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Motivation
Implementation of a DSL-Based ERP System

Enterprise resource planning systems integrate several software
components that are essential for managing a business.

ERP systems integrate

Financial Management

Supply Chain Management

Manufacturing Resource Planning

Human Resource Management

Customer Relationship Management

. . .
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What do ERP systems look like under the hood?
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An Alternative Approach
POETS [Henglein et al. 2009]

ERP
Runtime
System Report

Language

Contract
Language

Rule
Language

UI
Language

Ontology
Language

... ...

How do we implement this system without duplicating code?!
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Piecing Together DSLs – Syntax

Library of language features

F1 basic data structures

F2 reading and aggregating data from the database

F3 arithmetic operations

F4 contract clauses

F5 type definitions

F6 inference rules
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Piecing Together DSLs – Syntax

Library of language features

F1 F2 F3 F4 F5 F6

Constructing the DSLs

Report Language = F1 F2 F3

Contract Language = F1 F4 F3

Ontology Language = F1 F5

Rule Language = F1 F6 F3
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Piecing Together Functions
Example: Pretty Printing

Goal: functions of type ProgramL −→ String for each language L

“functions” for each feature

pp1 : F1 String

pp2 : F2 String

pp3 : F3 String

pp4 : F4 String

pp5 : F5 String

pp6 : F6 String

Combine functions

pp1
+
pp2
+
pp3

Other combinations

pp1
+
pp5
+
pp6

:

F1

F5

F6

String

...
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How does it work?

Based on: Wouter Swierstra. Data types à la carte
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data Exp = Lit Int
| Add Exp Exp
| Mult Exp Exp

decompose

data Fix s =
In (s (Fix s))
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| Add e e
| Mult e e

signaturere
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Combining Functions
Explicit recursion

pp :: Exp → String
pp (Lit i) = show i
pp (Add e1 e2) = "(" ++ pp e1 ++ " + " ++ pp e2 ++ ")"

pp (Mult e1 e2) = "(" ++ pp e1 ++ " * " ++ pp e2 ++ ")"

Non-recursive function

pp′ :: Sig String → String
pp′ (Lit i) = show i
pp′ (Add e1 e2) = "(" ++ e1 ++ " + " ++ e2 ++ ")"

pp′ (Mult e1 e2) = "(" ++ e1 ++ " * " ++ e2 ++ ")"

Non-recursive function

pp1 :: Lit String → String
pp1 (Lit i) = show i

pp2 :: Ops String → String
pp2 (Add e1 e2) = "(" ++ e1 ++ " + " ++ e2 ++ ")"

pp2 (Mult e1 e2) = "(" ++ e1 ++ " * " ++ e2 ++ ")"

Fold

fold :: Functor f ⇒ (f a→ a)→ Fix f → a
fold f (In t) = f (fmap (fold f ) t)

Applying Fold

pp :: Fix (Lit :+: Ops)→ String
pp = fold (pp1 :+: pp2)
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Our Contributions

Make compositional data types more useful in practise.

Extend the class of definable types

mutually recursive types, GADTs

abstract syntax trees with variable binders

“Algebras with more structure”

algebras with effects

tree homomorphisms, tree automata, tree transducers
I sequential composition  program optimisation (deforestation)
I tupling  additional modularity

Skip details
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Compositionality
We may compose tree automata along 3 different dimensions.

input signature: the type of the AST

JA1K : µS1 → R

JA2K : µS2 → R
=⇒ JA1 +A2K : µ(S1 + S2)→ R

sequential composition: a.k.a. deforestation

µS1 µS2 µS3

JA1K JA2K

JA1 ◦ A2K

output type: tupling / product automaton construction

JA1K : µS → R1

JA2K : µS → R2
=⇒ JA1 ×A2K : µF → R1 × R2
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Contextuality

tupling / product automaton construction

JA1K : µS → R1

JA2K : µS → R2
=⇒ JA1 ×A2K : µ(S)→ R1 × R2

mutumorphisms / dependent product automata

A1 :

R2 ⇒

S → R1

A2 : R1 ⇒ S → R2
=⇒

J

A1 ×A2

K

:

µ

S → R1 × R2
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Discussion

Advantages

it’s just a Haskell library

uses well-known concepts
(algebras, tree automata,
functors etc.)

high degree of modularity

facilitates reuse

Drawbacks

it’s just a Haskell library

error messages are sometimes
rather cryptic

learning curve

typical drawbacks of
higher-order abstract syntax

Future work

reasoning about modular implementations
(Meta-Theory à la Carte [Delaware et al. 2013])

describing interactions between modules

how well does modularity scale?

16
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(Meta-Theory à la Carte [Delaware et al. 2013])

describing interactions between modules

how well does modularity scale?

16



And now it’s time for something
completely different.



Partial Order Approach to Infinitary Rewriting
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g

g
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Rewriting Systems

What are (term) rewriting systems?

generalisation of (first-order) functional programs

consist of directed symbolic equations of the form l → r

semantics: any instance of a left-hand side may be replaced by the
corresponding instance of the right-hand side

Example (Term rewriting system defining addition and multiplication)

R+∗ =

{
x + 0 → x x ∗ 0 → 0
x + s(y)→ s(x + y) x ∗ s(y)→ x + (x ∗ y)

s(s(0)) ∗ s(s(0))

R+∗ is terminating!

19
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Non-Terminating Rewriting Systems

Termination: repeated rewriting eventually reaches a normal form.

Non-terminating systems can be meaningful

modelling reactive systems, e.g. by process calculi

approximation algorithms which enhance the accuracy of the
approximation with each iteration, e.g. computing π

specification of infinite data structures, e.g. streams

Example (Infinite lists)

Rnats =
{

from(x)→ x : from(s(x))

from(0)

intuitively this converges to the infinite list 0 : 1 : 2 : 3 : 4 : 5 : . . . .
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Infinitary Term Rewriting – The Metric Approach

When does a rewrite sequence converge?

Rewrite rules are applied at increasingly deeply nested subterms.

What is the result of a converging rewrite sequence?

A converging rewrite sequence approximates a uniquely determined term t
arbitrary well.

t0 → t1 → t2 → . . . t

For each depth d ∈ N there is some n ∈ N, such that

t0 → t1 → . . . → tn → tn+1 → . . . t︸ ︷︷ ︸
do not differ up to depth d

21
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Example: Convergence of a Reduction

R = {a→ g(a)}
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Example: Non-Convergence of a Reduction

R =

{
a→ g(a)

h(x)→ h(g(x))
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Issues of the Metric Approach

Notion of convergence is too restrictive
(no notion of local convergence)

May still not reach a normal form

Orthogonal TRSs are not infinitarily confluent

Infinitary confluence

t

t1 t2

t ′

For every t, t1, t2 ∈ T ∞(Σ,V)
with t1 � t � t2

there is a t ′ ∈ T ∞(Σ,V)
with t1 � t ′ � t2

24
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Partial Order Approach to Infinitary Term Rewriting

Partial order on terms

partial terms: terms with additional constant ⊥ (read as “undefined”)

partial order ≤⊥ reads as: “is less defined than”

≤⊥ is a complete semilattice (= bounded complete cpo)

Convergence

formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms

convergence: limit inferior of the contexts of the reduction

25
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convergence: limit inferior of the contexts of the reduction
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Properties of the Partial Order Approach

Benefits

reduction sequences always converge (but result may contain ⊥s)

more fine-grained than the metric approach

subsumes metric approach, i.e. both approaches agree on total
reductions

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS, we have

S : s �p t is total ⇐⇒ S : s �m t.

Theorem (confluence, normalisation)

Every orthogonal TRS is normalising and confluent w.r.t. p-convergent
reductions, i.e. every term has a unique normal form.
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Sharing – From Terms to Term Graphs

Lazy evaluation and infinitary rewriting Skip term graphs

Lazy evaluation consists of two things:

non-strict evaluation

sharing

 avoids duplication

Example

from(x)→ x : from(s(x))

from

x

:

x from

s

x
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Properties of Infinitary Term Graph Rewriting

Theorem (total p-convergence = m-convergence)

For every reduction S in a GRS, we have

S : g �p h is total ⇐⇒ S : g �m h.

Theorem (soundness)

For every left-linear, left-finite GRS R we have

g h
pp

R

s

U (·)

U (R) t
p

U (·)
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Completeness

Theorem (Completeness)

p-convergence in an orthogonal, left-finite GRS R is complete:

s t
p

g

U (·)

U (R)

t ′

h
p

U (·)

p

R

Does not hold for metric convergence!

Completeness of m-convergence for normalising reductions

s t ∈ NF
m

g

U (·)
h

m
U (·)

U (R)

R
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Discussion

Contributions

novel approach to infinitary term rewriting

first formalisation of infinitary term graph rewriting

Note: Böhm reduction for TRSs

s �p R t ⇐⇒ s �m B t

B adds to R rules of the form t → ⊥ for each root-active term t.

Future work: Infinitary term graph rewriting

Are orthogonal systems infinitarily confluent?

higher-order systems (e.g. lambda calculus with letrec)
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