Certified Compilers and Program Analyses

Patrick Bahr

University of Copenhagen,
Department of Computer Science
paba@diku.dk

1st December, 2014

Overview

1. Deriving Certified Compilers from Specification

2. Certified Management and Analysis of Financial Contracts

)

27

Part I:
Deriving Certified Compilers from Specification

joint work with Graham Hutton

27

Introduction

The problem: Implementing a correct compiler.

27

Introduction

The problem: Implementing a correct compiler.

compiler

Language

Code

27

Introduction

The problem: Implementing a correct compiler.

compiler
Language Code

auIyde

Machine
Actions

27

Introduction

The problem: Implementing a correct compiler.

2+3

compiler
Language Code

auIyde

Machine
Actions

PUSH 2
PUSH 3
ADD

push 5
on stack

27

Introduction

The problem: Implementing a correct compiler.

2+3

compiler
Language Code
<
[«5)
['] S
>
(0]
Semantic Machine

Domain Actions

PUSH 2
PUSH 3
ADD

push 5
on stack

27

Introduction

The problem: Implementing a correct compiler.

2+3

compiler
Language Code
<
[«5)
['] S
>
(0]
Semantic Machine

Domain Actions

PUSH 2
PUSH 3
ADD

push 5
on stack

27

Introduction

The problem: Implementing a correct compiler.

2+3

compiler
Language Code
<
[«5)
['] S
>
(0]
Semantic rep Machine

Domain Actions

PUSH 2
PUSH 3
ADD

push 5
on stack

27

Introduction

The problem: Implementing a correct compiler.

2+3

compiler
Language Code
<
[«5)
['] S
>
(0]
Semantic rep Machine

Domain Actions

PUSH 2
PUSH 3
ADD

push 5
on stack

27

Introduction

The problem: Implementing a correct compiler.

compiler

2+3 Language Code

<

[)

[S

5

D
Semantic rep Machine

5 . .

Domain Actions

Goal: » Systematically derive compiler from [-] & rep

PUSH 2
PUSH 3
ADD

push 5
on stack

Introduction

The problem: Implementing a correct compiler.

compiler

2+3 Language Code

<

[)

['1 S

5

D
Semantic rep Machine

5) :

Domain Actions

Goal: » Systematically derive compiler from [-] & rep
» Derivation is rigorous & machine-checked

PUSH 2
PUSH 3
ADD

push 5
on stack

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

Syntax

data Expr = Val Int | Add Expr Expr

/27

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

Syntax eg. 243 ~ Add(Val2)(Val3)

data Expr = Val Int | Add Expr Expr

/27

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

Syntax eg. 243 ~ Add(Val2)(Val3)

data Expr = Val Int | Add Expr Expr

Semantics

eval :: Expr — Int
eval (Valn) =n
eval (Add x y) = eval x + eval y

Step 2: Compiler Correctness Property
The compiler

data /nstr = ...
type Code = [Instr] -- list of instructions

comp :: Expr — Code

27

Step 2: Compiler Correctness Property

The compiler

data /nstr = ...
type Code = [Instr] -- list of instructions

comp :: Expr — Code
The machine

type Stack = [Int] -- list of integers
exec :: Code — Stack — Stack

27

Step 2: Compiler Correctness Property

The compiler

data /nstr = ...
type Code = [Instr] -- list of instructions

comp :: Expr — Code
The machine

type Stack = [Int] -- list of integers
exec :: Code — Stack — Stack

Compiler correctness property
For all e:: Expr, s :: Stack

exec (comp e)s= eval e:s

27

Step 2: Compiler Correctness Property

The compiler

data /nstr = ...
type Code = [Instr] -- list of instructions

comp :: Expr — Code
The machine

type Stack = [Int] -- list of integers
exec :: Code — Stack — Stack

Compiler correctness property
For all e :: Expr, s :: Stack, c :: Code

exec (comp e H ¢) s = exec ¢ (eval e:s)

27

Step 2: Compiler Correctness Property
The compiler

data /nstr = ...
type Code = [Instr] -- list of instructions

comp :: Expr — Code
The machine

type Stack = [Int] -- list of integers
exec :: Code — Stack — Stack

exec []s=s

Compiler correctness property
For all e :: Expr, s :: Stack, c :: Code

exec (comp e H ¢) s = exec ¢ (eval e:s)

27

Step 3: Calculate!

Compiler correctness property

exec (comp e Hc) s = exec c (eval e:s)

/27

Step 3: Calculate!

Compiler correctness property

exec (comp e +c) s = exec c (eval e:s)

Strategy
» structural induction on e
» transform exec c (eval e : s) into exec (¢' +¢) s

» conclude that comp e = ¢’

27

Step 3: Calculate!

Compiler correctness property

exec (comp e +c) s = exec c (eval e:s)

exec c (eval e:s)

Strategy
» structural induction on e
» transform exec c (eval e : s) into exec (¢' +¢) s

» conclude that comp e = ¢’

27

Step 3: Calculate!

Compiler correctness property

exec (comp e +c) s = exec c (eval e:s)

e~ exec ¢ (eval e:s)

Strategy
» structural induction on e
» transform exec c (eval e : s) into exec (¢' +¢) s

» conclude that comp e = ¢’

27

Step 3: Calculate!

Compiler correctness property

exec (comp e +c) s = exec c (eval e:s)

exec (¢’ +Hc)s « exec c (eval e:s)

Strategy
» structural induction on e
» transform exec c (eval e : s) into exec (¢' +¢) s

» conclude that comp e = ¢’

27

Step 3: Calculate!

Compiler correctness property

exec (comp e +c) s = exec c (eval e:s)

exec (¢’ +4c)s « exec c (eval e:s)

Strategy
» structural induction on e
» transform exec c (eval e : s) into exec (¢' +¢) s

» conclude that comp e = ¢’

27

Case e = Val n

Compiler correctness property
exec (comp e + ¢) s = exec c (eval e :s)

Proof

exec c (eval (Val n):s)

exec (c' Hc¢)s

27

Case e = Val n

Compiler correctness property
exec (comp e + ¢) s = exec c (eval e :s)

Proof

exec c (eval (Val n):s)

= { definition of eval }
exec ¢ (n:s)

exec (c' Hc¢)s

27

Case e = Val n

Compiler correctness property
exec (comp e + ¢) s = exec c (eval e :s)

Proof

exec c (eval (Val n):s)

= { definition of eval }
exec ¢ (n:s)

= { define: exec (PUSH n:c)s=execc(n:s) }
exec (PUSH n:c) s

exec (c' Hc¢)s

27

Case e = Val n

Compiler correctness property
exec (comp e + ¢) s = exec c (eval e :s)

Proof

exec c (eval (Val n):s)

= { definition of eval } |data Instr = PUSH Int | ...

exec ¢ (n:s)
= { define: exec (PUSH n:c)s=execc(n:s) }
exec (PUSH n:c) s

exec (c' Hc¢)s

27

Case e = Val n

Compiler correctness property
exec (comp e + ¢) s = exec c (eval e :s)

Proof

exec c (eval (Val n):s)

= { definition of eval }
exec ¢ (n:s)

= { define: exec (PUSH n:c)s=execc(n:s) }
exec (PUSH n:c) s

= { definition of + }
exec (c/ Hc¢)s

27

Case e = Val n

Compiler correctness property
exec (comp e + ¢) s = exec c (eval e :s)

Proof

exec c (eval (Val n):s)
= { definition of eval }
exec ¢ (n:s)
= { define: exec (PUSH n:c)s=execc(n:s) }
exec (PUSH n:c) s
= { definition of + }
exec ([PUSH n] +#¢) s

27

Case e = Val n

Compiler correctness property
exec (comp e + ¢) s = exec c (eval e :s)

Proof

exec c (eval (Val n):s)

= { definition of eval }
exec ¢ (n:s)

= { define: exec (PUSH n:c)s=execc(n:s) }
exec (PUSH n:c) s

= { definition of + }
exec ([PUSH n] +#¢) s

Conclude: comp (Val n) = [PUSH n]

27

Case e = Add x y

Compiler correctness property

exec (comp e + ¢) s = exec c (eval e :s)

Proof
exec ¢ (eval (Add x y):s)

exec (¢' 4+ ¢) s

27

Case e = Add x y
Induction hypothesis

exec (comp x H c") s’ = exec ¢’ (eval x : s')

exec (comp y + c") s’ = exec ¢ (eval y : §')

Proof
exec ¢ (eval (Add x y):s)

exec (¢' 4+ ¢) s

27

Case e = Add x y
Induction hypothesis

exec (comp x H c") s’ = exec ¢’ (eval x : s')
exec (comp y + c") s’ = exec ¢ (eval y : §')

Proof
exec ¢ (eval (Add x y):s)

= { definition of eval }
exec ¢ (eval x + eval y : s)

exec (¢' 4+ ¢) s

27

Case e = Add x y
Induction hypothesis

exec (comp x H c") s’ = exec ¢’ (eval x : s')

exec (comp y + c") s’ = exec ¢ (eval y : §')

Proof
exec ¢ (eval (Add x y):s)

= { definition of eval }
exec ¢ (eval x + eval y : s)

= { define: exec (ADD:c) (m:n:s)=execc((n+m):s)}
exec ([ADD] #-c) (eval y : eval x : s)

exec (¢' 4+ ¢) s

27

Case e = Add x y
Induction hypothesis

exec (comp x H c") s’ = exec ¢’ (eval x : s')

exec (comp y + c") s’ = exec ¢ (eval y : §')

Proof
exec ¢ (eval (Add x y):s)

= { definition of eval }
exec ¢ (eval x + eval y : s)

= { define: exec (ADD:c) (m:n:s)=execc((n+m):s)}
exec ([ADD] #-c) (eval y : eval x : s)

= { induction hypothesis for y }
exec (comp y H [ADD] + ¢)) (eval x : s)

exec (¢' 4+ ¢) s

27

Case e = Add x y
Induction hypothesis

exec (comp x H c") s’ = exec ¢’ (eval x : s')

exec (comp y + c") s’ = exec ¢ (eval y : §')

Proof
exec ¢ (eval (Add x y):s)

= { definition of eval }
exec ¢ (eval x + eval y : s)

= { define: exec (ADD:c) (m:n:s)=execc((n+m):s)}
exec ([ADD] #-c) (eval y : eval x : s)

= { induction hypothesis for y }
exec (comp y H [ADD] + ¢)) (eval x : s)

= { induction hypothesis for x }
exec (¢' 4+ ¢) s

27

Case e = Add x y
Induction hypothesis

exec (comp x H c") s’ = exec ¢’ (eval x : s')

exec (comp y + c") s’ = exec ¢ (eval y : §')

Proof
exec ¢ (eval (Add x y):s)

= { definition of eval }
exec ¢ (eval x + eval y : s)

= { define: exec (ADD:c) (m:n:s)=execc((n+m):s)}
exec ([ADD] + c) (eval y : eval x : s)

= { induction hypothesis for y }
exec (comp y H [ADD] + ¢)) (eval x : s)

= { induction hypothesis for x }

exec (comp x H comp y H [ADD] +¢) s

27

Case e = Add x y
Induction hypothesis

exec (comp x H c") s’ = exec ¢’ (eval x : s')

exec (comp y + c") s’ = exec ¢ (eval y : §')

Proof
exec ¢ (eval (Add x y):s)

= { definition of eval }
exec ¢ (eval x + eval y : s)

= { define: exec (ADD:c) (m:n:s)=execc((n+m):s)}
exec ([ADD] + c) (eval y : eval x : s)

= { induction hypothesis for y }
exec (comp y H [ADD] + ¢)) (eval x : s)

= { induction hypothesis for x }

exec (comp x H comp y H [ADD] +¢) s

Conclude: comp (Add x y) = comp x + comp y + [ADD]

9

27

Derived Compiler Implementation

The compiler

data Instr = PUSH Int | ADD
type Code = [Instr] -- list of instructions

comp :: Expr — Code
comp (Val n) = [PUSH n]
comp (Add x y) = comp x + comp y + [ADD]

10/27

Derived Compiler Implementation

The compiler

data Instr = PUSH Int | ADD
type Code = [Instr] -- list of instructions

comp :: Expr — Code
comp (Val n) = [PUSH n]
comp (Add x y) = comp x + comp y + [ADD]

The machine

type Stack = [Int] -- list of integers

exec :: Code — Stack — Stack

exec [] s =s

exec (PUSH n: c) s =execc(n:s)

exec (ADD :¢c) (m:n:s)=execc((n+ m):s)

10/27

Summary

» simple calculations without the need for dependent types

> little prior knowledge needed
(e.g. “Target machine has a stack.”)
> scales to wide variety of language features

11 /27

Summary

» simple calculations without the need for dependent types

> little prior knowledge needed
(e.g. “Target machine has a stack.”)

> scales to wide variety of language features:

vV vy vy VY VY

arithmetic expressions

exceptions (synchronous and asynchronous)

state (global and local)

lambda calculi (call-by-value, call-by-name, call-by-need)
loops (bounded and unbounded)

non-determinism

11/27

Summary

v

simple calculations without the need for dependent types

v

little prior knowledge needed

(e.g. “Target machine has a stack.”)

> scales to wide variety of language features:

arithmetic expressions

exceptions (synchronous and asynchronous)

state (global and local)

lambda calculi (call-by-value, call-by-name, call-by-need)
loops (bounded and unbounded)

non-determinism

vV vy vy VY VY

v

Underlying techniques: continuation-passing style &
defunctionalisation (Reynolds, 1972)

11/27

Summary

v

simple calculations without the need for dependent types

v

little prior knowledge needed

(e.g. “Target machine has a stack.”)

> scales to wide variety of language features:

arithmetic expressions

exceptions (synchronous and asynchronous)

state (global and local)

lambda calculi (call-by-value, call-by-name, call-by-need)
loops (bounded and unbounded)

non-determinism

vV vy vy VY VY

v

Underlying techniques: continuation-passing style &
defunctionalisation (Reynolds, 1972)

v

Formalised in Coq ~~ proof automation

11/27

Future Work

v

Register-based machines

v

Reason about concurrency

» Modular reasoning
(e.g. abstraction from language features)

v

“Real” target machines (e.g. JVM)

Derive translation between calculi
(e.g. A-calculus — 7-calculus)

v

12 /27

Part |l

Certified Management and Analysis
of Financial Contracts

joint work with Jost Berthold & Martin Elsman

13 /27

Introduction

What are financial contracts?

» stipulate future transactions between different parties
> have time constraints

» may depend on stock prices, exchange rates etc.

14 /27

Introduction

What are financial contracts?

» stipulate future transactions between different parties
> have time constraints

» may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

14 /27

Introduction

What are financial contracts?

» stipulate future transactions between different parties
> have time constraints

» may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

» Express such contracts in a formal language

» Symbolic manipulation and analysis of such contracts.

14 /27

Introduction

What are financial contracts?
» stipulate future transactions between different parties

» have time constraints

» may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

» Express such contracts in a formal language
» Symbolic manipulation and analysis of such contracts.

» Formally verified!

14 /27

Contract Language Goals in Detail

» Compositionality.

Contracts are time-relative = facilitates compositionality
> Multi-party.

Specify obligations and opportunities for multiple parties,

(which opens up the possibility for specifying portfolios)
» Contract management.

Contracts can be managed and symbolically evolved;

a contract gradually reduces to the empty contract.

» Contract utilities (symbolic).
Contracts can be analysed in a variety of ways

» Contract pricing (numerical, staged).
Code for payoff can be generated from contracts
(input to a stochastic pricing engine)

15 /27

Example

Contract in natural language

> At any time within the next 90 days,
» party X may decide to
» buy USD 100 from party Y,

» for a fixed rate r of Danish Kroner.

16 /27

Example

Contract in natural language

> At any time within the next 90 days,
» party X may decide to
» buy USD 100 from party Y,

» for a fixed rate r of Danish Kroner.

Translation into contract language

if obsp(X exercises option, 0) within 90

then 100 x (USD(Y — X) & r x DKK(X — Y))
else ()

16

27

Contributions

Denotational semantics based on cash-flows

v

v

Reduction semantics (sound and complete)

v

Correctness proofs for common contract analyses and
transformations

v

Formalised in the Coq theorem prover

v

Certified implementation via code extraction

17 /27

An Overview of the Contract Language

Core Calculus of Contracts

p1, p2 € Party a € Asset

F 0 : Contr F a(p1 — p2) : Contr
Fe:Exprp F c: Contr deN Fc: Contr
F e x c: Contr Fd1c: Contr
F ¢ : Contr Fe:Exprg deN ¢ :Contr

F c1 & ¢ : Contr F if e within d then ¢; else ¢ : Contr

18 /27

An Overview of the Contract Language

Core Calculus of Contracts

p1, p2 € Party a € Asset
F 0 : Contr F a(p1 — p2) : Contr

Fe:Exprp F c: Contr deN Fc: Contr
F e x c: Contr Fd* c: Contr

F ¢ : Contr Fe:Exprg deN ¢ :Contr

F c1 & ¢ : Contr F if e within d then ¢; else ¢ : Contr

Expression Language
Exprr, Exprg: real-valued resp. Boolean-valued expressions.

18 /27

An Overview of the Contract Language

Core Calculus of Contracts

p1, p2 € Party a € Asset
F 0 : Contr F a(p1 — p2) : Contr

Fe:Exprp F c: Contr deN Fc: Contr
F e x c: Contr Fd* c: Contr

F ¢ : Contr Fe:Exprg deN ¢ :Contr

F c1 & ¢ : Contr F if e within d then ¢; else ¢ : Contr

Expression Language
Exprr, Exprg: real-valued resp. Boolean-valued expressions.

obs, : Label, X Z — Expr,
accy : (Expr, — Expr,) x N x Expr, — Expr,

18 /27

Example: Asian Option

90 1 if obsg(X exercises option, 0) within 0
then 100 x (USD(Y — X) &(rate x DKK(X — Y)))

else ()

where

1
rate = 0 acc(Ar.r + obsg(FX USD/DKK,0),30,0)

19/27

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C[].: Contr — CashFlow

20 /27

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C[].: Contr — CashFlow

CashFlow = N — Transactions

Transactions = Party x Party x Asset — R

20 /27

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C[].: Contr x Env — CashFlow
Env = Label xZ ~BUR

CashFlow = N — Transactions

Transactions = Party x Party x Asset — R

20 /27

Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C[].: Contr x Env — CashFlow

Env = Label, X Z — «

CashFlow = N — Transactions

Transactions = Party x Party x Asset — R

20 /27

Contract Analyses

Examples

» contract dependencies
» contract causality

» contract horizon

21/27

Contract Analyses

Examples

» contract depender

obsp(FX USD/DKK 1) x DKK(X — Y)

» contract causality

» contract horizon

21/27

Contract Analyses

Examples

» contract dependencies
» contract causality

» contract horizon

Semantics vs. Syntax

> these analyses have precise semantic definition
> they cannot be effectively computed

» we provide sound approximations, e.g. type system

21/27

Contract Causality

Refined Types

» e: Exprl value of e available at time t (or later)

» c: Contr® no obligations strictly before t

22/27

Contract Causality

Refined Types

» e: Exprl value of e available at time t (or later)
» c: Contr® no obligations strictly before t
Typing Rules
ti,th €Z | € label, t1 <t p1, p2 € Party a € Asset

[+ obsy (1, t1) : Expr? Fa(py — p2) : Contr®

22/27

Contract Causality

Refined Types

» e: Exprl value of e available at time t (or later)
» c: Contr® no obligations strictly before t
Typing Rules
ti,th €Z | € label, t1 <t p1, p2 € Party a € Asset
[+ obsy (1, t1) : Expr? Fa(py — p2) : Contr®
Fe:Exprk F c:Contrt deN Fc:Contrt

e x c: Contrt -d 1 c: Contrttd

22/27

Contract Causality

Refined Types

» e: Exprl value of e available at time t (or later)
» c: Contr® no obligations strictly before t
Typing Rules
ti,th €Z | € label, t1 <t p1, p2 € Party a € Asset
[+ obsy (1, t1) : Expr? Fa(py — p2) : Contr®
Fe:Exprk F c:Contrt deN Fc:Contrt

e x c: Contrt -d 1 c: Contrttd

22/27

Contract Transformations

Contract equivalences

When can we replace a sub-contract with another one, without
changing the semantics of the contract?

Reduction semantics
What does the contract look like after n days have passed?

Contract Specialisation

What does the contract look like after we learned the actual value
of some observables?

23 /27

Contract Equivalences

e1 X (&2 x ¢) =~ (e - &) x d10~0
d1T(d2TC)2(d1+d2)TC rx~0
dT(cl&CQ) (d1ca)&(dT) Oxc~(
X (&)~ (exc)&ex) c&D~c
dT(exc) (dfte)x(dtc) a&o>~c&a

d 1 if b within e then ¢; else ¢, ~
if d } bwithinethend 1 cielsed 1 o

(e1 x a(p1 — p2)) &(€2 x a(p1 — p2)) =~ (e1 + e2) x a(p1 — p2)

Reduction Semantics

T /
C:>pC

25 /27

Reduction Semantics

T /
C:>pC

Ta,pq,
a(pr — p2) =7, 0

25 /27

Reduction Semantics
T /
C=,C

c=,c Ele],=v

a(py — po) 2,0 exc=>,(-11e)xc

25 /27

Reduction Semantics
T /
C=,C

c=,c Ele],=v

a(py — po) 2,0 exc=>,(-11e)xc

25 /27

Reduction Semantics
T /
C=,C

c=,c Ele],=v

a(py — po) 2,0 exc=>,(-11e)xc

Theorem (Reduction semantics correctness)

(i) Ifc ==, ¢, then
(a) C[c],(0) =7, and
(b) Clc], (i+1)=C[c']yy, (i) forallieN.

(i) IfC[cl,(0) = 7, then there is a unique c" with c =, c.

25 /27

Code Extraction

Coq formalisation

» Denotational & reduction semantics
» Meta-theory of contracts (causality, monotonicity, .. .)
» Definition of contract transformations and analyses

» Correctness proofs

26 /27

Code Extraction

Coq formalisation

» Denotational & reduction semantics
» Meta-theory of contracts (causality, monotonicity, .. .)
» Definition of contract transformations and analyses

» Correctness proofs

26 /27

Code Extraction

Coq formalisation

» Denotational & reduction semantics

» Meta-theory of contracts (causality, monotonicity, .. .

» Definition of contract transformations and analyses

» Correctness proofs

Extraction of executable Haskell code

» efficient Haskell implementation
» embedded domain-specific language for contracts

> contract analyses and contract management

26 /27

Future Work

» improve code extraction

» advanced analyses and transformations
(e.g. scenario generation and “zooming”)

» combine this work with numerical methods

	Deriving Certified Compilers from Specification
	Certified Management and Anaysis of Financial Contracts

