

Deriving Modular Recursion Schemes from Tree Automata

Patrick Bahr

University of Copenhagen, Department of Computer Science paba@diku.dk

Computing Science Colloquium, Utrecht University, April 12th, 2012

Outline

- Tree Automata
 - Bottom-Up Tree Acceptors
 - Bottom-Up Tree Transducers
- Introducing Modularity
 - Composing State Spaces
 - Compositional Signatures
 - Decomposing Tree Transducers
- Other Automata

Outline

- Tree Automata
 - Bottom-Up Tree Acceptors
 - Bottom-Up Tree Transducers
- 2 Introducing Modularity
 - Composing State Spaces
 - Compositional Signatures
 - Decomposing Tree Transducers
- Other Automata

Bottom-Up Tree Acceptors

Bottom-Up Tree Acceptors

$$f(q_1(x_1), q_2(x_2), \ldots, q_n(x_n)) \rightarrow q(f(x_1, x_2, \ldots, x_n))$$

The signature

$$\begin{split} \mathcal{F} &= \{\mathsf{and}/2, \mathsf{not}/1, \mathsf{tt}/0, \mathsf{ff}/0\} \\ \text{e.g.: } \mathsf{not}(\mathsf{and}(\mathsf{not}(\mathsf{ff}), \mathsf{and}(\mathsf{tt}, \mathsf{ff}))) \end{split}$$

The signature

 $\mathcal{F} = \{ \text{and}/2, \text{not}/1, \text{tt}/0, \text{ff}/0 \}$

e.g.: not(and(not(ff), and(tt, ff)))

The states

- ullet set of states: $Q=\{q_0,q_1\}$
- $q_0 \rightsquigarrow \text{false}$
- $q_1 \rightsquigarrow \mathsf{true}$
- ullet accepting states: $Q_a=\{q_1\}$

The signature

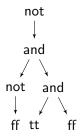
$$\mathcal{F} = \{ \mathsf{and}/2, \mathsf{not}/1, \mathsf{tt}/0, \mathsf{ff}/0 \}$$
 e.g.: $\mathsf{not}(\mathsf{and}(\mathsf{not}(\mathsf{ff}), \mathsf{and}(\mathsf{tt}, \mathsf{ff})))$

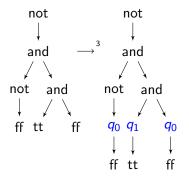
The states

- set of states: $Q = \{q_0, q_1\}$
- $q_0 \rightsquigarrow \text{false}$
- $q_1 \rightsquigarrow \text{true}$
- ullet accepting states: $Q_a=\{q_1\}$

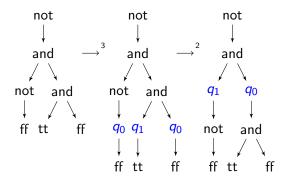
The rules of the automaton

$$\begin{aligned} \text{ff} &\rightarrow q_0(\text{ff}) \\ \text{tt} &\rightarrow q_1(\text{tt}) \\ &\text{not}(q_0(x)) \rightarrow q_1(\text{not}(x)) \\ &\text{not}(q_1(x)) \rightarrow q_0(\text{not}(x)) \\ &\text{and}(q_1(x), q_1(y)) \rightarrow q_1(\text{and}(x, y)) \\ &\text{and}(q_0(x), q_1(y)) \rightarrow q_0(\text{and}(x, y)) \\ &\text{and}(q_1(x), q_0(y)) \rightarrow q_0(\text{and}(x, y)) \\ &\text{and}(q_0(x), q_0(y)) \rightarrow q_0(\text{and}(x, y)) \end{aligned}$$

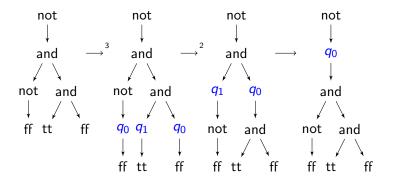




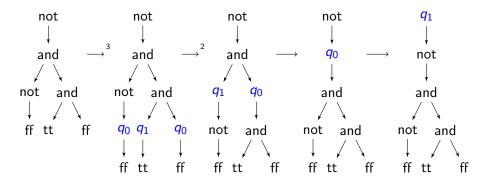
$$\mathsf{ff} o q_0(\mathsf{ff}) \ \mathsf{tt} o q_1(\mathsf{tt})$$



$$\mathsf{not}(q_0({m{x}})) o q_1(\mathsf{not}({m{x}}))$$
 and $(q_1({m{x}}), q_0({m{y}})) o q_0(\mathsf{and}({m{x}}, {m{y}}))$



$$\mathsf{not}(q_0({m{x}})) o q_1(\mathsf{not}({m{x}}))$$
 and $(q_1({m{x}}),q_0({m{y}})) o q_0(\mathsf{and}({m{x}},{m{y}}))$



$$\mathsf{not}(q_0(x)) o q_1(\mathsf{not}(x))$$
 $\mathsf{and}(q_1(x),q_0(y)) o q_0(\mathsf{and}(x,y))$

Data types as fixed points of functors

 $\textbf{data Term } f = \textit{In} \ (\textit{f} \ (\textit{Term } f))$

Data types as fixed points of functors

data Term f = In (f (Term f))

Functors

class Functor f where

$$fmap :: (a \rightarrow b) \rightarrow f \ a \rightarrow f \ b$$

Data types as fixed points of functors

data Term f = In (f (Term f))

Functors

class Functor f where

$$fmap :: (a \rightarrow b) \rightarrow f \ a \rightarrow f \ b$$

Example

data $F = And = And = Not = TT \mid FF$

Data types as fixed points of functors

data Term f = In (f (Term f))

Functors

class Functor f **where** $fmap :: (a \rightarrow b) \rightarrow f \ a \rightarrow f \ b$

Example

data F $a = And a a \mid Not a \mid TT \mid FF$

instance Functor F where

fmap f
$$TT = TT$$

fmap f $(And \times y) = And (f \times) (f y)$

÷

Data types as fixed points of functors

data Term f = In (f (Term f))

Functors

class Functor f **where** $fmap :: (a \rightarrow b) \rightarrow f \ a \rightarrow f \ b$

Example

data F = And = A

instance Functor F where fmap f TT = TT

fmap
$$f(And \times y) = And(f \times)(f y)$$

:

Bottom-up state transition rules as algebras

type $UpState\ f\ q = f\ q \rightarrow q$

Bottom-up state transition rules as algebras

type $UpState\ f\ q = f\ q \rightarrow q$

runUpState :: Functor $f \Rightarrow UpState \ f \ q \rightarrow Term \ f \rightarrow q$ runUpState ϕ (In t) = ϕ (fmap (runUpState ϕ) t)

Bottom-up s a.k.a. catamorphism / fold ras

type *UpState* f $q \rightarrow q$

 $runUpState \checkmark$:: $Functor f \Rightarrow UpState f q \rightarrow Term f \rightarrow q$ $runUpState \phi (In t) = \phi (fmap (runUpState \phi) t)$

Signature

data $F = And = And = Not = TT \mid FF$

Signature

data $F = And = And = Not = TT \mid FF$

States

data $Q = Q0 \mid Q1$

Accepting states

 $acc :: Q \rightarrow Bool$

acc Q1 = True

acc Q0 = False

Signature

data $F = And = And = Not = TT \mid FF$

States

data $Q = Q0 \mid Q1$

Accepting states

 $acc :: Q \rightarrow Bool$ acc Q1 = Trueacc Q0 = False

State transition function

trans :: $F Q \rightarrow Q$ trans FF = Q0trans TT = Q1trans (Not Q0) = Q1trans (Not Q1) = Q0trans (And Q1 Q1) = Q1trans (And Q1 Q1) = Q0

Bottom-Up Tree Transducers



Bottom-Up Tree Transducers

Bottom-Up Tree Transducers

$$f(q_1(x_1), q_2(x_2), \dots, q_n(x_n)) \longrightarrow q(t)$$

 $f \in \mathcal{F} \qquad t \in \mathcal{T}(\mathcal{G}, \mathcal{X}) \qquad \mathcal{X} = \{x_1, x_2, \dots, x_n\}$

The signature

 $\mathcal{F} = \{\mathsf{and}/2, \mathsf{not}/1, \mathsf{ff}/0, \mathsf{tt}/0, \mathsf{b}/0\}$

The signature

 $\mathcal{F} = \{\mathsf{and}/2, \mathsf{not}/1, \mathsf{ff}/0, \mathsf{tt}/0, \mathsf{b}/0\}$

The states

- $q_0 \rightsquigarrow \text{false}$
- $q_1 \sim$ true
- $q_2 \rightsquigarrow don't know$

The signature

 $\mathcal{F} = \{\mathsf{and}/2, \mathsf{not}/1, \mathsf{ff}/0, \mathsf{tt}/0, \mathsf{b}/0\}$

The states

- $q_0 \rightsquigarrow$ false
- $q_1 \rightsquigarrow \text{true}$
- $q_2 \sim \text{don't know}$

Transduction rules

 $\mathsf{tt} o q_1(\mathsf{tt}) \qquad \mathsf{not}(q_0(\mathsf{x})) o q_1(\mathsf{tt}) \ \mathsf{ff} o q_0(\mathsf{ff}) \qquad \mathsf{not}(q_1(\mathsf{x})) o q_0(\mathsf{ff})$

 $b \rightarrow q_2(b)$ $not(q_2(x)) \rightarrow q_2(not(x))$

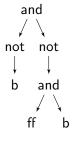
 $\operatorname{and}(q(\mathbf{x}), p(\mathbf{y})) \to q_0(\operatorname{ff}) \quad \text{if } q_0 \in \{p, q\}$

 $\mathsf{and}(q_1(\mathsf{x}),q_1(\mathsf{y})) o q_1(\mathsf{tt})$ $\mathsf{and}(q_1(\mathsf{x}),q_2(\mathsf{y})) o q_2(\mathsf{y})$

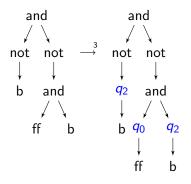
 $\operatorname{\mathsf{and}}(q_2(\mathsf{x}),q_1(\mathsf{y})) \to q_2(\mathsf{x})$

 $\mathsf{and}(q_2(x),q_2(y)) \to q_2(\mathsf{and}(x,y))$

A Run of a Bottom-Up Transducer



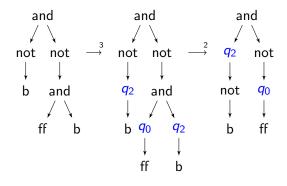
A Run of a Bottom-Up Transducer



$$ff \rightarrow q_0(ff)$$

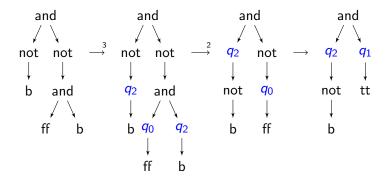
 $b \rightarrow q_2(b)$

A Run of a Bottom-Up Transducer



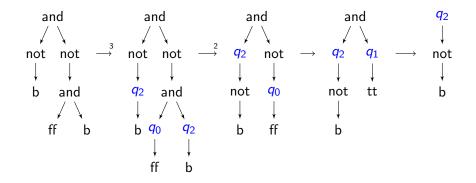
$$\mathsf{not}(q_2({\mathsf x})) o q_2(\mathsf{not}({\mathsf x}))$$
 $\mathsf{and}(q({\mathsf x}),p({\mathsf y})) o q_0(\mathsf{ff}) \quad \mathsf{if} \ q_0 \in \{p,q\}$

A Run of a Bottom-Up Transducer



$$\mathsf{not}(q_0(x)) \to q_1(\mathsf{tt})$$

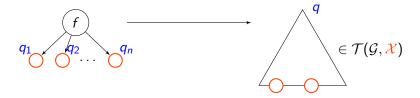
A Run of a Bottom-Up Transducer



$$\mathsf{and}(q_2(\mathsf{x}),q_1(\mathsf{y})) o q_2(\mathsf{x})$$

From terms to contexts

data Term f = In (f (Term f))data Context f a = In (f (Context f a)) | Hole a



type Term f = Context f Empty

From terms to cortexts

data
$$Term f = In (f (Term f))$$

data $Context f a = In (f (Context f a)) | Hole a$

From terms to contexts

data Term f = In (f (Term f))data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

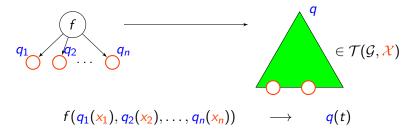
type UpTrans $f q g = \forall a.f (q,a) \rightarrow (q, Context g a)$

From terms to contexts

data Term f = In (f (Term f))data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans $f \ q \ g = \forall \ a.f \ (q,a) \rightarrow (q, \ Context \ g \ a)$



From terms to contexts

data Term f = In (f (Term f))data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans $f \ q \ g = \forall \ a.f \ (q,a) \rightarrow (q, \ Context \ g \ a)$

Signature And state

data
$$F$$
 $a = And$ a a $|$ Not a $|$ TT $|$ FF $|$ B data Q $=$ $Q0$ $|$ $Q1$ $|$ $Q2$

Signature And state

data
$$F$$
 $a = And$ a a $|$ Not a $|$ TT $|$ FF $|$ B data Q $=$ $Q0$ $|$ $Q1$ $|$ $Q2$

type UpTrans f q $g = \forall$ a.f $(q,a) \rightarrow (q, Context g a)$ data Context f a = In (f (Context f a)) | Hole a

The transduction function

Signature And state

data
$$F = And = And = Not = TT \mid FF \mid B$$

data $Q = Q0 \mid Q1 \mid Q2$

type UpTrans
$$f$$
 q $g = \forall$ a. f $(q,a) \rightarrow (q, Context g a)$ data Context f $a = In (f (Context f a)) | Hole a$

The transduction function

$$tt \rightarrow q_1(tt)$$

trans
$$TT = (Q1, tt)$$

Signature And state

data
$$F = And = And = Not = TT \mid FF \mid B$$

data $Q = Q0 \mid Q1 \mid Q2$

type UpTrans
$$f$$
 q $g = \forall$ a. f $(q,a) \rightarrow (q, Context g a) data Context f $a = In (f (Context f a)) | Hole a$$

The transduction function

$$\mathsf{tt} o q_1(\mathsf{tt})$$

trans
$$TT = (Q1, tt)$$

Signature And state

data
$$F$$
 $a = And$ a $a \mid Not$ $a \mid TT \mid FF \mid B$
data $Q = Q0 \mid Q1 \mid Q2$

type UpTrans
$$f$$
 q $g = \forall$ a. f $(q,a) \rightarrow (q, Context g a) data Context f $a = In (f (Context f a)) | Hole a$$

The transduction function

$$\mathsf{tt} o q_1(\mathsf{tt}) \qquad \qquad \mathsf{trans} \ TT = (Q1, \mathsf{tt} \) \\ \mathsf{not}(q_2(\mathsf{x})) o q_2(\mathsf{not}(\mathsf{x})) \qquad \mathsf{trans} \ (\mathsf{Not} \ (Q2, \mathsf{x})) = (Q2, \mathsf{not} \ (\mathsf{Hole} \ \mathsf{x}))$$

Signature And state

data
$$F$$
 $a = And$ a a $|$ Not a $|$ TT $|$ FF $|$ B data Q $=$ $Q0$ $|$ $Q1$ $|$ $Q2$

type UpTrans
$$f$$
 q $g = \forall$ $a.f$ $(q,a) \rightarrow (q, Context g a)$ **data** Context f $a = In(f(Context f a)) | Hole a$

```
The transduction function f in f
```

$$\begin{array}{ccc} \operatorname{tt} \to q_1(\operatorname{tt}) & \operatorname{trans} \ TT = Q1,\operatorname{tt} \) \\ \operatorname{not}(q_2(\mathsf{x})) \to q_2(\operatorname{not}(\mathsf{x})) & \operatorname{trans} \left(\operatorname{Not} \left(Q2,\,\mathsf{x}\right)\right) = \left(Q2,\operatorname{not} \left(\operatorname{Hole}\,\mathsf{x}\right)\right) \end{array}$$

Signature And state

```
data F = And = And = Not = TT \mid FF \mid B
data Q = Q0 \mid Q1 \mid Q2
```

```
type UpTrans f q g = \forall a.f (q,a) \rightarrow (q, Context g a) data Context <math>f a = In (f (Context f a)) | Hole a
```

The transduction function

$$\begin{array}{ll} \operatorname{tt} \to q_1(\operatorname{tt}) & \textit{trans } TT = (Q1, tt \) \\ \operatorname{not}(q_2(\mathsf{x})) \to q_2(\operatorname{not}(\mathsf{x})) & \textit{trans } (\operatorname{\textit{Not}} (Q2, \mathsf{x})) = (Q2, \operatorname{\textit{not}} (\operatorname{\textit{Hole }} \mathsf{x})) \\ & \operatorname{\mathsf{and}}(q(\mathsf{x}), p(\mathsf{y})) \to q_0(\operatorname{\mathsf{ff}}) & \operatorname{\mathsf{if}} \ q_0 \in \{q, p\} \end{array}$$

Signature And state

```
data F = And = And = Not = TT \mid FF \mid B
data Q = Q0 \mid Q1 \mid Q2
```

```
type UpTrans f q g = \forall a.f (q,a) \rightarrow (q, Context g a) data Context <math>f a = In (f (Context f a)) | Hole a
```

The transduction function

```
\begin{array}{c} \operatorname{tt} \to q_1(\operatorname{tt}) & \operatorname{trans} \ TT = (Q1,\operatorname{tt} \ ) \\ \operatorname{not}(q_2(\mathsf{x})) \to q_2(\operatorname{not}(\mathsf{x})) & \operatorname{trans} \left(\operatorname{Not} \left(Q2,\,\mathsf{x}\right)\right) = \left(Q2,\operatorname{not} \ \left(\operatorname{Hole} \,\mathsf{x}\right)\right) \\ & \operatorname{and}(q(\mathsf{x}),p(\mathsf{y})) \to q_0(\operatorname{ff}) \quad \text{if} \ q_0 \in \{q,p\} \\ \operatorname{trans} \left(\operatorname{And} \left(q,\,\mathsf{x}\right)\left(p,\,\mathsf{y}\right)\right) \mid q \equiv Q0 \ \lor \ p \equiv Q0 = \left(Q0,\operatorname{ff}\right) \end{array}
```

Outline

- Tree Automata
 - Bottom-Up Tree Acceptors
 - Bottom-Up Tree Transducers
- Introducing Modularity
 - Composing State Spaces
 - Compositional Signatures
 - Decomposing Tree Transducers
- Other Automata

A simple expression language

data $Sig\ e = Val\ Int \mid Plus\ e\ e$

A simple expression language

 $\mathbf{data} \; \mathit{Sig} \; e = \mathit{Val} \; \mathit{Int} \; | \; \mathit{Plus} \; e \; e$

Task: writing a code generator

```
type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr]
```


A simple expression language

data $Sig \ e = Val \ Int \mid Plus \ e \ e$

Task: writing a code generator

```
type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr]
```

The problem

```
codeSt :: UpState Sig Code

codeSt (Val i) = [Acc i]

codeSt (Plus x y) = x ++ [Store a] ++ y ++ [Add a]

where a = ...
```

A simple expression language

```
data Sig \ e = Val \ Int \mid Plus \ e \ e
```

Task: writing a code generator

```
type Addr = Int

data Instr = Acc \ Int \ | \ Load \ Addr \ | \ Store \ Addr \ | \ Add \ Addr

type Code = [Instr]

Sig \ Code \rightarrow Code
```

The problem

```
codeSt :: UpState \mathscr{S}ig Code
codeSt (Val i) = [Acc i]
codeSt (Plus \times y) = \times ++ [Store a] ++ y ++ [Add a]
where a = \dots
```

Tuple the code with an address counter

```
codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i], 0)

codeAddrSt (Plus (x, a') (y, a)) = (x + [Store a] + y + [Add a],

1 + max a a')
```


Tuple the code with an address counter

```
codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i], 0)

codeAddrSt (Plus (x, a') (y, a)) = (x + [Store a] + y + [Add a],

1 + max a a')
```

Run the automaton

$$code :: Term Sig \rightarrow (Code, Addr)$$

 $code = runUpState codeAddrSt$

Tuple the code with an address counter

```
codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i], 0)

codeAddrSt (Plus (x, a') (y, a)) = (x + [Store a] + y + [Add a],

1 + max a a')
```

Run the automaton

 $code :: Term Sig \rightarrow (Code, Addr)$ $code = fst \cdot runUpState codeAddrSt$

Tuple the code with an address counter

```
codeAddrSt :: UpState Sig (Code, Addr)

codeAddrSt (Val i) = ([Acc i], 0)

codeAddrSt (Plus (x, a') (y, a)) = (x + [Store a] + y + [Add a],

1 + max a a')
```

Run the automaton

 $code :: Term Sig \rightarrow Code$ code = fst . runUpState codeAddrSt

Deriving projections

class $a \in b$ where

 $pr::b \rightarrow a$

Deriving projections

class $a \in b$ where

 $pr :: b \rightarrow a$

$$a \in b$$
 iff

- b is of the form $(b_1,(b_2,...))$ and
- $a = b_i$ for some i

Deriving projections

class $a \in b$ where $pr :: b \rightarrow a$

$$a \in b$$
 iff

- ullet b is of the form $(b_1,(b_2,...))$ and
- $a = b_i$ for some i

For example: $Addr \in (Code, Addr)$

Deriving projections

class $a \in b$ where $pr :: b \rightarrow a$

 $a \in b$ iff

- b is of the form $(b_1, (b_2, ...))$ and
- $a = b_i$ for some i

For example: $Addr \in (Code, Addr)$

type
$$UpState f q =$$

$$f q \rightarrow q$$

Deriving projections

class
$$a \in b$$
 where $pr :: b \rightarrow a$

$$a \in b$$
 iff

- b is of the form $(b_1, (b_2, ...))$ and
- $a = b_i$ for some i

For example: $Addr \in (Code, Addr)$

type *UpState*
$$f$$
 $q = f$ $q \rightarrow q$ **type** *DUpState* f p $q = (q \in p) \Rightarrow f$ $p \rightarrow q$

Deriving projections

class
$$a \in b$$
 where $pr :: b \rightarrow a$

$$a \in b$$
 iff

- b is of the form $(b_1, (b_2, ...))$ and
- $a = b_i$ for some i

For example: $Addr \in (Code, Addr)$

type *UpState*
$$f$$
 $q = f$ $q \rightarrow q$ **type** *DUpState* f p $q = (q \in p) \Rightarrow f$ $p \rightarrow q$

Deriving projections

class
$$a \in b$$
 where $pr :: b \rightarrow a$

$$a \in b$$
 iff

- b is of the form $(b_1,(b_2,...))$ and
- $a = b_i$ for some i

For example: $Addr \in (Code, Addr)$

type UpState
$$f$$
 $q = f$ $q \rightarrow q$
type DUpState f p $q = (q \in p) \Rightarrow f$ $p \rightarrow q$

Deriving projections

class $a \in b$ where $pr :: b \rightarrow a$

$$a \in b$$
 iff

- b is of the form $(b_1, (b_2, ...))$ and
- $a = b_i$ for some i

For example: $Addr \in (Code, Addr)$

Dependent state transition functions

type *UpState* f q = f $q \rightarrow q$ **type** *DUpState* f p $q = (q \in p) \Rightarrow f$ $p \rightarrow q$

Product state transition

$$(\otimes)$$
 :: $(p \in c, q \in c) \Rightarrow DUpState\ f\ c\ p \rightarrow DUpState\ f\ c\ q$
 $\rightarrow DUpState\ f\ c\ (p,q)$
 $(sp \otimes sq)\ t = (sp\ t, sq\ t)$

Running Dependent State Transition Functions

The types

type $UpState \ f \ q = f \ q \rightarrow q$ **type** $DUpState \ f \ p \ q = (q \in p) \Rightarrow f \ p \rightarrow q$

Running Dependent State Transition Functions

The types

```
type UpState \ f \ q = f \ q \rightarrow q

type DUpState \ f \ p \ q = (q \in p) \Rightarrow f \ p \rightarrow q
```

From state transition to dependent state transition

 $dUpState :: Functor f \Rightarrow UpState f q \rightarrow DUpState f p q \\ dUpState st = st . fmap pr$

Running Dependent State Transition Functions

The types

```
type UpState \ f \ q = f \ q \rightarrow q

type DUpState \ f \ p \ q = (q \in p) \Rightarrow f \ p \rightarrow q
```

From state transition to dependent state transition

 $dUpState :: Functor f \Rightarrow UpState f q \rightarrow DUpState f p q \\ dUpState st = st . fmap pr$

Running dependent state transitions

 $runDUpState :: Functor f \Rightarrow DUpState f q q \rightarrow Term f \rightarrow q$ runDUpState f = runUpState f

The Code Generator Example

The code generator

```
codeSt :: (Int \in q) \Rightarrow DUpState \ Sig \ q \ Code
codeSt \ (Val \ i) = [Acc \ i]
codeSt \ (Plus \ x \ y) = pr \ x + [Store \ a] + pr \ y + [Add \ a]
where a = pr \ y
```


The Code Generator Example

The code generator

```
codeSt :: (Int \in q) \Rightarrow DUpState \ Sig \ q \ Code
codeSt \ (Val \ i) = [Acc \ i]
codeSt \ (Plus \ x \ y) = pr \ x + [Store \ a] + pr \ y + [Add \ a]
where a = pr \ y
```

Generating fresh addresses

```
heightSt :: UpState Sig Int

heightSt (Val \_) = 0

heightSt (Plus x y) = 1 + max x y
```


The Code Generator Example

The code generator

```
codeSt :: (Int \in q) \Rightarrow DUpState Sig \ q \ Code

codeSt (Val \ i) = [Acc \ i]

codeSt (Plus \times y) = pr \times + [Store \ a] + pr \ y + [Add \ a]

where a = pr \ y
```

Generating fresh addresses

```
heightSt :: UpState Sig Int
heightSt (Val \_) = 0
heightSt (Plus x y) = 1 + max x y
```

Combining the components

 $code :: Term Sig \rightarrow Code$ $code = fst \cdot runUpState (codeSt \otimes dUpState heightSt)$

Outline

- Tree Automata
 - Bottom-Up Tree Acceptors
 - Bottom-Up Tree Transducers
- Introducing Modularity
 - Composing State Spaces
 - Compositional Signatures
 - Decomposing Tree Transducers
- Other Automata

Combining Signatures

Coproduct of signatures

$$\mathbf{data}\;(f\oplus g)\;e=\mathit{InI}\;(f\;e)\;|\;\mathit{Inr}\;(g\;e)$$

 $f \oplus g$ is the sum of the signatures f and g

Combining Signatures

Coproduct of signatures

$$\mathbf{data}\;(f\oplus g)\;e=\mathit{InI}\;(f\;e)\;|\;\mathit{Inr}\;(g\;e)$$

 $f \oplus g$ is the sum of the signatures f and g

Example

```
data Inc \ e = Inc \ e
type Sig' = Inc \oplus Sig
```


Combining Automata

Making the height compositional

```
class HeightSt f where
heightSt :: DUpState f q Int
```

```
instance (HeightSt f, HeightSt g) \Rightarrow HeightSt (f \oplus g) where heightSt (Inl x) = heightSt x heightSt (Inr x) = heightSt x
```


Combining Automata

Making the height compositional

class HeightSt f where
 heightSt :: DUpState f q Int

instance ($HeightSt\ f$, $HeightSt\ g$) \Rightarrow $HeightSt\ (f\oplus g)$ where

heightSt (Inl x) = heightSt xheightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where

$$\begin{aligned} &\textit{heightSt} \; (\textit{Val} \; _) &= 0 \\ &\textit{heightSt} \; (\textit{Plus} \; \textit{x} \; \textit{y}) = 1 + \textit{max} \; \textit{x} \; \textit{y} \end{aligned}$$

Combining Automata

Making the height compositional

```
class HeightSt f where
heightSt :: DUpState f q Int
```

 $\textbf{instance} \; (\textit{HeightSt} \; f, \textit{HeightSt} \; g) \Rightarrow \textit{HeightSt} \; (f \oplus g) \; \textbf{where}$

```
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x
```

Defining the height on Sig

instance HeightSt Sig where

```
heightSt (Val_{-}) = 0

heightSt (Plus x y) = 1 + max x y
```

Defining the height on Inc

instance HeightSt Inc where

heightSt (Inc x) = 1 + x

Subsignature type class

class $f \leq g$ where

$$\textit{inj} :: f \ a \rightarrow g \ a$$

Subsignature type class

class $f \leq g$ where

$$inj :: f \ a \rightarrow g \ a$$

$$f \leq g$$
 iff

- ullet $g=g_1\oplus g_2\oplus ...\oplus g_n$ and
- $\bullet \ f = g_i, \quad 0 < i \le n$

Subsignature type class

class $f \leq g$ where

$$inj :: f \ a \rightarrow g \ a$$

For example:
$$Inc \leq \underbrace{Inc \oplus Sig}_{Sig'}$$

$$f \leq g$$
 iff

- ullet $g=g_1\oplus g_2\oplus ...\oplus g_n$ and
- $\bullet \ f = g_i, \quad 0 < i \le n$

Subsignature type class

class $f \leq g$ where

$$inj :: f \ a \rightarrow g \ a$$

For example:
$$Inc \leq \underbrace{Inc \oplus Sig}_{Sig'}$$

$$f \leq g$$
 iff

$$ullet$$
 $g=g_1\oplus g_2\oplus ...\oplus g$ _ n and

$$\bullet \ f = g_i, \quad 0 < i \le n$$

Injection and projection functions

$$inject :: (g \leq f) \Rightarrow g (Context \ f \ a) \rightarrow Context \ f \ a$$

 $inject = In \ . \ inj$

Outline

- Tree Automata
 - Bottom-Up Tree Acceptors
 - Bottom-Up Tree Transducers
- Introducing Modularity
 - Composing State Spaces
 - Compositional Signatures
 - Decomposing Tree Transducers
- 3 Other Automata

type $UpTrans\ f\ q\ g=\forall\ a\ .\ f\ (q,\ a) \to (q,\ Context\ g\ a)$

type $UpTrans\ f \quad g = \forall\ a \ . \ f \quad a \ o \quad Context\ g\ a$

type Hom $f g = \forall a. f a \rightarrow Context g a$

 $\textbf{type} \ \textit{Hom} \qquad \textit{f} \quad \textit{g} = \forall \ \textit{a} \ . \ \textit{f} \qquad \textit{a} \ \rightarrow \qquad \textit{Context} \ \textit{g} \ \textit{a}$

Example (Desugaring)

class DesugHom f g where

desugHom :: Hom f g

desugar :: (Functor f, Functor g, DesugHom f g) \Rightarrow Term f \rightarrow Term g desugar = runHom desugHom


```
\textbf{type} \ \textit{Hom} \qquad \textit{f} \quad \textit{g} = \forall \ \textit{a} \ . \ \textit{f} \qquad \textit{a} \ \rightarrow \qquad \textit{Context} \ \textit{g} \ \textit{a}
```

Example (Desugaring)

```
class DesugHom f g where desugHom :: Hom f g
```

desugar :: (Functor f, Functor g, DesugHom f g) \Rightarrow Term f \rightarrow Term g desugar = runHom desugHom

```
instance (Sig \leq g) \Rightarrow DesugHom \ Inc \ g \ where
 desugHom \ (Inc \ x) = Hole \ x \ 'plus' \ val \ 1
```

instance (Functor
$$g, f \leq g$$
) \Rightarrow DesugHom f g where $desugHom = simpCxt$. inj


```
type Hom f g = \forall a. f a \rightarrow Context g a
Example (Desugaring)
class DesugHom f g where
   desugHom :: Hom f g
desugar :: (Functor f, Functor g, DesugHom f g) \Rightarrow Term f \rightarrow Term g
desugar = runHom desugHom
instance (Sig \le g) = simpCxt :: Functor <math>g \Rightarrow g \ a \rightarrow Context \ g \ a desugHom (Inc \ x)
instance (Functor g, f \leq g) DesugHom f g where
  desugHom = simpCxt. ini
```


Decomposing tree transducers

```
type Hom f g = \forall a . f a \rightarrow Context g a

type UpState f q = f q \rightarrow q

type UpTrans f q g = \forall a . f (q, a) \rightarrow (q, Context g a)
```


Decomposing tree transducers

```
type Hom f g = \forall a . f a \rightarrow Context g a

type UpState f q = f q \rightarrow q

type UpTrans f q g = \forall a . f (q, a) \rightarrow (q, Context g a)
```

Making homomorphisms dependent on a state

type QHom
$$f \circ g = \forall a$$
. $f \circ a \to Context \circ g \circ a$

Decomposing tree transducers

```
type Hom f g = \forall a . f a \rightarrow Context g a

type UpState f q = f q \rightarrow q

type UpTrans f q g = \forall a . f (q, a) \rightarrow (q, Context g a)
```

Making homomorphisms dependent on a state

type QHom
$$f \ q \ g = \forall \ a.$$
 $f(q, a) \rightarrow Context \ g \ a$

Decomposing tree transducers

```
type Hom f g = \forall a . f a \rightarrow Context g a

type UpState f q = f q \rightarrow q

type UpTrans f q g = \forall a . f (q, a) \rightarrow (q, Context g a)
```

Making homomorphisms dependent on a state

type QHom
$$f q g = \forall a$$
. $(a \rightarrow q) \rightarrow f$ $a \rightarrow Context g a$

Decomposing tree transducers

```
type Hom f g = \forall a . f a \rightarrow Context g a

type UpState f q = f q \rightarrow q

type UpTrans f q g = \forall a . f (q, a) \rightarrow (q, Context g a)
```

Making homomorphisms dependent on a state

type QHom f q $g = \forall$ a. $q \rightarrow (a \rightarrow q) \rightarrow f$ $a \rightarrow Context g a$

Decomposing tree transducers

```
type Hom f g = \forall a . f a \rightarrow Context g a

type UpState f q = f q \rightarrow q

type UpTrans f q g = \forall a . f (q, a) \rightarrow (q, Context g a)
```

Making homomorphisms dependent on a state

type QHom f q $g = \forall$ a. $q \rightarrow (a \rightarrow q) \rightarrow f$ $a \rightarrow Context$ g $a \rightarrow Context$

Using implicit parameters

type QHom $f \mid q \mid g = \forall a : (?above :: q,?below :: a \rightarrow q) \Rightarrow f \mid a \rightarrow Context \mid g \mid a$

An Example

Extending the signature with let bindings

```
type Name = String

data Let e = LetIn Name e e | Var Name

type LetSig = Let \oplus Sig
```


An Example

Extending the signature with let bindings

```
type Name = String

data Let \ e = Let In \ Name \ e \ e \ | \ Var \ Name

type Let Sig = Let \oplus Sig
```

type Vars = Set Name
class FreeVarsSt f where
freeVarsSt :: UpState f Vars

An Example

Extending the signature with let bindings

```
type Name = String

data Let e = Let In Name e e | Var Name

type Let Sig = Let \oplus Sig
```

```
type Vars = Set \ Name

class FreeVarsSt \ f where
	freeVarsSt :: UpState \ f \ Vars

instance FreeVarsSt \ Sig \ where
	freeVarsSt \ (Plus \times y) = x \ `union' \ y
	freeVarsSt \ (Val \ \_) = empty

instance FreeVarsSt \ Let \ where
	freeVarsSt \ (Var \ v) = singleton \ v
	freeVarsSt \ (LetIn \ v \ e \ s) = if \ v \ `member' \ s \ then \ e \ `union' \ delete \ v \ s

else s
```

```
class RemLetHom\ f\ q\ g where remLetHom: QHom\ f\ q\ g
```

```
instance (Vars \in q, Let \leq g, Functor g) \Rightarrow RemLetHom Let q g where remLetHom (<math>LetIn \ v \ s) | \neg (v 'member' below s) = Hole \ s remLetHom t = simpCxt (inj \ t)
```

instance (Functor f, Functor g, $f \leq g$) \Rightarrow RemLetHom f q g where remLetHom = simpCxt. inj


```
class RemLetHom\ f\ q\ g where remLetHom: QHom\ f\ q\ g
```

```
\begin{array}{ll} \textbf{instance} \; (\textit{Vars} \in \textit{q}, \textit{Let} \; \preceq \textit{g}, \textit{Functor} \; \textit{g}) \Rightarrow \textit{RemLetHom} \; \textit{Let} \; \textit{q} \; \textit{g} \; \textbf{where} \\ \textit{remLetHom} \; (\textit{LetIn} \; \textit{v} \; \_ \textit{s}) \; | \; \neg \; (\textit{v} \; \textit{'member'} \; \textit{below} \; \textit{s}) = \textit{Hole} \; \textit{s} \\ \textit{remLetHom} \; t \; & = \textit{simpCxt} \; (\textit{inj} \; t) \end{array}
```

instance (Functor f, Functor g, $f \leq g$) \Rightarrow RemLetHom f q g where remLetHom = simpCxt. inj

Combining state transition and homomorphism

```
remLet :: (Functor f, FreeVarsSt f, RemLetHom f Vars f)

\Rightarrow Term f \rightarrow (Vars, Term f)

remLet = runUpHom freeVarsSt remLetHom
```



```
class RemLetHom\ f\ q\ g\ where remLetHom: QHom\ f\ q\ g
```

instance (Functor f, Functor g, $f \leq g$) \Rightarrow RemLetHom f q g where remLetHom = simpCxt. inj

```
Combining state

runUpHom \ st \ hom = runUpTrans \ (upTrans \ st \ hom)

\Rightarrow Term \ f \rightarrow (Vars \ Term \ f)

remLet = runUpHom \ freeVarsSt \ remLetHom
```


class RemLetHom f q g where

```
remLetHom :: QHom f \neq g

instance (Vars \in q, Let \leq g, Functor g) \Rightarrow RemLetHom Let q \neq g where

remLetHom (LetIn \neq v \leq s) | \neg (v 'member' below s) = Hole s

remLetHom t = simpCxt (inj t)
```

instance (Functor f, Functor g, $f \leq g$) \Rightarrow RemLetHom f q g where remLetHom = simpCxt. inj

Combining state transition and homomorphism

```
remLet :: (Functor f, FreeVarsSt f, RemLetHom f Vars f)

\Rightarrow Term f \rightarrow (Vars, Term f)

remLet = runUpHom freeVarsSt remLetHom
```

 $\begin{array}{ll} \textit{remLet} :: \textit{Term LetSig} & \rightarrow \textit{Term LetSig} \\ \textit{remLet} :: \textit{Term (Inc} \oplus \textit{LetSig)} \rightarrow \textit{Term (Inc} \oplus \textit{LetSig)} \end{array}$

Outline

- Tree Automata
 - Bottom-Up Tree Acceptors
 - Bottom-Up Tree Transducers
- Introducing Modularity
 - Composing State Spaces
 - Compositional Signatures
 - Decomposing Tree Transducers
- Other Automata

Top-Down Tree Transducers

Top-Down Tree Transducers

Top-Down Tree Transducers

$$f \in \mathcal{F}$$
 $t \in \mathcal{T}(\mathcal{G}, Q(\mathcal{X}))$ $Q(\mathcal{X}) = \{p(x_i) \mid p \in Q, 1 \le i \le n\}$

 $q(f(x_1, x_2, \ldots, x_n))$

Top-Down Tree Transducers

$$q(f(x_1, x_2, \dots, x_n)) \longrightarrow t$$

$$T(C, O(X)) \longrightarrow (T(x_1) \mid T \in O(1, x_1))$$

$$f \in \mathcal{F}$$
 $t \in \mathcal{T}(\mathcal{G}, Q(\mathcal{X}))$ $Q(\mathcal{X}) = \{p(x_i) \mid p \in Q, 1 \le i \le n\}$

Representation in Haskell

type DownTrans $f \neq g = \forall a . (q, f \Rightarrow) \rightarrow Context g (q, \Rightarrow)$

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

$$q_0(f(x)) \rightarrow g(q_1(x), q_2(x))$$

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

$$q_0(f(x)) \rightarrow g(q_1(x), q_2(x))$$

Assignment to variables instead

restriction: if q(x) and p(x) occur on right-hand side, then p = q.

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

$$q_0(f(x)) \rightarrow g(q_1(x), q_2(x))$$

Assignment to variables instead

restriction: if q(x) and p(x) occur on right-hand side, then p = q.

How to represent top-down state transformations?

• first try: **type** DownState $f \ q = \forall \ a . (q, f \ a) \rightarrow f \ q$

State transition depends on transformation

Successor states are assigned to variable occurrences on right-hand side.

$$q_0(f(x)) \rightarrow g(q_1(x), q_2(x))$$

Assignment to variables instead

restriction: if q(x) and p(x) occur on right-hand side, then p = q.

How to represent top-down state transformations?

- first try: **type** DownState $f \ q = \forall \ a \ . \ (q, f \ a) \rightarrow f \ q$
- permits changing the shape of the input:

bad ::
$$\forall$$
 a . $(q, Sig \ a) \rightarrow Sig \ q$
bad $(q, Plus \times y) = Val \ 1$
bad $(q, Val \ i) = Val \ 1$

Using explicit placeholders

type DownState f $q = \forall \ i \ . \ \textit{Ord} \ i \Rightarrow (q, f \ i) \rightarrow \textit{Map} \ i \ q$

Using explicit placeholders

type DownState $f \ q = \forall \ i \ . \ Ord \ i \Rightarrow (q, f \ i) \rightarrow \mathit{Map} \ i \ q$

 \rightsquigarrow construct function of type \forall a. $(q, f) \rightarrow f q$ that preserves the shape

Using explicit placeholders

type $DownState\ f\ q = \forall\ i\ .\ Ord\ i \Rightarrow (q,f\ i) \rightarrow Map\ i\ q$

 \leadsto construct function of type \forall a . (q, f a) \rightarrow f q that preserves the shape

Combining with stateful tree homomorphisms

type QHom f q $g = \forall$ a . (?above :: q,?below :: $a \rightarrow q$) \Rightarrow f $a \rightarrow$ Context g a

Using explicit placeholders

type DownState $f \mid q = \forall i$. Ord $i \Rightarrow (q, f \mid i) \rightarrow Map \mid q$

 \leadsto construct function of type \forall a . (q, f a) \rightarrow f q that preserves the shape

Combining with stateful tree homomorphisms

type QHom f q $g = \forall$ a . (?above :: q, ?below :: $a \rightarrow q$) \Rightarrow f $a \rightarrow$ Context g a **type** DownTrans f q $g = \forall$ a . (q, f) a Context a

More structure, more flexibility

Tree transducers can manipulated more easily

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.

data
$$(f : \& : a) e = f e : \& : a$$

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.

data (f : & : a) e = f e : & : a

lift :: UpTrans f q g \rightarrow UpTrans (f :&: a) q (g :&: a)

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.

data (f : &: a) e = f e : &: a

lift :: UpTrans f q $g \rightarrow UpTrans$ (f :&: a) q (g :&: a)

Tree transducers compose

We may leverage composition theorems for tree transducers.

 $\textit{comp} :: \textit{DownTrans } \textit{g} \textit{ p} \textit{ h} \rightarrow \textit{DownTrans } \textit{f} \textit{ q} \textit{ g} \rightarrow \textit{DownTrans } \textit{f} \textit{ (q,p)} \textit{ h}$

More structure, more flexibility

Tree transducers can manipulated more easily, e.g.

data (f : & : a) e = f e : & : a

lift :: UpTrans $f \neq g \rightarrow UpTrans (f :\&: a) \neq (g :\&: a)$

Tree transducers compose

We may leverage composition theorems for tree transducers.

 $\textit{comp} :: \textit{DownTrans } \textit{g} \textit{ p} \textit{ h} \rightarrow \textit{DownTrans } \textit{f} \textit{ q} \textit{ g} \rightarrow \textit{DownTrans } \textit{f} \textit{ (q,p) } \textit{h}$

→ potential for fusion

Bidirectional state transitions

- bottom-up + top-down state transition
- ullet bottom-up + top-down state transition + stateful homomorphism

Bidirectional state transitions

- bottom-up + top-down state transition
- bottom-up + top-down state transition + stateful homomorphism

- states may have arguments taken from the term
- necessary for 'non-local' transformations, e.g. substitution, inlining

Bidirectional state transitions

- bottom-up + top-down state transition
- ullet bottom-up + top-down state transition + stateful homomorphism

- states may have arguments taken from the term
- necessary for 'non-local' transformations, e.g. substitution, inlining

$$\textbf{type } \textit{UpTrans } \textit{f } \textit{q } \textit{g} = \forall \textit{ a . f } \textit{(q } \textit{, a)} \rightarrow \textit{(q } \textit{, Context } \textit{g a)}$$

Bidirectional state transitions

- bottom-up + top-down state transition
- ullet bottom-up + top-down state transition + stateful homomorphism

- states may have arguments taken from the term
- necessary for 'non-local' transformations, e.g. substitution, inlining

type
$$UpTrans'$$
 $f \ q \ g = \forall \ a \ . \ f \ (q \ a, a) \rightarrow (q \ (Context \ g \ a), Context \ g \ a)$

Bidirectional state transitions

- bottom-up + top-down state transition
- ullet bottom-up + top-down state transition + stateful homomorphism

- states may have arguments taken from the term
- necessary for 'non-local' transformations, e.g. substitution, inlining

```
type UpTrans' f \ q \ g = \forall \ a \ . \ f \ (q \ a, a) \rightarrow (q \ (Context \ g \ a), Context \ g \ a)
type DownTrans \ f \ q \ g = \forall \ a \ . \ (q \ , f \ a) \rightarrow Context \ g \ (q \ , a)
```


Bidirectional state transitions

- bottom-up + top-down state transition
- ullet bottom-up + top-down state transition + stateful homomorphism

- states may have arguments taken from the term
- necessary for 'non-local' transformations, e.g. substitution, inlining

```
type UpTrans' f \ q \ g = \forall \ a \ . \ f \ (q \ a, a) \rightarrow (q \ (Context \ g \ a), Context \ g \ a) type DownTrans' f \ q \ g = \forall \ a \ . \ (q \ a, f \ a) \rightarrow Context \ g \ (q \ (Context \ g \ a), a)
```


Bidirectional state transitions

- bottom-up + top-down state transition
- ullet bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

- states may have arguments taken from the term
- necessary for 'non-local' transformations, e.g. substitution, inlining

```
type UpTrans' f \ q \ g = \forall \ a \ . \ f \ (q \ a, a) \rightarrow (q \ (Context \ g \ a), Context \ g \ a) type DownTrans' f \ q \ g = \forall \ a \ . \ (q \ a, f \ a) \rightarrow Context \ g \ (q \ (Context \ g \ a), a)
```

e.g. for substitutions: $q = Map \ Var$

Bidirectional state transitions

- bottom-up + top-down state transition
- ullet bottom-up + top-down state transition + stateful homomorphism

Macro Tree Transducers

- states may have arguments taken from the term
- necessary for 'non-local' transformations, e.g. substitution, inlining

```
type UpTrans' f \ q \ g = \forall \ a \ . \ f \ (q \ a, a) \rightarrow (q \ (Context \ g \ a), Context \ g \ a) type DownTrans' f \ q \ g = \forall \ a \ . \ (q \ a, f \ a) \rightarrow Context \ g \ (q \ (Context \ g \ a), a)
```

e.g. for substitutions: $q = Map \ Var$

generic programming

