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Infinitary Term Graph Rewriting – What is it for?

A common formalism
study correspondences between infinitary term rewriting and finitary term
graph rewriting

Lazy evaluation
infinitary term rewriting only covers non-strictness
however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec
Ariola & Blom. Skew confluence and the lambda calculus with letrec.
the calculus is non-confluent
but there is a notion of infinite normal forms
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Obstacles

What is the an appropriate notion of convergence on term graph?
generalise convergence on terms

I But: there are many quite different generalisations.
I Most important issue: how to deal with sharing?

simulate infinitary term rewriting in a sound & complete manner

Completeness w.r.t. term graph rewriting
An issue even for finitary acyclic term graph reduction!

s t∗

t ′
∗

g

U (·)

h
∗
U (·)
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Outline

1 Introduction
Goals
Obstacles

2 Modes of Convergence on Term Graphs
Metric Approach
Partial Order Approach
Metric vs. Partial Order Approach
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Metric Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a complete metric in order to formalise the
convergence of infinite reductions.
metric distance between terms:

d(s, t) = 2−sim(s,t)

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Strong convergence via metric d and redex depth
convergence in the metric space (T ∞(Σ),d)

 depth of the differences between the terms has to tend to infinity
depth of redexes has to tend to infinity
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Example: Strongly Converging
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A Metric on Term Graphs
Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

relabelling all nodes at depth d with ⊥, and
removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

d†(g , h) = 2−sim†(g ,h)

Where sim†(g , h) = maximum depth d s.t. g†d ∼= h†d .

Strong convergence via metric d† and redex depth
convergence in the metric space (G∞C (Σ),d†)
depth of redexes has to tend to infinity
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Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)

9



Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)

9



Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)

9



Soundness & Completeness

Theorem (soundness of metric convergence)
For every left-linear, left-finite GRS R we have

g �m R h =⇒ U (g)�m U(R) U (h).

Completeness property

s t

g

U (·)

U (R)

R

t ′

h

U (·)

9



Completeness of Infinitary Term Graph Rewriting?
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.
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[Kennaway et al., 1994]
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Partial Order Infinitary Term Rewriting
Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms
weak convergence: limit inferior of the terms of the reduction
strong convergence: limit inferior of the contexts of the reduction
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the redex with ⊥
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Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence
subterms that would break m-convergence, converge to ⊥
every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

S : s �p t total iff S : s �m t

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.
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A Partial Order on Term Graphs – How?
Specialise on terms

Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism that formalises matching in term graph rewriting

Proposition (⊥-homomorphisms characterise ≤⊥ on terms)
For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t iff ∃φ : s →⊥ t

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.

14
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Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Term graph obtained by relabelling the root node of the redex with ⊥ (and
removing all nodes that become unreachable).

Example

f
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c

f
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f
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f

c
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Metric vs. Partial Order Approach

Recall the situation on terms
For every reduction S in a TRS

S : s �p t total ⇐⇒ S : s �m t.

On term graphs
For every reduction S in a GRS

S : s �p t total ⇐⇒ S : s �m t.

Theorem (soundness of partial order convergence)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g)�p U(R) U (h).
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Theorem (soundness of partial order convergence)
For every left-linear, left-finite GRS R we have

g �p R h =⇒ U (g)�p U(R) U (h).
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Failure of Completeness for Metric Convergence
We have a rule n(x , y)→ n + 1(x , y) for each n ∈ N.
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Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

s t
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U (·)

t ′
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U (·)
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R

Proof.

s t
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U (·)

t ′

h
normalising

U (·)

soundness

confluence

U (R)

R
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Conclusions
Infinitary term graph rewriting

intuitive & simple generalisation
however: weak convergence is wacky
strong convergence is well-behaved

Is it relevant?
connection to lazy functional programming
soundness & completeness

Completeness of m-convergence for normalising reductions

s t
normalising

g
U (·)

h
U (·)

U (R)

R
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