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Goals
What is this about?

finding appropriate notions of converging term graph reductions
generalising convergence for term reductions

Infinitary term graph rewriting – what is it for?
common formalism to study correspondences between infinitary term
rewriting and finitary term graph rewriting
infinitary term graph rewriting to model lazy evaluation

I infinitary term rewriting only covers non-strictness
I however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec
I Ariola & Blom. Skew confluence and the lambda calculus with letrec.
I the calculus is non-confluent
I but there is a notion of infinite normal forms
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Obstacles
What is the an appropriate notion of convergence on term graph?

It should generalise convergence on terms.
I But: there are many quite different generalisations.
I Most important issue: How to deal with sharing?

It should simulate infinitary term rewriting in a sound & complete
manner.

Completeness w.r.t. term graph rewriting
An issue even for finitary acyclic term graph reduction!

s t∗

t ′
∗

g

U (·)

h
∗
U (·)

For infinitary term graph rewriting even this property breaks!
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Completeness of Infinitary Term Graph Rewriting?
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.
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Metric Infinitary Term Rewriting
Complete metric on terms

terms are endowed with a complete metric in order to formalise the
convergence of infinite reductions.
metric distance between terms:

d(s, t) = 2−sim(s,t)

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Weak convergence via metric d
convergence in the metric space (T ∞(Σ),d)

depth of the differences between the terms has to tend to infinity

Strong Convergence via redex depth
Also the depth of redexes has to tend to infinity.
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Example: Weakly but not Strongly Converging

f (x)→ f (g(x))

f

a
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Example: Strongly Converging
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Example: Strongly Converging
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Towards a Metric on Term Graphs

We want to generalise the metric on terms

d(s, t) = 2−sim(s,t)

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Alternative characterisation of sim(s, t) via truncation
Truncation t|d of a term t at depth d :

t|0 = ⊥
f (t1, . . . , tk)|d + 1 = f (t1|d , . . . , tk |d)

Then sim(s, t) = maximum depth d s.t. s|d = t|d .
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A Metric on Term Graphs

Depth of a node
= length of a shortest path from the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

relabelling all nodes at depth d with ⊥, and
removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

d†(g , h) = 2−sim†(g ,h)

Where sim†(g , h) = maximum depth d s.t. g†d ∼= h†d .
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Example

Term graph rule that
unravels to

from(x)→ x :: from(s(x))
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Properties of the Metric Space

d† coincides with d on T ∞(Σ).
(G∞C (Σ),d†) is a complete metric space.
(G∞C (Σ),d†) is the metric completion of (GC(Σ),d†).
Limits in (G∞C (Σ),d†) are preserved by unravelling

:

U
(
lim
ι→α

gi

)
= lim

ι→α
U (gi )
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Partial Order Infinitary Term Rewriting
Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms
weak convergence: limit inferior of the terms of the reduction
strong convergence: limit inferior of the contexts of the reduction
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An Example – Weak and Strong Convergence
Reduction for f (x , y)→ f (y , x)
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Partial-Order Convergence vs. Metric Convergence

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:
S : s ↪→p t in T ∞(Σ) iff S : s ↪→m t. (weak convergence)

S : s �p t in T ∞(Σ) iff S : s �m t. (strong convergence)

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.
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A Partial Order on Term Graphs – How?

Specialise on terms
Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?
We need a means to substitute ’⊥’s.

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism that formalises matching in term graph rewriting
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A ⊥-Homomorphism
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⊥
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A ⊥-Homomorphism
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⊥-Homomorphisms as a Partial Order
Proposition (⊥-homomorphisms characterise ≤⊥ on terms)
For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t iff ∃φ : s →⊥ t

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.

Theorem
The pair (G∞C (Σ⊥),≤S

⊥) forms a complete semilattice.

Alas, ≤S
⊥ has some quirks!

introduces sharing
total term graphs not necessarily
maximal w.r.t. ≤S

⊥

f

c c

f

c

≤S
⊥
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Properties of the Partial Order

≤S
⊥ coincides with ≤S

⊥ on T ∞(Σ⊥).
(G∞C (Σ⊥),≤S

⊥) is a complete semi-lattice.
(G∞C (Σ⊥),≤S

⊥) is the ideal completion of (GC(Σ⊥),≤S
⊥).

Limits in (G∞C (Σ⊥),≤S
⊥) are preserved by unravelling

:

U
(
lim inf
ι→α

gi

)
= lim inf

ι→α
U (gi )
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Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

23



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

23



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

23



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

23



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

23



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

23



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

⊥

c

context

23



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

⊥

c

context

23



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

⊥
context

23



Example

Reduction for f (x , y)→ f (y , x)
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Outline
1 Introduction

Background
Goals
Obstacles

2 Modes of Convergence on Term Graphs
Metric Approach
Partial Order Approach

3 Infinitary Term Graph Rewriting
Metric vs. Partial Order Approach
Soundness & Completeness Properties

4 Bonus Material
Other Approaches to Convergence
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Metric vs. Partial Order Approach – Weak Conv.
Recall the situation on terms
For every reduction S in a TRS

S : s ↪→p t in T ∞(Σ) ⇐⇒ S : s ↪→m t.

On term graphs
For every reduction S in a GRS

S : s ↪→p t in G∞(Σ) ⇐=
=⇒

?

!

%

S : s ↪→m t.

Counterexample

f

c c

f

c

f

c c

f

c

f

c c
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Metric vs. Partial Order Approach – Strong Conv.

Recall the situation on terms
For every reduction S in a TRS

S : s �p t in T ∞(Σ) ⇐⇒ S : s �m t.

On term graphs
For every reduction S in a GRS

S : s �p t in G∞(Σ) ⇐=
=⇒

?

!

S : s �m t.
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Soundness – Metric Convergence
Theorem (Kennaway et al., 1994)

Given: a step g →n h in a left-linear, left-finite GRS R.

Then: S : U (g) �m U(R) U (h) such that the depth of every redex
reduced in S is greater or equal to depthg (n).

g U (g)

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g) �m U(R) U (h).
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Soundness – Partial Order Convergence

g U (g)

Proposition

Given: a step g →c h in a left-linear, left-finite GRS R.
Then: U (g) �p U(R) U (h) and U (c) =

d
ι<α cι

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g) �p U(R) U (h).
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Completeness
Theorem (Kennaway et al., 1994)

For any orthogonal, left-finite, almost non-collapsing GRS R, we have

s trational

t ′
rational

g

U (·)

h
∗
U (·)

U (R)

R

Corollary
For any orthogonal, left-finite GRS R, we have

s trational
normalising

g

U (·)

h
∗
U (·)

U (R)

R
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Failure of Completeness for Metric Convergence
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.
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Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).
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Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).
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Weak(er) Completeness for Metric Convergence
Theorem
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Avoiding Sharing
Recall that ≤S

⊥ allows change in sharing

introduces sharing
total term graphs not necessarily
maximal w.r.t. ≤S

⊥

f

c c

f

c
≤S
⊥

Example

f

c c

f

c

f

c c

f

c

f

c c

The injective partial order ≤I
⊥

Avoid sharing by requiring injectivity of ⊥-homomorphisms.
Define: g ≤I

⊥ h iff ∃ injective ⊥-homomorphism φ : g →⊥ h.
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The Injective Partial Order is Almost Good Enough
Properties of ≤I

⊥

(G∞C (Σ⊥),≤I
⊥) is a complete partial order.

(G∞C (Σ⊥),≤I
⊥) is not a complete semilattice.

Counterexample
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The Reason Strong Convergence Works

≤I
⊥ appears in the background

Reduction step g →c h =⇒ c ≤I
⊥ g , h

Reduction (gι →cι gι+1)ι<α =⇒ lim infι→α cι ≤I
⊥ lim infι→α gι

Reduction step g →ρ h with left-linear rule ρ and g ≤I
⊥ g ′

=⇒ g ′ →ρ h′ for some h′ ≥I
⊥ h

Corollary (strong p-convergence implies weak p-convergence)
In a left-linear GRS g �p h implies g ↪→p h′ for some h′ ≥I

⊥ h.
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