

Faculty of Science

Infinitary Term Graph Rewriting is Simple, Sound and Complete

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

23rd International Conference on Rewriting Techniques and Applications, Nagoya, Japan, March May 30 – June 1, 2012

Infinitary Rewriting vs. Term Graph Rewriting

Pick one to avoid the other.

2

Infinitary Rewriting vs. Term Graph Rewriting

Pick one to avoid the other.

Pick term graph rewriting

- finite representation of infinite terms (via cycles)
- finite representation of infinite rewrite sequences

Infinitary Rewriting vs. Term Graph Rewriting

Pick one to avoid the other.

Pick term graph rewriting

- finite representation of infinite terms (via cycles)
- finite representation of infinite rewrite sequences

Pick infinitary rewriting

- avoid dealing with term graphs
- work on the unravelling instead

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary TRSs and finitary GRSs

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary TRSs and finitary GRSs

Lazy evaluation

- infinitary term rewriting only covers non-strictness
- however: lazy evaluation = non-strictness + sharing

Infinitary Term Graph Rewriting – What is it for?

A common formalism

study correspondences between infinitary TRSs and finitary GRSs

Lazy evaluation

- infinitary term rewriting only covers non-strictness
- however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec

- Ariola & Blom. Skew confluence and the lambda calculus with letrec.
- the calculus is non-confluent
- but there is a notion of infinite normal forms

Previous approach (RTA '11)

- weak convergence
- two modes of convergence: metric & partial order

4

Previous approach (RTA '11)

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order approach
 - soundness w.r.t. infinitary term rewriting (sorta kinda)

Previous approach (RTA '11)

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order approach
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; completeness ??

Previous approach (RTA '11)

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order approach
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; completeness ??

- strong convergence
- two modes of convergence: metric & partial order

Previous approach (RTA '11)

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order approach
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; completeness ??

- strong convergence
- two modes of convergence: metric & partial order
- but: simpler (ignoring the sharing as much as possible)

Previous approach (RTA '11)

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order approach
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; completeness ??

- strong convergence
- two modes of convergence: metric & partial order
- but: simpler (ignoring the sharing as much as possible)
- result: correspondence between metric & partial order approach
 - soundness w.r.t. infinitary term rewriting
 - completeness w.r.t. infinitary term rewriting

Previous approach (RTA '11)

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order approach
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; completeness ??

- strong convergence \implies independence from the rewriting formalism
- two modes of convergence: metric & partial order
- but: simpler (ignoring the sharing as much as possible)
- result: correspondence between metric & partial order approach
 - soundness w.r.t. infinitary term rewriting
 - completeness w.r.t. infinitary term rewriting

Outline

Introduction

- Goals
- A Different Approach

2 Modes of Convergence on Term Graphs

- Metric Approach
- Partial Order Approach
- Metric vs. Partial Order Approach

Metric Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. s and t coincide up to depth d

Metric Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. s and t coincide up to depth d

Strong convergence via metric **d** and redex depth

- convergence in the metric space $(\mathcal{T}^\infty(\Sigma),d)$
- → depth of the differences between the terms has to tend to infinity

Metric Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = maximum depth d s.t. s and t coincide up to depth d

Strong convergence via metric **d** and redex depth

- \bullet convergence in the metric space $(\mathcal{T}^\infty(\Sigma),d)$
- \rightsquigarrow depth of the differences between the terms has to tend to infinity
 - depth of redexes has to tend to infinity

 $from(x) \rightarrow x :: from(s(x))$

$$from(x) \rightarrow x :: from(s(x))$$

$$from(x) \rightarrow x :: from(s(x))$$

$$from(x) \rightarrow x :: from(s(x))$$

$$from(x) \rightarrow x :: from(s(x))$$

$$from(x) \rightarrow x :: from(s(x))$$

 $from(x) \rightarrow x :: from(s(x))$

Depth of a node = length of a shortest path from the root to the node.

8

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

$$\mathbf{d}_{\dagger}(g,h) = 2^{-\mathrm{sim}_{\dagger}(g,h)}$$

Where $sim_{\dagger}(g, h) = maximum$ depth d s.t. $g^{\dagger}d \cong h^{\dagger}d$.

Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs

The truncation $g^{\dagger}d$ is obtained from g by

- relabelling all nodes at depth d with \perp , and
- removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

$$\mathbf{d}_{\dagger}(g,h) = 2^{-\mathsf{sim}_{\dagger}(g,h)}$$

Where $sim_{\dagger}(g, h) = maximum$ depth d s.t. $g \dagger d \cong h \dagger d$.

Strong convergence via metric \mathbf{d}_{\dagger} and redex depth

- convergence in the metric space $(\mathcal{G}^\infty_\mathcal{C}(\Sigma), \mathbf{d}_\dagger)$
- depth of redexes has to tend to infinity

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Completeness property

9

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (soundness of metric convergence)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Outline

Introduction

- Goals
- A Different Approach

Modes of Convergence on Term Graphs

- Metric Approach
- Partial Order Approach
- Metric vs. Partial Order Approach

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction
- strong convergence: limit inferior of the contexts of the reduction

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota \to \alpha} t_{\iota} = \bigsqcup_{\iota \to \alpha} t_{\iota}$$

• intuition: eventu the redex with \bot e terms
• weak convergence: limit inferior of the terms of the reduction
• strong convergence: limit inferior of the contexts of the reduction

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- subterms that break *m*-convergence do *p*-converge to \perp
- every (continuous) reduction converges

12

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- subterms that break *m*-convergence do *p*-converge to \perp
- every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

 $S: s \xrightarrow{p} t \text{ total} \quad iff \quad S: s \xrightarrow{m} t$

Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence

- subterms that break *m*-convergence do *p*-converge to \perp
- every (continuous) reduction converges

Theorem (total *p*-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

$$S: s \xrightarrow{p} t \text{ total} \quad iff \quad S: s \xrightarrow{m} t$$

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent w.r.t. strong p-convergence.

A Partial Order on Term Graphs – How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

A Partial Order on Term Graphs – How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi \colon g \to_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of <u>⊥-nodes to arbitrary nodes</u>
- same mechanism describing matching in term graph rewriting

A Partial Order on Term Graphs – How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp -homomorphisms $\phi \colon g \to_{\perp} h$

- \bullet homomorphism condition suspended on $\perp\text{-nodes}$
- allow mapping of \perp -nodes to arbitrary nodes
- same mechanism describing matching in term graph rewriting

Definition (Simple partial order \leq_{\perp}^{S} on term graphs)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq^{\mathsf{S}}_{\perp} h$ iff there is some $\phi \colon g \to_{\perp} h$.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

14

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context	
Obtained by	ullet relabelling the root node of the redex with ot , and
	 removing all nodes that become unreachable.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context Obtained by • relabelling the root node of the redex with ⊥, and • removing all nodes that become unreachable.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context Obtained by • relabelling the root node of the redex with ⊥, and • removing all nodes that become unreachable.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context Obtained by • relabelling the root node of the redex with ⊥, and • removing all nodes that become unreachable.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context Obtained by • relabelling the root node of the redex with ⊥, and • removing all nodes that become unreachable.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context Obtained by • relabelling the root node of the redex with ⊥, and • removing all nodes that become unreachable.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context Obtained by • relabelling the root node of the redex with ⊥, and • removing all nodes that become unreachable.

Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

Context Obtained by • relabelling the root node of the redex with ⊥, and • removing all nodes that become unreachable.

Metric vs. Partial Order Approach

Recall the situation on terms

For every reduction S in a TRS

$$S: s \xrightarrow{p} t$$
 total $\iff S: s \xrightarrow{m} t$.

Metric vs. Partial Order Approach

15

Metric vs. Partial Order Approach

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction $g \xrightarrow{p} h$ to a normal form h.

16

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction $g \xrightarrow{p} h$ to a normal form h.

Theorem (Completeness)

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction $g \xrightarrow{p} h$ to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete w.r.t. strong p-convergence in $\mathcal{U}(\mathcal{R})$.

Proof.

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction $g \xrightarrow{p} h$ to a normal form h.

Theorem (Completeness)

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction $g \xrightarrow{p} h$ to a normal form h.

Theorem (Completeness)

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction $g \xrightarrow{p} h$ to a normal form h.

Theorem (Completeness)

Conclusions

Infinitary term graph rewriting

- intuitive & simple generalisation
- however: weak convergence is wacky
- strong convergence is well-behaved

17

Conclusions

Infinitary term graph rewriting

- intuitive & simple generalisation
- however: weak convergence is wacky
- strong convergence is well-behaved

Is it relevant?

- connection to lazy functional programming
- soundness & completeness
Conclusions

Infinitary term graph rewriting

- intuitive & simple generalisation
- however: weak convergence is wacky
- strong convergence is well-behaved

Is it relevant?

- connection to lazy functional programming
- soundness & completeness

Completeness of *m*-convergence for normalising reductions

