Certified Compilers and Program Analyses

Patrick Bahr
University of Copenhagen,
Department of Computer Science
paba@diku.dk

1st December, 2014

Overview

1. Deriving Certified Compilers from Specification
2. Certified Management and Analysis of Financial Contracts

Part I:

Deriving Certified Compilers from Specification

joint work with Graham Hutton

Introduction

The problem: Implementing a correct compiler.

Introduction

The problem: Implementing a correct compiler.

$$
\text { Language } \xrightarrow{\text { compiler }} \text { Code }
$$

Introduction

The problem: Implementing a correct compiler.

Goal: - Systematically derive compiler from $\llbracket \cdot \rrbracket \&$ rep

Introduction

The problem: Implementing a correct compiler.

Goal: - Systematically derive compiler from $\llbracket \cdot \rrbracket \&$ rep

- Derivation is rigorous \& machine-checked

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

Syntax

data Expr = Val Int | Add Expr Expr

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

Syntax

$$
\text { e.g. } 2+3 \rightsquigarrow \text { Add }(\text { Val } 2)(\text { Val } 3)
$$

data Expr = Val Int | Add Expr Expr

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

Syntax e.g. $2+3 \rightsquigarrow$ Add (Val 2) (Val 3)

data Expr = Val Int | Add Expr Expr

Semantics

$$
\begin{aligned}
& \text { eval }:: \text { Expr } \rightarrow \text { Int } \\
& \text { eval }(\text { Val } n)=n \\
& \text { eval }(\text { Add } x y)=\text { eval } x+\text { eval } y
\end{aligned}
$$

Step 2: Compiler Correctness Property

The compiler

data $\operatorname{Instr}=$... type Code $=[$ Instr] $] \quad-$ list of instructions
comp :: Expr \rightarrow Code

Step 2: Compiler Correctness Property

The compiler

```
data Instr = ...
type Code = [Instr] -- list of instructions
comp :: Expr }->\mathrm{ Code
```

The machine

$$
\begin{aligned}
& \text { type Stack }=[\operatorname{Int}] \quad \text {-- list of integers } \\
& \text { exec }:: \text { Code } \rightarrow \text { Stack } \rightarrow \text { Stack }
\end{aligned}
$$

Step 2: Compiler Correctness Property

The compiler

```
data Instr = ...
type Code = [Instr] -- list of instructions
comp :: Expr }->\mathrm{ Code
```

The machine

$$
\begin{aligned}
& \text { type Stack }=[\text { Int }] \quad \text {-- list of integers } \\
& \text { exec }:: \text { Code } \rightarrow \text { Stack } \rightarrow \text { Stack }
\end{aligned}
$$

Compiler correctness property
For all e :: Expr, s :: Stack

$$
\text { exec (comp e }) s=\quad \text { eval e:s }
$$

Step 2: Compiler Correctness Property

The compiler

```
data Instr = ...
type Code = [Instr] -- list of instructions
comp :: Expr }->\mathrm{ Code
```

The machine

$$
\begin{aligned}
& \text { type Stack }=[\operatorname{Int}] \quad \text {-- list of integers } \\
& \text { exec }:: \text { Code } \rightarrow \text { Stack } \rightarrow \text { Stack }
\end{aligned}
$$

Compiler correctness property
For all e :: Expr, s :: Stack, c :: Code

$$
\text { exec }(\operatorname{compe}+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

Step 2: Compiler Correctness Property

The compiler

```
data Instr = ...
type Code = [Instr] -- list of instructions
comp :: Expr }->\mathrm{ Code
```

The machine

$$
\begin{aligned}
& \text { type Stack }=[\text { Int }] \text {-- list of integers } \\
& \text { exec }:: \text { Code } \rightarrow \text { Stack } \rightarrow \text { Stack } \\
& \text { exec }[] s=s
\end{aligned}
$$

Compiler correctness property
For all e :: Expr, s :: Stack, c :: Code

$$
\text { exec }(\text { comp e }+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

Step 3: Calculate!

Compiler correctness property

$$
\text { exec (comp e + c) } s=\operatorname{exec} c(\text { eval } e: s)
$$

Step 3: Calculate!

Compiler correctness property

$$
\operatorname{exec}(\operatorname{compe}+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

Strategy

- structural induction on e
- transform exec c (eval e:s) into exec ($c^{\prime}+c$) s
- conclude that comp $e=c^{\prime}$

Step 3: Calculate!

Compiler correctness property

$$
\text { exec }(\operatorname{comp~e}+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

exec c (eval e:s)

Strategy

- structural induction on e
- transform exec c (eval e:s) into exec $\left(c^{\prime}+c\right) s$
- conclude that comp e= c^{\prime}

Step 3: Calculate!

Compiler correctness property

$$
\text { exec }(\operatorname{comp~e}+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

tu exec c (eval e:s)

Strategy

- structural induction on e
- transform exec c (eval e:s) into exec $\left(c^{\prime}+c\right) s$
- conclude that compe= c^{\prime}

Step 3: Calculate!

Compiler correctness property

$$
\begin{aligned}
& \operatorname{exec}(\operatorname{comp} e+c) s=\operatorname{exec} c(\text { eval } e: s) \\
& \operatorname{exec}\left(\begin{array}{cc}
c^{\prime} & +c) s \text { exec } c(\text { eval } e: s)
\end{array}\right.
\end{aligned}
$$

Strategy

- structural induction on e
- transform exec c (eval e:s) into exec $\left(c^{\prime}+c\right) s$
- conclude that compe= c^{\prime}

Step 3: Calculate!

Compiler correctness property

$$
\begin{aligned}
& \operatorname{exec}(\operatorname{comp} e+c) s=\operatorname{exec} c(\text { eval } e: s) \\
& \| \\
& \operatorname{exec}\left(\begin{array}{cc}
c^{\prime} & +c
\end{array}\right) s \text { exec } c(\text { eval } e: s)
\end{aligned}
$$

Strategy

- structural induction on e
- transform exec c (eval e:s) into exec $\left(c^{\prime}+c\right) s$
- conclude that compe= c^{\prime}

Case $e=$ Val n

Compiler correctness property

$$
\text { exec }(\text { comp } e+c) s=\operatorname{exec} c(e v a l e: s)
$$

Proof
exec c (eval (Val n) : s)
$\operatorname{exec}\left(c^{\prime}+c\right) s$

Case $e=$ Val n

Compiler correctness property

$$
\text { exec }(\operatorname{comp} e+c) s=\text { exec } c(\text { eval } e: s)
$$

Proof

$$
\begin{aligned}
& \text { exec } c(\text { eval }(\text { Val } n): s) \\
= & \{\text { definition of eval }\} \\
& \operatorname{exec} c(n: s)
\end{aligned}
$$

$$
\operatorname{exec}\left(c^{\prime}+c\right) s
$$

Case $e=$ Val n

Compiler correctness property

$$
\text { exec }(\text { comp e }+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

Proof

```
    exec c (eval (Val n) : s)
\(=\{\) definition of eval \(\}\)
    \(\operatorname{exec} c(n: s)\)
\(=\{\) define: exec \((\) PUSH \(n: c) s=\operatorname{exec} c(n: s)\}\)
exec (PUSH n:c) s
```

$\operatorname{exec}\left(c^{\prime}+c\right) s$

Case $e=$ Val n

Compiler correctness property

$$
\text { exec }(\text { comp e }+c) s=\text { exec } c(\text { eval } e: s)
$$

Proof

exec c (eval (Val n) : s)
$=\{$ definition of eval $\}$ data Instr $=$ PUSH Int $\mid \ldots$ $\operatorname{exec} c(n: s)$
$=\{$ define: exec $($ PUSH $n: c) s=\operatorname{exec} c(n: s)\}$ exec (PUSH n:c) s
exec $\left(c^{\prime}+c\right) s$

Case $e=$ Val n

Compiler correctness property

$$
\text { exec }(\text { comp e }+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

Proof

```
    exec c (eval (Val n) : s)
\(=\{\) definition of eval \(\}\)
    \(\operatorname{exec} c(n: s)\)
\(=\{\) define: \(\operatorname{exec}(\) PUSH \(n: c) s=\operatorname{exec} c(n: s)\}\)
    exec (PUSH n:c) s
\(=\{\) definition of \(\#\}\)
exec \(\left(c^{\prime}+c\right) s\)
```


Case $e=$ Val n

Compiler correctness property

$$
\text { exec }(\text { comp e }+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

Proof

```
    exec c (eval (Val n) : s)
\(=\{\) definition of eval \(\}\)
    \(\operatorname{exec} c(n: s)\)
\(=\{\) define: exec \((\) PUSH \(n: c) s=\operatorname{exec} c(n: s)\}\)
    exec (PUSH n:c) s
\(=\{\) definition of \(\#\}\)
exec \(([P \cup S H n]+c) s\)
```


Case $e=$ Val n

Compiler correctness property

$$
\text { exec }(\text { comp e }+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

Proof

```
    exec c(eval (Val n):s)
= {definition of eval }
    exec c (n:s)
= {define: exec (PUSH n:c)s=\operatorname{exec}c(n:s)}
    exec (PUSH n:c)s
    = {definition of # }
    exec ([PUSH n] + c) s
```

Conclude: $\operatorname{comp}($ Val $n)=[P U S H n]$

Case $e=$ Add $x y$

Compiler correctness property

$$
\operatorname{exec}(\operatorname{compe}+c) s=\operatorname{exec} c(\text { eval } e: s)
$$

Proof

$$
\text { exec c (eval }(\operatorname{Add} \times y): s)
$$

$$
\operatorname{exec}\left(c^{\prime}+c\right) s
$$

Case $e=$ Add x y

Induction hypothesis

$$
\begin{aligned}
& \text { exec }\left(\text { comp } x+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } x: s^{\prime}\right) \\
& \text { exec }\left(\text { comp } y+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } y: s^{\prime}\right)
\end{aligned}
$$

Proof

$$
\text { exec c (eval }(\operatorname{Add} \times y): s)
$$

$\operatorname{exec}\left(c^{\prime}+c\right) s$

Case $e=$ Add $x y$

Induction hypothesis

$$
\begin{aligned}
& \text { exec }\left(\text { comp } x+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } x: s^{\prime}\right) \\
& \text { exec }\left(\text { comp } y+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } y: s^{\prime}\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \text { exec } c(\text { eval }(\text { Add } x y): s) \\
= & \{\text { definition of eval }\} \\
& \operatorname{exec} c(\text { eval } x+\text { eval } y: s)
\end{aligned}
$$

$$
\operatorname{exec}\left(c^{\prime}+c\right) s
$$

Case $e=$ Add x y

Induction hypothesis

$$
\begin{aligned}
& \text { exec }\left(\text { comp } x+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } x: s^{\prime}\right) \\
& \text { exec (compy } \left.+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } y: s^{\prime}\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \operatorname{exec} c(\text { eval }(\text { Add } x y): s) \\
= & \{\text { definition of eval }\} \\
& \operatorname{exec} c(\text { eval } x+\text { eval } y: s) \\
= & \{\text { define: exec }(A D D: c)(m: n: s)=\operatorname{exec} c((n+m): s)\} \\
& \operatorname{exec}([A D D]+c)(\text { eval } y: \text { eval } x: s)
\end{aligned}
$$

$$
\operatorname{exec}\left(c^{\prime}+c\right) s
$$

Case $e=$ Add x y

Induction hypothesis

$$
\begin{aligned}
& \text { exec }\left(\text { comp } x+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } x: s^{\prime}\right) \\
& \text { exec (compy } \left.+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } y: s^{\prime}\right)
\end{aligned}
$$

Proof

$$
\text { exec c (eval (Add } x y): s)
$$

```
\(=\{\) definition of eval \(\}\)
    exec c (eval \(x+\) eval \(y: s)\)
```

$=\{$ define: $\operatorname{exec}(A D D: c)(m: n: s)=\operatorname{exec} c((n+m): s)\}$
exec ([ADD] + c) (eval y : eval x:s)
$=\{$ induction hypothesis for $y\}$ exec (comp y $+[A D D]+c)$) (eval $x: s)$

$$
\operatorname{exec}\left(c^{\prime}+c\right) s
$$

Case $e=$ Add x y

Induction hypothesis

$$
\begin{aligned}
& \text { exec }\left(\text { comp } x+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } x: s^{\prime}\right) \\
& \text { exec }\left(\text { comp } y+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } y: s^{\prime}\right)
\end{aligned}
$$

Proof

$$
\text { exec c (eval }(\operatorname{Add} \times y): s)
$$

$=\{$ definition of eval $\}$
exec c (eval $x+$ eval $y: s)$
$=\{$ define: $\operatorname{exec}(A D D: c)(m: n: s)=\operatorname{exec} c((n+m): s)\}$ exec ([ADD] $+c$) (eval y : eval x:s)
$=\{$ induction hypothesis for $y\}$ exec (comp y $+[A D D]+c)$) (eval $x: s)$
$=\{$ induction hypothesis for $x\}$
exec $\left(c^{\prime}+c\right) s$

Case $e=$ Add x y

Induction hypothesis

$$
\begin{aligned}
& \text { exec }\left(\text { comp } x+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } x: s^{\prime}\right) \\
& \text { exec }\left(\text { comp } y+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } y: s^{\prime}\right)
\end{aligned}
$$

Proof

$$
\text { exec c (eval }(\operatorname{Add} \times y): s)
$$

$=\{$ definition of eval $\}$
exec c (eval $x+$ eval $y: s)$
$=\{$ define: $\operatorname{exec}(A D D: c)(m: n: s)=\operatorname{exec} c((n+m): s)\}$ exec ([ADD] $+c$) (eval y : eval x:s)
$=\{$ induction hypothesis for $y\}$ exec (comp y $+[A D D]+c)$) (eval x : s)
$=\{$ induction hypothesis for $x\}$
exec (comp $x+$ comp y $+[A D D]+c$) s

Case $e=$ Add $x y$

Induction hypothesis

$$
\begin{aligned}
& \text { exec }\left(\text { comp } x+c^{\prime \prime}\right) s^{\prime}=\text { exec } c^{\prime \prime}\left(\text { eval } x: s^{\prime}\right) \\
& \text { exec }\left(\text { comp } y+c^{\prime \prime}\right) s^{\prime}=\operatorname{exec} c^{\prime \prime}\left(\text { eval } y: s^{\prime}\right)
\end{aligned}
$$

Proof

$$
\text { exec c (eval }(\operatorname{Add} \times y): s)
$$

```
\(=\{\) definition of eval \(\}\)
    exec c (eval \(x+\) eval \(y: s)\)
```

$=\{$ define: $\operatorname{exec}(A D D: c)(m: n: s)=\operatorname{exec} c((n+m): s)\}$
exec ([ADD] $+c$) (eval y : eval x:s)
$=\{$ induction hypothesis for $y\}$
exec (comp y $+[A D D]+c)$) (eval $x: s)$
$=\{$ induction hypothesis for $x\}$
exec (comp $x+$ comp y $+[A D D]+c$) s

Conclude: $\operatorname{comp}(\operatorname{Add} \times y)=\operatorname{comp} x+\operatorname{comp} y+[A D D]$

Derived Compiler Implementation

The compiler

```
data Instr = PUSH Int | ADD
type Code = [Instr] -- list of instructions
comp :: Expr }->\mathrm{ Code
comp(Val n) = [PUSH n]
comp (Add x y) = comp x + comp y + [ADD]
```


Derived Compiler Implementation

The compiler

```
data Instr = PUSH Int | ADD
type Code = [Instr] -- list of instructions
comp :: Expr }->\mathrm{ Code
comp(Val n) = [PUSH n]
comp (Add x y) = comp x + comp y + [ADD]
```

The machine

```
type Stack = [Int] -- list of integers
exec :: Code }->\mathrm{ Stack }->\mathrm{ Stack
exec [] s =s
exec (PUSH n:c) s = exec c (n:s)
exec (ADD:c) (m:n:s)=\operatorname{exec c ((n+m):s)})
```


Summary

- simple calculations without the need for dependent types
- little prior knowledge needed
(e.g. "Target machine has a stack.")
- scales to wide variety of language features

Summary

- simple calculations without the need for dependent types
- little prior knowledge needed (e.g. "Target machine has a stack.")
- scales to wide variety of language features:
- arithmetic expressions
- exceptions (synchronous and asynchronous)
- state (global and local)
- lambda calculi (call-by-value, call-by-name, call-by-need)
- loops (bounded and unbounded)
- non-determinism

Summary

- simple calculations without the need for dependent types
- little prior knowledge needed (e.g. "Target machine has a stack.")
- scales to wide variety of language features:
- arithmetic expressions
- exceptions (synchronous and asynchronous)
- state (global and local)
- lambda calculi (call-by-value, call-by-name, call-by-need)
- loops (bounded and unbounded)
- non-determinism
- Underlying techniques: continuation-passing style \& defunctionalisation (Reynolds, 1972)

Summary

- simple calculations without the need for dependent types
- little prior knowledge needed (e.g. "Target machine has a stack.")
- scales to wide variety of language features:
- arithmetic expressions
- exceptions (synchronous and asynchronous)
- state (global and local)
- lambda calculi (call-by-value, call-by-name, call-by-need)
- loops (bounded and unbounded)
- non-determinism
- Underlying techniques: continuation-passing style \& defunctionalisation (Reynolds, 1972)
- Formalised in Coq \rightsquigarrow proof automation

Future Work

- Register-based machines
- Reason about concurrency
- Modular reasoning (e.g. abstraction from language features)
- "Real" target machines (e.g. JVM)
- Derive translation between calculi (e.g. λ-calculus $\rightarrow \pi$-calculus)

Part II:

Certified Management and Analysis of Financial Contracts

joint work with Jost Berthold \& Martin Elsman

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)
At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

- Express such contracts in a formal language
- Symbolic manipulation and analysis of such contracts.

Introduction

What are financial contracts?

- stipulate future transactions between different parties
- have time constraints
- may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)
At any time within the next 90 days, party X may decide to buy USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

- Express such contracts in a formal language
- Symbolic manipulation and analysis of such contracts.
- Formally verified!

Contract Language Goals in Detail

- Compositionality.

Contracts are time-relative \Rightarrow facilitates compositionality

- Multi-party.

Specify obligations and opportunities for multiple parties, (which opens up the possibility for specifying portfolios)

- Contract management.

Contracts can be managed and symbolically evolved;
a contract gradually reduces to the empty contract.

- Contract utilities (symbolic).

Contracts can be analysed in a variety of ways

- Contract pricing (numerical, staged).

Code for payoff can be generated from contracts (input to a stochastic pricing engine)

Example

Contract in natural language

- At any time within the next 90 days,
- party X may decide to
- buy USD 100 from party Y,
- for a fixed rate r of Danish Kroner.

Example

Contract in natural language

- At any time within the next 90 days,
- party X may decide to
- buy USD 100 from party Y,
- for a fixed rate r of Danish Kroner.

Translation into contract language
if $o b s_{\mathbb{B}}(X$ exercises option, 0$)$ within 90
then $100 \times(U S D(Y \rightarrow X) \& r \times \operatorname{DKK}(X \rightarrow Y))$
else \emptyset

Contributions

- Denotational semantics based on cash-flows
- Reduction semantics (sound and complete)
- Correctness proofs for common contract analyses and transformations
- Formalised in the Coq theorem prover
- Certified implementation via code extraction

An Overview of the Contract Language

Core Calculus of Contracts

$$
\begin{aligned}
& \overline{\vdash \emptyset: \text { Contr }} \quad \frac{p_{1}, p_{2} \in \text { Party } a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \text { Contr }} \\
& \frac{\vdash e: \operatorname{Expr}_{\mathbb{R}} \vdash c: \text { Contr }}{\vdash e \times c: \text { Contr }} \quad \frac{d \in \mathbb{N} \vdash c: \text { Contr }}{\vdash d \uparrow c: \text { Contr }} \\
& \frac{\vdash c_{i}: \text { Contr }}{\vdash c_{1} \& c_{2}: \text { Contr }} \\
& \vdash e: \operatorname{Expr}_{\mathbb{B}} \quad d \in \mathbb{N} \quad \vdash c_{i}: \text { Contr } \\
& \vdash \text { if } e \text { within } d \text { then } c_{1} \text { else } c_{2}: \text { Contr }
\end{aligned}
$$

An Overview of the Contract Language

Core Calculus of Contracts

$$
\begin{aligned}
& \overline{\vdash \emptyset: \text { Contr }} \quad \frac{p_{1}, p_{2} \in \text { Party } a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \text { Contr }} \\
& \frac{\vdash e: \operatorname{Expr}_{\mathbb{R}} \vdash c: \text { Contr }}{\vdash e \times c: \text { Contr }} \quad \frac{d \in \mathbb{N} \vdash c: \text { Contr }}{\vdash d \uparrow c: \text { Contr }} \\
& \vdash c_{i}: \text { Contr } \quad \vdash e: \operatorname{Expr}_{\mathbb{B}} \quad d \in \mathbb{N} \quad \vdash c_{i}: \text { Contr } \\
& \overline{\vdash c_{1} \& c_{2}: \text { Contr } \quad \vdash \text { if } e \text { within } d \text { then } c_{1} \text { else } c_{2}: \text { Contr }}
\end{aligned}
$$

Expression Language
Expr $_{\mathbb{R}}$, Expr $_{\mathbb{B}}$: real-valued resp. Boolean-valued expressions.

An Overview of the Contract Language

Core Calculus of Contracts

$$
\begin{aligned}
& \overline{\vdash \emptyset: \text { Contr }} \quad \frac{p_{1}, p_{2} \in \text { Party } a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \text { Contr }} \\
& \frac{\vdash e: \operatorname{Expr}_{\mathbb{R}} \vdash c: \text { Contr }}{\vdash e \times c: \text { Contr }} \quad \frac{d \in \mathbb{N} \vdash c: \text { Contr }}{\vdash d \uparrow c: \text { Contr }} \\
& \frac{\vdash c_{i}: \text { Contr }}{\vdash c_{1} \& c_{2}: \text { Contr }} \quad \frac{\vdash e: \operatorname{Expr}_{\mathbb{B}} \quad d \in \mathbb{N} \quad \vdash c_{i}: \text { Contr }}{\vdash \text { if } e \text { within } d \text { then } c_{1} \text { else } c_{2}: \text { Contr }}
\end{aligned}
$$

Expression Language
Expr $_{\mathbb{R}}$, Expr $_{\mathbb{B}}$: real-valued resp. Boolean-valued expressions.

$$
\begin{aligned}
& \text { obs }_{\alpha}: \text { Label }_{\alpha} \times \mathbb{Z} \rightarrow \text { Expr }_{\alpha} \\
& \text { acc }_{\alpha}:\left(\operatorname{Expr}_{\alpha} \rightarrow \operatorname{Expr}_{\alpha}\right) \times \mathbb{N} \times \operatorname{Expr}_{\alpha} \rightarrow \operatorname{Expr}_{\alpha}
\end{aligned}
$$

Example: Asian Option

$90 \uparrow$ if $o b s_{\mathbb{B}}(X$ exercises option, 0$)$ within 0 then $100 \times(U S D(Y \rightarrow X) \&($ rate $\times \operatorname{DKK}(X \rightarrow Y)))$ else \emptyset
where

$$
\text { rate }=\frac{1}{30} \cdot a c c\left(\lambda r . r+o b s_{\mathbb{R}}(F X U S D / D K K, 0), 30,0\right)
$$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\mathcal{C} \llbracket \cdot \rrbracket . \text { Contr } \quad \rightarrow \text { CashFlow }
$$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\mathcal{C} \llbracket \cdot \rrbracket .: \text { Contr } \quad \rightarrow \text { CashFlow }
$$

$$
\begin{aligned}
\text { CashFlow } & =\mathbb{N} \rightharpoonup \text { Transactions } \\
\text { Transactions } & =\text { Party } \times \text { Party } \times \text { Asset } \rightarrow \mathbb{R}
\end{aligned}
$$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\begin{gathered}
\mathcal{C} \llbracket \cdot \rrbracket .: \text { Contr } \times \text { Env } \rightarrow \text { CashFlow } \\
\text { Env }=\text { Label } \times \mathbb{Z} \rightharpoonup \mathbb{B} \cup \mathbb{R}
\end{gathered}
$$

$$
\begin{aligned}
\text { CashFlow } & =\mathbb{N} \rightharpoonup \text { Transactions } \\
\text { Transactions } & =\text { Party } \times \text { Party } \times \text { Asset } \rightarrow \mathbb{R}
\end{aligned}
$$

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

$$
\begin{aligned}
& \mathcal{C} \llbracket \cdot \rrbracket \text { : Contr } \times \text { Env } \rightarrow \text { CashFlow } \\
& \mathrm{Env}=\text { Label }_{\alpha} \times \mathbb{Z} \rightharpoonup \alpha
\end{aligned}
$$

CashFlow $=\mathbb{N} \rightharpoonup$ Transactions
Transactions $=$ Party \times Party \times Asset $\rightarrow \mathbb{R}$

Contract Analyses

Examples

- contract dependencies
- contract causality
- contract horizon

Contract Analyses

Examples

- contract depender $o b s_{\mathbb{R}}(F X$ USD $/ D K K, 1) \times \operatorname{DKK}(X \rightarrow Y)$
- contract causality
- contract horizon

Contract Analyses

Examples

- contract dependencies
- contract causality
- contract horizon

Semantics vs. Syntax

- these analyses have precise semantic definition
- they cannot be effectively computed
- we provide sound approximations, e.g. type system

Contract Causality

Refined Types

- e: $\operatorname{Expr}_{\alpha}^{t} \quad$ value of e available at time t (or later)
- c: Contr ${ }^{t}$ no obligations strictly before t

Contract Causality

Refined Types

- e: $\operatorname{Expr}_{\alpha}^{t} \quad$ value of e available at time t (or later)
- c : Contr t no obligations strictly before t

Typing Rules

$$
\frac{t_{1}, t_{2} \in \mathbb{Z} \quad l \in \text { Label }_{\alpha} \quad t_{1} \leq t_{2}}{\Gamma \vdash \operatorname{obs}_{\alpha}\left(I, t_{1}\right): \operatorname{Expr}_{\alpha}^{t_{2}}} \quad \frac{p_{1}, p_{2} \in \text { Party } \quad a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \operatorname{Contr}^{0}}
$$

Contract Causality

Refined Types

- e: $\operatorname{Expr}_{\alpha}^{t} \quad$ value of e available at time t (or later)
- c : Contr ${ }^{t}$ no obligations strictly before t

Typing Rules

$$
\begin{aligned}
& \frac{t_{1}, t_{2} \in \mathbb{Z} \quad I \in \text { Label }_{\alpha} \quad t_{1} \leq t_{2}}{\Gamma \vdash o b s_{\alpha}\left(I, t_{1}\right): \operatorname{Expr}_{\alpha}^{2}} \\
& \frac{p_{1}, p_{2} \in \text { Party } a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \text { Contr }^{0}} \\
& \frac{\vdash e: \operatorname{Expr}_{\mathbb{R}}^{t} \quad \vdash c: \text { Contr }^{t}}{\vdash e \times c: \text { Contr }^{t}} \\
& \frac{d \in \mathbb{N} \quad \vdash c: \text { Contr }^{t}}{\vdash d \uparrow c: \text { Contr }^{t+d}}
\end{aligned}
$$

Contract Causality

Refined Types

- e: $\operatorname{Expr}_{\alpha}^{t} \quad$ value of e available at time t (or later)
- c : Contr ${ }^{t}$ no obligations strictly before t

Typing Rules

$$
\begin{aligned}
& \frac{t_{1}, t_{2} \in \mathbb{Z} \quad I \in \text { Label }_{\alpha} \quad t_{1} \leq t_{2}}{\Gamma \vdash o b s_{\alpha}\left(I, t_{1}\right): \operatorname{Expr}_{\alpha}^{2}} \\
& \frac{p_{1}, p_{2} \in \text { Party } a \in \text { Asset }}{\vdash a\left(p_{1} \rightarrow p_{2}\right): \text { Contr }^{0}} \\
& \frac{\vdash e: \operatorname{Expr}_{\mathbb{R}}^{t} \quad \vdash c: \text { Contr }^{t}}{\vdash e \times c: \text { Contr }^{t}} \\
& \frac{d \in \mathbb{N} \quad \vdash c: \text { Contr }^{t}}{\vdash d \uparrow c: \text { Contr }^{t+d}}
\end{aligned}
$$

Contract Transformations

Contract equivalences

When can we replace a sub-contract with another one, without changing the semantics of the contract?

Reduction semantics

What does the contract look like after n days have passed?
Contract Specialisation
What does the contract look like after we learned the actual value of some observables?

Contract Equivalences

$$
\begin{array}{rlrl}
e_{1} \times\left(e_{2} \times c\right) & \simeq\left(e_{1} \cdot e_{2}\right) \times c & & d \uparrow \emptyset \\
d_{1} \uparrow\left(d_{2} \uparrow c\right) & \simeq\left(d_{1}+d_{2}\right) \uparrow c & & r \times \emptyset \\
d \uparrow\left(c_{1} \& c_{2}\right) & \simeq\left(d \uparrow c_{1}\right) \&\left(d \uparrow c_{2}\right) & & 0 \times c \\
e \times\left(c_{1} \& c_{2}\right) & \simeq\left(e \times c_{1}\right) \&\left(e \times c_{2}\right) & & c \& \emptyset \\
d \uparrow(e \times c) & \simeq(d \uparrow e) \times(d \uparrow c) & c_{1} \& c_{2} \simeq c_{2} \& c_{1}
\end{array}
$$

$d \uparrow$ if b within e then c_{1} else $c_{2} \simeq$ if $d \Uparrow b$ within e then $d \uparrow c_{1}$ else $d \uparrow c_{2}$
$\left(e_{1} \times a\left(p_{1} \rightarrow p_{2}\right)\right) \&\left(e_{2} \times a\left(p_{1} \rightarrow p_{2}\right)\right) \simeq\left(e_{1}+e_{2}\right) \times a\left(p_{1} \rightarrow p_{2}\right)$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

$$
a\left(p_{1} \rightarrow p_{2}\right) \stackrel{\tau_{a, p_{1}, p_{2}}}{\Longrightarrow} \rho
$$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

$$
\frac{c \xlongequal{\tau}_{\rho}^{\rho} c^{\prime} \quad \mathcal{E} \llbracket e \rrbracket_{\rho}=v}{e \times c \stackrel{v * \tau}{\Longrightarrow}_{\rho}(-1 \Uparrow e) \times c^{\prime}}
$$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

$$
\frac{c \stackrel{\tau}{\Longrightarrow} \rho c^{\prime} \quad \mathcal{E} \llbracket e \rrbracket_{\rho}=v}{e \times c \stackrel{v * \tau}{\Longrightarrow}_{\rho}(-1 \Uparrow e) \times c^{\prime}}
$$

Reduction Semantics

$$
C \stackrel{\tau}{\Longrightarrow} \rho C^{\prime}
$$

$$
\frac{c \stackrel{\tau}{\Longrightarrow} \rho c^{\prime} \quad \mathcal{E} \llbracket e \rrbracket_{\rho}=v}{e \times c \stackrel{v * \tau}{\Longrightarrow} \rho(-1 \Uparrow e) \times c^{\prime}}
$$

Theorem (Reduction semantics correctness)
(i) If $c{ }_{\tau}^{\tau} c^{\prime}$, then
(a) $\mathcal{C} \llbracket c \rrbracket_{\rho}(0)=\tau$, and
(b) $\mathcal{C} \llbracket c \rrbracket_{\rho}(i+1)=\mathcal{C} \llbracket c^{\prime} \rrbracket_{1 \Uparrow \rho}(i) \quad$ for all $i \in \mathbb{N}$.
(ii) If $\mathcal{C} \llbracket c \rrbracket_{\rho}(0)=\tau$, then there is a unique c^{\prime} with $c{ }_{\tau}^{\tau} c^{\prime}$.

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, monotonicity, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, monotonicity, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Code Extraction

Coq formalisation

- Denotational \& reduction semantics
- Meta-theory of contracts (causality, monotonicity, ...)
- Definition of contract transformations and analyses
- Correctness proofs

Extraction of executable Haskell code

- efficient Haskell implementation
- embedded domain-specific language for contracts
- contract analyses and contract management

Future Work

- improve code extraction
- advanced analyses and transformations (e.g. scenario generation and "zooming")
- combine this work with numerical methods

