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Infinitary Rewriting vs. Term Graph Rewriting
Pick one to avoid the other.

Pick term graph rewriting
finite representation of
infinite terms (via cycles)
finite representation of
infinite rewrite sequences
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Pick infinitary rewriting
avoid dealing with term graphs
work on the unravelling instead
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Infinitary Term Graph Rewriting – What is it for?

A common formalism
study correspondences between infinitary TRSs and finitary GRSs

Lazy evaluation
infinitary term rewriting only covers non-strictness
however: lazy evaluation = non-strictness + sharing

towards infinitary lambda calculi with letrec
Ariola & Blom. Skew confluence and the lambda calculus with letrec.
the calculus is non-confluent
but there is a notion of infinite normal forms
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Approach
Previous approach (RTA ’11)

weak convergence
two modes of convergence: metric & partial order

result: I correspondence between metric & partial order approach
I soundness w.r.t. infinitary term rewriting (sorta kinda)

problem: complicated; difficult to analyse; completeness ??

Our new approach
strong convergence

=⇒ independence from the rewriting formalism

two modes of convergence: metric & partial order
but: simpler (ignoring the sharing as much as possible)
result: I correspondence between metric & partial order approach

I soundness w.r.t. infinitary term rewriting
I completeness w.r.t. infinitary term rewriting
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Outline

1 Introduction
Goals
A Different Approach

2 Modes of Convergence on Term Graphs
Metric Approach
Partial Order Approach
Metric vs. Partial Order Approach
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Metric Infinitary Term Rewriting

Complete metric on terms
terms are endowed with a complete metric in order to formalise the
convergence of infinite reductions.
metric distance between terms:

d(s, t) = 2−sim(s,t)

sim(s, t) = maximum depth d s.t. s and t coincide up to depth d

Strong convergence via metric d and redex depth
convergence in the metric space (T ∞(Σ),d)

 depth of the differences between the terms has to tend to infinity
depth of redexes has to tend to infinity

6
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Example: Metric Convergence in TRSs

1 level
2 levels
3 levels

from

0

from(x)→ x :: from(s(x))
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A Metric on Term Graphs
Depth of a node = length of a shortest path from the root to the node.

Truncation of term graphs
The truncation g†d is obtained from g by

relabelling all nodes at depth d with ⊥, and
removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

d†(g , h) = 2−sim†(g ,h)

Where sim†(g , h) = maximum depth d s.t. g†d ∼= h†d .

Strong convergence via metric d† and redex depth
convergence in the metric space (G∞C (Σ),d†)
depth of redexes has to tend to infinity
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Soundness & Completeness

Theorem (

soundness of metric convergence

)
For every left-linear, left-finite GRS R we have

g h
m

s

U (·)

U (R)

R

tm
U (·)

Completeness property

s tm

g

U (·)

U (R)

R

h
m

U (·)

t ′

h
m

U (·)

m

[Kennaway et al., 1994]
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Partial Order Infinitary Term Rewriting
Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)
partial order ≤⊥ reads as: “is less defined than”
≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence
formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms
weak convergence: limit inferior of the terms of the reduction
strong convergence: limit inferior of the contexts of the reduction
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term obtained by replacing
the redex with ⊥

11



Partial Order Convergence vs. Metric Convergence

Intuition of partial order convergence
subterms that break m-convergence do p-converge to ⊥
every (continuous) reduction converges

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalence holds:

S : s �p t total iff S : s �m t

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.

12
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A Partial Order on Term Graphs – How?

Specialise on terms
Consider terms as term trees (i.e. term graphs with tree structure)
How to define the partial order ≤⊥ on term trees?

⊥-homomorphisms φ : g →⊥ h
homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes
same mechanism describing matching in term graph rewriting

Definition (Simple partial order ≤S
⊥ on term graphs)

For all g , h ∈ G∞(Σ⊥), let g ≤S
⊥ h iff there is some φ : g →⊥ h.

13
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Partial Order Convergence on Term Graphs
Convergence

Weak conv.: limit inferior of the term graphs along the reduction.
Strong conv.: limit inferior of the contexts along the reduction.

Context
Obtained by relabelling the root node of the redex with ⊥, and

removing all nodes that become unreachable.

Example

f

f

c

f

c

f

f

c

f

c

context
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Metric vs. Partial Order Approach
Recall the situation on terms
For every reduction S in a TRS

S : s �p t total ⇐⇒ S : s �m t.

On term graphs
For every reduction S in a GRS

S : g �p h total ⇐⇒ S : g �m h.

Theorem (soundness of partial order convergence)
For every left-linear, left-finite GRS R we have

g h
p

s

U (·)

U (R)

R

t
p

U (·)

15
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Completeness for Partial Order Convergence
Theorem (Infinitary normalisation)
For each term graph g, there is a reduction g �p h to a normal form h.

Theorem (Completeness)
Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).
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Conclusions
Infinitary term graph rewriting

intuitive & simple generalisation
however: weak convergence is wacky
strong convergence is well-behaved

Is it relevant?
connection to lazy functional programming
soundness & completeness

Completeness of m-convergence for normalising reductions
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