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Term Graph Rewriting vs. Infinitary Rewriting
Pick one to avoid the other.

Pick term graph rewriting
finite representation of
infinite terms (via cycles)
finite representation of
infinite rewrite sequences

f

g

b

h

Pick infinitary rewriting
avoid dealing with term graphs
work on the unravelling instead
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Infinitary Term Graph Rewriting – What is it for?

A common formalism
study correspondences between infinitary TRSs and finitary GRSs

Lazy evaluation
infinitary term rewriting only covers non-strictness
however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec
Ariola & Blom. Skew confluence and the lambda calculus with letrec.
the calculus is non-confluent
but there is a notion of infinite normal forms
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Our Previous Approach [RTA ’11]

Profile
weak convergence
two modes of convergence: metric & partial order

result: I correspondence between metric & partial order convergence
I soundness w.r.t. infinitary term rewriting (sorta kinda)

problem: complicated; difficult to analyse; lack of completeness

Term graph rewriting with from(x)→ x :: from(s(x))

from

0

::

0 from

s

::

0 ::

s from

s

::

0 ::

s ::

s
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Our New Approach
Less restrictive structures

dR(g , h) ≥ dS(g , h)

 coarser topology (i.e. more sequences converge)
g ≤R

⊥ h =⇒ g ≤S
⊥ h

 sequences converge to term graphs “with fewer ⊥’s”
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Outline

1 Introduction
Goals
A Different Approach

2 Weak Convergence

3 Strong Convergence
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Metric Infinitary Term Rewriting

Complete metric on terms

d(s, t) = 2−sim(s,t)

sim(s, t) = maximum depth d s.t. truncated at depth d , s and t are equal

Example

1 level

f

a f

b c

f

a e

a

s td( , ) = 2−1

2 levels

f

a e

a

f

a e

b

s ′ t ′

d( , ) = 2−2
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Metric Infinitary Term Graph Rewriting

Complete metric on terms

d(g , h) = 2−sim(g ,h)

sim(g , h) = maximum depth d s.t. truncated at depth d , g and h are equal

Example
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Partial Order Infinitary Term Rewriting

Partial order on terms
partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms

8
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A Partial Order on Term Graphs

Specialise on terms
Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism describing matching in term graph rewriting

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.
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Properties of Completions
Term graph rewriting with from(x)→ x :: from(s(x))

from

0

::

0 from

s

::

0 ::

s from

s

::

0 ::

s ::

s

Theorem (metric completion of term graphs)

The metric completion of (GC(Σ),dS) is the metric space (G∞C (Σ),dS).

Theorem (ideal completion of term graphs)

The ideal completion of (GC(Σ⊥),≤S
⊥) is order isomorphic to

(G∞C (Σ⊥),≤S
⊥).
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Metric vs. Partial Order Convergence
Partial order convergence

f

c c

f

c

f

c c

f

c

f

c c

Why???

Because
f

c c

f

c
≤S
⊥

Theorem
Let S be a reduction in a GRS R:

S : g ↪→m R h =⇒
⇐=

!

%

S : g ↪→p R h total
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Outline

1 Introduction
Goals
A Different Approach

2 Weak Convergence

3 Strong Convergence
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Strong Convergence

Intuition behind strong convergence
syntactic restriction of convergence
pretend that the root of the left-hand side and the right-hand side of
each rule are distinct

Strong metric convergence
additional restriction: depth of contracted redexes must tend to infinity

Strong partial order convergence
modify limit formation: replace each redex with ⊥
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Consequences
Partial order convergence
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Examples
Term graph rewriting with from(x)→ x :: from(s(x))
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Metric vs. Partial Order Approach
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Conclusions

Simple structures formalising convergence on term graphs
intuitive & simple generalisation of term rewriting counterparts
the structures are “complete”
“soundness” of limit & limit inferior (i.e. commutes with unravelling)
But: weak partial order convergence is somewhat odd

Strong convergence
regain correspondence between metric and partial order convergence
soundness and completeness w.r.t. infinitary term rewriting
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