
un i v er s i ty of copenhagen department of computer sc i ence

Faculty of Science

Reasoning over compilers using structured graphs

Patrick Bahr
University of Copenhagen,
Department of Computer Science
paba@diku.dk

2nd December, 2013

Slide 1

un i v er s i ty of copenhagen department of computer sc i ence

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

• Derive compiler implementation from denotational semantics

• Derivation by formal calculations

• Result: compiler + virtual machine + correctness proof

Problem: Representing Branching Control Flow

• tree-structured code vs. explicit labels and jumps

• Our proposal: use structured graphs (Oliveira & Cook, 2012)

• purely functional representation using variable binders

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 2

un i v er s i ty of copenhagen department of computer sc i ence

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

• Derive compiler implementation from denotational semantics

• Derivation by formal calculations

• Result: compiler + virtual machine + correctness proof

Problem: Representing Branching Control Flow

• tree-structured code vs. explicit labels and jumps

• Our proposal: use structured graphs (Oliveira & Cook, 2012)

• purely functional representation using variable binders

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 2

un i v er s i ty of copenhagen department of computer sc i ence

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

• Derive compiler implementation from denotational semantics

• Derivation by formal calculations

• Result: compiler + virtual machine + correctness proof

Problem: Representing Branching Control Flow

• tree-structured code vs. explicit labels and jumps

• Our proposal: use structured graphs (Oliveira & Cook, 2012)

• purely functional representation using variable binders

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 2

un i v er s i ty of copenhagen department of computer sc i ence

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

• Derive compiler implementation from denotational semantics

• Derivation by formal calculations

• Result: compiler + virtual machine + correctness proof

Problem: Representing Branching Control Flow

• tree-structured code vs. explicit labels and jumps

• Our proposal: use structured graphs (Oliveira & Cook, 2012)

• purely functional representation using variable binders

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 2

un i v er s i ty of copenhagen department of computer sc i ence

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

• Derive compiler implementation from denotational semantics

• Derivation by formal calculations

• Result: compiler + virtual machine + correctness proof

Problem: Representing Branching Control Flow

• tree-structured code vs. explicit labels and jumps

• Our proposal: use structured graphs (Oliveira & Cook, 2012)

• purely functional representation using variable binders

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 2

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Calculating Compilers

2 Structured Graphs

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 3

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Calculating Compilers

2 Structured Graphs

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 4

un i v er s i ty of copenhagen department of computer sc i ence

Calculating Correct Compilers
(Bahr & Hutton, 2013)

History

• Underlying techniques: continuation-passing style &
defunctionalisation (Reynolds, 1972)

• Origins: Wand (1982); Meijer (1992); Ager et al. (2003)

Our approach

• simple, goal-oriented calculations

• little prior knowledge needed
(e.g. “Target machine has a stack.”)

• full correctness proof as a byproduct

• wide variety of language features: arithmetic, exceptions,
state, lambda calculi, loops, non-determinism, interrupts

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 5

un i v er s i ty of copenhagen department of computer sc i ence

Calculating Correct Compilers
(Bahr & Hutton, 2013)

History

• Underlying techniques: continuation-passing style &
defunctionalisation (Reynolds, 1972)

• Origins: Wand (1982); Meijer (1992); Ager et al. (2003)

Our approach

• simple, goal-oriented calculations

• little prior knowledge needed
(e.g. “Target machine has a stack.”)

• full correctness proof as a byproduct

• wide variety of language features: arithmetic, exceptions,
state, lambda calculi, loops, non-determinism, interrupts

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 5

un i v er s i ty of copenhagen department of computer sc i ence

Calculate a Compiler in 3 Steps

1 Define evaluation function in compositional manner.

2 Calculate a version that uses a stack and continuations.

3 Defunctionalise to produce a compiler and a virtual machine.

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 6

un i v er s i ty of copenhagen department of computer sc i ence

Calculate a Compiler in 3 Steps

1 Define evaluation function in compositional manner.

2 Calculate a version that uses a stack and continuations.

3 Defunctionalise to produce a compiler and a virtual machine.

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 6

un i v er s i ty of copenhagen department of computer sc i ence

Calculate a Compiler in 3 Steps

1 Define evaluation function in compositional manner.

2 Calculate a version that uses a stack and continuations.

3 Defunctionalise to produce a compiler and a virtual machine.

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 6

un i v er s i ty of copenhagen department of computer sc i ence

Toy Example: Simple Arithmetic Language
Step 1: Semantics of the language

Syntax

data Expr = Val Int | Add Expr Expr

Semantics

eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

Toy Example: Simple Arithmetic Language
Step 1: Semantics of the language

Syntax

data Expr = Val Int | Add Expr Expr

Semantics

eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 7

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack → Stack

evalC :: Expr → Cont → Cont

Specification

evalC e c s = c (eval e : s)

Constructive induction: “prove” specification by induction

 definition of evalC

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack → Stack

evalC :: Expr → Cont → Cont

Specification

evalC e c s = c (eval e : s)

Constructive induction: “prove” specification by induction

 definition of evalC

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack → Stack

evalC :: Expr → Cont → Cont

Specification

evalC e c s = c (eval e : s)

Constructive induction: “prove” specification by induction

 definition of evalC

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack → Stack

evalC :: Expr → Cont → Cont

Specification

evalC e c s = c (eval e : s)

Constructive induction: “prove” specification by induction

 definition of evalC

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS

Type Definitions

type Stack = [Int]
type Cont = Stack → Stack

evalC :: Expr → Cont → Cont

Specification

evalC e c s = c (eval e : s)

Constructive induction: “prove” specification by induction

 definition of evalC

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 8

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

evalC e c s = c (eval e : s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

= { definition of eval }
c ((eval x + eval y) : s)

eval (Add x y) = eval x + eval y

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

= { definition of eval }
c ((eval x + eval y) : s)

IH: evalC e c s = c (eval e : s)

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

IH: evalC y c s = c (eval y : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

evalC (Add x y) c s

= { specification of evalC }
c (eval (Add x y) : s)

= { definition of eval }
c ((eval x + eval y) : s)

= { define: add c (n : m : s) = c ((m + n) : s) }
add c (eval y : eval x : s)

= { induction hypothesis for y }
evalC y (add c) (eval x : s)

= { induction hypothesis for x }
evalC x (evalC y (add c)) s

IH: evalC x c s = c (eval x : s)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 9

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

Derived definition

evalC :: Expr → Cont → Cont
evalC (Val n) c = push n c
evalC (Add x y) c = evalC x (evalC y (add c))

push :: Int → Cont → Cont
push n c s = c (n : s)

add :: Cont → Cont
add c (n : m : s) = c ((m + n) : s)

Identity continuation

evalS :: Expr → Cont
evalS e = evalC e halt

halt :: Cont
halt s = s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

Derived definition

evalC :: Expr → Cont → Cont
evalC (Val n) c = push n c
evalC (Add x y) c = evalC x (evalC y (add c))

push :: Int → Cont → Cont
push n c s = c (n : s)

add :: Cont → Cont
add c (n : m : s) = c ((m + n) : s)

Identity continuation

evalS :: Expr → Cont
evalS e = evalC e halt

halt :: Cont
halt s = s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Step 2: Transformation into CPS (cont.)

Derived definition

evalC :: Expr → Cont → Cont
evalC (Val n) c = push n c
evalC (Add x y) c = evalC x (evalC y (add c))

push :: Int → Cont → Cont
push n c s = c (n : s)

add :: Cont → Cont
add c (n : m : s) = c ((m + n) : s)

Identity continuation

evalS :: Expr → Cont
evalS e = evalC e halt

halt :: Cont
halt s = s

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 10

un i v er s i ty of copenhagen department of computer sc i ence

Step 3: Defunctionalisation

Compiler

Defunctionalisation of evalS and evalC:

comp :: Expr → Code

comp e = compA e HALT

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

Virtual Machine

exec :: Code → Cont
exec HALT = halt
exec (PUSH n c) = push n (exec c)
exec (ADD c) = add (exec c)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 11

un i v er s i ty of copenhagen department of computer sc i ence

Step 3: Defunctionalisation

Compiler

Defunctionalisation of evalS and evalC:

comp :: Expr → Code

comp e = compA e HALT

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

data Code where
HALT :: Code
PUSH :: Int → Code → Code
ADD :: Code → Code

Virtual Machine

exec :: Code → Cont
exec HALT = halt
exec (PUSH n c) = push n (exec c)
exec (ADD c) = add (exec c)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 11

un i v er s i ty of copenhagen department of computer sc i ence

Step 3: Defunctionalisation

Compiler

Defunctionalisation of evalS and evalC:

comp :: Expr → Code

comp e = compA e HALT

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

data Code where
HALT :: Code
PUSH :: Int → Code → Code
ADD :: Code → Code

Virtual Machine

exec :: Code → Cont
exec HALT = halt
exec (PUSH n c) = push n (exec c)
exec (ADD c) = add (exec c)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 11

un i v er s i ty of copenhagen department of computer sc i ence

Compiler Correctness

evalC e c s = c (eval e : s) (Specification)

+ exec (comp e) s = evalS e s (Defuntionalisation)

+ evalS e = evalC e halt (Definition of evalS)

= exec (comp e) s = eval e : s (Compiler correctness)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 12

un i v er s i ty of copenhagen department of computer sc i ence

Compiler Correctness

evalC e c s = c (eval e : s) (Specification)

+ exec (comp e) s = evalS e s (Defuntionalisation)

+ evalS e = evalC e halt (Definition of evalS)

= exec (comp e) s = eval e : s (Compiler correctness)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 12

un i v er s i ty of copenhagen department of computer sc i ence

Compiler Correctness

evalC e c s = c (eval e : s) (Specification)

+ exec (comp e) s = evalS e s (Defuntionalisation)

+ evalS e = evalC e halt (Definition of evalS)

= exec (comp e) s = eval e : s (Compiler correctness)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 12

un i v er s i ty of copenhagen department of computer sc i ence

Compiler Correctness

evalC e c s = c (eval e : s) (Specification)

+ exec (comp e) s = evalS e s (Defuntionalisation)

+ evalS e = evalC e halt (Definition of evalS)

= exec (comp e) s = eval e : s (Compiler correctness)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 12

un i v er s i ty of copenhagen department of computer sc i ence

A Language with Exceptions

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

eval :: Expr → Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of

Nothing → Nothing
Just n → case eval y of

Nothing → Nothing
Just m → Just (n + m)

eval Throw = Nothing
eval (Catch x h) = case eval x of

Nothing → eval h
Just n → Just n

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 13

un i v er s i ty of copenhagen department of computer sc i ence

A Language with Exceptions

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

eval :: Expr → Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of

Nothing → Nothing
Just n → case eval y of

Nothing → Nothing
Just m → Just (n + m)

eval Throw = Nothing
eval (Catch x h) = case eval x of

Nothing → eval h
Just n → Just n

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 13

un i v er s i ty of copenhagen department of computer sc i ence

The Derived Compiler

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h c) (compA x (UNMARK c))

comp :: Expr → Code

comp e = compA e HALT

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 14

un i v er s i ty of copenhagen department of computer sc i ence

The Derived Compiler

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h c) (compA x (UNMARK c))

comp :: Expr → Code

comp e = compA e HALT

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 14

un i v er s i ty of copenhagen department of computer sc i ence

The Derived Compiler

data Code = PUSH Int Code | ADD Code | HALT
| MARK Code Code | UNMARK Code | THROW

compA :: Expr → Code → Code

compA (Val n) c = PUSH n . c

compA (Add x y) c = compA x . compA y . ADD . c

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h . c) . compA x . UNMARK . c

comp :: Expr → Code

comp e = compA e . HALT

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 15

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Calculating Compilers

2 Structured Graphs

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 16

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Structured Graphs

• Trees with explicit let bindings

• (parametric) higher-order abstract syntax

Example

compA (Val n) c = PUSH n . c

compA (Add x y) c = compA x . compA y . ADD . c

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h . c)

. compA x . UNMARK . c

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 17

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Structured Graphs

• Trees with explicit let bindings

• (parametric) higher-order abstract syntax

Example

compA (Val n) c = PUSH n . c

compA (Add x y) c = compA x . compA y . ADD . c

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h . c)

. compA x . UNMARK . c

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 17

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs (Oliveira & Cook, 2012)

Structured Graphs

• Trees with explicit let bindings

• (parametric) higher-order abstract syntax

Example

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG Throw c = THROW G

compAG (Catch x h) c = Let c (λc ′ → MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 17

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

data Code a = PUSH Int a | ADD a | HALT
| MARK a a | UNMARK a | THROW

compAT :: Expr → Tree Code → Tree Code

compAT (Val n) c = PUSHT n . c

compAT (Add x y) c = compAT x . compAT y . ADDT . c

compAT Throw c = THROW T

compAT (Catch x h) c = MARKT (compAT h . c)

. compAT x . UNMARKT . c

compT :: Expr → Tree Code

compT e = compAT e . HALTT

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 18

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

data Code a = PUSH Int a | ADD a | HALT
| MARK a a | UNMARK a | THROW

compAT :: Expr → Tree Code → Tree Code

compAT (Val n) c = PUSHT n . c

compAT (Add x y) c = compAT x . compAT y . ADDT . c

compAT Throw c = THROW T

compAT (Catch x h) c = MARKT (compAT h . c)

. compAT x . UNMARKT . c

compT :: Expr → Tree Code

compT e = compAT e . HALTT

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 18

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

data Code a = PUSH Int a | ADD a | HALT
| MARK a a | UNMARK a | THROW

compAT :: Expr → Tree Code → Tree Code

compAT (Val n) c = PUSHT n . c

compAT (Add x y) c = compAT x . compAT y . ADDT . c

compAT Throw c = THROW T

compAT (Catch x h) c = MARKT (compAT h . c)

. compAT x . UNMARKT . c

compT :: Expr → Tree Code

compT e = compAT e . HALTT

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 18

un i v er s i ty of copenhagen department of computer sc i ence

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree f = In (f (Tree f))

data Code a = PUSH Int a | ADD a | HALT
| MARK a a | UNMARK a | THROW

compAT :: Expr → Tree Code → Tree Code

compAT (Val n) c = PUSHT n . c

compAT (Add x y) c = compAT x . compAT y . ADDT . c

compAT Throw c = THROW T

compAT (Catch x h) c = MARKT (compAT h . c)

. compAT x . UNMARKT . c

compT :: Expr → Tree Code

compT e = compAT e . HALTT

PUSHT n c = In (PUSH n c)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 18

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = Graph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ Code v → Graph′ Code v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG (Throw) c = THROW G

compAG (Catch x h) c = Let c (λc ′ → MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′)

compG :: Expr → Graph Code

compG e = Graph (compAG e . HALTG)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 19

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = Graph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ Code v → Graph′ Code v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG (Throw) c = THROW G

compAG (Catch x h) c = Let c (λc ′ → MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′)

compG :: Expr → Graph Code

compG e = Graph (compAG e . HALTG)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 19

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = Graph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ Code v → Graph′ Code v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG (Throw) c = THROW G

compAG (Catch x h) c = Let c (λc ′ → MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′)

compG :: Expr → Graph Code

compG e = Graph (compAG e . HALTG)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 19

un i v er s i ty of copenhagen department of computer sc i ence

Structured Graphs

Definition

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

newtype Graph f = Graph (∀ v . Graph′ f v)

compAG :: Expr → Graph′ Code v → Graph′ Code v

compAG (Val n) c = PUSHG n . c

compAG (Add x y) c = compAG x . compAG y . ADDG . c

compAG (Throw) c = THROW G

compAG (Catch x h) c = Let c (λc ′ → MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′)

compG :: Expr → Graph Code

compG e = Graph (compAG e . HALTG)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 19

un i v er s i ty of copenhagen department of computer sc i ence

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

execT :: Tree Code → Stack → Stack
execT = fold execAlg

Folds on Graphs

ufold :: Functor f ⇒ (f r → r)→ Graph f → r
ufold alg (Graph g) = ufold ′ g where
ufold ′ (GIn t) = alg (fmap ufold ′ t)
ufold ′ (Let e f) = ufold ′ (f (ufold ′ e))
ufold ′ (Var x) = x

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 20

un i v er s i ty of copenhagen department of computer sc i ence

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

execT :: Tree Code → Stack → Stack
execT = fold execAlg

Folds on Graphs

ufold :: Functor f ⇒ (f r → r)→ Graph f → r
ufold alg (Graph g) = ufold ′ g where
ufold ′ (GIn t) = alg (fmap ufold ′ t)
ufold ′ (Let e f) = ufold ′ (f (ufold ′ e))
ufold ′ (Var x) = x

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 20

un i v er s i ty of copenhagen department of computer sc i ence

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

execT :: Tree Code → Stack → Stack
execT = fold execAlg

Folds on Graphs

ufold :: Functor f ⇒ (f r → r)→ Graph f → r
ufold alg (Graph g) = ufold ′ g where
ufold ′ (GIn t) = alg (fmap ufold ′ t)
ufold ′ (Let e f) = ufold ′ (f (ufold ′ e))
ufold ′ (Var x) = x

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 20

un i v er s i ty of copenhagen department of computer sc i ence

Virtual Machine as a Fold

Fold over Trees

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

Virtual Machine as a Fold

execG :: Graph Code → Stack → Stack
execG = ufold execAlg

Folds on Graphs

ufold :: Functor f ⇒ (f r → r)→ Graph f → r
ufold alg (Graph g) = ufold ′ g where
ufold ′ (GIn t) = alg (fmap ufold ′ t)
ufold ′ (Let e f) = ufold ′ (f (ufold ′ e))
ufold ′ (Var x) = x

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 20

un i v er s i ty of copenhagen department of computer sc i ence

Correctness proof

Correctness of tree-based compiler (from calculation)

execT (compT e) [] = conv (eval e)

It suffices to show that

execG (compG e) s = execT (compT e) s

Proof.

execG (compG e) s
(1)
= execT (unravel (compG e)) s

(2)
= execT (compT e) s

Theorem

ufold alg = fold alg ◦ unravel

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 21

un i v er s i ty of copenhagen department of computer sc i ence

Correctness proof

Correctness of tree-based compiler (from calculation)

execT (compT e) [] = conv (eval e)

It suffices to show that

execG (compG e) s = execT (compT e) s

Proof.

execG (compG e) s
(1)
= execT (unravel (compG e)) s

(2)
= execT (compT e) s

Theorem

ufold alg = fold alg ◦ unravel

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 21

un i v er s i ty of copenhagen department of computer sc i ence

Correctness proof

Correctness of tree-based compiler (from calculation)

execT (compT e) [] = conv (eval e)

It suffices to show that

execG (compG e) s = execT (compT e) s

Proof.

execG (compG e) s
(1)
= execT (unravel (compG e)) s

(2)
= execT (compT e) s

Theorem

ufold alg = fold alg ◦ unravel

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 21

un i v er s i ty of copenhagen department of computer sc i ence

Correctness proof

Correctness of tree-based compiler (from calculation)

execT (compT e) [] = conv (eval e)

It suffices to show that

execG (compG e) s = execT (compT e) s

Proof.

execG (compG e) s
(1)
= execT (unravel (compG e)) s

(2)
= execT (compT e) s

Theorem

ufold alg = fold alg ◦ unravel
Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 21

un i v er s i ty of copenhagen department of computer sc i ence

Correctness proof

Correctness of tree-based compiler (from calculation)

execT (compT e) [] = conv (eval e)

It suffices to show that

execG (compG e) s = execT (compT e) s

Proof.

execG (compG e) s
(1)
= execT (unravel (compG e)) s

(2)
= execT (compT e) s

Theorem

ufold alg = fold alg ◦ unravel
Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 21

un i v er s i ty of copenhagen department of computer sc i ence

Proof of (2)

Lemma

unravel (compG e) = compT e

Proof.

By induction on e.
The interesting part:

unravel (Let c (λc ′ →
MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′))

= MARKT (compAT h . unravel c)

. compAT x . UNMARKT . unravel c

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 22

un i v er s i ty of copenhagen department of computer sc i ence

Proof of (2)

Lemma

unravel (compG e) = compT e

Proof.

By induction on e.

The interesting part:

unravel (Let c (λc ′ →
MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′))

= MARKT (compAT h . unravel c)

. compAT x . UNMARKT . unravel c

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 22

un i v er s i ty of copenhagen department of computer sc i ence

Proof of (2)

Lemma

unravel (compG e) = compT e

Proof.

By induction on e.
The interesting part:

unravel (Let c (λc ′ →
MARKG (compAG h . Var c ′)

. compAG x . UNMARKG . Var c
′))

= MARKT (compAT h . unravel c)

. compAT x . UNMARKT . unravel c

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 22

un i v er s i ty of copenhagen department of computer sc i ence

But ...

Things are not as nice as they seem on the outside

• HOAS is a nice interface to construct graphs

• But: HOAS is difficult to reason over

Alternative: “Names for free” (Bernardy & Pouillard, 2013)

• provides the same HOAS interface

• But: it’s de Bruin indices under the hood

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 23

un i v er s i ty of copenhagen department of computer sc i ence

But ...

Things are not as nice as they seem on the outside

• HOAS is a nice interface to construct graphs

• But: HOAS is difficult to reason over

Alternative: “Names for free” (Bernardy & Pouillard, 2013)

• provides the same HOAS interface

• But: it’s de Bruin indices under the hood

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 23

un i v er s i ty of copenhagen department of computer sc i ence

Summary

Calculating Correct Compilers

• simple, goal-oriented calculations; no magic

• little prior knowledge needed
(by using partial specifications)

• full correctness proof

• scales to wide variety of language features

Structured Graphs/Names for free

• improve calculated compilers

• avoid reasoning over explicit labels and jumps

• simple reasoning principle

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 24

un i v er s i ty of copenhagen department of computer sc i ence

Summary

Calculating Correct Compilers

• simple, goal-oriented calculations; no magic

• little prior knowledge needed
(by using partial specifications)

• full correctness proof

• scales to wide variety of language features

Structured Graphs/Names for free

• improve calculated compilers

• avoid reasoning over explicit labels and jumps

• simple reasoning principle

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 24

un i v er s i ty of copenhagen department of computer sc i ence

Open Questions / Future Work

Beyond folds

• What if the virtual machine is not a fold?

• This seems impossible with HOAS-style graphs

• Ad hoc reasoning for “Names for free”-style graphs possible

Cyclic graphs

• Our method is restricted to acyclic graphs.

• Cyclic graphs require different reasoning principle.
(fixed-point induction?)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 25

un i v er s i ty of copenhagen department of computer sc i ence

Open Questions / Future Work

Beyond folds

• What if the virtual machine is not a fold?

• This seems impossible with HOAS-style graphs

• Ad hoc reasoning for “Names for free”-style graphs possible

Cyclic graphs

• Our method is restricted to acyclic graphs.

• Cyclic graphs require different reasoning principle.
(fixed-point induction?)

Patrick Bahr — Reasoning over compilers using structured graphs — 2nd December, 2013

Slide 25

	Calculating Compilers
	Structured Graphs

