

Soundness and Completeness of Infinitary Term Graph Rewriting

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

17th Informal Workshop on Term Rewriting, Aachen, March 28, 2012

 $a \rightarrow b$

 $a \rightarrow b$

 $a \rightarrow b$

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary term rewriting and finitary term graph rewriting

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary term rewriting and finitary term graph rewriting

Lazy evaluation

- infinitary term rewriting only covers non-strictness
- however: lazy evaluation = non-strictness + sharing

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary term rewriting and finitary term graph rewriting

Lazy evaluation

- infinitary term rewriting only covers non-strictness
- however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec

- Ariola & Blom. Skew confluence and the lambda calculus with letrec.
- the calculus is non-confluent
- but there is a notion of infinite normal forms

What is the an appropriate notion of convergence on term graph?

- generalise convergence on terms
 - But: there are many quite different generalisations.
 - Most important issue: how to deal with sharing?

• simulate infinitary term rewriting in a sound & complete manner

What is the an appropriate notion of convergence on term graph?

- generalise convergence on terms
 - But: there are many quite different generalisations.
 - Most important issue: how to deal with sharing?
- simulate infinitary term rewriting in a sound & complete manner

Completeness w.r.t. term graph rewriting

What is the an appropriate notion of convergence on term graph?

- generalise convergence on terms
 - But: there are many quite different generalisations.
 - Most important issue: how to deal with sharing?
- simulate infinitary term rewriting in a sound & complete manner

Completeness w.r.t. term graph rewriting

$$\begin{array}{cccc} s & & & & \\ \mathcal{U}(\cdot) & & & \\ g & & & \end{array}$$

What is the an appropriate notion of convergence on term graph?

- generalise convergence on terms
 - But: there are many quite different generalisations.
 - Most important issue: how to deal with sharing?
- simulate infinitary term rewriting in a sound & complete manner

Completeness w.r.t. term graph rewriting

What is the an appropriate notion of convergence on term graph?

- generalise convergence on terms
 - But: there are many quite different generalisations.
 - Most important issue: how to deal with sharing?
- simulate infinitary term rewriting in a sound & complete manner

Completeness w.r.t. term graph rewriting

What is the an appropriate notion of convergence on term graph?

- generalise convergence on terms
 - But: there are many quite different generalisations.
 - Most important issue: how to deal with sharing?
- simulate infinitary term rewriting in a sound & complete manner

Completeness w.r.t. term graph rewriting

Outline

1 Introduction

- Goals
- Obstacles

2 Modes of Convergence on Term Graphs

- Metric Approach
- Partial Order Approach
- Metric vs. Partial Order Approach

Metric Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Metric Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Strong convergence via metric **d** and redex depth

- \bullet convergence in the metric space $(\mathcal{T}^\infty(\Sigma),d)$
- → depth of the differences between the terms has to tend to infinity
 - depth of redexes has to tend to infinity

7

$$a \rightarrow g(a)$$

7

$$a \rightarrow g(a)$$

$$a \rightarrow g(a)$$

Example: Strongly Converging \bigwedge^{Λ}

$$a \rightarrow g(a)$$

$$a \rightarrow g(a)$$

 $a \rightarrow g(a)$

A Metric on Term Graphs

Depth of a node = length of a shortest path from the root to the node.

8
A Metric on Term Graphs

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

A Metric on Term Graphs

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

$$\mathbf{d}_{\dagger}(g,h) = 2^{-\mathrm{sim}_{\dagger}(g,h)}$$

Where $sim_{\dagger}(g, h) = maximum$ depth d s.t. $g \dagger d \cong h \dagger d$.

A Metric on Term Graphs

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

$$\mathbf{d}_{\dagger}(g,h) = 2^{-\mathsf{sim}_{\dagger}(g,h)}$$

Where $sim_{\dagger}(g, h) = maximum$ depth d s.t. $g \dagger d \cong h \dagger d$.

Strong convergence via metric \mathbf{d}_{\dagger} and redex depth

- convergence in the metric space $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$
- depth of redexes has to tend to infinity

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

$$g \xrightarrow{m}_{\mathcal{R}} h \implies \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

$$g \xrightarrow{m}_{\mathcal{R}} h \implies \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

$$g \xrightarrow{m}_{\mathcal{R}} h \implies \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

Completeness of Infinitary Term Graph Rewriting? We have a rule $\underline{n}(x, y) \rightarrow n + 1(x, y)$ for each $n \in \mathbb{N}$.

[Kennaway et al., 1994]

Completeness of Infinitary Term Graph Rewriting? We have a rule $\underline{n}(x, y) \rightarrow \underline{n+1}(x, y)$ for each $n \in \mathbb{N}$.

[Kennaway et al., 1994]

Completeness of Infinitary Term Graph Rewriting? We have a rule $\underline{n}(x, y) \rightarrow n + 1(x, y)$ for each $n \in \mathbb{N}$.

Completeness of Infinitary Term Graph Rewriting? We have a rule $\underline{n}(x, y) \rightarrow n + 1(x, y)$ for each $n \in \mathbb{N}$.

Outline

1 Introduction

- Goals
- Obstacles

2 Modes of Convergence on Term Graphs

- Metric Approach
- Partial Order Approach
- Metric vs. Partial Order Approach

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction
- strong convergence: limit inferior of the contexts of the reduction

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota \to \alpha} t_{\iota} = \bigsqcup_{\alpha \to -\alpha} t_{\iota}$$

term obtained by replacing
• intuition: eventu the redex with \bot e terms
• weak convergence: limit inferior of the terms of the reduction
• strong convergence: limit inferior of the contexts of the reduction

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- ullet subterms that would break *m*-convergence, converge to ot
- every (continuous) reduction converges

13

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- ullet subterms that would break m-convergence, converge to \bot
- every (continuous) reduction converges

Theorem (total *p*-convergence = *m*-convergence)

For every reduction S in a TRS the following equivalence holds:

 $S: s \xrightarrow{p} t \text{ total} \quad iff \quad S: s \xrightarrow{m} t$

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- ullet subterms that would break m-convergence, converge to \bot
- every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

 $S: s \xrightarrow{p} t \text{ total} \quad iff \quad S: s \xrightarrow{m} t$

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent w.r.t. strong p-convergence.

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

14

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi: g \rightarrow_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of \perp -nodes to arbitrary nodes
- same mechanism that formalises matching in term graph rewriting

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi \colon g \to_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of \perp -nodes to arbitrary nodes
- same mechanism that formalises matching in term graph rewriting

Proposition (\perp -homomorphisms characterise \leq_{\perp} on terms)

 $\textit{For all } s,t \in \mathcal{T}^{\infty}(\Sigma_{\perp}) \text{:} \quad s \leq_{\perp} t \quad \textit{iff} \quad \exists \phi \text{:} \ s \rightarrow_{\perp} t$

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi: g \rightarrow_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of \perp -nodes to arbitrary nodes
- same mechanism that formalises matching in term graph rewriting

Proposition (\perp -homomorphisms characterise \leq_{\perp} on terms)

For all $s, t \in \mathcal{T}^{\infty}(\Sigma_{\perp})$: $s \leq_{\perp} t$ iff $\exists \phi : s \rightarrow_{\perp} t$

Definition (Simple partial order \leq^{S}_{\perp} on term graphs)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{S} h$ iff there is some $\phi \colon g \to_{\perp} h$.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

15

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Example

15

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context

Term graph obtained by relabelling the root node of the redex with \perp (and removing all nodes that become unreachable).

Metric vs. Partial Order Approach

Recall the situation on terms

For every reduction S in a TRS

 $S: s \xrightarrow{p} t$ total $\iff S: s \xrightarrow{m} t.$

Metric vs. Partial Order Approach

Recall the situation on terms

For every reduction S in a TRS

 $S: s \xrightarrow{p} t$ total $\iff S: s \xrightarrow{m} t.$

On term graphs

For every reduction S in a GRS

 $S: s \xrightarrow{p} t \text{ total} \qquad \Longleftrightarrow \qquad S: s \xrightarrow{m} t.$

Metric vs. Partial Order Approach

Recall the situation on terms

For every reduction S in a TRS

 $S: s \xrightarrow{p} t$ total $\iff S: s \xrightarrow{m} t$.

On term graphs

For every reduction S in a GRS

 $S: s \xrightarrow{p} t$ total $\iff S: s \xrightarrow{m} t.$

Theorem (soundness of partial order convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

$$g \xrightarrow{p}_{\mathcal{H}} h \implies \mathcal{U}(g) \xrightarrow{p}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

Failure of Completeness for Metric Convergence We have a rule $\underline{n}(x,y) \rightarrow \underline{n+1}(x,y)$ for each $n \in \mathbb{N}$.

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

18

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete w.r.t. strong p-convergence in $\mathcal{U}(\mathcal{R})$.

$$\begin{array}{c|c} \mathcal{U}(\mathcal{R}) & s & & & \\ \hline \mathcal{U}(\cdot) & & & \\ \mathcal{R} & g & & \\ \end{array} \xrightarrow{g} & & & \\ \end{array}$$

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete w.r.t. strong p-convergence in $\mathcal{U}(\mathcal{R})$.

Proof.

$$\begin{array}{c|c} \underline{\mathcal{U}(\mathcal{R})} & \mathsf{s} & & & \\ \hline \\ \underline{\mathcal{U}(\cdot)} \\ \underline{\mathcal{R}} & \mathsf{g} \end{array} & & \\ \end{array} \\ \end{array} \overset{}{\xrightarrow{}} t$$

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete w.r.t. strong p-convergence in $\mathcal{U}(\mathcal{R})$.

Proof. $\frac{\mathcal{U}(\mathcal{R})}{\mathcal{U}(\cdot)} \stackrel{s}{\underset{\mathcal{R}}{\overset{g}{\longrightarrow}}} t \\ & \text{normalising} \\ & h$

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete w.r.t. strong p-convergence in $\mathcal{U}(\mathcal{R})$.

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g \xrightarrow{p} h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete w.r.t. strong p-convergence in $\mathcal{U}(\mathcal{R})$.

Conclusions

Infinitary term graph rewriting

- intuitive & simple generalisation
- however: weak convergence is wacky
- strong convergence is well-behaved

19

Conclusions

Infinitary term graph rewriting

- intuitive & simple generalisation
- however: weak convergence is wacky
- strong convergence is well-behaved

Is it relevant?

- connection to lazy functional programming
- soundness & completeness

Conclusions

Infinitary term graph rewriting

- intuitive & simple generalisation
- however: weak convergence is wacky
- strong convergence is well-behaved

Is it relevant?

- connection to lazy functional programming
- soundness & completeness

Completeness of *m*-convergence for normalising reductions

