Modular Implementation of Programming Languages and a Partial Order Approach to Infinitary Rewriting

Patrick Bahr paba@diku.dk
University of Copenhagen Department of Computer Science
PhD Defence
30 November 2012

The Big Picture

The Big Picture

Modular Implementation of Programming Languages and a Partial Order Approach to Infinitary Rewriting

The Big Picture

Modular Implementation of Programming Languages a Partial Order Approach to

two
 The Big Pictures

Modular Implementation of Programming Languages $\underset{\text { Infinitary Rewriting }}{\text { a Partial Order Approach to }}$

two
 The Big Pictures

Modular Implementation of Programming Languages

Partial Order Approach to Infinitary Rewriting

Modular Implementation of Programming Languages

Motivation

Implementation of a DSL-Based ERP System

Motivation

Implementation of a DSL-Based ERP System

Enterprise resource planning systems integrate several software components that are essential for managing a business.

Motivation

Implementation of a DSL-Based ERP System

Enterprise resource planning systems integrate several software components that are essential for managing a business.

ERP systems integrate

- Financial Management
- Supply Chain Management
- Manufacturing Resource Planning
- Human Resource Management
- Customer Relationship Management
- ...

Motivation

Implementation of a DSL-Based ERP System

Enterprise resource planning systems integrate several software components that are essential for managing a business.

ERP systems integrate

- Financial Management
- Supply Chain Management
- Manufacturing Resource Planning
- Human Resource Management
- Customer Relationship Management

What do ERP systems look like under the hood?

An Alternative Approach

POETS [Henglein et al. 2009]

An Alternative Approach

POETS [Henglein et al. 2009]

An Alternative Approach

POETS [Henglein et al. 2009]

An Alternative Approach

POETS [Henglein et al. 2009]

The abstract picture

- We have a number of domain-specific languages.
- Each pair of DSLs shares some common sublanguage.
- All of them share a common language of values.
- We have the same situation on the type level!

An Alternative Approach

POETS [Henglein et al. 2009]

The abstract picture

- We have a number of domain-specific languages.
- Each pair of DSLs shares some common sublanguage.
- All of them share a common language of values.
- We have the same situation on the type level!

How do we implement this system without duplicating code?!

Piecing Together DSLs - Syntax

basic data structures
reading and aggregating data from the database
arithmetic operations
contract clauses
type definitions
inference rules

Piecing Together DSLs - Syntax

Library of language features

Piecing Together DSLs - Syntax

Library of language features

Constructing the DSLs
Report Language $=$ F1 F2 F3

Piecing Together DSLs - Syntax

Library of language features

Constructing the DSLs
Report Language $=$ F1 F2 F3
Contract Language $=$ F1 F4 F3

Piecing Together DSLs - Syntax

Library of language features

Constructing the DSLs
Report Language $=$ F1 F2 F3
Contract Language
Ontology Language $=$ F1 F5

Piecing Together DSLs - Syntax

Library of language features

Constructing the DSLs
Report Language
$=\sqrt{\text { F1 }}$
Contract Language

Ontology Language = $=H_{51}^{55}$

Rule Language

Piecing Together Functions

Example: Pretty Printing
Goal: functions of type $\operatorname{Program}_{L} \longrightarrow$ String for each language L

Piecing Together Functions

Example: Pretty Printing
Goal: functions of type Program $_{L} \longrightarrow$ String for each language L

Piecing Together Functions

Example: Pretty Printing
Goal: functions of type Program $_{L} \longrightarrow$ String for each language L

Combine functions

Piecing Together Functions

Example: Pretty Printing
Goal: functions of type Program $_{L} \longrightarrow$ String for each language L

Combine functions

Piecing Together Functions

Example: Pretty Printing
Goal: functions of type Program $_{L} \longrightarrow$ String Report Language e L
"functions" for each feature
$p p_{1}:$
$p p_{2}:$
$p p_{3}:$
$p p_{4}:$
$p p_{5}:$
$p p_{6}:$

Piecing Together Functions

Example: Pretty Printing
Goal: functions of type Program $_{L} \longrightarrow$ String for each language L

"functions" for each feature
$p p_{1}:{ }^{\text {F1 }} \longrightarrow$ String
$p p_{2}:{ }^{\text {F2 }} \longrightarrow$ String
$p p_{3}:{ }^{\text {F3 }} \longrightarrow$ String
$p p_{4}:{ }^{\text {F4 }}$
$p p_{5}: \longrightarrow \text { String }$
$p p_{6}:{ }^{\text {F6 }} \longrightarrow$ String

Combine functions

Other combinations

String

How does it work?

Based on: Wouter Swierstra. Data types à la carte

How does it work?

$$
\begin{aligned}
& \text { data } \operatorname{Exp}=\text { Lit Int } \\
& \text { Add Exp Exp } \\
& \text { Mult Exp Exp }
\end{aligned}
$$

How does it work?

Combining Functions

Explicit recursion

```
pp :: Exp -> String
pp(Lit i) = show i
pp (Add e e e e ) = "(" + pp e e + " + " +pp e + # ")"
pp(Mult e e e e) = "(" + pp e e + " * " + pp e + # ")"
```


Combining Functions

Explicit recursion

```
pp :: Exp -> String
```

pp (Lit i) = show i
$p p\left(\right.$ Add $\left.e_{1} e_{2}\right)="\left("+p p e_{1}+"+"+p p e_{2}+{ }^{+}\right) "$
$p p\left(\right.$ Mult $\left.e_{1} e_{2}\right)=$ " (" + pp $e_{1}+$ " * " + pp $e_{2}+{ }^{+}$)"

Non-recursive function

$p p^{\prime}::$ Sig String \rightarrow String
$p p^{\prime}$ (Lit i) =show i
$p p^{\prime}\left(\right.$ Add $\left.e_{1} e_{2}\right)="\left("+e_{1}+"+"+e_{2}+"\right) "$
$p p^{\prime}\left(\right.$ Mult $\left.e_{1} e_{2}\right)="\left("+e_{1}+" * "+e_{2}+"\right) "$

Combining Functions

Explicit recursion

```
pp :: Exp -> String
pp(Lit i) = show i
pp (Add e e e e ) = "(" + pp e e + " + " +pp e e # ")"
pp(Mult e e e ) = "(" + pp e e + " * " + pp e e + ")"
```


Non-recursive function

$p p_{1}::$ Lit String \rightarrow String
$p p_{1}$ (Lit i) $\quad=$ show i
$p p_{2}::$ Ops String \rightarrow String
$p p_{2}\left(\right.$ Add $\left.e_{1} e_{2}\right)="\left("+e_{1}+"+"+e_{2}+"\right) "$
$p p_{2}\left(\right.$ Mult $\left.e_{1} e_{2}\right)="\left("+e_{1}+" * "+e_{2}+"\right) "$

Combining Functions

Non-recursive function

$p p_{1}::$ Lit String \rightarrow String
$p p_{1}$ (Lit i) $=$ show i
$p p_{2}::$ Ops String \rightarrow String
$p p_{2}\left(\right.$ Add $\left.e_{1} e_{2}\right)="\left("+e_{1}+"+"+e_{2}+"\right) "$
$p p_{2}\left(\right.$ Mult $\left.e_{1} e_{2}\right)="\left("+e_{1}+" * "+e_{2}+"\right) "$

Combining Functions

Non-recursive function
$p p_{1}::$ Lit String \rightarrow String
$p p_{1}$ (Lit i) $=$ show i
$p p_{2}::$ Ops String \rightarrow String
$p p_{2}\left(\right.$ Add $\left.e_{1} e_{2}\right)="\left("+e_{1}+"+"+e_{2}+"\right) "$
$p p_{2}\left(\right.$ Mult $\left.e_{1} e_{2}\right)="\left("+e_{1}+" * "+e_{2}+"\right) "$
Fold
fold :: Functor $f \Rightarrow(f a \rightarrow a) \rightarrow$ Fix $f \rightarrow a$ fold $f(\ln t)=f(f m a p($ fold $f) t)$

Combining Functions

Non-recursive function

$p p_{1}::$ Lit String \rightarrow String
$p p_{1}$ (Lit i) $\quad=$ show i
$p p_{2}::$ Ops String \rightarrow String
$p p_{2}\left(\right.$ Add $\left.e_{1} e_{2}\right)="\left("+e_{1}+"+"+e_{2}+"\right) "$
$p p_{2}\left(\right.$ Mult $\left.e_{1} e_{2}\right)="\left("+e_{1}+" * "+e_{2}+"\right) "$

Fold

fold :: Functor $f \Rightarrow(f a \rightarrow a) \rightarrow$ Fix $f \rightarrow a$
fold $f(\ln t)=f($ fmap $($ fold $f) t)$
Applying Fold

```
pp :: Fix (Lit :+: Ops) -> String
pp = fold ( }p\mp@subsup{p}{1}{}:+:p\mp@subsup{p}{2}{}
```


Our Contributions

Our Contributions

Make compositional data types more useful in practise.

Our Contributions

Make compositional data types more useful in practise.

Extend the class of definable types

- mutually recursive types, GADTs
- abstract syntax trees with variable binders

Our Contributions

Make compositional data types more useful in practise.

Extend the class of definable types

- mutually recursive types, GADTs
- abstract syntax trees with variable binders

"Algebras with more structure"

- algebras with effects
- tree homomorphisms, tree automata, tree transducers
- sequential composition \rightsquigarrow program optimisation (deforestation)
- tupling \rightsquigarrow additional modularity

Compositionality

We may compose tree automata along 3 different dimensions.

Compositionality

We may compose tree automata along 3 different dimensions.
input signature: the type of the AST
$\llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S}_{1} \rightarrow R$
$\llbracket \mathcal{A}_{2} \rrbracket: \mu \mathcal{S}_{2} \rightarrow R$

Compositionality

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

$\llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S}_{1} \rightarrow R$
$\llbracket \mathcal{A}_{2} \rrbracket: \mu \mathcal{S}_{2} \rightarrow R$

$$
\llbracket \mathcal{A}_{1}+\mathcal{A}_{2} \rrbracket: \mu\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \rightarrow R
$$

Compositionality

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

$$
\begin{aligned}
& \llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S}_{1} \rightarrow R \\
& \llbracket \mathcal{A}_{2} \rrbracket: \mu \mathcal{S}_{2} \rightarrow R
\end{aligned} \quad \Longrightarrow \quad \llbracket \mathcal{A}_{1}+\mathcal{A}_{2} \rrbracket: \mu\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \rightarrow R
$$

sequential composition: a.k.a. deforestation

Compositionality

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

$$
\begin{aligned}
& \llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S}_{1} \rightarrow R \\
& \llbracket \mathcal{A}_{2} \rrbracket: \mu \mathcal{S}_{2} \rightarrow R
\end{aligned} \quad \Longrightarrow \quad \llbracket \mathcal{A}_{1}+\mathcal{A}_{2} \rrbracket: \mu\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \rightarrow R
$$

sequential composition: a.k.a. deforestation

Compositionality

We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

$$
\llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S}_{1} \rightarrow R
$$

$$
\llbracket \mathcal{A}_{2} \rrbracket: \mu \mathcal{S}_{2} \rightarrow R
$$

$$
\Longrightarrow \quad \llbracket \mathcal{A}_{1}+\mathcal{A}_{2} \rrbracket: \mu\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \rightarrow R
$$

sequential composition: a.k.a. deforestation

output type: tupling / product automaton construction

$\llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S} \rightarrow R_{1}$
$\llbracket \mathcal{A}_{2} \rrbracket: \mu \mathcal{S} \rightarrow R_{2}$

Compositionality

We may compose tree automat along 3 different dimensions.
input signature: the type of the AST

$$
\llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S}_{1} \rightarrow R
$$

$$
\llbracket \mathcal{A}_{2} \rrbracket: \mu \mathcal{S}_{2} \rightarrow R
$$

$$
\Longrightarrow \quad \llbracket \mathcal{A}_{1}+\mathcal{A}_{2} \rrbracket: \mu\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \rightarrow R
$$

sequential composition: a.k.a. deforestation

output type: tupling / product automaton construction
$\llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S} \rightarrow R_{1}$
$\llbracket \mathcal{A}_{2} \rrbracket: \mu \mathcal{S} \rightarrow R_{2}$

$$
\llbracket \mathcal{A}_{1} \times \mathcal{A}_{2} \rrbracket: \mu \mathcal{F} \rightarrow R_{1} \times R_{2}
$$

Contextuality

$$
\begin{aligned}
& \text { tupling / product automaton construction } \\
& \begin{array}{l}
\llbracket \mathcal{A}_{1} \rrbracket: \mu \mathcal{S} \rightarrow R_{1} \\
\llbracket \mathcal{A}_{\imath} \rrbracket \cdot \| S \rightarrow R_{n}
\end{array} \quad \Longrightarrow \quad \llbracket \mathcal{A}_{1} \times \mathcal{A}_{2} \rrbracket: \mu(\mathcal{S}) \rightarrow R_{1} \times R_{2}
\end{aligned}
$$

Contextuality

$$
\begin{aligned}
& \text { tupling / product automaton construction } \\
& \qquad \begin{array}{l}
\mathcal{A}_{1}: \mathcal{S} \rightarrow R_{1} \\
\mathcal{A}_{2}: S \rightarrow R_{2}
\end{array} \Longrightarrow \mathcal{A}_{1} \times \mathcal{A}_{2}: \mathcal{S} \rightarrow R_{1} \times R_{2}
\end{aligned}
$$

Contextuality

$$
\begin{aligned}
& \text { tupling / product automaton construction } \\
& \qquad \begin{array}{l}
\mathcal{A}_{1}: \mathcal{S} \rightarrow R_{1} \\
\mathcal{A}_{2}: \mathcal{S} \rightarrow R_{2}
\end{array} \quad \Longrightarrow \quad \mathcal{A}_{1} \times \mathcal{A}_{2}: \mathcal{S} \rightarrow R_{1} \times R_{2}
\end{aligned}
$$

mutumorphisms / dependent product automata

$$
\begin{array}{ll}
\mathcal{A}_{1}: & \mathcal{S} \rightarrow R_{1} \\
\mathcal{A}_{2}: R_{1} \Rightarrow & \mathcal{S} \rightarrow R_{2}
\end{array}
$$

Contextuality

tupling / product automaton construction

$$
\begin{aligned}
& \mathcal{A}_{1}: \mathcal{S} \rightarrow R_{1} \\
& \mathcal{A}_{2}: \mathcal{S} \rightarrow R_{2}
\end{aligned} \quad \Longrightarrow \quad \mathcal{A}_{1} \times \mathcal{A}_{2}: \quad \mathcal{S} \rightarrow R_{1} \times R_{2}
$$

mutumorphisms / dependent product automata

$$
\begin{array}{lll}
\mathcal{A}_{1}: & \mathcal{S} \rightarrow R_{1} \\
A_{0}: R_{1} \rightarrow \mathcal{S} \rightarrow R_{2}
\end{array} \quad \Longrightarrow \quad \mathcal{A}_{1} \times \mathcal{A}_{2}: \mathcal{S} \rightarrow R_{1} \times R_{2}
$$

Contextuality

tupling / product automaton construction

$$
\mathcal{A}_{1}: \mathcal{S} \rightarrow R_{1} \quad \Longrightarrow \quad \mathcal{A}_{1} \times \mathcal{A}_{2}: \quad \mathcal{S} \rightarrow R_{1} \times R_{2}
$$

mutumorphisms / dependent product automata

$\mathcal{A}_{1}: R_{2} \Rightarrow \mathcal{S} \rightarrow R_{1}$

$$
\Longrightarrow \quad \mathcal{A}_{1} \times \mathcal{A}_{2}: \mathcal{S} \rightarrow R_{1} \times R_{2}
$$

Contextuality

tupling / product automaton construction

$$
\begin{aligned}
\mathcal{A}_{1}: & \mathcal{S} \rightarrow R_{1} \\
\mathcal{A}_{2}: & \mathcal{S} \rightarrow R_{2}
\end{aligned} \quad \Longrightarrow \quad \mathcal{A}_{1} \times \mathcal{A}_{2}: \quad \mathcal{S} \rightarrow R_{1} \times R_{2}
$$

mutumorphisms / dependent product automata

$\mathcal{A}_{1}: R_{2} \Rightarrow \mathcal{S} \rightarrow R_{1}$

$$
\Longrightarrow \quad \llbracket \mathcal{A}_{1} \times \mathcal{A}_{2} \rrbracket: \mu \mathcal{S} \rightarrow R_{1} \times R_{2}
$$

Discussion

Advantages

- it's just a Haskell library
- uses well-known concepts (algebras, tree automata, functors etc.)
- high degree of modularity
- facilitates reuse

Discussion

Advantages

- it's just a Haskell library
- uses well-known concepts (algebras, tree automata, functors etc.)
- high degree of modularity
- facilitates reuse

Drawbacks

- it's just a Haskell library
- error messages are sometimes rather cryptic
- learning curve
- typical drawbacks of higher-order abstract syntax

Discussion

Advantages

- it's just a Haskell library
- uses well-known concepts (algebras, tree automata, functors etc.)
- high degree of modularity
- facilitates reuse

Drawbacks

- it's just a Haskell library
- error messages are sometimes rather cryptic
- learning curve
- typical drawbacks of higher-order abstract syntax

Future work

- reasoning about modular implementations (Meta-Theory à la Carte [Delaware et al. 2013])
- describing interactions between modules
- how well does modularity scale?

And now it's time for something completely different.

Partial Order Approach to Infinitary Rewriting

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\mathcal{R}_{+*}=\left\{\begin{array}{ll}
x+0 & \rightarrow x \\
x+s(y) & \rightarrow s(x+y)
\end{array} \quad x * s(y) \rightarrow x+(x * y)\right.
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}= \begin{cases}x+0 & \rightarrow x \\
x+s(y) \rightarrow s(x+y)\end{cases} \\
& \begin{array}{l}
x * 0 \rightarrow 0 \\
x * s(y) \rightarrow x+(x * y)
\end{array} \\
& s(s(0)) * s(s(0))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}= \begin{cases}x+0 & \rightarrow x \\
x+s(y) \rightarrow s(x+y)\end{cases} \\
& \begin{array}{l}
x * 0 \rightarrow 0 \\
x * s(y) \rightarrow x+(x * y)
\end{array} \\
& s(s(0)) * s(s(0))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{gathered}
\mathcal{R}_{+*}=\left\{\begin{array}{ll}
x+0 & \rightarrow x \\
x+s(y) & \rightarrow s(x+y)
\end{array} \begin{array}{ll}
x * 0 & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
s(s(0)) * s(s(0)) \rightarrow s(s(0))+(s(s(0)) * s(0))
\end{gathered}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{gathered}
\mathcal{R}_{+*}=\left\{\begin{array}{lll}
x+0 & \rightarrow x & x * 0 \\
x+s(y) & \rightarrow s(x+y) & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
s(s(0)) * s(s(0)) \rightarrow s(s(0))+(s(s(0)) * s(0))
\end{gathered}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{gathered}
\mathcal{R}_{+*}=\left\{\begin{array}{lll}
x+0 & \rightarrow x & x * 0 \\
x+s(y) & \rightarrow s(x+y) & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
s(s(0)) * s(s(0)) \rightarrow^{2} s(s(0))+(s(s(0))+(s(s(0)) * 0))
\end{gathered}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{gathered}
\mathcal{R}_{+*}=\left\{\begin{array}{lll}
x+0 & \rightarrow x & x * 0 \\
x+s(y) & \rightarrow s(x+y) & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
s(s(0)) * s(s(0)) \rightarrow^{2} s(s(0))+(s(s(0))+(s(s(0)) * 0))
\end{gathered}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{ll}
x+0 & \rightarrow x \\
x+s(y) & \rightarrow s(x+y)
\end{array} \begin{array}{ll}
x * 0 & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{3} s(s(0))+(s(s(0))+0)
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{ll}
x+0 & \rightarrow x \\
x+s(y) & \rightarrow s(x+y)
\end{array} \begin{array}{ll}
x * 0 & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{3} s(s(0))+(s(s(0))+0)
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{lll}
x+0 & \rightarrow x & x * 0 \\
x+s(y) & \rightarrow s(x+y) & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{4} s(s(0))+s(s(0))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{ll}
x+0 & \rightarrow x \\
x+s(y) & \rightarrow s(x+y)
\end{array} \begin{array}{ll}
x * 0 & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{4} s(s(0))+s(s(0))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{lll}
x+0 & \rightarrow x & x * 0 \\
x+s(y) & \rightarrow s(x+y) & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{5} s(s(s(0))+s(0))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{lll}
x+0 & \rightarrow x & x * 0 \\
x+s(y) & \rightarrow s(x+y) & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{5} s(s(s(0))+s(0))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{ll}
x+0 & \rightarrow x \\
x+s(y) & \rightarrow s(x+y)
\end{array} \begin{array}{ll}
x * 0 & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{6} s(s(s(s(0))+0))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{ll}
x+0 & \rightarrow x \\
x+s(y) & \rightarrow s(x+y)
\end{array} \begin{array}{ll}
x * 0 & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{6} s(s(s(s(0))+0))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{aligned}
& \mathcal{R}_{+*}=\left\{\begin{array}{ll}
x+0 & \rightarrow x \\
x+s(y) & \rightarrow s(x+y)
\end{array} \begin{array}{l}
x * 0 \rightarrow 0 \\
x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
& s(s(0)) * s(s(0)) \rightarrow^{7} s(s(s(s(0))))
\end{aligned}
$$

Rewriting Systems

What are (term) rewriting systems?

- generalisation of (first-order) functional programs
- consist of directed symbolic equations of the form $I \rightarrow r$
- semantics: any instance of a left-hand side may be replaced by the corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

$$
\begin{gathered}
\mathcal{R}_{+*}=\left\{\begin{array}{lll}
x+0 & \rightarrow x & x * 0 \\
x+s(y) & \rightarrow s(x+y) & x * s(y) \rightarrow x+(x * y)
\end{array}\right. \\
s(s(0)) * s(s(0)) \rightarrow^{7} s(s(s(s(0)))) \\
\\
\mathcal{R}_{+*} \text { is terminating! }
\end{gathered}
$$

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from(0)

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.
Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow 0: \text { from }(1)
$$

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.
Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{2} 0: 1: \text { from }(2)
$$

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.
Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{3} 0: 1: 2: \text { from }(3)
$$

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.
Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{4} 0: 1: 2: 3: \text { from }(4)
$$

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.
Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{5} 0: 1: 2: 3: 4: \text { from }(5)
$$

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.
Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \text { from }(6)
$$

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.
Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \text { from }(6) \rightarrow \ldots
$$

Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \text { from }(6) \rightarrow \ldots
$$

intuitively this converges to the infinite list $0: 1: 2: 3: 4: 5$

Infinitary Term Rewriting - The Metric Approach

When does a rewrite sequence converge?
Rewrite rules are applied at increasingly deeply nested subterms.

Infinitary Term Rewriting - The Metric Approach

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.
What is the result of a converging rewrite sequence?
A converging rewrite sequence approximates a uniquely determined term t arbitrary well.

Infinitary Term Rewriting - The Metric Approach

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.
What is the result of a converging rewrite sequence?
A converging rewrite sequence approximates a uniquely determined term t arbitrary well.

$$
t_{0} \quad \rightarrow \quad t_{1} \quad \rightarrow \quad t_{2} \quad \rightarrow \quad \ldots \quad t
$$

Infinitary Term Rewriting - The Metric Approach

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.
What is the result of a converging rewrite sequence?
A converging rewrite sequence approximates a uniquely determined term t arbitrary well.

$$
t_{0} \rightarrow t_{1} \quad \rightarrow \quad t_{2} \quad \rightarrow \quad \ldots \quad t
$$

For each depth $d \in \mathbb{N}$ there is some $n \in \mathbb{N}$, such that

Infinitary Term Rewriting - The Metric Approach

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.
What is the result of a converging rewrite sequence?
A converging rewrite sequence approximates a uniquely determined term t arbitrary well.

$$
t_{0} \quad \rightarrow \quad t_{1} \quad \rightarrow \quad t_{2} \quad \rightarrow \quad \ldots \quad t
$$

For each depth $d \in \mathbb{N}$ there is some $n \in \mathbb{N}$, such that

$$
t_{0} \rightarrow t_{1} \rightarrow \ldots \rightarrow \underbrace{t_{n} \rightarrow t_{n+1} \rightarrow \quad \ldots}_{\text {do not differ up to depth } d}
$$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Issues of the Metric Approach

- Notion of convergence is too restrictive (no notion of local convergence)
- May still not reach a normal form
- Orthogonal TRSs are not infinitarily confluent

Issues of the Metric Approach

- Notion of convergence is too restrictive (no notion of local convergence)
- May still not reach a normal form
- Orthogonal TRSs are not infinitarily confluent

Infinitary confluence

For every $t, t_{1}, t_{2} \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_{1} \leftarrow t \rightarrow t_{2}$

Issues of the Metric Approach

- Notion of convergence is too restrictive (no notion of local convergence)
- May still not reach a normal form
- Orthogonal TRSs are not infinitarily confluent

Infinitary confluence

For every $t, t_{1}, t_{2} \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$
with $t_{1} \leftarrow t \rightarrow t_{2}$ there is a $t^{\prime} \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_{1} \rightarrow t^{\prime} \leftrightarrow t_{2}$

Partial Order Approach to Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= bounded complete cpo)

Partial Order Approach to Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice ($=$ bounded complete cpo)

Convergence

- formalised by the limit inferior:

$$
\liminf _{\iota \rightarrow \alpha} t_{\iota}=\bigsqcup_{\beta<\alpha} \prod_{\beta \leq \iota<\alpha} t_{\iota}
$$

Partial Order Approach to Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= bounded complete cpo)

Convergence

- formalised by the limit inferior:

$$
\liminf _{\iota \rightarrow \alpha} t_{l}=\bigsqcup_{\beta<\alpha} \prod_{\beta \leq \iota<\alpha} t_{l}
$$

- intuition: eventual persistence of nodes of the terms
- convergence: limit inferior of the contexts of the reduction

An Example

An Example

An Example

An Example

Properties of the Partial Order Approach

Benefits

- reduction sequences always converge (but result may contain $\perp \mathrm{s}$)
- more fine-grained than the metric approach
- subsumes metric approach, i.e. both approaches agree on total reductions

Properties of the Partial Order Approach

Benefits

- reduction sequences always converge (but result may contain \perp s)
- more fine-grained than the metric approach
- subsumes metric approach, i.e. both approaches agree on total reductions

Theorem (total p-convergence $=m$-convergence)
For every reduction S in a TRS, we have

$$
S: s \xrightarrow{p} t \text { is total } \Longleftrightarrow S: s \xrightarrow{m} t .
$$

Properties of the Partial Order Approach

Benefits

- reduction sequences always converge (but result may contain \perp s)
- more fine-grained than the metric approach
- subsumes metric approach, i.e. both approaches agree on total reductions

Theorem (total p-convergence $=m$-convergence)

For every reduction S in a TRS, we have

$$
S: s \xrightarrow{p} t \text { is total } \Longleftrightarrow \quad S: s \xrightarrow{m} t .
$$

Theorem (confluence, normalisation)
Every orthogonal TRS is normalising and confluent w.r.t. p-convergent reductions, i.e. every term has a unique normal form.

Sharing - From Terms to Term Graphs

Lazy evaluation and infinitary rewriting
Lazy evaluation consists of two things:

- non-strict evaluation
- sharing

Sharing - From Terms to Term Graphs

Lazy evaluation and infinitary rewriting
Lazy evaluation consists of two things:

- non-strict evaluation
- sharing \rightsquigarrow avoids duplication

Sharing - From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing \rightsquigarrow avoids duplication

Example

$$
\text { from }(x) \rightarrow x: \text { from }(s(x))
$$

Sharing - From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing \rightsquigarrow avoids duplication

Example

$$
\text { from }(x) \rightarrow x: \text { from }(s(x))
$$

Sharing - From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing \rightsquigarrow avoids duplication

Example

$$
\text { from }(x) \rightarrow x: \text { from }(s(x))
$$

Sharing - From Terms to Term Graphs

Lazy evaluation and infinitary rewriting

Lazy evaluation consists of two things:

- non-strict evaluation
- sharing \rightsquigarrow avoids duplication

Example

$$
\text { from }(x) \rightarrow x: \text { from }(s(x))
$$

Example

from
\downarrow
0

Example

Example

Example

Example

Example

Properties of Infinitary Term Graph Rewriting

Theorem (total p-convergence $=m$-convergence)
For every reduction S in a GRS, we have

$$
S: g \xrightarrow{p_{M}} h \text { is total } \Longleftrightarrow \quad S: g \xrightarrow{m} h .
$$

Properties of Infinitary Term Graph Rewriting

Theorem (total p-convergence $=m$-convergence)

For every reduction S in a GRS, we have

$$
S: g \xrightarrow{p} h \text { is total } \Longleftrightarrow \quad S: g \xrightarrow{m} h .
$$

Theorem (soundness)

For every left-linear, left-finite GRS \mathcal{R} we have

$$
\underline{\mathcal{R}} \quad g
$$

$$
p
$$

Properties of Infinitary Term Graph Rewriting

Theorem (total p-convergence $=m$-convergence)

For every reduction S in a GRS, we have

$$
S: g \xrightarrow{p} h \text { is total } \Longleftrightarrow \quad S: g \xrightarrow{m} h .
$$

Theorem (soundness)

For every left-linear, left-finite GRS \mathcal{R} we have

$\underline{\mathcal{R}} \quad \mathrm{g}$	p	h
$\mathcal{U}(\cdot)$		$\mathcal{U}(\cdot)$
$\mathcal{U}(\mathcal{R}) \quad \stackrel{ }{s}$	$p--------------\ggg$	t

Properties of Infinitary Term Graph Rewriting

Theorem (total p-convergence $=m$-convergence)

For every reduction S in a GRS, we have

$$
S: g \xrightarrow{p} h \text { is total } \Longleftrightarrow \quad S: g \xrightarrow{m} h .
$$

Theorem (soundness)

For every left-linear, left-finite GRS \mathcal{R} we have

Completeness

Theorem (Completeness)
p-convergence in an orthogonal, left-finite $G R S \mathcal{R}$ is complete:

Completeness

Theorem (Completeness)
p-convergence in an orthogonal, left-finite $G R S \mathcal{R}$ is complete:

Completeness

Theorem (Completeness)

p-convergence in an orthogonal, left-finite $G R S \mathcal{R}$ is complete:

Does not hold for metric convergence!

Completeness

Theorem (Completeness)

p-convergence in an orthogonal, left-finite GRS \mathcal{R} is complete:

Does not hold for metric convergence!
Completeness of m-convergence for normalising reductions

Discussion

Contributions

- novel approach to infinitary term rewriting
- first formalisation of infinitary term graph rewriting

Discussion

Contributions

- novel approach to infinitary term rewriting
- first formalisation of infinitary term graph rewriting

Note: Böhm reduction for TRSs

$$
s \stackrel{p}{\rightarrow}_{\mathcal{R}} t \Longleftrightarrow s \vec{m}_{\mathcal{B}} t
$$

\mathcal{B} adds to \mathcal{R} rules of the form $t \rightarrow \perp$ for each root-active term t.

Discussion

Contributions

- novel approach to infinitary term rewriting
- first formalisation of infinitary term graph rewriting

Note: Böhm reduction for TRSs

$$
s \stackrel{p}{\rightarrow}_{\mathcal{R}} t \quad \Longleftrightarrow \quad s^{m_{\vec{B}}} t
$$

\mathcal{B} adds to \mathcal{R} rules of the form $t \rightarrow \perp$ for each term t with $t \xrightarrow{p_{\rightarrow}} \perp$.

Discussion

Contributions

- novel approach to infinitary term rewriting
- first formalisation of infinitary term graph rewriting

Note: Böhm reduction for TRSs

$$
s \stackrel{p}{\nrightarrow}_{\mathcal{R}} t \quad \Longleftrightarrow \quad s^{m_{\vec{B}}} t
$$

\mathcal{B} adds to \mathcal{R} rules of the form $t \rightarrow \perp$ for each term t with $t \xrightarrow{p_{\rightarrow}} \perp$.
Future work: Infinitary term graph rewriting

- Are orthogonal systems infinitarily confluent?
- higher-order systems (e.g. lambda calculus with letrec)

Publications

[1] Patrick Bahr. Modes of Convergence for Term Graph Rewriting. Logical Methods in Computer Science 8(2), pp. 1-60, 2012.
[2] Patrick Bahr. Modular Tree Automata. Mathematics of Program Construction, pp. 263-299, 2012.
[3] Patrick Bahr. Infinitary Term Graph Rewriting is Simple, Sound and Complete. 23rd International Conference on Rewriting Techniques and Applications (RTA'12) , pp. 69-84, 2012.
[4] Patrick Bahr. Modes of Convergence for Term Graph Rewriting. 22nd International Conference on Rewriting Techniques and Applications (RTA'11), pp. 139-154, 2011.
[5] Patrick Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees. Proceedings of the 21st International Conference on Rewriting Techniques and Applications, pp. 67-84, 2010.
[6] Patrick Bahr. Abstract Models of Transfinite Reductions. Proceedings of the 21st International Conference on Rewriting Techniques and Applications, pp. 49-66, 2010.
[7] Patrick Bahr, Tom Hvitved. Parametric Compositional Data Types. Proceedings Fourth Workshop on Mathematically Structured Functional Programming, pp. 3-24, 2012.
[8] Patrick Bahr, Tom Hvitved. Compositional data types. Proceedings of the seventh ACM SIGPLAN workshop on Generic programming, pp. 83-94, 2011.
[9] Patrick Bahr. Evaluation à la Carte: Non-Strict Evaluation via Compositional Data Types. Proceedings of the 23rd Nordic Workshop on Programming Theory, pp. 38-40, 2011.
[10] Patrick Bahr. A Functional Language for Specifying Business Reports. Proceedings of the 23rd Nordic Workshop on Programming Theory, pp. 24-26, 2011.
[11] Patrick Bahr. Convergence in Infinitary Term Graph Rewriting Systems is Simple. Submitted to Math. Structures Comput. Sci.
[12] Patrick Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees. Submitted to Log. Methods Comput. Sci.

