Reasoning over compilers using structured graphs

Patrick Bahr
University of Copenhagen, Department of Computer Science paba@diku.dk

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

- Derive compiler implementation from denotational semantics
- Derivation by formal calculations

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

- Derive compiler implementation from denotational semantics
- Derivation by formal calculations
- Result: compiler + virtual machine + correctness proof

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

- Derive compiler implementation from denotational semantics
- Derivation by formal calculations
- Result: compiler + virtual machine + correctness proof

Problem: Representing Branching Control Flow

- tree-structured code vs. explicit labels and jumps

Goals and Motivation

Goal

Simplify implementation of and reasoning over compilers.

Method: Calculating Compilers

- Derive compiler implementation from denotational semantics
- Derivation by formal calculations
- Result: compiler + virtual machine + correctness proof

Problem: Representing Branching Control Flow

- tree-structured code vs. explicit labels and jumps
- Our proposal: use structured graphs (Oliveira \& Cook, 2012)
- purely functional representation using variable binders

Outline

(1) Calculating Compilers

(2) Structured Graphs

Outline

(1) Calculating Compilers

(2) Structured Graphs

Calculating Correct Compilers

(Bahr \& Hutton, 2013)

History

- Underlying techniques: continuation-passing style \& defunctionalisation (Reynolds, 1972)
- Origins: Wand (1982); Meijer (1992); Ager et al. (2003)

Calculating Correct Compilers
 (Bahr \& Hutton, 2013)

History

- Underlying techniques: continuation-passing style \& defunctionalisation (Reynolds, 1972)
- Origins: Wand (1982); Meijer (1992); Ager et al. (2003)

Our approach

- simple, goal-oriented calculations
- little prior knowledge needed (e.g. "Target machine has a stack.")
- full correctness proof as a byproduct
- wide variety of language features: arithmetic, exceptions, state, lambda calculi, loops, non-determinism, interrupts

Calculate a Compiler in 3 Steps

(1) Define evaluation function in compositional manner.

Calculate a Compiler in 3 Steps

(1) Define evaluation function in compositional manner.
(2) Calculate a version that uses a stack and continuations.

Calculate a Compiler in 3 Steps

(1) Define evaluation function in compositional manner.

2 Calculate a version that uses a stack and continuations.
(3) Defunctionalise to produce a compiler and a virtual machine.

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

Syntax

data Expr = Val Int | Add Expr Expr

Toy Example: Simple Arithmetic Language

Step 1: Semantics of the language

Syntax

data Expr = Val Int | Add Expr Expr

Semantics

$$
\begin{array}{ll}
\text { eval } & :: \text { Expr } \rightarrow \text { Int } \\
\text { eval }(\text { Val } n) & =n \\
\text { eval }(\text { Add } x y) & =\text { eval } x+\text { eval } y
\end{array}
$$

Step 2: Transformation into CPS

Type Definitions

$$
\begin{aligned}
& \text { type Stack }=[\operatorname{Int}] \\
& \text { type Cont }=\text { Stack } \rightarrow \text { Stack }
\end{aligned}
$$

Step 2: Transformation into CPS

Type Definitions

type Stack $=[\operatorname{lnt}]$
type Cont $=$ Stack \rightarrow Stack
evalC $::$ Expr \rightarrow Cont \rightarrow Cont

Step 2: Transformation into CPS

Type Definitions

$$
\begin{aligned}
& \text { type Stack }=[\operatorname{lnt}] \\
& \text { type Cont }=\text { Stack } \rightarrow \text { Stack } \\
& \text { evalC }:: \text { Expr } \rightarrow \text { Cont } \rightarrow \text { Cont }
\end{aligned}
$$

Specification

evalc ecs=c(eval e:s)

Step 2: Transformation into CPS

Type Definitions

$$
\begin{aligned}
& \text { type Stack }=[\operatorname{lnt}] \\
& \text { type Cont }=\text { Stack } \rightarrow \text { Stack } \\
& \text { evalC }:: \text { Expr } \rightarrow \text { Cont } \rightarrow \text { Cont }
\end{aligned}
$$

Specification

evalc ecs=c(eval e:s)

Constructive induction: "prove" specification by induction

Step 2: Transformation into CPS

Type Definitions

$$
\begin{aligned}
& \text { type Stack }=[\text { Int }] \\
& \text { type Cont }=\text { Stack } \rightarrow \text { Stack } \\
& \text { evalC }:: \text { Expr } \rightarrow \text { Cont } \rightarrow \text { Cont }
\end{aligned}
$$

Specification

evalc ecs=c(eval e:s)

Constructive induction: "prove" specification by induction \rightsquigarrow definition of evalc

Step 2: Transformation into CPS (cont.)

evalc (Add $x y)$ cs

Step 2: Transformation into CPS (cont.)

```
    evalC (Add x y) c s
= { specification of evalc }
c (eval (Add x y) : s)
```


Step 2: Transformation into CPS (cont.)

$$
\begin{aligned}
& \text { evalc }(\text { Add } \times y) c s \\
= & \{\text { specification of eval } C\} \\
& c(\text { eval }(\text { Add } \times y): s)
\end{aligned}
$$

evalc ecs=c(eval e:s)

Step 2: Transformation into CPS (cont.)

$$
\begin{aligned}
& \text { evalc }(\text { Add } \times y) c s \\
= & \{\text { specification of evalc }\} \\
& c(\text { eval }(\text { Add } x y): s) \\
= & \{\text { definition of eval }\} \\
& c((\text { eval } x+\text { eval } y): s)
\end{aligned}
$$

Step 2: Transformation into CPS (cont.)

$$
\begin{aligned}
& \text { evalc }(\text { Add } x y) c s \\
= & \{\text { specification of eva }\} \text { eval }(\text { Add } \times y)=\text { eval } x+\text { eval } y \\
& c(\text { eval }(\text { Add } x y): s) \\
= & \{\text { definition of eval }\} \\
& c((\text { eval } x+\text { eval } y): s)
\end{aligned}
$$

Step 2: Transformation into CPS (cont.)

$$
\begin{aligned}
& \text { evalc }(\text { Add } x y) c s \\
= & \{\text { specification of evalc }\} \\
& c(\text { eval }(\text { Add } x y): s) \\
= & \{\text { definition of eval }\} \\
& c((\text { IH: eval } x+\text { eval } y): s)
\end{aligned}
$$

Step 2: Transformation into CPS (cont.)

```
    evalc (Add x y) c s
\(=\{\) specification of evalc \(\}\)
    c (eval (Add x y) : s)
\(=\{\) definition of eval \(\}\)
    \(c((\) eval \(x+\) eval \(y): s)\)
\(=\{\) define: add \(c(n: m: s)=c((m+n): s)\}\)
    add \(c\) (eval \(y\) : eval \(x: s)\)
```


Step 2: Transformation into CPS (cont.)

```
    evalc (Add x y) cs
\(=\{\) specification of evalc \(\}\)
    c (eval (Add xy):s)
\(=\{\) definition of eval \(\}\)
    \(c((\) eval \(x+e v a l y): s)\)
\(=\quad\left\{\right.\) define: add \(c(n: m: s)=c \left\lvert\, \begin{array}{l}\text { IH: evalc } y c s=c(\text { eval } y: s) \\ \text { add } c \text { (eval } y: \text { oval } x: s)\end{array}\right.\)
    add \(c\) (eval \(y\) : eval \(x: s)\)
\(=\{\) induction hypothesis for \(y\}\)
    evalc y (add c) (eval \(x: s)\)
```


Step 2: Transformation into CPS (cont.)

evalc (Add x y) cs
$=\{$ specification of evalc $\}$
c (eval (Add xy):s)
$=\{$ definition of eval $\}$
$c(($ eval $x+$ eva $y): s)$
$=\{$ define: add $c(n: m: s)=c((m+n): s)\}$ add c (eval y : eval $x: s$)
$=\{$ induction hypothesis for $y\}$ evalc y (add c) (eval $x: s$)
$\mathrm{IH}:$ evalc x c $s=c($ eval $x: s)$
$=\{$ induction hypothesis for $x\}$ evalc $x(e v a l c y(a d d c)) s$

Step 2: Transformation into CPS (cont.)

Derived definition

$$
\begin{aligned}
& \text { evalc }:: \text { Expr } \rightarrow \text { Cont } \rightarrow \text { Cont } \\
& \text { evalc }(\text { Val } n) \quad c=\text { push } n c \\
& \text { evalc }(\text { Add } \times y) c=\text { evalc } \times(\text { evalc } y(\text { add } c))
\end{aligned}
$$

Step 2: Transformation into CPS (cont.)

Derived definition

$$
\begin{aligned}
& \text { evalc }:: \text { Expr } \rightarrow \text { Cont } \rightarrow \text { Cont } \\
& \text { evalc }(\text { Val } n) \quad c=\text { push } n c \\
& \text { evalc }(\text { Add } \times y) c=\text { evalc } \times(\text { evalc } y(\text { add } c)) \\
& \text { push }:: \text { Int } \rightarrow \text { Cont } \rightarrow \text { Cont } \\
& \text { push } n c s=c(n: s) \\
& \text { add }:: \text { Cont } \rightarrow \text { Cont } \\
& \text { add } c(n: m: s)=c((m+n): s)
\end{aligned}
$$

Step 2: Transformation into CPS (cont.)

Derived definition

$$
\begin{aligned}
& \text { evalc }:: \text { Expr } \rightarrow \text { Cont } \rightarrow \text { Cont } \\
& \text { evalc }(\text { Val } n) \quad c=\text { push } n c \\
& \text { evalC }(\text { Add } \times y) c=\text { evalc } \times(\text { evalc } y(\text { add } c)) \\
& \text { push }:: \text { Int } \rightarrow \text { Cont } \rightarrow \text { Cont } \\
& \text { push } n c s=c(n: s) \\
& \text { add }:: \text { Cont } \rightarrow \text { Cont } \\
& \text { add } c(n: m: s)=c((m+n): s)
\end{aligned}
$$

Identity continuation

$$
\begin{aligned}
& \text { evals }:: \text { Expr } \rightarrow \text { Cont } \\
& \text { evals } e=\text { evalc e halt }
\end{aligned}
$$

$$
\begin{aligned}
& \text { halt :: Cont } \\
& \text { halt } s=s
\end{aligned}
$$

Step 3: Defunctionalisation

Compiler

Defunctionalisation of evals and evalc:

$$
\begin{aligned}
& \text { comp }:: \text { Expr } \rightarrow \text { Code } \\
& \operatorname{comp} e=\operatorname{comp}^{\mathrm{A}} \text { e HALT } \\
& \operatorname{comp}^{\mathrm{A}}:: \text { Expr } \rightarrow \text { Code } \rightarrow \text { Code } \\
& \operatorname{comp}^{\mathrm{A}}(\text { Val } n) \quad c=\text { PUSH } n c \\
& \operatorname{comp}^{\mathrm{A}}(\text { Add } x y) c=\operatorname{comp}^{\mathrm{A}} \times\left(\operatorname{comp}^{\mathrm{A}} y(\text { ADD } c)\right)
\end{aligned}
$$

Step 3: Defunctionalisation

Compiler

Defunctionalisation of evals and er

> data Code where
> HALT $::$ Code
> PUSH $::$ Int \rightarrow Code \rightarrow Code
> ADD $::$ Code \rightarrow Code comp e $=$ comp $^{\mathrm{A}}$ e HALT
comp ${ }^{\mathrm{A}}::$ Expr \rightarrow Code \rightarrow Code
$c o m p^{A}($ Val $n) \quad c=P U S H n c$
$\operatorname{comp}^{\mathrm{A}}($ Add $\times y) c=\operatorname{comp}^{\mathrm{A}} \times\left(\operatorname{comp}^{\mathrm{A}} y(A D D c)\right)$

Step 3: Defunctionalisation

Compiler

Defunctionalisation of evals and ev

data Code where
 HALT :: Code
 PUSH :: Int \rightarrow Code \rightarrow Code
 ADD :: Code \rightarrow Code

 comp e $=$ comp $^{\mathrm{A}}$ e HALTcomp $^{\mathrm{A}}::$ Expr \rightarrow Code \rightarrow Code
$\operatorname{comp}^{A}($ Val $n) \quad c=P U S H n c$
$\operatorname{comp}^{\mathrm{A}}($ Add $\times \mathrm{y}) \mathrm{c}=\operatorname{comp}^{\mathrm{A}} \times\left(\operatorname{comp}^{\mathrm{A}}\right.$ y $\left.(A D D c)\right)$

Virtual Machine

$$
\begin{aligned}
& \text { exec }:: \text { Code } \rightarrow \text { Cont } \\
& \text { exec HALT }=\text { halt } \\
& \text { exec }(\text { PUSH } n c)=\text { push } n(\text { exec } c) \\
& \text { exec }(A D D c) \quad=\text { add }(\text { exec } c)
\end{aligned}
$$

Compiler Correctness

evalc ecs=c(eval e:s) (Specification)

Compiler Correctness

$$
\begin{aligned}
\text { evalc e cs} s & =c(\text { eval e :s) } & & \text { (Specification) } \\
+\quad \text { exec }(\text { comp e) } s & =\text { evals }_{\text {e } s} & & \text { (Defuntionalisation) }
\end{aligned}
$$

Compiler Correctness

$$
\begin{array}{rlrlrl}
\text { eval } \mathrm{C} \text { e } s & =c(\text { eval } e: s) & & \text { (Specification) } \\
+ & \text { exec }(\text { comp e) } s & =\text { evals e } s & & \text { (Defuntionalisation) } \\
+ & & \text { evals } e & =\text { evalc e halt } & & \text { (Definition of evals) }
\end{array}
$$

Compiler Correctness

$$
\begin{array}{rlrlrl}
\text { evalc e c } s & =c(\text { eval e : s) } & & \text { (Specification) } \\
+ & \text { exec }(\text { comp e) } s & =\text { evals e } s & & \text { (Defuntionalisation) } \\
+ & & \text { evals } e & =\text { evalc e halt } & & \text { (Definition of evals) }
\end{array}
$$

$=$ exec (compe)s=eval e:s (Compiler correctness)

A Language with Exceptions

data Expr = Val Int |Add Expr Expr
| Throw | Catch Expr Expr

A Language with Exceptions

```
data Expr = Val Int | Add Expr Expr
    | Throw | Catch Expr Expr
eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of
    Nothing }->\mathrm{ Nothing
    Just n }->\mathrm{ case eval y of
                                    Nothing }->\mathrm{ Nothing
    Just m }->\mathrm{ Just (n+m)
eval Throw = Nothing
eval (Catch }xh)=\mathrm{ case eval }x\mathrm{ of
    Nothing }->\mathrm{ eval h
    Just n }->\mathrm{ Just n
```


The Derived Compiler

data Code $=$ PUSH Int Code $\quad \mid$ ADD Code $\quad \mid$ HALT | MARK Code Code | UNMARK Code | THROW

The Derived Compiler

data Code $=$ PUSH Int Code $\quad \mid$ ADD Code $\quad \mid$ HALT MARK Code Code | UNMARK Code | THROW

comp $^{\text {A }}::$ Expr \rightarrow Code \rightarrow Code
$\operatorname{comp}^{A}($ Val $n) \quad c=$ PUSH n c
$\operatorname{comp}^{\mathrm{A}}($ Add $\times \mathrm{y}) \quad c=\operatorname{comp}^{\mathrm{A}} \times\left(\operatorname{comp}^{\mathrm{A}} y(A D D c)\right)$
comp ${ }^{A}$ Throw $\quad c=$ THROW
$c o m p^{\mathrm{A}}($ Catch $\times h) c=\operatorname{MARK}\left(c o m p^{\mathrm{A}} h c\right)\left(\operatorname{comp}^{\mathrm{A}} \times\left(\right.\right.$ UNMARK $\left.\left.^{\mathrm{c}}\right)\right)$
comp :: Expr \rightarrow Code
comp e $=$ comp $^{\mathrm{A}}$ e HALT

The Derived Compiler

data Code $=$ PUSH Int Code $\quad \mid$ ADD Code $\quad \mid$ HALT MARK Code Code | UNMARK Code | THROW

comp $^{\text {A }}::$ Expr \rightarrow Code \rightarrow Code
$\operatorname{comp}^{\mathrm{A}}(\mathrm{Val} n) \quad c=P U S H n \triangleright c$
$\operatorname{comp}^{\mathrm{A}}($ Add $x y) \quad c=\operatorname{comp}^{\mathrm{A}} x \triangleright \operatorname{comp}^{\mathrm{A}} y \triangleright A D D \triangleright c$
comp ${ }^{A}$ Throw $c=$ THROW
$\operatorname{comp}^{\mathrm{A}}($ Catch $\times h) c=$ MARK $\left(c o m p^{\mathrm{A}} h \triangleright c\right) \triangleright c o m p^{\mathrm{A}} x \triangleright$ UNMARK $\triangleright c$
comp :: Expr \rightarrow Code
comp $e=$ comp $^{\mathrm{A}} e \triangleright H A L T$

Outline

(1) Calculating Compilers

(2) Structured Graphs

Structured Graphs (Oliveira \& Cook, 2012)

Structured Graphs

- Trees with explicit let bindings
- (parametric) higher-order abstract syntax

Structured Graphs (Oliveira \& Cook, 2012)

Structured Graphs

- Trees with explicit let bindings
- (parametric) higher-order abstract syntax

Example

$$
\begin{array}{ll}
\operatorname{comp}^{\mathrm{A}}(\text { Val } n) & c=P U S H n \triangleright c \\
c^{\mathrm{A}}(\text { Add } x y) & c=\operatorname{comp}^{\mathrm{A}} \times \triangleright \operatorname{comp}^{\mathrm{A}} y \triangleright A D D \triangleright c \\
\operatorname{comp}^{\mathrm{A}} \text { Throw } & c=T H R O W \\
\operatorname{comp}^{\mathrm{A}}(\text { Catch } x h) & c=\operatorname{MARK}\left(\operatorname{comp}^{\mathrm{A}} h \triangleright c\right) \\
& \\
& \triangleright \operatorname{comp}^{\mathrm{A}} \times \triangleright \text { UNMARK } \triangleright c
\end{array}
$$

Structured Graphs (Oliveira \& Cook, 2012)

Structured Graphs

- Trees with explicit let bindings
- (parametric) higher-order abstract syntax

Example

$$
\begin{aligned}
& \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}(\text { Val } n) \quad c=\mathrm{PUSH}_{\mathrm{G}} n \triangleright c \\
& \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}(\operatorname{Add} x y) \quad c=\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} x \triangleright \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} y \triangleright A D D_{\mathrm{G}} \triangleright c \\
& \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} \text { Throw } \quad c=\operatorname{THROW}_{\mathrm{G}} \\
& \operatorname{comp} p_{\mathrm{G}}^{\mathrm{A}}(\text { Catch } x h) c=\operatorname{Let} c\left(\lambda c^{\prime} \rightarrow \operatorname{MARK}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} h \triangleright \operatorname{Var} c^{\prime}\right)\right. \\
& \left.\triangleright \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} \mathrm{x} \triangleright \operatorname{UNMARK}_{\mathrm{G}} \triangleright \operatorname{Var} c^{\prime}\right)
\end{aligned}
$$

Explicit Representation of Tree Types

Tree Type: fixed point of a functor
data Tree $f=\ln (f($ Tree $f))$

Explicit Representation of Tree Types

Tree Type: fixed point of a functor
data Tree $f=\ln (f($ Tree $f))$

$$
\begin{aligned}
\text { data Code } a & =\text { PUSH Int } a \mid \text { ADD } a \quad \mid \text { HALT } \\
& \mid \text { MARK a a } \mid \text { UNMARK a } \mid \text { THROW }
\end{aligned}
$$

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree $f=\ln (f($ Tree $f))$

$$
\begin{array}{rl|l}
\text { data Code a } & =\text { PUSH Int a } \mid \text { ADD a } & \mid \text { HALT } \\
& \mid \text { MARK a a } \mid \text { UNMARK a| THROW }
\end{array}
$$

comp ${ }_{\mathrm{T}}^{\mathrm{A}}::$ Expr \rightarrow Tree Code \rightarrow Tree Code $\operatorname{comp}_{\mathrm{T}}^{\mathrm{A}}($ Val $n) \quad c=\mathrm{PUSH}_{\mathrm{T}} n \triangleright c$ $\operatorname{comp}_{\mathrm{T}}^{\mathrm{A}}($ Add $x y) \quad c=\operatorname{com} p_{\mathrm{T}}^{\mathrm{A}} x \triangleright \operatorname{comp} p_{\mathrm{T}}^{\mathrm{A}} y \triangleright A D D_{\mathrm{T}} \triangleright c$ $\operatorname{comp}_{\mathrm{T}}^{\mathrm{A}}$ Throw $\quad c=$ THROW $_{\mathrm{T}}$ $\operatorname{comp}_{\mathrm{T}}^{\mathrm{A}}($ Catch $\times h) c=\mathrm{MARK}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}}^{\mathrm{A}} h \triangleright c\right)$ $\triangleright \operatorname{comp} p_{\mathrm{T}}^{\mathrm{A}} \mathrm{x} \triangleright$ UNMARK $_{\mathrm{T}} \triangleright c$
$\operatorname{comp}_{\mathrm{T}}::$ Expr \rightarrow Tree Code $\operatorname{comp}_{\mathrm{T}} e=\operatorname{comp}_{\mathrm{T}}^{\mathrm{A}} e \triangleright H A L T_{\mathrm{T}}$

Explicit Representation of Tree Types

Tree Type: fixed point of a functor

data Tree $f=\ln (f($ Tree $f))$

$$
\begin{array}{rlrl}
\text { data Code a } & =\text { PUSH Int a } \mid \text { ADD a } & \mid \text { HALT } \\
& \mid \text { MARK a a } \mid \text { UNMARK a| THROW }
\end{array}
$$

$\operatorname{comp} \mathrm{T}_{\mathrm{T}}^{\mathrm{A}}::$ Expr \rightarrow Tree Code $\mathrm{PUSH}_{\mathrm{T}} n \mathrm{c}=\ln (\mathrm{PUSH} n \mathrm{c})$ $\operatorname{comp}_{\mathrm{T}}^{\mathrm{A}}\left(\right.$ Val n) $\quad c=\mathrm{PUSH} H_{\mathrm{T}} n \triangleright c$
$\operatorname{comp} p_{\mathrm{T}}^{\mathrm{A}}($ Add $x y) \quad c=\operatorname{com} p_{\mathrm{T}}^{\mathrm{A}} x \triangleright \operatorname{comp} p_{\mathrm{T}}^{\mathrm{A}} y \triangleright A D D_{\mathrm{T}} \triangleright c$ comp ${ }_{\mathrm{T}}^{\mathrm{A}}$ Throw $c=$ THROW $_{\mathrm{T}}$ $\operatorname{comp} p_{\mathrm{T}}^{\mathrm{A}}($ Catch $\times h) c=\mathrm{MARK}_{\mathrm{T}}\left(\operatorname{comp} \mathrm{T}_{\mathrm{T}}^{\mathrm{A}} h \triangleright c\right)$ $\triangleright \operatorname{comp} p_{\mathrm{T}}^{\mathrm{A}} x \triangleright U N M A R K_{\mathrm{T}} \triangleright c$
$\operatorname{comp}_{\mathrm{T}}::$ Expr \rightarrow Tree Code $\operatorname{comp}_{\mathrm{T}} e=\operatorname{comp}_{\mathrm{T}}^{\mathrm{A}} e \triangleright H A L T_{\mathrm{T}}$

Structured Graphs

Definition

data $G r a p h^{\prime} f v=G \ln \left(f\left(G r a p h^{\prime} f v\right)\right)$ Let $\left(G r a p h^{\prime} f v\right)\left(v \rightarrow G r a p h^{\prime} f v\right)$ Var v

Structured Graphs

Definition

data $\operatorname{Graph}^{\prime} f v=\operatorname{Gln}\left(f\left(G r a p h^{\prime} f v\right)\right)$ Let $\left(G_{r a p h}^{\prime} f v\right)(v \rightarrow G r a p h ' f v)$ Var v
newtype Graph $f=\operatorname{Graph}\left(\forall v\right.$. Graph $\left.^{\prime} f v\right)$

Structured Graphs

Definition

$$
\begin{aligned}
\text { data } \text { Graph }^{\prime} f v= & G \ln \left(f\left(G r a p h^{\prime} f v\right)\right) \\
& \mid \operatorname{Let}\left(G r a p h^{\prime} f v\right)\left(v \rightarrow G r a p h^{\prime} f v\right) \\
& \operatorname{Var} v
\end{aligned}
$$

newtype Graph $f=\operatorname{Graph}(\forall v . G r a p h ' f v)$
$\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}::$ Expr \rightarrow Graph ${ }^{\prime}$ Code $v \rightarrow$ Graph' Code v $\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}($ Val $n) \quad c=P U S H_{\mathrm{G}} n \triangleright c$ $\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}(A d d x y) \quad c=\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} x \triangleright \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} y \triangleright A D D_{\mathrm{G}} \triangleright c$ $\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}($ Throw $) \quad c=\operatorname{THROW}_{\mathrm{G}}$ $\operatorname{comp} p_{\mathrm{G}}^{\mathrm{A}}($ Catch $x h) c=\operatorname{Let} c\left(\lambda c^{\prime} \rightarrow \operatorname{MARK}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} h \triangleright \operatorname{Var} c^{\prime}\right)\right.$ $\left.\triangleright \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} \mathrm{x} \triangleright \mathrm{UNMARK}_{\mathrm{G}} \triangleright \operatorname{Var} c^{\prime}\right)$

Structured Graphs

Definition

data $G r a p h^{\prime} f v=G \ln \left(f\left(G r a p h^{\prime} f v\right)\right)$
Let $\left(G r a p h^{\prime} f v\right)\left(v \rightarrow G r a p h^{\prime} f v\right)$
Var v
newtype Graph $f=\operatorname{Graph}\left(\forall v\right.$. Graph $\left.^{\prime} f v\right)$
$\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}::$ Expr \rightarrow Graph ${ }^{\prime}$ Code $v \rightarrow$ Graph Code v $\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}($ Val $n) \quad c=P U S H_{\mathrm{G}} n \triangleright c$ $\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}(\operatorname{Add} \mathrm{xy}) \quad c=\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} x \triangleright \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} y \triangleright A D D_{\mathrm{G}} \triangleright c$ $\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}($ Throw $) \quad c=\operatorname{THROW}_{\mathrm{G}}$ $\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}}($ Catch $x h) c=\operatorname{Let} c\left(\lambda c^{\prime} \rightarrow\right.$ MARK $_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} h \triangleright \operatorname{Var} c^{\prime}\right)$ $\left.\triangleright \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} x \triangleright \mathrm{UNMARK}_{\mathrm{G}} \triangleright \operatorname{Var} c^{\prime}\right)$
$\operatorname{comp}_{\mathrm{G}}::$ Expr \rightarrow Graph Code $\operatorname{comp}_{\mathrm{G}} e=\operatorname{Graph}\left(\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} e \triangleright H A L T_{\mathrm{G}}\right)$

Virtual Machine as a Fold

Fold over Trees

$$
\begin{aligned}
& \text { fold }:: \text { Functor } f \Rightarrow(f r \rightarrow r) \rightarrow \text { Tree } f \rightarrow r \\
& \text { fold alg }(\ln t)=\operatorname{alg}(\text { fmap }(\text { fold alg }) t)
\end{aligned}
$$

Virtual Machine as a Fold

Fold over Trees

$$
\begin{aligned}
& \text { fold :: Functor } f \Rightarrow(f r \rightarrow r) \rightarrow \text { Tree } f \rightarrow r \\
& \text { fold alg }(\ln t)=\operatorname{alg}(\text { fmap }(\text { fold alg }) t)
\end{aligned}
$$

Virtual Machine as a Fold

exec ${ }_{\mathrm{T}}::$ Tree Code \rightarrow Stack \rightarrow Stack exec $_{\mathrm{T}}=$ fold execAlg

Virtual Machine as a Fold

Fold over Trees

> fold $::$ Functor $f \Rightarrow(f r \rightarrow r) \rightarrow$ Tree $f \rightarrow r$ fold alg $(\ln t)=\operatorname{alg}($ fmap $($ fold alg $) t)$

Virtual Machine as a Fold

exec $_{\mathrm{T}}::$ Tree Code \rightarrow Stack \rightarrow Stack
exec $_{\mathbf{T}}=$ fold execAlg

Folds on Graphs

ufold :: Functor $f \Rightarrow(f r \rightarrow r) \rightarrow$ Graph $f \rightarrow r$
ufold alg (Graph g) $=u f$ old' g where
ufold' $($ Gln $t)=\operatorname{alg}($ fmap ufold' $t)$
ufold' $($ Let e $f)=$ ufold' $^{\prime}\left(f\left(\right.\right.$ ufold' $\left.\left.^{\prime} e\right)\right)$
ufold' $(\operatorname{Var} x)=x$

Virtual Machine as a Fold

Fold over Trees

fold :: Functor $f \Rightarrow(f r \rightarrow r) \rightarrow$ Tree $f \rightarrow r$ fold alg $(\ln t)=\operatorname{alg}($ fmap $($ fold alg $) t)$

Virtual Machine as a Fold

exec $_{\mathrm{G}}::$ Graph Code \rightarrow Stack \rightarrow Stack
exec $_{G}=$ ufold execAlg

Folds on Graphs

ufold :: Functor $f \Rightarrow(f r \rightarrow r) \rightarrow$ Graph $f \rightarrow r$
ufold alg (Graph g) $=u f$ old' g where ufold' $($ Gln $t)=\operatorname{alg}($ fmap ufold' $t)$
ufold' $($ Let e $f)=u^{\prime}$ fold' $\left(f\left(\right.\right.$ ufold' $\left.\left.^{\prime} e\right)\right)$
ufold' $(\operatorname{Var} x)=x$

Correctness proof

Correctness of tree-based compiler (from calculation)
 $$
\operatorname{exec}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right)[]=\operatorname{conv}(\text { eval e) }
$$

Correctness proof

Correctness of tree-based compiler (from calculation)

$$
\operatorname{exec}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right)[]=\operatorname{conv}(\text { eval e) }
$$

It suffices to show that

$$
\operatorname{exec}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}} e\right) s=\operatorname{exec}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right) s
$$

Correctness proof

Correctness of tree-based compiler (from calculation)

$$
\operatorname{exec}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right)[]=\operatorname{conv}(\text { eval e) }
$$

It suffices to show that

$$
\operatorname{exec}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}} e\right) s=\operatorname{exec}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right) s
$$

Proof.

$$
\operatorname{exec}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}} e\right) s \stackrel{(1)}{=} \operatorname{exec}_{\mathrm{T}}\left(\text { unravel }\left(\operatorname{comp}_{\mathrm{G}} e\right)\right) s
$$

Correctness proof

Correctness of tree-based compiler (from calculation)

$$
\operatorname{exec~}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right)[]=\operatorname{conv}(\text { eval e) }
$$

It suffices to show that

$$
\operatorname{exec}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}} e\right) s=\operatorname{exec}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right) s
$$

Proof.

$$
\operatorname{exec}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}} e\right) s \stackrel{(1)}{=} \operatorname{exec}_{\mathrm{T}}\left(\text { unravel }\left(\operatorname{comp}_{\mathrm{G}} e\right)\right) s
$$

Theorem

$$
\text { ufold alg }=\text { fold alg } \circ \text { unravel }
$$

Correctness proof

Correctness of tree-based compiler (from calculation)

$$
\operatorname{exec~}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right)[]=\operatorname{conv}(\text { eval e) }
$$

It suffices to show that

$$
\operatorname{exec}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}} e\right) s=\operatorname{exec}_{\mathrm{T}}\left(\operatorname{comp}_{\mathrm{T}} e\right) s
$$

Proof.

$$
\begin{aligned}
& \operatorname{exec}_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}} e\right) \stackrel{(1)}{=} \operatorname{exec}_{\mathrm{T}}\left(\text { unravel }\left(\operatorname{comp}_{\mathrm{G}} e\right)\right) s \\
& \stackrel{(2)}{=} \operatorname{exec} \\
& \mathrm{T}\left(\operatorname{comp}_{\mathrm{T}} e\right) s
\end{aligned}
$$

Theorem

$$
\text { ufold alg }=\text { fold alg } \circ \text { unravel }
$$

Proof of (2)

Lemma
 unravel $\left(\operatorname{comp}_{\mathrm{G}} e\right)=\operatorname{comp}_{\mathrm{T}} e$

Proof of (2)

Lemma

$$
\text { unravel }\left(\operatorname{comp}_{\mathrm{G}} e\right)=\operatorname{comp}_{\mathrm{T}} e
$$

Proof.

By induction on e.

Proof of (2)

Lemma

$$
\text { unravel }\left(\operatorname{comp}_{\mathrm{G}} e\right)=\operatorname{comp}_{\mathrm{T}} e
$$

Proof.

By induction on e.
The interesting part:

```
unravel (Let c \(\left(\lambda c^{\prime} \rightarrow\right.\)
        MARK \(_{\mathrm{G}}\left(\operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} h \triangleright \operatorname{Var} c^{\prime}\right)\)
            \(\triangleright \operatorname{comp}_{\mathrm{G}}^{\mathrm{A}} x \triangleright\) UNMARK \(\left.\left._{\mathrm{G}} \triangleright \operatorname{Var} c^{\prime}\right)\right)\)
\(=\) MARK \(_{\mathrm{T}}\left(c o m p_{\mathrm{T}}^{\mathrm{A}} h \triangleright\right.\) unravel \(\left.c\right)\)
    \(\triangleright \operatorname{comp}_{\mathrm{T}}^{\mathrm{A}} x \triangleright\) UNMARK \(_{\mathrm{T}} \triangleright\) unravel \(c\)
```


But ...

Things are not as nice as they seem on the outside

- HOAS is a nice interface to construct graphs
- But: HOAS is difficult to reason over

But ...

Things are not as nice as they seem on the outside

- HOAS is a nice interface to construct graphs
- But: HOAS is difficult to reason over

Alternative: "Names for free" (Bernardy \& Pouillard, 2013)

- provides the same HOAS interface
- But: it's de Bruin indices under the hood

Summary

Calculating Correct Compilers

- simple, goal-oriented calculations; no magic
- little prior knowledge needed
(by using partial specifications)
- full correctness proof
- scales to wide variety of language features

Summary

Calculating Correct Compilers

- simple, goal-oriented calculations; no magic
- little prior knowledge needed
(by using partial specifications)
- full correctness proof
- scales to wide variety of language features

Structured Graphs/Names for free

- improve calculated compilers
- avoid reasoning over explicit labels and jumps
- simple reasoning principle

Open Questions / Future Work

Beyond folds

- What if the virtual machine is not a fold?
- This seems impossible with HOAS-style graphs
- Ad hoc reasoning for "Names for free"-style graphs possible

Open Questions / Future Work

Beyond folds

- What if the virtual machine is not a fold?
- This seems impossible with HOAS-style graphs
- Ad hoc reasoning for "Names for free"-style graphs possible

Cyclic graphs

- Our method is restricted to acyclic graphs.
- Cyclic graphs require different reasoning principle. (fixed-point induction?)

