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Bottom-Up Tree Acceptors

f(ql(xl)a q2(X2)7 B qn(Xn)) - q(f(X17X27 s ,X,,))
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An Example

F ={and/2,not/1,tt/0,ff/0}
e.g.: not(and(not(ff), and(tt, ff)))

The states

@ set of states: Q = {qo,q1}
@ qgp ~ false

e g1 ~ true

@ accepting states: Q, = {q1}
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An Example

. The rules of the automaton
The signature

F ={and/2,not/1,tt/0,ff/0}

tt — g1 (tt)
e.g.: not(and(not(ff), and(tt, ff))) Ha0() (not(x))
not(qo(x)) — g1(not(x

not(qa(x)) = qo(not(x))
@ set of :trtes: Q ={q0,q1} and(qi1(x), g1(v)) — qi(and(x, y))
: Z‘i : t?us: and(qo(x), q1(v)) — qo(and(x, y))
. o and(q1(x), go(v)) — qo(and(x, y))
@ accepting states: Q, = {q1} and(qo(x), go(v)) — qo(and(x, y))
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A Run of a Bottom-Up Tree Acceptor

not not
I
and — and
/\ /\
not and not and
A VA
ff tt ff do q1 do
b
ff tt ff

ff — qo(ff)
tt — g1 (tt)
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A Run of a Bottom-Up Tree Acceptor

not not not

} J J
and —° and —’ and
/ N\ / N\ / N\

not and not and q qo

AT AT

ff tt ff do q1 dgo not and

I VAR

ff tt ff ff tt ff

not(qo(x)) — g1(not(x))
and(q1(x), go(v)) — go(and(x, y))
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A Run of a Bottom-Up Tree Acceptor

not not not not

R D l

and — and — and — qo0

/ N\ / N\ / N\ J
not and not and q1 q0 and
/N /N / N\
ff tt ff do q1 dgo not and not and

[ R A VAN

ff tt ff ff tt ff ff tt ff

not(qo(x)) — g1(not(x))
and(q1(x), go(v)) — go(and(x, y))
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A Run of a Bottom-Up Tree Acceptor

not not not not a1

T I l |

and — and — and — qo0 — not
/ N\ / N\ / N\ J |
not and not and q1 q0 and and
/N /N / N\ / N\
ff tt ff do q1 dgo not and not and not and

L A N S A N AR

ff tt ff ff tt ff ff tt ff ff tt ff

not(qo(x)) — g1(not(x))
and(q1(x), go(v)) — go(and(x, y))
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data Term f = In (f (Term f))

Functors

class Functor f where
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data Fa=Andaa|Nota| TT | FF

~
[ ]




UNIVERSITY OF COPENHAGEN Department of Computer Science

Data types as fixed points of functors

~

Terms in Haskell

data Term f = In (f (Term f))

class Functor f where
fmap::(a— b)) —>fa—fb

Example
data Fa=Andaa|Nota| TT | FF

instance Functor F where
fmap f TT =TT
fmap f (And x y) = And (f x) (f y)
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Data types as fixed points of functors

~

Terms in Haskell

data Term f = In (f (Term f))

class Functor f where
fmap::(a— b)) —>fa—fb

Example
data Fa=Andaa|Nota| TT | FF deriving Functor
instance Functor F where

fmap f TT =TT
fmap f (And x y) = And (f x) (f y)
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Bottom-Up State Transitions in Haskell

qi 92 --- gn

Bottom-up state transition rules as algebras

type UpState f q=f q— q
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Bottom-Up State Transitions in Haskell

qi 92 --- gn

Bottom-up state transition rules as algebras

type UpState f qg=f q— g

runUpState :: Functor f = UpState f ¢ — Term f — g
runUpState ¢ (In t) = ¢ (fmap (runUpState ¢) t)
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Bottom-Up State Transitions in Haskell

qi 92 --- gn

i o 7 oo R
type UpStat% —q
runUpState ~=: Functor f = UpState f q — Term f — g

runUpState ¢ (In t) = ¢ (fmap (runUpState ¢) t)
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An Example

Signature
data Fa=Andaa|Nota| TT | FF

data Q = Q0 | QI

Accepting states

acc :: Q@ — Bool
acc Q1 = True
acc QO = False
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An Example

Signature
data Fa=Andaa|Nota| TT | FF

State transiton functin

data Q = Q0 | Q! trans . F Q — @
trans FF = Q0
trans TT = Q1
cc:: Q@ — Bool trans (Not QO) = Q1
acc Q1 = True trans (Not QI) = QO
acc QO = False trans (And Q1 Q1) = Q1
trans (And — _ )= Q0
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Bottom-Up Tree Transducers
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Bottom-Up Tree Transducers

flgi(x1), @2(2), -5 qn(0))  — (1)
feF teT(G,X) X ={x1,Xx2,...,Xn}

10
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An Example

F ={and/2,not/1,ff/0,tt/0,b/0}

11
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An Example

F ={and/2,not/1,ff/0,tt/0,b/0}

The states

@ go~ false
@ g1~ true

@ go~~ don't know
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An Example

F ={and/2,not/1,ff/0,tt/0,b/0}

® o false tt = qu(tt)  not(qo(x)) — qu(tt)
° qi~ true ff — go(ff) not(q1(x)) — qo(ff)
©) G GRS Lty b — g2(b) not(gz2(x)) — gz(not(x))

and(q(x), p(v)) — qo(ff) if qo € {p, q}

and(q1(x), q1(v)) = qu(tt)
and(q1(x), 2(v)) = g2(v)
and(q2(x), q1(v)) = gq2(x)

. and(q2(x), g2(v)) = qz(and(x, y))
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A Run of a Bottom-Up Transducer
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A Run of a Bottom-Up Transducer

and and
/N SN
not not — not not
o I
b and 92 and
/\ VAN
ff b bdo g
o
ff b

 — qo(fF)
b — qa(b)

12
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A Run of a Bottom-Up Transducer

and and and

/A A VAN

not not — not not — g2 not

N

b and g2 and not 4o
/\ VAN b
ff b bdg g b ff
oo
ff b

not(q2(x)) — qa(not(x))
and(q(x), p(v)) — qo(ff) if qo € {p, q}

12
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A Run of a Bottom-Up Transducer

and and and and

/A A VAN AN

not not — not not — g2 not — Q2 a1

L T e

b and g2 and not 4o not tt
/\ VAN b J
ff b bdg g b ff b
oo
ff b

not(qo(x)) — qu(tt)

12
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A Run of a Bottom-Up Transducer

and and and and g2

/A A VAN AN l

not not — not not — g2 not — Q2 d1 — not

S A T A T

b and 92 and not 4o not tt b
/\ VAN b J
ff b bdg g b ff b
oo
ff b

and(q2(x), q1(v)) — q2(x)

12
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Bottom-Up Tree Transducers

€ T(G,X)
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Bottom-Up Tree Transducers

€ T(G,X)

From terms to contexts

data Term f =In(f (Term f ))
data Context f a = In (f (Context f a)) | Hole a

13
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Bottom-Up Tree Transducers

€ T(G,X)

data Te f =In(f(Term f ))
data Context f a = In (f (Context f a)) | Hole a

13
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Bottom-Up Tree Transducers

q
q1 /g?\ dn eT(G,%)

From terms to contexts

data Term f =In(f (Term f ))
data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g =V a.f (q,a) — (g, Context g a)
13 v
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Bottom-Up Tree Transducers

f(ql(Xl)a Q2(X2), sy qn(Xn))

From terms to contexts

data Term f =In(f (Term f ))
data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g =V a.f (q,a) — (g, Context g a)
v
13
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Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2
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An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (g,2) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function
trans :: UpTrans F Q F
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An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (g,2) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function
trans :: UpTrans F Q F

tt — qa(tt) trans TT = (Q1,tt )




UNIVERSITY OF COPENHAGEN Department of Computer Science

An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (g,2) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function
trans :: UpTrans F Q F

tt — qu(tt) trans TT = (Q1,

14
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An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (g,2) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function

trans :: UpTrans F Q F

tt — qa(tt) trans TT = (Q1,tt )
not(ga2(x)) — ga2(not(x)) trans (Not (Q2, x)) = (Q2, not (Hole x))
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An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (q,a) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction functi

trans :: UpTrans F Q F

tt — qu(tt) trans TT =XQU, tt )
not(ga2(x)) — ga(not(x)) trans (Not (Q2, x)) = (Q2, ot (Hole x))

14
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An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (q,a) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function

trans :: UpTrans F Q F

tt — qa(tt) trans TT = (Q1,tt )
not(ga2(x)) — ga2(not(x)) trans (Not (Q2, x)) = (Q2, not (Hole x))

and(q(x), p(v)) — ao(ff) if qo € {q, p}
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An Example

Signature And state

data Fa=Andaa|Nota| TT | FF|B
dataQ = Q0| QI | Q2

type UpTrans f q g =V a.f (q,a) — (q, Context g a)
data Context f a = In (f (Context f a)) | Hole a

The transduction function

trans :: UpTrans F Q F

tt — qa(tt) trans TT = (Q1,tt )
not(ga2(x)) — ga2(not(x)) trans (Not (Q2, x)) = (Q2, not (Hole x))
and(q(x), p(v)) — ao(ff) if qo € {q, p}
trans (And (g, x) (p, ¥)) | g = Q0 vV p = Q0 = (QO, ff)
14 o
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Composing State Spaces — Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

16
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Composing State Spaces — Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr

type Code = [Instr]
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A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr

type Code = [Instr]
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codeSt :: UpState Sig Code

codeSt (Val i) = [Acci]

codeSt (Plus x y) = x H [Store a] + y H [Add a]
where a = . ..
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Composing State Spaces — Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr

type Code = [Ins

The problem

codeSt :: UpState 8ig Code

codeSt (Val i) = [Acci]

codeSt (Plus x y) = x H [Store a] + y H [Add a]
where a = . ..
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Tupling

Tuple the code with an address counter
codeAddrSt :: UpState Sig (Code, Addr)
codeAddrSt (Val i) = ([Acc i],0)

codeAddrSt (Plus (x,a") (v, a)) = (x + [Store a] + y + [Add a],
1+ max a a')

17
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Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i],0)

codeAddrSt (Plus (x,a") (v, a)) = (x + [Store a] + y + [Add a],
1+ max a a')

Run the automaton

code :: Term Sig — (Code, Addr)
code = runUpState codeAddrSt

17




UNIVERSITY OF COPENHAGEN Department of Computer Science

Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code, Addr)
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Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i],0)

codeAddrSt (Plus (x,a") (v, a)) = (x + [Store a] + y + [Add a],
1+ max a a')

Run the automaton

code :: Term Sig — Code
code = fst . runUpState codeAddrSt

17
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Product Automata

Deriving projections

class a € b where
pr::b—a
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Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

For example: Addr € (Code, Addr)

Dependent state transition functions

type UpState f q= fg—q
type DUpStatefpqg=(gep)=fp—gq

18
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Deriving projections
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Product Automata

Deriving projections

class a € b where acb iff
prib—a e b is of the form (by, (b2,...)) and

@ a — b; for some |

For example: Addr € (Code, Addr)

Dependent state transition functions

type UpState f q= fg—q
type DUpStatefpg=(gcp)=Ffp—gq

Product state transition

(®)::(p € ¢,q € ¢) = DUpState f ¢ p — DUpState f ¢ q
— DUpState f ¢ (p, q)
(sp®sq) t=(spt,sqt)

18 Py
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Running Dependent State Transition Functions

The types

type UpState fq = fqg—q
type DUpState f pg=(qep)=Ffp—q

19
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Running Dependent State Transition Functions

The types

type UpState fq = fqg—q
type DUpState f pg=(qep)=Ffp—q

From state transition to dependent state transition

dUpState :: Functor f = UpState f ¢ — DUpState f p q
dUpState st = st . fmap pr

19
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Running Dependent State Transition Functions

The types

type UpState fq = fqg—q
type DUpState f pg=(qep)=Ffp—q

From state transition to dependent state transition

dUpState :: Functor f = UpState f ¢ — DUpState f p q
dUpState st = st . fmap pr

Running dependent state transitions

runDUpState :: Functor f = DUpState f q g — Term f — q
runDUpState f = runUpState f

19
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The Code Generator Example

The code generator

codeSt :: (Int € q) = DUpState Sig q Code
codeSt (Val i)  =[Acci]

codeSt (Plus x y) = pr x 4 [Store a] + pr y + [Add a]
where a = pr y

20
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The Code Generator Example

The code generator

codeSt :: (Int € q) = DUpState Sig q Code

codeSt (Val i)  =[Acci]

codeSt (Plus x y) = pr x 4 [Store a] + pr y + [Add a]
where a = pr y

Generating fresh addresses
heightSt :: UpState Sig Int
heightSt (Val ) =0

heightSt (Plus x y) =1+ max x y

20
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The Code Generator Example

The code generator

codeSt :: (Int € q) = DUpState Sig q Code

codeSt (Val i)  =[Acci]

codeSt (Plus x y) = pr x 4 [Store a] + pr y + [Add a]
where a = pr y

Generating fresh addresses

heightSt :: UpState Sig Int
heightSt (Val ) =0
heightSt (Plus x y) =1+ max x y

Combining the components

code :: Term Sig — Code
code = fst . runUpState (codeSt ® dUpState heightSt)

2 ®
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Combining Signatures

Coproduct of signatures

data (f@g)e=Inl(fe)|lInr(ge)

f @ g is the sum of the signatures f and g

22
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Combining Signatures

Coproduct of signatures

data (f@g)e=Inl(fe)|lInr(ge)

f @ g is the sum of the signatures f and g

Example

data /Ince = Inc e
type Sig’ = Inc & Sig

22
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Combining Automata

Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int

instance (HeightSt f, HeightSt g) = HeightSt (f ® g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

23
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class HeightSt f where
heightSt :: DUpState f q Int

instance (HeightSt f, HeightSt g) = HeightSt (f ® g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where
heightSt (Val ) =0
heightSt (Plus x y) =1+ max x y
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Combining Automata

Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int
instance (HeightSt f, HeightSt g) = HeightSt (f ® g) where

heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where
heightSt (Val ) =0
heightSt (Plus x y) =1+ max x y

Defining the height on Inc

instance HeightSt Inc where
heightSt (Inc x) = 1+ x

23
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Subsignatures

Subsignature type class

class f < g where
inf::fa—ga
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Subsignatures
Subsignature type class
class f < g where fg iff
inf::fa—ga 0og=gDg®...Ognand

- f=g, 0<i<
For example: Inc < Inc @ Sig ° &i <rsn
N’

/

Sig

Injection and projection functions

inject :: (g =< f) = g (Context f a) — Context f a
inject = In . inj

24
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Tree Homomorphisms

type UpTrans f g g =V a.f (q, a) — (q, Context g a)
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Tree Homomorphisms

type Hom f g=Va.f a — Context g a

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f, Functor g, DesugHom f g) = Term f — Term g
desugar = runHom desugHom
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type Hom f g=Va.f a — Context g a

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f, Functor g, DesugHom f g) = Term f — Term g
desugar = runHom desugHom

instance (Sig < g) = DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus' val 1

instance (Functor g, f < g) = DesugHom f g where
desugHom = simpCxt . inj
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Tree Homomorphisms

type Hom f g=Va.f a — Context g a

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f, Functor g, DesugHom f g) = Term f — Term g
desugar = runHom d

instance (Sig < g)
desugHom (Inc x)

instance (Functor g, f < esugHom f g where

desugHom = simp€xt . inj
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Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g=VYa.f a —  Contextga
type UpState f q = fqg — g
type UpTrans f qg =V a.f (q,a) — (g, Context g a)
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Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g=VYa.f a —  Contextga
type UpState f q = fqg — g

type UpTrans f qg =V a.f (q,a) — (g, Context g a)

Making homomorphisms dependent on a state
type QHomf qg=Va. q— (a—q)—f a — Context g a

Using implicit parameters

type QHom f q g =V a. (?above :: g, ?below :: a — q) = f a — Context g a
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An Example

Extending the signature with let bindings

type Name = String
data Let e = Letln Name e e | Var Name

type LetSig = Let & Sig
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data Let e = Letln Name e e | Var Name
type LetSig = Let & Sig

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars
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An Example

Extending the signature with let bindings

type Name = String
data Let e = Letln Name e e | Var Name
type LetSig = Let & Sig

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars
instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union' y

freeVarsSt (Val _) = empty
instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v

Department of Computer Science

freeVarsSt (Letln v e s) = if v ‘member" s then e ‘union’ delete v s

else s

28
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class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars € q, Let < g, Functor g) = RemLetHom Let q g where

remLetHom (Letln v _s) | = (v ‘member" below s) = Hole s

remLetHom t = simpCxt (inj t)

instance (Functor f, Functor g, f < g) = RemlLetHom f q g where
remLetHom = simpCxt . inj
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An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars € q, Let < g, Functor g) = RemLetHom Let q g where
remLetHom (Letln v _s) | = (v ‘member" below s) = Hole s

remLetHom t = simpCxt (inj t)

instance (Functor f, Functor g, f < g) = RemlLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remLet :: (Functor f, FreeVarsSt f, RemLetHom f Vars f)
= Term f — (Vars, Term f)

remLet = runUpHom freeVarsSt remLetHom
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remLet = runUpHom freeVarsSt remLetHom

29




UNIVERSITY OF COPENHAGEN

Department of Computer Science

An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars € q, Let < g, Functor g) = RemLetHom Let q g where
remLetHom (Letln v _s) | = (v ‘member" below s) = Hole s

remLetHom t = simpCxt (inj t)

instance (Functor f, Functor g, f < g) = RemlLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remlLet :: (Functor f, FreeVarsSt f, RemLetHom f Vars f)
= Term f — (Vars, Term f)

remLet = runUpHom freeVarsSt remLetHom

remLet :: Term LetSig — Term LetSig
remLet :: Term (Inc @ LetSig) — Term (Inc @ LetSig)
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Top-Down Tree Transducers

q(f(x1, %0, ..., x5)) — t

feF  teT(G, QX)) Q(X) ={p(x)IpeQ,1<i<n}
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Top-Down Tree Transducers

g0 -
O—0O

q(f(x1, %0, ..., x5)) — t

fer  teT(9,Q(Y)) QX) ={p(x)Ipe Q1 <i<n}

Representation in Haskell

type DownTrans f q g =V a.(q,f a) — Context g (q, a)
31 [
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Decomposing Top-Down Tree Transducers

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

qo(f(x)) = g(aq1(x), a2(x))
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Decomposing Top-Down Tree Transducers

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

qo(f(x)) = g(aq1(x), a2(x))

Assignment to variables instead

restriction: if g(x) and p(x) occur on right-hand side, then p = q.

How to represent top-down state transformations?

o first try: type DownState f q =V a.(q,f a) > f q
@ permits changing the shape of the input:

bad ::V a.(q,Sig a) — Sig q
bad (q, Plus x y) = Val 1
bad (q,Val i) = Vall

32
Py




UNIVERSITY OF COPENHAGEN Department of Computer Science

Top-Down State Transitions

Using explicit placeholders

type DownState f =V i.Ord i = (q,f i) — Map i q
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Top-Down State Transitions

Using explicit placeholders

type DownState f =V i.Ord i = (q,f i) — Map i q

~~ construct function of type V a. (g, f a) — f g that preserves the shape

Combining with stateful tree homomorphisms
type QHom f q g =V a. (?above :: g, ?below :: a — q) = f a — Context g a
type DownTrans f g g =V a.(q,f a) — Context g (g, a)
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34




UNIVERSITY OF COPENHAGEN Department of Computer Science

Why Tree Transducers

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.
data (f :&:a)e=fe:& a

lift :: UpTrans f q g — UpTrans (f :&: a) q (g :&: a)

Tree transducers compose

We may leverage composition theorems for tree transducers.
comp :: DownTrans g p h — DownTrans f q g — DownTrans f (q,p) h

~~ potential for fusion
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Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism
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Beyond Tree Transducers

Bidirectional state transitions

@ bottom-up + top-down state transition

@ bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

@ states may have arguments taken from the term

@ necessary for 'non-local’ transformations, e.g. substitution, inlining

type UpTrans' f gg =V a.f (q a,a) — (g (Context g a), Context g a)
type DownTrans' f qg =V a.(q a,f a) — Context g (q (Context g a), a)

e.g. for substitutions: g = Map Var

generic programming

35




	Tree Automata
	Bottom-Up Tree Acceptors
	Bottom-Up Tree Transducers

	Introducing Modularity
	Composing State Spaces
	Compositional Signatures
	Decomposing Tree Transducers

	Other Automata

