RSITY OF COPENHAGEN Department of Compute

Faculty of Science

Deriving Modular Recursion Schemes from
Tree Automata

Patrick Bahr

University of Copenhagen,
Department of Computer Science
paba@diku.dk

Computing Science Colloquium,
Utrecht University,
April 12th, 2012

UNIVERSITY OF COPENHAGEN

Department of Computer Science

QOutline

@ Tree Automata
@ Bottom-Up Tree Acceptors
@ Bottom-Up Tree Transducers

© Introducing Modularity
@ Composing State Spaces
@ Compositional Signatures
@ Decomposing Tree Transducers

© Other Automata

UNIVERSITY OF COPENHAGEN Department of Computer

QOutline

@ Tree Automata
@ Bottom-Up Tree Acceptors
@ Bottom-Up Tree Transducers

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up Tree Acceptors

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up Tree Acceptors

f(ql(xl)a q2(X2)7 B qn(Xn)) - q(f(X17X27 s ,X,,))

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

F ={and/2,not/1,tt/0,ff/0}
e.g.: not(and(not(ff), and(tt, ff)))

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

F ={and/2,not/1,tt/0,ff/0}
e.g.: not(and(not(ff), and(tt, ff)))

The states

@ set of states: Q = {qo,q1}
@ qgp ~ false

e g1 ~ true

@ accepting states: Q, = {q1}

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

. The rules of the automaton
The signature

F ={and/2,not/1,tt/0,ff/0}

tt — g1 (tt)
e.g.: not(and(not(ff), and(tt, ff))) Ha0() (not(x))
not(qo(x)) — g1(not(x

not(qa(x)) = qo(not(x))
@ set of :trtes: Q ={q0,q1} and(qi1(x), g1(v)) — qi(and(x, y))
: Z‘i : t?us: and(qo(x), q1(v)) — qo(and(x, y))
. o and(q1(x), go(v)) — qo(and(x, y))
@ accepting states: Q, = {q1} and(qo(x), go(v)) — qo(and(x, y))

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Tree Acceptor

not

|

and

/\

not and

A

ff tt ff

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Tree Acceptor

not not
I
and — and
/\ /\
not and not and
A VA
ff tt ff do q1 do
b
ff tt ff

ff — qo(ff)
tt — g1 (tt)

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Tree Acceptor

not not not

} J J
and —° and —’ and
/ N\ / N\ / N\

not and not and q qo

AT AT

ff tt ff do q1 dgo not and

I VAR

ff tt ff ff tt ff

not(qo(x)) — g1(not(x))
and(q1(x), go(v)) — go(and(x, y))

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Tree Acceptor

not not not not

R D l

and — and — and — qo0

/ N\ / N\ / N\ J
not and not and q1 q0 and
/N /N / N\
ff tt ff do q1 dgo not and not and

[R A VAN

ff tt ff ff tt ff ff tt ff

not(qo(x)) — g1(not(x))
and(q1(x), go(v)) — go(and(x, y))

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Tree Acceptor

not not not not a1

T I l |

and — and — and — qo0 — not
/ N\ / N\ / N\ J |
not and not and q1 q0 and and
/N /N / N\ / N\
ff tt ff do q1 dgo not and not and not and

L A N S A N AR

ff tt ff ff tt ff ff tt ff ff tt ff

not(qo(x)) — g1(not(x))
and(q1(x), go(v)) — go(and(x, y))

UNIVERSITY OF COPENHAGEN Department of Computer Science

Terms in Haskell

Data types as fixed points of functors

data Term f = In (f (Term f))

UNIVERSITY OF COPENHAGEN Department of Computer Science

Terms in Haskell

Data types as fixed points of functors

data Term f = In (f (Term f))

Functors

class Functor f where
fmap::(a— b)) —>fa—fb

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Terms in Haskell

Data types as fixed points of functors

data Term f = In (f (Term f))

Functors

class Functor f where
fmap::(a— b)) —>fa—fb

Example
data Fa=Andaa|Nota| TT | FF

~
[]

UNIVERSITY OF COPENHAGEN Department of Computer Science

Data types as fixed points of functors

~

Terms in Haskell

data Term f = In (f (Term f))

class Functor f where
fmap::(a— b)) —>fa—fb

Example
data Fa=Andaa|Nota| TT | FF

instance Functor F where
fmap f TT =TT
fmap f (And x y) = And (f x) (f y)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Data types as fixed points of functors

~

Terms in Haskell

data Term f = In (f (Term f))

class Functor f where
fmap::(a— b)) —>fa—fb

Example
data Fa=Andaa|Nota| TT | FF deriving Functor
instance Functor F where

fmap f TT =TT
fmap f (And x y) = And (f x) (f y)

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up State Transitions in Haskell

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up State Transitions in Haskell

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up State Transitions in Haskell

qi 92 --- gn

UNIVERSITY OF COPENHAGEN Department of Computer Science

Bottom-Up State Transitions in Haskell

qi 92 --- gn

Bottom-up state transition rules as algebras

type UpState f q=f q— q

UNIVERSITY OF COPENHAGEN Department of Computer Science

Bottom-Up State Transitions in Haskell

qi 92 --- gn

Bottom-up state transition rules as algebras

type UpState f qg=f q— g

runUpState :: Functor f = UpState f ¢ — Term f — g
runUpState ¢ (In t) = ¢ (fmap (runUpState ¢) t)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Bottom-Up State Transitions in Haskell

qi 92 --- gn

i o 7 oo R
type UpStat% —q
runUpState ~=: Functor f = UpState f q — Term f — g

runUpState ¢ (In t) = ¢ (fmap (runUpState ¢) t)

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

data Fa=Andaa|Nota| TT | FF

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature
data Fa=Andaa|Nota| TT | FF

data Q = Q0 | QI

Accepting states

acc :: Q@ — Bool
acc Q1 = True
acc QO = False

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature
data Fa=Andaa|Nota| TT | FF

State transiton functin

data Q = Q0 | Q! trans . F Q — @
trans FF = Q0
trans TT = Q1
cc:: Q@ — Bool trans (Not QO) = Q1
acc Q1 = True trans (Not QI) = QO
acc QO = False trans (And Q1 Q1) = Q1
trans (And — _)= Q0

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up Tree Transducers

10

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up Tree Transducers

10

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up Tree Transducers

flgi(x1), @2(2), -5 qn(0)) — (1)
feF teT(G,X) X ={x1,Xx2,...,Xn}

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

F ={and/2,not/1,ff/0,tt/0,b/0}

11

11

UNIVERSITY OF COPENHAGEN

Department of Computer Science

An Example

F ={and/2,not/1,ff/0,tt/0,b/0}

The states

@ go~ false
@ g1~ true

@ go~~ don't know

UNIVERSITY OF COPENHAGEN

Department of Computer Science

An Example

F ={and/2,not/1,ff/0,tt/0,b/0}

® o false tt = qu(tt) not(qo(x)) — qu(tt)
° qi~ true ff — go(ff) not(q1(x)) — qo(ff)
©) G GRS Lty b — g2(b) not(gz2(x)) — gz(not(x))

and(q(x), p(v)) — qo(ff) if qo € {p, q}

and(q1(x), q1(v)) = qu(tt)
and(q1(x), 2(v)) = g2(v)
and(q2(x), q1(v)) = gq2(x)

. and(q2(x), g2(v)) = qz(and(x, y))

UNIVERSITY OF COPENHAGEN Department of Computer Science

A Run of a Bottom-Up Transducer

and
/\
not not

b

b and

/\
f b

12

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Transducer

and and
/N SN
not not — not not
o I
b and 92 and
/\ VAN
ff b bdo g
o
ff b

 — qo(fF)
b — qa(b)

12

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Transducer

and and and

/A A VAN

not not — not not — g2 not

N

b and g2 and not 4o
/\ VAN b
ff b bdg g b ff
oo
ff b

not(q2(x)) — qa(not(x))
and(q(x), p(v)) — qo(ff) if qo € {p, q}

12

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Transducer

and and and and

/A A VAN AN

not not — not not — g2 not — Q2 a1

L T e

b and g2 and not 4o not tt
/\ VAN b J
ff b bdg g b ff b
oo
ff b

not(qo(x)) — qu(tt)

12

UNIVERSITY OF COPENHAGEN

A Run of a Bottom-Up Transducer

and and and and g2

/A A VAN AN l

not not — not not — g2 not — Q2 d1 — not

S A T A T

b and 92 and not 4o not tt b
/\ VAN b J
ff b bdg g b ff b
oo
ff b

and(q2(x), q1(v)) — q2(x)

12

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up Tree Transducers

13

UNIVERSITY OF COPENHAGEN Department of Computer

Bottom-Up Tree Transducers

€ T(G,X)

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

Bottom-Up Tree Transducers

€ T(G,X)

From terms to contexts

data Term f =In(f (Term f))
data Context f a = In (f (Context f a)) | Hole a

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

Bottom-Up Tree Transducers

€ T(G,X)

data Te f =In(f(Term f))
data Context f a = In (f (Context f a)) | Hole a

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

Bottom-Up Tree Transducers

q
q1 /g?\ dn eT(G,%)

From terms to contexts

data Term f =In(f (Term f))
data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g =V a.f (q,a) — (g, Context g a)
13 v

UNIVERSITY OF COPENHAGEN Department of Computer Science

Bottom-Up Tree Transducers

From terms to contexts

data Term f =In(f (Term f))
data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g =V a.f (q,a) — (g, Context g a)
13 v

UNIVERSITY OF COPENHAGEN Department of Computer Science

Bottom-Up Tree Transducers

f(ql(Xl)a Q2(X2), sy qn(Xn))

From terms to contexts

data Term f =In(f (Term f))
data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g =V a.f (q,a) — (g, Context g a)
v
13

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

14

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (g,2) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function
trans :: UpTrans F Q F

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (g,2) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function
trans :: UpTrans F Q F

tt — qa(tt) trans TT = (Q1,tt)

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (g,2) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function
trans :: UpTrans F Q F

tt — qu(tt) trans TT = (Q1,

14

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (g,2) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function

trans :: UpTrans F Q F

tt — qa(tt) trans TT = (Q1,tt)
not(ga2(x)) — ga2(not(x)) trans (Not (Q2, x)) = (Q2, not (Hole x))

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (q,a) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction functi

trans :: UpTrans F Q F

tt — qu(tt) trans TT =XQU, tt)
not(ga2(x)) — ga(not(x)) trans (Not (Q2, x)) = (Q2, ot (Hole x))

14

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (q,a) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function

trans :: UpTrans F Q F

tt — qa(tt) trans TT = (Q1,tt)
not(ga2(x)) — ga2(not(x)) trans (Not (Q2, x)) = (Q2, not (Hole x))

and(q(x), p(v)) — ao(ff) if qo € {q, p}

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (q,a) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function

trans :: UpTrans F Q F

tt — qa(tt) trans TT = (Q1,tt)
not(ga2(x)) — ga2(not(x)) trans (Not (Q2, x)) = (Q2, not (Hole x))
and(q(x), p(v)) — ao(ff) if qo € {q, p}
trans (And (g, x) (p, ¥)) | g = Q0 vV p = Q0 = (QO, ff)
14 o

UNIVERSITY OF COPENHAGEN Department of Computer

QOutline

© Introducing Modularity
@ Composing State Spaces
@ Compositional Signatures
@ Decomposing Tree Transducers

15

UNIVERSITY OF COPENHAGEN Department of Computer Science

Composing State Spaces — Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

16

UNIVERSITY OF COPENHAGEN Department of Computer Science

Composing State Spaces — Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr

type Code = [Instr]

16

UNIVERSITY OF COPENHAGEN Department of Computer Science

Composing State Spaces — Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr

type Code = [Instr]

The problem

codeSt :: UpState Sig Code

codeSt (Val i) = [Acci]

codeSt (Plus x y) = x H [Store a] + y H [Add a]
where a = . ..

UNIVERSITY OF COPENHAGEN Department of Computer Science

Composing State Spaces — Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr

type Code = [Ins

The problem

codeSt :: UpState 8ig Code

codeSt (Val i) = [Acci]

codeSt (Plus x y) = x H [Store a] + y H [Add a]
where a = . ..

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Tupling

Tuple the code with an address counter
codeAddrSt :: UpState Sig (Code, Addr)
codeAddrSt (Val i) = ([Acc i],0)

codeAddrSt (Plus (x,a") (v, a)) = (x + [Store a] + y + [Add a],
1+ max a a')

17

UNIVERSITY OF COPENHAGEN Department of Computer Science

Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i],0)

codeAddrSt (Plus (x,a") (v, a)) = (x + [Store a] + y + [Add a],
1+ max a a')

Run the automaton

code :: Term Sig — (Code, Addr)
code = runUpState codeAddrSt

17

UNIVERSITY OF COPENHAGEN Department of Computer Science

Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i],0)

codeAddrSt (Plus (x,a") (v, a)) = (x + [Store a] + y + [Add a],
1+ max a a')

Run the automaton

code :: Term Sig — (Code, Addr)
code = fst . runUpState codeAddrSt

17

UNIVERSITY OF COPENHAGEN Department of Computer Science

Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i],0)

codeAddrSt (Plus (x,a") (v, a)) = (x + [Store a] + y + [Add a],
1+ max a a')

Run the automaton

code :: Term Sig — Code
code = fst . runUpState codeAddrSt

17

UNIVERSITY OF COPENHAGEN Department of Computer Science

Product Automata

Deriving projections

class a € b where
pr::b—a

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

For example: Addr € (Code, Addr)

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

For example: Addr € (Code, Addr)

Dependent state transition functions

type UpState f q= fg—q

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

For example: Addr € (Code, Addr)

Dependent state transition functions

type UpState f q= fg—q
type DUpStatefpqg=(gep)=fp—gq

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

For example: Addr € (Code, Addr)

Dependent state transition functions

type UpState f q= fg—q
type DUpStatefpg=(gep)=f p—gq

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

For example: Addr € (Code, Addr)

Dependent state transition functions

type UpState f q= fg—q
type DUpStatefpg=(gcp)=Ffp—gq

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

For example: Addr € (Code, Addr)

Dependent state transition functions

type UpState f q= fg—q
type DUpStatefpg=(gcp)=Ffp—gq

Product state transition

(®)::(p € ¢,q € ¢) = DUpState f ¢ p — DUpState f ¢ q
— DUpState f ¢ (p, q)
(sp®sq) t=(spt,sqt)

18 Py

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Running Dependent State Transition Functions

The types

type UpState fq = fqg—q
type DUpState f pg=(qep)=Ffp—q

19

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Running Dependent State Transition Functions

The types

type UpState fq = fqg—q
type DUpState f pg=(qep)=Ffp—q

From state transition to dependent state transition

dUpState :: Functor f = UpState f ¢ — DUpState f p q
dUpState st = st . fmap pr

19

UNIVERSITY OF COPENHAGEN Department of Computer Science

Running Dependent State Transition Functions

The types

type UpState fq = fqg—q
type DUpState f pg=(qep)=Ffp—q

From state transition to dependent state transition

dUpState :: Functor f = UpState f ¢ — DUpState f p q
dUpState st = st . fmap pr

Running dependent state transitions

runDUpState :: Functor f = DUpState f q g — Term f — q
runDUpState f = runUpState f

19

UNIVERSITY OF COPENHAGEN

Department of Computer Science

The Code Generator Example

The code generator

codeSt :: (Int € q) = DUpState Sig q Code
codeSt (Val i) =[Acci]

codeSt (Plus x y) = pr x 4 [Store a] + pr y + [Add a]
where a = pr y

20

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Code Generator Example

The code generator

codeSt :: (Int € q) = DUpState Sig q Code

codeSt (Val i) =[Acci]

codeSt (Plus x y) = pr x 4 [Store a] + pr y + [Add a]
where a = pr y

Generating fresh addresses
heightSt :: UpState Sig Int
heightSt (Val) =0

heightSt (Plus x y) =1+ max x y

20

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Code Generator Example

The code generator

codeSt :: (Int € q) = DUpState Sig q Code

codeSt (Val i) =[Acci]

codeSt (Plus x y) = pr x 4 [Store a] + pr y + [Add a]
where a = pr y

Generating fresh addresses

heightSt :: UpState Sig Int
heightSt (Val) =0
heightSt (Plus x y) =1+ max x y

Combining the components

code :: Term Sig — Code
code = fst . runUpState (codeSt ® dUpState heightSt)

2 ®

UNIVERSITY OF COPENHAGEN Department of Computer

QOutline

© Introducing Modularity

@ Compositional Signatures

21

UNIVERSITY OF COPENHAGEN Department of Computer Science

Combining Signatures

Coproduct of signatures

data (f@g)e=Inl(fe)|lInr(ge)

f @ g is the sum of the signatures f and g

22

UNIVERSITY OF COPENHAGEN Department of Computer Science

Combining Signatures

Coproduct of signatures

data (f@g)e=Inl(fe)|lInr(ge)

f @ g is the sum of the signatures f and g

Example

data /Ince = Inc e
type Sig’ = Inc & Sig

22

UNIVERSITY OF COPENHAGEN Department of Computer Science

Combining Automata

Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int

instance (HeightSt f, HeightSt g) = HeightSt (f ® g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

23

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Combining Automata

Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int

instance (HeightSt f, HeightSt g) = HeightSt (f ® g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where
heightSt (Val) =0
heightSt (Plus x y) =1+ max x y

23

UNIVERSITY OF COPENHAGEN Department of Computer Science

Combining Automata

Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int
instance (HeightSt f, HeightSt g) = HeightSt (f ® g) where

heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where
heightSt (Val) =0
heightSt (Plus x y) =1+ max x y

Defining the height on Inc

instance HeightSt Inc where
heightSt (Inc x) = 1+ x

23

UNIVERSITY OF COPENHAGEN Department of Computer Science

Subsignatures

Subsignature type class

class f < g where
inf::fa—ga

24

UNIVERSITY OF COPENHAGEN Department of Computer Science

Subsignatures

Subsignature type class

class f < g where fg iff
inf::fa—ga 0 g =g P ®...0g.nand
of=g, 0<i<n

24

UNIVERSITY OF COPENHAGEN Department of Computer Science

Subsignatures

Subsignature type class

class f < g where fg iff
inf::fa—ga 0 g =g P ®...0g.nand
of=g, 0<i<n

For example: Inc < Inc @ Sig
N—_——

/

Sig

24

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Subsignatures
Subsignature type class
class f < g where fg iff
inf::fa—ga 0og=gDg®...Ognand

- f=g, 0<i<
For example: Inc < Inc @ Sig ° &i <rsn
N’

/

Sig

Injection and projection functions

inject :: (g =< f) = g (Context f a) — Context f a
inject = In . inj

24

UNIVERSITY OF COPENHAGEN Department of Computer

QOutline

© Introducing Modularity

@ Decomposing Tree Transducers

25

UNIVERSITY OF COPENHAGEN Department of Computer

Tree Homomorphisms

type UpTrans f g g =V a.f (q, a) — (q, Context g a)

26

UNIVERSITY OF COPENHAGEN Department of Computer

Tree Homomorphisms

type UpTrans f g=Va.f a — Context g a

26

UNIVERSITY OF COPENHAGEN Department of Computer

Tree Homomorphisms

type Hom f g=Va.f a — Context g a

26

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Tree Homomorphisms

type Hom f g=Va.f a — Context g a

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f, Functor g, DesugHom f g) = Term f — Term g
desugar = runHom desugHom

26

UNIVERSITY OF COPENHAGEN Department of Computer Science

Tree Homomorphisms

type Hom f g=Va.f a — Context g a

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f, Functor g, DesugHom f g) = Term f — Term g
desugar = runHom desugHom

instance (Sig < g) = DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus' val 1

instance (Functor g, f < g) = DesugHom f g where
desugHom = simpCxt . inj

26

UNIVERSITY OF COPENHAGEN Department of Computer Science

Tree Homomorphisms

type Hom f g=Va.f a — Context g a

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f, Functor g, DesugHom f g) = Term f — Term g
desugar = runHom d

instance (Sig < g)
desugHom (Inc x)

instance (Functor g, f < esugHom f g where

desugHom = simp€xt . inj

26

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g=VYa.f a — Contextga
type UpState f q = fqg — g
type UpTrans f qg =V a.f (q,a) — (g, Context g a)

27

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g=VYa.f a — Contextga
type UpState f q = fqg — g
type UpTrans f qg =V a.f (q,a) — (g, Context g a)

Making homomorphisms dependent on a state
type QHom f g g =V a. f a — Context g a

27

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g=VYa.f a — Contextga
type UpState f q = fqg — g
type UpTrans f qg =V a.f (q,a) — (g, Context g a)

Making homomorphisms dependent on a state
type QHom f q g =V a. f(q, a) — Context g a

27

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g=VYa.f a — Contextga
type UpState f q = fqg — g
type UpTrans f qg =V a.f (q,a) — (g, Context g a)

Making homomorphisms dependent on a state
type QHom f q g =V a. (a—q)—f a — Contextg a

27

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g=VYa.f a — Contextga
type UpState f q = fqg — g
type UpTrans f qg =V a.f (q,a) — (g, Context g a)

Making homomorphisms dependent on a state
type QHomf qg=Va. q— (a—q)—f a — Context g a

27

UNIVERSITY OF COPENHAGEN Department of Computer Science

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g=VYa.f a — Contextga
type UpState f q = fqg — g

type UpTrans f qg =V a.f (q,a) — (g, Context g a)

Making homomorphisms dependent on a state
type QHomf qg=Va. q— (a—q)—f a — Context g a

Using implicit parameters

type QHom f q g =V a. (?above :: g, ?below :: a — q) = f a — Context g a

27

Department of Computer Science

UNIVERSITY OF COPENHAGEN

An Example

Extending the signature with let bindings

type Name = String
data Let e = Letln Name e e | Var Name

type LetSig = Let & Sig

28

UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Extending the signature with let bindings

type Name = String
data Let e = Letln Name e e | Var Name
type LetSig = Let & Sig

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars

28

UNIVERSITY OF COPENHAGEN

An Example

Extending the signature with let bindings

type Name = String
data Let e = Letln Name e e | Var Name
type LetSig = Let & Sig

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars
instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union' y

freeVarsSt (Val _) = empty
instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v

Department of Computer Science

freeVarsSt (Letln v e s) = if v ‘member" s then e ‘union’ delete v s

else s

28

29

UNIVERSITY OF COPENHAGEN

Department of Computer Science
An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars € q, Let < g, Functor g) = RemLetHom Let q g where

remLetHom (Letln v _s) | = (v ‘member" below s) = Hole s

remLetHom t = simpCxt (inj t)

instance (Functor f, Functor g, f < g) = RemlLetHom f q g where
remLetHom = simpCxt . inj

UNIVERSITY OF COPENHAGEN

Department of Computer Science

An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars € q, Let < g, Functor g) = RemLetHom Let q g where
remLetHom (Letln v _s) | = (v ‘member" below s) = Hole s

remLetHom t = simpCxt (inj t)

instance (Functor f, Functor g, f < g) = RemlLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remLet :: (Functor f, FreeVarsSt f, RemLetHom f Vars f)
= Term f — (Vars, Term f)

remLet = runUpHom freeVarsSt remLetHom

29

UNIVERSITY OF COPENHAGEN

Department of Computer Science
An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars € q, Let < g, Functor g) = RemLetHom Let q g where

remLetHom (Letln v _s) | = (v ‘member" below s) = Hole s

remLetHom t = simpCxt (inj t)

instance (Functor f, Functor g, f < g) = RemlLetHom f q g where
remLetHom = simpCxt . inj

Combining state s s

remLet :: (Funcle S
= Term f — (Vars

remLet = runUpHom freeVarsSt remLetHom

29

UNIVERSITY OF COPENHAGEN

Department of Computer Science

An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars € q, Let < g, Functor g) = RemLetHom Let q g where
remLetHom (Letln v _s) | = (v ‘member" below s) = Hole s

remLetHom t = simpCxt (inj t)

instance (Functor f, Functor g, f < g) = RemlLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remlLet :: (Functor f, FreeVarsSt f, RemLetHom f Vars f)
= Term f — (Vars, Term f)

remLet = runUpHom freeVarsSt remLetHom

remLet :: Term LetSig — Term LetSig
remLet :: Term (Inc @ LetSig) — Term (Inc @ LetSig)

29

UNIVERSITY OF COPENHAGEN Department of Computer

QOutline

© Other Automata

30

UNIVERSITY OF COPENHAGEN Department of Computer

Top-Down Tree Transducers

31

UNIVERSITY OF COPENHAGEN Department of Computer

Top-Down Tree Transducers

31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Top-Down Tree Transducers

q(f(x1, %0, ..., x5)) — t

feF teT(G, QX)) Q(X) ={p(x)IpeQ,1<i<n}

31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Top-Down Tree Transducers

g0 -
O—0O

q(f(x1, %0, ..., x5)) — t

fer teT(9,Q(Y)) QX) ={p(x)Ipe Q1 <i<n}

Representation in Haskell

type DownTrans f q g =V a.(q,f a) — Context g (q, a)
31 [

UNIVERSITY OF COPENHAGEN Department of Computer Science

Decomposing Top-Down Tree Transducers

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

qo(f(x)) = g(aq1(x), a2(x))

32

UNIVERSITY OF COPENHAGEN Department of Computer Science

Decomposing Top-Down Tree Transducers

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

qo(f(x)) = g(aq1(x), a2(x))

Assignment to variables instead

restriction: if g(x) and p(x) occur on right-hand side, then p = q.

32

UNIVERSITY OF COPENHAGEN Department of Computer Science

Decomposing Top-Down Tree Transducers

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

qo(f(x)) = g(aq1(x), a2(x))

Assignment to variables instead

restriction: if g(x) and p(x) occur on right-hand side, then p = q.

How to represent top-down state transformations?

o first try: type DownState f q =V a.(q,f a) > f q

UNIVERSITY OF COPENHAGEN Department of Computer Science

Decomposing Top-Down Tree Transducers

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

qo(f(x)) = g(aq1(x), a2(x))

Assignment to variables instead

restriction: if g(x) and p(x) occur on right-hand side, then p = q.

How to represent top-down state transformations?

o first try: type DownState f q =V a.(q,f a) > f q
@ permits changing the shape of the input:

bad ::V a.(q,Sig a) — Sig q
bad (q, Plus x y) = Val 1
bad (q,Val i) = Vall

32
Py

UNIVERSITY OF COPENHAGEN Department of Computer Science

Top-Down State Transitions

Using explicit placeholders

type DownState f =V i.Ord i = (q,f i) — Map i q

33

UNIVERSITY OF COPENHAGEN Department of Computer Science

Top-Down State Transitions

Using explicit placeholders

type DownState f =V i.Ord i = (q,f i) — Map i q

~~ construct function of type V a. (g, f a) — f g that preserves the shape

33

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Top-Down State Transitions

Using explicit placeholders

type DownState f =V i.Ord i = (q,f i) — Map i q

~~ construct function of type V a. (g, f a) — f g that preserves the shape

Combining with stateful tree homomorphisms

type QHom f q g =V a. (?above :: g, ?below :: a — q) = f a — Context g a

33

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Top-Down State Transitions

Using explicit placeholders

type DownState f =V i.Ord i = (q,f i) — Map i q

~~ construct function of type V a. (g, f a) — f g that preserves the shape

Combining with stateful tree homomorphisms
type QHom f q g =V a. (?above :: g, ?below :: a — q) = f a — Context g a
type DownTrans f g g =V a.(q,f a) — Context g (g, a)

33

UNIVERSITY OF COPENHAGEN Department of Computer Science

Why Tree Transducers

More structure, more flexibility

Tree transducers can manipulated more easily

34

UNIVERSITY OF COPENHAGEN Department of Computer Science

Why Tree Transducers

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.
data (f :&:a)e=fe:& a

34

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Why Tree Transducers

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.
data (f :&:a)e=fe:& a
lift :: UpTrans f q g — UpTrans (f :&: a) q (g :&: a)

34

UNIVERSITY OF COPENHAGEN Department of Computer Science

Why Tree Transducers

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.
data (f :&:a)e=fe:& a

lift :: UpTrans f q g — UpTrans (f :&: a) q (g :&: a)

Tree transducers compose

We may leverage composition theorems for tree transducers.
comp :: DownTrans g p h — DownTrans f q g — DownTrans f (q,p) h

34

UNIVERSITY OF COPENHAGEN Department of Computer Science

Why Tree Transducers

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.
data (f :&:a)e=fe:& a

lift :: UpTrans f q g — UpTrans (f :&: a) q (g :&: a)

Tree transducers compose

We may leverage composition theorems for tree transducers.
comp :: DownTrans g p h — DownTrans f q g — DownTrans f (q,p) h

~~ potential for fusion

34

UNIVERSITY OF COPENHAGEN Department of Computer Science

Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism

35 ®

UNIVERSITY OF COPENHAGEN Department of Computer Science

Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

@ states may have arguments taken from the term

@ necessary for 'non-local’ transformations, e.g. substitution, inlining

35

UNIVERSITY OF COPENHAGEN Department of Computer Science

Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

@ states may have arguments taken from the term

@ necessary for 'non-local’ transformations, e.g. substitution, inlining

type UpTrans fqg=Va.f (g ,a)— (¢ , Context g a)

35

UNIVERSITY OF COPENHAGEN Department of Computer Science

Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

@ states may have arguments taken from the term

@ necessary for 'non-local’ transformations, e.g. substitution, inlining

type UpTrans' f gg =V a.f (q a,a) — (g (Context g a), Context g a)

35

UNIVERSITY OF COPENHAGEN Department of Computer Science

Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

@ states may have arguments taken from the term

@ necessary for 'non-local’ transformations, e.g. substitution, inlining

type UpTrans' f gg =V a.f (q a,a) — (g (Context g a), Context g a)
type DownTrans f qg =V a.(q ,f a) — Context g (q ,a)

35

UNIVERSITY OF COPENHAGEN Department of Computer Science

Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

@ states may have arguments taken from the term

@ necessary for 'non-local’ transformations, e.g. substitution, inlining

type UpTrans' f gg =V a.f (q a,a) — (g (Context g a), Context g a)
type DownTrans' f qg =V a.(q a,f a) — Context g (q (Context g a), a)

35

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition
@ bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers
@ states may have arguments taken from the term

@ necessary for 'non-local’ transformations, e.g. substitution, inlining

type UpTrans' f gg =V a.f (q a,a) — (g (Context g a), Context g a)
type DownTrans' f qg =V a.(q a,f a) — Context g (q (Context g a), a)

e.g. for substitutions: g = Map Var

35

UNIVERSITY OF COPENHAGEN Department of Computer Science

Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

@ states may have arguments taken from the term

@ necessary for 'non-local’ transformations, e.g. substitution, inlining

type UpTrans' f gg =V a.f (q a,a) — (g (Context g a), Context g a)
type DownTrans' f qg =V a.(q a,f a) — Context g (q (Context g a), a)

e.g. for substitutions: g = Map Var

generic programming

35

	Tree Automata
	Bottom-Up Tree Acceptors
	Bottom-Up Tree Transducers

	Introducing Modularity
	Composing State Spaces
	Compositional Signatures
	Decomposing Tree Transducers

	Other Automata

