
Infinitary Rewriting of Terms, Trees and
Graphs

Patrick Bahr
paba@diku.dk

University of Copenhagen
Department of Computer Science

TF Lunch
Utrecht University

April 4, 2012



Outline

1 Introduction
Functional Programming & Lazy Evaluation
Infinite Reductions
From Terms to Graphs
Goals
Obstacles

2 Infinitary Term Graph Rewriting
Metric Approach
Partial Order Approach
Metric vs. Partial Order Approach
Soundness & Completeness Properties

2



Newton-Raphson Square Roots

Approximating
√
N

an+1 =
an + N/an

2

Generates an infinite list
[a0, f (a0), f (f (a0)), f (f (f (a0))), . . . ]

Simple imperative algorithm
x ← a0
repeat

y ← x
x ← (x + N/x)/2

until |x − y | ≤ ε
return x

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

3



Newton-Raphson Square Roots

Approximating
√
N

an+1 =
an + N/an

2

Generates an infinite list
[a0, f (a0), f (f (a0)), f (f (f (a0))), . . . ]

Simple imperative algorithm
x ← a0
repeat

y ← x
x ← (x + N/x)/2

until |x − y | ≤ ε
return x

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

3



Newton-Raphson Square Roots

Approximating
√
N

an+1 =
an + N/an

2

Generates an infinite list
[a0, f (a0), f (f (a0)), f (f (f (a0))), . . . ]

Simple imperative algorithm
x ← a0
repeat

y ← x
x ← (x + N/x)/2

until |x − y | ≤ ε
return x

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

3



Newton-Raphson Square Roots

Approximating
√
N

an+1 =
an + N/an

2

Generates an infinite list
[a0, f (a0), f (f (a0)), f (f (f (a0))), . . . ]

Simple imperative algorithm
x ← a0
repeat

y ← x
x ← (x + N/x)/2

until |x − y | ≤ ε
return x

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

3



Newton-Raphson Square Roots

Approximating
√
N

an+1 =
an + N/an

2

Generates an infinite list
[a0, f (a0), f (f (a0)), f (f (f (a0))), . . . ]

Simple imperative algorithm
x ← a0
repeat

y ← x
x ← (x + N/x)/2

until |x − y | ≤ ε
return x

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2

within ε (a :: (b :: rest)) = if |a − b| ≤ ε
then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

3



Newton-Raphson Square Roots

Approximating
√
N

an+1 =
an + N/an

2

Generates an infinite list
[a0, f (a0), f (f (a0)), f (f (f (a0))), . . . ]

Simple imperative algorithm
x ← a0
repeat

y ← x
x ← (x + N/x)/2

until |x − y | ≤ ε
return x

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

3



Newton-Raphson Square Roots

Approximating
√
N

an+1 =
an + N/an

2

Generates an infinite list
[a0, f (a0), f (f (a0)), f (f (f (a0))), . . . ]

Simple imperative algorithm
x ← a0
repeat

y ← x
x ← (x + N/x)/2

until |x − y | ≤ ε
return x

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

3



Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Infinitary term rewriting aims to model infinite reductions explicitly.

4



Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Infinitary term rewriting aims to model infinite reductions explicitly.

4



Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Infinitary term rewriting aims to model infinite reductions explicitly.

4



Formalising Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a
complete metric in order to
formalise the convergence of
infinite reductions.
metric distance between terms is
inversely proportional to the
shallowest depth at which they
differ:

d(s, t) = 2−sim(s,t)

sim(s, t) – depth of the shallowest
discrepancy of s and t

Example

f

a f

b c

f

a g

a

s td( , ) = 1
2

f

a g

a

f

a g

b

u vd( , ) = 1
4

5



Formalising Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a
complete metric in order to
formalise the convergence of
infinite reductions.
metric distance between terms is
inversely proportional to the
shallowest depth at which they
differ:

d(s, t) = 2−sim(s,t)

sim(s, t) – depth of the shallowest
discrepancy of s and t

Example

f

a f

b c

f

a g

a

s td( , ) = 1
2

f

a g

a

f

a g

b

u vd( , ) = 1
4

5



Formalising Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a
complete metric in order to
formalise the convergence of
infinite reductions.
metric distance between terms is
inversely proportional to the
shallowest depth at which they
differ:

d(s, t) = 2−sim(s,t)

sim(s, t) – depth of the shallowest
discrepancy of s and t

Example

f

a f

b c

f

a g

a
s t

d( , ) = 1
2

f

a g

a

f

a g

b

u vd( , ) = 1
4

5



Formalising Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a
complete metric in order to
formalise the convergence of
infinite reductions.
metric distance between terms is
inversely proportional to the
shallowest depth at which they
differ:

d(s, t) = 2−sim(s,t)

sim(s, t) – depth of the shallowest
discrepancy of s and t

Example

f

a f

b c

f

a g

a
s td( , ) = 1

2

f

a g

a

f

a g

b

u vd( , ) = 1
4

5



Formalising Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a
complete metric in order to
formalise the convergence of
infinite reductions.
metric distance between terms is
inversely proportional to the
shallowest depth at which they
differ:

d(s, t) = 2−sim(s,t)

sim(s, t) – depth of the shallowest
discrepancy of s and t

Example

f

a f

b c

f

a g

a
s td( , ) = 1

2

f

a g

a

f

a g

b

u vd( , ) = 1
4

5



Formalising Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a
complete metric in order to
formalise the convergence of
infinite reductions.
metric distance between terms is
inversely proportional to the
shallowest depth at which they
differ:

d(s, t) = 2−sim(s,t)

sim(s, t) – depth of the shallowest
discrepancy of s and t

Example

f

a f

b c

f

a g

a
s td( , ) = 1

2

f

a g

a

f

a g

b
u v

d( , ) = 1
4

5



Formalising Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a
complete metric in order to
formalise the convergence of
infinite reductions.
metric distance between terms is
inversely proportional to the
shallowest depth at which they
differ:

d(s, t) = 2−sim(s,t)

sim(s, t) – depth of the shallowest
discrepancy of s and t

Example

f

a f

b c

f

a g

a
s td( , ) = 1

2

f

a g

a

f

a g

b
u vd( , ) = 1

4

5



Convergence of Transfinite Reductions

Two different kinds of convergence
weak convergence: convergence in the metric space of terms
 for weak convergence the depth of the discrepancies of the terms has

to tend to infinity
strong convergence: convergence in the metric space + rewrite rules
have to (eventually) be applied at increasingly large depth
 for strong convergence the depth of where the rewrite rules are applied

has to tend to infinity

6



Example: Weak Convergence

f (x)→ f (g(x))

f

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

f

g

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

f

g

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

f

g

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

f

g

g

a

f

g

g

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

f

g

g

a

f

g

g

g

a

f

g

g

g

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

f

g

g

a

f

g

g

g

a

f

g

g

g

g

a

7



Example: Weak Convergence

f (x)→ f (g(x))

f

a

f

g

a

f

g

g

a

f

g

g

g

a

f

g

g

g

g

a

f

g

g

g

g

g

7



Example: Strong Convergence

a→ g(a)

f

a

8



Example: Strong Convergence

a→ g(a)

f

a

8



Example: Strong Convergence

a→ g(a)

f

a

f

g

a

8



Example: Strong Convergence

a→ g(a)

f

a

f

g

a

8



Example: Strong Convergence

a→ g(a)

f

a

f

g

a

f

g

g

a

8



Example: Strong Convergence

a→ g(a)

f

a

f

g

a

f

g

g

a

8



Example: Strong Convergence

a→ g(a)

f

a

f

g

a

f

g

g

a

f

g

g

g

a

8



Example: Strong Convergence

a→ g(a)

f

a

f

g

a

f

g

g

a

f

g

g

g

a

f

g

g

g

g

a

8



Example: Strong Convergence

a→ g(a)

f

a

f

g

a

f

g

g

a

f

g

g

g

a

f

g

g

g

g

a

8



Example: Strong Convergence

a→ g(a)

f

a

f

g

a

f

g

g

a

f

g

g

g

a

f

g

g

g

g

a

f

g

g

g

g

g

8



Some Interesting Properties

Compression
Every reduction can be performed in at most ω steps:

s �α t =⇒ s �≤ω t

Finite approximation
Every outcome can be approximated by a finite reduction arbitrary well:

s �α t =⇒ ∀d ∈ N∃t ′
{
s →? t ′

t and t ′ coincide up to depth d

9



Some Interesting Properties

Compression
Every reduction can be performed in at most ω steps:

s �α t =⇒ s �≤ω t

Finite approximation
Every outcome can be approximated by a finite reduction arbitrary well:

s �α t =⇒ ∀d ∈ N∃t ′
{
s →? t ′

t and t ′ coincide up to depth d

9



The Full Story of Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Each subexpression is evaluated at most once.

Term graph rewriting allows sharing of subexpressions

10



The Full Story of Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Each subexpression is evaluated at most once.

Term graph rewriting allows sharing of subexpressions

10



The Full Story of Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Each subexpression is evaluated at most once.

Term graph rewriting allows sharing of subexpressions

10



The Full Story of Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Each subexpression is evaluated at most once even if its duplicated.

Term graph rewriting allows sharing of subexpressions

10



The Full Story of Lazy Evaluation

Subexpressions are evaluated only when they are needed.

repeat f a = a :: repeat f (f a)

next N x = (x + N/x)/2
within ε (a :: (b :: rest)) = if |a − b| ≤ ε

then b
else within ε (b :: rest)

sqrt a0 ε N = within ε (repeat (next N) a0)

Each subexpression is evaluated at most once even if its duplicated.

Term graph rewriting allows sharing of subexpressions

10



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

a

h

g

a

af

g

b

h

g

b

f

g

a

h

a→ bb → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

a

h

g

a

a

f

g

b

h

g

b

f

g

a

h

a→ bb → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

a

h

g

a

a

f

g

b

h

g

b

f

g

a

h

a→ bb → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

a

h

g

a

a

f

g

b

h

g

b

f

g

a

h

a→ bb → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

a

h

g

a

a

f

g

b

h

g

b

f

g

a

h

a→ b

b → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

a

h

g

a

a

f

g

b

h

g

b

f

g

b

h

a→ b

b → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

b

h

g

b

b

f

g

b

h

g

b

f

g

b

h

a→ b

b → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

b

h

g

b

b

f

g

b

h

g

b

f

g

b

h

a→ bb → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

b

h

g

b

ff

g

b

h

g

b

f

g

b

h

a→ bb → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

b

h

g

b

ff

g

b

h

g

b

f

g

b

h

a→ b

b → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

b

h

g

b

ff

g

b

h

g

b

f

g

c

h

a→ b

b → c

unravel

11



From Terms to Term Graphs

f (g(a), h(g(a), a))

f

g

c

h

g

c

ff

g

c

h

g

c

f

g

c

h

a→ b

b → c

unravel

11



Goals
What is this about?

finding appropriate notions of converging term graph reductions
generalising convergence for term reductions

Infinitary term graph rewriting – what is it for?
common formalism to study correspondences between infinitary term
rewriting and finitary term graph rewriting
infinitary term graph rewriting to model lazy evaluation

I infinitary term rewriting only covers non-strictness
I however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec
I Ariola & Blom. Skew confluence and the lambda calculus with letrec.
I the calculus is non-confluent
I but there is a notion of infinite normal forms

12



Goals
What is this about?

finding appropriate notions of converging term graph reductions
generalising convergence for term reductions

Infinitary term graph rewriting – what is it for?
common formalism to study correspondences between infinitary term
rewriting and finitary term graph rewriting
infinitary term graph rewriting to model lazy evaluation

I infinitary term rewriting only covers non-strictness
I however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec
I Ariola & Blom. Skew confluence and the lambda calculus with letrec.
I the calculus is non-confluent
I but there is a notion of infinite normal forms

12



Obstacles

What is the an appropriate notion of convergence on term graph?
It should generalise convergence on terms.

I But: there are many quite different generalisations.
I Most important issue: How to deal with sharing?

It should simulate infinitary term rewriting in a sound & complete
manner.

Soundness of infinitary term graph rewriting
g h

s

U (·)

t

U (·)

U (R)

R

13



Obstacles

What is the an appropriate notion of convergence on term graph?
It should generalise convergence on terms.

I But: there are many quite different generalisations.
I Most important issue: How to deal with sharing?

It should simulate infinitary term rewriting in a sound & complete
manner.

Soundness of infinitary term graph rewriting
g h

s

U (·)

t

U (·)

U (R)

R

13



Obstacles

What is the an appropriate notion of convergence on term graph?
It should generalise convergence on terms.

I But: there are many quite different generalisations.
I Most important issue: How to deal with sharing?

It should simulate infinitary term rewriting in a sound & complete
manner.

Soundness of infinitary term graph rewriting
g h

s

U (·)

t

U (·)

U (R)

R

13



Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗

t ′
∗

g

U (·)

h
∗
U (·)

14



Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗

t ′
∗

g

U (·)

h
∗
U (·)

14



Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗

t ′
∗

g

U (·)

h
∗
U (·)

14



Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗

t ′
∗

g

U (·)

h
∗
U (·)

14



Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗

t ′
∗

g

U (·)

h
∗
U (·)

14



Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗

t ′
∗

g

U (·)

h
∗

U (·)

14



Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗
t ′

∗

g

U (·)

h
∗

U (·)

14



Completeness of Term Graph Rewriting
An issue even for finitary acyclic term graph reductions!

f

a a

f

b a

f

b b

f

a

f

b

a→ b

Completeness w.r.t. term graph rewriting

s t∗
t ′

∗

g

U (·)

h
∗
U (·)

14



Completeness of Infinitary Term Graph Rewriting?
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?

[Kennaway et al., 1994]

15



Completeness of Infinitary Term Graph Rewriting?
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?

[Kennaway et al., 1994]

15



Completeness of Infinitary Term Graph Rewriting?
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?

[Kennaway et al., 1994]

15



Completeness of Infinitary Term Graph Rewriting?
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?

[Kennaway et al., 1994]

15



Outline

1 Introduction
Functional Programming & Lazy Evaluation
Infinite Reductions
From Terms to Graphs
Goals
Obstacles

2 Infinitary Term Graph Rewriting
Metric Approach
Partial Order Approach
Metric vs. Partial Order Approach
Soundness & Completeness Properties

16



Towards a Metric on Term Graphs

We want to generalise the metric on terms

d(s, t) = 2−sim(s,t)

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Alternative characterisation of sim(s, t) via truncation
Truncation t|d of a term t at depth d :

t|0 = ⊥
f (t1, . . . , tk)|d + 1 = f (t1|d , . . . , tk |d)

Then sim(s, t) = maximum depth d s.t. s|d = t|d .

17



A Metric on Term Graphs
Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

relabelling all nodes at depth d with ⊥, and
removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

d†(g , h) = 2−sim†(g ,h)

Where sim†(g , h) = maximum depth d s.t. g†d ∼= h†d .

Strong convergence via metric d† and redex depth
convergence in the metric space (G∞C (Σ),d†)
depth of redexes has to tend to infinity

18



A Metric on Term Graphs
Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

relabelling all nodes at depth d with ⊥, and
removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

d†(g , h) = 2−sim†(g ,h)

Where sim†(g , h) = maximum depth d s.t. g†d ∼= h†d .

Strong convergence via metric d† and redex depth
convergence in the metric space (G∞C (Σ),d†)
depth of redexes has to tend to infinity

18



A Metric on Term Graphs
Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

relabelling all nodes at depth d with ⊥, and
removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

d†(g , h) = 2−sim†(g ,h)

Where sim†(g , h) = maximum depth d s.t. g†d ∼= h†d .

Strong convergence via metric d† and redex depth
convergence in the metric space (G∞C (Σ),d†)
depth of redexes has to tend to infinity

18



A Metric on Term Graphs
Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

relabelling all nodes at depth d with ⊥, and
removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

d†(g , h) = 2−sim†(g ,h)

Where sim†(g , h) = maximum depth d s.t. g†d ∼= h†d .

Strong convergence via metric d† and redex depth
convergence in the metric space (G∞C (Σ),d†)
depth of redexes has to tend to infinity

18



Example: rep(x)→ x :: rep(f (x))
rep

a0

::

a0 rep

f

a0

::

a0 ::

f

a0

rep

f

f

a0

::

a0 ::

f

a0

::

f

f

a0

rep

a0

::

a0 rep

f

::

a0 ::

f rep

f

::

a0 ::

f ::

f

19



Example: rep(x)→ x :: rep(f (x))
rep

a0

::

a0 rep

f

a0

::

a0 ::

f

a0

rep

f

f

a0

::

a0 ::

f

a0

::

f

f

a0

rep

a0

::

a0 rep

f

::

a0 ::

f rep

f

::

a0 ::

f ::

f

19



Example: rep(x)→ x :: rep(f (x))
rep

a0

::

a0 rep

f

a0

::

a0 ::

f

a0

rep

f

f

a0

::

a0 ::

f

a0

::

f

f

a0

rep

a0

::

a0 rep

f

::

a0 ::

f rep

f

::

a0 ::

f ::

f

19



Example: rep(x)→ x :: rep(f (x))
rep

a0

::

a0 rep

f

a0

::

a0 ::

f

a0

rep

f

f

a0

::

a0 ::

f

a0

::

f

f

a0

rep

a0

::

a0 rep

f

::

a0 ::

f rep

f

::

a0 ::

f ::

f

19



Example: rep(x)→ x :: rep(f (x))
rep

a0

::

a0 rep

f

a0

::

a0 ::

f

a0

rep

f

f

a0

::

a0 ::

f

a0

::

f

f

a0

rep

a0

::

a0 rep

f

::

a0 ::

f rep

f

::

a0 ::

f ::

f

19



Example: rep(x)→ x :: rep(f (x))
rep

a0

::

a0 rep

f

a0

::

a0 ::

f

a0

rep

f

f

a0

::

a0 ::

f

a0

::

f

f

a0

rep

a0

::

a0 rep

f

::

a0 ::

f rep

f

::

a0 ::

f ::

f

19



Example: rep(x)→ x :: rep(f (x))
rep

a0

::

a0 rep

f

a0

::

a0 ::

f

a0

rep

f

f

a0

::

a0 ::

f

a0

::

f

f

a0

rep

a0

::

a0 rep

f

::

a0 ::

f rep

f

::

a0 ::

f ::

f

19



Example: rep(x)→ x :: rep(f (x))
rep

a0

::

a0 rep

f

a0

::

a0 ::

f

a0

rep

f

f

a0

::

a0 ::

f

a0

::

f

f

a0

rep

a0

::

a0 rep

f

::

a0 ::

f rep

f

::

a0 ::

f ::

f
19



Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)

20



Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)

20



Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)

20



Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)

20



Failure of Completeness for Metric Convergence
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?

21



Partial Order Infinitary Term Rewriting
Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms
weak convergence: limit inferior of the terms of the reduction
strong convergence: limit inferior of the contexts of the reduction

22



Partial Order Infinitary Term Rewriting
Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms
weak convergence: limit inferior of the terms of the reduction

strong convergence: limit inferior of the contexts of the reduction

22



Partial Order Infinitary Term Rewriting
Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms
weak convergence: limit inferior of the terms of the reduction
strong convergence: limit inferior of the contexts of the reduction

22



Partial Order Infinitary Term Rewriting
Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms
weak convergence: limit inferior of the terms of the reduction
strong convergence: limit inferior of the contexts of the reduction

term obtained by replacing
the redex with ⊥

22



Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence
subterms that would break m-convergence, converge to ⊥
every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

S : s �p t total iff S : s �m t

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.

23



Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence
subterms that would break m-convergence, converge to ⊥
every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

S : s �p t total iff S : s �m t

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.

23



Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence
subterms that would break m-convergence, converge to ⊥
every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

S : s �p t total iff S : s �m t

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.

23



A Partial Order on Term Graphs – How?
Specialise on terms

Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism that formalises matching in term graph rewriting

Proposition (⊥-homomorphisms characterise ≤⊥ on terms)
For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t iff ∃φ : s →⊥ t

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.

24



A Partial Order on Term Graphs – How?
Specialise on terms

Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism that formalises matching in term graph rewriting

Proposition (⊥-homomorphisms characterise ≤⊥ on terms)
For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t iff ∃φ : s →⊥ t

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.

24



A Partial Order on Term Graphs – How?
Specialise on terms

Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism that formalises matching in term graph rewriting

Proposition (⊥-homomorphisms characterise ≤⊥ on terms)
For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t iff ∃φ : s →⊥ t

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.

24



A Partial Order on Term Graphs – How?
Specialise on terms

Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism that formalises matching in term graph rewriting

Proposition (⊥-homomorphisms characterise ≤⊥ on terms)
For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t iff ∃φ : s →⊥ t

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.

24



A ⊥-Homomorphism

g

f

⊥

g

g

⊥ ⊥

g

f

f

a

g

g

φ : g h
⊥

25



A ⊥-Homomorphism

g

f

⊥

g

g

⊥ ⊥

g

f

f

a

g

g

φ : g h
⊥

25



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

26



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

26



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

26



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

26



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

26



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

f

c

context

26



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

⊥

c

context

26



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

⊥

c

context

26



Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f

f

c

f

c

f

f

c

⊥
context

26



Metric vs. Partial Order Approach – Weak Conv.
Recall the situation on terms
For every reduction S in a TRS

S : s ↪→p t in T ∞(Σ) ⇐⇒ S : s ↪→m t.

On term graphs
For every reduction S in a GRS

S : s ↪→p t in G∞(Σ) ⇐=
=⇒

?

!

%

S : s ↪→m t.

Counterexample

f

c c

f

c

f

c c

f

c

f

c c

27



Metric vs. Partial Order Approach – Weak Conv.
Recall the situation on terms
For every reduction S in a TRS

S : s ↪→p t in T ∞(Σ) ⇐⇒ S : s ↪→m t.

On term graphs
For every reduction S in a GRS

S : s ↪→p t in G∞(Σ) ⇐=
=⇒

?

!

%

S : s ↪→m t.

Counterexample

f

c c

f

c

f

c c

f

c

f

c c

27



Metric vs. Partial Order Approach – Weak Conv.
Recall the situation on terms
For every reduction S in a TRS

S : s ↪→p t in T ∞(Σ) ⇐⇒ S : s ↪→m t.

On term graphs
For every reduction S in a GRS

S : s ↪→p t in G∞(Σ) ⇐=
=⇒

?

!

%

S : s ↪→m t.

Counterexample

f

c c

f

c

f

c c

f

c

f

c c

27



Metric vs. Partial Order Approach – Weak Conv.
Recall the situation on terms
For every reduction S in a TRS

S : s ↪→p t in T ∞(Σ) ⇐⇒ S : s ↪→m t.

On term graphs
For every reduction S in a GRS

S : s ↪→p t in G∞(Σ) ⇐=
=⇒

?

!

%
S : s ↪→m t.

Counterexample

f

c c

f

c

f

c c

f

c

f

c c

27



Metric vs. Partial Order Approach – Weak Conv.
Recall the situation on terms
For every reduction S in a TRS

S : s ↪→p t in T ∞(Σ) ⇐⇒ S : s ↪→m t.

On term graphs
For every reduction S in a GRS

S : s ↪→p t in G∞(Σ) ⇐=
=⇒

?

!

%
S : s ↪→m t.

Counterexample

f

c c

f

c

f

c c

f

c

f

c c

27



Metric vs. Partial Order Approach – Weak Conv.
Recall the situation on terms
For every reduction S in a TRS

S : s ↪→p t in T ∞(Σ) ⇐⇒ S : s ↪→m t.

On term graphs
For every reduction S in a GRS

S : s ↪→p t in G∞(Σ) ⇐=
=⇒

?

!

%
S : s ↪→m t.

Counterexample

f

c c

f

c

f

c c

f

c

f

c c

27



Metric vs. Partial Order Approach – Strong Conv.

Recall the situation on terms
For every reduction S in a TRS

S : s �p t in T ∞(Σ) ⇐⇒ S : s �m t.

On term graphs
For every reduction S in a GRS

S : s �p t in G∞(Σ) ⇐=
=⇒

?

!

S : s �m t.

28



Metric vs. Partial Order Approach – Strong Conv.

Recall the situation on terms
For every reduction S in a TRS

S : s �p t in T ∞(Σ) ⇐⇒ S : s �m t.

On term graphs
For every reduction S in a GRS

S : s �p t in G∞(Σ) ⇐=
=⇒

?

!

S : s �m t.

28



Metric vs. Partial Order Approach – Strong Conv.

Recall the situation on terms
For every reduction S in a TRS

S : s �p t in T ∞(Σ) ⇐⇒ S : s �m t.

On term graphs
For every reduction S in a GRS

S : s �p t in G∞(Σ) ⇐=
=⇒

?

!
S : s �m t.

28



Soundness – Partial Order Convergence

g U (g)

Proposition

Given: a step g →c h in a left-linear, left-finite GRS R.
Then: U (g)�p U(R) U (h) and U (c) =

d
ι<α cι

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g)�p U(R) U (h).

29



Soundness – Partial Order Convergence

g U (g)

Proposition

Given: a step g →c h in a left-linear, left-finite GRS R.
Then: U (g)�p U(R) U (h) and U (c) =

d
ι<α cι

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g)�p U(R) U (h).

29



Soundness – Partial Order Convergence

g U (g)

Proposition

Given: a step g →c h in a left-linear, left-finite GRS R.
Then: U (g)�p U(R) U (h) and U (c) =

d
ι<α cι

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g)�p U(R) U (h).

29



Soundness – Partial Order Convergence

g U (g)

Proposition

Given: a step g →c h in a left-linear, left-finite GRS R.
Then: U (g)�p U(R) U (h) and U (c) =

d
ι<α cι

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g)�p U(R) U (h).

29



Soundness – Partial Order Convergence

g U (g)

Proposition

Given: a step g →c h in a left-linear, left-finite GRS R.
Then: U (g)�p U(R) U (h) and U (c) =

d
ι<α cι

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g)�p U(R) U (h).

29



Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

s t

g

U (·)

t ′

h

U (·)

U (R)

R

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

confluence

U (R)

R

30



Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

s t

g

U (·)

t ′

h

U (·)

U (R)

R

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

confluence

U (R)

R

30



Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

confluence

U (R)

R

30



Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

confluence

U (R)

R

30



Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

confluence

U (R)

R

30



Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

confluenceU (R)

R

30



Failure of Completeness for Metric Convergence
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.

0

0

0 1

1

1 2

0

1

2

0

1

2 2

1

2 2

?

?

31



Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).

s t
normalising

g

U (·)

h

U (·)

U (R)

R

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

UN w.r.t. �m

U (R)

R

32



Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).

s t
normalising

g

U (·)

h

U (·)

U (R)

R

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

UN w.r.t. �m

U (R)

R

32



Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

UN w.r.t. �m

U (R)

R

32



Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

UN w.r.t. �m

U (R)

R

32



Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

UN w.r.t. �m

U (R)

R

32



Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

UN w.r.t. �mU (R)

R

32



Weak(er) Completeness for Metric Convergence
Theorem
Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).

Conjecture

Proof.

s t

g

U (·)

t ′

h
normalising

U (·)

soundness

UN w.r.t. �mU (R)

R

32


	Introduction
	Functional Programming & Lazy Evaluation
	Infinite Reductions
	From Terms to Graphs
	Goals
	Obstacles

	Infinitary Term Graph Rewriting
	Metric Approach
	Partial Order Approach
	Metric vs. Partial Order Approach
	Soundness & Completeness Properties


