copL- =V fghaq g p.(Functor f, Functor g, Functor h, Functor ¢.) =
Transp g g2 b — Transky f ¢ p g — Transky f (g1 A q2) p b
tro opL tr1 (q1 A g2) t = (tr2)o g2 (tr1 (fmap (Ma ¢’y — a ¢'5) @) (fmap reshape t))
where reshape :: ((q1 :A: ¢2) (B* a) = a,p) = (1 (¢" (@2 = a)) = ¢ — a,p)
reshape (f,p) = (Aq'y ¢’y = f (fmap (Xs ¢"5 = (tra)o ¢"5 ) 'y 2\ q'5), p)

Figure 6. Composition of an MTTL followed by a DTT.

A. Proof of Lemma 1 B. Composition of MTTLs
Lemma 1. Let e = Az ¢ — Re (z q) and b = algp tr for some The definition of -op - given in Figure 6 constructs the composition
tr. Then the following holds for all x and q: of an MTTL followed by a DTT.

fold, b (join z) q = join (fold« e b (fmap (fold, b) z) q)
Proof of Lemma 1. We proceed by induction on z :: f* puf.

e Case z = Re y for some z :: uf.
join (fold. ¢ b (fmap f (fold, b) (Re y)) )
= { Definition of fmap }
join (fold. e b (Re (fold, b y)) q)
= { Definition of fold. }
join (e (fold, by) q)
= { Definition of e }
join (Re (foldyu by q))
= { Definition of join }
fold, by q
= { Definition of join }
foldy b (join (Re y)) q
e Case z = In y forsome y :: f uf.
join (fold. ¢ b (fmap (fold, b) (In y)) q)
= { Definition of fmap }
join (folde e b (In (fmap (fmap (foldy b)) v)) 4)
= { Definition of fold.; functor law }
join (b (fmap (fold. e bo fmap (fold, b)) y) q)
= { Definition of b and algp }
join (join (tr g (fmap (fold. e bo fmap (fold, b)) y)))
= { Monad law: join o join = join o fmap join }
join (fmap join (tr q (fmap (fold. e bo fmap (fold, b)) y)))
= { Parametricity; functor law }
join (tr q (fmap ((joino)o folds e bo fmap (fold, b)) y))
= { Induction hypothesis }
join (tr q (fmap (fold,s bo join) 1))
= { Definition of b and algp }
b (fmap (foldy bo join) y) q
= { Functor law; definition of fold,, }
fold,, b (In (fmap join y)) q
= { Definition of join }
fold, b (join (In 4)) q

13 2013/6/17



