

Faculty of Science

Convergence in Infinitary Term Graph Rewriting Systems is Simple

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

7th International Workshop on Computing with Terms and Graphs Rome, Italy, March 23rd, 2013

Term Graph Rewriting vs. Infinitary Rewriting

Pick one to avoid the other.

Term Graph Rewriting vs. Infinitary Rewriting

Pick one to avoid the other.

Pick term graph rewriting

- finite representation of infinite terms (via cycles)
- finite representation of infinite rewrite sequences

Term Graph Rewriting vs. Infinitary Rewriting

Pick one to avoid the other.

Pick term graph rewriting

- finite representation of infinite terms (via cycles)
- finite representation of infinite rewrite sequences

Pick infinitary rewriting

- avoid dealing with term graphs
- work on the unravelling instead

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary TRSs and finitary GRSs

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary TRSs and finitary GRSs

Lazy evaluation

- infinitary term rewriting only covers non-strictness
- however: lazy evaluation = non-strictness + sharing

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary TRSs and finitary GRSs

Lazy evaluation

- infinitary term rewriting only covers non-strictness
- however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec

- Ariola & Blom. Skew confluence and the lambda calculus with letrec.
- the calculus is non-confluent
- but there is a notion of infinite normal forms

Profile

- weak convergence
- two modes of convergence: metric & partial order

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

Less restrictive structures

• $\mathbf{d}_{\mathsf{R}}(g,h) \geq \mathbf{d}_{\mathsf{S}}(g,h)$

Our New Approach Less regardless to the state of $\mathbf{d}_{\mathsf{R}}(g,h) \ge \mathbf{d}_{\mathsf{S}}(g,h)$

Our New Approach Less respective still states • $\mathbf{d}_{R}(g,h) \ge \mathbf{d}_{S}(g,h)$ \rightsquigarrow coarser topology (i.e. more sequences converge)

Less restrictive structures

d_R(g, h) ≥ d_S(g, h)
 → coarser topology (i.e. more sequences converge)
 g ≤^R_⊥ h ⇒ g ≤^S_⊥ h

Less restrictive structures

- d_R(g, h) ≥ d_S(g, h)
 ~ coarser topology (i.e. more sequences converge)
 g <^R_⊥ h ⇒ g <^S_⊥ h
 - \rightsquigarrow sequences converge to term graphs "with fewer \perp 's"

Less restrictive structures

• $\mathbf{d}_{\mathsf{R}}(g,h) \ge \mathbf{d}_{\mathsf{S}}(g,h)$ \rightsquigarrow coarser topology (i.e. more sequences converge)

•
$$g \leq^{\mathsf{R}}_{\perp} h \Longrightarrow g \leq^{\mathsf{S}}_{\perp} h$$

 \rightsquigarrow sequences converge to term graphs "with fewer \perp 's"

Outline

Introduction

- Goals
- A Different Approach

3 Strong Convergence

Complete metric on terms

$$\mathsf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Example

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Example

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Example

Complete metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. truncated at depth d, s and t are equal

Complete metric on terms

$$\mathsf{d}(g,h) = 2^{-\mathsf{sim}(g,h)}$$

sim(g, h) = maximum depth d s.t. truncated at depth d, g and h are equal

Partial Order Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Partial Order Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

• intuition: eventual persistence of nodes of the terms

A Partial Order on Term Graphs

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

A Partial Order on Term Graphs

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi \colon g \to_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of <u>⊥-nodes to arbitrary nodes</u>
- same mechanism describing matching in term graph rewriting

A Partial Order on Term Graphs

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi \colon g \to_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of \perp -nodes to arbitrary nodes
- same mechanism describing matching in term graph rewriting

Definition (Simple partial order \leq_{\perp}^{S} on term graphs)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq^{\mathsf{S}}_{\perp} h$ iff there is some $\phi \colon g \to_{\perp} h$.

Properties of Completions

Term graph rewriting with $from(x) \rightarrow x :: from(s(x))$

Properties of Completions

Theorem (metric completion of term graphs)

The metric completion of $(\mathcal{G}_{\mathcal{C}}(\Sigma), \mathbf{d}_{S})$ is the metric space $(\mathcal{G}_{\mathcal{C}}^{\infty}(\Sigma), \mathbf{d}_{S})$.

Properties of Completions

Theorem (metric completion of term graphs)

The metric completion of $(\mathcal{G}_{\mathcal{C}}(\Sigma), \mathbf{d}_{S})$ is the metric space $(\mathcal{G}_{\mathcal{C}}^{\infty}(\Sigma), \mathbf{d}_{S})$.

Theorem (ideal completion of term graphs)

The ideal completion of $(\mathcal{G}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp})$ is order isomorphic to $(\mathcal{G}_{\mathcal{C}}^{\infty}(\Sigma_{\perp}), \leq^{S}_{\perp})$.

Partial order convergence

Partial order convergence

11

Partial order convergence

Why???

Partial order convergence

Why???

Because
$$f \leq S (f)$$

 $c c c c c c$

Partial order convergence

Why???

Because
$$f \leq S (f)$$

 $c c c c c c$

Theorem

$$\begin{array}{cccc} S \colon g \stackrel{m}{\longrightarrow}_{\mathcal{R}} h & \stackrel{\Longrightarrow}{\longleftarrow} & S \colon g \stackrel{p}{\longrightarrow}_{\mathcal{R}} h \ total \end{array}$$

Partial order convergence

Why???

Because
$$f \leq S (f)$$

 $c c c c c c$

Theorem

$$S: g \stackrel{m}{\to}_{\mathcal{R}} h \qquad \stackrel{\checkmark}{\longleftarrow} \qquad S: g \stackrel{p}{\to}_{\mathcal{R}} h \text{ tota}$$

Partial order convergence

Why???

Because
$$f \leq S (f)$$

 $c c c c c c$

Theorem

$$S: g \xrightarrow{m}_{\mathcal{R}} h \xrightarrow{\checkmark} S: g \xrightarrow{p}_{\mathcal{R}} h \text{ total}$$

Outline

Introduction

- Goals
- A Different Approach

2 Weak Convergence

Strong Convergence

Intuition behind strong convergence

- syntactic restriction of convergence
- pretend that the root of the left-hand side and the right-hand side of each rule are distinct

Strong Convergence

Intuition behind strong convergence

- syntactic restriction of convergence
- pretend that the root of the left-hand side and the right-hand side of each rule are distinct

Strong metric convergence

additional restriction: depth of contracted redexes must tend to infinity

Strong Convergence

Intuition behind strong convergence

- syntactic restriction of convergence
- pretend that the root of the left-hand side and the right-hand side of each rule are distinct

Strong metric convergence

additional restriction: depth of contracted redexes must tend to infinity

Strong partial order convergence

modify limit formation: replace each redex with \perp

Partial order convergence

14

Partial order convergence

Rules that produce this rewrite sequence

Partial order convergence

Rules that produce this rewrite sequence

Partial order convergence

Rules that produce this rewrite sequence

Theorem

$$S: g \xrightarrow{m}_{\mathcal{R}} h \qquad \Longleftrightarrow \qquad S: g \xrightarrow{p}_{\mathcal{R}} h \text{ total}$$

Term graph rewriting with $from(x) \rightarrow x :: from(s(x))$

Term graph rewriting with $from(x) \rightarrow x :: from(s(x))$

Term graph rewriting with $from(x) \rightarrow x :: from(s(x))$

Term graph rewriting with $from(x) \rightarrow x :: from(s(x))$

Term graph rewriting with $from(x) \rightarrow x :: from(s(x))$

Term graph rewriting with $from(x) \rightarrow x :: from(s(x))$

Term graph rewriting with $from(x) \rightarrow x :: from(s(x))$

Theorem (Soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (Soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (Soundness of partial order convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (Soundness of partial order convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (Completeness of partial order convergence)

For every orthogonal, left-finite GRS \mathcal{R} we have

$$\begin{array}{cccc} \underline{\mathcal{U}(\mathcal{R})} & s & & p \\ \hline \underline{\mathcal{U}(\cdot)} & & \\ \underline{\mathcal{R}} & g \end{array} \xrightarrow{p} & t \end{array}$$

16

Theorem (Soundness of partial order convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (Completeness of partial order convergence)

For every orthogonal, left-finite GRS \mathcal{R} we have

$$\frac{\mathcal{U}(\mathcal{R})}{\mathcal{U}(\cdot)} \stackrel{s}{\uparrow} \xrightarrow{p} t \\
\frac{\mathcal{R}}{\mathcal{R}} \quad g \quad \cdots \quad \cdots \quad h$$

16

Theorem (Soundness of partial order convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (Completeness of partial order convergence)

For every orthogonal, left-finite GRS \mathcal{R} we have

Conclusions

Simple structures formalising convergence on term graphs

- intuitive & simple generalisation of term rewriting counterparts
- the structures are "complete"
- "soundness" of limit & limit inferior (i.e. commutes with unravelling)
- But: weak partial order convergence is somewhat odd

Conclusions

Simple structures formalising convergence on term graphs

- intuitive & simple generalisation of term rewriting counterparts
- the structures are "complete"
- "soundness" of limit & limit inferior (i.e. commutes with unravelling)
- But: weak partial order convergence is somewhat odd

Strong convergence

- regain correspondence between metric and partial order convergence
- soundness and completeness w.r.t. infinitary term rewriting

