
· ◦DL · :: ∀ f g h q1 q2 p . (Functor f ,Functor g ,Functor h,Functor q1)⇒
TransD g q2 h → TransL

M f q1 p g → TransL
M f (q1 :∧: q2) p h

tr2 ◦DL tr1 (q1 :∧: q2) t = Ltr2MD q2 (tr1 (fmap (λa q ′2 → a q ′2) q1) (fmap reshape t))
where reshape :: ((q1 :∧: q2) (h

∗ a)→ a, p)→ (q1 (g∗ (q2 → a))→ q2 → a, p)
reshape (f , p) = (λq ′1 q ′2 → f (fmap (λs q ′′2 → Ltr2MD q ′′2 s) q ′1 :∧: q ′2), p)

Figure 6. Composition of an MTTL followed by a DTT.

A. Proof of Lemma 1
Lemma 1. Let e = λz q → Re (z q) and b = algD tr for some
tr . Then the following holds for all x and q:

foldµ b (join x ) q = join (fold∗ e b (fmap (foldµ b) x ) q)

Proof of Lemma 1. We proceed by induction on x :: f ∗ µf .

• Case x = Re y for some z :: µf .

join (fold∗ e b (fmap f (foldµ b) (Re y)) q)

= { Definition of fmap }
join (fold∗ e b (Re (foldµ b y)) q)

= { Definition of fold∗ }
join (e (foldµ b y) q)

= { Definition of e }
join (Re (foldµ b y q))

= { Definition of join }
foldµ b y q

= { Definition of join }
foldµ b (join (Re y)) q

• Case x = In y for some y :: f µf .

join (fold∗ e b (fmap (foldµ b) (In y)) q)

= { Definition of fmap }
join (fold∗ e b (In (fmap (fmap (foldµ b)) y)) q)

= { Definition of fold∗; functor law }
join (b (fmap (fold∗ e b ◦ fmap (foldµ b)) y) q)

= { Definition of b and algD }
join (join (tr q (fmap (fold∗ e b ◦ fmap (foldµ b)) y)))

= {Monad law: join ◦ join = join ◦ fmap join }
join (fmap join (tr q (fmap (fold∗ e b ◦ fmap (foldµ b)) y)))

= { Parametricity; functor law }
join (tr q (fmap ((join ◦ ) ◦ fold∗ e b ◦ fmap (foldµ b)) y))

= { Induction hypothesis }
join (tr q (fmap (foldµ b ◦ join) y))

= { Definition of b and algD }
b (fmap (foldµ b ◦ join) y) q

= { Functor law; definition of foldµ }
foldµ b (In (fmap join y)) q

= { Definition of join }
foldµ b (join (In y)) q

B. Composition of MTTLs
The definition of ·◦DL · given in Figure 6 constructs the composition
of an MTTL followed by a DTT.

13 2013/6/17


