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Infinitary Term Graph Rewriting — What is it for?

A common formalism

study correspondences between infinitary term rewriting and finitary term
graph rewriting

Lazy evaluation

@ infinitary term rewriting only covers non-strictness

@ however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec

@ Ariola & Blom. Skew confluence and the lambda calculus with letrec.
@ the calculus is non-confluent

@ but there is a notion of infinite normal forms
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» But: there are many quite different generalisations.
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Metric Infinitary Term Rewriting

Complete metric on terms

@ terms are endowed with a complete metric in order to formalise the
convergence of infinite reductions.

@ metric distance between terms:
d(S, t) _ 2—sim(s,t)
sim(s, t) = minimum depth d s.t. s and t differ at depth d

Strong convergence via metric d and redex depth

@ convergence in the metric space (7°°(X),d)

~~ depth of the differences between the terms has to tend to infinity

@ depth of redexes has to tend to infinity

o
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Truncation of term graphs

The truncation gid is obtained from g by
o relabelling all nodes at depth d with L, and

@ removing all nodes that thus become unreachable from the root.
The simple metric on term graphs

di(g, h) = 27simi(&:h)
Where simi(g, h) = maximum depth d s.t. gtd = htd.

Strong convergence via metric di and redex depth
@ convergence in the metric space (Gz°(X),dy)

@ depth of redexes has to tend to infinity
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Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have
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For every left-linear, left-finite GRS R we have
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Partial Order Infinitary Term Rewriting

Partial order on terms

@ partial terms: terms with additional constant L (read as “undefined”)
@ partial order < reads as: “is less defined than”

e <, is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

o formalised by the limit inferior:

Iipligftbz |_| I_l t,

@ intuition: event e terms

@ weak convergence: limit inferior of th&germs of the reduction

@ strong convergence: limit inferior of the contexts of the reduction

12 .




UNIVERSITY OF COPENHAGEN Department of Computer Science

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

@ subterms that would break m-convergence, converge to L

@ every (continuous) reduction converges

13




UNIVERSITY OF COPENHAGEN Department of Computer Science

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

@ subterms that would break m-convergence, converge to L

@ every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

S: st total iff S: st

13




UNIVERSITY OF COPENHAGEN Department of Computer Science

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

@ subterms that would break m-convergence, converge to L

@ every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

S: st total iff S: st

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.
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A Partial Order on Term Graphs — How?

Specialise on terms

o Consider terms as term trees (i.e. term graphs with tree structure)

@ How to define the partial order <; on term trees?

1 -homomorphisms ¢: g — | h

@ homomorphism condition suspended on | -nodes

@ allow mapping of L-nodes to arbitrary nodes

@ same mechanism that formalises matching in term graph rewriting

Proposition (_L-homomorphisms characterise <, on terms)
Foralls,t € T®(X,): s<,t iff J¢p:s—,t

Definition (Simple partial order Si on term graphs)

For all g,h € G*(X ), let g <% h iff there is some ¢: g — | h.
L
14
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Metric vs. Partial Order Approach

Recall the situation on terms

For every reduction S in a TRS

S: s Bt total — S: s t.

On term graphs

For every reduction S in a GRS

S: s 2t total “— S: s™ t.

Theorem (soundness of partial order convergence)

For every left-linear, left-finite GRS R we have

g &R h = U (g) Brycr) U (h).
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Failure of Completeness for Metric Convergence
We have a rule n(x,y) = n+1(x,y) for each n e N.
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Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS R is complete
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Conclusions

Infinitary term graph rewriting

@ intuitive & simple generalisation

@ however: weak convergence is wacky

@ strong convergence is well-behaved

Is it relevant?

@ connection to lazy functional programming

@ soundness & completeness

Completeness of m-convergence for normalising reductions
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