

Faculty of Science

Infinitary Rewriting of Terms, Trees and Graphs

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

TF Lunch Utrecht University April 4, 2012

Outline

Introduction

- Functional Programming & Lazy Evaluation
- Infinite Reductions
- From Terms to Graphs
- Goals
- Obstacles

Infinitary Term Graph Rewriting

- Metric Approach
- Partial Order Approach
- Metric vs. Partial Order Approach
- Soundness & Completeness Properties

Approximating \sqrt{N}

$$a_{n+1} = \frac{a_n + N/a_n}{2}$$

Approximating \sqrt{N}

$$a_{n+1} = \frac{a_n + N/a_n}{2}$$

Simple imperative algorithm $x \leftarrow a_0$ repeat $y \leftarrow x$ $x \leftarrow (x + N/x)/2$ until $|x - y| \le \varepsilon$ return x

Approximating \sqrt{N}

$$a_{n+1} = \frac{a_n + N/a_n}{2}$$

Generates an infinite list

$$[a_0, f(a_0), f(f(a_0)), f(f(f(a_0))), \dots]$$

Simple imperative algorithm $x \leftarrow a_0$ repeat $y \leftarrow x$ $x \leftarrow (x + N/x)/2$ until $|x - y| \le \varepsilon$ return x

Approximating \sqrt{N}

$$a_{n+1} = \frac{a_n + N/a_n}{2}$$

Generates an infinite list

$$[a_0, f(a_0), f(f(a_0)), f(f(f(a_0))), \dots]$$

repeat f a

Simple imperative algorithm $x \leftarrow a_0$ repeat $y \leftarrow x$ $x \leftarrow (x + N/x)/2$ until $|x - y| \le \varepsilon$ return x

Approximating \sqrt{N}

$$a_{n+1} = \frac{a_n + N/a_n}{2}$$

Generates an infinite list

$$[a_0, f(a_0), f(f(a_0)), f(f(f(a_0))), \dots]$$

Simple imperative algorithm $x \leftarrow a_0$ repeat $y \leftarrow x$ $x \leftarrow (x + N/x)/2$ until $|x - y| \le \varepsilon$ return x

repeat f a next N x

$$= a :: repeat f (f a)$$
$$= (x + N/x)/2$$

Simple imperative algorithm

 $x \leftarrow (x + N/x)/2$

Newton-Raphson Square Roots

Approximating \sqrt{N}

$$a_{n+1} = \frac{a_n + N/a_n}{2}$$

Generates an infinite list

$$[a_0, f(a_0), f(f(a_0)), f(f(f(a_0))), \dots]$$

$$= a :: repeat f (f a)$$

= $(x + N/x)/2$
= if $|a - b| \le \varepsilon$
then b
else within ε (b :: rest)

return x

 $x \leftarrow a_0$ repeat

 $y \leftarrow x$

until $|x - y| \leq \varepsilon$

Simple imperative algorithm

 $x \leftarrow (x + N/x)/2$

Newton-Raphson Square Roots

Approximating \sqrt{N}

$$a_{n+1} = \frac{a_n + N/a_n}{2}$$

Generates an infinite list

sqrt $a_0 \in N$

$$[a_0, f(a_0), f(f(a_0)), f(f(f(a_0))), \dots]$$

$$= a :: repeat f (f a)$$

= $(x + N/x)/2$
= if $|a - b| \le \varepsilon$
then b
else within ε (b :: rest)
= within ε (repeat (next N) a_0)

return x

 $x \leftarrow a_0$ repeat

 $y \leftarrow x$

until $|x - y| \leq \varepsilon$

3

Lazy Evaluation

Subexpressions are evaluated only when they are needed.

4

Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a	= a :: repeat f (f a)
next N x	= (x + N/x)/2
within ε (a :: (b :: rest))	$=$ if $ a-b \leq arepsilon$
	then b
	else within $arepsilon$ (b::rest)
sqrt a ₀ ε N	$=$ within $arepsilon$ (repeat (next N) a $_0$)

Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a	= a :: repeat f (f a)
next N x	=(x+N/x)/2
within ε (a :: (b :: rest))	$= \mathbf{if} \mathbf{a} - \mathbf{b} \le \varepsilon$
	then b
	else within ε (b :: rest)
sqrt $a_0 \in N$	= within ε (repeat (next N) a_0)

Infinitary term rewriting aims to model infinite reductions explicitly.

Complete metric on terms

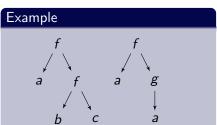
- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

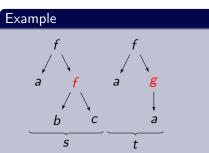
 $\mathbf{d}(s,t) = 2^{-\sin(s,t)}$



Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

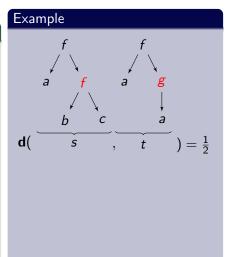
$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$



Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

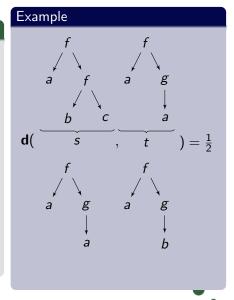
$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$



Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

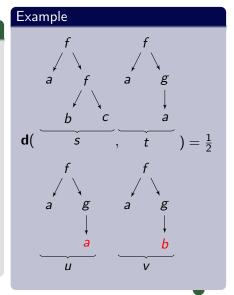
$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$



Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

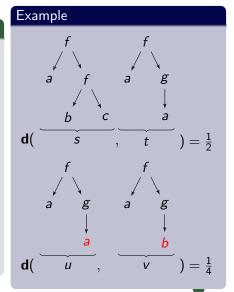
$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$



Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

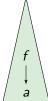
$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

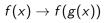


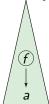
Convergence of Transfinite Reductions

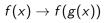
Two different kinds of convergence

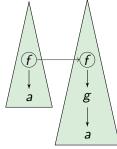
- weak convergence: convergence in the metric space of terms
 - → for weak convergence the depth of the discrepancies of the terms has to tend to infinity
- strong convergence: convergence in the metric space + rewrite rules have to (eventually) be applied at increasingly large depth
 - for strong convergence the depth of where the rewrite rules are applied has to tend to infinity



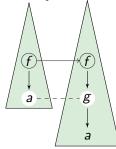




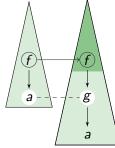




$$f(x) \to f(g(x))$$



$$f(x) \to f(g(x))$$



$$f(x) \to f(g(x))$$

Example: Weak Convergence \widehat{f} F \widehat{f} g а g g а а

$$f(x) \to f(g(x))$$

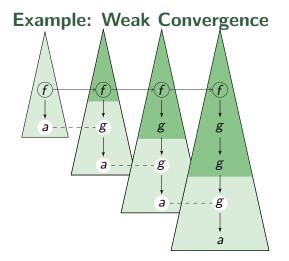
Example: Weak Convergence \widehat{f} F \widehat{f} g a g g а

а

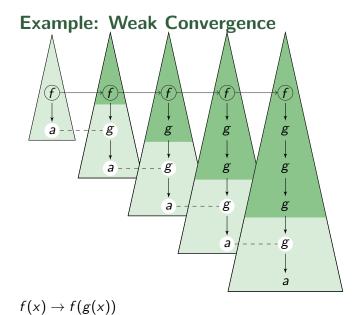
$$f(x) \to f(g(x))$$

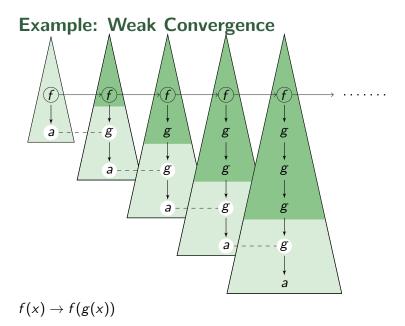
а

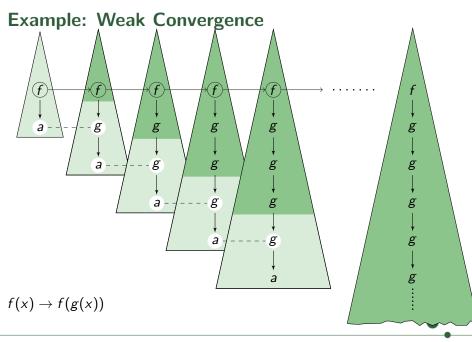
$$f(x) \to f(g(x))$$



$$f(x) \to f(g(x))$$





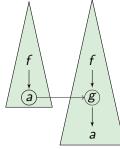


Example: Strong Convergence \bigwedge

$$\begin{vmatrix} f \\ \downarrow \\ a \end{vmatrix}$$

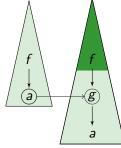
Example: Strong Convergence

Example: Strong Convergence

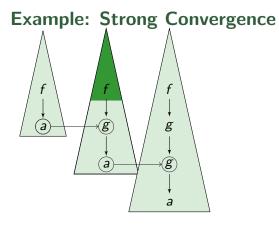


$$a \rightarrow g(a)$$

Example: Strong Convergence



$$a \rightarrow g(a)$$

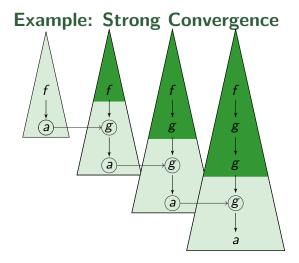


$$a \rightarrow g(a)$$

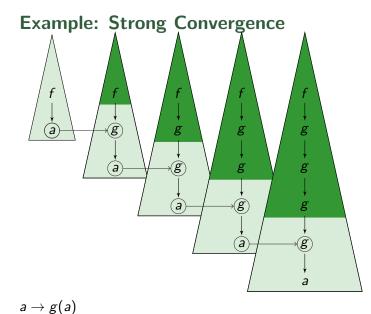
Example: Strong Convergence f a g g × a а

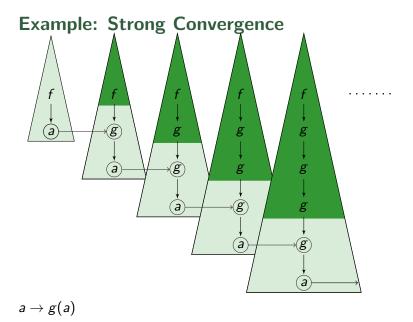
$$a \rightarrow g(a)$$

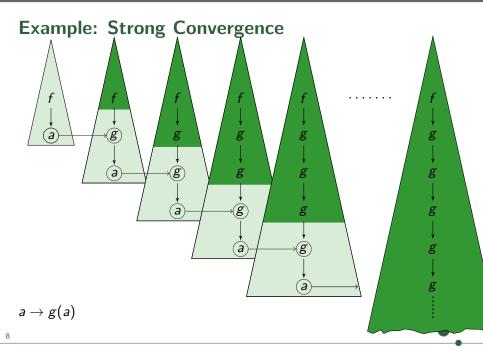
•



 $a \rightarrow g(a)$







Some Interesting Properties

Compression

Every reduction can be performed in at most ω steps:

$$s \twoheadrightarrow^{\alpha} t \implies s \twoheadrightarrow^{\leq \omega} t$$

Some Interesting Properties

Compression

Every reduction can be performed in at most ω steps:

$$s \twoheadrightarrow^{\alpha} t \implies s \twoheadrightarrow^{\leq \omega} t$$

Finite approximation

Every outcome can be approximated by a finite reduction arbitrary well:

$$s \twoheadrightarrow^{lpha} t \quad \Longrightarrow \quad orall d \in \mathbb{N} \exists t' igg\{ s \to^{\star} t' \ t ext{ and } t' ext{ coincide up to depth } d igg\}$$

Subexpressions are evaluated only when they are needed.

10

Subexpressions are evaluated only when they are needed.

repeat f a	= a :: repeat f (f a)
next N x	= (x + N/x)/2
within $arepsilon$ (a :: (b :: rest))	$= \mathbf{if} \; \mathbf{a} - \mathbf{b} \leq \varepsilon$
	then b
	else within ε (b :: rest)
sqrt a $_0 \varepsilon N$	= within $arepsilon$ (repeat (next N) a $_0$)

Subexpressions are evaluated only when they are needed.

repeat f a	= a :: repeat f (f a)
next N x	=(x+N/x)/2
within ε (a :: (b :: rest))	$= \mathbf{if} \mathbf{a} - \mathbf{b} \le \varepsilon$
	then b
	else within ε (b::rest)
sqrt a ₀ ε N	= within $arepsilon$ (repeat (next N) a $_0$)

Each subexpression is evaluated at most once.

Subexpressions are evaluated only when they are needed.

repeat f a	= a :: repeat f (f a)
next N x	= (x + N/x)/2
within ε (a :: (b :: rest))	$=$ if $ a - b \le \varepsilon$
	then b
	else within ε (b :: rest)
sqrt a ₀ ε N	$=$ within $arepsilon$ (repeat (next N) a $_{0}$)

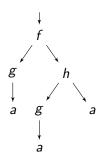
Each subexpression is evaluated at most once even if its duplicated.

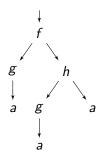
Subexpressions are evaluated only when they are needed.

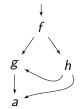
repeat f a	= a :: repeat f (f a)
next N x	= (x + N/x)/2
within ε (a :: (b :: rest))	$=$ if $ a - b \le \varepsilon$
	then b
	else within ε (b :: rest)
sqrt a $_0 \varepsilon N$	$=$ within $arepsilon$ (repeat (next N) a $_0$)

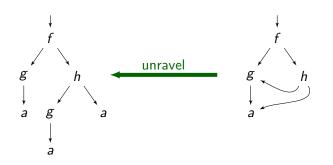
Each subexpression is evaluated at most once even if its duplicated.

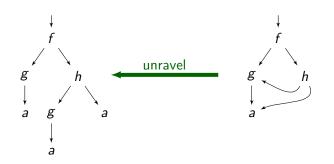
Term graph rewriting allows sharing of subexpressions



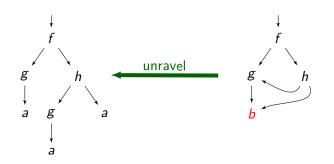




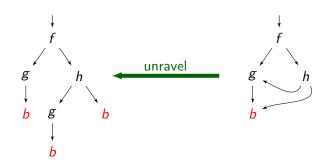




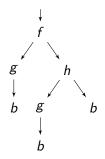
 $a \rightarrow b$

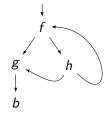


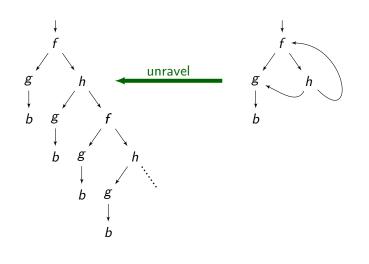
 $a \rightarrow b$

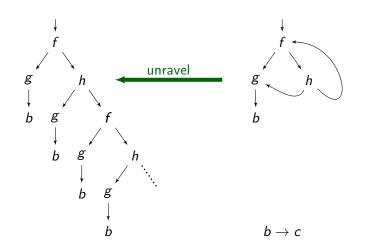


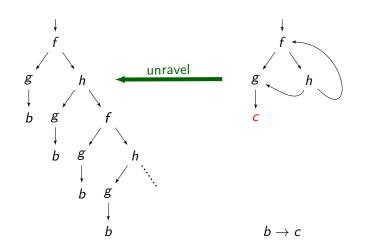
 $a \rightarrow b$

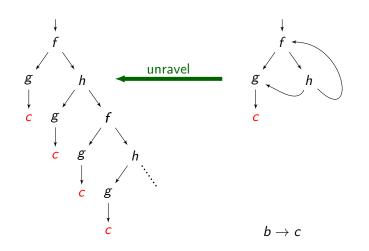












Goals

What is this about?

- finding appropriate notions of converging term graph reductions
- generalising convergence for term reductions

Goals

What is this about?

- finding appropriate notions of converging term graph reductions
- generalising convergence for term reductions

Infinitary term graph rewriting - what is it for?

- common formalism to study correspondences between infinitary term rewriting and finitary term graph rewriting
- infinitary term graph rewriting to model lazy evaluation
 - infinitary term rewriting only covers non-strictness
 - however: lazy evaluation = non-strictness + sharing
- towards infinitary lambda calculi with letrec
 - Ariola & Blom. Skew confluence and the lambda calculus with letrec.
 - the calculus is non-confluent
 - but there is a notion of infinite normal forms

Obstacles

What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
 - But: there are many quite different generalisations.
 - Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

Obstacles

What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
 - But: there are many quite different generalisations.
 - Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

Soundness of infinitary term graph rewriting

Obstacles

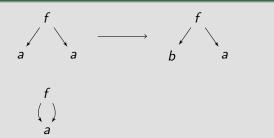
What is the an appropriate notion of convergence on term graph?

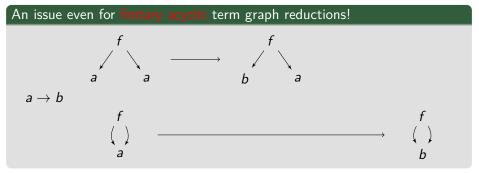
- It should generalise convergence on terms.
 - But: there are many quite different generalisations.
 - Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

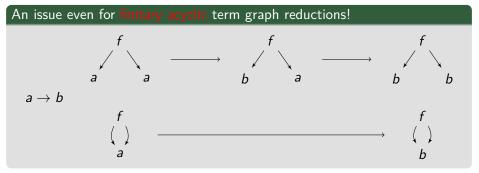
Soundness of infinitary term graph rewriting

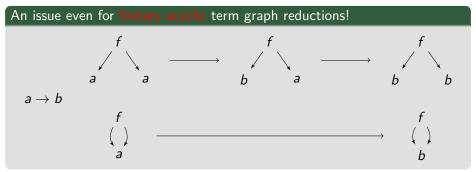
An issue even for finitary acyclic term graph reductions!

An issue even for finitary acyclic term graph reductions!



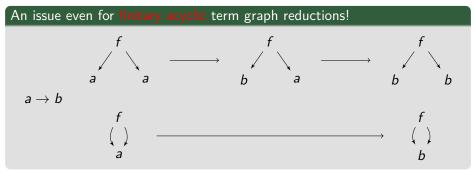






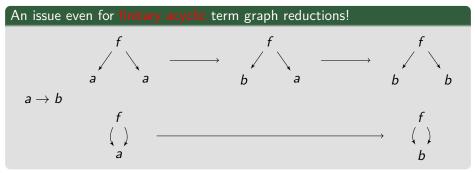
Completeness w.r.t. term graph rewriting

14



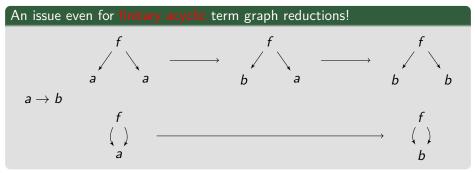
Completeness w.r.t. term graph rewriting

Completeness of Term Graph Rewriting



Completeness w.r.t. term graph rewriting

Completeness of Term Graph Rewriting

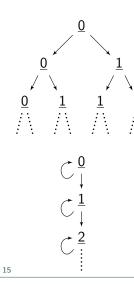


Completeness w.r.t. term graph rewriting

Completeness of Infinitary Term Graph Rewriting? We have a rule $\underline{n}(x, y) \rightarrow n + 1(x, y)$ for each $n \in \mathbb{N}$.

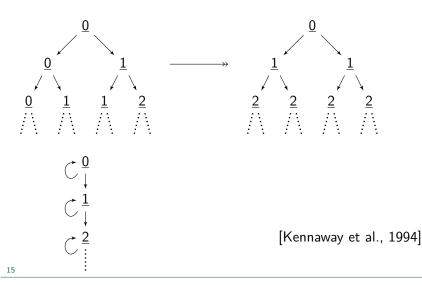
[Kennaway et al., 1994]

Completeness of Infinitary Term Graph Rewriting? We have a rule $\underline{n}(x, y) \rightarrow \underline{n+1}(x, y)$ for each $n \in \mathbb{N}$.

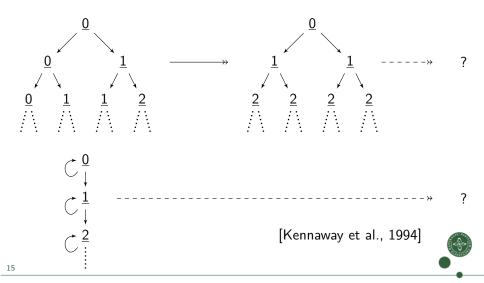


[Kennaway et al., 1994]

Completeness of Infinitary Term Graph Rewriting? We have a rule $\underline{n}(x, y) \rightarrow n + 1(x, y)$ for each $n \in \mathbb{N}$.



Completeness of Infinitary Term Graph Rewriting? We have a rule $\underline{n}(x, y) \rightarrow n + 1(x, y)$ for each $n \in \mathbb{N}$.



Outline

Introduction

- Functional Programming & Lazy Evaluation
- Infinite Reductions
- From Terms to Graphs
- Goals
- Obstacles

Infinitary Term Graph Rewriting

- Metric Approach
- Partial Order Approach
- Metric vs. Partial Order Approach
- Soundness & Completeness Properties

Towards a Metric on Term Graphs

We want to generalise the metric on terms

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Alternative characterisation of sim(s, t) via truncation

Truncation t|d of a term t at depth d:

$$t|0=otackslash f(t_1,\ldots,t_k)|d+1=f(t_1|d,\ldots,t_k|d)$$

Then sim(s, t) = maximum depth d s.t. s|d = t|d.

Depth of a node = length of a shortest path from the root to the node.

18

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

$$\mathbf{d}_{\dagger}(g,h) = 2^{-\mathrm{sim}_{\dagger}(g,h)}$$

Where $sim_{\dagger}(g, h) = maximum$ depth d s.t. $g^{\dagger}d \cong h^{\dagger}d$.

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

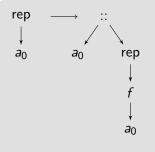
$$\mathbf{d}_{\dagger}(g,h) = 2^{-\mathsf{sim}_{\dagger}(g,h)}$$

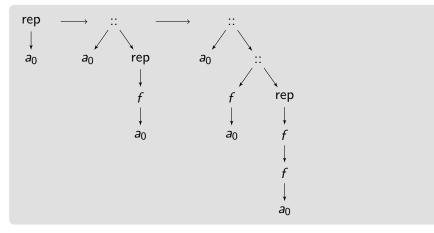
Where $sim_{\dagger}(g, h) = maximum$ depth d s.t. $g \dagger d \cong h \dagger d$.

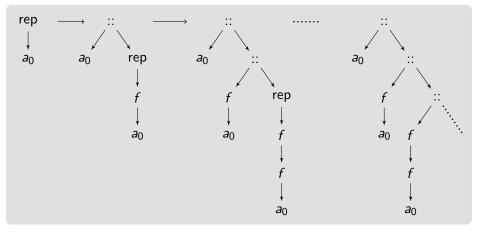
Strong convergence via metric \mathbf{d}_{\dagger} and redex depth

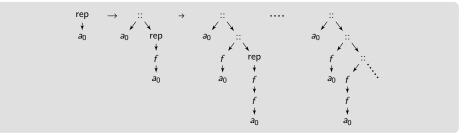
- convergence in the metric space $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$
- depth of redexes has to tend to infinity



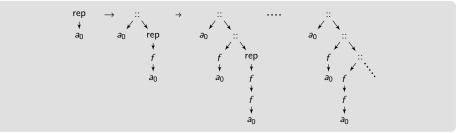


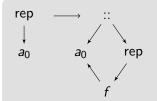


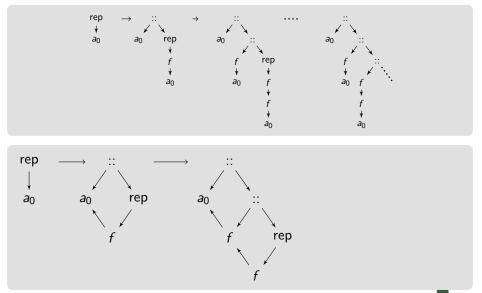


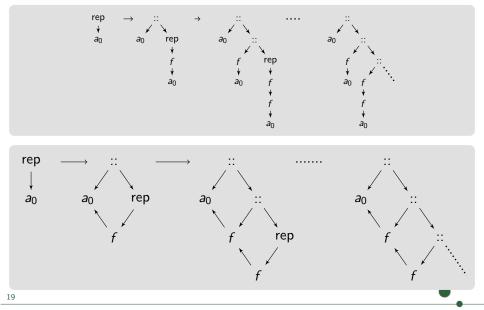


rep ↓ *a*₀









Theorem (soundness of metric convergence)

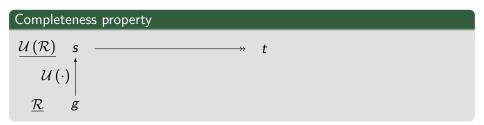
For every left-linear, left-finite GRS ${\mathcal R}$ we have

$$g \xrightarrow{m}_{\mathcal{R}} h \implies \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

$$g \xrightarrow{m}_{\mathcal{R}} h \implies \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

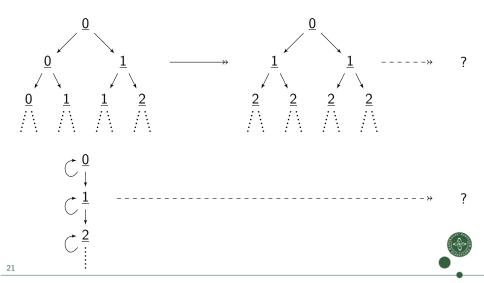


Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

$$g \xrightarrow{m}_{\mathcal{R}} h \implies \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

Failure of Completeness for Metric Convergence We have a rule $\underline{n}(x,y) \rightarrow \underline{n+1}(x,y)$ for each $n \in \mathbb{N}$.



Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction
- strong convergence: limit inferior of the contexts of the reduction

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota \to \alpha} t_{\iota} = \bigsqcup_{\alpha \to 0} \int_{\alpha} t_{\iota}$$

term obtained by replacing
• intuition: eventu the redex with \bot e terms
• weak convergence: limit inferior of the terms of the reduction
• strong convergence: limit inferior of the contexts of the reduction

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- ullet subterms that would break *m*-convergence, converge to ot
- every (continuous) reduction converges

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- ullet subterms that would break m-convergence, converge to \bot
- every (continuous) reduction converges

Theorem (total *p*-convergence = *m*-convergence)

For every reduction S in a TRS the following equivalence holds:

 $S: s \xrightarrow{p} t \text{ total} \quad iff \quad S: s \xrightarrow{m} t$

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- ullet subterms that would break *m*-convergence, converge to \bot
- every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

 $S: s \xrightarrow{p} t \text{ total} \quad iff \quad S: s \xrightarrow{m} t$

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent w.r.t. strong p-convergence.

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

24

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi: g \rightarrow_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of \perp -nodes to arbitrary nodes
- same mechanism that formalises matching in term graph rewriting

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi \colon g \to_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of \perp -nodes to arbitrary nodes
- same mechanism that formalises matching in term graph rewriting

Proposition (\perp -homomorphisms characterise \leq_{\perp} on terms)

 $\textit{For all } s,t \in \mathcal{T}^{\infty}(\Sigma_{\perp}) \text{:} \quad s \leq_{\perp} t \quad \textit{iff} \quad \exists \phi \text{:} \ s \rightarrow_{\perp} t$

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi: g \rightarrow_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of \perp -nodes to arbitrary nodes
- same mechanism that formalises matching in term graph rewriting

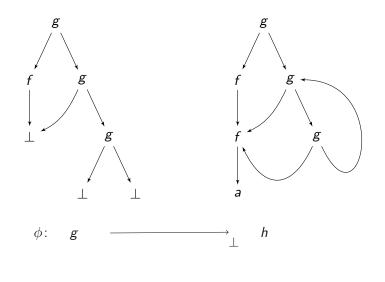
Proposition (\perp -homomorphisms characterise \leq_{\perp} on terms)

 $\textit{For all } s,t \in \mathcal{T}^{\infty}(\Sigma_{\perp}) \text{:} \quad s \leq_{\perp} t \quad \textit{iff} \quad \exists \phi \text{:} \ s \rightarrow_{\perp} t$

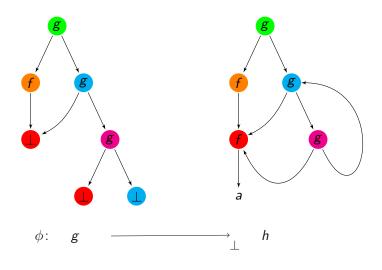
Definition (Simple partial order \leq^{S}_{\perp} on term graphs)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{S} h$ iff there is some $\phi \colon g \to_{\perp} h$.

A \perp -Homomorphism



A \perp -Homomorphism



Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

26

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

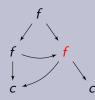
Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

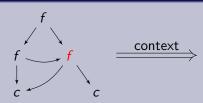


Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

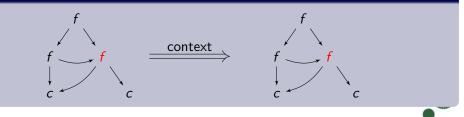


Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

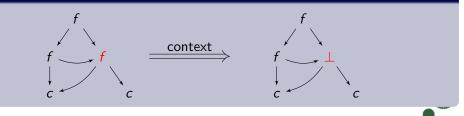


Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

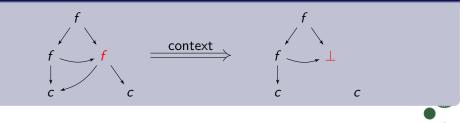


Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

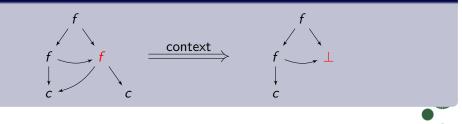


Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).



Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\to} t \text{ in } \mathcal{T}^{\infty}(\Sigma) \qquad \Longleftrightarrow \qquad S: s \stackrel{m}{\to} t.$$

Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\to} t \text{ in } \mathcal{T}^{\infty}(\Sigma) \qquad \Longleftrightarrow \qquad S: s \stackrel{m}{\to} t.$$

On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$

Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\to} t \text{ in } \mathcal{T}^{\infty}(\Sigma) \qquad \Longleftrightarrow \qquad S: s \stackrel{m}{\to} t.$$

On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$

≁_____

S: $s \stackrel{m}{\to} t$.

Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\to} t \text{ in } \mathcal{T}^{\infty}(\Sigma) \qquad \Longleftrightarrow \qquad S: s \stackrel{m}{\to} t.$$

 \neq

On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$

 $\stackrel{m}{\hookrightarrow} t.$

Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\to} t \text{ in } \mathcal{T}^{\infty}(\Sigma) \qquad \Longleftrightarrow \qquad S: s \stackrel{m}{\to} t.$$

On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$

∢∕ ★

S: $s \stackrel{m}{\to} t$.

Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\to} t \text{ in } \mathcal{T}^{\infty}(\Sigma) \qquad \Longleftrightarrow \qquad S: s \stackrel{m}{\to} t.$$

< ★⇒

S: $s \stackrel{m}{\to} t$.

On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$

f
 f
 f
 f
 f
 f

$$c$$
 c
 c
 c
 c
 c
 c
 c
 c

Metric vs. Partial Order Approach – Strong Conv.

Recall the situation of	on terms
-------------------------	----------

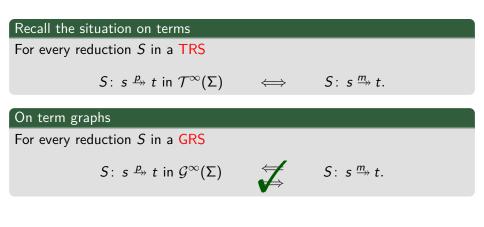
For every reduction S in a TRS

$$S: s \xrightarrow{p} t \text{ in } \mathcal{T}^{\infty}(\Sigma) \qquad \Longleftrightarrow \qquad S: s \xrightarrow{m} t.$$

Metric vs. Partial Order Approach – Strong Conv.

Recall the situation on terms			
For every reduction S in a TRS			
$S: s \xrightarrow{p} t$ in $\mathcal{T}^{\infty}(\Sigma)$	\iff	$S: s \xrightarrow{m} t.$	
On term graphs			
On term graphs For every reduction <i>S</i> in a GRS	?		

Metric vs. Partial Order Approach – Strong Conv.



Proposition

• Given: a step $g \rightarrow_c h$ in a left-linear, left-finite GRS \mathcal{R} .

• Then: $\mathcal{U}(g) \xrightarrow{p}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$ and $\mathcal{U}(c) = \prod_{\iota < \alpha} c_{\iota}$

Proposition

- Given: a step $g \rightarrow_c h$ in a left-linear, left-finite GRS \mathcal{R} .
- Then: $\mathcal{U}(g) \xrightarrow{p}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$ and $\mathcal{U}(c) = \prod_{\iota < \alpha} c_{\iota}$

Theorem (Soundness)

For every left-linear, left-finite GRS \mathcal{R} we have

$$g \xrightarrow{p}_{\mathcal{R}} h \implies \mathcal{U}(g) \xrightarrow{p}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

30

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

Theorem (Completeness)

$$\begin{array}{c|c} \mathcal{U}(\mathcal{R}) & s & & & \\ \hline \mathcal{U}(\cdot) & & & \\ \mathcal{R} & g & & \\ \end{array} \xrightarrow{g} & & \\ \end{array} \xrightarrow{g} & & \\ \end{array}$$

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete w.r.t. strong p-convergence in $\mathcal{U}(\mathcal{R})$.

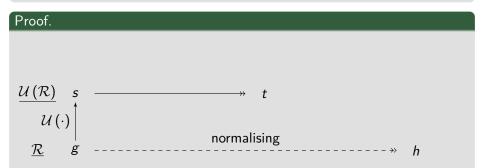
Proof.

$$\begin{array}{c|c} \underline{\mathcal{U}(\mathcal{R})} & s & & & \\ \hline \\ \underline{\mathcal{U}(\cdot)} \\ \underline{\mathcal{R}} & g \end{array} & & t \end{array}$$

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

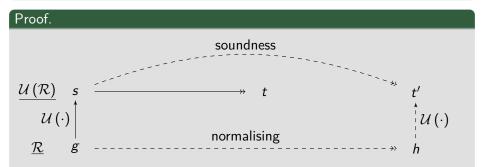
Theorem (Completeness)



Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

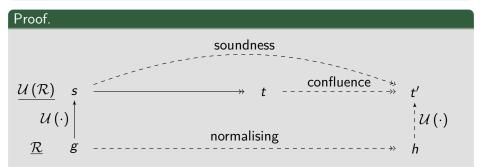
Theorem (Completeness)



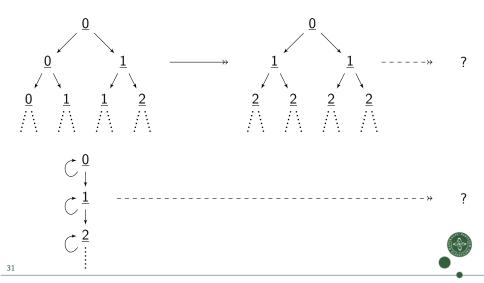
Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

Theorem (Completeness)



Failure of Completeness for Metric Convergence We have a rule $\underline{n}(x,y) \rightarrow \underline{n+1}(x,y)$ for each $n \in \mathbb{N}$.



Theorem

Strong m-convergence in an orthogonal, left-finite GRS \mathcal{R} that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in $\mathcal{U}(\mathcal{R})$.

32

Theorem

Strong m-convergence in an orthogonal, left-finite GRS \mathcal{R} that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in $\mathcal{U}(\mathcal{R})$.

Theorem

Strong m-convergence in an orthogonal, left-finite GRS \mathcal{R} that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in $\mathcal{U}(\mathcal{R})$.

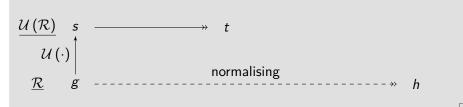
Proof.

$$\begin{array}{c|c} \mathcal{U}(\mathcal{R}) & \mathsf{s} & \longrightarrow \\ \mathcal{U}(\cdot) \\ \underline{\mathcal{R}} & \mathsf{g} \end{array} \xrightarrow{} & \mathsf{g} \end{array}$$

Theorem

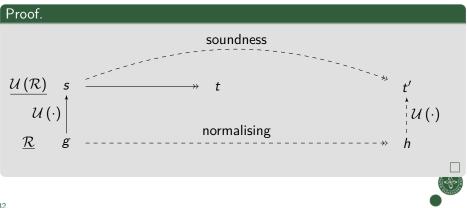
Strong m-convergence in an orthogonal, left-finite GRS \mathcal{R} that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in $\mathcal{U}(\mathcal{R})$.

Proof.



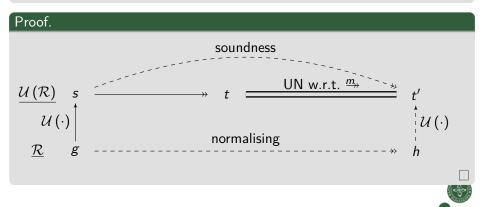
Theorem

Strong m-convergence in an orthogonal, left-finite GRS \mathcal{R} that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in $\mathcal{U}(\mathcal{R})$.



Theorem

Strong m-convergence in an orthogonal, left-finite GRS \mathcal{R} that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in $\mathcal{U}(\mathcal{R})$.



Strong *p*-convergence in an orthogonal, left-finite GRS \mathcal{R} that is -normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in $\mathcal{U}(\mathcal{R})$.

