

Modular Implementation of Programming Languages and a Partial Order Approach to Infinitary Rewriting

> Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

> PhD Defence 30 November 2012

The Big Picture

The Big Picture

Modular Implementation of Programming Languages and a Partial Order Approach to Infinitary Rewriting

The Big Picture

Modular Implementation of Programming Languages and a Partial Order Approach to Infinitary Rewriting

Modular Implementation of Programming Languages and a Partial Order Approach to Infinitary Rewriting

Modular Implementation of Programming Languages Partial Order Approach to Infinitary Rewriting

Modular Implementation of Programming Languages

Implementation of a DSL-Based ERP System

Implementation of a DSL-Based ERP System

Enterprise resource planning systems integrate several software components that are essential for managing a business.

Implementation of a DSL-Based ERP System

Enterprise resource planning systems integrate several software components that are essential for managing a business.

ERP systems integrate

- Financial Management
- Supply Chain Management
- Manufacturing Resource Planning
- Human Resource Management
- Customer Relationship Management

• . . .

Implementation of a DSL-Based ERP System

Enterprise resource planning systems integrate several software components that are essential for managing a business.

ERP systems integrate

- Financial Management
- Supply Chain Management
- Manufacturing Resource Planning
- Human Resource Management
- Customer Relationship Management

• . . .

What do ERP systems look like under the hood?

POETS [Henglein et al. 2009]

POETS [Henglein et al. 2009]

POETS [Henglein et al. 2009]

POETS [Henglein et al. 2009]

The abstract picture

- We have a number of domain-specific languages.
- Each pair of DSLs shares some common sublanguage.
- All of them share a common language of values.
- We have the same situation on the type level!

POETS [Henglein et al. 2009]

The abstract picture

- We have a number of domain-specific languages.
- Each pair of DSLs shares some common sublanguage.
- All of them share a common language of values.
- We have the same situation on the type level!

How do we implement this system without duplicating code?!

Library of language features

basic data structures

reading and aggregating data from the database

arithmetic operations

contract clauses

type definitions

inference rules

Library of language features

Library of language features

Constructing the DSLs

Library of language features

Constructing the DSLs

Report Language

Contract Language

Library of language features

Constructing the DSLs

Library of language features

Constructing the DSLs

Report Language	=	+	F1)	F2 F	F3
Contract Language	=	H	F1 P	F4	F3
Ontology Language	=	+	F1 F	F5	
			-	-	-

Example: Pretty Printing

Goal: functions of type $Program_L \longrightarrow String$ for each language L

Based on: Wouter Swierstra. Data types à la carte

How does it work?

Explicit recursion

 $\begin{array}{ll} pp :: Exp \to String \\ pp (Lit i) &= show \ i \\ pp (Add \ e_1 \ e_2) &= "(" + pp \ e_1 + " + " + pp \ e_2 + ")" \\ pp (Mult \ e_1 \ e_2) &= "(" + pp \ e_1 + " * " + pp \ e_2 + ")" \end{array}$

Explicit recursion

 $\begin{array}{ll} pp :: Exp \to String \\ pp (Lit i) &= show \ i \\ pp (Add \ e_1 \ e_2) &= "(" + pp \ e_1 + " + " + pp \ e_2 + ")" \\ pp (Mult \ e_1 \ e_2) &= "(" + pp \ e_1 + " * " + pp \ e_2 + ")" \end{array}$

Non-recursive function

 $\begin{array}{ll} pp' :: Sig \ String \to String \\ pp' \ (Lit \ i) &= show \ i \\ pp' \ (Add \ e_1 \ e_2) &= "(" + e_1 + " + " + e_2 + ")" \\ pp' \ (Mult \ e_1 \ e_2) &= "(" + e_1 + " * " + e_2 + ")" \end{array}$

Explicit recursion

 $\begin{array}{ll} pp :: Exp \to String \\ pp (Lit i) &= show \ i \\ pp (Add \ e_1 \ e_2) &= "(" + pp \ e_1 + " + " + pp \ e_2 + ")" \\ pp (Mult \ e_1 \ e_2) &= "(" + pp \ e_1 + " * " + pp \ e_2 + ")" \end{array}$

Non-recursive function

 $\begin{array}{ll} pp_{1} :: Lit \; String \to String \\ pp_{1} \; (Lit \; i) &= show \; i \\ pp_{2} :: Ops \; String \to String \\ pp_{2} \; (Add \; e_{1} \; e_{2}) \; = \; "(" \; + \; e_{1} \; + \; " \; + \; e_{2} \; + \; ")" \\ pp_{2} \; (Mult \; e_{1} \; e_{2}) \; = \; "(" \; + \; e_{1} \; + \; " \; * \; " \; + \; e_{2} \; + \; ")" \end{array}$

Non-recursive function

 $\begin{array}{ll} pp_{1} :: Lit \; String \to String \\ pp_{1} \; (Lit \; i) &= show \; i \\ pp_{2} :: Ops \; String \to String \\ pp_{2} \; (Add \; e_{1} \; e_{2}) \; = \; "(" \; + \; e_{1} \; + \; " \; + \; e_{2} \; + \; ")" \\ pp_{2} \; (Mult \; e_{1} \; e_{2}) \; = \; "(" \; + \; e_{1} \; + \; " \; * \; " \; + \; e_{2} \; + \; ")" \end{array}$

Non-recursive function

```
\begin{array}{ll} pp_{1} :: Lit \; String \to String \\ pp_{1} \; (Lit \; i) &= show \; i \\ pp_{2} :: \; Ops \; String \to String \\ pp_{2} \; (Add \; e_{1} \; e_{2}) \; = \; "(" \; + \; e_{1} \; + \; " \; + \; e_{2} \; + \; ")" \\ pp_{2} \; (Mult \; e_{1} \; e_{2}) \; = \; "(" \; + \; e_{1} \; + \; " \; * \; " \; + \; e_{2} \; + \; ")" \end{array}
```

Fold

fold :: Functor
$$f \Rightarrow (f \ a \rightarrow a) \rightarrow Fix \ f \rightarrow a$$

fold f (In t) = f (fmap (fold f) t)

Non-recursive function

```
\begin{array}{ll} pp_{1} :: Lit \; String \to String \\ pp_{1} \; (Lit \; i) &= show \; i \\ pp_{2} :: \; Ops \; String \to String \\ pp_{2} \; (Add \; e_{1} \; e_{2}) \; = \; "(" \; + \; e_{1} \; + \; " \; + \; e_{2} \; + \; ")" \\ pp_{2} \; (Mult \; e_{1} \; e_{2}) \; = \; "(" \; + \; e_{1} \; + \; " \; * \; " \; + \; e_{2} \; + \; ")" \end{array}
```

Fold

fold :: Functor
$$f \Rightarrow (f \ a \rightarrow a) \rightarrow Fix \ f \rightarrow a$$

fold $f \ (In \ t) = f \ (fmap \ (fold \ f) \ t)$

Applying Fold

 $\begin{array}{l} \textit{pp} :: \textit{Fix} (\textit{Lit} :+: \textit{Ops}) \rightarrow \textit{String} \\ \textit{pp} = \textit{fold} (\textit{pp}_1 :+: \textit{pp}_2) \end{array}$

Make compositional data types more useful in practise.

13

Make compositional data types more useful in practise.

Extend the class of definable types

- mutually recursive types, GADTs
- abstract syntax trees with variable binders

Make compositional data types more useful in practise.

Extend the class of definable types

- mutually recursive types, GADTs
- abstract syntax trees with variable binders

"Algebras with more structure"

- algebras with effects
- tree homomorphisms, tree automata, tree transducers
 - ▶ sequential composition ~→ program optimisation (deforestation)
 - ► tupling ~→ additional modularity

Skip details

We may compose tree automata along 3 different dimensions.

14

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

 $\llbracket \mathcal{A}_1 \rrbracket : \mu \mathcal{S}_1 \to R$ $\llbracket \mathcal{A}_2 \rrbracket : \mu \mathcal{S}_2 \to R$

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

sequential composition: a.k.a. deforestation

$$\mu S_1 \xrightarrow{[\![A_1]\!]} \mu S_2 \xrightarrow{[\![A_2]\!]} \mu S_3$$

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

sequential composition: a.k.a. deforestation

14

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

$$\begin{split} \llbracket \mathcal{A}_1 \rrbracket : \mu \mathcal{S}_1 \to R \\ \llbracket \mathcal{A}_2 \rrbracket : \mu \mathcal{S}_2 \to R \end{split} \implies \qquad \llbracket \mathcal{A}_1 + \mathcal{A}_2 \rrbracket : \mu (\mathcal{S}_1 + \mathcal{S}_2) \to R \end{split}$$

sequential composition: a.k.a. deforestation

output type: tupling / product automaton construction

 $\llbracket \mathcal{A}_1
rbracket : \mu \mathcal{S} o \mathcal{R}_1$ $\llbracket \mathcal{A}_2
rbracket : \mu \mathcal{S} o \mathcal{R}_2$

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

$$\begin{split} \llbracket \mathcal{A}_1 \rrbracket : \mu \mathcal{S}_1 \to R \\ \llbracket \mathcal{A}_2 \rrbracket : \mu \mathcal{S}_2 \to R \end{split} \implies \qquad \llbracket \mathcal{A}_1 + \mathcal{A}_2 \rrbracket : \mu (\mathcal{S}_1 + \mathcal{S}_2) \to R \end{split}$$

sequential composition: a.k.a. deforestation

output type: tupling / product automaton construction

$$\begin{split} \llbracket \mathcal{A}_1 \rrbracket : \mu \mathcal{S} \to \mathcal{R}_1 \\ \llbracket \mathcal{A}_2 \rrbracket : \mu \mathcal{S} \to \mathcal{R}_2 \end{split} \implies \qquad \end{split} \\ \blacksquare \mathcal{A}_1 \times \mathcal{A}_2 \rrbracket : \mu \mathcal{F} \to \mathcal{R}_1 \times \mathcal{R}_2$$

tupling / product automaton construction

$$\begin{split} \llbracket \mathcal{A}_1 \rrbracket : \mu \mathcal{S} \to \mathcal{R}_1 \\ \llbracket \mathcal{A}_2 \rrbracket : \mu \mathcal{S} \to \mathcal{R}_2 \end{split} \implies \qquad \llbracket \mathcal{A}_1 \times \mathcal{A}_2 \rrbracket : \mu(\mathcal{S}) \to \mathcal{R}_1 \times \mathcal{R}_2$$

tupling / product automaton construction

\mathcal{A}_1	:	$\mathcal{S} ightarrow \mathit{R}_1$	\Rightarrow	$\mathcal{A}_1 \times \mathcal{A}_2$:	$\mathcal{S} \rightarrow \mathcal{R}_1 \times \mathcal{R}_2$
\mathcal{A}_2	:	$\mathcal{S} ightarrow R_2$			

tupling / product automaton construction

\mathcal{A}_1	:	$\mathcal{S} ightarrow R_1$	>	$\mathcal{A}_1 \times \mathcal{A}_2$:	$\mathcal{S} \rightarrow \mathcal{R}_1 \times \mathcal{R}_2$
\mathcal{A}_2	:	$\mathcal{S} \to \textit{R}_2$	\rightarrow		

$$\mathcal{A}_1: \qquad \mathcal{S} \to \mathcal{R}_1$$
$$\mathcal{A}_2: \mathcal{R}_1 \Rightarrow \mathcal{S} \to \mathcal{R}_2$$

tupling / product automaton construction

 $\begin{array}{cccc} \mathcal{A}_1 & : & \mathcal{S} \to \mathcal{R}_1 \\ \mathcal{A}_2 & : & \mathcal{S} \to \mathcal{R}_2 \end{array} \implies \qquad \mathcal{A}_1 \times \mathcal{A}_2 & : & \mathcal{S} \to \mathcal{R}_1 \times \mathcal{R}_2 \end{array}$

$$\begin{array}{ccc} \mathcal{A}_1 \colon & \mathcal{S} \to \mathcal{R}_1 \\ \mathcal{A}_2 \colon \mathcal{R}_1 \Rightarrow \mathcal{S} \to \mathcal{R}_2 \end{array} \implies \qquad \mathcal{A}_1 \times \mathcal{A}_2 \quad : \quad \mathcal{S} \to \mathcal{R}_1 \times \mathcal{R}_2 \end{array}$$

tupling / product automaton construction

 $\begin{array}{cccc} \mathcal{A}_1 & : & \mathcal{S} \to \mathcal{R}_1 \\ \mathcal{A}_2 & : & \mathcal{S} \to \mathcal{R}_2 \end{array} \implies \qquad \mathcal{A}_1 \times \mathcal{A}_2 & : & \mathcal{S} \to \mathcal{R}_1 \times \mathcal{R}_2 \end{array}$

$$\begin{array}{ll} \mathcal{A}_1 \colon \mathcal{R}_2 \Rightarrow \mathcal{S} \to \mathcal{R}_1 \\ \mathcal{A}_2 \colon \mathcal{R}_1 \Rightarrow \mathcal{S} \to \mathcal{R}_2 \end{array} \implies \qquad \mathcal{A}_1 \times \mathcal{A}_2 \quad : \quad \mathcal{S} \to \mathcal{R}_1 \times \mathcal{R}_2 \end{array}$$

tupling / product automaton construction

 $\begin{array}{cccc} \mathcal{A}_1 & : & \mathcal{S} \to \mathcal{R}_1 \\ \mathcal{A}_2 & : & \mathcal{S} \to \mathcal{R}_2 \end{array} \implies \qquad \mathcal{A}_1 \times \mathcal{A}_2 & : & \mathcal{S} \to \mathcal{R}_1 \times \mathcal{R}_2 \end{array}$

$$\begin{array}{ll} \mathcal{A}_1 \colon \mathcal{R}_2 \Rightarrow \mathcal{S} \to \mathcal{R}_1 \\ \mathcal{A}_2 \colon \mathcal{R}_1 \Rightarrow \mathcal{S} \to \mathcal{R}_2 \end{array} \implies \qquad \llbracket \mathcal{A}_1 \times \mathcal{A}_2 \rrbracket \colon \mu \mathcal{S} \to \mathcal{R}_1 \times \mathcal{R}_2 \end{array}$$

Discussion

Advantages

- it's just a Haskell library
- uses well-known concepts (algebras, tree automata, functors etc.)
- high degree of modularity
- facilitates reuse

16

Discussion

Advantages

- it's just a Haskell library
- uses well-known concepts (algebras, tree automata, functors etc.)
- high degree of modularity
- facilitates reuse

Drawbacks

- it's just a Haskell library
- error messages are sometimes rather cryptic
- learning curve
- typical drawbacks of higher-order abstract syntax

Discussion

Advantages

- it's just a Haskell library
- uses well-known concepts (algebras, tree automata, functors etc.)
- high degree of modularity
- facilitates reuse

Drawbacks

- it's just a Haskell library
- error messages are sometimes rather cryptic
- learning curve
- typical drawbacks of higher-order abstract syntax

Future work

reasoning about modular implementations

(Meta-Theory à la Carte [Delaware et al. 2013])

- describing interactions between modules
- how well does modularity scale?

And now it's time for something completely different.

Partial Order Approach to Infinitary Rewriting

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = egin{cases} x+0 & o x & x*0 & o 0 \ x+s(y) & o s(x+y) & x*s(y) & o x+(x*y) \end{cases}$$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

s(s(0)) * s(s(0))

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x + 0 \to x & x * 0 \to 0 \\ x + s(y) \to s(x + y) & x * s(y) \to x + (x * y) \end{cases}$$

 $s(s(0)) \ast s(s(0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow s(s(0)) + (s(s(0)) * s(0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow s(s(0)) + (s(s(0)) * s(0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

$$s(s(0)) * s(s(0)) \rightarrow^2 s(s(0)) + (s(s(0)) + (s(s(0)) * 0))$$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = egin{cases} x+0 & o x & x*0 & o 0 \ x+s(y) & o s(x+y) & x*s(y) & o x+(x*y) \end{cases}$$

$$s(s(0)) * s(s(0)) \rightarrow^2 s(s(0)) + (s(s(0)) + (s(s(0)) * 0))$$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x + 0 \to x & x * 0 \to 0 \\ x + s(y) \to s(x + y) & x * s(y) \to x + (x * y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow^3 s(s(0)) + (s(s(0)) + 0)$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x + 0 \to x & x * 0 \to 0 \\ x + s(y) \to s(x + y) & x * s(y) \to x + (x * y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow^3 s(s(0)) + (s(s(0)) + 0)$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = egin{cases} x+0 & o x & x*0 & o 0 \ x+s(y) & o s(x+y) & x*s(y) & o x+(x*y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow^4 s(s(0)) + s(s(0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow s(s(0)) + s(s(0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow^5 s(s(s(0)) + s(0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow^5 s(s(s(0)) + s(0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow^6 s(s(s(0)) + 0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = egin{cases} x + 0 & o x & x * 0 & o 0 \ x + s(y) & o s(x + y) & x * s(y) & o x + (x * y) \end{cases}$$

 $s(s(0)) * s(s(0)) \rightarrow^{6} s(s(s(s(0)) + 0))$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = egin{cases} x+0 & o x & x*0 & o 0 \ x+s(y) & o s(x+y) & x*s(y) & o x+(x*y) \end{cases}$$

$$s(s(0)) * s(s(0)) \rightarrow^7 s(s(s(s(0))))$$

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $l \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = egin{cases} x+0 & o x & x*0 & o 0 \ x+s(y) & o s(x+y) & x*s(y) & o x+(x*y) \end{cases}$$

$$s(s(0)) * s(s(0)) \rightarrow^7 s(s(s(s(0))))$$

 \mathcal{R}_{+*} is terminating!

Termination: repeated rewriting eventually reaches a normal form.

20

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

from(0)

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $\textit{from}(0) \rightarrow 0:\textit{from}(1)$

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^2 0:1: from(2)$

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow^3 0: 1: 2: from(3)$$

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^4 0: 1: 2: 3: from(4)$

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow 50:1:2:3:4:from(5)$

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6)$

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$\textit{from}(0) \rightarrow^6 0: 1: 2: 3: 4: 5: \textit{from}(6) \rightarrow \ldots$$

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $\textit{from}(0) \ \rightarrow^6 0: 1: 2: 3: 4: 5: \textit{from}(6) \rightarrow \ \ldots$

intuitively this converges to the infinite list 0:1:2:3:4:5:....

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.

What is the result of a converging rewrite sequence?

A converging rewrite sequence approximates a uniquely determined term *t* arbitrary well.

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.

What is the result of a converging rewrite sequence?

A converging rewrite sequence approximates a uniquely determined term *t* arbitrary well.

$$t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \ldots t$$

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.

What is the result of a converging rewrite sequence?

A converging rewrite sequence approximates a uniquely determined term *t* arbitrary well.

$$t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \ldots t_l$$

For each depth $d \in \mathbb{N}$ there is some $n \in \mathbb{N}$, such that

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.

What is the result of a converging rewrite sequence?

A converging rewrite sequence approximates a uniquely determined term *t* arbitrary well.

$$t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \ldots t$$

For each depth $d \in \mathbb{N}$ there is some $n \in \mathbb{N}$, such that

$$t_0 \rightarrow t_1 \rightarrow \ldots \rightarrow t_n \rightarrow t_{n+1} \rightarrow \ldots t_n$$

do not differ up to depth d

Example: Convergence of a Reduction

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

Example: Convergence of a Reduction

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

22

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

22

 $\mathcal{R} = \{a \rightarrow g(a)\}$

 $\mathcal{R} = \{a \to g(a)\}$

22

 $\mathcal{R} = \{a \rightarrow g(a)\}$

22

Example: Non-Convergence of a Reduction

$$\mathcal{R} = \left\{egin{array}{l} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{array}
ight.$$

$$\mathcal{R} = \left\{egin{array}{l} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{array}
ight.$$

$$\mathcal{R} = \left\{egin{array}{c} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{array}
ight.$$

$$\mathcal{R} = \left\{egin{array}{c} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{array}
ight.$$

$$\mathcal{R} = \left\{egin{array}{l} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{l} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ \mathsf{h}(\mathsf{x}) o \mathsf{h}(\mathsf{g}(\mathsf{x})) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{c} a o g(a) \ h(x) o h(g(x)) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{c} a o g(a) \ h(x) o h(g(x)) \end{array}
ight.$$

$$\mathcal{R} = \begin{cases} a \to g(a) \\ h(x) \to h(g(x)) \end{cases}$$

Issues of the Metric Approach

- Notion of convergence is too restrictive (no notion of local convergence)
- May still not reach a normal form
- Orthogonal TRSs are not infinitarily confluent

24

Issues of the Metric Approach

- Notion of convergence is too restrictive (no notion of local convergence)
- May still not reach a normal form
- Orthogonal TRSs are not infinitarily confluent

Infinitary confluence

For every $t, t_1, t_2 \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_1 \leftarrow t \twoheadrightarrow t_2$

Issues of the Metric Approach

- Notion of convergence is too restrictive (no notion of local convergence)
- May still not reach a normal form
- Orthogonal TRSs are not infinitarily confluent

Infinitary confluence

For every $t, t_1, t_2 \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_1 \leftarrow t \twoheadrightarrow t_2$ there is a $t' \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_1 \twoheadrightarrow t' \leftarrow t_2$

Partial Order Approach to Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= bounded complete cpo)

Partial Order Approach to Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= bounded complete cpo)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota o lpha} t_\iota = igsqcup_{eta < lpha} igcap_{eta < \iota < lpha} t_\iota$$

Partial Order Approach to Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= bounded complete cpo)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota \to \alpha} t_\iota = \bigsqcup_{\beta < \alpha} \prod_{\beta \le \iota < \alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- convergence: limit inferior of the contexts of the reduction

An Example

An Example

. . .

An Example (h) h a h а (h)g g (h)g g g g g b а a g g g b b а b b eventually stable: g g

. . .

An Example (h) (**h**) a h а (h)g g (h)g g g g g b а a g g b b g а b b *p*-converges to g g

Properties of the Partial Order Approach

Benefits

- reduction sequences always converge (but result may contain \perp s)
- more fine-grained than the metric approach
- subsumes metric approach, i.e. both approaches agree on total reductions

Properties of the Partial Order Approach

Benefits

- reduction sequences always converge (but result may contain \perp s)
- more fine-grained than the metric approach
- subsumes metric approach, i.e. both approaches agree on total reductions

Theorem (total *p*-convergence = m-convergence)

For every reduction S in a TRS, we have

 $S: s \xrightarrow{p} t \text{ is total} \iff S: s \xrightarrow{m} t.$

Properties of the Partial Order Approach

Benefits

- reduction sequences always converge (but result may contain \perp s)
- more fine-grained than the metric approach
- subsumes metric approach, i.e. both approaches agree on total reductions

Theorem (total *p*-convergence = *m*-convergence)

For every reduction S in a TRS, we have

$$S: s \xrightarrow{p} t \text{ is total} \iff S: s \xrightarrow{m} t.$$

Theorem (confluence, normalisation)

Every orthogonal TRS is normalising and confluent w.r.t. p-convergent reductions, i.e. every term has a unique normal form.

Sharing – From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Skip term graphs

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing

28

Sharing – From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Skip term graphs

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing → avoids duplication

28

Skip term graphs

Sharing – From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing → avoids duplication

Example

 $from(x) \rightarrow x : from(s(x))$

Sharing – From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing ~→ avoids duplication

Example

 $from(x) \rightarrow x : from(s(x))$

Skip term graphs

Skip term graphs

from

S

х

Sharing – From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing \rightsquigarrow avoids duplication

fro

x

Example

x

Skip term graphs

Sharing – From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing → avoids duplication

from ↓ 0

Properties of Infinitary Term Graph Rewriting

Theorem (total *p*-convergence = m-convergence)

For every reduction S in a GRS, we have

 $S: g \xrightarrow{p} h \text{ is total} \iff S: g \xrightarrow{m} h.$

Properties of Infinitary Term Graph Rewriting

Theorem (total *p*-convergence = m-convergence)

For every reduction S in a GRS, we have

 $S: g \xrightarrow{p} h \text{ is total} \iff S: g \xrightarrow{m} h.$

Theorem (soundness)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

$$\underline{\mathcal{R}}$$
 g $\xrightarrow{\rho}$ h

Properties of Infinitary Term Graph Rewriting

Theorem (total p-convergence = m-convergence)

For every reduction S in a GRS, we have

 $S: g \xrightarrow{p} h \text{ is total} \iff S: g \xrightarrow{m} h.$

Theorem (soundness)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Properties of Infinitary Term Graph Rewriting

Theorem (total p-convergence = m-convergence)

For every reduction S in a GRS, we have

 $S: g \xrightarrow{p} h \text{ is total} \iff S: g \xrightarrow{m} h.$

Theorem (soundness)

For every left-linear, left-finite GRS ${\mathcal R}$ we have

Theorem (Completeness)

p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete:

31

Theorem (Completeness)

p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete:

Theorem (Completeness)

p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete:

Does not hold for metric convergence!

Theorem (Completeness)

p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete:

Does not hold for metric convergence!

Completeness of m-convergence for normalising reductions $\mathcal{U}(\mathcal{R})$ s m $t \in NF$ $\mathcal{U}(\cdot)$ \mathcal{R} g m h

Contributions

- novel approach to infinitary term rewriting
- first formalisation of infinitary term graph rewriting

32

Contributions

- novel approach to infinitary term rewriting
- first formalisation of infinitary term graph rewriting

Note: Böhm reduction for TRSs

$$s \xrightarrow{p}_{\mathcal{R}} t \iff s \xrightarrow{m}_{\mathcal{B}} t$$

 ${\mathcal B}$ adds to ${\mathcal R}$ rules of the form $t o \bot$ for each root-active term t.

Contributions

- novel approach to infinitary term rewriting
- first formalisation of infinitary term graph rewriting

Note: Böhm reduction for TRSs

$$s \xrightarrow{p}_{\mathcal{R}} t \iff s \xrightarrow{m}_{\mathcal{B}} t$$

 $\mathcal B$ adds to $\mathcal R$ rules of the form $t \to \bot$ for each term t with $t \stackrel{p_{y}}{\to} \bot$.

Contributions

- novel approach to infinitary term rewriting
- first formalisation of infinitary term graph rewriting

Note: Böhm reduction for TRSs

$$s \xrightarrow{p}_{\mathcal{R}} t \iff s \xrightarrow{m}_{\mathcal{B}} t$$

 $\mathcal B$ adds to $\mathcal R$ rules of the form $t \to \bot$ for each term t with $t \stackrel{p_{y}}{\to} \bot$.

Future work: Infinitary term graph rewriting

- Are orthogonal systems infinitarily confluent?
- higher-order systems (e.g. lambda calculus with letrec)

Publications

- [1] Patrick Bahr. Modes of Convergence for Term Graph Rewriting. Logical Methods in Computer Science 8(2), pp. 1-60, 2012.
- [2] Patrick Bahr. Modular Tree Automata. Mathematics of Program Construction, pp. 263-299, 2012.
- Patrick Bahr. Infinitary Term Graph Rewriting is Simple, Sound and Complete. 23rd International Conference on Rewriting Techniques and Applications (RTA'12), pp. 69-84, 2012.
- Patrick Bahr. Modes of Convergence for Term Graph Rewriting. 22nd International Conference on Rewriting Techniques and Applications (RTA'11), pp. 139-154, 2011.
- [5] Patrick Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees. Proceedings of the 21st International Conference on Rewriting Techniques and Applications, pp. 67-84, 2010.
- [6] Patrick Bahr. Abstract Models of Transfinite Reductions. Proceedings of the 21st International Conference on Rewriting Techniques and Applications, pp. 49-66, 2010.
- [7] Patrick Bahr, Tom Hvitved. Parametric Compositional Data Types. Proceedings Fourth Workshop on Mathematically Structured Functional Programming, pp. 3-24, 2012.
- [8] Patrick Bahr, Tom Hvitved. Compositional data types. Proceedings of the seventh ACM SIGPLAN workshop on Generic programming, pp. 83-94, 2011.
- [9] Patrick Bahr. Evaluation à la Carte: Non-Strict Evaluation via Compositional Data Types. Proceedings of the 23rd Nordic Workshop on Programming Theory, pp. 38-40, 2011.
- [10] Patrick Bahr. A Functional Language for Specifying Business Reports. Proceedings of the 23rd Nordic Workshop on Programming Theory, pp. 24-26, 2011.
- Patrick Bahr. Convergence in Infinitary Term Graph Rewriting Systems is Simple. Submitted to Math. Structures Comput. Sci.
- [12] Patrick Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees. Submitted to Log. Methods Comput. Sci.