec o comp, and thus the corollary

follows from [Theorem 11 0



3.2 Deriving a Graph-Based Compiler

Finally, we turn to the graph-based implementation of the compiler. Essentially,
this implementation is obtained from comp+ by replacing the type Tree Coder
with a type Graph Codeg, which instead of a tree structure has a graph structure,
and using explicit sharing instead of duplication.

In order to define graphs over a functor, we use the representation of Oliveira
and Cook [I8] called structured graphs. Put simply, a structured graph is a tree
with added sharing facilitated by let bindings. In turn, let bindings are repre-
sented using parametric higher-order abstract syntax [5].

data Graph' f v = GIn (f (Graph' f v))
| Let (Graph' f v) (v — Graph' f v)

| Var v

The first constructor has the same structure as the constructor of the Tree type
constructor. The other two constructors will allow us to express let bindings:
Let g (Ax — h) binds g to the metavariable z in h. Metavariables bound in a
let binding have type v; the only way to use them is with the constructor Var.
To enforce this invariant, the type variable v is made polymorphic:

newtype Graph f = MkGraph (VY v . Graph' f v)

We shall use the type constructor Graph (and Graph') as a replacement for
Tree. For the purposes of our compiler we only need acyclic graphs. That is
why we only consider non-recursive let bindings as opposed to the more general
structured graphs of Oliveira and Cook [I8]. This restriction to non-recursive let
bindings is crucial for the reasoning principle that we use to prove correctness.

We can use the graph type almost as a drop-in replacement for the tree type.
The only thing that we need to do is to use smart constructors that use the
constructor GIn instead of In, e.g.

PUSH¢ :: Int — Graph’ Codeg v — Graph’ Coder v
PUSH¢g i ¢ = GIn (PUSHF i c)

From the type of the smart constructors we can observe that graphs are con-
structed using the type constructor Graph’', not Graph. Only after the construc-
tion of the graph is completed, the constructor MkGraph is applied in order to
obtain a graph of type Graph Codeg.

The definition of comp% can be transcribed into graph style by simply using
the abovementioned smart constructors instead:

comp? :: BExpr — Graph' Coder a — Graph' Codeg a

comp? (Val n) ¢=PUSHg n>c¢

compé (Add z y) c= compé x> compé y>ADDg ¢

comp? (Throw)  ¢= THROWq

comp? (Catch x h) ¢ = MARK g (comp@ h>c) > comp@ x> UNMARK g > ¢



The above is a one-to-one transcription of comp#. But this is not what we want.
We want to make use of the fact that the target language allows sharing. In
particular, we want to get rid of the duplication in the code generated for Catch.

We can avoid this duplication by simply using a let binding to replace the
two occurrences of ¢ with a metavariable ¢’ that is then bound to ¢. The last
equation for compé is thus rewritten as follows:

comp? (Catch x h) ¢ = Let ¢ (\¢/ - MARK¢ (comp? h Var ¢')
> comp@ x> UNMARK > Var ')

The right-hand side for the case Catch x h has now only one occurrence of c.
The final code generator function compé is then obtained by supplying

HALT¢ as the initial value of the code continuation and wrapping the result

with the MkGraph constructor so as to return a result of type Graph Codeg:

compg :: BExpr — Graph Coder
compg e = MkGraph (compé e> HALTG)

To illustrate the difference between compg and compy, we apply both of
them to an example expression e = Add (Catch (Val 1) (Val 2)) (Val 3):

compy e ~ MARK+ (PUSHt 2> PUSHt 3> ADDt > HALTT)
> PUSHT 1> UNMARK+v> PUSHT 3> ADDtw> HALTt
compg € ~» MkGraph (Let (PUSHg 3> ADDg> HALTG) (Av —
MARK ¢ (PUSHG 20 Var v) > PUSHg 1> UNMARK 6 > Var v))

Note that compt duplicates the code fragment PUSHt 3> ADDt > HALT,
which is supposed to be executed after the catch expression, whereas compg
binds this code fragment to a metavariable v, which is then used as a substitute.

The recursion schemes on structured graphs make use of the parametricity in
the metavariable type as well. The general fold over graphs as given by Oliveira
and Cook [I8] is defined as followsﬂ

gfold :: Functor f = (v —=r1r) = (r—=>(v—or)—>r)=>(fror) —

Graph f — r
gfold v 1 i (MkGraph g) = trans g
where trans (Var z) =vz

trans (Let e f) =1 (trans e) (transo f)
trans (GIn t) =i (fmap trans t)

The combinator takes three functions, which are used to interpret the three
constructors of Graph'. This general form is needed for example if we want to
transform the graph representation into a linearised form [2], but for our purposes
we only need a simple special case of it:

! Oliveira and Cook [I8] considered the more general case of cyclic graphs, the defini-
tion of gfold given here is specialised to the case of acyclic graphs.



ufold :: Functor f = (f r — r) — Graph f — r
ufold = gfold id (Ae f — f e)

Note that the type signature is identical to the one for fold except for the use of
Graph instead of Tree. Thus, we can reuse the algebra ezecAlg from
which defines the semantics of Tree Codeg, in order to define the semantics of
Graph Codeg:

execg :: Graph Coder — Stack — Stack
execg = ufold execAlg

4 Correctness Proof

In this section we shall prove that the graph-based compiler that we defined in
is indeed correct. This turns out to be rather simple: we derive the
correctness property for compg from the correctness property for compy. The
simplicity of the argument is rooted in the fact that compy is the same as compg
followed by unravelling. In other words, compg only differs from compt in that
it adds sharing — as expected.

4.1 Compiler Correctness by Unravelling

Before we prove this relation between compt and compg, we need to specify
what unravelling means:

unravel :: Functor f = Graph f — Tree f
unravel = ufold In

While this definition is nice and compact, we gain more insight into what it
actually does by unfolding it:

unravel :: Functor f = Graph f — Tree f
unravel (MkGraph g) = unravel’ g

unravel’ :: Functor f = Graph’ f (Tree f) — Tree f
unravel’ (Var x) =x

unravel’ (Let e ) = unravel’ (f (unravel’ ¢))
unravel’ (GIn t) = In (fmap unravel’ t)

We can see that unravel simply replaces GIn with In, and applies the function
argument f of a let binding to the bound value e. For example, we have that

MkGraph (Let (PUSHg 2> HALTG) (Av = MARK ¢ (Var v) > Var v))
Y MARK+t (PUSHT 2> HALT1)> PUSHT 2> HALTt

We can now formulate the relation between comp+ and compg:

10



Lemma 1. compy = unravel o compg

This lemma, which we shall prove at the end of this section, is one half of the
argument for deriving the correctness property for compg. The other half is the
property that exect and execg have the converse relationship, viz.

ETECG — EXECT O unravel

Proving this property is much simpler, though, because it follows from a more
general property of fold.

Theorem 2. Given a strictly positive functor f, a type c, and alg :: f ¢ — c,
we have the following:

ufold alg = fold alg o unravel

The equality execg = exect o unravel is an instance of where alg =
execAlg. We defer discussion of the proof of this theorem until
We derive the correctness of compg by combining [Lemma I|and [Theorem 2}

Theorem 3 (correctness of compg).

execg (compg e) [] = conv (eval e) for all e :: Expr
Proof. execg (compg e) [] = exect (unravel (compg e) [] (Theorem 2
= ezect (compy €) [] (Lemma 1
= conv (eval e) (Corollary 1) O

We conclude this section by giving the proof of

Proof (of . Instead of proving the equation directly, we prove the
following equation for all e :: Expr and c:: Graph' Codeg (Tree Code):

comph e > unravel’ ¢ = unravel’ (comp? e c) (1)

In particular, the above equation holds for all ¢ ::V v . Graph’ Coder v. Thus,
the lemma follows from the above equation as follows:

compt e
= { definition of compt }

comp# e>HALTt
= { definition of unravel’ }

compy e > unravel’ HALT g
= { Equation (1) }

unravel’ (compg e> HALTG)
= { definition of unravel }

unravel (MkGraph (compg e> HALTG))
= { definition of comp¢ }

unravel (compg €)

11



We prove by induction on e:

— Case e = Val n: — Case e = Throw:

unravel’ (compg (Val n) > c) unravel’ (compg Throw > c)

= { definition of comp? } = { definition of comp? }
unravel’ (PUSHG n > ¢) unravell THROW ¢

= { definition of unravel’ } = { definition of unravel’ }
PUSHT n > unravel’ ¢ THROW

= { definition of comp? } = { definition of comp? }
compy (Val n) > unravel’ ¢ compy Throw > unravel’ c

— Case e = Add = y:

unravel’ (compg (Add z y) > c)
= { definition of comp? }

unravel (compg x> compg y> ADDg > c)
= { induction hypothesis }

compy z > unravel’ (compg y> ADDg > c)
= { induction hypothesis }

compy z > comp% y > unravel’ (ADDg > c)
= { definition of unravel’ }

compy x> compy y > ADDt > unravel’ ¢
= { definition of comp? }

compy (Add x y) > unravel’ c

— Case e = Catch x h:

unravel’ (compg (Catch z h) > c)
= { definition of comp? }
unravel’ (Let ¢ (A\¢' = MARK (comp@ h Var c')
> comp@ x> UNMARK g > Var c'))
= { definition of unravel’ and S-reduction }
unravel' (MARK  (compg h Var (unravel’ c))

> compg x> UNMARK g > Var (unravel’ c))
= { definition of unravel’ }
MARK (unravel’ (compg h> Var (unravel’ c)))
> unravel’ (compg x> UNMARK g > Var (unravel’ c))
= { induction hypothesis }
MARKT (comp% h>unravel’ (Var (unravel’ c)))
> comp% x> unravel’ (UNMARK g > Var (unravel’ c))
= { definition of unravel’ }
MARK~ (comp$ h > unravel’ ¢) > comp# x> UNMARK T > unravel’ ¢
= { definition of comp? }
comph (Catch x h) > unravel’ c O

12



4.2 Proof of [Theorem 2|

states that folding a structured graph g :: Graph f over a strictly
positive functor f with an algebra alg yields the same result as first unravelling
g and then folding the resulting tree with alg, i.e.

ufold alg = fold alg o unravel

Since unravel is defined as ufold In, the above equality follows from a more
general law of folds over algebraic data types, known as short cut fusion [8]:

b alg = fold alg (b In) forallb:Ve.(fc—c)—c

This law holds for all strictly positive functors f as proved by Johann [12].
Essential for its correctness is the polymorphic type of b.

For any given graph ¢ :: Graph f, we can instantiate b with the function
Aa — ufold a g, which yields that

(Aa — ufold a g) alg = fold alg (Aa — ufold a g) In)

Note that Aa — ufold a ¢ has indeed the required polymorphic type. After
applying beta-reduction, we obtain the equation

ufold alg g = fold alg (ufold In g)

Since g was chosen arbitrarily, and unravel is defined as ufold In, we thus

obtain the equation as stated in

ufold alg = fold alg o unravel

5 Other Approaches

5.1 Other Graph Representations

The technique presented here is not necessarily dependent on the particular
representation of graphs that we chose. However, while other representations are
conceivable, structured graphs have two properties that make them a suitable
choice for this application: (1) they have a simple representation in Haskell and
(2) they provide a convenient interface for introducing sharing, viz. variable
binding in the host language.

Nevertheless, in other circumstances a different representation may be ad-
vantageous. For example the use of higher-order abstract syntax may have a
negative impact on performance in practical applications. Moreover, the neces-
sity of reasoning over parametricity may be inconvenient for a formalisation of
the proofs in a proof assistant.

Therefore, we also studied an alternative representation of graphs that uses
de Bruijn indices for encoding binders instead of parametric higher-order ab-
stract syntax (PHOAS). To this end, we have used the technique proposed by
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Bernardy and Pouillard [4] to provide a PHOAS interface to this graph rep-
resentation. This allows us to use essentially the same simple definition of the
graph-based compiler as presented in Using this representation of
graphs — PHOAS interface on the outside, de Bruijn indices under the hood —
we formalised the proofs presented here in the Coq theorem provelﬂ

5.2 A Monadic Approach

We briefly describe a variant of our technique that is based on free monads and a
corresponding monadic graph structure. The general approach of this variant is
similar to what we have seen thus far; however, the monadic structure simplifies
some of the proofs. The details can be found in the companion report [2].

The underlying idea, originally developed by Matsuda et al. [I5], is to replace
a function f with accumulation parameters by a function f’ that produces a
context with the property that

fra...an =" 2){ar,...,an)

That is, we obtain the result of the original function f by plugging in the accu-
mulation arguments ay, ..., a, in to the context that f’ produces.

In order to represent contexts, we use a free monad type Treey instead of
a tree type Tree, where Treey is obtained from 7ree by adding a construc-
tor of type a — Treem f a. A context with n holes is represented by a type
Treen f (Fin n) — where Fin n is a type with exactly n distinct inhabitants —
and context application is represented by the monadic bind operator >=. The
compiler is then reformulated as follows — using the shorthand hole = return ():

comp$y :: Expr — Treem Code ()

comp (Val n) = PUSHwm n hole
comp (Add z y) = compy x> comp$ y > ADDy hole
comp$y (Throw) = THROW y

comp (Catch z h) = MARK\ (comp§ h) (comp$ z > UNMARK \ hole)

As we only have a single accumulator for the compiler, we use the type () ~ Fin 1
to express that there is exactly one type of hole.

Also graphs can be given monadic structure by adding a constructor of type
a — Graphy, f v a to the data type Graph’. And the compiler compé can be
reformulated in terms of this type accordingly.

We can define fold combinators for the monadic structures as well. The virtual
machines are thus easily adapted to this monadic style by simply reusing the
same algebra execAlg. Again, one half of the correctness proof follows from a
generic theorem about folds corresponding to The other half of the
proof can be simplified. In the corresponding proof of it suffices to
show the following simpler equation, in which unravel’ only appears once:

compt = unravel’ o compg

2 Available from the author’s web site.

14



This simplifies the induction proof. While this proof requires an additional
lemma, viz. that unravelling distributes over >, this lemma can be proved (once
and for all) for any strictly positive functor f:

unravel’ (g1 > g2) = unravel’ g1 > unravel’ go

Unfortunately, we cannot exploit short cut fusion to prove this lemma because
it involves a genuine graph transformation, viz. > on graphs . However, with
the representation mentioned in we can prove it by induction.
Note that the full monadic structure of Treem and Graphy is not needed for
our example compiler since we only use the simple bind operator >, not >=.
However, a different compiler implementation may use more than one accumu-
lation parameter (for example an additional code continuation that contains the
current exception handler), for which we need the more general bind operator.

6 Concluding Remarks

6.1 Related Work

Compiler verification is still a hard problem and in this paper we only cover one
— but arguably the central — part of a compiler, viz. the translation of a high-
level language to a low-level language. The literature on the topic of compiler
verification is vast (e.g. see the survey of Dave [7]). More recent work has shown
impressive results in verification of a realistic compiler for the C language [13].
But there are also efforts in verifying compilers for higher-level languages (e.g.
by Chlipala [6]).

This paper, however, focuses on identifying simple but powerful techniques
for reasoning about compilers rather than engineering massive proofs for full-
scale compilers. Our contributions thus follow the work on calculating compilers
[21), 16, 1] as well as Hutton and Wright/s work on equational reasoning about
compilers [10, [IT].

Structured graphs have been used in the setting of programming language
implementation before: Oliveira and Loh [17] used structured graphs to represent
embedded domain-specific languages. That is, graphs are used for the representa-
tion of the source language. Graph structures used for representing intermediate
languages in a compiler typically employ pointers (e.g. Ramsey and Dias [20]) or
labels (e.g. Ramsey et al. [19]). We are not aware of any work that makes use of
higher-order abstract syntax or de Bruijn indices in the representation of graph
structures in this setting.

6.2 Discussion and Future Work

The underlying goal of our method is to separate the transformation to the
target language from the need to generate fresh names for representing jumps.
For a full compiler, we still have to deal with explicit jumps eventually, but we
can do so in isolation. That is, (1) we have to define a function
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linearise :: Graph Coder — Code

that transforms the graph-based representation into a linear representation of
the target language, and (2) we have to prove that it preserves the semantics.
The proof can focus solely on the aspect of fresh names and explicit jumps.
Since linearise is trivial for all cases except for the let bindings of the graph
representation, we expect that the proof can be made independently of the actual
language under consideration.

While our method reduces the proof obligations for the graph-based compiler
considerably, there is still room for improvement. Indeed, we only require a simple
induction proof showing the equality compt = unravel o compg. But since the
two compiler variants differ only in the sharing they produce, one would hope
the proof obligation could be further reduced to the only interesting case, i.e. the
case for Catch in our example. In a proof assistant such as Coq, we can indeed
take care of all the other cases with a single tactic and focus on the interesting
case. However, it would be desirable to have a more systematic approach that
captures this intuitive understanding.

A shortcoming of our method is its limitation to acyclic graphs. Nevertheless,
the implementation part of our method easily generalises to cyclic structures,
which permits compilation of cyclic control structures like loops. Corresponding
correctness proofs, however, need a different reasoning principle.
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