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Newton-Raphson Square Roots

Approximating
√
N

an+1 =
an + N/an

2

Generates an infinite list
[a0, f (a0), f (f (a0)), f (f (f (a0))), . . . ]

Simple imperative algorithm
x ← a0
repeat

y ← x
x ← (x + N/x)/2

until |x − y | ≤ ε
return x

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)
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Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Infinitary term rewriting aims to model infinite reductions explicitly.
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Formalising Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a
complete metric in order to
formalise the convergence of
infinite reductions.
metric distance between terms is
inversely proportional to the
shallowest depth at which they
differ:

d(s, t) = 2−sim(s,t)

sim(s, t) – depth of the shallowest
discrepancy of s and t

Example

f

a f

b c

f

a g

a

s td( , ) = 1
2

f

a g

a

f

a g

b

u vd( , ) = 1
4
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Convergence of Transfinite Reductions

Two different kinds of convergence
weak convergence: convergence in the metric space of terms
 for weak convergence the depth of the discrepancies of the terms has

to tend to infinity
strong convergence: convergence in the metric space + rewrite rules
have to (eventually) be applied at increasingly large depth
 for strong convergence the depth of where the rewrite rules are applied

has to tend to infinity
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Example: Weak Convergence

f (x)→ f (g(x))

f

a

7
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Example: Strong Convergence

a→ g(a)

f
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Some Interesting Properties

Compression
Every reduction can be performed in at most ω steps:

s �α t =⇒ s �≤ω t

Finite approximation
Every outcome can be approximated by a finite reduction arbitrary well:

s �α t =⇒ ∀d ∈ N∃t ′
{
s →? t ′

t and t ′ coincide up to depth d
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The Full Story of Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Each subexpression is evaluated at most once.

Term graph rewriting allows sharing of subexpressions
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From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

a

h

g

a

af

g

b

h

g

b

f

g

a

h

a→ bb → c

unravel
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Goals
What is this about?

finding appropriate notions of converging term graph reductions
generalising convergence for term reductions

Infinitary term graph rewriting – what is it for?
common formalism to study correspondences between infinitary term
rewriting and finitary term graph rewriting
infinitary term graph rewriting to model lazy evaluation

I infinitary term rewriting only covers non-strictness
I however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec
I Ariola & Blom. Skew confluence and the lambda calculus with letrec.
I the calculus is non-confluent
I but there is a notion of infinite normal forms
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Obstacles

What is the an appropriate notion of convergence on term graph?
It should generalise convergence on terms.

I But: there are many quite different generalisations.
I Most important issue: How to deal with sharing?

It should simulate infinitary term rewriting in a sound & complete
manner.

Soundness of infinitary term graph rewriting
g h

s

U (·)

t

U (·)

U (R)

R

13
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Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗

t ′
∗

g

U (·)

h
∗
U (·)
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Completeness of Infinitary Term Graph Rewriting?
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?

[Kennaway et al., 1994]
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Towards a Metric on Term Graphs

We want to generalise the metric on terms

d(s, t) = 2−sim(s,t)

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Alternative characterisation of sim(s, t) via truncation
Truncation t|d of a term t at depth d :

t|0 = ⊥
f (t1, . . . , tk)|d + 1 = f (t1|d , . . . , tk |d)

Then sim(s, t) = maximum depth d s.t. s|d = t|d .

17



A Metric on Term Graphs
Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

relabelling all nodes at depth d with ⊥, and
removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

d†(g , h) = 2−sim†(g ,h)

Where sim†(g , h) = maximum depth d s.t. g†d ∼= h†d .

Strong convergence via metric d† and redex depth
convergence in the metric space (G∞C (Σ),d†)
depth of redexes has to tend to infinity
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Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)
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Failure of Completeness for Metric Convergence
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.
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2 2
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2 2

?

?
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Partial Order Infinitary Term Rewriting
Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms
weak convergence: limit inferior of the terms of the reduction
strong convergence: limit inferior of the contexts of the reduction
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term obtained by replacing
the redex with ⊥
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Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence
subterms that would break m-convergence, converge to ⊥
every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

S : s �p t total iff S : s �m t

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.
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A Partial Order on Term Graphs – How?
Specialise on terms

Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism that formalises matching in term graph rewriting

Proposition (⊥-homomorphisms characterise ≤⊥ on terms)
For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t iff ∃φ : s →⊥ t

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.
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A ⊥-Homomorphism
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⊥
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φ : g h
⊥
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A ⊥-Homomorphism
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Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example
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c
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c

f

c

context
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Metric vs. Partial Order Approach – Weak Conv.
Recall the situation on terms
For every reduction S in a TRS

S : s ↪→p t in T ∞(Σ) ⇐⇒ S : s ↪→m t.

On term graphs
For every reduction S in a GRS

S : s ↪→p t in G∞(Σ) ⇐=
=⇒

?

!

%

S : s ↪→m t.

Counterexample
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Metric vs. Partial Order Approach – Strong Conv.

Recall the situation on terms
For every reduction S in a TRS

S : s �p t in T ∞(Σ) ⇐⇒ S : s �m t.

On term graphs
For every reduction S in a GRS

S : s �p t in G∞(Σ) ⇐=
=⇒

?

!

S : s �m t.
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Soundness – Partial Order Convergence

g U (g)

Proposition

Given: a step g →c h in a left-linear, left-finite GRS R.
Then: U (g)�p U(R) U (h) and U (c) =

d
ι<α cι

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g)�p U(R) U (h).
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Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).
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Failure of Completeness for Metric Convergence
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?
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Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).
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Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).

Conjecture
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