
U N I V E R S I T Y O F C O P E N H A G E N

PhD dissertation

Patrick Bahr

Modular Implementation of Programming Lan-
guages and a Partial-Order Approach to Infinitary
Rewriting

Academic advisor: Fritz Henglein

Submitted: October 31, 2012

Modular Implementation of
Programming Languages and a

Partial-Order Approach to
Infinitary Rewriting

Patrick Bahr
DIKU, Department of Computer Science,

University of Copenhagen, Denmark

October 31, 2012

PhD Thesis

This thesis has been submitted to the PhD School of Science,
Faculty of Science, University of Copenhagen, Denmark

Author: Patrick Bahr

Affiliation: DIKU, Department of Computer Science,
University of Copenhagen, Denmark

Title: Modular Implementation of Programming Languages
and a Partial-Order Approach to Infinitary Rewriting

Academic advisor: Fritz Henglein

Submitted: October 31, 2012

Short abstract

In this dissertation we investigate two independent areas of re-
search.
In the first part, we develop techniques for implementing program-
ming languages in a modular fashion. Within this problem domain,
we focus on operations on typed abstract syntax trees with the goal
of developing a framework that facilitates the definition, manipu-
lation and composition of such operations. The result of our work
is a comprehensive combinator library that provides these facili-
ties. What sets our approach apart is the use of recursion schemes
derived from tree automata in order to implement operations on
abstract syntax trees.
The second part is concerned with infinitary rewriting, a field that
studies transfinite rewrite sequences. We extend the established
theory of infinitary rewriting in two ways: (1) a novel approach to
convergence in infinitary rewriting that replaces convergence in a
metric space with the limit inferior in a partially ordered set; (2) ex-
tending infinitary term rewriting to infinitary term graph rewriting.
We show correspondences between the established calculi based on
metric convergence and the newly developed calculi based on partial
orders. Moreover, we show the advantages of our partial order ap-
proach in terms of better confluence and normalisation properties of
infinitary term rewriting as well as in terms of better completeness
properties for infinitary term graph rewriting.

Abstract

This dissertation is a collection of nine research papers pertaining to two
independent areas of research.

In the first part, entitled Modular Implementation of Programming Lan-
guages, we develop techniques for implementing programming languages in
a modular fashion. Within this problem domain, we focus on operations on
typed abstract syntax trees with the goal of developing a framework that
facilitates the definition, manipulation and composition of such operations.
The result of our work is a comprehensive combinator library that provides
these facilities.

What sets our approach apart is the use of recursion schemes derived
from tree automata in order to implement operations on abstract syntax
trees. In the first two papers we illustrate the power of this approach by
showcasing tree homomorphisms – a very limited form of tree automata – as
basic building blocks for simple tree transformations. Their simplicity allows
us to combine them with monadic effects, manipulate and combine them in
a flexible manner, and perform optimisations in the form of deforestation.
In the third paper, we move to more powerful tree automata. Usually,
these more powerful automata are cumbersome to define as they combine
different computational aspects. We show, however, that these automata
can be constructed from simpler ones, viz. tree homomorphisms and simple
state machines. In the second paper, we focus on the important issue of
representing variable names and variable binders using a carefully restricted
form of higher-order abstract syntax.

In the fourth paper, we presents a comprehensive and realistic appli-
cation of our library: a prototype implementation of a novel enterprise re-
source planning system built around a family of domain-specific languages
that make it possible to customise the system in a highly flexible manner.
The system combines several highly integrated domain-specific languages,
which are implemented using our library.

The second part of this dissertation, entitled A Partial-Order Approach
to Infinitary Rewriting, is concerned with infinitary rewriting, a field that
studies transfinite rewrite sequences. We extend the established theory of
infinitary rewriting in two ways: (1) a novel approach to convergence in
infinitary rewriting that replaces convergence in a metric space with the limit
inferior in a partially ordered set; (2) extending infinitary term rewriting to
infinitary term graph rewriting.

For the first item, we show correspondences between the established
calculi based on metric convergence and the newly developed calculi based on
partial orders. We also study both approaches on an abstract level and show
the advantages of our partial order approach in terms of better confluence
and normalisation properties of infinitary term rewriting as well as in terms
of better completeness properties for infinitary term graph rewriting.

For the second item, we explore several approaches to convergence on
term graphs and analyse the resulting calculi. We distinguish two calculi
among them – based on a metric space respectively a partially ordered set –
by showing that they satisfy strong soundness and completeness properties
w.r.t. infinitary term rewriting.

iii

Dansk Resumé

Denne afhandling er en samling af ni artikler, der falder indenfor to
uafhængige forskningsomr̊ader.

I den første del kaldet Modular Implementation of Programming Lan-
guages udvikler vi teknikker til modulær implementering af programmer-
ingssprog. Indenfor dette problemfelt fokuserer vi p̊a operationer p̊a ab-
strakte syntax-træer med det form̊al at udvikle et framework, der muliggør
definitionen, manipulationen og kompositionen af s̊adanne operationer. Re-
sultatet af vores arbejde er et omfattende bibliotek, der sørger for disse
faciliteter.

Det, der adskiller vores tilgang fra andres, er brugen af rekursionssys-
temer, der stammer fra træ-automater, til at implementere operationer p̊a
abstrakte syntax-træer. I de første to artikler illustrerer vi styrken af denne
tilgang ved at præsentere træ-homomorfier – en meget begrænset form for
træ-automater – som fundament for simple træ-transformationer. Deres
enkelthed tillader os at kombinere dem med monadiske effekter, manipulere
og kombinere dem p̊a en fleksibel m̊ade, samt foretage optimeringer i form af
deforestation. I den tredje artikel gør vi videre med mere udtryksfulde træ-
automater. Disse mere udtryksfulde automater er sædvanligvis mere om-
stændelige at definere, eftersom de kombinerer forskellige beregningsmæs-
sige aspekter. Vi viser imidlertid at disse automater kan konstrueres fra
mere simple automater, nemlig træ-homomorfier og simple state machines.
I den anden artikel fokuserer vi p̊a det vigtige aspekt at repræsentere vari-
abelnavne og variabel-bindere vha. en omhyggelig restringeret højere ordens
abstrakt syntax.

I den fjerde artikel præsenterer vi en omfattende og realistisk anvendelse
af vores bibliotek: en prototype-implementation af et nyt enterprise resource
planning system bygget op omkring en samling af domænespecifikke sprog,
der gør det muligt at skræddersy systemet p̊a en meget fleksibel m̊ade. Sys-
temet kombinerer adskillige højt integrerede domæne-specifikke sprog, som
er implementeret ved brug af vores bibliotek.

Den anden del af afhandlingen med titlen A Partial-Order Approach to
Infinitary Rewriting omhandler infinitary rewriting, et omr̊ade der beskæftiger
sig med uendelige omskrivnings-sekvenser. Vi udvider den eksisterende teori
om infinitary rewriting i to retninger: (1) En ny tilgang til konvergens i infini-
tary rewriting, der erstatter konvergens i et metrisk rum med limes inferior
i en partielt ordnet mængde; (2) Udvidelse af infinitary term rewriting til
infinitary term graph rewriting.

Med hensyn til det første punkt viser vi korrespondance mellem de
etablerede kalkyler baseret p̊a metrisk konvergens og de nyligt udviklede
kalkyler baseret p̊a partielle ordninger. Derudover undersøger vi begge til-
gange p̊a et abstrakt niveau og p̊aviser fordelene ved vores tilgang baseret p̊a
partiel ordning i forhold til bedre konfluens- og normaliserings-egenskaber
for infinitary term rewriting, s̊avel som i forhold til bedre kompletheds-
egenskaber for infinitary term graph rewriting. Ang̊aende det andet punkt
udforsker vi adskillige tilgange til konvergens vedrørende term graphs og
analyserer de resulterende kalkyler. Vi udvælger to kalkyler iblandt dem –
baseret p̊a henholdsvis et metrisk rum og en partiel ordning – og viser, at
de tilfredsstiller stærk sundheds- og komplethedsegenskaber med hensyn til
term rewriting.

iv

Contents

Preface vii

1 Introduction 1

2 Modular Implementation of Programming Languages 5
2.1 Modularity . 6
2.2 Modular Semantics . 7
2.3 Modular Implementation Techniques 8

2.3.1 Parsing . 8
2.3.2 Typing ASTs . 9
2.3.3 Operations on ASTs . 10
2.3.4 Names and Binders . 11

2.4 Contributions of this Dissertation 12
2.5 Conclusions and Perspectives . 13

3 A Partial-Order Approach to Infinitary Rewriting 15
3.1 To Infinity and Beyond! – But Why? 15

3.1.1 Non-Strict Evaluation . 16
3.1.2 Sharing . 17
3.1.3 Cyclic Structures . 19

3.2 Notions of Convergence and All That 21
3.2.1 Metric Convergence . 21
3.2.2 Other Notions of Convergence 24
3.2.3 Abstract Notions of Convergence 25

3.3 Contributions of this Dissertation 26
3.3.1 Overview . 26
3.3.2 Concrete Contributions . 27

3.4 Conclusions and Perspectives . 29

Bibliography 31

A Papers on Modular Implementation of Programming Languages 49
A1 Compositional Data Types . 50
A2 Parametric Compositional Data Types 85
A3 Modular Tree Automata . 113
A4 Domain-Specific Languages for Enterprise Systems 151

B Papers on the Partial-Order Approach to Infinitary Rewriting 215

v

B1 Abstract Models of Transfinite Reductions 216
B2 Partial Order Infinitary Term Rewriting 237
B3 Modes of Convergence for Term Graph Rewriting 297
B4 Convergence in Infinitary Term Graph Rewriting Systems is Simple 367
B5 Infinitary Term Graph Rewriting is Simple, Sound and Complete . 423

vi

Preface

This dissertation has been submitted to the PhD School of Science, Faculty of
Science, University of Copenhagen in partial fulfillment of the requirements for a
PhD degree at the Department of Computer Science, University of Copenhagen,
Denmark.

This dissertation is written as a synopsis with nine research papers enclosed.
The first chapter presents a brief overview of the two topics that this dissertation
is concerned with. The subsequent two chapters give a comprehensive overview
of the two individual topics. In each of these two chapters, I outline the corre-
sponding area of research, present the problem that I tried to solve, explain the
contributions of my work, and relate it to existing results found in the literature.
At the end of each of the two chapters, I formulate the conclusions that can
be drawn from my results and briefly outline areas of possible future study. The
enclosed research papers are found in two appendices at the end of this document.

At this point I would like to take the opportunity to thank the people that
helped me during my work on this dissertation. First and foremost, I thank my
PhD adviser Fritz Henglein for his guidance. He has been a constant source of
inspiration and motivation. I would also like to thank my master’s thesis adviser
Bernhard Gramlich who introduced me to the field of infinitary term rewriting
and gave me the confidence to continue studying it.

I am indebted to my coauthors Tom Hvitved and Jesper Andersen as well as
Michael Kirkedal Carøe who kindly commented on an earlier draft of this disser-
tation. I thank Clemens Grabmayer and Vincent van Oostrom for hosting me
at Utrecht University for three months and for providing an inspiring academic
environment with many fruitful discussions, sharing new insights and ideas. Like-
wise I thank my former and current colleagues of the APL group at DIKU for
creating an inspiring and enjoyable work environment. In particular, I would
like to thank my fellow PhD students and the members of the “lunch club” for
creating a great social environment as well.

Last but not least, I owe special thanks to my family and friends for their
invaluable support, their patience and understanding during my work on this
dissertation.

Patrick Bahr

vii

Chapter 1

Introduction

This dissertation covers two independent topics: modular implementation tech-
niques for programming languages on the one hand and infinitary rewriting on
the other hand. Despite their independence on the surface, both topics are direct
applications of rewriting systems [164].1

A rewriting system is simply a binary relation → over a set of objects –
typically some set of terms. The intended meaning of → is usually that of a
computation step, i.e. s→ t means s is transformed into t by a single computation
step. For example, we can model evaluation of arithmetic expressions as rewriting
system such that we get a rewrite step (1 + 2) ∗ 3 → 3 ∗ 3. Arguably the most
famous rewriting system is the λ-calculus [18] with its β reduction relation →β.

The relation → is typically given in a structured form by a set of rules called
rewrite rules. For example, evaluation of expressions over natural numbers and
addition may be defined by the following two rules that represent the familiar
recursive definition of addition:

x+ 0→ x

x+ s(y)→ s(x+ y)

These systems will form the foundation for both parts of this dissertation.

Part One

In the first part of this dissertation, we make use of the particular structure of
rewrite rules to facilitate modularity in implementations of programming lan-
guages. The goal is to structure implementations of programming languages, i.e.
compilers, interpreters etc., such that their parts can be reused. Rewriting sys-
tems in this approach are programs that manipulate abstract syntax trees. The
restricted forms of rewrite rules that we consider come in the disguise of names
such as algebras, tree homomorphisms, and tree automata. They provide the
structure that is needed to facilitate reusing, manipulating, and combining the
components of a programming language implementation.

The main question that we investigate here is the following: how to combine
two programs P and Q that implement programming language features F and

1Admittedly, this seems like a rather loose connection as many rewriting systems enthusiasts
are able to see traces of rewriting systems virtually everywhere.

1

G, respectively, such that the combination of P and Q implements both F and
G? This question begs the counter question what the phrase “implements both
F and G” actually means. In this dissertation, we take this second question as
an instance of the first one since we view the semantics of a programming lan-
guage or a programming language feature also as a program, viz. an interpreter.
Combining the semantics is, thus, a matter of combining programs.

The ultimate goal is to build programming languages (including both their
semantic specifications and their implementations, say, in the form of compilers)
by combining components from a library of language features. Since one size does
not fit all, we also have to ensure that these components are flexible, i.e. that
they can be readily manipulated and refactored to fit. And finally, it is vital to
have a type system that guides the language designer and implementer in how
components can and cannot be combined with each other. The work presented
in this dissertation should be understood as a step towards this goal.

Part Two

In the second part, we are less interested in restricting the structure of the rewrite
rules but rather loosening the computational interpretation of rewrite systems by
also including computations both of infinite length and on infinite objects. In the
informal example given earlier, we first perform a rewrite step (1 + 2) ∗ 3→ 3 ∗ 3
after which we can continue with the step 3 ∗ 3 → 9. At this point we have
reached the result of the computation; the rewrite sequence terminates.

In general, this does not have to be the case. For example, β-reduction in the
(untyped) λ-calculus is certainly not guaranteed to terminate after finitely many
steps. For a simpler example, consider a rewrite system that performs rewrites
of the form zeros→ 0 : zeros, i.e. any occurrence of zeros is replaced by 0 : zeros.
Starting with the symbol zeros, we may produce the following rewrite sequence:2

zeros→ 0 : zeros→ 0 : 0 : zeros→ . . .

This rewrite sequence does not terminate with a result. In each intermediate
term we find the symbol zeros, which means we may still perform a rewrite step.

While the above rewrite sequence does not terminate, this non-termination is
somewhat well-behaved. It may be seen as producing an infinite term 0 : 0 : 0 : . . .
– an infinite list of zeros. More precisely, the rewrite sequence converges to the
infinite term 0 : 0 : 0 : . . . , i.e. the intermediate terms of the rewrite sequence
come arbitrarily “close” to the term 0 : 0 : 0 :

An infinite rewrite sequence does not always converge, though. Seldom, how-
ever, a reduction sequence is not converging at all: there are usually parts of the
reduction sequence that contribute in some form to a partial result. For exam-
ple, given a rule swap(x, y) → swap(y, x), which swaps the two argument of the
function symbol swap, we obtain the rewrite sequence

swap(0, 1)→ swap(1, 0)→ swap(0, 1)→ . . .

2We assume that “:” is an infix symbol that associates to the right, e.g. 0 : 0 : zeros is parsed
as 0 : (0 : zeros).

2

which intuitively does not converge as it alternates between two different terms.
On the other hand, the function symbol swap at the top of the terms does not
change. So the sequence somehow partially converges to a partial result swap(·, ·)
in which the function symbol is known, but the two arguments are unknown or
undefined.

In the second part of this dissertation we shall develop notions of convergence
that formalise this intuitive understanding with the aim of describing the full
spectrum from converging to not converging at all.

3

Chapter 2

Modular Implementation of
Programming Languages

Programming languages are first and foremost tools for building software systems.
With the broadening of information technology in general and applications of soft-
ware technology in particular, the development of new programming languages
has picked up in pace accordingly. And with good reason. New application do-
mains require new languages for productive software development [181]. With the
advent (and buzz) of domain-specific languages (DSLs) [22] – languages target
to a particular problem domain – the proliferation of new languages accelerated
further. Today, building DSLs is considered a standard technique in software en-
gineering and is even covered in introductory text for mainstream programming
languages [115, 144].

On the other hand programming languages are also software systems them-
selves – usually consisting of a compiler or an interpreter and optionally a tool
ecosystem consisting of an integrated development environment, analysis tools etc.
Advances in implementation techniques for programming languages have helped
making the development of new programming languages less expensive and, thus,
an attractive option for increasing software development productivity [181].

Nevertheless, compilers and interpreters are qualitatively different from other
pieces of software. Typically, the performance and correctness of the implementa-
tion have greater priority as these properties are propagated to the software that
is written in that language. In other words, if a compiler produces poorly per-
forming or even wrong code, then programs compiled with it also perform poorly
or are defect, respectively. Additionally, compiler and interpreter implementa-
tions are complex; their components are usually subtly interwoven. Changing the
implementation of one particular language feature may unexpectedly change the
implementation of another one with potentially unintended consequences for the
semantics of the implemented language.

The objective of this part of the dissertation is to develop new techniques
to structure programming language implementations in a modular fashion and
thereby overcome the issues described above. Section 2.1 describes what modu-
larity means in this setting, what particular kind of modularity we attempt to
achieve, and what the expected benefits are. In Section 2.2, we describe what
has to be done to deal with semantics in a modular fashion. Section 2.3 briefly

5

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code Generation

Optimisation

Code Generation

Figure 2.1: Phases of a typical compiler.

surveys modular implementation techniques that are known in the literature and
in Section 2.4 the contributions made in this dissertation are summarised. We
conclude this chapter in Section 2.5. The papers that make up the contributions
of this part of the dissertation are included in Appendix A and are referred to
subsequently as Paper A1 to Paper A4.

2.1 Modularity

Modularity is a fundamental principle in software engineering that copes with
the complexity of a software system by structuring it into interchangeable and
reusable modules. This being the case, modularity seems to be the right approach
to curb the abovementioned problems of programming language implementations.
However, the very same problems make establishing modularity in programming
language implementations difficult in the first place. In particular, modularis-
ing a compiler or an interpreter according to the features of the implemented
programming language is still a challenge.

Notwithstanding the above, it would be fallacious to claim that compilers
are designed as completely monolithic pieces of software. The nature of the
task performed by a compiler, viz. transforming a programming language into
a different one, lends itself to a modularisation akin to an assembly line [1].
Figure 2.1 illustrates this structure. According to this scheme, compilation is
performed in phases, each of which only performs a certain task. Some of the
phases, like semantic analysis and optimisation, may in turn be performed in
several phases or runs. For example, some optimisation techniques complement
each other and are thus performed one after the other, e.g. constant propagation
and dead code elimination.

6

This subdivision of a compiler into phases is extremely helpful for building,
maintaining, and extending compilers. The resulting modularity along the verti-
cal dimension follows the principle of separation of concerns in a straightforward
manner: each phase has a clearly defined functionality, there is little overlap be-
tween the phases, and there is a concise interface between neighbouring phases.

The kind of modularity that we aim for in this dissertation is orthogonal to the
internal separation of concerns described above. We aim to modularise language
implementations along language features as well. With regard to Figure 2.1, this
modularity runs horizontally. For example, we want to split the intermediate code
generation phase into modules for arithmetic, exception handing, bulk operations
etc. Each module only covers a certain language feature.

This additional dimension of modularity is qualitatively different from the
modularity depicted in Figure 2.1 and offers far more that simply a higher de-
gree in modularity. By structuring programming language implementations along
language features, we open up new ways of building, maintaining, and evolving
them. It is unlikely that the implementation of the semantic analysis phase for
one language can be reused for a different language. If this implementation is,
however, in itself structured in terms of language features, we may reuse some of
those language features for other languages that happen to have those languages
features as well. Moreover, if it is possible to manipulate the implementation
of a language feature with appropriate operations or by parametrisation, then it
is far more likely that this implementation can be reused in a different context.
Given these properties of such a modular architecture, we can furthermore build
a library consisting of implementations for different language features. Building
a compiler or an interpreter then becomes a matter of combining these imple-
mentations. The long-term goal of this architecture is to have a DSL for building
programming language implementations.

Due to the importance of programming language development, in particular
for constructing DSLs, advancing modularity in compiler and interpreter imple-
mentations promises a number of benefits for software engineering. The addi-
tional dimension of modularity described above is expected to make program-
ming language development simpler, more efficient, and less error-prone. The
cost of developing DSLs has to be weighted against the productivity benefit it
offers [125]. Thus, reducing the development costs makes the benefits of DSLs
available to a potentially larger class of applications and problem domains. Apart
from that, modular implementations of languages also reduce the cost and risk
of incremental changes to a language, which typically pose serious problems in
practice [167].

2.2 Modular Semantics

When building a programming language, producing the actual implementation
of it is only part of the process.1 As mentioned earlier, the correctness of the
implementation has typically high priority. That is, the implementation has to
respect the semantic description of the programming language it is expected

1Well, at least ideally.

7

to implement. This means that a compiler has to produce, for each program,
corresponding machine code that has the same2 semantics as the input program.
Consequently, in order to devise such a compiler in a modular fashion, we must
be able to relate each module of an implementation to a corresponding part of
the semantic description of the language. That means, we also need a modular
approach to the semantics of programming languages.

There exist a number of semantic frameworks that allow for a modular se-
mantic description of a language. Modular monadic semantics was the first such
approach. It is based on Moggi’s idea to use monads to describe computational
effects in a denotational semantics [128, 130]. When he developed his monadic
semantics, Moggi already considered monad transformers as a tool to construct
monads in a modular fashion [129]. This idea of constructing monads was subse-
quently used as a foundation to develop a modular semantic framework [111, 112].
Moreover, monads were also used to introduce modularity into frameworks such
as action semantics [141, 180], which subsequently also spawned the work on
modular action semantics [50, 84, 132] independently from monadic semantics.
Recent work has strengthened the modularity aspect of monad transformers fur-
ther [85–87, 154], both on the theoretical and the practical level.

Monadic semantics has proven to be an excellent starting point for a mod-
ular programming language implementation. Monad transformers were used to
implement programming language interpreters [111, 113, 160] and compilers [71–
73, 112] in a modular fashion. The appeal of these approaches lie in the fact that
the implementation is derived from the semantics and is thus highly reliable.

Another major approach to modular semantics is based on operational se-
mantics, in particular Plotkin’s structured operational semantics (SOS) [148].
Mosses [131, 134] has pioneered a modular approach to SOS. Modular SOS has
found particularly strong adoption in rewriting logic [27, 31, 44, 126], which pro-
vides a rich tool set for specifying and prototyping programming languages [127].
Apart from that, Jaskelioff et al. [88] have also produced an implementation of a
modular variant of Turi and Plotkin’s mathematical operational semantics [166].
While a general technique for building compilers on the basis of a modular SOS
description has not been developed, modular SOS has the advantage of being
better suited for concurrency than monadic semantics.

While other techniques may also offer some form of modularity, for example
the Vienna Development Model [133], abstract state machines [69] and evaluation
contexts [59], the modularity obtained from these approaches is not sufficient at
the moment.

2.3 Modular Implementation Techniques

2.3.1 Parsing

The concrete syntax is arguably the easiest component of a programming lan-
guage to fit into the modularity principle. The traditional approach of describing
syntax, viz. in the form of a formal grammar, is already modular. A parser

2In general, we only require that the semantics of the produced code refines the input
program’s semantics.

8

generator is then able to produce a parser from such a formal grammar specifica-
tion. This being the case, formal grammar languages, as they are used by parser
generators, provide a specification framework for writing parsers in a modular
fashion.

More flexibility for combining and manipulating parser fragments in order
to facilitate reuse and evolution of existing implementations is offered by parser
combinators [81]. Instead of specifying a parser by giving a grammar, a parser
is constructed by combining and manipulating simple parsers using higher-order
functions, which are called parser combinators. In this approach, the specifica-
tion is the implementation, which obviates the use of a generator to produce
the actual implementation. Moreover, the use of higher-order functions provides
additional flexibility for reuse and compositionality. At the same time, the use
of a monadic interface for parser combinator libraries [82] makes parser imple-
mentations readable and easily maintainable. Today, parser combinator are a
mature and well-established technology [110, 161] and we find powerful parser
combinator libraries for virtually all major programming languages.

2.3.2 Typing ASTs

A parser, however, only solves half of the problem in dealing with the syntax
of programming languages, viz. transforming the concrete syntax of a program
into an abstract syntax tree (AST), which is then the input for the compiler,
interpreter or other tools. Dealing with abstract syntax in a suitable fashion that
facilitates modularity is the other half. The underlying problem that we face with
abstract syntax is summarised in what Wadler [178] calls the expression problem:

“The goal is to define a datatype by cases, where one can add new
cases to the datatype and new functions over the datatype, without
recompiling existing code, and while retaining static type safety (e.g.,
no casts).”

Several solutions to this problem have been suggested. In object-oriented
languages such solutions are often based on generics [29, 138, 165, 178]. Other
approaches try to address the problem by introducing new language features
such as virtual types [28, 185], multi-methods [32], open classes [36], virtual
classes [118, 137] and program units [60, 120]. One should note that some ap-
proaches do offer the required extensibility but lack type safety [108, 140, 173].

Since the functional programming paradigm is closer to the theoretical un-
derpinnings that we intend to use for programming language implementations,
we are more interested in solutions to the expression problem in a functional pro-
gramming style. The functional programming paradigm also becomes helpful for
representing the operations on ASTs that are the subject of the section below.
Broadly speaking, there are two qualitatively different approaches to the expres-
sion problem: one represents AST types as fixed points of regular functors [162];
the other uses a Church encoding [139] instead. In our work on modularity, we
adopt the fixed points approach based on Swierstra’s data types à la carte [162].
Day and Hutton [43] recently used this approach in order to structure a com-
piler implementation. Axelsson [8] uses a variant of the fixed-point approach

9

that represents the AST in an applicative fashion, which facilitates generic pro-
gramming. The Church encoding was recently also suggested for facilitating
modularity and reuse in the context of mechanised metatheory [46]. Similarly to
object-oriented languages, a number of language features have been introduced for
functional languages that address the expression problem, including polymorphic
variants [63, 64], extensible algebraic data types [184], and open data types [117].

2.3.3 Operations on ASTs

The previous section gave an overview of the solutions to the expression prob-
lem. Recall that the expression problem asks for methods to extend data types
and to add function over these data types. However, due to the complexity of
compilers, simply adding functions is not sufficient in order to provide a modular
implementation framework. We also need to bee able to manipulate and combine
existing functions on ASTs much in the same way as parser combinators are able
to manipulate and combine parsers.

The essential operations performed by compilers and interpreters can be sum-
marised as traversals and transformations of ASTs. And indeed this is the view
that we take in this dissertation. In order to facilitate reuse, these operations
have to be given in a structured form such that they can be manipulated and
combined in a flexible yet predictable manner. Both attribute grammars [106]
and tree automata [37] provide such structure.

Attribute Grammars

Attribute grammars, originally devised by Knuth [106] to describe semantic as-
pects of programming languages, are a practical tool for defining – in a declar-
ative manner – syntax-directed computations as they are needed for implement-
ing a programming language. As such they have proved to be a powerful tool
for compiler construction [52, 62, 68, 107]. Thus, several approaches to extend
attribute grammars were investigated in order to enable modular specifications
[51, 57, 90, 95, 153]. This includes, in particular, higher-order attribute grammars
[61, 163, 168, 174], which make it possible to combine several passes of a compiler
and techniques borrowed from object-oriented programming [75, 76, 124].

The abovementioned approaches to modular attribute grammars are not pow-
erful enough for the high degree of modularity that we have in mind, though.
More promising, is the first-class attribute grammars approach of Viera et al.
[171], who embed an attribute grammar system as a DSL in Haskell. Embed-
ding attribute grammars in a functional language as first-class objects means
that they can be manipulated and combined with higher-order functions akin to
parser combinators [170]. And as Viera et al. [172] show, despite its flexibility,
this approach can be efficiently implemented as well.

Tree Automata

Tree automata [37] are chiefly theoretical tools to study properties of certain
classes of operations on trees. For the purpose of programming language imple-
mentations we are mostly interested in tree transducers, which are automata that

10

implement tree transformations. The compositionality that is typically studied in
the tree automata community is sequential composition [53, 54]. While sequential
composition merely implements function composition of the tree transformations
described by tree transducers, this composition is nevertheless useful for improv-
ing time and space efficiency [109, 175, 176] as it avoids the construction of
intermediate data structures [177].

An important stepping stone both for devising a rich set of operations on
tree transducers and for embedding them in an implementation language is the
category theoretic formalisation by Jürgensen [91], Jürgensen and Vogler [92] and
Hasuo et al. [74]. In fact, Andersen and Brabrand [2] recently used tree homomor-
phisms3 – a restricted class of tree transducers – in order to build a combinator
library of syntax transformations. Tree homomorphisms are, however, quite lim-
ited in terms of expressiveness, which is why the combinator library of Andersen
and Brabrand [2] is only used to define so-called syntax extensions – syntactic
sugar that is translated to some core syntax.4

In our work, we have borrowed heavily from tree automata in order to con-
struct an expressive combinator library. While both Paper A1 and Paper A2
have their foundation in catamorphisms and anamorphisms [123], we also employ
tree homomorphisms, on which we define a comprehensive set of combinators in
order to facilitate reuse. Similarly to Andersen and Brabrand [2], we demon-
strate the translation of syntactic sugar to a core language as the characteristic
application of tree homomorphisms. In Paper A3, we expand on the role of tree
automata as the basis for modular recursion schemes. We use both bottom-up
and top-down tree transducers, which allow transformations beyond simple re-
duction of syntactic sugar. However, instead of constructing these transducers
directly, which becomes cumbersome for realistic transformations, transducers
are constructed by combining tree homomorphisms and an ordinary bottom-up
or top-down state machine.

2.3.4 Names and Binders

While not necessarily an issue inherent to modular implementation techniques,
dealing with (variable) names and binders in ASTs is a perpetual source of
headache for programming language implementers and thus needs to be addressed
in satisfying manner. The straightforward way of using explicit variable names
to represent variables in an AST is conceptually easy; but extra effort has to be
put in to ensure both that functions defined on ASTs are in fact invariant under
α-renaming and that free variables are not accidentally captured by binders, e.g.
in substitutions.

Higher-order abstract syntax (HOAS) [143] addresses this issue by using the
host language’s variable binding mechanism to represent binders in the object
language. This is achieved by representing a binder as a function type, with the
argument type representing the bound variable and the return type representing

3Though, Andersen and Brabrand [2] use the name constructive catamorphism instead.
4Conversely, syntax extensions in the form of syntactic sugar only require tree homomor-

phisms; thus Andersen and Brabrand [2] were able exploit the unique structure of tree homo-
morphisms to build a combinator library.

11

the scope of the binder. While this approach is popular in the context of mecha-
nised metatheory, the inclusion of function types in the type of ASTs poses consid-
erable problems for implementing efficient recursion schemes [58, 122, 155, 182].
This problem can be avoided by restricting the function space that is used for
encoding binders. Fegaras and Sheard [58] realised that a restriction to para-
metric functions provides a solution to this problem. While Fegaras and Sheard
relied on a custom type system for this, Chlipala [35], as well as Washburn and
Weirich [182], later developed an elegant encoding that only requires parametric
polymorphism as available in System F. The use of parametric polymorphism
can be easily integrated with the Church encoding of ASTs with virtually no
overhead [30, 182]; the representation of variable binders in the Church encoding
goes back to Coquand and Huet [38]. The use of HOAS is particularly useful for
embedded DSLs as HOAS requires little syntactic overhead.

In this dissertation, we shall use this parametric HOAS approach in order
to deal with names and binders. But there are other approaches as well. This
includes de Bruijn indices [45] and nominal sets [145, 146]. These two approaches
have formed the foundation for numerous libraries [33, 105, 150, 151, 183], tools
and language extensions [34, 149, 159] for dealing with name binders.

2.4 Contributions of this Dissertation

As stated in Chapter 1, the goal of this part of the dissertation is to develop
techniques that allow a language implementer to structure a compiler or an in-
terpreter for a language in a modular fashion. This modularity should allow the
implementer to modify and reuse components of an implementation. Our focus is
put on developing a combinator library for such implementation modules similar
to parser combinator libraries.

The approach that we developed is chiefly based on Swierstra’s data types à
la carte [162], a functional pearl that combines ideas from the work on modular
monadic interpreters of Liang et al. [113] and the framework of programming in
terms of catamorphisms and anamorphisms popularised by Meijer et al. [123].

Paper A1 expands Swierstra’s work with the goal of producing a Haskell [119]
library – dubbed compositional data types – suitable for realistic applications. In
this paper, we implement various recursion schemes based on Vene’s PhD disser-
tation [169] and monadic versions thereof. We implement comprehensive generic
programming functionality and show that its run time performance is on par with
dedicated generic programming libraries. We extend the scope of Swierstra’s ap-
proach to mutually recursive data types and generalised algebraic data types [89].
We implement tree homomorphisms and illustrate their practical relevance for
translating syntactic sugar. Moreover, we show how tree homomorphisms enable
program optimisation via deforestation [177]. We also compare the run time of
modularly defined transformations in this library with equivalent “monolithic”
implementations.

Paper A2 is a followup to Paper A1 that extends the compositional data
type library with a principled approach to variable names and binders based
on Chlipala’s parametric higher-order abstract syntax (PHOAS) [35]. We show
that Chlipala’s technique can be translated into Haskell and that the results of

12

Paper A1 largely carry over to the setting of PHOAS. The only difficulty occurs in
the implementation of monadic recursion schemes. While monadic effects cannot
be sequenced for arbitrary catamorphisms like in the purely first-order setting, it
is still possible for restricted recursion schemes such as tree homomorphisms.

In Paper A3 we explore the possibilities that recursion schemes derived from
tree automata offer. In the preceding two papers we already use a quite restrictive
form of tree transducers, viz. tree homomorphisms. In simple terms, tree homo-
morphisms are tree transducers without state. While tree homomorphisms, as
we show in Paper A1 and Paper A2, enjoy a number of advantageous properties,
these properties are paid with the price of limited expressiveness. Vice versa,
the added expressiveness of bottom-up and top-down tree transducers, which
add upwards respectively downwards state propagation, has to be paid as well:
they are quite cumbersome to program as they mix tree transformation and state
propagation. As solution we propose to build tree transducers by combing tree
homomorphisms with a bottom-up or top-down state machine. This decomposes
the specification of a tree transducer into two separate parts: tree transforma-
tion and state propagation. In the same way we also implement combinators that
combine two state machines regardless of whether they are both bottom-up, both
top-down or mixed. The resulting combinator library allows for extensive manip-
ulation and reuse of operations on ASTs. The application to modular compiler
construction is illustrated with a number of running examples.

Paper A4 presents a comprehensive and realistic application of the compo-
sitional data types library. In the paper, we describe a prototype implementa-
tion of a novel enterprise resource planning system based on the architecture
of process-oriented event-driven transaction systems (POETS) of Henglein et al.
[78]. Instead of relying on a mixture of relational database systems and impera-
tive programming languages, the POETS architecture is build upon a family of
DSLs that makes it possible to customise the system in a highly flexible manner.
Since the system combines several integrated DSLs, drawing on a modular ap-
proach to implement the DSLs does not only reduce the effort to implement the
system. It also ensures that common features of the DSLs have in fact the same
semantics.

2.5 Conclusions and Perspectives

After reading this chapter it should be clear that the subject of modular program-
ming language implementation is a complex one, touching a wide variety of topics
each with many challenging problems of its own. Certainly this dissertation can
only offer contributions to a small fraction of these problems.

In our work presented here, we only consider the implementation part of
constructing programming languages and within that topic we focused chiefly on
the aspect of AST manipulation. We believe, however, that a principled approach
to modular programming language construction has to take into consideration the
abovementioned surrounding aspects as well.

Particularly challenging is the integration of a modular implementation frame-
work with a corresponding modular semantic framework such that there is a clear
correspondence between an implementation module and its semantic description.

13

Ideally, both the implementation and the semantic description should consist of
reusable building blocks akin to Mosses’s proposal of a component-based descrip-
tion of programming languages [135].

Taking this approach further, the implementation aspect and the semantic
description become expressible within the same formalism and are merely on two
opposing ends of the spectrum of abstraction. The question of how to relate
between a these two aspects – implementation and semantics – then becomes
a question of how to move on this spectrum. And there is a lot to be found
in the literature about this, from synthesis techniques like deriving a compiler
systematically from formal descriptions [121], to formal verification of compilers
by step-wise refinement [136].

Coming back to the core contributions of this dissertation, there are promising
approaches to typed modular AST transformations beyond the ones we discussed
here and which should be explored as well. The first alternative is, of course,
to go back to the foundations and study recursion schemes in general, e.g. folds
and unfolds [123] and generalisations thereof [79, 169]. AST transformations are
often dependent on information that has to be collected by traversing the AST.
This propagation of information is expressed in attribute grammars in the form of
attributes and in tree transducers in the form of state. A foundational approach
to this kind of propagation of information is studied in the form of upwards and
downwards accumulations by Gibbons [65, 66, 67].

14

Chapter 3

A Partial-Order Approach to
Infinitary Rewriting

In this part of the dissertation we deal with “pure” rewriting systems. As men-
tioned in the introduction, we are interested in infinite rewrite sequences, i.e.
infinitely long sequences of consecutive rewrite steps such as the example

zeros→ 0 : zeros→ 0 : 0 : zeros→ . . .

that we have seen in Chapter 1. In the theory of infinitary rewriting we strive to
give sensible meaning to such infinite rewrite sequences in the form of a notion
of convergence. The meaning of the word “sensible” depends on several factors
such as the underlying finitary calculus or the problem that should be solved.
In Section 3.2, we survey the different notions of convergence that are found in
the literature. Before we do that, however, we have a brief look at what we gain
by considering infinite rewrite sequences in the first place in Section 3.1. In Sec-
tion 3.3 we discuss the contributions made in this dissertation, and Section 3.4
concludes. The papers that make up the contributions of this part of the disser-
tation are found in Appendix B and are referred to subsequently as Paper B1 to
Paper B5.

3.1 To Infinity and Beyond! – But Why?

Before we delve into the topic of infinitary rewriting, we reflect on the merits of
this endeavour. Of course, the physical realisation of computation has to deal
with the restriction of finite time and memory resources. Nevertheless, infinite
structures are abundant in computer science as this often makes theoretical an-
alysis simpler. But there are also classes of computational systems, e.g. reactive
systems [70], that are in fact designed to run indefinitely.

Closer to the kind of infinite computations that we are considering here are
iterative approximation methods that get arbitrarily close to the desired result
without reaching its exact value. Examples of this technique are Archimedes’
algorithm to calculate π and Newton-Raphson’s algorithm to calculate square
roots, which we shall discuss later. While these algorithms do not find the result
within finitely many iterations, the approximations they produce converge to the

15

desired result. This notion of convergence allows us to evaluate the correctness
of such algorithms despite their non-terminating nature and it is the model that
infinitary rewriting adopts to give meaning to infinite rewrite sequences.

3.1.1 Non-Strict Evaluation

Surely, as computer scientists we are ultimately concerned with devising machin-
ery that for a given input computes some desired output within reasonable (and
thus finite) time. That said, it should come to no surprise to the readers familiar
with the Halting Problem that the road to that ultimate goal has to be built upon
infinite structures.1 That is to say a program that terminates for any given input
may still be composed of components of which some are infinitary in nature, e.g.
loops or recursion.

This infinitary nature of some of the building blocks of a program may in fact
be preferable as it facilitates compositionality. For example, John Hughes [80]
makes this argument for non-strict evaluation2 in functional programming lan-
guages. To illustrate this point with a simple example, we consider the following
Haskell function lineNumbers:

lineNumbers :: String -> String

lineNumbers str = unlines (zipWith mkLine [1 ..] (lines str))

where mkLine n l = show n ++ " " ++ l

The function lineNumbers adds line numbers to the string that it is given. For
example, it performs the following transformation:

Collect Theorems

???

Profit

1 Collect Theorems

2 ???

3 Profit

lineNumbers

To achieve this transformation, lineNumbers splits the input string str into its
constituent lines producing a list of strings (lines str). The expression [1 ..]

produces the infinite (!) list of consecutive numbers starting from 1. Then the
function combines the two list using zipWith, which combines corresponding
elements of the two lists using the function mkLine, thus prepending each line
with the corresponding number from the list. Afterwards, the resulting list of
strings is converted into a single string again. The key for this function to work
despite the fact that the list [1 ..] it uses is infinite, lies the fact that zipWith
terminates as soon as the end of one of the two input lists is reached. Hence,
given that the input string is finite, the function lineNumbers terminates.

In order to understand how lineNumbers can deal with an infinite list we have
to take a closer look at the expression [1 ..]. This expression is a shorthand
for enumFrom 1, where enumFrom is defined as follows:

enumFrom :: Integer -> [Integer]

enumFrom n = n : enumFrom (n+1)

1Beware of the potholes of perpetual darkness!
2John Hughes [80] argues more specifically for lazy evaluation which we will consider later.

16

This function does not terminate for any input! Conceptually, given an integer
n it produces an infinite list of consecutive natural numbers starting from n.
However, the non-strict evaluation strategy that Haskell uses only evaluates a
subexpression if its result is needed. For example, in case the input string to
lineNumbers only contains three lines, enumFrom is expanded only thrice:

enumFrom 1→∗ 1 : enumFrom 2→∗ 1 : 2 : enumFrom 3→∗ 1 : 2 : 3 : enumFrom 4

The steps above are interleaved with evaluation steps in which zipWith “con-
sumes” the first three elements of the partially generated list. Every time zipWith
demands a new element of the list, enumFrom is expanded.

Of course, the function lineNumbers can be reformulated without using an
infinite list. For example, we may instead use a function that produces a list
with just the right amount of numbers. However, this requires us to count the
number of lines first, which adds a redundant iteration through the list of lines
and furthermore clutters the definition. The second alternative would be to
simply define a recursive function that both maintains a counter and prepends
the line numbers in one step. The approach, however, lacks the clarity and
compositionality of lineNumbers.

Hughes [80] has a number of more involved examples that illustrate the same
point that we wanted to make above: the use non-terminating programs often
facilitate the construction of modular terminating programs.

3.1.2 Sharing

Before continuing the discussion about the motivation of infinitary rewriting, we
look a bit closer at non-strict evaluation. Out in the wild, non-strict evaluation
rarely comes without its companion, called sharing, which prevents expressions
to be evaluated more than once [179]. For strict evaluation this problem does not
exist; each expression is evaluated exactly once. Non-strict evaluation, on the
other hand, defers evaluation of an expression until it is needed. When the ex-
pression is eventually evaluated, however, it might have already been duplicated.
Hence, such a duplicate has to be evaluated again even though it will evaluate to
the same value as the original. Sharing avoids this effect by mimicking duplica-
tion of subexpressions by duplication of pointers. This combination of non-strict
evaluation and sharing is also known as lazy evaluation [77] or call by need [179].

To illustrate the importance of sharing, we consider one of Hughes’ exam-
ples [80] with which he demonstrates the use of lazy evaluation. He implements
Newton-Raphson’s algorithm to calculate square roots. Starting with some initial
guess a0, the algorithm produces increasingly more accurate approximations of√
s using the following rule:

ai+1 =
ai + s/ai

2

Whenever the resulting sequence (ai) converges, which depends on the initial
guess a0, it converges to

√
s, i.e. the difference |√s− ai| tends to 0 as i increases.

The above rule can be realised by the following Haskell function next:

17

next :: Double -> Double -> Double

next s a = (a + s/a) / 2

The sequence (ai) may be produced by iterating the function next with the
following combinator repeat:

repeat :: (a -> a) -> a -> [a]

repeat f a = a : repeat f (f a)

The function repeat produces an infinite list with an increasing number of appli-
cations of the function f that is given as argument. Given an initial guess a0 and
the iteration function f = next s, the expression repeat f a0 yields the infinite
list

a0 : f a0 : f(f a0) : f(f(f a0)) : . . .

The implementation of Newton-Raphson’s algorithm feeds this list into a function
within, which checks whether at some point in the list two successive values are
not more that some tolerance eps apart from each other. If that is the case, the
element of the list at that point is returned:

within :: Double -> [Double] -> Double

within eps (a : b : r)

| abs (a - b) <= eps = b

| otherwise = within eps (b : r)

We then obtain the following implementation of sqrt:

sqrt :: Double -> Double -> Double -> Double

sqrt a0 eps r = within eps (repeat (next r) a0)

Given that a suitable initial guess a0 is provided that causes the sequence (ai) to
converge, the above function will terminate despite the fact that the list generated
by repeat is (conceptually) infinite: at some point n the difference between the
list element an+1 and its predecessor an is at most eps, which means that the
value an+1 is returned and, thus, the rest of the list is not evaluated.

The significance of sharing for this algorithm to perform efficiently can be
observed in the infinite list generated by repeat:

a0 : f a0 : f(f a0) : f(f(f a0)) : . . .

If non-strict evaluation would not be accompanied by sharing, we would end up
recomputing previous approximations in order to compute the next one. The
issue lies in the right-hand side of repeat, which duplicates the argument a.
Due to the non-strict semantics, this duplication is done before evaluating the
expression bound to a upon calling repeat. Hence, when evaluating the n+ 1-st
element of the list, instead of applying f to the value of the n-th element, we
have to apply f to a0 n+ 1 times.

Sharing avoids this issue by using pointers instead of duplication. This ap-
proach causes the infinite list to look as follows:

a0 : f : f : f : . . .

18

:

a @

@

repeat f

@

f a

(a) Term a : repeat f (f a).

:

@

@

repeat f

@

a

(b) A term graph representation.

Figure 3.1: Terms vs. term graphs.

Instead of having explicit copies of the previous element in the list, a pointer to
that element is used. Once an element is evaluated, the resulting value is thus
also available to the next element.

Note that for the sake of clarity we simplified the structure of sharing above.
A more accurate picture of the sharing is the one below:

a0 : f : : : . . .

Also the occurrence of the function f is shared.

The sharing illustrated above is achieved by moving from a term represen-
tation to a term graph representation of expressions. For example, in order to
achieve the sharing illustrated above, the right-hand side of the definition of
repeat has to be represented as a term graph as shown in Figure 3.1b.

The introduction of infinitary term graph rewriting calculi that allow us to
study both transfinite rewrite sequences and sharing is one of the main contribu-
tions of this part of the dissertation. More details about our approach are given
in Section 3.3.

3.1.3 Cyclic Structures

Section 3.1.1 exemplified a general observation that can be found throughout
mathematics and computer science: dealing with infinite objects is easier than
dealing with finite representations thereof. Another example of this general prin-
ciple is the use of infinite trees to represent the minimal relevant information
contained in a λ-term. Examples of such structures are Berarducci trees [23],
Lévy-Longo trees [114, 116] and Böhm trees [18]. Each of these representations
capture the relevant meaning of a lambda term in a single tree, e.g. the Böhm
trees of two λ-terms coincide iff they are equal according to Scotts’s Pω model [18].

Indeed, one of the early motivations for studying infinitary rewriting follows
the same line of reasoning: instead of dealing with finite but cyclic term graphs,
consider their unravelling to potentially infinite trees.

Term graph rewriting [20] may be viewed as a generalisation of term rewriting.
It generalises from terms as the objects on which rewriting is performed to term
graphs, which – as opposed to terms – allow each node to have more that one

19

parent node. Simply put, term graph rewriting is term rewriting extended with
sharing.

To compare term graphs with ordinary terms, reconsider the definition of the
function repeat from Section 3.1.2 and the representation of its right-hand side
as term and as a term graph illustrated in Figure 3.1.

Term graph rewriting occurs quite naturally in the implementation of func-
tional languages [21, 142, 147]. Expressions in functional languages are repre-
sented by pointer structures which allow the sharing of common subexpression.
As discussed in Section 3.1.2, this sharing is the natural companion of non-strict
evaluation, which we considered in Section 3.1.1.

The idea of using graphs to efficiently implement term rewriting goes back
to Wadsworth [179]. Apart from the acyclic (or horizontal) sharing that avoids
redundant evaluation of subexpressions [21], term graphs also offer cyclic (or ver-
tical) sharing. Also the latter form of sharing is used in the implementation of
functional programming languages [142] for optimising certain forms of recur-
sively defined function. For example, the term rewrite rule zeros→ 0 : zeros that
we have seen in Chapter 1 may be represented as follows

zeros :

0

Instead of replicating the left-hand side of the rule, viz. zeros, in right-hand side,
an edge to the root of the right-hand side is used. Thus, the rule has to be applied
only once; subsequent applications of the original rule are emulated by unfolding
the cycle. Farmer and Watro [55, 56] coined the name redex capturing for this
phenomenon, which they studied using infinitary term rewriting. As they point
out, redex capturing does not only have positive aspects but may also lead to
issues with garbage collection.

A more realistic example is the definition of the fixed point combinator Y in
the form of the term rewrite rule Y f → f(Y f). Similarly to the example above,
this rule may be represented by the following term graph rewrite rule:

@

Y f

@

f

Barendregt et al. [19] were the first to give term graph rewriting an operational
semantics similar to that of term rewriting. There are two other major approaches
to term graph rewriting: a category theoretic approach [42] and an equational
approach [5]. But we shall focus on the operational approach as it is closer to
the implementation of functional languages.

The appeal of infinitary term rewriting for studying term graph rewriting
is twofold: (1) It allows us to study whether term graph rewriting faithfully
implements term rewriting. (2) The unravelling of term graphs to potentially
infinite terms avoids the hassle of dealing with explicit sharing. Both points are
of course just two sides of the same coin, viz. the correspondence between cyclic
term graph rewriting and infinitary term rewriting.

20

As long as we are confined to term graph rewriting with only acyclic sharing,
the theory of term rewriting is sufficient [98]. However, as soon as cycles are
introduced into term graphs, like in the abovementioned examples, finite terms
and finite reduction sequences are not necessarily sufficient anymore. For in-
stance, the term graph given on the right-hand side of the term graph rewrite
rule for zeros unravels to the infinite term 0 : 0 : That means, a single rewrite
step with that rule represents a transformation from the term zeros into the term
0 : 0 : In order to replicate this transformation with the original term rewrite
rule, we have to perform infinitely many rewrite steps

zeros→ 0 : zeros→ 0 : 0 : zeros→ . . .

This infinite term rewrite sequence also transforms zeros into 0 : 0 :
Kennaway et al. [98] provide a thorough characterisation of the relationship

between cyclic term graph rewriting and infinitary term rewriting. Following the
notion of rational terms, which are (possibly infinite) terms that arise as unravel-
ling of finite term graphs, they characterise rational rewrite sequences, which are
(possibly infinite) rewrite sequences that can be adequately represented by finite
cyclic term graph rewrite sequences. An alternative characterisation is provided
by Corradini and Drewes [40] who present infinite parallel term reductions as the
counterpart of cyclic term rewriting.

3.2 Notions of Convergence and All That

There are a number of different approaches to infinitary rewriting, which we
shall review here. The majority of infinitary calculi is based on some notion of
convergence derived from a topology on the objects of the rewriting system, but
we shall also discus other approaches.

3.2.1 Metric Convergence

Infinitary term rewriting was initially introduced by Dershowitz et al. [47–49].
In this work, the authors use the metric space on terms based on the distance
measure d(s, t) given by d(s, t) = 0 if s = t and d(s, t) = 2−d otherwise, where d
is the smallest depth at which s and t differ [7]. A rewrite sequence S, which pro-
duces some sequence of terms (tι)ι<α, converges to a term t if the sequence (tι)ι<α
converges to t in the metric space and at each limit ordinal λ < α the sequence
(tι)ι<λ converges to tλ. The latter condition ensures that rewrite sequences are
continuous at limit ordinals. Intuitively, convergence in the metric space of terms
means that the differences between the terms in the rewrite sequence are pushed
deeper and deeper in the term structure as the sequence approaches a limit ordi-
nal from below. Apart from a notion of convergence, the metric also provides a
canonical construction of the set of finite and infinite terms from the set of finite
terms by means of metric completion.

Shortly after this initial approach, Farmer and Watro [55, 56] used infinitary
term rewriting to study cyclic term graph rewriting. They used, however, a
stronger notion of convergence than Dershowitz et al. In addition to requiring
convergence in the metric space of terms, Farmer and Watro require also the depth

21

f

g

c

f

g

g

c

f

g

g

g

c

f

g

g

g

g

c

f

g

g

g

g

g

Figure 3.2: Weakly convergent reduction sequence.

of the contracted redexes to tend to infinity as the sequence approaches a limit
ordinal from below. This notion of convergence, called strong convergence [99],
is based on a conservative underapproximation of the convergence of Dershowitz
et al., which in turn is referred to as weak convergence. Instead of only stipulating
that the depth of differences between terms tends to infinity, strong convergence
requires the depth of the contracted redex positions to tend to infinity. The
fact that the latter implies the former makes strong convergence a conservative
underapproximation of weak convergence that is somewhat independent from the
actual result of contracting redexes.

Figure 3.2 and Figure 3.3 illustrate the difference between weak and strong
convergence. Both figures show the same rewrite sequence; the only difference
between them is the rewrite rule that is applied and the positions at which it
is applied. The rewrite sequence in Figure 3.2 is generated by the rewrite rule
f(x)→ f(g(x)), which adds a function symbol g below f . The rule is repeatedly
applied at the root of the term. That means, the rewrite sequence cannot strongly
converge – the depth of the contracted redexes is constantly 0 and thus does not
tend to infinity. However, the rewrite sequence does weakly converge to the term
f(g(g(. . .))) as illustrated: the depth di of the differences between two consecutive
terms ti, ti+1 (indicated by dashed lines) tends to infinity, which means the metric
distance d(ti, ti+1) = 2−di between them tends to 0. In other words, the part of
the term that remains unchanged in a rewrite step (indicated by a darker shade
of grey) grows continuously in the course of the rewrite sequence.

In Figure 3.3, we instead use the rewrite rule g(c) → g(g(c)), which adds a
function symbol g above c. The sequence of terms that is generated in this rewrite
sequence is the same as in Figure 3.2, but the contraction of redexes takes place at
different positions. In particular, the depth of the contracted redexes (indicated
by the rewrite arrows) tends to infinity. In other words, the part of the term that

22

f

g

c

f

g

g

c

f

g

g

g

c

f

g

g

g

g

c

f

g

g

g

g

g

Figure 3.3: Strongly convergent reduction sequence.

is entirely untouched by rewriting (indicated by the yet darker shade of grey)
grows continuously. Thus, the rewrite sequence not only weakly converges to
f(g(g(. . .))), it also strongly converges to f(g(g(. . .))).

The majority of the literature on infinitary rewriting is based on these two
notions of weak and strong convergence, with a particular focus on the latter.
Strong convergence is arguably more intuitive than weak convergence: a node in
the term can only contribute to the limit of an infinite rewrite sequence if it is
not rewritten from some point on. Additionally, strong convergence has much
better properties. The latter argument was made by Kennaway et al. in their
seminal paper on strong convergence [99]. Strong convergence was subsequently
also used to develop infinitary λ-calculi [100, 101] and infinitary higher-order term
rewriting [103, 104].

One of the properties that sets apart weak and strong convergence is the com-
pression property for left-linear systems: a strongly convergent rewrite sequence
can be “compressed” into a strongly convergent rewrite sequence with the same
start and end terms but with length at most ω. Also in terms of confluence
properties, strong convergence is more well-behaved. However, unlike for finitary
confluence, orthogonality is in general not sufficient in order to obtain infinitary
confluence. The origin of this discrepancy was identified by Kennaway et al. [99]
to lie in the presence of collapsing rules, which collapse a redex to one of its
proper subterms.

The canonical example that exhibits this phenomenon is a rewriting system
with the rules ρ1 : f(x) → x and ρ2 : g(x) → x and the infinite starting term
t = f(g(f(g(. . .)))) that alternates between function symbols f and g. We can
then produce two infinite rewrite sequences, which strongly converge to the term
t1 = g(g(g(. . .))) respectively t2 = f(f(f(. . .))) by exhaustively applying ρ1
respectively ρ2. The resulting terms t1 and t2 can only be rewritten to themselves

23

and can, therefore, not be joined.

Kennaway et al. [99] furthermore recognised that terms containing an infi-
nite tower of collapsing redexes, e.g. f(g(f(g(. . .)))) in the example given above,
are the chief culprits for this failure of infinitary confluence: if these terms –
named hypercollapsing terms – are equated, then the resulting calculus is in fact
infinitarily confluent for orthogonal systems. The same idea was subsequently
also used in infinitary λ-calculus to establish infinitary confluence modulo equal-
ity of so-called 0-active terms [101]. Both approaches were later generalised to
a notion of meaningless terms [102]. The set of hypercollapsing terms as well
as the set of 0-active terms are examples of such a set of meaningless terms.
Sets of meaningless terms are defined axiomatically and yield a rewrite relation
called Böhm reduction, which introduces new rules to a term rewriting system
(respectively λ-calculus) that admits rewriting a meaningless term directly to ⊥
(a fresh constant symbol). This approach effectively equates all elements of a set
of meaningless terms. The resulting reduction is both infinitarily normalising and
infinitarily confluent for orthogonal term rewriting systems as well as λ-calculus.
Consequently, each term has a unique infinitary normal form. This normal form
generalises the notion of Böhm-like trees (including Berarducci trees, Lévy-Longo
trees etc.) [101]. Recently, the notion of meaningless terms has again received
further attention [156–158].

An important feature that sets apart the work of Kennaway et al. [101] on
λ-calculus from infinitary first-order rewriting is the use of different variants of
the metric d described above. These variants differ only in the way in which the
depth of a position in a term is measured: they simply discount certain edges.
The resulting metric spaces yield metric completions of the set of finite terms that
omit certain undesired infinite λ-terms. Depending on which metric is chosen, the
resulting unique infinite normal forms of Böhm reduction correspond to different
notions of Böhm-like trees.

3.2.2 Other Notions of Convergence

Other approaches to convergence have received less treatment in the literature.
One approach closely related to the metric-based approaches from the previous
section is Rodenburg’s purely topological notion of convergence [152]. The topol-
ogy Rodenburg uses is similar to the topology induced by the metric d on terms
in Section 3.2.1 above. However, since Rodenburg also considers function sym-
bols of infinite arity, he introduces a topology that not only considers the depth
of a position in a term but also the number of siblings to the left of it. Given a
rewrite rule a→ b, this topology causes the rewrite sequence

f(a, a, a, a, . . .)→ f(b, a, a, a, . . .)→ f(b, b, a, a, . . .)→ . . .

to converge to f(b, b, b, b, b, . . .), whereas it would not converge in the metric space
induced by the metric d (appropriately extended to signatures with infinite arity).

Corradini [39] introduced a notion of convergence based on the partial order
≤⊥ defined on the set of partial terms – terms extended with a fresh constant
symbol ⊥. Intuitively, s ≤⊥ t means that s is “less defined” than t; it is the
least congruence relation satisfying ⊥ ≤⊥ t for all partial terms t. Similarly to

24

the metric on terms, this partial order provides a canonical construction of the
set of finite and infinite (partial) terms, namely ideal completion [24]. Corradini
[39] uses the resulting complete partial order structure to define the outcome
of contracting an infinite number of parallel redexes in a term. The underlying
calculus of term rewriting is however non-standard and allows partial matching of
left-hand sides. The resulting infinitary rewriting calculus provides an adequate
counterpart for cyclic term graph rewriting [40]. Later, Corradini and Gadducci
[41] generalised the calculus to the setting of rewriting logic.

Also Blom [25] uses a construction based on the partial order ≤⊥ to de-
fine convergence. Although he fails to mention it, the construction Blom uses
corresponds to the limit inferior w.r.t. the partial order ≤⊥.3 His notion of con-
vergence provides an alternative to the Böhm reduction introduced by Kennaway
et al. [101]. Instead of explicitly introducing rules that admit the contraction of
meaningless terms to ⊥, the limit inferior construction of the convergence maps
such terms implicitly to ⊥. Blom shows that his calculus indeed simulates the
Böhm reductions of Kennaway et al. [101] faithfully.

Recognising this partial order approach to infinitary rewriting and exploring
the merits of it as an alternative to the now-standard metric approach is one of
the main contributions of this part of the dissertation. We shall come back to
this point in Section 3.3.

3.2.3 Abstract Notions of Convergence

Since the inception of infinitary rewriting, several researchers have approached the
subject from an abstract angle, abstracting from the term structure or from the
mode of convergence. The first abstract treatment was pursued by Kennaway [96]
who took the notion of strong convergence of Kennaway et al. [97] and abstracted
from the term structure. The only structure of these metric abstract reduction
systems is a metric distance on the objects and a height on the rewrite steps.
When instantiated to terms rewriting systems, the metric distance becomes the
metric distance d on terms and the height of a rewrite step becomes 2−d, where
d is the depth of the contracted redex.

Kahrs [93] investigates a more concrete abstraction in which he still maintains
the term structure but considers a variety of metric distance measures on them,
which he calls term metrics. The notion of convergence that he considers is purely
topological and thus generalises weak convergence. In later work, Kahrs [94]
considers a wide variety of alternative notions of convergence such as topological
adherence (instead of convergence) and various closures of binary relations.

In his master’s thesis Bongaerts [26] presents a comprehensive abstract frame-
work of infinitary rewriting based purely on topological convergence. It covers a
wide variety of notions of convergence known in the literature. Naturally, this
topological framework generalises weak convergence. But, more interestingly, by
defining an appropriate topology not only on the objects but also the rewrite steps
in between, Bongaerts manages to capture strong convergence as well. Moreover,
using the Scott topology of a partial order, he is also able to capture a partial

3This can be observed from Corollary 4.7 in Paper B4, which characterises the limit inferior
for a partial order on term graphs that generalises ≤⊥.

25

order convergence. While this notion of convergence is not precisely partial order
convergence based on the limit inferior of the underlying order, it is a weakening
thereof known as S-limit.

3.3 Contributions of this Dissertation

3.3.1 Overview

In this dissertation we explore an alternative approach to infinitary rewriting,
which instead of metric topologies is based on partial orders. Instead of the limit
limι→α aι in a metric space, we use the limit inferior lim infι→α aι of a partial
order, which is defined as the least upper bound of the greatest lower bounds of
all suffixes of (aι)ι<α:

lim
ι→α

aι =
⊔

β<α

 l

β≤ι<α
aι

To get an intuitive understanding of the limit inferior we assume that the
partial order ≤ on objects denotes a form of “information inclusion”, i.e. a ≤ b
means that all the information encoded in a is also present in b. This reading
applies, for example, to the partial order ≤⊥ on terms that we discussed in
Section 3.2.2.

Given this intuitive interpretation of ≤, the greatest lower bound
d
A of a set

of objects A is the object that encodes the maximum amount of information that
objects in A agree on. For the partial order ≤⊥ on terms we have for exampled {f(a, b), f(a, g(b))} = f(a,⊥). Dually, we have that the least upper bound⊔
A of a set of objects A is the object that encodes the union of the information

encoded in the objects in A. Given this interpretation, the limit inferior limι→α aι
of a sequence (aι)ι<α is the object that contains a piece of information iff that
piece of information is present in each element of the sequence from one point
β < α on. This being the case, the limit inferior is a device that extracts from a
sequence of objects as much consistent information as possible.

In general, the limit inferior is not guaranteed to exist for every sequence.
However, the partial orders we consider – including ≤⊥ – each form a so-called
complete semilattice, a class of partially ordered sets for which the limit inferior
always exists. Consequently, every (continuous) reduction converges in this par-
tial order model of convergence. This observation, of course, begs the question:
What good is a mode of convergence that makes everything converge?

While each rewrite sequence converges, the outcome of such a convergent
rewrite sequence indicates the “degree of convergence”. For example, consider
the rewrite sequence induced by zeros:

zeros→ 0 : zeros→ 0 : 0 : zeros→ . . .

This sequence converges to the term 0 : 0 : . . . also in the partial order model.
On the other hand, considering the rule swap(x, y) → swap(y, x), we obtain the
rewrite sequence

swap(0, 1)→ swap(1, 0)→ swap(0, 1)→ . . .

26

which does not converge in the metric model of convergence but it does converge
to swap(⊥,⊥) in the partial order model. The two occurrences of ⊥ indicate
positions at which the rewrite sequence diverges. In general, the partial order
model allows us to distinguish the degree to which a rewrite sequence converges,
where the least element of the partially ordered set indicates complete divergence
and maximal elements indicate complete convergence.

The goal of this part of the dissertation is to explore this new approach,
compare it with the established metric approach, and identify potential benefits
and drawbacks.

3.3.2 Concrete Contributions

In order to build a foundation on which to build the partial order approach,
Paper B1 introduces an abstract notion of partial order convergence based on
the limit inferior and compares it with the metric approach. To this end, an ab-
stract axiomatic notion of infinitary reduction systems – called transfinite abstract
reduction systems (TARSs) – is introduced. We show that finitary abstract re-
duction systems are a trivial instances of such TARSs. But more importantly, we
introduce both metric reduction systems (MRSs) – based on the metric abstract
reduction systems of Kennaway [96] – and partial reduction systems (PRSs).
MRSs abstract from the metric notion of convergence found in the literature
both in its weak and strong variant. PRSs induce corresponding notions of con-
vergence based on partially ordered sets and their limit inferior. Also for PRSs
we consider a weak and a strong variant. Each of the two abstract models induces
two TARSs, one for weak and one for strong convergence.

We generalise some of the basic theorems about confluence and termination
properties known for finitary abstract reduction systems to all of these infinitary
systems by proving them for the axiomatically defined TARSs. We also show
correspondences between strong and weak notions of convergence. Both MRSs
and PRSs are instantiated to term rewriting systems; the instantiation of MRSs
yields the standard notions of weak and strong convergence from the literature.
The instantiation of PRSs to lambda calculus with the partial order ≤⊥ yields
the ad hoc construction of Blom [25] as strong convergence.4 All calculi presented
in Paper B2 to Paper B5 are instantiations of MRSs and PRSs.

Paper B2 explores the instantiation of PRSs to term rewriting in detail. In
order to distinguish the resulting partial order-based notions of convergence from
the standard metric-based ones, the former is referred to as p-convergence and
the latter as m-convergence. The main focus of the paper is the concrete relation
between p- and m-convergence. The take-away message from this paper is that
p-convergence is a conservative extension of m-convergence – both for the weak
and the strong variant. That is, the difference between p- and m-convergence
lies solely in the terms that contain ’⊥’s, which are precisely those terms that
p-convergence adds compared to m-convergence. However, our results show that
the correspondence goes even deeper: in orthogonal systems, the Böhm extension

4This holds true for the 111 depth measure. For other xyz depth measures, a corresponding
different partial order has to be considered. The resulting limit inferior of these partial orders is
however different from the base construction of Blom [25] who uniformly uses the limit inferior
of the subset partial ordering regardless of the xyz depth measure.

27

of strong m-convergence, which essentially adds a rule t → ⊥ for each so-called
root-active term, coincides with strong p-convergence. As a corollary we thus
obtain that, for orthogonal systems, strong p-convergence – unlike strong m-
convergence – is infinitarily normalising and confluent.

Note that for orthogonal term rewriting systems, the set of root-active terms
is the smallest set of meaningless terms [102]. Thus, both strong p-convergence
– with the intuition we described in Section 3.3.1 – and the Böhm extension
of strong m-convergence w.r.t. root-active terms extract as much (consistent)
information from an infinite rewrite sequence as possible. Our result shows that
both approaches agree on what the outcome of this extraction is.

The remaining three papers aim to extend infinitary rewriting to term graph
rewriting using both the metric and the partial order approach by instantiat-
ing MRSs respectively PRSs to term graph rewriting systems. In Section 3.1.2,
we have seen an example that shows the need to be able to reason about infi-
nite computations and structures as well as sharing, viz. in the context of lazy
evaluation.

Paper B3 explores weak notions of convergence derived from a metric and a
partial order on term graphs that generalises d and ≤⊥, respectively. We discuss
several alternatives for suitable metrics and partial orders and compare their rel-
ative merits. After that we identify a particular metric and a particular partial
order as the favourable approach. For this pair of structures, we obtain a corre-
spondence result similar to the ones found in Paper B2: weak p-convergence is a
conservative extension of weak m-convergence. We also show a basic soundness
property of the resulting infinitary term graph rewriting calculi w.r.t. infinitary
term rewriting.

Unfortunately, these properties of the two modes of convergence are bought
dearly: (1) the definitions of the metric and partial order are cumbersome, (2) the
soundness property is very weak, and (3) there is no clear path to extend the
weak notions of convergence to strong ones in order to gain better soundness and
completeness properties.

In order to obtain infinitary calculi of strong convergence, which might then
help us to establish better soundness and completeness properties, we backtrack
and reconsider a pair of candidates that we have dismissed in Paper B3 due
to their ostensible inappropriateness for week convergence. This pair of metric
and partial order, which we call simple to distinguish it from the correspond-
ing structures in Paper B3, which we call rigid, are studied in Paper B4 and
Paper B5.

In Paper B4 we still consider weak convergence only. We illustrate the issues
that the simple partial order causes (in comparison to the rigid partial order of
Paper B3). In particular, we show that we do not obtain the correspondence re-
sult that weak p-convergence conservatively extends weak m-convergence. How-
ever, we show that we get at least one direction of this correspondence, viz.
weak m-convergence implies weak p-convergence. Moreover, we can replicate the
soundness result of Paper B3. More importantly, though, we show that both
structures have better algebraic properties than the rigid structures of Paper B3.
This manifests itself particularly in the fact that both metric completion and
ideal completion yield the full set of (partial) infinitary term graphs, which is not

28

true for the rigid metric respectively partial order.

The true shine of these simple structures is revealed in Paper B5 in which
we then finally extend the weak notions of convergence from Paper B4 to strong
convergence. This move from weak to strong convergence turns out to eradicate
all the issues that we have identified for weak convergence in Paper B4. Strong
p-convergence does not have the unintuitive quirks that we have observed for
weak p-convergence. This fact is also manifested in the full correspondence re-
sult between strong p-convergence and m-convergence: strong p-convergence is a
conservative extension of strong m-convergence. We obtain a full soundness the-
orem for both strong m- and p-convergence stating that strongly converging term
graph reductions can be simulated by strongly converging term reductions. We
also obtain completeness properties for both calculi. For strong m-convergence
this completeness result is rather limited, but this was expected since Kennaway
et al. [98] already gave a counterexample for the full completeness property. As-
tonishingly, however, strong p-convergence defies this counterexample and indeed
has the full completeness property in the form given as part the notion of ade-
quacy of Kennaway et al. [98].

Our treatment of infinitary term graph rewriting is the first formalisation of
a fully infinitary calculus of term graph rewriting. Kennaway et al. [98] introduce
infinitary term graph rewriting informally in order to present the abovementioned
counterexample for its completeness w.r.t. infinitary term rewriting. Kennaway
et al. take this failure of completeness as an argument to not consider infinitary
rewriting any further. Our formal treatment of strong m-convergence confirms
their counterexample. However, we were able to show that strong m-convergence
is in fact complete if we only consider normalising reductions. What is more, if
we consider strong p-convergence, we do in fact obtain a full completeness result.

Although our formal treatment of infinitary term graph rewriting is the first
one in this vein, infinitary features have been studied in the context of calculi
with explicit sharing before. Ariola and Blom [3, 4] developed a notion of skew
confluence for λ-calculi with letrec that allows them to define infinite normal forms
similar to Böhm trees. This construction of infinite normal forms reconciles the
issue that these λ-calculi fail to be confluent [6].

3.4 Conclusions and Perspectives

We believe that our partial order approach provides a valuable alternative to
the metric approach to infinitary rewriting. As we have argued in this chapter,
our approach makes it possible to recognise degrees of convergence. Admittedly,
as we have shown in Paper B2, the theory of meaningless terms and Böhm
reduction does achieve this as well. To some extend, the two approaches – partial
order convergence and Böhm reduction – complement each other. The former
provides an intrinsic justification: the limit inferior collects the maximum amount
of information possible. The latter is parametrised by a set of meaningless terms
and is thus much more general.

The generality of Böhm reductions comes at a cost though: we have to move
from a rewrite system with finitely many rules to one with infinitely many rules in
order to replicate partial convergence on top of the metric convergence framework.

29

Moreover, on its own terms, it is difficult to intuitively justify the additional rules
provided the Böhm reductions. After all, the main motivation behind the axioms
that define the notion of meaningless terms seems to be that “it makes the proof
of confluence go through”.5 This is a perfectly valid motivation, to be sure, but
it does not give justification for Böhm reduction beyond that. In this regard, our
correspondence result for Böhm reductions in Paper B2 can be seen as additional
justification for the merit of Böhm reductions – at least w.r.t. the smallest set
of meaningless terms. It would be interesting to explore whether it is possible
to extend this correspondence to other sets of meaningless terms by varying the
partial order.

We should reiterate the importance of the correspondence properties that we
have established for term rewriting (Paper B2) as well as term graph rewriting
(Paper B5), which state that p-convergence is a conservative extension of m-
convergence. In other words, when moving from m-convergence to p-convergence,
we do not lose anything.

In our work, we have explored several ways to formalise a notion of infinitary
term graph rewriting. After evaluating our findings and experience in this realm,
we believe that the approach introduced in Paper B5 – based on the simple met-
ric and partial order together with strong convergence – is the preferable one for
most purposes. It provides a calculus that is essentially infinitary term rewriting
+ sharing. Paper B5 illustrates this point with soundness and completeness theo-
rems. Having established a satisfactory notion of infinitary term graph rewriting,
we can now begin studying its properties, such as confluence and normalisation.
Early results of our current work indicate that confluence properties of orthogo-
nal systems carry over from infinitary term rewriting without too much hassle.
Another interesting question is in what way the theory of meaningless terms can
be translated to the realm of infinitary term graph rewriting.

A direction that we did not pursue here is higher-order systems including
λ-calculus in particular. From the point of view of convergence, the study of
infinitary λ-calculi offers an interesting detail that sets it apart from first-order
infinitary term rewriting. In their work on infinitary λ-calculi, Kennaway et al.
[101] consider a family of different metric spaces, which deviate from the ordinary
metric d only by discounting some edges of a term when calculating the depth
of a node. Blom [25] is able to capture the resulting notions of convergence with
his approximation-based approach. Blom [25] uses an ad hoc construction that
cuts off subterms depending on the metric that it should replicate in terms of
convergence. Results of our current work show that it is possible to construct a
family of partial orders corresponding to the family of metric spaces of Kennaway
et al. [101]. We then obtain correspondences between p-convergence and Böhm
reduction, but these correspondences are not as clear-cut as in the first-order case
(cf. Paper B2) or as in Blom’s approach [25].

5For example, Severi and de Vries [156] propose to weaken one of the axioms by showing
that confluence and normalisation can still be proven using the weakened axiom instead.

30

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986. ISBN 0-201-10088-6.

[2] J. Andersen and C. Brabrand. Syntactic Language Extension via an Alge-
bra of Languages and Transformations. In Proceedings of the Ninth Work-
shop on Language Descriptions Tools and Applications (LDTA 2009), pages
19–35, 2010. doi: 10.1016/j.entcs.2010.08.029.

[3] Z. Ariola and S. Blom. Skew and ω-Skew Confluence and Abstract Böhm
Semantics. In A. Middeldorp, V. van Oostrom, F. van Raamsdonk, and
R. de Vrijer, editors, Processes, Terms and Cycles: Steps on the Road to
Infinity, volume 3838 of Lecture Notes in Computer Science, pages 368–
403. Springer Berlin / Heidelberg, 2005. ISBN 978-3-540-30911-6. doi:
10.1007/11601548˙19.

[4] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with
letrec. Annals of Pure and Applied Logic, 117(1-3):95–168, 2002. ISSN
0168-0072. doi: 10.1016/S0168-0072(01)00104-X.

[5] Z. M. Ariola and J. W. Klop. Equational term graph rewriting. Fundamenta
Informaticae, 26(3-4):207–240, 1996. ISSN 0169-2968. doi: 10.3233/FI-
1996-263401.

[6] Z. M. Ariola and J. W. Klop. Lambda Calculus with Explicit Recursion.
Information and Computation, 139(2):154–233, 1997. ISSN 0890-5401. doi:
10.1006/inco.1997.2651.

[7] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and
topological properties. Fundamenta Informaticae, 3(4):445–476, 1980.

[8] E. Axelsson. A generic abstract syntax model for embedded languages.
In Proceedings of the 17th ACM SIGPLAN International Conference on
Functional Programming, pages 323–334, New York, NY, USA, 2012. ACM.
doi: 10.1145/2364527.2364573.

[9] P. Bahr. Abstract Models of Transfinite Reductions. In C. Lynch, editor,
Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 49–66, Dagstuhl, Germany, 2010. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2010.49.

31

http://dx.doi.org/10.1016/j.entcs.2010.08.029
http://dx.doi.org/10.1007/11601548_19
http://dx.doi.org/10.1007/11601548_19
http://dx.doi.org/10.1016/S0168-0072(01)00104-X
http://dx.doi.org/10.3233/FI-1996-263401
http://dx.doi.org/10.3233/FI-1996-263401
http://dx.doi.org/10.1006/inco.1997.2651
http://dx.doi.org/10.1006/inco.1997.2651
http://dx.doi.org/10.1145/2364527.2364573
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49

[10] P. Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees.
In C. Lynch, editor, Proceedings of the 21st International Conference
on Rewriting Techniques and Applications, volume 6 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 67–84, Dagstuhl,
Germany, 2010. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2010.67.

[11] P. Bahr. Modes of Convergence for Term Graph Rewriting. In
M. Schmidt-Schauß, editor, 22nd International Conference on Rewrit-
ing Techniques and Applications (RTA’11), volume 10 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 139–154, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.RTA.2011.139.

[12] P. Bahr. Modes of Convergence for Term Graph Rewriting. Logical Methods
in Computer Science, 8(2):6, 2012. doi: 10.2168/LMCS-8(2:6)2012.

[13] P. Bahr. Modular Tree Automata. In J. Gibbons and P. Nogueira, editors,
Mathematics of Program Construction, volume 7342 of Lecture Notes in
Computer Science, pages 263–299. Springer Berlin / Heidelberg, 2012. doi:
10.1007/978-3-642-31113-0˙14.

[14] P. Bahr. Convergence in Infinitary Term Graph Rewriting Systems is Sim-
ple. Submitted to Math. Struct. in Comp. Science, 2012.

[15] P. Bahr. Infinitary Term Graph Rewriting is Simple, Sound and Com-
plete. In A. Tiwari, editor, 23rd International Conference on Rewrit-
ing Techniques and Applications (RTA’12), volume 15 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 69–84, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2012.69.

[16] P. Bahr and T. Hvitved. Compositional data types. In Proceedings of the
seventh ACM SIGPLAN Workshop on Generic Programming, pages 83–94,
New York, NY, USA, 2011. ACM. doi: 10.1145/2036918.2036930.

[17] P. Bahr and T. Hvitved. Parametric Compositional Data Types. In J. Chap-
man and P. B. Levy, editors, Proceedings Fourth Workshop on Mathemat-
ically Structured Functional Programming, volume 76 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 3–24. Open Publishing
Association, 2012. doi: 10.4204/EPTCS.76.3.

[18] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathemantics. Elsevier
Science, revised ed edition, 1984.

[19] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In P. C. T. de
Bakker A. J. Nijman, editor, Parallel Architectures and Languages Europe,
Volume II: Parallel Languages, volume 259 of Lecture Notes in Computer

32

http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.139
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.139
http://dx.doi.org/10.2168/LMCS-8(2:6)2012
http://dx.doi.org/10.1007/978-3-642-31113-0_14
http://dx.doi.org/10.1007/978-3-642-31113-0_14
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69
http://dx.doi.org/10.1145/2036918.2036930
http://dx.doi.org/10.4204/EPTCS.76.3

Science, pages 141–158. Springer Berlin / Heidelberg, 1987. doi: 10.1007/3-
540-17945-3˙8.

[20] E. Barendsen. Term Graph Rewriting. In Terese, editor, Term Rewrit-
ing Systems, chapter 13, pages 712–743. Cambridge University Press, 1st
edition, 2003. ISBN 9780521391153.

[21] E. Barendsen and S. Smetsers. Graph rewriting aspects of functional pro-
gramming. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Handbook of graph grammars and computing by graph transforma-
tion: vol. 2: applications, languages, and tools, volume 2, pages 63–102.
World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1999. ISBN
981-02-4020-1.

[22] J. Bentley. Programming pearls: little languages. Communications of the
ACM, 29(8):711–721, 1986. ISSN 0001-0782. doi: 10.1145/6424.315691.

[23] A. Berarducci. Infinite λ-calculus and non-sensible models. In A. Ursini
and P. Aglianó, editors, Logic and algebra, number 180 in Lecture Notes in
Pure and Applied Mathematics, pages 339–378. CRC Press, 1996.

[24] G. Berry and J.-J. Lévy. Minimal and optimal computations of recursive
programs. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 215–226, New
York, NY, USA, 1977. ACM. doi: 10.1145/512950.512971.

[25] S. Blom. An Approximation Based Approach to Infinitary Lambda Calculi.
In V. van Oostrom, editor, Rewriting Techniques and Applications, volume
3091 of Lecture Notes in Computer Science, pages 221–232. Springer Berlin
/ Heidelberg, 2004. doi: 10.1007/b98160.

[26] J. Bongaerts. Topological Convergence in Infinitary Abstract Rewriting.
Master’s thesis, Utrecht University, 2011.

[27] C. Braga and J. Meseguer. Modular Rewriting Semantics in Practice. In
Proceedings of the Fifth International Workshop on Rewriting Logic and Its
Applications (WRLA 2004), volume 117 of Electronic Notes in Theoretical
Computer Science, pages 393–416, 2005. doi: 10.1016/j.entcs.2004.06.019.

[28] K. Bruce, M. Odersky, and P. Wadler. A statically safe alternative to virtual
types. In E. Jul, editor, ECOOP’98 — Object-Oriented Programming, vol-
ume 1445 of Lecture Notes in Computer Science, pages 523–549. Springer
Berlin / Heidelberg, 1998. doi: 10.1007/BFb0054106.

[29] K. B. Bruce. Some Challenging Typing Issues in Object-Oriented Lan-
guages: Extended Abstract. In Proceedings of the Workshop on Object
Oriented Developments, volume 82 of Electronic Notes in Theoretical Com-
puter Science, pages 1–29, 2003. doi: 10.1016/S1571-0661(04)80799-0.

33

http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1145/6424.315691
http://dx.doi.org/10.1145/512950.512971
http://dx.doi.org/10.1007/b98160
http://dx.doi.org/10.1016/j.entcs.2004.06.019
http://dx.doi.org/10.1007/BFb0054106
http://dx.doi.org/10.1016/S1571-0661(04)80799-0

[30] J. Carette, O. Kiselyov, and C.-C. Shan. Finally tagless, par-
tially evaluated: Tagless staged interpreters for simpler typed lan-
guages. Journal of Functional Programming, 19(05):509–543, 2009. doi:
10.1017/S0956796809007205.

[31] F. Chalub and C. Braga. Maude MSOS Tool. In Proceedings of the 6th
International Workshop on Rewriting Logic and its Applications (WRLA
2006), volume 176 of Electronic Notes in Theoretical Computer Science,
pages 133–146, 2007. doi: 10.1016/j.entcs.2007.06.012.

[32] C. Chambers and G. T. Leavens. Typechecking and modules for multi-
methods. In Proceedings of the ninth annual Conference on Object-Oriented
Programming Systems, Language, and Applications, pages 1–15, New York,
NY, USA, 1994. ACM. doi: 10.1145/191080.191083.

[33] J. Cheney. Scrap your nameplate (functional pearl). In Proceedings of
the tenth ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 180–191, New York, NY, USA, 2005. ACM. doi:
10.1145/1086365.1086389.

[34] J. Cheney and C. Urban. αProlog: A Logic Programming Language with
Names, Binding and α-Equivalence. In B. Demoen and V. Lifschitz, editors,
International Conference on Logic Programming, volume 3132 of Lecture
Notes in Computer Science, pages 269–283. Springer Berlin / Heidelberg,
2004. doi: 10.1007/978-3-540-27775-0˙19.

[35] A. Chlipala. Parametric higher-order abstract syntax for mechanized se-
mantics. In Proceeding of the 13th ACM SIGPLAN International Confer-
ence on Functional Programming, pages 143–156, New York, NY, USA,
2008. ACM. doi: 10.1145/1411204.1411226.

[36] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava:
modular open classes and symmetric multiple dispatch for Java. In Proceed-
ings of the 15th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 130–145, New York,
NY, USA, 2000. ACM. doi: 10.1145/353171.353181.

[37] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
Available on http://www.grappa.univ-lille3.fr/tata, 2008.

[38] T. Coquand and G. Huet. Constructions: A higher order proof system
for mechanizing mathematics. In B. Buchberger, editor, EUROCAL ’85,
volume 203 of Lecture Notes in Computer Science, pages 151–184. Springer
Berlin / Heidelberg, 1985. doi: 10.1007/3-540-15983-5˙13.

[39] A. Corradini. Term rewriting in CTΣ. In M.-C. Gaudel and J.-P. Jouan-
naud, editors, TAPSOFT’93: Theory and Practice of Software Develop-
ment, volume 668 of Lecture Notes in Computer Science, pages 468–484.
Springer Berlin / Heidelberg, 1993. doi: 10.1007/3-540-56610-4˙83.

34

http://dx.doi.org/10.1017/S0956796809007205
http://dx.doi.org/10.1017/S0956796809007205
http://dx.doi.org/10.1016/j.entcs.2007.06.012
http://dx.doi.org/10.1145/191080.191083
http://dx.doi.org/10.1145/1086365.1086389
http://dx.doi.org/10.1145/1086365.1086389
http://dx.doi.org/10.1007/978-3-540-27775-0_19
http://dx.doi.org/10.1145/1411204.1411226
http://dx.doi.org/10.1145/353171.353181
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1007/3-540-15983-5_13
http://dx.doi.org/10.1007/3-540-56610-4_83

[40] A. Corradini and F. Drewes. Term Graph Rewriting and Parallel Term
Rewriting. In TERMGRAPH, pages 3–18, 2011. doi: 10.4204/EPTCS.48.3.

[41] A. Corradini and F. Gadducci. CPO models for infinite term rewriting. In
V. S. Alagar and M. Nivat, editors, Algebraic Methodology and Software
Technology, volume 936 of Lecture Notes in Computer Science, pages 368–
384. Springer Berlin / Heidelberg, 1995. doi: 10.1007/3-540-60043-4˙65.

[42] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.
Algebraic Approaches to Graph Transformation, Part I: Basic Concepts
and Double Pushout Approach. In G. Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 1:
Foundations, pages 163–245. University of Pisa, 1997. ISBN 9810228848.

[43] L. Day and G. Hutton. Towards Modular Compilers For Effects. In Pro-
ceedings of the Symposium on Trends in Functional Programming, volume
7193 of Lecture Notes in Computer Science, Madrid, Spain, 2011. Springer-
Verlag. doi: 10.1007/978-3-642-32037-8˙4.

[44] C. de Braga, E. Haeusler, J. Meseguer, and P. Mosses. Mapping Modular
SOS to Rewriting Logic. In M. Leuschel, editor, Logic Based Program
Synthesis and Transformation, volume 2664 of Lecture Notes in Computer
Science, page 957. Springer Berlin / Heidelberg, 2003. doi: 10.1007/3-540-
45013-0˙21.

[45] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 75(5):381 – 392, 1972. ISSN 1385-
7258. doi: 10.1016/1385-7258(72)90034-0.

[46] B. Delaware, B. C. d. S. Oliveira, and T. Schrijvers. Meta-Theory à la
Carte. To appear at POPL ’13, 2013.

[47] N. Dershowitz and S. Kaplan. Rewrite, rewrite, rewrite, rewrite, rewrite...
In 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 250–259, New York, NY, USA, 1989. ACM. doi:
10.1145/75277.75299.

[48] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Infinite normal forms. In
G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca, editors, Automata,
Languages and Programming, 16th International Colloquium, volume 372
of Lecture Notes in Computer Science, pages 249–262. Springer Berlin /
Heidelberg, 1989. doi: 10.1007/BFb0035765.

[49] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, rewrite, rewrite,
rewrite, rewrite, ... Theoretical Computer Science, 83(1):71–96, 1991. ISSN
0304-3975. doi: 10.1016/0304-3975(91)90040-9.

[50] K.-G. Doh and P. D. Mosses. Composing programming languages by com-
bining action-semantics modules. Science of Computer Programming, 47
(1):3–36, 2003. ISSN 01676423. doi: 10.1016/S0167-6423(02)00107-7.

35

http://dx.doi.org/10.4204/EPTCS.48.3
http://dx.doi.org/10.1007/3-540-60043-4_65
http://dx.doi.org/10.1007/978-3-642-32037-8_4
http://dx.doi.org/10.1007/3-540-45013-0_21
http://dx.doi.org/10.1007/3-540-45013-0_21
http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://dx.doi.org/10.1145/75277.75299
http://dx.doi.org/10.1145/75277.75299
http://dx.doi.org/10.1007/BFb0035765
http://dx.doi.org/10.1016/0304-3975(91)90040-9
http://dx.doi.org/10.1016/S0167-6423(02)00107-7

[51] G. D. P. Dueck and G. V. Cormack. Modular Attribute Grammars. The
Computer Journal, 33(2):164–172, 1990. doi: 10.1093/comjnl/33.2.164.

[52] T. Ekman and G. Hedin. The JastAdd system - modular extensible com-
piler construction. Science of Computer Programming, 69(1-3):14–26, 2007.
ISSN 0167-6423. doi: 10.1016/j.scico.2007.02.003.

[53] J. Engelfriet. Three hierarchies of transducers. Mathematical Systems The-
ory, 15(2):95–125, 1982. ISSN 1432-4350. doi: 10.1007/BF01786975.

[54] J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Com-
puter and System Sciences, 31(1):71 – 146, 1985. ISSN 0022-0000. doi:
10.1016/0022-0000(85)90066-2.

[55] W. M. Farmer and R. J. Watro. Redex capturing in term graph rewrit-
ing. International Journal of Foundations of Computer Science, 1:369–386,
1990. ISSN 0129-0541. doi: 10.1142/S0129054190000266.

[56] W. M. Farmer and R. J. Watro. Redex capturing in term graph rewrit-
ing (concise version). In Rewriting Techniques and Applications, volume
488 of Lecture Notes in Computer Science, pages 13–24. Springer Berlin /
Heidelberg, 1991. doi: 10.1007/3-540-53904-2˙82.

[57] R. Farrow, T. J. Marlowe, and D. M. Yellin. Composable attribute gram-
mars: support for modularity in translator design and implementation. In
Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 223–234, New York, NY, USA, 1992.
ACM. doi: 10.1145/143165.143210.

[58] L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with
embedded functions (or, programs from outer space). In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 284–294, New York, NY, USA, 1996. ACM. doi:
10.1145/237721.237792.

[59] M. Felleisen and R. Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2):235–
271, 1992. ISSN 0304-3975. doi: 10.1016/0304-3975(92)90014-7.

[60] M. Flatt and M. Felleisen. Units: cool modules for HOT languages. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming lan-
guage Design and Implementation, pages 236–248, New York, NY, USA,
1998. ACM. doi: 10.1145/277650.277730.

[61] H. Ganzinger and R. Giegerich. Attribute coupled grammars. In Proceed-
ings of the 1984 SIGPLAN Symposium on Compiler Construction, pages
157–170, New York, NY, USA, 1984. ACM. doi: 10.1145/502874.502890.

[62] J. Gao, M. Heimdahl, and E. Van Wyk. Flexible and Extensible Notations
for Modeling Languages. In M. Dwyer and A. Lopes, editors, Fundamen-
tal Approaches to Software Engineering, volume 4422 of Lecture Notes in

36

http://dx.doi.org/10.1093/comjnl/33.2.164
http://dx.doi.org/10.1016/j.scico.2007.02.003
http://dx.doi.org/10.1007/BF01786975
http://dx.doi.org/10.1016/0022-0000(85)90066-2
http://dx.doi.org/10.1016/0022-0000(85)90066-2
http://dx.doi.org/10.1142/S0129054190000266
http://dx.doi.org/10.1007/3-540-53904-2_82
http://dx.doi.org/10.1145/143165.143210
http://dx.doi.org/10.1145/237721.237792
http://dx.doi.org/10.1145/237721.237792
http://dx.doi.org/10.1016/0304-3975(92)90014-7
http://dx.doi.org/10.1145/277650.277730
http://dx.doi.org/10.1145/502874.502890

Computer Science, pages 102–116. Springer Berlin / Heidelberg, 2007. doi:
10.1007/978-3-540-71289-3˙9.

[63] J. Garrigue. Programming with polymorphic variants. In ML Workshop,
volume 230. Baltimore, 1998.

[64] J. Garrigue. Code Reuse Through Polymorphic Variants. In Workshop on
Foundations of Software Engineering, 2000.

[65] J. Gibbons. Upwards and downwards accumulations on trees. In R. Bird,
C. Morgan, and J. Woodcock, editors, Mathematics of Program Construc-
tion, volume 669 of Lecture Notes in Computer Science, pages 122–138.
Springer Berlin / Heidelberg, 1993. doi: 10.1007/3-540-56625-2˙11.

[66] J. Gibbons. Polytypic downwards accumulations. In J. Jeuring, editor,
Mathematics of Program Construction, volume 1422 of Lecture Notes in
Computer Science, pages 207–233. Springer Berlin / Heidelberg, 1998. ISBN
978-3-540-64591-7. doi: 10.1007/BFb0054292.

[67] J. Gibbons. Generic downwards accumulations. Science of Computer Pro-
gramming, 37(1-3):37–65, 2000. ISSN 0167-6423. doi: 10.1016/S0167-
6423(99)00022-2.

[68] J. Grosch and H. Emmelmann. A tool box for compiler construction. In
D. Hammer, editor, Compiler Compilers, volume 477 of Lecture Notes in
Computer Science, pages 106–116. Springer Berlin / Heidelberg, 1991. doi:
10.1007/3-540-53669-8˙77.

[69] Y. Gurevich and J. Morris. Algebraic operational semantics and modula-
2. In E. Börger, H. Büning, and M. Richter, editors, CSL ’87, volume
329 of Lecture Notes in Computer Science, pages 81–101. Springer Berlin /
Heidelberg, 1988. ISBN 978-3-540-50241-8. doi: 10.1007/3-540-50241-6˙31.

[70] D. Harel and A. Pnueli. On the development of reactive systems. In
K. R. Apt, editor, Logics and models of concurrent systems, pages 477–
498. Springer-Verlag New York, Inc., New York, NY, USA, 1985. ISBN
0-387-15181-8.

[71] W. Harrison and S. Kamin. Metacomputation-Based Compiler Architec-
ture. In R. Backhouse and J. Oliveira, editors, Mathematics of Program
Construction, volume 1837 of Lecture Notes in Computer Science, pages
213–229. Springer Berlin / Heidelberg, 2000. doi: 10.1007/10722010˙14.

[72] W. L. Harrison. Modular Compilers and Their Correctness Proofs. PhD
dissertation, University of Illinois at Urbana-Champaign, 2001.

[73] W. L. Harrison and S. N. Kamin. Modular Compilers Based on Monad
Transformers. In Proceedings of the 1998 International Conference on Com-
puter Languages, pages 122–131, Washington, DC, USA, 1998. IEEE Com-
puter Society. doi: 10.1109/ICCL.1998.674163.

37

http://dx.doi.org/10.1007/978-3-540-71289-3_9
http://dx.doi.org/10.1007/978-3-540-71289-3_9
http://dx.doi.org/10.1007/3-540-56625-2_11
http://dx.doi.org/10.1007/BFb0054292
http://dx.doi.org/10.1016/S0167-6423(99)00022-2
http://dx.doi.org/10.1016/S0167-6423(99)00022-2
http://dx.doi.org/10.1007/3-540-53669-8_77
http://dx.doi.org/10.1007/3-540-53669-8_77
http://dx.doi.org/10.1007/3-540-50241-6_31
http://dx.doi.org/10.1007/10722010_14
http://dx.doi.org/10.1109/ICCL.1998.674163

[74] I. Hasuo, B. Jacobs, and T. Uustalu. Categorical Views on Computations
on Trees (Extended Abstract). In L. Arge, C. Cachin, T. Jurdzinski, and
A. Tarlecki, editors, Automata, Languages and Programming, volume 4596
of Lecture Notes in Computer Science, pages 619–630. Springer Berlin /
Heidelberg, 2007. doi: 10.1007/978-3-540-73420-8˙54.

[75] G. Hedin. An Object-Oriented Notation for Attribute Grammars. In
ECOOP ’89: Proceedings of the Third European Conference on Object-
Oriented Programming, BCS Workshop Series, pages 329–345. Cambridge
University Press, 1989.

[76] G. Hedin. Reference Attributed Grammars. Informatica (Slovenia), 24(3):
301–317, 2000.

[77] P. Henderson and J. H. Morris Jr. A lazy evaluator. In Proceedings of
the 3rd ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pages 95–103, New York, NY, USA, 1976. ACM. doi:
10.1145/800168.811543.

[78] F. Henglein, K. F. Larsen, J. G. Simonsen, and C. Stefansen. POETS:
process-oriented event-driven transaction system. The Journal of Logic
and Algebraic Programming, 78:381–401, 2009. ISSN 1567-8326. doi:
10.1016/j.jlap.2008.08.007.

[79] R. Hinze. Adjoint folds and unfolds—An extended study. Sci-
ence of Computer Programming, 2012. ISSN 0167-6423. doi:
10.1016/j.scico.2012.07.011. In Press.

[80] J. Hughes. Why Functional Programming Matters. The Computer Journal,
32(2):98–107, 1989. doi: 10.1093/comjnl/32.2.98.

[81] G. Hutton. Higher-order functions for parsing. Journal of Functional Pro-
gramming, 2(03):323–343, 1992. doi: 10.1017/S0956796800000411.

[82] G. Hutton and E. Meijer. Monadic parsing in Haskell. Journal of Functional
Programming, 8(04):437–444, 1998. doi: 10.1017/S0956796898003050.

[83] T. Hvitved, P. Bahr, and J. Andersen. Domain-Specific Languages for
Enterprise Systems. Technical report, Department of Computer Science,
University of Copenhagen, 2011.

[84] J. Iversen and P. D. Mosses. Constructive Action Semantics for Core
ML. IEE Proceedings - Software, 152(2):79–98, 2005. doi: 10.1049/ip-
sen:20041182.

[85] M. Jaskelioff. Modular Monad Transformers. In Proceedings of the 18th Eu-
ropean Symposium on Programming Languages and Systems, volume 5502
of Lecture Notes in Computer Science, pages 64–79, Berlin, Heidelberg,
2009. Springer-Verlag. doi: 10.1007/978-3-642-00590-9˙6.

[86] M. Jaskelioff. Lifting of Operations in Modular Monadic Semantics. PhD
thesis, University of Nottingham, 2009.

38

http://dx.doi.org/10.1007/978-3-540-73420-8_54
http://dx.doi.org/10.1145/800168.811543
http://dx.doi.org/10.1145/800168.811543
http://dx.doi.org/10.1016/j.jlap.2008.08.007
http://dx.doi.org/10.1016/j.jlap.2008.08.007
http://dx.doi.org/10.1016/j.scico.2012.07.011
http://dx.doi.org/10.1016/j.scico.2012.07.011
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1017/S0956796800000411
http://dx.doi.org/10.1017/S0956796898003050
http://dx.doi.org/10.1049/ip-sen:20041182
http://dx.doi.org/10.1049/ip-sen:20041182
http://dx.doi.org/10.1007/978-3-642-00590-9_6

[87] M. Jaskelioff. Monatron: An Extensible Monad Transformer Library. In
S.-B. Scholz and O. Chitil, editors, Proceedings of the 20th International
Conference on Implementation and Application of Functional Languages,
volume 5836 of Lecture Notes in Computer Science, pages 233–248, Berlin,
Heidelberg, 2011. Springer-Verlag. doi: 10.1007/978-3-642-24452-0˙13.

[88] M. Jaskelioff, N. Ghani, and G. Hutton. Modularity and Implementation of
Mathematical Operational Semantics. Proceedings of the Second Workshop
on Mathematically Structured Functional Programming, 229(5):75–95, 2011.
ISSN 1571-0661. doi: 10.1016/j.entcs.2011.02.017.

[89] P. Johann and N. Ghani. Foundations for structured programming with
GADTs. In POPL ’08, pages 297–308, New York, New York, USA, 2008.
ACM Press. doi: 10.1145/1328438.1328475.

[90] M. Jourdan, C. Le Bellec, D. Parigot, and G. Roussel. Specification
and implementation of grammar couplings using attribute grammars. In
M. Bruynooghe and J. Penjam, editors, Progamming Language Implemen-
tation and Logic Programming, volume 714 of Lecture Notes in Computer
Science, pages 123–136. Springer Berlin / Heidelberg, 1993. doi: 10.1007/3-
540-57186-8˙75.

[91] C. Jürgensen. Categorical semantics and composition of tree transducers.
PhD thesis, Technischen Universität Dresden, 2003.

[92] C. Jürgensen and H. Vogler. Syntactic composition of top-down tree trans-
ducers is short cut fusion. Mathematical Structures in Computer Science,
14(2):215–282, 2004. ISSN 0960-1295. doi: 10.1017/S0960129503004109.

[93] S. Kahrs. Infinitary rewriting: meta-theory and convergence. Acta Infor-
matica, 44(2):91–121, 2007. ISSN 0001-5903 (Print) 1432-0525 (Online).
doi: 10.1007/s00236-007-0043-2.

[94] S. Kahrs. Infinitary Rewriting: Foundations Revisited. In C. Lynch,
editor, Proceedings of the 21st International Conference on Rewrit-
ing Techniques and Applications, volume 6 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 161–176, Dagstuhl, Ger-
many, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2010.161.

[95] U. Kastens and W. M. Waite. Modularity and reusability in attribute
grammars. Acta Informatica, 31(7):601–627, 1994. ISSN 0001-5903. doi:
10.1007/BF01177548.

[96] R. Kennaway. On transfinite abstract reduction systems. Technical report,
CWI (Centre for Mathematics and Computer Science), Amsterdam, 1992.

[97] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite
Reductions in Orthogonal Term Rewriting Systems. In R. V. Book, editor,
Rewriting Techniques and Applications, volume 488 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin / Heidelberg, 1991. doi:
10.1007/3-540-53904-2˙81.

39

http://dx.doi.org/10.1007/978-3-642-24452-0_13
http://dx.doi.org/10.1016/j.entcs.2011.02.017
http://dx.doi.org/10.1145/1328438.1328475
http://dx.doi.org/10.1007/3-540-57186-8_75
http://dx.doi.org/10.1007/3-540-57186-8_75
http://dx.doi.org/10.1017/S0960129503004109
http://dx.doi.org/10.1007/s00236-007-0043-2
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.161
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.161
http://dx.doi.org/10.1007/BF01177548
http://dx.doi.org/10.1007/BF01177548
http://dx.doi.org/10.1007/3-540-53904-2_81
http://dx.doi.org/10.1007/3-540-53904-2_81

[98] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. On the adequacy
of graph rewriting for simulating term rewriting. ACM Transactions on
Programming Languages and Systems, 16(3):493–523, 1994. ISSN 0164-
0925. doi: 10.1145/177492.177577.

[99] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite Re-
ductions in Orthogonal Term Rewriting Systems. Information and Compu-
tation, 119(1):18–38, 1995. ISSN 0890-5401. doi: 10.1006/inco.1995.1075.

[100] R. Kennaway, J. W. Klop, R. Sleep, and F.-J. de Vries. Infinitary lambda
calculi and Böhm models. In J. Hsiang, editor, Rewriting Techniques and
Applications, volume 914 of Lecture Notes in Computer Science, pages 257–
270. Springer Berlin / Heidelberg, 1995. doi: 10.1007/3-540-59200-8˙62.

[101] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93–125, 1997. ISSN 0304-
3975. doi: 10.1016/S0304-3975(96)00171-5.

[102] R. Kennaway, V. van Oostrom, and F.-J. de Vries. Meaningless Terms in
Rewriting. Journal of Functional and Logic Programming, 1999(1):1–35,
1999.

[103] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems.
In J. Giesl, editor, Term Rewriting and Applications, volume 3467 of Lecture
Notes in Computer Science, pages 438–452. Springer Berlin / Heidelberg,
2005. doi: 10.1007/b135673.

[104] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems.
Information and Computation, 209(6):893–926, 2011. ISSN 0890-5401. doi:
10.1016/j.ic.2011.01.007.

[105] S. Keuchel and J. T. Jeuring. Generic conversions of abstract syntax
representations. In Proceedings of the 8th ACM SIGPLAN Workshop on
Generic Programming, pages 57–68, New York, NY, USA, 2012. ACM. doi:
10.1145/2364394.2364403.

[106] D. E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145, 1968. ISSN 1432-4350. doi: 10.1007/BF01692511.

[107] K. Koskimies, K.-J. Räihä, and M. Sarjakoski. Compiler construction using
attribute grammars. In Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction, pages 153–159, New York, NY, USA, 1982. ACM.
doi: 10.1145/800230.806991.

[108] S. Krishnamurthi, M. Felleisen, and D. Friedman. Synthesizing object-
oriented and functional design to promote re-use. In E. Jul, editor,
ECOOP’98 — Object-Oriented Programming, volume 1445 of Lecture Notes
in Computer Science, pages 91–113. Springer Berlin / Heidelberg, 1998. doi:
10.1007/BFb0054088.

40

http://dx.doi.org/10.1145/177492.177577
http://dx.doi.org/10.1006/inco.1995.1075
http://dx.doi.org/10.1007/3-540-59200-8_62
http://dx.doi.org/10.1016/S0304-3975(96)00171-5
http://dx.doi.org/10.1007/b135673
http://dx.doi.org/10.1016/j.ic.2011.01.007
http://dx.doi.org/10.1016/j.ic.2011.01.007
http://dx.doi.org/10.1145/2364394.2364403
http://dx.doi.org/10.1145/2364394.2364403
http://dx.doi.org/10.1007/BF01692511
http://dx.doi.org/10.1145/800230.806991
http://dx.doi.org/10.1007/BFb0054088
http://dx.doi.org/10.1007/BFb0054088

[109] A. Kühnemann. Benefits of Tree Transducers for Optimizing Functional
Programs. In V. Arvind and S. Ramanujam, editors, Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 1530 of Lecture
Notes in Computer Science, page 1046. Springer Berlin / Heidelberg, 1998.
doi: 10.1007/978-3-540-49382-2˙13.

[110] D. Leijen and E. Meijer. Parsec: Direct Style Monadic Parser Combina-
tors for the Real World. Technical Report UU-CS-2001-27, Department of
Computer Science, Universiteit Utrecht, 2001.

[111] S. Liang. Abstract Modular Monadic Semantics and Compilation. PhD
thesis, Yale University, 1997.

[112] S. Liang and P. Hudak. Modular denotational semantics for compiler con-
struction. In H. Nielson, editor, Programming Languages and Systems -
ESOP ’96, volume 1058 of Lecture Notes in Computer Science, pages 219–
234. Springer Berlin / Heidelberg, 1996. doi: 10.1007/3-540-61055-3˙39.

[113] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular inter-
preters. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 333–343, New
York, NY, USA, 1995. ACM. doi: 10.1145/199448.199528.

[114] G. Longo. Set-theoretical models of λ-calculus: theories, expansions, iso-
morphisms. Annals of pure and applied logic, 24(2):153–188, 1983.

[115] C. K. K. Loverdos and A. Syropoulos. Steps in Scala: An Introduction to
Object-Functional Programming. Cambridge University Press, 2010. ISBN
0521747589.

[116] J.-J. Lévy. An Algebraic Interpretation of the λβK-Calculus; and an Ap-
plication of a Labelled λ-Calculus. Theoretical Computer Science, 2(1):
97–114, 1976. doi: 10.1016/0304-3975(76)90009-8.

[117] A. Löh and R. Hinze. Open data types and open functions. In Proceed-
ings of the 8th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, pages 133–144, New York, NY, USA,
2006. ACM. doi: 10.1145/1140335.1140352.

[118] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful mecha-
nism in object-oriented programming. In Conference Proceedings on Object-
Oriented Programming Systems, Languages and Applications, pages 397–
406, New York, NY, USA, 1989. ACM. doi: 10.1145/74877.74919.

[119] S. Marlow. Haskell 2010 Language Report, 2010.

[120] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: new-age compo-
nents for old-fasioned Java. In Proceedings of the 16th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 211–222, New York, NY, USA, 2001. ACM. doi:
10.1145/504282.504298.

41

http://dx.doi.org/10.1007/978-3-540-49382-2_13
http://dx.doi.org/10.1007/3-540-61055-3_39
http://dx.doi.org/10.1145/199448.199528
http://dx.doi.org/10.1016/0304-3975(76)90009-8
http://dx.doi.org/10.1145/1140335.1140352
http://dx.doi.org/10.1145/74877.74919
http://dx.doi.org/10.1145/504282.504298
http://dx.doi.org/10.1145/504282.504298

[121] E. Meijer. Calculating Compilers. PhD thesis, Katholieke Universiteit
Nijmegen, 1992.

[122] E. Meijer and G. Hutton. Bananas in Space: Extending Fold and Unfold to
Exponential Types. In Proceedings of the seventh International Conference
on Functional Programming languages and computer architecture, pages
324–333, New York, NY, USA, 1995. ACM. doi: 10.1145/224164.224225.

[123] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Functional
Programming Languages and Computer Architecture, volume 523 of Lecture
Notes in Computer Science, pages 124–144. Springer Berlin / Heidelberg,
1991. doi: 10.1007/3540543961˙7.

[124] M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer. Multiple Attribute
Grammar Inheritance. Informatica (Slovenia), 24(3):319–328, 2000.

[125] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005.
ISSN 0360-0300. doi: 10.1145/1118890.1118892.

[126] J. Meseguer and C. O. Braga. Modular Rewriting Semantics of Pro-
gramming Languages. In Algebraic Methodology and Software Technology
(AMAST), volume 3116 of Lecture Notes in Computer Science, pages 364–
378. Springer Berlin / Heidelberg, 2004. doi: 10.1007/b98770.

[127] J. Meseguer and G. Rocu. The rewriting logic semantics project. The-
oretical Computer Science, 373(3):213–237, 2007. ISSN 0304-3975. doi:
10.1016/j.tcs.2006.12.018.

[128] E. Moggi. Computational lambda-calculus and monads. In Proceedings of
the Fourth Annual Symposium on Logic in computer science, pages 14–23,
Piscataway, NJ, USA, 1989. IEEE Press. doi: 10.1109/LICS.1989.39155.

[129] E. Moggi. An Abstract View of Programming Languages. Technical report,
Edinburgh University, 1989.

[130] E. Moggi. Notions of Computation and Monads. Information and Computa-
tion, 93(1):55–92, 1991. ISSN 0890-5401. doi: 10.1016/0890-5401(91)90052-
4.

[131] P. Mosses. Foundations of Modular SOS. In M. Kutylowski, L. Pacholski,
and T. Wierzbicki, editors, Mathematical Foundations of Computer Science
1999, volume 1672 of Lecture Notes in Computer Science, pages 70–80.
Springer Berlin / Heidelberg, 1999. doi: 10.1007/3-540-48340-3˙7.

[132] P. Mosses. Constructive Action Semantics in OBJ. In K. Futatsugi, J.-
P. Jouannaud, and J. Meseguer, editors, Algebra, Meaning, and Compu-
tation, volume 4060 of Lecture Notes in Computer Science, pages 281–
295. Springer Berlin / Heidelberg, 2006. ISBN 978-3-540-35462-8. doi:
10.1007/11780274˙15.

42

http://dx.doi.org/10.1145/224164.224225
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1007/b98770
http://dx.doi.org/10.1016/j.tcs.2006.12.018
http://dx.doi.org/10.1016/j.tcs.2006.12.018
http://dx.doi.org/10.1109/LICS.1989.39155
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/3-540-48340-3_7
http://dx.doi.org/10.1007/11780274_15
http://dx.doi.org/10.1007/11780274_15

[133] P. Mosses. VDM semantics of programming languages: combinators and
monads. Formal Aspects of Computing, 23(2):221–238, 2011. ISSN 0934-
5043. doi: 10.1007/s00165-009-0145-4.

[134] P. D. Mosses. Modular structural operational semantics. Journal of Logic
and Algebraic Programming, 60-61(0):195–228, 2004. ISSN 1567-8326. doi:
10.1016/j.jlap.2004.03.008.

[135] P. D. Mosses. Component-Based Description of Programming Languages.
In Proceedings of the 2008 international conference on Visions of Computer
Science: BCS International Academic Conference, pages 275–286, Swinton,
UK, UK, 2008. British Computer Society.

[136] M. Müller-Olm. Modular Compiler Verification: A Refinement-Algebraic
Approach Advocating Stepwise Abstraction. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1998. ISBN 3540634061.

[137] N. Nystrom, X. Qi, and A. C. Myers. J&: nested intersection for scal-
able software composition. In Proceedings of the 21st annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 21–36, New York, NY, USA, 2006. ACM. doi:
10.1145/1167473.1167476.

[138] B. Oliveira and W. Cook. Extensibility for the Masses. In J. Noble, edi-
tor, ECOOP 2012 - Object-Oriented Programming, volume 7313 of Lecture
Notes in Computer Science, pages 2–27. Springer Berlin / Heidelberg, 2012.
doi: 10.1007/978-3-642-31057-7˙2.

[139] B. C. d. S. Oliveira, R. Hinze, and A. Löh. Extensible and modular generics
for the masses. In Trends in Functional Programming, pages 199–216, 2006.

[140] J. Palsberg and C. B. Jay. The Essence of the Visitor Pattern. In Proceed-
ings of the 22nd International Computer Software and Applications Con-
ference, pages 9–15, Washington, DC, USA, 1998. IEEE Computer Society.
doi: 10.1109/CMPSAC.1998.716629.

[141] W. Penczek and A. Szalas, editors. Theory and practice of action semantics,
volume 1113 of Lecture Notes in Computer Science, 1996. Springer Berlin
/ Heidelberg. ISBN 978-3-540-61550-7. doi: 10.1007/3-540-61550-4˙139.

[142] S. Peyton-Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987. ISBN 013453333X.

[143] F. Pfenning and C. Elliot. Higher-Order Abstract Syntax. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language Design
and Implementation, pages 199–208, New York, NY, USA, 1988. ACM. doi:
10.1145/53990.54010.

[144] R. Pickering. Beginning F#. Apress, 2010. ISBN 1430223898.

[145] A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM,
53(3):459–506, 2006. doi: 10.1145/1147954.1147961.

43

http://dx.doi.org/10.1007/s00165-009-0145-4
http://dx.doi.org/10.1016/j.jlap.2004.03.008
http://dx.doi.org/10.1016/j.jlap.2004.03.008
http://dx.doi.org/10.1145/1167473.1167476
http://dx.doi.org/10.1145/1167473.1167476
http://dx.doi.org/10.1007/978-3-642-31057-7_2
http://dx.doi.org/10.1109/CMPSAC.1998.716629
http://dx.doi.org/10.1007/3-540-61550-4_139
http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1145/1147954.1147961

[146] A. M. Pitts. Structural recursion with locally scoped names.
Journal of Functional Programming, 21(03):235–286, 2011. doi:
10.1017/S0956796811000116.

[147] R. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming and
Parallel Graph Rewriting. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1993. ISBN 0201416638.

[148] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, University of Aarhus, Denmark, 1981.

[149] F. Pottier. An Overview of Cαml. In Proceedings of the ACM-
SIGPLAN Workshop on ML, volume 148, pages 27 – 52, 2006. doi:
10.1016/j.entcs.2005.11.039.

[150] N. Pouillard. Namely, Painless: A unifying approach to safe programming
with first-order syntax with binders. PhD thesis, Université Paris Diderot
(Paris 7), 2012.

[151] N. Pouillard and F. Pottier. A fresh look at programming with names and
binders. In Proceedings of the 15th ACM SIGPLAN International Con-
ference on Functional Programming, pages 217–228, New York, NY, USA,
2010. ACM. doi: 10.1145/1863543.1863575.

[152] P. H. Rodenburg. Termination and Confluence in Infinitary Term Rewrit-
ing. The Journal of Symbolic Logic, 63(4):1286–1296, 1998. ISSN 00224812.

[153] J. Saraiva and D. Swierstra. Generic Attribute Grammars. In Second
Workshop on Attribute Gramars and their Applications, pages 185–204,
1999.

[154] T. Schrijvers and B. C. Oliveira. Monads, zippers and views: virtualizing
the monad stack. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, pages 32–44, New York, NY, USA,
2011. ACM. doi: 10.1145/2034773.2034781.

[155] C. Schürmann, J. Despeyroux, and F. Pfenning. Primitive recursion for
higher-order abstract syntax. Theoretical Computer Science, 266(1-2):1–
57, 2001. ISSN 0304-3975. doi: 10.1016/S0304-3975(00)00418-7.

[156] P. Severi and F.-J. de Vries. Weakening the Axiom of Overlap in Infinitary
Lambda Calculus. In M. Schmidt-Schauß, editor, 22nd International Con-
ference on Rewriting Techniques and Applications (RTA’11), volume 10 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 313–328,
Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. doi: 10.4230/LIPIcs.RTA.2011.313.

[157] P. Severi and F.-J. de Vries. Decomposing the Lattice of Meaningless Sets
in the Infinitary Lambda Calculus. In L. Beklemishev and R. de Queiroz,
editors, Logic, Language, Information and Computation, volume 6642 of
Lecture Notes in Computer Science, pages 210–227. Springer Berlin / Hei-
delberg, 2011. doi: 10.1007/978-3-642-20920-8˙22.

44

http://dx.doi.org/10.1017/S0956796811000116
http://dx.doi.org/10.1017/S0956796811000116
http://dx.doi.org/10.1016/j.entcs.2005.11.039
http://dx.doi.org/10.1016/j.entcs.2005.11.039
http://dx.doi.org/10.1145/1863543.1863575
http://dx.doi.org/10.1145/2034773.2034781
http://dx.doi.org/10.1016/S0304-3975(00)00418-7
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.313
http://dx.doi.org/10.1007/978-3-642-20920-8_22

[158] P. Severi and F.-J. de Vries. Meaningless Sets in Infinitary Combinatory
Logic. In A. Tiwari, editor, 23rd International Conference on Rewrit-
ing Techniques and Applications (RTA’12), volume 15 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 288–304, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2012.288.

[159] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: programming
with binders made simple. In Proceedings of the eighth ACM SIGPLAN
International Conference on Functional Programming, pages 263–274, New
York, NY, USA, 2003. ACM. doi: 10.1145/944705.944729.

[160] G. L. Steele Jr. Building interpreters by composing monads. In Proceedings
of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 472–492, New York, NY, USA, 1994. ACM. doi:
10.1145/174675.178068.

[161] S. Swierstra. Combinator Parsers: From Toys to Tools. In G. Hutton, edi-
tor, 2000 ACM SIGPLAN Haskell Workshop, volume 41 of Electronic Notes
in Theoretical Computer Science, pages 38 – 59, 2000. doi: 10.1016/S1571-
0661(05)80545-6.

[162] W. Swierstra. Data types à la carte. Journal of Functional Programming,
18(4):423–436, 2008. ISSN 0956-7968. doi: 10.1017/S0956796808006758.

[163] T. Teitelbaum and R. Chapman. Higher-order attribute grammars and
editing environments. In Proceedings of the ACM SIGPLAN 1990 Confer-
ence on Programming Language Design and Implementation, pages 197–
208, New York, NY, USA, 1990. ACM. doi: 10.1145/93542.93567.

[164] Terese. Term Rewriting Systems. Cambridge University Press, 1st edition,
2003. ISBN 9780521391153.

[165] M. Torgersen. The Expression Problem Revisited. In M. Odersky, edi-
tor, ECOOP 2004 – Object-Oriented Programming, volume 3086 of Lecture
Notes in Computer Science, pages 1–44. Springer Berlin / Heidelberg, 2004.
doi: 10.1007/978-3-540-24851-4˙6.

[166] D. Turi and G. D. Plotkin. Towards a Mathematical Operational Semantics.
In LICS ’97 Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, pages 280–291, 1997.

[167] A. van Deursen and P. Klint. Little languages: little maintenance? Jour-
nal of Software Maintenance: Research and Practice, 10(2):75–92, 1998.
ISSN 1096-908X. doi: 10.1002/(SICI)1096-908X(199803/04)10:2¡75::AID-
SMR168¿3.0.CO;2-5.

[168] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding
in Attribute Grammars for Modular Language Design. In R. Horspool,
editor, Compiler Construction, volume 2304 of Lecture Notes in Computer
Science, pages 137–165. Springer Berlin / Heidelberg, 2002. doi: 10.1007/3-
540-45937-5˙11.

45

http://dx.doi.org/10.4230/LIPIcs.RTA.2012.288
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.288
http://dx.doi.org/10.1145/944705.944729
http://dx.doi.org/10.1145/174675.178068
http://dx.doi.org/10.1145/174675.178068
http://dx.doi.org/10.1016/S1571-0661(05)80545-6
http://dx.doi.org/10.1016/S1571-0661(05)80545-6
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1145/93542.93567
http://dx.doi.org/10.1007/978-3-540-24851-4_6
http://dx.doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
http://dx.doi.org/10.1007/3-540-45937-5_11
http://dx.doi.org/10.1007/3-540-45937-5_11

[169] V. Vene. Categorical programming with inductive and coinductive types.
PhD thesis, University of Tartu, Estonia, 2000.

[170] M. Viera and D. Swierstra. Attribute Grammar Macros. In F. de Car-
valho Junior and L. Barbosa, editors, Proc. Brazilian Symposium on Pro-
gramming Languages, volume 7554 of Lecture Notes in Computer Science,
pages 150–164. Springer Berlin / Heidelberg, 2012. doi: 10.1007/978-3-642-
33182-4˙12.

[171] M. Viera, S. D. Swierstra, and W. Swierstra. Attribute grammars fly first-
class. In Proceedings of the 14th ACM SIGPLAN International Conference
on Functional Programming - ICFP ’09, page 245, New York, New York,
USA, 2009. ACM Press. doi: 10.1145/1596550.1596586.

[172] M. Viera, S. D. Swierstra, and A. Middelkoop. UUAG Meets AspectAG:
How to make Attribute Grammars First-Class. In Proceedings of the 12th
Workshop on Language Descriptions Tools and Applications, Electronic
Notes in Theoretical Computer Science, 2012.

[173] J. Visser. Visitor combination and traversal control. In Proceedings of the
16th ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 270–282, New York, NY, USA,
2001. ACM. doi: 10.1145/504282.504302.

[174] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. In Proceedings of the ACM SIGPLAN 1989 Conference on Pro-
gramming Language Design and Implementation, pages 131–145, New York,
NY, USA, 1989. ACM. doi: 10.1145/73141.74830.

[175] J. Voigtländer. Conditions for Efficiency Improvement by Tree Transducer
Composition. In S. Tison, editor, Rewriting Techniques and Applications,
volume 2378 of Lecture Notes in Computer Science, pages 57–100. Springer
Berlin / Heidelberg, 2002. doi: 10.1007/3-540-45610-4˙16.

[176] J. Voigtländer. Formal Efficiency Analysis for Tree Transducer Composi-
tion. Theory of Computing Systems, 41(4):619–689, 2007. ISSN 1432-4350.
doi: 10.1007/s00224-006-1235-9.

[177] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees.
Theoretical Computer Science, 73(2):231–248, 1990. doi: 10.1016/0304-
3975(90)90147-A.

[178] P. Wadler. The Expression Problem. Available on http://homepages.

inf.ed.ac.uk/wadler/papers/expression/expression.txt, 1998.

[179] C. P. Wadsworth. Semantics and pragmatics of the lambda calculus. PhD
thesis, University of Oxford, 1971.

[180] K. Wansbrough and J. Hamer. A modular monadic action semantics. In
Proceedings of the Conference on Domain-Specific Languages on Confer-
ence on Domain-Specific Languages (DSL), 1997, pages 1–13, Berkeley,
CA, USA, 1997. USENIX Association.

46

http://dx.doi.org/10.1007/978-3-642-33182-4_12
http://dx.doi.org/10.1007/978-3-642-33182-4_12
http://dx.doi.org/10.1145/1596550.1596586
http://dx.doi.org/10.1145/504282.504302
http://dx.doi.org/10.1145/73141.74830
http://dx.doi.org/10.1007/3-540-45610-4_16
http://dx.doi.org/10.1007/s00224-006-1235-9
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

[181] M. P. Ward. Language-Oriented Programming. Software - Concepts and
Tools, 15(4):147–161, 1994.

[182] G. Washburn and S. Weirich. Boxes go bananas: Encoding higher-order
abstract syntax with parametric polymorphism. Journal of Functional Pro-
gramming, 18(1):87–140, 2008. doi: 10.1017/S0956796807006557.

[183] S. Weirich, B. A. Yorgey, and T. Sheard. Binders unbound. In Proceed-
ings of the 16th ACM SIGPLAN International Conference on Functional
Programming, pages 333–345, New York, NY, USA, 2011. ACM. doi:
10.1145/2034773.2034818.

[184] M. Zenger and M. Odersky. Extensible algebraic datatypes with defaults.
In Proceedings of the sixth ACM SIGPLAN International Conference on
Functional Programming, pages 241–252, New York, NY, USA, 2001. ACM.
doi: 10.1145/507635.507665.

[185] M. Zenger and M. Odersky. Independently Extensible Solutions to the
Expression Problem. In Proceedings of he Twelfth International Workshop
on Foundations of Object-Oriented Languages (FOOL), 2005.

47

http://dx.doi.org/10.1017/S0956796807006557
http://dx.doi.org/10.1145/2034773.2034818
http://dx.doi.org/10.1145/2034773.2034818
http://dx.doi.org/10.1145/507635.507665

Appendix A

Papers on Modular
Implementation of
Programming Languages

Paper A1 P. Bahr and T. Hvitved. Compositional data types. In Proceedings
of the seventh ACM SIGPLAN Workshop on Generic Programming, pages 83–94,
New York, NY, USA, 2011. ACM. doi: 10.1145/2036918.2036930

Paper A2 P. Bahr and T. Hvitved. Parametric Compositional Data Types. In
J. Chapman and P. B. Levy, editors, Proceedings Fourth Workshop on Mathemat-
ically Structured Functional Programming, volume 76 of Electronic Proceedings in
Theoretical Computer Science, pages 3–24. Open Publishing Association, 2012.
doi: 10.4204/EPTCS.76.3

Paper A3 P. Bahr. Modular Tree Automata. In J. Gibbons and P. Nogueira,
editors, Mathematics of Program Construction, volume 7342 of Lecture Notes
in Computer Science, pages 263–299. Springer Berlin / Heidelberg, 2012. doi:
10.1007/978-3-642-31113-0˙14

Paper A4 T. Hvitved, P. Bahr, and J. Andersen. Domain-Specific Languages
for Enterprise Systems. Technical report, Department of Computer Science, Uni-
versity of Copenhagen, 2011

49

http://dx.doi.org/10.1145/2036918.2036930
http://dx.doi.org/10.4204/EPTCS.76.3
http://dx.doi.org/10.1007/978-3-642-31113-0_14
http://dx.doi.org/10.1007/978-3-642-31113-0_14

Compositional Data Types

Patrick Bahr Tom Hvitved

Department of Computer Science, University of Copenhagen

Abstract

Building on Wouter Swierstra’s Data types à la carte, we present a com-
prehensive Haskell library of compositional data types suitable for practical
applications. In this framework, data types and functions on them can be de-
fined in a modular fashion. We extend the existing work by implementing a
wide array of recursion schemes including monadic computations. Above all,
we generalise recursive data types to contexts, which allow us to characterise
a special yet frequent kind of catamorphisms. The thus established notion of
term homomorphisms allows for flexible reuse and enables short-cut fusion
style deforestation which yields considerable speedups. We demonstrate our
framework in the setting of compiler construction, and moreover, we com-
pare compositional data types with generic programming techniques and
show that both are comparable in run-time performance and expressivity
while our approach allows for stricter types. We substantiate this conclu-
sion by lifting compositional data types to mutually recursive data types
and generalised algebraic data types. Lastly, we compare the run-time per-
formance of our techniques with traditional implementations over algebraic
data types. The results are surprisingly good.

Contents

1 Introduction 51

2 Data Types à la Carte 52

2.1 Evaluating Expressions . 53

2.2 Adding Sugar on Top . 56

3 Extensions 56

3.1 Generic Programming . 56

3.2 Monadic Computations . 58

3.3 Products and Annotations . 59

4 Context Matters 61

4.1 Propagating Annotations . 62

4.2 Composing Term Algebras . 63

4.3 From Terms to Contexts and back 64

4.4 Term Homomorphisms . 66

4.4.1 Propagating Annotations through Term Homomorphisms . 68

4.4.2 Composing Term Homomorphisms 69

50

4.4.3 Monadic Term Homomorphisms 70

4.5 Beyond Catamorphisms . 71

5 Mutually Recursive Data Types and GADTs 72

5.1 Higher-Order Functors . 74

5.2 Representing GADTs . 75

5.3 Recursion Schemes . 75

6 Practical Considerations 77

6.1 Generating Boilerplate Code . 77

6.2 Performance Impact . 78

7 Discussion 81

7.1 Related Work . 81

7.2 Future Work . 82

Bibliography 82

1 Introduction

Static typing provides a valuable tool for expressing invariants of a program.
Yet, all too often, this tool is not leveraged to its full extent because it is simply
not practical. Vice versa, if we want to use the full power of a type system,
we often find ourselves writing large chunks of boilerplate code or—even worse—
duplicating code. For example, consider the type of non-empty lists. Even though
having such a type at your disposal is quite useful, you would rarely find it in
use since—in a practical type system such as Haskell’s—it would require the
duplication of functions which work both on general and non-empty lists.

The situation illustrated above is an ubiquitous issue in compiler construction:
In a compiler, an abstract syntax tree (AST) is produced from a source file, which
then goes through different transformation and analysis phases, and is finally
transformed into the target code. As functional programmers, we want to reflect
the changes of each transformation step in the type of the AST. For example,
consider the desugaring phase of a compiler which reduces syntactic sugar to the
core syntax of the object language. To properly reflect this structural change also
in the types, we have to create and maintain a variant of the data type defining
the AST for the core syntax. Then, however, functions have to be defined for
both types independently, i.e. code cannot be readily reused for both types! If
we add annotations in an analysis step of the compiler, the type of the AST
has to be changed again. But some functions should ignore certain annotations
while being aware of others. And it gets even worse if we allow extensions to the
object language that can be turned on and off independently, or if we want to
implement several domain-specific languages which share a common core. This
quickly becomes a nightmare with the choice of either duplicating lots of code or
giving up static type safety by using a huge AST data type that covers all cases.

The essence of this problem can be summarised as the Expression Problem,
i.e. “the goal [. . .] to define a datatype by cases, where one can add new cases

51

to the datatype and new functions over the datatype, without recompiling ex-
isting code, and while retaining static type safety” [24]. Wouter Swierstra [19]
elegantly addressed this problem using Haskell and its type classes machinery.
While Swierstra’s approach exhibits invaluable simplicity and clarity, it lacks
abilities necessary to apply it in a practical setting beyond the confined simplic-
ity of the expression problem.

The goal of this paper is to extend Swierstra’s work in order to enhance its
flexibility, improve its performance and broaden its scope of applications. In
concrete terms, our contributions are:

• We implement recursion schemes other than catamorphisms (Section 4.5)
and also account for recursion schemes over monadic computations (Sec-
tion 3.2).

• We show how generic programming techniques can be efficiently imple-
mented on top of the compositional data types framework (Section 3.1),
providing a performance competitive with top-performing dedicated generic
programming libraries.

• By generalising terms—i.e. recursive data types—to contexts—i.e. recur-
sive data types with holes—we are able to capture the notion of term ho-
momorphisms (Section 4.4), a special but common case of term algebras.
In contrast to general algebras, term homomorphisms can easily be lifted
to different data types, readily reused, and composed (also with algebras).
The latter allows us to perform optimisations via short-cut fusion rules that
provide considerable speedups (Section 6.2).

• We further extend the scope of applications by capturing compositional
mutually recursive data types and GADTs via the construction of Johann
and Ghani [6] (Section 5).

• Finally, we show the practical competitiveness of compositional data types
by reducing their syntactic overhead using Template Haskell [17] (Sec-
tion 6.1), and by comparing the run-time of typical functions with corre-
sponding implementations over ordinary recursive data types (Section 6.2).

The framework of compositional data types that we present here is available
from Hackage1. It contains the complete source code, numerous examples, and the
benchmarks whose results we present in this paper. All code fragments presented
throughout the paper are written in Haskell [9].

2 Data Types à la Carte

This section serves as an introduction to Swierstra’s data types à la carte [19]
(from here on, compositional data types), using our slightly revised notation and
terminology. We demonstrate the application of compositional data types to a
setting consisting of a family of expression languages that pairwise share some
sublanguage, and operations that provide transformations between some of them.

1See http://hackage.haskell.org/package/compdata.

52

http://hackage.haskell.org/package/compdata

We illustrate the merits of this method on two examples: expression evaluation
and desugaring.

2.1 Evaluating Expressions

Consider a simple language of expressions over integers and tuples, together with
an evaluation function:

data Exp = Const Int | Mult Exp Exp
| Pair Exp Exp | Fst Exp | Snd Exp

data Value = VConst Int | VPair Value Value

eval :: Exp → Value
eval (Const n) = VConst n
eval (Mult x y) = let VConst m = eval x

VConst n = eval y
in VConst (m ∗ n)

eval (Pair x y) = VPair (eval x) (eval y)
eval (Fst x) = let VPair v = eval x in v
eval (Snd x) = let VPair v = eval x in v

In order to statically guarantee that the evaluation function produces values—
a sublanguage of the expression language—we are forced to replicate parts of
the expression structure in order to represent values. Consequently, we are also
forced to duplicate common functionality such as pretty printing. Compositional
data types provide a solution to this problem by relying on the well-known tech-
nique [11] of separating the recursive structure of terms from their signatures
(functors). Recursive functions, in the form of catamorphisms, can then be spec-
ified by algebras on these signatures.

For our example, it suffices to define the following two signatures in order to
separate values from general expressions:

data Val e = Const Int | Pair e e

data Op e = Mult e e | Fst e | Snd e

The novelty of compositional data types then is to combine signatures—and
algebras defined on them—in a modular fashion, by means of a formal sum of
functors:

data (f :+: g) a = Inl (f a) | Inr (g a)

It is easy to show that f :+: g is a functor whenever f and g are functors. We
thus obtain the combined signature for expressions:

type Sig = Op :+: Val

Finally, the type of terms over a (potentially compound) signature f can be
constructed as the fixed point of the signature f :

data Term f = Term {unTerm :: (f (Term f))}

53

We then have that Term Sig ∼= Exp and Term Val ∼= Value.2

However, using compound signatures constructed by formal sums means that
we have to explicitly tag constructors with the right injections. For instance, the
term 1 ∗ 2 has to be written as

e :: Term Sig
e = Term $ Inl $ Mult (Term $ Inr $ Const 1) (Term $ Inr $ Const 2)

Even worse, if we want to embed the term e into a type over an extended sig-
nature, say with syntactic sugar, then we have to add another level of injections
throughout its definition. To overcome this problem, injections are derived using
a type class:

class sub :≺: sup where
inj :: sub a → sup a
proj :: sup a → Maybe (sub a)

Using overlapping instance declarations, the sub-signature relation :≺: can be
constructively defined. However, due to restrictions of the type class system,
we have to restrict ourselves to instances of the form f :≺: g where f is atomic,
i.e. not a sum, and g is a right-associative sum, e.g. g1 :+: (g2 :+: g3) but not
(g1 :+: g2) :+: g3.

3 Using the carefully defined instances for :≺:, we can then define
injection and projection functions:

inject :: (g :≺: f)⇒ g (Term f)→ Term f
inject = Term . inj

project :: (g :≺: f)⇒ Term f → Maybe (g (Term f))
project = proj . unTerm

Additionally, to reduce the syntactic overhead, we use smart constructors—which
can be derived automatically, cf. Section 6.1—that already comprise the injection:

iMult :: (Op :≺: f)⇒ Term f → Term f → Term f
iMult x y = inject $ Mult x y

The term 1 ∗ 2 can now be written without syntactic overhead

e :: Term Sig
e = iConst 1 ‘iMult ‘ iConst 2

and we can even give e the open type (Val :≺: f ,Op :≺: f) ⇒ Term f . That is, e
can be used as a term over any signature containing at least values and operators.

Next, we want to define the evaluation function, i.e. a function with the type
Term Sig → Term Val . To this end, we define the following algebra class Eval :

type Alg f a = f a → a

2For clarity, we have omitted the strictness annotation to the constructor Term which is
necessary in order to obtain the indicated isomorphisms.

3We encourage the reader to consult Swierstra’s original paper [19] for the proper definition
of the :≺: relation.

54

class Eval f v where evalAlg :: Alg f (Term v)

instance (Eval f v ,Eval g v)⇒ Eval (f :+: g) v where
evalAlg (Inl x) = evalAlg x
evalAlg (Inr x) = evalAlg x

The instance declaration for sums is crucial, as it defines how to combine instances
for the different signatures—yet the structure of its declaration is independent
from the particular algebra class, and it can be automatically derived for any
algebra. Thus, we will omit the instance declarations lifting algebras to sums from
now on. The actual evaluation function can then be obtained from instances of
this algebra class as a catamorphism. In order to perform the necessary recursion,
we require the signature f to be an instance of Functor providing the method
fmap :: (a → b)→ f a → f b:

cata :: Functor f ⇒ Alg f a → Term f → a
cata f = f . fmap (cata f) . unTerm

eval :: (Functor f ,Eval f v)⇒ Term f → Term v
eval = cata evalAlg

What remains is to define the algebra instances for Val and Op. One approach
is to define instances Eval Val Val and Eval Op Val , however such definitions
are problematic if we later want to add a signature to the language which also
extends the signature for values, say with Boolean values. We could hope to
achieve such extendability by defining the instance

instance (Eval f v , v :≺: v ′)⇒ Eval f v ′

but this is problematic for two reasons: First, the relation :≺: only works for
atomic left-hand sides, and second, we can in fact not define this instance be-
cause the function evalAlg :: f (Term v) → Term v cannot be lifted to the type
f (Term v ′) → Term v ′, as the type of the domain also changes. Instead, the
correct approach is to leave the instance declarations open in the target signature:

instance (Val :≺: v)⇒ Eval Val v where
evalAlg = inject

instance (Val :≺: v)⇒ Eval Op v where
evalAlg (Mult x y) = iConst $ projC x ∗ projC y
evalAlg (Fst x) = fst $ projP x
evalAlg (Snd x) = snd $ projP x

projC :: (Val :≺: v)⇒ Term v → Int
projC v = case project v of Just (Const n)→ n

projP :: (Val :≺: v)⇒ Term v → (Term v ,Term v)
projP v = case project v of Just (Pair x y)→ (x , y)

Notice how the constructors Const and Pair are treated with a single inject , as
these are already part of the value signature.

55

2.2 Adding Sugar on Top

We now consider an extension of the expression language with syntactic sugar,
exemplified via negation and swapping of pairs:

data Sug e = Neg e | Swap e

type Sig ′ = Sug :+: Sig

Defining a desugaring function Term Sig ′ → Term Sig then amounts to
instantiating the following algebra class:

class Desug f g where
desugAlg :: Alg f (Term g)

desug :: (Functor f ,Desug f g)⇒ Term f → Term g
desug = cata desugAlg

Using overlapping instances, we can define a default translation for Val and
Op, so we only have to write the “interesting” cases:

instance (f :≺: g)⇒ Desug f g where
desugAlg = inject

instance (Val :≺: f ,Op :≺: f)⇒ Desug Sug f where
desugAlg (Neg x) = iConst (−1) ‘iMult ‘ x
desugAlg (Swap x) = iSnd x ‘iPair ‘ iFst x

Note how the context of the last instance reveals that desugaring of the ex-
tended syntax requires a target signature with at least base values, Val :≺: f , and
operators, Op :≺: f . By composing desug and eval , we get an evaluation function
for the extended language:

eval ′ :: Term Sig ′ → Term Val
eval ′ = eval . (desug :: Term Sig ′ → Term Sig)

The definition above shows that there is a small price to pay for leaving the
algebra instances open: We have to annotate the desugaring function in order to
pin down the intermediate signature Sig .

3 Extensions

In this section, we introduce some rather straightforward extensions to the com-
positional data types framework: Generic programming combinators, monadic
computations, and annotations.

3.1 Generic Programming

Most of the functions that are definable in the common generic programming
frameworks [14] can be categorised as either query functions d → r , which analyse
a data structure of type d by extracting some relevant information of type r from
parts of the input and compose them, or as transformation functions d → d ,

56

which recursively apply some type preserving functions to parts of the input.
The benefit that generic programming frameworks offer is that programmers only
need to specify the “interesting” parts of the computation. We will show how we
can easily reproduce this experience on top of compositional data types.

Applying a type-preserving function recursively throughout a term can be
implemented easily. The function below applies a given function in a bottom-up
manner:

trans :: Functor f ⇒ (Term f → Term f)→ (Term f → Term f)
trans f = cata (f . Term)

Other recursion schemes can be implemented just as easily.
In order to implement generic querying functions, we need a means to com-

bine the result of querying a functorial value. The standard type class Foldable
generalises folds over lists and thus provides us with exactly the interface we
need:4

class Foldable f where
foldl :: (a → b → a)→ a → f b → a

For example, an appropriate instance for the functor Val can be defined like
this:

instance Foldable Val where
foldl a (Const) = a
foldl f a (Pair x y) = (a ‘f ‘ x) ‘f ‘ y

With Foldable, a generic querying function can be implemented easily. It takes
a function q :: Term f → r to query a single node of the term and a function
c :: r → r → r to combine two results:

query :: Foldable f ⇒ (Term f → r)→ (r → r → r)→ Term f → r
query q c t =

foldl (λr x → r ‘c‘ query q c x) (q t) (unTerm t)

We can instantiate this scheme, for example, to implement a generic size
function:

gsize :: Foldable f ⇒ Term f → Int
gsize = query (const 1) (+)

A very convenient scheme of query functions introduced by Mitchell and
Runciman [12], in the form of the universe combinator, simply returns a list
of all subterms. Specific queries can then be written rather succinctly using list
comprehensions. Such a combinator can be implemented easily via query :

subs :: Foldable f ⇒ Term f → [Term f]
subs = query (λx → [x]) (++)

4Foldable also has other fold functions, but they are derivable from foldl and are not relevant
for our purposes.

57

However, in order to make the pattern matching in list comprehensions work,
we need to project the terms to the functor that contains the constructor we want
to match against:

subs ′ :: (Foldable f , g :≺: f)⇒ Term f → [g (Term f)]
subs ′ = mapMaybe project . subs

With this in place we can for example easily sum up all integer literals in an
expression:

sumInts :: (Val :≺: f)⇒ Term f → Int
sumInts t = sum [i | Const i ← subs ′ t]

This shows that we can obtain functionality similar to what dedicated generic
programming frameworks offer. In contrast to generic programming, however,
the compositional data type approach provides additional tools that allow us to
define functions with a stricter type that reflects the underlying transformation.
For example, we could have defined the desugaring function in terms of trans, but
that would have resulted in the “weaker” type Term Sig ′ → Term Sig ′ instead
of Term Sig ′ → Term Sig . The latter type witnesses that indeed all syntactic
sugar is removed!

Nevertheless, the examples show that at least the querying combinators query
and subs ′ provide an added value to our framework. Moreover, by applying stan-
dard optimisation techniques we can obtain run-time performance comparable
with top-performing generic programming libraries (cf. Section 6.2). In contrast
to common generic programming libraries [14], we only considered combinators
that work on a single recursive data type. This restriction is lifted in Section 5
when we move to mutually recursive data types.

3.2 Monadic Computations

We saw in Section 2 how to realise a modular evaluation function for a small
expression language in terms of catamorphisms defined by algebras. In order
to deal with type mismatches, we employed non-exhaustive case expressions.
Clearly, it would be better to use a monad instead. However, a monadic carrier
type m a would yield an algebra f (m a) → m a which means that we have to
explicitly sequence the nested monadic values of the argument. What we would
rather like to do is to write a monadic algebra [3]

type AlgM m f a = f a → m a

where the nested sequencing is done automatically and thus the monadic type
only occurs in the codomain. Again we are looking for a function that we already
know from lists:

sequence :: Monad m ⇒ [m a]→ m [a]

The standard type class Traversable [10] provides the appropriate generalisation
to functors:

58

class (Functor f ,Foldable f)⇒ Traversable f where
sequence :: Monad m ⇒ f (m a)→ m (f a)
mapM :: Monad m ⇒ (a → m b)→ f a → m (f b)

Here, mapM is simply the composition of sequence and fmap.

The definition of a monadic variant of catamorphisms can then be derived
by replacing fmap with mapM and function composition with monadic function
composition <=<:

cataM :: (Traversable f ,Monad m)⇒ AlgM m f a → Term f → m a
cataM f = f <=<mapM (cataM f) . unTerm

The following definitions illustrate how monadic catamorphisms can be used
to define a safe version of the evaluation function from Section 2, which properly
handles errors when applied to a bad term (using the Maybe monad for simplicity):

class EvalM f v where
evalAlgM :: AlgM Maybe f (Term v)

evalM :: (Traversable f ,EvalM f v)⇒ Term f → Maybe (Term v)
evalM = cataM evalAlgM

instance (Val :≺: v)⇒ EvalM Val v where
evalAlgM = return . inject

instance (Val :≺: v)⇒ EvalM Op v where
evalAlgM (Mult x y) = liftM iConst $ liftM2 (∗) (projCM x) (projCM y)
evalAlgM (Fst x) = liftM fst $ projPM x
evalAlgM (Snd x) = liftM snd $ projPM x

projCM :: (Val :≺: v)⇒ Term v → Maybe Int
projCM v = case project v of

Just (Const n)→ return n
→ Nothing

projPM :: (Val :≺: v)⇒ Term v → Maybe (Term v ,Term v)
projPM v = case project v of

Just (Pair x y)→ return (x , y)
→ Nothing

3.3 Products and Annotations

We have seen in Section 2 how the sum :+: can be used to combine signatures.
This inevitably leads to the dual construction:

data (f :∗: g) a = f a :∗: g a

In its general form, the product :∗: seems of little use: Each constructor of f can
be paired with each constructor of g . The special case, however, where g is a
constant functor, is easy to comprehend yet immensely useful:

data (f :&: c) a = f a :&: c

59

Now, every value of type (f :&: c) a is value from f a annotated with a value in c.
On the term level, this means that a term over f :&: c is a term over f in which
each subterm is annotated with a value in c.

This addresses a common problem in compiler implementations: How to deal
with annotations of AST nodes such as source positions or type information which
have only a limited lifespan or are only of interest for some parts of the compiler?

Given the signature Sig for our simple expression language and a type Pos
which represents source position information such as a file name and a line num-
ber, we can represent ASTs with source position annotations as Term (Sig :&:Pos)
and write a parser that provides such annotations [21].

The resulting representation yields a clean separation between the actual
data—the AST—and the annotation data—the source positions—which is purely
supplemental for supplying better error messages. The separation allows us to
write a generic function that strips off annotations when they are not needed:

remA :: (f :&: p) a → f a
remA (v :&:) = v

stripA :: Functor f ⇒ Term (f :&: p)→ Term f
stripA = cata (Term . remA)

With this in place, we can provide a generic combinator that lifts a function
on terms to a function on terms with annotations

liftA :: Functor f ⇒ (Term f → t)→ Term (f :&: p)→ t
liftA f = f . stripA

which works for instance for the evaluation function:

liftA eval :: Term (Sig :&: Pos)→ Term Val

But how do we actually define an algebra that uses the position annotations?
We are faced with the problem that the product :&: is applied to a sum, viz. Sig
= Op :+: Val . When defining the algebra for one of the summands, say Val , we
do not have immediate access to the factor Pos which is outside of the sum.

We can solve this issue in two ways: (a) Propagating the annotation using
a Reader monad or (b) providing operations that allow us to make use of the
right-distributivity of :&: over :+:. For the first approach, we only need to move
from algebras Alg f a to monadic algebras AlgM (Reader p) f a, for p the type
of the annotations. Given an algebra class, e.g. for type inference

class Infer f where
inferAlg :: AlgM (Reader Pos) f Type

we can lift it to annotated signatures:5

instance Infer f ⇒ Infer (f :&: Pos) where
inferAlg (v :&: p) = local (const p) (inferAlg v)

5The standard function local ::(r → r)→ Reader r a → Reader r a updates the environment
by the function given as first argument.

60

When defining the other instances of the class, we can use the monadic function
ask :: Reader Pos Pos to query the annotation of the current subterm. This
provides a clean interface to the annotations. It requires, however, that we define
a monadic algebra.

The alternative approach is to distribute the annotations over the sum, i.e.
instead of Sig :&: Pos we use the type

type SigP = Op :&: Pos :+: Val :&: Pos

Now, we are able to define a direct instance of the form

instance Infer (Val :&: Pos) where
inferAlg (v :&: p) = ...

where we have direct access to the position annotation p. However, now we
have the dual problem: We do not have immediate access to the annotation
at the outermost level of the sum. Hence, we cannot use the function liftA to
lift functions to annotated terms. Yet, this direction—propagating annotations
outwards—is easier to deal with. We have to generalise the function remA to also
deal with annotations distributed over sums. This is an easy exercise:

class RemA f g | f → g where
remA :: f a → g a

instance RemA (f :&: p) f where
remA (v :&:) = v

instance RemA f f ′ ⇒ RemA (g :&: p :+: f) (g :+: f ′) where
remA (Inl (v :&:)) = Inl v
remA (Inr v) = Inr (remA v)

Now the function remA works as before, but it can also deal with signatures such
as SigP , and the type of liftA becomes:

(Functor f ,RemA f g)⇒ (Term g → t)→ Term f → t

Both approaches have their share of benefits and drawbacks. The monadic
approach provides a cleaner interface but necessitates a monadic style. The ex-
plicit distribution is more flexible as it both allows us to access the annota-
tions directly by pattern matching or to thread them through a monad if that
is more convenient. On the other hand, it means that adding annotations is not
straightforwardly compositional anymore. The annotation :&:A has to be added
to each summand—just like compound signatures are not straightforwardly com-
positional, e.g. we have to write the sum f :+: g , for a signature f = f1 :+: f2,
explicitly as f1 :+: f2 :+: g .

4 Context Matters

In this section, we will discuss two problems that arise when defining term alge-
bras, i.e. algebras with a carrier of the form Term f . These problems occur when
we want to lift term algebras to algebras on annotated terms, and when trying

61

to compose term algebras. We will show how these problems can be addressed
by term homomorphisms, a quite common special case of term algebras. In order
to make this work, we shall generalise terms to contexts by using generalised
algebraic data types (GADTs) [16].

4.1 Propagating Annotations

As we have seen in Section 3.3, it is easy to lift functions on terms to functions
on annotated terms. It only amounts to removing all annotations before passing
the term to the original function.

But what if we do not want to completely ignore the annotation but propagate
it in a meaningful way to the output? Take for example the desugaring function
desug we have defined in Section 2 and which transforms terms over Sig ′ to terms
over Sig . How do we lift this function easily to a function of type

Term (Sig ′ :&: Pos)→ Term (Sig :&: Pos)

which propagates the annotations such that each annotation of a subterm in the
result is taken from the subterm it originated? For example, in the desugaring
of a term iSwap x to the term iSnd x ‘iPair ‘ iFst x , the top-most Pair -term, as
well as the two terms Snd x and Fst x should get the same annotation as the
original subterm iSwap x .

This propagation is independent of the transformation function. The same
scheme can also be used for the type inference function in order to annotate the
inferred type terms with the positions of the code that is responsible for each
part of the type terms.

It is clear that we will not be able provide a combinator of type

(Term f → Term g)→ Term (f :&: p)→ Term (g :&: p)

that lifts any function to one that propagates annotations meaningfully. We
cannot tell from a plain function of type Term f → Term g where the subterms
of the result term are originated in the input term. However, restricting ourselves
to term algebras will not be sufficient either. That is, also a combinator of type

Alg f (Term g)→ Alg (f :&: p) (Term (g :&: p))

is out of reach. While we can tell from a term algebra, i.e. a function of type
f (Term g) → Term g , that some initial parts of the result term originate
from the f -constructor at the root of the input, we do not know which parts.
The term algebra only returns a uniform term of type Term g which provides no
information as to which parts were constructed from the f -part of the f (Term g)
argument and which were copied from the (Term g)-part.

Term algebras are still too general! We need to move to a function type that
clearly states which parts are constructed from the “current” top-level symbol in
f and which are copied from its arguments in Term g . In order to express that
certain parts are just copied, we can make use of parametric polymorphism.

Instead of an algebra, we can define a function on terms also by a natural
transformation, a function of type ∀ a . f a → g a. Such a function can only

62

transform an f -constructor into a g-constructor and copy its arguments around.
Since the copying is made explicit in the type, defining a function that propagates
annotations through natural transformations is straightforward:

prop :: (f a → g a)→ (f :&: p) a → (g :&: p) a
prop f (v :&: p) = f v :&: p

Unfortunately, natural transformations are also quite limited. They only allow
us to transform each constructor of the original term to exactly one constructor
in the target term. This is for example not sufficient for the desugaring func-
tion, which translates a constructor application iSwap x into three constructor
applications iSnd x ‘iPair ‘ iFst x . In order to lift this restriction, we need to be
able to define a function of type ∀ a . f a → Context g a which transforms an f -
constructor application to a g-context application, i.e. several nested applications
of g-constructors potentially with some “holes” filled by values of type a.

We shall return to this idea in Section 4.4.

4.2 Composing Term Algebras

The benefit of having a desugaring function desug :: Term Sig ′ → Term Sig ,
which is able to reduce terms over the richer signature Sig ′ to terms over the core
signature Sig , is that it allows us to easily lift functions that are defined on terms
over Sig—such as evaluation and type inference—to terms over Sig ′:

eval ′ :: Term Sig ′ → Term Val
eval ′ = eval . (desug :: Term Sig ′ → Term Sig)

However, looking at how eval and desug are defined, viz. as catamorphisms, we
notice a familiar pattern:

eval ′ = cata evalAlg . cata desugAlg

This looks quite similar to the classic example of short-cut fusion:

map f .map g map (f . g)

An expression that traverses a data structure twice is transformed into one that
only does this once.

To replicate this on terms, we need an appropriately defined composition oper-
ator } on term algebras that allows us to perform a similar semantics-preserving
transformation:

cata f . cata g cata (f } g)

As a result, the input term only needs to be traversed once instead of twice and
the composition and decomposition of an intermediate term is avoided. The type
of } should be

Alg g (Term h)→ Alg f (Term g)→ Alg f (Term h)

Since term algebras are functions, the only way to compose them is by first
making them compatible and then performing function composition. Given two

63

term algebras a :: Alg g (Term h) and b :: Alg f (Term g), we can turn them into
compatible functions by lifting a to terms via cata. The problem now is that the
composition cata a . b has type f (Term g) → Term h, which is only an algebra
if g = h. This issue arises due to the simple fact that the carrier of an algebra
occurs in both the domain and the codomain of the function! Instead of a term
algebra of type f (Term g) → Term g , we need a function type in which the
domain is more independent from the codomain in order to allow composition.
Again, a type of the form ∀ a . f a → Context g a provides a solution.

4.3 From Terms to Contexts and back

We have seen in the two preceding sections that we need an appropriate notion of
contexts, i.e. a term which can also contain “holes” filled with values of a certain
type. Starting from the definition of terms, we can easily generalise it to contexts
by simply adding an additional case:

data Context f a = Context (f (Context f a))
| Hole a

Note that we can obtain a type isomorphic to the one above using summation:
Context f a ∼= Term (f :+: K a) for a type

data K a b = K a

Since we will use contexts quite often, we will use the direct representation.
Moreover, this allows us to tightly integrate contexts into our framework. Since
contexts are terms with holes, we also want to go the other way around by defining
terms as contexts without holes! This will allow us to lift functions defined on
terms—catamorphisms, injections etc.—to functions on contexts that provide the
original term-valued function as a special case.

The idea of defining terms as contexts without holes can be encoded in Haskell
quite easily as a generalised algebraic data type (GADT) [16] with a phantom type
Hole:

data Cxt :: ∗ → (∗ → ∗)→ ∗ → ∗ where
Term :: f (Cxt h f a)→ Cxt h f a
Hole :: a → Cxt Hole f a

data Hole

In this representation, we add an additional type argument that indicates
whether the context might contain holes or not. A context that does have a hole
must have a type of the form Cxt Hole f a. Our initial definition of contexts can
be recovered by defining:

type Context = Cxt Hole

That is, contexts may contain holes. On the other hand, terms must not contain
holes. This can be defined by:

type Term f = ∀ h a . Cxt h f a

64

While this is a natural representation of terms as a special case of the more
general concept of contexts, this usually causes some difficulties because of the
impredicative polymorphism. We therefore prefer an approximation of this type
that will do fine in almost any relevant case. Instead of universal quantification,
we use empty data types NoHole and Nothing :

type Term f = Cxt NoHole f Nothing

In practice, this does not pose any restriction whatsoever. Both NoHole and
Nothing are phantom types and do not contribute to the internal representation
of values. For the former this is obvious, for the latter this follows from the fact
that the phantom type NoHole witnesses that the context has indeed no holes
which would otherwise enforce the type Nothing . Hence, we can transform a term
to any context type over any type of holes:

toCxt :: Functor f ⇒ Term f → ∀ h a . Cxt h f a
toCxt (Term t) = Term (fmap toCxt t)

In fact, toCxt does not change the representation of the input term. Looking
at its definition, toCxt is operationally equivalent to the identity. Thus, we can
safely use the function unsafeCoerce ::a → b in order to avoid run-time overhead:

toCxt :: Functor f ⇒ Term f → ∀ h a . Cxt h f a
toCxt = unsafeCoerce

This representation of contexts and terms allows us to uniformly define func-
tions which work on both types. The function inject can be defined as before,
but now has the type

inject :: (g :≺: f)⇒ g (Cxt h f a)→ Cxt h f a

and thus works for both terms and proper contexts. The projection function has
to be extended slightly to accommodate for holes:

project :: (g :≺: f)⇒ Cxt h f a → Maybe (g (Cxt h f a))
project (Term t) = proj t
project (Hole) = Nothing

The relation between terms and contexts can also be illustrated algebraically:
If we ignore for a moment the ability to define infinite terms due to Haskell’s
non-strict semantics, the type Term F represents the initial F-algebra which has
the carrier T (F), the terms over signature F . The type of contexts Context F X
on the other hand represents the free F-algebra generated by X which has the
carrier T (F ,X), the terms over signature F and variables X .

Thus, for recursion schemes, we can move naturally from catamorphisms, i.e.
initial algebra semantics, to free algebra semantics:

free :: Functor f ⇒ Alg f b → (a → b)→ Cxt h f a → b
free alg v (Term t) = alg (fmap (free alg v) t)
free v (Hole x) = v x

65

freeM :: (Traversable f ,Monad m)⇒
AlgM m f b → (a → m b)→ Cxt h f a → m b

freeM alg v (Term t) = alg =<<mapM (freeM alg v) t
freeM v (Hole x) = v x

This yields the central function for working with contexts:

appCxt :: Functor f ⇒ Context f (Cxt h f a)→ Cxt h f a
appCxt = free Term id

This function takes a context whose holes are terms (or contexts) and returns
the term (respectively context) that is obtained by merging the two—essentially
by removing each constructor Hole. Notice how the type variables h and a are
propagated from the input context’s holes to the return type. In this way, we
can uniformly treat both terms and contexts.

4.4 Term Homomorphisms

The examples from Sections 4.1 and 4.2 have illustrated the need for defining
functions on terms by functions of the form ∀ a . f a → Context g a. Such
functions can then be transformed to term algebras via appCxt and, thus, be
lifted to terms:

termHom :: (Functor f ,Functor g)
⇒ (∀ a . f a → Context g a)→ Term f → Term g

termHom f = cata (appCxt . f)

In fact, the polymorphism in the type ∀ a . f a → Context g a guarantees
that arguments of the functor f can only be copied—not inspected or modified.
This restriction captures a well-known concept from tree automata theory:

Definition 1 (term homomorphisms6 [2, 20]). Let F and G be two sets of function
symbols, possibly not disjoint. For each n > 0, let Xn = {x1, . . . , xn} be a set of
variables disjoint from F and G. Let hF be a mapping which, with f ∈ F of arity
n, associates a context tf ∈ T (G,Xn). The term homomorphism h : T (F) →
T (G) determined by hF is defined as follows:

h(f(t1, . . . , tn)) = tf {x1 7→ h(t1), . . . , xn 7→ h(tn)}

The term homomorphism h is called symbol-to-symbol if, for each f ∈ F ,
tf = g(y1, . . . , ym) with g ∈ G, y1, . . . , ym ∈ Xn, i.e. each tf is a context of height
1. It is called ε-free if, for each f ∈ F , tf 6∈ Xn, i.e. each tf is a context of height
at least 1.

Applying the placeholders-via-naturality principle of Hasuo et al. [5], term
homomorphisms are captured by the following type:

type TermHom f g = ∀ a . f a → Context g a

6Actually, Thatcher [20] calls them “tree homomorphisms”. But we prefer the notion “term”
over “tree” in our context.

66

As we did for other functions on terms, we can generalise the application of
term homomorphism uniformly to contexts:

termHom :: (Functor f ,Functor g)
⇒ TermHom f g → Cxt h f a → Cxt h g a

termHom f (Term t) = appCxt (f (fmap (termHom f) t))
termHom (Hole b) = Hole b

The use of explicit pattern matching in lieu of defining the function as a free
algebra homomorphism free (appCxt . f) Hole is essential in order to obtain this
general type. In particular, the use of the proper GADT constructor Hole, which
has result type Context g a, makes this necessary.

Of course, the polymorphic type of term homomorphisms restricts the class
of functions that can be defined in this way. It can be considered as a special
form of term algebra: appCxt . f is the term algebra corresponding to the term
homomorphism f . But not every catamorphism is also a term homomorphism.
For certain term algebras we actually need to inspect the arguments of the functor
instead of only shuffling them around. For example, we cannot hope to define
the evaluation function eval as a term homomorphism.

Some catamorphisms, however, can be represented as term homomorphisms,
e.g. the desugaring function desug :

class (Functor f ,Functor g)⇒ Desug f g where
desugHom :: TermHom f g

Lifting term homomorphisms to sums is standard. The instances for the functors
that do not need to be desugared can be implemented by turning a single functor
application to a context of height 1, and using overlapping instances:

simpCxt :: Functor f ⇒ f a → Context f a
simpCxt = Term . fmap Hole

instance (f :≺: g ,Functor g)⇒ Desug f g where
desugHom = simpCxt . inj

Turning to the instance for Sug , we can see why a term homomorphism suffices for
implementing desug . In the original catamorphic definition, we had for example

desugAlg (Neg x) = iConst (−1) ‘iMult ‘ x

Here we only need to copy the argument x of the constructor Neg and define the
appropriate context around it. This definition can be copied almost verbatim for
the term homomorphism:

desugHom (Neg x) = iConst (−1) ‘iMult ‘ Hole x

We only need to embed the x as a hole. The same also applies to the other defining
equation. In order to make the definitions more readable we add a convenience
function to the class Desug :

class (Functor f ,Functor g)⇒ Desug f g where
desugHom :: TermHom f g

67

desugHom = desugHom ′ . fmap Hole
desugHom ′ :: Alg f (Context g a)
desugHom ′ x = appCxt (desugHom x)

Now we can actually copy the catamorphic definition one-to-one:

instance (Op :≺: f ,Val :≺: f ,Functor f)⇒ Desug Sug f where
desugHom ′ (Neg x) = iConst (−1) ‘iMult ‘ x
desugHom ′ (Swap x) = iSnd x ‘iPair ‘ iFst x

In the next two sections, we will show what we actually gain by adopting the
term homomorphism approach. We will reconsider and address the issues that
we identified in Sections 4.1 and 4.2.

4.4.1 Propagating Annotations through Term Homomorphisms

The goal is now to take advantage of the structure of term homomorphisms in
order to automatically propagate annotations. This boils down to transforming a
function of type TermHom f g to a function of type TermHom (f :&: p) (g :&: p).
In order to do this, we need a function that is able to annotate a context with a
fixed annotation. Such a function is in fact itself a term homomorphism:

ann :: Functor f ⇒ p → Cxt h f a → Cxt h (f :&: p) a
ann p = termHom (simpCxt . (:&: p))

To be more precise, this function is a symbol-to-symbol term homomorphism—
(:&:p) is of type ∀ a . f a → (f :&: p) a—that maps each constructor to exactly
one constructor. The composition with simpCxt lifts it to the type of general
term homomorphisms.

The propagation of annotations is now simple:

propAnn :: Functor g ⇒ TermHom f g → TermHom (f :&: p) (g :&: p)
propAnn f (t :&: p) = ann p (f t)

The annotation of the current subterm is propagated to the context created by
the original term homomorphism.

This definition can now be generalised—as we did in Section 3.3—such that
it can also deal with annotations that have been distributed over a sum of signa-
tures. Unfortunately, the type class RemA that we introduced for dealing with
such distributed annotations is not enough for this setting as we need to extract
and inject annotations now:

class DistAnn f p f ′ | f ′ → f , f ′ → p where
injectA :: p → f a → f ′ a
projectA :: f ′ a → (f a, p)

An instance of DistAnn f p f ′ indicates that signature f ′ is a variant of f anno-
tated with values of type p. The relevant instances are straightforward:

instance DistAnn f p (f :&: p) where
injectA c v = v :&: c

68

projectA (v :&: p) = (v , p)

instance DistAnn f p f ′ ⇒ DistAnn (g :+: f) p ((g :&: p) :+: f ′) where
injectA c (Inl v) = Inl (v :&: c)
injectA c (Inr v) = Inr (injectA c v)

projectA (Inl (v :&: p)) = (Inl v , p)
projectA (Inr v) = let (v ′, p) = projectA v

in (Inr v ′, p)

We can then make use of this infrastructure in the definition of ann and
propAnn:

ann :: (DistAnn f p g ,Functor f ,Functor g)
⇒ p → Cxt h f a → Cxt h g a

ann p = termHom (simpCxt . injectA p)

propAnn :: (DistAnn f p f ′,DistAnn g p g ′,Functor g ,Functor g ′)
⇒ TermHom f g → TermHom f ′ g ′

propAnn f t ′ = let (t , p) = projectA t ′ in ann p (f t)

We can now use propAnn to propagate source position information from a
full AST to its desugared version:

type SigP ′ = Sug :&: Pos :+: SigP

desugHom ′ :: TermHom SigP ′ SigP
desugHom ′ = propAnn desugHom

4.4.2 Composing Term Homomorphisms

Another benefit of the function type of term homomorphisms over term algebras
is the simple fact that its domain f a is independent of the target signature g :

type TermHom f g = ∀ a . f a → Context g a

This enables us to compose term homomorphisms:

(}) :: (Functor g ,Functor h)⇒
TermHom g h → TermHom f g → TermHom f h

f } g = termHom f . g

Here we make use of the fact that termHom also allows us to apply a term
homomorphism to a proper context—termHom f has type ∀ a . Context g a →
Context h a.

Although the occurrence of the target signature in the domain of term algebras
prevents them from being composed with each other, the composition with a term
homomorphism is still possible:

(�) :: Functor g ⇒ Alg g a → TermHom f g → Alg f a
alg � talg = free alg id . talg

69

The ability to compose term homomorphisms with term algebras or other
term homomorphisms allows us to perform program transformations in the vein of
short-cut fusion [4]. For an example, recall that we have extended the evaluation
to terms over Sig ′ by precomposing the evaluation function with the desugaring
function:

eval ′ :: Term Sig ′ → Term Val
eval ′ = eval . desug

The same can be achieved by composing on the level of algebras respectively term
homomorphisms instead of the level of functions:

eval ′ :: Term Sig ′ → Term Val
eval ′ = cata (evalAlg � desugHom)

Using the rewrite mechanism of GHC [7], we can make this optimisation
automatic, by including the following rewrite rule:

"cata/termHom" ∀ (a :: Alg g d) (h :: TermHom f g) x .
cata a (termHom h x) = cata (a � h) x

One can easily show that this transformation is sound. Moreover, a similar rule
can be devised for composing two term homomorphisms. The run-time benefits
of these optimisation rules are considerable as we will see in Section 6.2.

4.4.3 Monadic Term Homomorphisms

Like catamorphisms, we can also easily lift term homomorphisms to monadic
computations. We only need to lift the computations to a monadic type and
use mapM instead of fmap for the recursion respectively use monadic function
composition <=< instead of pure function composition:

type TermHomM m f g = ∀ a . f a → m (Context g a)

termHomM :: (Traversable f ,Functor g ,Monad m)
⇒ TermHomM m f g → Cxt h f a → m (Cxt h g a)

termHomM f (Term t) =
liftM appCxt . f <=<mapM (termHomM f) t

termHomM (Hole b) = return (Hole b)

The same strategy yields monadic variants of } and �

(}̂) :: (Traversable g ,Functor h,Monad m)⇒
TermHomM m g h → TermHomM m f g

→ TermHomM m f h
f }̂ g = termHomM f <=< g

(�̂) :: (Traversable g ,Monad m)⇒
AlgM m g a → TermHomM m f g → AlgM m f a

alg �̂ talg = freeM alg return <=< talg

In contrast to pure term homomorphisms, one has to be careful when applying
these composition operators: The fusion equation

70

termHomM (f }̂ g) = termHomM f <=< termHomM g

does not hold in general! However, Fokkinga [3] showed that for monads satisfying
a certain distributivity law, the above equation indeed holds. An example of such
a monad is the Maybe monad. Furthermore, the equation is also true whenever
one of the term homomorphisms is in fact pure, i.e. of the form return .h for a non-
monadic term homomorphism h. The same also applies to the fusion equation for
�̂. Nevertheless, it is still possible to devise rewrite rules that perform short-cut
fusion under these restrictions.

An example of a monadic term homomorphism is the following function that
recursively coerces a term to a sub-signature:

deepProject :: (Functor g ,Traversable f , g :≺: f)
⇒ Term f → Maybe (Term g)

deepProject = termHomM (liftM simpCxt . proj)

As proj is, in fact, a monadic symbol-to-symbol term homomorphism we have to
compose it with simpCxt to obtain a general monadic term homomorphism.

4.5 Beyond Catamorphisms

So far we have only considered (monadic) algebras and their (monadic) catamor-
phisms. It is straightforward to implement the machinery for programming in
coalgebras and their anamorphisms:

type Coalg f a = a → f a

ana :: Functor f ⇒ Coalg f a → a → Term f
ana f x = Term (fmap (ana f) (f x))

In fact, also more advanced recursion schemes can be accounted for in our frame-
work: This includes paramorphisms and histomorphisms as well as their dual
notions of apomorphisms and futumorphisms [22]. Similarly, monadic variants of
these recursion schemes can be derived using the type class Traversable.

As an example of the abovementioned recursion schemes, we want to single out
futumorphisms, as they can be represented conveniently using contexts and in fact
are more natural to program than run-of-the-mill anamorphisms. The algebraic
counterpart of futumorphisms are cv-coalgebras [22]. In their original algebraic
definition they look rather cumbersome (cf. [22, Ch. 4.3]). If we implement cv-
coalgebras in Haskell using contexts, the computation they denote becomes clear
immediately:

type CVCoalg f a = a → f (Context f a)

Anamorphisms only allow us to construct the target term one layer at a time.
This can be plainly seen from the type a → f a of coalgebras. Futumorphisms on
the other hand allow us to construct an arbitrary large part of the target term.
Instead of only producing a single application of a constructor, cv-coalgebras pro-
duce a non-empty context, i.e. a context of height at least 1. The non-emptiness of
the produced contexts guarantees that the resulting futumorphism is productive.

71

For the sake of brevity, we lift this restriction to non-empty contexts and
consider generalised cv-coalgebras:

type CVCoalg f a = a → Context f a

Constructing the corresponding futumorphism is simple and almost the same as
for anamorphisms:

futu :: Functor f ⇒ CVCoalg f a → a → Term f
futu f x = appCxt (fmap (futu f) (f x))

Generalised cv-coalgebras also occur when composing a coalgebra and a term
homomorphism, which can be implemented by plain function composition:

compCoa :: TermHom f g → Coalg f a → CVCoalg g a
compCoa hom coa = hom . coa

This can then be lifted to the composition of a generalised cv-coalgebra and a
term homomorphism, by running the term homomorphism:

compCVCoalg :: (Functor f ,Functor g)
⇒ TermHom f g → CVCoalg f a → CVCoalg g a

compCVCoalg hom coa = termHom hom . coa

With generalised cv-coalgebras one has to be careful, though, as they might not be
productive. However, the above constructions can be replicated with ordinary cv-
coalgebras. Instead of general term homomorphisms, we have to restrict ourselves
to ε-free term homomorphisms [2] which are captured by the type:

type TermHom ′ f g = ∀ a . f a → g (Context g a)

This illustrates that with the help of contexts, (generalised) futumorphisms
provide a much more natural coalgebraic programming model than anamor-
phisms.

5 Mutually Recursive Data Types and GADTs

Up to this point we have only considered the setting of a single recursively defined
data type. We argue that this is the most common setting in the area we are
targeting, viz. processing and analysing abstract syntax trees. Sometimes it is,
however, convenient to encode certain invariants of the data structure, e.g. well-
typing of ASTs, as mutually recursive data types or GADTs. In this section,
we will show how this can be encoded as a family of compositional data types
by transferring the construction of Johann and Ghani [6] to compositional data
types.

Recall that the idea of representing recursive data types as fixed points of
functors is to abstract from the recursive reference to the data type that should
be defined. Instead of a recursive data type

data Exp = · · · | Mult Exp Exp | Fst Exp

72

we define a functor

data Sig e = · · · | Mult e e | Fst e

The trick for defining mutually recursive data types is to use phantom types
as labels that indicate which data type we are currently in. As an example,
reconsider our simple expression language over integers and pairs. But now we
define them in a family of two mutually recursive data types in order to encode
the expected invariants of the expression language, e.g. the sum of two integers
yields an integer:

data IExp = Const Int | Mult IExp IExp
| Fst PExp | Snd PExp

data PExp = Pair IExp IExp

We can encode this on signatures by adding an additional type argument
which indicates the data types we are expecting as arguments to the constructors:

data Pair
data ISig e l = Const Int | Mult (e Int) (e Int)

| Fst (e Pair) | Snd (e Pair)
data PSig e l = Pair (e Int) (e Int)

Notice that the type variable e that is inserted in lieu of recursion is now of kind
∗ → ∗ as we consider a family of types. The “label type”—Int respectively Pair—
then selects the desired type from this family. The definitions above, however,
only indicate which data type we are expecting, e.g. Mult expects two integer
expressions and Swap a pair expression. In order to also label the result type
accordingly, we rather want to define ISig and PSig as

data ISig e Int = ...
data PSig e Pair = ...

Using GADTs we can do this, although in a syntactically more verbose way:

data ISig e l where
Const :: Int → ISig e Int
Mult :: e Int → e Int → ISig e Int
Fst ,Snd :: e Pair → ISig e Int

data PSig e l where
Pair :: e Int → e Int → PSig e Pair

Notice that signatures are not functors of kind ∗ → ∗ anymore. Instead, they
have the kind (∗ → ∗)→ (∗ → ∗), thus adding one level of indirection.

Following previous work [6, 25], we can formulate the actual recursive defini-
tion of terms as follows:

data Term f l = Term (f (Term f) l)

The first argument f is a signature, i.e. has the kind (∗ → ∗) → (∗ → ∗). The
type constructor Term recursively applies the signature f while propagating the

73

label l according to the signature. Note that Term f is of kind ∗ → ∗. A value of
type Term f l is a mutually recursive data structure with topmost label l . In the
recursive definition, Term f is applied to a signature f , i.e. in the case of f being
ISig or PSig it instantiates the type variable e in their respective definitions. The
type signatures of ISig and PSig can thus be read as propagation rules for the
labels: For example, Fst takes a term with top-level labeling Pair and returns a
term with top-level labeling Int .

5.1 Higher-Order Functors

It is important to realise that the transition to a family of mutually recursive
data types amounts to nothing more than adding a layer of indirection. A sig-
nature, which has previously been a functor, is now a (generalised) higher-order
functor [6]:

type f .→ g = ∀ a . f a → g a

class HFunctor h where
hfmap :: f .→ g → h f .→ h g

instance HFunctor ISig where
hfmap (Const i) = Const i
hfmap f (Mult x y) = Mult (f x) (f y)
hfmap f (Fst x) = Fst (f x)

The function hfmap witnesses that a natural transformation f .→ g from functor
f to functor g is mapped to a natural transformation h f .→ h g .

Observe the simplicity of the pattern that we used to lift our representation
of compositional data types to mutually recursive types: Replace functors with
higher-order functors, and instead of the function space → consider the natural
transformation space .→. This simple pattern will turn out to be sufficient in order
to lift most of the concepts of compositional data types to mutually recursive data
types. Sums and injections can thus be represented as follows:

data (f :+: g) (a :: ∗ → ∗) l = Inl (f a l) | Inr (g a l)

type NatM m f g = ∀ i . f i → m (g i)

class (sub :: (∗ → ∗)→ ∗ → ∗) :≺: sup where
inj :: sub a .→ sup a
proj :: NatM Maybe (sup a) (sub a)

Lifting HFunctor instances to sums works in the same way as we have seen for
Functor . The same goes for instances of :≺:.

With the summation :+: in place we can define the family of data types that
defines integer and pair expressions:

type Expr = Term (ISig :+: PSig)

This is indeed a family of types. We obtain the type of integer expressions with
Expr Int and the type of pair expressions as Expr Pair .

74

5.2 Representing GADTs

Before we continue with lifting recursion schemes such as catamorphisms to the
higher-order setting, we reconsider our example of mutually recursive data types.
In contrast to the representation using a single recursive data type, the definition
of IExp and PExp does not allow nested pairs—pairs are always built from integer
expressions. The same goes for Expr Int and Expr Pair , respectively. This
restriction is easily lifted by using a GADT instead:

data SExp l where
Const :: Int → SExp Int
Mult :: SExp Int → SExp Int → SExp Int
Fst :: SExp (s, t)→ SExp s
Snd :: SExp (s, t)→ SExp t
Pair :: SExp s → SExp t → SExp (s, t)

This standard GADT representation can be mapped directly to our signature
definitions. However, instead of defining a single GADT, we proceed as we did
with non-mutually recursive compositional data types. We split the signature
into values and operations:

data Val e l where
Const :: Int → Val e Int
Pair :: e s → e t → Val e (s, t)

data Op e l where
Mult :: e Int → e Int → Op e Int
Fst :: e (s, t)→ Op e s
Snd :: e (s, t)→ Op e t

type Sig = Op :+: Val

Combining the above two signatures then yields the desired family of mutually
recursive data types Term Sig ∼= SExp.

This shows that the transition to higher-order functors also allows us to nat-
urally represent GADTs in a modular fashion.

5.3 Recursion Schemes

We shall continue to apply the pattern for shifting to mutually recursive data
types: Replace Functor with HFunctor and function space → with the space of
natural transformations .→. Take, for example, algebras and catamorphisms:

type Alg f a = f a .→ a

cata :: HFunctor f ⇒ Alg f a → Term f .→ a
cata f (Term t) = f (hfmap (cata f) t)

Now, an algebra has a family of types a ::∗ → ∗ as carrier. That is, we have to
move from algebras to many-sorted algebras. Representing many-sorted algebras
comes quite natural in most cases. For example, the evaluation algebra class can
be recast as a many-sorted algebra class as follows:

75

class Eval e v where
evalAlg :: Alg e (Term v)

eval :: (HFunctor e,Eval e v)⇒ Term e .→ Term v
eval = cata evalAlg

Here, we can make use of the fact that Term v is in fact a family of types and
can thus be used as a carrier of a many-sorted algebra.

Except for the slightly more precise type of projC and projP , the definition of
Eval is syntactically equal to its non-mutually recursive original from Section 2.1:

instance (Val :≺: v)⇒ Eval Val v where
evalAlg = inject

instance (Val :≺: v)⇒ Eval Op v where
evalAlg (Mult x y) = iConst $ projC x ∗ projC y
evalAlg (Fst x) = fst $ projP x
evalAlg (Snd x) = snd $ projP x

projC :: (Val :≺: v)⇒ Term v Int → Int
projC v = case project v of Just (Const n)→ n

projP :: (Val :≺: v)⇒ Term v (s, t)→ (Term v s,Term v t)
projP v = case project v of Just (Pair x y)→ (x , y)

In some cases, it might be a bit more cumbersome to define and use the carrier
of a many-sorted algebra. However, most cases are well-behaved and we can use
the family of terms Term f as above or alternatively the identity respectively the
constant functor:

data I a = I {unI :: a }
data K a b = K {unK :: a }

For example, a many-sorted algebra class to evaluate expressions directly into
Haskell values of the corresponding types can be defined as follows:

class EvalI f where
evalAlgI :: Alg f I

evalI :: (EvalI f ,HFunctor f)⇒ Term f t → t
evalI = unI . cata evalAlgI

The lifting of other recursion schemes whether algebraic or coalgebraic can
be achieved in the same way as illustrated for catamorphisms above. The nec-
essary changes are again quite simple. Similarly to the type class HFunctor , we
can obtain lifted versions of Foldable and Traversable which can then be used to
implement generic programming techniques and to perform monadic computa-
tions, respectively. The generalisation of terms to contexts and the corresponding
notion of term homomorphisms is also straightforward. The same short-cut fu-
sion rules that we have considered for simple compositional data types can be
implemented without any surprises as well.

The only real issue worth mentioning is that the generic querying combinator
query needs to produce result values of a fixed type as opposed to a family of

76

types. The propagation of types defined by GADTs cannot be captured by the
simple pattern of the querying combinator. Thus, the querying combinator is
typed as follows:

query :: HFoldable f ⇒ (∀ i . Term f i → r)
→ (r → r → r)→ Term f i → r

For the subs combinator, which produces a list of all subterms, the issue is similar:
Term f is a type family, thus [Term f] is not a valid type. However, we can obtain
the desired type of list of terms by existentially quantifying over the index type
using the GADT

data A f = ∀ i .A (f i)

The type of subs can now be stated as follows:

subs :: HFoldable f ⇒ Term f i → [A (Term f)]

6 Practical Considerations

Besides showing the expressiveness and usefulness of the framework of composi-
tional data types, we also want to showcase its practical applicability as a software
development tool. To this end, we consider aspects of usability and performance
impacts as well.

6.1 Generating Boilerplate Code

The implementation of recursion schemes depends on the signatures being in-
stances of the type class Functor . For generic programming techniques and
monadic computations, we rely on the type classes Foldable and Traversable,
respectively. Additionally, higher-order functors necessitate a set of lifted vari-
ants of the abovementioned type classes. That is a lot of boilerplate code! Writing
and maintaining this code would almost entirely defeat the advantage of using
compositional data types in the first place.

Luckily, by leveraging Template Haskell [17], instance declarations of all
generic type classes that we have mentioned in this paper can be generated auto-
matically at compile time similar to Haskell’s deriving mechanism. Even though
some Haskell packages such as derive already provide automatically derived in-
stances for some of the standard classes like Functor , Foldable and Traversable,
we chose to implement the instance generators for these as well. The heavy
use of the methods of these classes for implementing recursion schemes means
that they contribute considerably to the computational overhead! Automatically
deriving instance declarations with carefully optimised implementations of each
of the class methods, have proven to yield substantial run-time improvements,
especially for monadic computations.

We already mentioned that we assume with each constructor

Constr :: t1 → · · · → tn → f a

77

of a signature f , a smart constructor defined by

iConstr :: f :≺: g ⇒ s1 → · · · → sn → Term g
iConstr x1 . . . xn = inject $ Constr x1 . . . xn

where the types si are the same as ti except with occurrences of the type vari-
able a replaced by Term g . These smart constructors can be easily generated
automatically using Template Haskell.

Another issue is the declaration of instances of type classes Eq , Ord and Show
for types of the form Term f . This can be achieved by lifting these type classes
to functors, e.g. for Eq :

class EqF f where
eqF :: Eq a ⇒ f a → f a → Bool

From instances of this class, corresponding instances of Eq for terms and contexts
can be derived:

instance (EqF f ,Eq a)⇒ Eq (Cxt h f a) where
(≡) (Term t1) (Term t2) = t1 ‘eqF ‘ t2
(≡) (Hole h1) (Hole h2) = h1 ≡ h2
(≡) = False

Instances of EqF , OrdF and ShowF can be derived straightforwardly using
Template Haskell which then yield corresponding instances of Eq , Ord and Show
for terms and contexts. The thus obtained instances are equivalent to the ones
obtained from Haskell’s deriving mechanism on corresponding recursive data
types.

Figure 1 demonstrates the complete source code needed in order to implement
some of the earlier examples in our library.

6.2 Performance Impact

In order to minimise the overhead of the recursion schemes, we applied some
simple optimisations to the implementation of the recursion schemes themselves.
For example, cata is defined as

cata :: ∀ f a . Functor f ⇒ Alg f a → Term f → a
cata f = run

where run :: Term f → a
run (Term t) = f (fmap run t)

The biggest speedup, however, can be obtained by providing automatically gen-
erated, carefully optimised implementations for each method of the type classes
Foldable and Traversable.

In order to gain speedup in the implementation of generic programming com-
binators, we applied the same techniques as Mitchell and Runciman [12] by lever-
aging short-cut fusion [4] via build . The subs combinator is thus defined as:

subs :: ∀ f . Foldable f ⇒ Term f → [Term f]
subs t = build (f t) where

78

import Data.Comp

import Data.Comp.Derive

import Data.Comp.Show ()

import Data.Comp.Desugar

data Val e = Const Int | Pair e e

data Op e = Mult e e | Fst e | Snd e

data Sug e = Neg e | Swap e

type Sig = Op :+: Val

type Sig’ = Sug :+: Sig

$(derive [makeFunctor, makeFoldable, makeTraversable,

makeShowF, smartConstructors] [’’Val, ’’Op, ’’Sug])

-- ∗ Term Evaluation

class Eval f v where evalAlg :: Alg f (Term v)

$(derive [liftSum] [’’Eval]) -- lift Eval to coproducts

eval :: (Functor f, Eval f v) ⇒ Term f → Term v

eval = cata evalAlg

instance (Val :<: v) ⇒ Eval Val v where

evalAlg = inject

instance (Val :<: v) ⇒ Eval Op v where

evalAlg (Mult x y) = iConst $ projC x ∗ projC y

evalAlg (Fst x) = fst $ projP x

evalAlg (Snd x) = snd $ projP x

projC :: (Val :<: v) ⇒ Term v → Int

projC v = case project v of Just (Const n) → n

projP :: (Val :<: v) ⇒ Term v → (Term v, Term v)

projP v = case project v of Just (Pair x y) → (x,y)

-- ∗ Desugaring

instance (Op :<: f, Val :<: f, Functor f) ⇒ Desugar Sug f where

desugHom’ (Neg x) = iConst (-1) ‘iMult‘ x

desugHom’ (Swap x) = iSnd x ‘iPair‘ iFst x

eval’ :: Term Sig’ → Term Val

eval’ = eval . (desugar :: Term Sig’ → Term Sig)

Figure 1: Example usage of the compositional data types library.

79

Function hand-written random (10) random (20)

desugHom 3.6 · 10−1 5.0 · 10−3 6.1 · 10−6

desugCata 1.8 · 10−1 4.41 · 10−3 5.3 · 10−6

inferDesug (3.38) 1.11 (3.45) 1.52 (3.14) 0.82
inferDesugM (2.68) 1.38 (2.87) 1.61 (2.79) 0.84
infer 2.39 2.29 2.65
inferM 1.06 1.30 1.68
evalDesug (6.40) 2.64 (3.13) 1.79 (4.74) 0.89
evalDesugM (7.32) 4.34 (6.22) 3.47 (9.69) 2.98
eval 2.58 1.84 1.64
evalDirect 6.10 3.96 3.62
evalM 3.41 4.78 7.52
evalDirectM 5.72 4.90 4.56
contVar 1.92 1.97 3.22
freeVars 1.23 1.26 1.41

contVarC 10.05 7.01 11.68
contVarU 8.24 5.64 11.21
freeVarsC 2.34 2.04 1.68
freeVarsU 2.03 1.75 1.58

Table 1: Run-time of functions on compositional data types (as multiples of the
run-time of an implementation using ordinary algebraic data types).

f :: Term f → (Term f → b → b)→ b → b
f t cons nil = t ‘cons‘ foldl (λu s → f s cons u) nil (unTerm t)

Instead of building the result list directly, we use the build combinator which
then can be eliminated if combined with a consumer such as a fold or a list
comprehension.

Table 1 shows the run-time performance of our framework for various func-
tions dealing with ASTs: Desugaring (desug), type inference (infer), expression
evaluation (eval), and listing respectively searching for free variables (freeVars,
contVar). The Hom and Cata version of desug differ in that the former is defined
as a term homomorphism, the latter as a catamorphism. For eval and infer , the
suffix Desug indicates that the computation is prefixed by a desugaring phase (us-
ing desugHom), the suffix M indicates monadic variants (for error handling), and
Direct indicates that the function was implemented not as a catamorphism but
using explicit recursion. The numbers in the table are multiples of the run-time
of an implementation using ordinary algebraic data types and recursion. The
numbers in parentheses indicate the run-time factor if the automatic short-cut
fusion described in Section 4.4.2 is disabled. Each function is tested on three dif-
ferent inputs of increasing size. The first is a hand-written “natural” expression
consisting of 16 nodes. The other two expressions are randomly generated expres-
sions of depth 10 and 20, respectively, which corresponds to approximately 800
respectively 200,000 nodes. This should reveal how the overhead of our frame-
work scales. The benchmarks were performed with the criterion framework using
GHC 7.0.2 with optimisation flag -O2.

80

As a pleasant surprise, we observe that the penalty of using compositional data
types is comparatively low. It is in the same ballpark as for generic programming
libraries [12, 15]. For some functions we even obtain a speedup! The biggest
surprise is, however, the massive speedup gained by the desugaring function.
In both its catamorphic and term-homomorphic version, it seems to perform
asymptotically better than the classic implementation, yielding a speedup of over
five orders of magnitude. We were also surprised to see that (except for one case)
functions programmed as catamorphisms outperformed functions using explicit
recursion! In fact, with GHC 6.12, the situation was reversed.

Moreover, we observe that the short-cut fusion rules implemented in our
framework uniformly yield a considerable speedup of up to factor five. As a
setback, however, we have to recognise that implementing desugaring as a term
homomorphism yields a slowdown of factor up to two compared to its catamor-
phic version.

Finally, we compared our implementation of generic programming techniques
with Uniplate [12], one of the top-performing generic programming libraries. In
particular, we looked at its universe combinator which computes the list of all
subexpressions. We have implemented this combinator in our framework as subs.
In Table 1, our implementation is indicated by the suffix C , the Uniplate imple-
mentation, working on ordinary algebraic data types, is indicated by U . We can
see that we are able to obtain comparable performance in all cases.

7 Discussion

Starting from Swierstra’s data types à la carte [19], we have constructed a frame-
work for representing data types in a compositional fashion that is readily usable
for practical applications. Our biggest contribution is the generalisation of terms
to contexts which allow us to capture the notion of term homomorphisms. Term
homomorphisms provide a rich structure that allows flexible reuse and enables
simple but effective optimisation techniques. Moreover, term homomorphisms
can be easily extended with a state. Depending on how the state is propagated,
this yields bottom-up respectively top-down tree transducers [2]. The techniques
for short-cut fusion and propagation of annotations can be easily adapted.

7.1 Related Work

The definition of monadic catamorphisms that we use goes back to Fokkinga [3].
He only considers monads satisfying a certain distributivity law. However, this
distributivity is only needed for the fusion rules of Section 4.4.3 to be valid.
Steenbergen et al. [21] use the same approach to implement catamorphisms with
errors. In contrast, Visser and Löh [23] consider monadic catamorphism for which
the monadic effect is part of the term structure.

The construction to add annotations to functors is also employed by Steen-
bergen et al. [21] to add detailed source position annotations to ASTs. However,
since they are considering general catamorphisms, they are not able to provide
a means to propagate annotations. Moreover, since Steenbergen et al. do not
account for sums of functors, the distribution of annotations over sums is not an

81

issue for them. Visser and Löh [23] consider a more general form of annotations
via arbitrary functor transformations. Unfortunately, this generality prohibits
the automatic propagation of annotations as well as their distribution over sums.

Methods to represent mutually recursive data types as fixed points of (reg-
ular) functors have been explored to some extent [1, 8, 18, 25]. All of these
techniques are limited to mutually recursive data types in which the number of
nested data types is limited up front and are thus not compositional. However,
in the representation of Yakushev et al. [25], the restriction to mutually recursive
data types with a closed set of constituent data types was implemented inten-
tionally. Our representation simply removes these restrictions which would in
fact add no benefit in our setting. The resulting notion of higher-order functors
that we considered was also used by Johann and Ghani [6] in order to represent
GADTs.

7.2 Future Work

There are a number of aspects that are still missing which should be the subject
of future work: As we have indicated, the restriction of the subtyping class :≺:
hinders full compositionality of signature summation :+:. A remedy could be
provided with a richer type system as proposed by Yorgey [26]. This would
also allow us to define the right-distributivity of annotations :&: over sums :+:
more directly by a type family. Alternatively, this issue can be addressed with
type instance-chains as proposed by Morris and Jones [13]. Another issue of
Swierstra’s original work is the project function which allows us to inspect terms
ad-hoc. Unfortunately, it does not allow us to give a complete case analysis. In
order to provide this, we need a function of type

(f :≺: g)⇒ Term g → Either (f (Term g)) ((g :−: f) (Term g))

which allows us to match against the “remainder signature” g :−: f .

Bibliography

[1] R. Bird and R. Paterson. Generalised folds for nested datatypes. For-
mal Aspects of Computing, 11(2):200–222, 1999. ISSN 0934-5043. doi:
10.1007/s001650050047.

[2] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
Available on http://www.grappa.univ-lille3.fr/tata, 2008.

[3] M. M. Fokkinga. A Gentle Introduction to Category Theory: the calcu-
lational approach. In Lecture Notes of the STOP 1992 Summerschool on
Constructive Algorithmics, pages 1–72 of Part 1. University of Utrecht, 1992.

[4] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation.
In Proceedings of the Conference on Functional Programming Languages and
Computer Architecture, pages 223–232, New York, NY, USA, 1993. ACM.
doi: 10.1145/165180.165214.

82

http://dx.doi.org/10.1007/s001650050047
http://dx.doi.org/10.1007/s001650050047
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1145/165180.165214

[5] I. Hasuo, B. Jacobs, and T. Uustalu. Categorical Views on Computations
on Trees (Extended Abstract). In L. Arge, C. Cachin, T. Jurdzinski, and
A. Tarlecki, editors, Automata, Languages and Programming, volume 4596
of Lecture Notes in Computer Science, pages 619–630. Springer Berlin /
Heidelberg, 2007. doi: 10.1007/978-3-540-73420-8˙54.

[6] P. Johann and N. Ghani. Foundations for structured programming with
GADTs. In POPL ’08, pages 297–308, New York, New York, USA, 2008.
ACM Press. doi: 10.1145/1328438.1328475.

[7] S. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as
a practical optimisation technique in GHC. In Proceedings of the ACM
SIGPLAN Haskell Workshop, page 203, 2001.

[8] G. Malcolm. Data structures and program transformation. Science of
Computer Programming, 14(2-3):255–279, 1990. ISSN 0167-6423. doi:
10.1016/0167-6423(90)90023-7.

[9] S. Marlow. Haskell 2010 Language Report, 2010.

[10] C. McBride and R. Paterson. Applicative programming with effects. Jour-
nal of Functional Programming, 18(1):1–13, 2008. ISSN 09567968. doi:
10.1017/S0956796807006326.

[11] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Functional
Programming Languages and Computer Architecture, volume 523 of Lecture
Notes in Computer Science, pages 124–144. Springer Berlin / Heidelberg,
1991. doi: 10.1007/3540543961˙7.

[12] N. Mitchell and C. Runciman. Uniform boilerplate and list processing. In
Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 49–60, New
York, NY, USA, 2007. ACM. doi: 10.1145/1291201.1291208.

[13] J. G. Morris and M. P. Jones. Instance chains: type class programming
without overlapping instances. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, pages 375–386, New
York, NY, USA, 2010. ACM. doi: 10.1145/1863543.1863596.

[14] A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C.
d. S. Oliveira. Comparing libraries for generic programming in haskell. In
Proceedings of the first ACM SIGPLAN Symposium on Haskell, pages 111–
122, New York, NY, USA, 2008. ACM. doi: 10.1145/1411286.1411301.

[15] A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S.
Oliveira. Comparing libraries for generic programming in haskell. Technical
report, Department of Information and Computing Sciences, Utrecht Uni-
versity, Utrecht, The Netherlands, 2008.

[16] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete
and decidable type inference for GADTs. In Proceedings of the 14th ACM

83

http://dx.doi.org/10.1007/978-3-540-73420-8_54
http://dx.doi.org/10.1145/1328438.1328475
http://dx.doi.org/10.1016/0167-6423(90)90023-7
http://dx.doi.org/10.1016/0167-6423(90)90023-7
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1145/1291201.1291208
http://dx.doi.org/10.1145/1863543.1863596
http://dx.doi.org/10.1145/1411286.1411301

SIGPLAN International Conference on Functional Programming, pages 341–
352, New York, NY, USA, 2009. ACM. doi: 10.1145/1596550.1596599.

[17] T. Sheard and S. P. Jones. Template Meta-programming for Haskell. In
Proceedings of the ACM SIGPLAN Haskell Workshop, volume 37 of SIG-
PLAN Notices, pages 60–75, New York, NY, USA, 2002. ACM. doi:
10.1145/636517.636528.

[18] S. Swierstra, P. Azero Alcocer, and J. Saraiva. Designing and Implementing
Combinator Languages. In S. Swierstra, J. Oliveira, and P. Henriques, ed-
itors, Advanced Functional Programming, volume 1608 of Lecture Notes in
Computer Science, pages 150–206. Springer Berlin / Heidelberg, 1999. doi:
10.1007/10704973˙4.

[19] W. Swierstra. Data types à la carte. Journal of Functional Programming,
18(4):423–436, 2008. ISSN 0956-7968. doi: 10.1017/S0956796808006758.

[20] J. W. Thatcher. Tree automata: an informal survey. In A. V. Aho, editor,
Currents in the theory of computing, chapter 4, pages 143–178. Prentice Hall,
1973.

[21] M. Van Steenbergen, J. P. Magalhães, and J. Jeuring. Generic selections
of subexpressions. In Proceedings of the 6th ACM SIGPLAN Workshop on
Generic Programming, pages 37–48, New York, NY, USA, 2010. ACM. doi:
10.1145/1863495.1863501.

[22] V. Vene. Categorical programming with inductive and coinductive types. PhD
thesis, University of Tartu, Estonia, 2000.

[23] S. Visser and A. Löh. Generic storage in Haskell. In Proceedings of the
6th ACM SIGPLAN Workshop on Generic Programming, pages 25–36, New
York, NY, USA, 2010. ACM. doi: 10.1145/1863495.1863500.

[24] P. Wadler. The Expression Problem. Available on http://homepages.inf.

ed.ac.uk/wadler/papers/expression/expression.txt, 1998.

[25] A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic pro-
gramming with fixed points for mutually recursive datatypes. In ICFP ’09:
Proceedings of the 14th ACM SIGPLAN International Conference on Func-
tional Programming, pages 233–244, New York, NY, USA, 2009. ACM. doi:
10.1145/1596550.1596585.

[26] B. Yorgey. Typed type-level functional programming in GHC. Talk at
Haskell Implementors Workshop, 2010.

84

http://dx.doi.org/10.1145/1596550.1596599
http://dx.doi.org/10.1145/636517.636528
http://dx.doi.org/10.1145/636517.636528
http://dx.doi.org/10.1007/10704973_4
http://dx.doi.org/10.1007/10704973_4
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1145/1863495.1863501
http://dx.doi.org/10.1145/1863495.1863501
http://dx.doi.org/10.1145/1863495.1863500
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://dx.doi.org/10.1145/1596550.1596585
http://dx.doi.org/10.1145/1596550.1596585

Parametric Compositional Data Types

Patrick Bahr Tom Hvitved

Department of Computer Science, University of Copenhagen

Abstract

In previous work we have illustrated the benefits that compositional data
types (CDTs) offer for implementing languages and in general for dealing
with abstract syntax trees (ASTs). Based on Swierstra’s data types à la
carte, CDTs are implemented as a Haskell library that enables the def-
inition of recursive data types and functions on them in a modular and
extendable fashion. Although CDTs provide a powerful tool for analysing
and manipulating ASTs, they lack a convenient representation of variable
binders. In this paper we remedy this deficiency by combining the framework
of CDTs with Chlipala’s parametric higher-order abstract syntax (PHOAS).
We show how a generalisation from functors to difunctors enables us to cap-
ture PHOAS while still maintaining the features of the original implemen-
tation of CDTs, in particular its modularity. Unlike previous approaches,
we avoid so-called exotic terms without resorting to abstract types: this is
crucial when we want to perform transformations on CDTs that inspect the
recursively computed CDTs, e.g. constant folding.

Contents

1 Introduction 86

2 Compositional Data Types 87
2.1 Motivating Example . 87

3 Parametric Compositional Data Types 90
3.1 Higher-Order Abstract Syntax . 91
3.2 Parametric Higher-Order Abstract Syntax 92

3.2.1 Parametric Terms . 93
3.2.2 Algebras and Catamorphisms 94
3.2.3 Term Transformations . 95

4 Monadic Computations 96
4.1 Monadic Interpretation . 96
4.2 Monadic Computations with Implicit Sequencing 98

5 Contexts and Term Homomorphisms 99
5.1 From Terms to Contexts and back 99
5.2 Term Homomorphisms . 100
5.3 Transforming and Combining Term Homomorphisms 101

85

6 Generalised Parametric Compositional Data Types 102

7 Practical Considerations 105

7.1 Equality . 106

8 Discussion and Related Work 107

Acknowledgement 108

Bibliography 108

1 Introduction

When implementing domain-specific languages (DSLs)—either as embedded lan-
guages or stand-alone languages—the abstract syntax trees (ASTs) of programs
are usually represented as elements of a recursive algebraic data type. These
ASTs typically undergo various transformation steps, such as desugaring from
a full language to a core language. But reflecting the invariants of these trans-
formations in the type system of the host language can be problematic. For
instance, in order to reflect a desugaring transformation in the type system, we
must define a separate data type for ASTs of the core language. Unfortunately,
this has the side effect that common functionality, such as pretty printing, has to
be duplicated.

Wadler identified the essence of this issue as the Expression Problem, i.e.
“the goal [. . .] to define a datatype by cases, where one can add new cases to the
datatype and new functions over the datatype, without recompiling existing code,
and while retaining static type safety” [24]. Swierstra [22] elegantly addressed
this problem using Haskell and its type classes machinery. While Swierstra’s
approach exhibits invaluable simplicity and clarity, it lacks features necessary to
apply it in a practical setting beyond the confined simplicity of the expression
problem. To this end, the framework of compositional data types (CDTs) [4]
provides a rich library for implementing practical functionality on highly modular
data types. This includes support of a wide array of recursion schemes in both
pure and monadic forms, as well as mutually recursive data types and generalised
algebraic data types (GADTs) [18].

What CDTs fail to address, however, is a transparent representation of vari-
able binders that frees the programmer’s mind from common issues like compu-
tations modulo α-equivalence and capture-avoiding substitutions. The work we
present in this paper fills that gap by adopting (a restricted form of) higher-order
abstract syntax (HOAS) [15], which uses the host language’s variable binding
mechanism to represent binders in the object language. Since implementing ef-
ficient recursion schemes in the presence of HOAS is challenging [8, 13, 19, 25],
integrating this technique with CDTs is a non-trivial task.

Following a brief introduction to CDTs in Section 2, we describe how to
achieve this integration as follows:

• We adopt parametric higher-order abstract syntax (PHOAS) [6], and we
show how to capture this restricted form of HOAS via difunctors. The

86

thus obtained parametric compositional data types (PCDTs) allow for the
definition of modular catamorphisms à la Fegaras and Sheard [8] in the
presence of binders. Unlike previous approaches, our technique does not
rely on abstract types, which is crucial for modular computations that are
also modular in their result type (Section 3).

• We illustrate why monadic computations constitute a challenge in the para-
metric setting and we show how monadic catamorphisms can still be defined
for a restricted class of PCDTs (Section 4).

• We show how to transfer the restricted recursion scheme of term homomor-
phisms [4] to PCDTs. Term homomorphisms enable the same flexibility
for reuse and opportunity for deforestation [23] that we know from CDTs
(Section 5).

• We show how to represent mutually recursive data types and GADTs by
generalising PCDTs in the style of Johann and Ghani [10] (Section 6).

• We illustrate the practical applicability of our framework by means of a
complete library example, and we show how to automatically derive func-
tionality for deciding equality (Section 7).

Parametric compositional data types are available as a Haskell library1, in-
cluding numerous examples that are not included in this paper. All code frag-
ments presented throughout the paper are written in (literate) Haskell [12], and
the library relies on several language extensions that are currently only known to
be supported by the Glasgow Haskell Compiler (GHC).

2 Compositional Data Types

Based on Swierstra’s data types à la carte [22], compositional data types [4]
(CDTs) provide a framework for manipulating recursive data structures in a
type-safe, modular manner. The prime application of CDTs is within language
implementation and AST manipulation, and we present the basic concepts of
CDTs in this section. More advanced concepts are introduced in Sections 4, 5,
and 6.

2.1 Motivating Example

Consider an extension of the lambda calculus with integers, addition, let expres-
sions, and error signalling:

e ::= λx.e | x | e1 e2 | n | e1 + e2 | let x = e1 in e2 | error

Our goal is to implement a pretty printer, a desugaring transformation, constant
folding, and a call-by-value interpreter for the simple language above. The desug-
aring transformation will turn let expressions let x = e1 in e2 into (λx.e2) e1.
Constant folding and evaluation will take place after desugaring, i.e. both com-
putations are only defined for the core language without let expressions.

1See http://hackage.haskell.org/package/compdata.

87

http://hackage.haskell.org/package/compdata

The standard approach to representing the language above is in terms of an
algebraic data type:

type Var = String

data Exp = Lam Var Exp | Var Var | App Exp Exp | Lit Int
| Plus Exp Exp | Let Var Exp Exp | Err

We may then straightforwardly define the pretty printer pretty :: Exp → String .
However, when we want to implement the desugaring transformation, we need a
new algebraic data type:

data Exp′ = Lam ′ Var Exp′ | Var ′ Var | App′ Exp′ Exp′ | Lit ′ Int
| Plus ′ Exp′ Exp′ | Err ′

That is, we need to replicate all constructors of Exp—except Let—into a new
type Exp′ of core expressions, in order to obtain a properly typed desugaring
function desug :: Exp → Exp′. Not only does this mean that we have to replicate
the constructors, we also need to replicate common functionality, e.g. in order to
obtain a pretty printer for Exp′ we must either write a new function, or write an
injection function Exp′ → Exp.

CDTs provide a solution that allows us to define the ASTs for (core) ex-
pressions without having to duplicate common constructors, and without having
to give up on statically guaranteed invariants about the structure of the ASTs.
CDTs take the viewpoint of data types as fixed points of functors [14], i.e. the def-
inition of the AST data type is separated into non-recursive signatures (functors)
on the one hand and the recursive structure on the other hand. For our example,
we define the following signatures (omitting the straightforward Functor instance
declarations):

data Lam a = Lam Var a data Plus a = Plus a a

data Var a = Var Var data Let a = Let Var a a

data App a = App a a data Err a = Err

data Lit a = Lit Int

Signatures can then be combined in a modular fashion by means of a formal sum
of functors:

data (f :+: g) a = Inl (f a) | Inr (g a)

instance (Functor f ,Functor g)⇒ Functor (f :+: g) where
fmap f (Inl x) = Inl (fmap f x)
fmap f (Inr x) = Inr (fmap f x)

type Sig = Lam :+: Var :+: App :+: Lit :+: Plus :+: Err :+: Let

type Sig ′ = Lam :+: Var :+: App :+: Lit :+: Plus :+: Err

Finally, the type of terms over a (potentially compound) signature f can be
constructed as the (least) fixed point of the signature f :

data Term f = In {out :: f (Term f)}

88

Modulo strictness, Term Sig is isomorphic to Exp, and Term Sig ′ is isomorphic
to Exp′.

The use of formal sums entails that each (sub)term has to be explicitly tagged
with zero or more Inl or Inr tags. In order to add the right tags automatically,
injections are derived using a type class:

class sub :≺: sup where
inj :: sub a → sup a
proj :: sup a → Maybe (sub a)

Using overlapping instance declarations, the subsignature relation :≺: can be con-
structively defined [22]. However, due to the limitations of Haskell’s type class
system, instances are restricted to the form f :≺: g where f is atomic, i.e. not a
sum, and g is a right-associated sum, e.g. g1 :+: (g2 :+:g3) but not (g1 :+:g2) :+:g3.
With the carefully defined instances for :≺:, injection and projection functions for
terms can then be defined as follows:

inject :: (g :≺: f)⇒ g (Term f)→ Term f
inject = In . inj

project :: (g :≺: f)⇒ Term f → Maybe (g (Term f))
project = proj . out

Additionally, in order to reduce the syntactic overhead, the CDTs library can
automatically derive smart constructors that comprise the injections [4], e.g.

iPlus :: (Plus :≺: f)⇒ Term f → Term f → Term f
iPlus x y = inject (Plus x y)

Using the derived smart constructors, we can then write expressions such as
let x = 2 in (λy.y + x) 3 without syntactic overhead:

e :: Term Sig
e = iLet "x" (iLit 2) ((iLam "y" (Var "y" ‘iPlus‘ Var "x")) ‘iApp‘ iLit 3)

In fact, the principal type of e is the open type:

(Lam :≺: f ,Var :≺: f ,App :≺: f ,Lit :≺: f ,Plus :≺: f ,Let :≺: f)⇒ Term f

which means that e can be used as a term over any signature containing at least
these six signatures!

Next, we want to define the pretty printer, i.e. a function of type Term Sig →
String . In order to make a recursive function definition modular too, it is defined
as the catamorphism of an algebra [14]:

type Alg f a = f a → a

cata :: Functor f ⇒ Alg f a → Term f → a
cata φ = φ . fmap (cata φ) . out

The advantage of this approach is that algebras can be easily combined over
formal sums. A modular algebra definition is obtained by an open family of

89

algebras indexed by the signature and closed under forming formal sums. This
is achieved as a type class:

class Pretty f where
φPretty :: Alg f String

instance (Pretty f ,Pretty g)⇒ Pretty (f :+: g) where
φPretty (Inl x) = φPretty x
φPretty (Inr x) = φPretty x

pretty :: (Functor f ,Pretty f)⇒ Term f → String
pretty = cata φPretty

The instance declaration that lifts Pretty instances to sums is crucial. Yet,
the structure of its declaration is independent from the particular algebra class,
and the CDTs library provides a mechanism for automatically deriving such
instances [4]. What remains in order to implement the pretty printer is to define
instances of the Pretty algebra class for the six signatures:

instance Pretty Lam where
φPretty (Lam x e) = "(\\" ++ x ++ ". " ++ e ++ ")"

instance Pretty Var where
φPretty (Var x) = x

instance Pretty App where
φPretty (App e1 e2) = "(" ++ e1 ++ " " ++ e2 ++ ")"

instance Pretty Lit where
φPretty (Lit n) = show n

instance Pretty Plus where
φPretty (Plus e1 e2) = "(" ++ e1 ++ " + " ++ e2 ++ ")"

instance Pretty Let where
φPretty (Let x e1 e2) = "(let " ++ x ++ " = " ++ e1 ++

" in " ++ e2 ++ ")"

instance Pretty Err where
φPretty Err = "error"

With these definitions we then have that pretty e evaluates to the string (let x =

2 in ((\y. (y + x)) 3)). Moreover, we automatically obtain a pretty printer
for the core language as well, cf. the type of pretty .

3 Parametric Compositional Data Types

In the previous section we considered a first-order encoding of the language, which
means that we have to be careful to ensure that computations are invariant under
α-equivalence, e.g. when implementing capture-avoiding substitutions. Higher-
order abstract syntax (HOAS) [15] remedies this issue, by representing binders
and variables of the object language in terms of those of the meta language.

90

3.1 Higher-Order Abstract Syntax

In a standard Haskell HOAS encoding we replace the signatures Var and Lam
by a revised Lam signature:

data Lam a = Lam (a → a)

Now, however, Lam is no longer an instance of Functor , because a occurs both in
a contravariant position and a covariant position. We therefore need to generalise
functors in order to allow for negative occurrences of the recursive parameter.
Difunctors [13] provide such a generalisation:

class Difunctor f where
dimap :: (a → b)→ (c → d)→ f b c → f a d

instance Difunctor (→) where
dimap f g h = g . h . f

instance Difunctor f ⇒ Functor (f a) where
fmap = dimap id

A difunctor must preserve the identity function and distribute over function com-
position:

dimap id id = id and dimap (f . g) (h . i) = dimap g h . dimap f i

The derived Functor instance obtained by fixing the contravariant argument will
hence satisfy the functor laws, provided that the difunctor laws are satisfied.

Meijer and Hutton [13] showed that it is possible to perform recursion over
difunctor terms:

data TermMH f = InMH {outMH :: f (TermMH f) (TermMH f)}
cataMH :: Difunctor f ⇒ (f b a → a)→ (b → f a b)→ TermMH f → a
cataMH φ ψ = φ . dimap (anaMH φ ψ) (cataMH φ ψ) . outMH

anaMH :: Difunctor f ⇒ (f b a → a)→ (b → f a b)→ b → TermMH f
anaMH φ ψ = InMH . dimap (cataMH φ ψ) (anaMH φ ψ) . ψ

With Meijer and Hutton’s approach, however, in order to lift an algebra φ ::
f b a → a to a catamorphism, we also need to supply the inverse coalgebra
ψ :: b → f b a. That is, in order to write a pretty printer we must supply a
parser, which is not feasible—or perhaps even possible—in practice.

Fortunately, Fegaras and Sheard [8] realised that if the embedded functions
within terms are parametric, then the inverse coalgebra is only used in order to
undo computations performed by the algebra, since parametric functions can only
“push around their arguments” without examining them. The solution proposed
by Fegaras and Sheard is to add a placeholder to the structure of terms, which
acts as a right-inverse of the catamorphism:2

data TermFS f a = InFS (f (TermFS f a) (TermFS f a)) | Place a

2Actually, Fegaras and Sheard do not use difunctors, but the given definition corresponds to
their encoding.

91

cataFS :: Difunctor f ⇒ (f a a → a)→ TermFS f a → a
cataFS φ (InFS t) = φ (dimap Place (cataFS φ) t)
cataFS φ (Place x) = x

We can then define e.g. a signature for lambda terms, and a function that calcu-
lates the number of bound variables occurring in a term, as follows (the example
is adopted from Washburn and Weirich [25]):

data T a b = Lam (a → b) | App b b
-- T is a difunctor, we omit the instance declaration

φ :: T Int Int → Int
φ (Lam f) = f 1
φ (App x y) = x + y

countVar :: TermFS T Int → Int
countVar = cataFS φ

In the TermFS encoding above, however, parametricity of the embedded func-
tions is not guaranteed. More specifically, the type allows for three kinds of exotic
terms [25], i.e. values in the meta language that do not correspond to terms in
the object language:

badPlace :: TermFS T Bool
badPlace = InFS (Place True)

badCata :: TermFS T Int
badCata = InFS (Lam (λx → if countVar x ≡ 0 then x else Place 0))

badCase :: TermFS T a
badCase = InFS (Lam (λx → case x of

TermFS (App)→ TermFS (App x x)
→ x))

Fegaras and Sheard showed how to avoid exotic terms by means of a custom
type system. Washburn and Weirich [25] later showed that exotic terms can be
avoided in a Haskell encoding via type parametricity and an abstract type of
terms: terms are restricted to the type ∀ a . T ermFS f a, and the constructors
of TermFS are hidden. Parametricity rules out badPlace and badCata, while the
use of an abstract type rules out badCase.

3.2 Parametric Higher-Order Abstract Syntax

While the approach of Washburn and Weirich effectively rules out exotic terms in
Haskell, we prefer a different encoding that relies on type parametricity only, and
not an abstract type of terms. Our solution is inspired by Chlipala’s parametric
higher-order abstract syntax (PHOAS) [6]. PHOAS is similar to the restricted
form of HOAS that we saw above; however, Chlipala makes the parametricity
explicit in the definition of terms by distinguishing between the type of bound
variables and the type of recursive terms. In Chlipala’s approach, an algebraic
data type encoding of lambda terms LTerm can effectively be defined via an
auxiliary data type LTrm of “preterms” as follows:

92

type LTerm = ∀ a . LTrm a

data LTrm a = Lam (a → LTrm a) | Var a | App (LTrm a) (LTrm a)

The definition of LTerm guarantees that all functions embedded via Lam are
parametric, and likewise that Var—Fegaras and Sheard’s Place—can only be
applied to variables bound by an embedded function. Atkey [2] showed that the
encoding above adequately captures closed lambda terms modulo α-equivalence,
assuming that there is no infinite data and that all embedded functions are total.

3.2.1 Parametric Terms

In order to transfer Chlipala’s idea to non-recursive signatures and catamor-
phisms, we need to distinguish between covariant and contravariant uses of the
recursive parameter. But this is exactly what difunctors do! We therefore arrive
at the following definition of terms over difunctors:

newtype Term f = Term {unTerm :: ∀ a . Trm f a }
data Trm f a = In (f a (Trm f a)) | Var a -- “preterm”

Note the difference in Trm compared to TermFS (besides using the name
Var rather than Place): the contravariant argument to the difunctor f is not the
type of terms Trm f a, but rather a parametrised type a, which we quantify over
at top-level to ensure parametricity. Hence, the only way to use a bound variable
is to wrap it in a Var constructor—it is not possible to inspect the parameter.
This representation more faithfully captures—we believe—the restricted form of
HOAS than the representation of Washburn and Weirich: in our encoding it
is explicit that bound variables are merely placeholders, and not the same as
terms. Moreover, in some cases we actually need to inspect the structure of
terms in order to define term transformations—we will see such an example in
Section 3.2.3. With an abstract type of terms, this is not possible as Washburn
and Weirich note [25].

Before we define algebras and catamorphisms, we lift the ideas underlying
CDTs to parametric compositional data types (PCDTs), namely coproducts and
implicit injections. Fortunately, the constructions of Section 2 are straightfor-
wardly generalised (the instance declarations for :≺: are exactly as in data types
à la carte [22], so we omit them here):

data (f :+: g) a b = Inl (f a b) | Inr (g a b)

instance (Difunctor f ,Difunctor g)⇒ Difunctor (f :+: g) where
dimap f g (Inl x) = Inl (dimap f g x)
dimap f g (Inr x) = Inr (dimap f g x)

class sub :≺: sup where
inj :: sub a b → sup a b
proj :: sup a b → Maybe (sub a b)

inject :: (g :≺: f)⇒ g a (Trm f a)→ Trm f a
inject = In . inj

project :: (g :≺: f)⇒ Trm f a → Maybe (g a (Trm f a))

93

project (Term t) = proj t
project (Var) = Nothing

We can then recast our previous signatures from Section 2.1 as difunctors:

data Lam a b = Lam (a → b) data Plus a b = Plus b b

data App a b = App b b data Let a b = Let b (a → b)

data Lit a b = Lit Int data Err a b = Err

type Sig = Lam :+: App :+: Lit :+: Plus :+: Err :+: Let

type Sig ′ = Lam :+: App :+: Lit :+: Plus :+: Err

Finally, we can automatically derive instance declarations for Difunctor as
well as smart constructor definitions that comprise the injections as for CDTs [4].
However, in order to avoid the explicit Var constructor, we insert dimap Var id
into the declarations, e.g.

iLam :: (Lam :≺: f)⇒ (Trm f a → Trm f a)→ Trm f a
iLam f = inject (dimap Var id (Lam f)) -- (= inject (Lam (f .Var)))

Using iLam we then need to be aware, though, that even if it takes a function
Trm f a → Trm f a as argument, the input to that function will always be
of the form Var x by construction. We can now again represent terms such as
let x = 2 in (λy.y + x) 3 compactly as follows:

e :: Term Sig
e = Term (iLet (iLit 2) (λx → (iLam (λy → y ‘iPlus‘ x) ‘iApp‘ iLit 3)))

3.2.2 Algebras and Catamorphisms

Given the representation of terms as fixed points of difunctors, we can now define
algebras and catamorphisms:

type Alg f a = f a a → a

cata :: Difunctor f ⇒ Alg f a → Term f → a
cata φ (Term t) = cat t

where cat (In t) = φ (fmap cat t) -- recall: fmap = dimap id
cat (Var x) = x

The definition of cata above is essentially the same as cataFS . The only differ-
ence is that bound variables within terms are already wrapped in a Var construc-
tor. Therefore, the contravariant argument to dimap is the identity function, and
we consequently use the derived function fmap instead.

With these definitions in place, we can now recast the modular pretty printer
from Section 2.1 to the new difunctor signatures. However, since we now use a
higher-order encoding, we need to generate variable names for printing. We there-
fore arrive at the following definition (the example is adopted from Washburn and
Weirich [25], but we use streams rather than lists to represent the sequence of
available variable names):

94

data Stream a = Cons a (Stream a)

class Pretty f where
φPretty :: Alg f (Stream String → String)

-- instance declaration that lifts Pretty to coproducts omitted

pretty :: (Difunctor f ,Pretty f)⇒ Term f → String
pretty t = cata φPretty t (names 1)

where names n = Cons (’x’ : show n) (names (n + 1))

instance Pretty Lam where
φPretty (Lam f) (Cons x xs) = "(\\" ++ x ++ ". " ++

f (const x) xs ++ ")"

instance Pretty App where
φPretty (App e1 e2) xs = "(" ++ e1 xs ++ " " ++ e2 xs ++ ")"

instance Pretty Lit where
φPretty (Lit n) = show n

instance Pretty Plus where
φPretty (Plus e1 e2) xs = "(" ++ e1 xs ++ " + " ++ e2 xs ++ ")"

instance Pretty Let where
φPretty (Let e1 e2) (Cons x xs) = "(let " ++ x ++ " = " ++ e1 xs ++

" in " ++ e2 (const x) xs ++ ")"

instance Pretty Err where
φPretty Err = "error"

With this implementation of pretty we then have that pretty e evaluates to the
string (let x1 = 2 in ((\x2. (x2 + x1)) 3)).

3.2.3 Term Transformations

The pretty printer is an example of a modular computation over a PCDT. How-
ever, we also want to define computations over PCDTs that construct PCDTs,
e.g. the desugaring transformation. That is, we want to construct functions of
type Term f → Term g , which means that we must construct functions of type
(∀ a . Trm f a) → (∀ a . Trm g a). Following the approach of Section 3.2.2,
we construct such functions by forming the catamorphisms of algebras of type
Alg f (∀ a . Trm g a), i.e. functions of type f (∀ a . Trm g a) (∀ a . Trm g a) →
∀ a . Trm g a. However, in order to avoid the nested quantifiers, we instead use
parametric term algebras of type ∀ a . Alg f (Trm g a). From such algebras we
then obtain functions of the type ∀ a . (Trm f a → Trm g a) as catamorphisms,
which finally yield the desired functions of type (∀ a .Trm f a)→ (∀ a .Trm g a).
With these considerations in mind, we arrive at the following definition of the
desugaring algebra type class:

class Desug f g where
φDesug :: ∀ a .Alg f (Trm g a) -- not Alg f (Term g) !

-- instance declaration that lifts Desug to coproducts omitted

desug :: (Difunctor f ,Desug f g)⇒ Term f → Term g
desug t = Term (cata φDesug t)

95

The algebra type class above is a multi-parameter type class: it is parametrised
both by the domain signature f and the codomain signature g . We do this in order
to obtain a desugaring function that is also modular in the codomain, similar to
the evaluation function for vanilla CDTs [4].

We can now define the instances of Desug for the six signatures in order to
obtain the desugaring function. However, by utilising overlapping instances we
can make do with just two instance declarations:

instance (Difunctor f , f :≺: g)⇒ Desug f g where
φDesug = inject . dimap Var id -- default instance for core signatures

instance (App :≺: f ,Lam :≺: f)⇒ Desug Let f where
φDesug (Let e1 e2) = iLam e2 ‘iApp‘ e1

Given a term e :: Term Sig , we then have that desug e :: Term Sig ′, i.e. the type
shows that indeed all syntactic sugar has been removed.

Whereas the desugaring transformation shows that we can construct PCDTs
from PCDTs in a modular fashion, we did not make use of the fact that PCDTs
can be inspected. That is, the desugaring transformation does not inspect the
recursively computed values, cf. the instance declaration for Let . However, in
order to implement the constant folding transformation, we actually need to
inspect recursively computed PCDTs. We again utilise overlapping instances:

class Constf f g where
φConstf :: ∀ a .Alg f (Trm g a)

-- instance declaration that lifts Constf to coproducts omitted

constf :: (Difunctor f ,Constf f g)⇒ Term f → Term g
constf t = Term (cata φConstf t)

instance (Difunctor f , f :≺: g)⇒ Constf f g where
φConstf = inject . dimap Var id -- default instance

instance (Plus :≺: f ,Lit :≺: f)⇒ Constf Plus f where
φConstf (Plus e1 e2) = case (project e1, project e2) of

(Just (Lit n), Just (Lit m))→ iLit (n + m)
→ e1 ‘iPlus‘ e2

Since we provide a default instance, we not only obtain constant folding for
the core language, but also for the full language, i.e. constf has both the types
Term Sig ′ → Term Sig ′ and Term Sig → Term Sig .

4 Monadic Computations

In the last section we demonstrated how to extend CDTs with parametric higher-
order abstract syntax, and how to perform modular, recursive computations over
terms containing binders. In this section we investigate monadic computations
over PCDTs.

4.1 Monadic Interpretation

While the previous examples of modular computations did not require effects,
the call-by-value interpreter prompts the need for monadic computations: both

96

in order to handle errors as well as controlling the evaluation order. Ultimately,
we want to obtain a function of the type Term Sig ′ → m (Sem m), where the
semantic domain Sem is defined as follows (we use an ordinary algebraic data
type for simplicity):

data Sem m = Fun (Sem m → m (Sem m)) | Int Int

Note that the monad only occurs in the codomain of Fun—if we want call-by-
name semantics rather than call-by-value semantics, we simply add m also to the
domain.

We can now implement the modular call-by-value interpreter similar to the
previous modular computations but using the monadic algebra carrier m (Sem m)
instead:

class Monad m ⇒ Eval m f where
φEval :: Alg f (m (Sem m))

-- instance declaration that lifts Eval to coproducts omitted

eval :: (Difunctor f ,Eval m f)⇒ Term f → m (Sem m)
eval = cata φEval

instance Monad m ⇒ Eval m Lam where
φEval (Lam f) = return (Fun (f . return))

instance MonadError String m ⇒ Eval m App where
φEval (App mx my) = do x ← mx

case x of
Fun f → my >>= f

→ throwError "stuck"

instance Monad m ⇒ Eval m Lit where
φEval (Lit n) = return (Int n)

instance MonadError String m ⇒ Eval m Plus where
φEval (Plus mx my) = do x ← mx

y ← my
case (x , y) of

(Int n, Int m)→ return (Int (n + m))
→ throwError "stuck"

instance MonadError String m ⇒ Eval m Err where
φEval Err = throwError "error"

In order to indicate errors in the course of the evaluation, we require the
monad to provide a method to throw an error. To this end, we use the type
class MonadError . Note how the modular design allows us to require the stricter
constraint MonadError String m only for the cases where it is needed. This
modularity of effects will become quite useful when we will rule out "stuck"

errors in Section 6.
With the interpreter definition above we have that eval (desug e) evaluates

to the value Right (Int 5) as expected, where e is as of page 94 and m is the
Either String monad. Moreover, we also have that 0+error and 0+λx.x evaluate
to Left "error" and Left "stuck", respectively.

97

4.2 Monadic Computations with Implicit Sequencing

In the example above we use a monadic algebra carrier for monadic computa-
tions. For vanilla CDTs [4], however, we have previously shown how to perform
monadic computations with implicit sequencing, by utilising the standard type
class Traversable3:

type AlgM m f a = f a → m a

class Functor f ⇒ Traversable f where
sequence :: Monad m ⇒ f (m a)→ m (f a)

cataM :: (Traversable f ,Monad m)⇒ AlgM m f a → Term f → m a
cataM φ = φ <=< sequence . fmap (cataM φ) . out

AlgM m f a represents the type of monadic algebras [9] over f and m, with
carrier a, which is different from Alg f (m a) since the monad only occurs in
the codomain of the monadic algebra. cataM is obtained from cata in Section 2
by performing sequence after applying fmap and replacing function composition
with monadic function composition <=<. That is, the recursion scheme takes
care of sequencing the monadic subcomputations. Monadic algebras are useful
for instance if we want to recursively project a term over a compound signature
to a smaller signature:

deepProject :: (Traversable g , f :≺: g)⇒ Term f → Maybe (Term g)
deepProject = cataM (liftM In . proj)

Moreover, in a call-by-value setting we may use a monadic algebra Alg f m a
rather than an ordinary algebra with a monadic carrier Alg f (m a) in order to
avoid the explicit sequencing of effects.

Turning back to parametric terms, we can apply the same idea to difunctors
yielding the following definition of monadic algebras:

type AlgM m f a = f a a → m a

Similarly, we can easily generalise Traversable and cataM to difunctors:

class Difunctor f ⇒ Ditraversable f where
disequence :: Monad m ⇒ f a (m b)→ m (f a b)

cataM :: (Ditraversable f ,Monad m)⇒ AlgM m f a → Term f → m a
cataM φ (Term t) = cat t

where cat (In t) = disequence (fmap cat t)>>= φ
cat (Var x) = return x

Unfortunately, cataM only works for difunctors that do not use the contravari-
ant argument. To see why this is the case, reconsider the Lam constructor; in
order to define an instance of Ditraversable for Lam we must write a function of
the type:

disequence :: Monad m ⇒ Lam a (m b)→ m (Lam a b)

3We have omitted methods from the definition of Traversable that are not necessary for our
purposes.

98

Since Lam is isomorphic to the function type constructor →, this is equivalent
to a function of the type:

∀ a b m .Monad m ⇒ (a → m b)→ m (a → b)

We cannot hope to be able to construct a meaningful combinator of that type.
Intuitively, in a function of type a → m b, the monadic effect of the result
can depend on the input of type a. The monadic effect of a monadic value of
type m (a → b) is not dependent on such input. For example, think of a state
transformer monad ST with state S and its put function put :: S → ST ().
What would be the corresponding transformation to a monadic value of type
ST (S → ())?

Hence, cataM does not extend to terms with binders, but it still works for
terms without binders as in vanilla CDTs [4]. In particular, we cannot use cataM
to define the call-by-value interpreter from Section 4.1.

5 Contexts and Term Homomorphisms

While the generality of catamorphisms makes them a powerful tool for modular
function definitions, their generality at the same time inhibits flexibility and
reusability. However, the full generality of catamorphisms is not always needed
in the case of term transformations, which we discussed in Section 3.2.3. To this
end, we have previously studied term homomorphisms [4] as a restricted form of
term algebras. In this section we redevelop term homomorphisms for PCDTs.

5.1 From Terms to Contexts and back

The crucial idea behind term homomorphisms is to generalise terms to contexts,
i.e. terms with holes. Following previous work [4] we define the generalisation of
terms with holes as a generalised algebraic data type (GADT) [18] with phantom
types Hole and NoHole:

data Cxt :: ∗ → (∗ → ∗ → ∗)→ ∗ → ∗ → ∗ where
In :: f a (Cxt h f a b)→ Cxt h f a b
Var :: a → Cxt h f a b
Hole :: b → Cxt Hole f a b

data Hole
data NoHole

The first argument to Cxt is a phantom type indicating whether the term
contains holes or not. A context can thus be defined as:

type Context = Cxt Hole

That is, contexts may contain holes. On the other hand, terms must not contain
holes, so we can recover our previous definition of preterms Trm as follows:

type Trm f a = Cxt NoHole f a ()

99

The definition of Term remains unchanged. This representation of contexts and
preterms allows us to uniformly define functions that work on both types. For
example, the function inject now has the type:

inject :: (g :≺: f)⇒ g a (Cxt h f a b)→ Cxt h f a b

5.2 Term Homomorphisms

In Section 3.2.3 we have shown that term transformations, i.e. functions of type
Term f → Term g , are obtained as catamorphisms of parametric term algebras
of type ∀ a . Alg f (Trm g a). Spelling out the definition of Alg , such algebras
are functions of type:

∀ a . f (Trm g a) (Trm g a)→ Trm g a

As we have argued previously [4], the fact that the target signature g occurs
in both the domain and codomain in the above type prevents us from making
use of the structure of the algebra’s carrier type Trm g a. In particular, the
constructions that we show in Section 5.3 are not possible with the above type.

In order to circumvent this restriction, we remove the occurrences of the alge-
bra’s carrier type Trm g a in the domain by replacing them with type variables:

∀ a b . f a b → Trm g a

However, since we introduce a fresh variable b, functions of the above type are not
able to use the corresponding parts of the argument for constructing the result.
A value of type b cannot be injected into the type Trm g a.

This is where contexts come into the picture: we enable the use of values of
type b in the result by replacing the codomain type Trm g a with Context g a b.
The result is the following type of term homomorphisms:

type Hom f g = ∀ a b . f a b → Context g a b

A function ρ :: Hom f g is a transformation of constructors from f into a context
over g , i.e. a term over g that may embed values taken from the arguments of
the f -constructor. The parametric polymorphism of the type guarantees that
the arguments of the f -constructor cannot be inspected but only embedded into
the result context. In order to apply term homomorphisms to terms, we need an
auxiliary function that merges nested contexts:

appCxt :: Difunctor f ⇒ Context f a (Cxt h f a b)→ Cxt h f a b
appCxt (In t) = In (fmap appCxt t)
appCxt (Var x) = Var x
appCxt (Hole h) = h

Given a context that has terms embedded in its holes, we obtain a term as a
result; given a context with embedded contexts, the result is again a context.

Using the combinator above we can now apply a term homomorphism to a
preterm—or more generally, to a context:

100

appHom :: (Difunctor f ,Difunctor g)⇒
Hom f g → Cxt h f a b → Cxt h g a b

appHom ρ (In t) = appCxt (ρ (fmap (appHom ρ) t))
appHom ρ (Var x) = Var x
appHom ρ (Hole h) = Hole h

From appHom we can then obtain the actual transformation on terms as follows:

appTHom :: (Difunctor f ,Difunctor g)⇒ Hom f g → Term f → Term g
appTHom ρ (Term t) = Term (appHom ρ t)

Before we describe the benefits of term homomorphisms over term algebras,
we reconsider the desugaring transformation from Section 3.2.3, but as a term
homomorphism rather than a term algebra:

class Desug f g where
ρDesug :: Hom f g

-- instance declaration that lifts Desug to coproducts omitted

desug :: (Difunctor f ,Difunctor g ,Desug f g)⇒ Term f → Term g
desug = appTHom ρDesug

instance (Difunctor f ,Difunctor g , f :≺: g)⇒ Desug f g where
ρDesug = In . fmap Hole . inj -- default instance for core signatures

instance (App :≺: f ,Lam :≺: f)⇒ Desug Let f where
ρDesug (Let e1 e2) = inject (Lam (Hole . e2)) ‘iApp‘ Hole e1

Note how, in the instance declaration for Let , the constructor Hole is used to
embed arguments of the constructor Let , viz. e1 and e2, into the context that is
constructed as the result.

As for the desugaring function in Section 3.2.3, we utilise overlapping in-
stances to provide a default translation for the signatures that need not be
translated. The definitions above yield the desired desugaring function desug ::
Term Sig → Term Sig ′.

5.3 Transforming and Combining Term Homomorphisms

In the following we shall shortly describe what we actually gain by adopting the
term homomorphism approach. First, term homomorphisms enable automatic
propagation of annotations, where annotations are added via a restricted difunc-
tor product, namely a product of a difunctor f and a constant c:

data (f :&: c) a b = f a b :&: c

For instance, the type of ASTs of our language where each node is annotated
with source positions is captured by the type Term (Sig :&: SrcPos). With a
term homomorphism Hom f g we automatically get a lifted version Hom (f :&:
c) (g :&: c), which propagates annotations from the input to the output. Hence,
from our desugaring function in the previous section we automatically get a lifted
function on parse trees Term (Sig :&: SrcPos) → Term (Sig ′ :&: SrcPos), which
propagates source positions from the syntactic sugar to the core constructs. We

101

omit the details here, but note that the constructions for CDTs [4] carry over
straightforwardly to PCDTs.

The second motivation for introducing term homomorphisms is deforesta-
tion [23]. As we have shown previously [4], it is not possible to fuse two term
algebras in order to traverse the term only once. That is, we do not find a
composition operator } on algebras that satisfies the following equation for all
φ1 :: Alg g a and φ2 :: ∀ a .Alg f (Trm g a):

cata φ1 . cata φ2 = cata (φ1 } φ2)

With term homomorphism, however, we do have such a composition operator }:

(}) :: (Difunctor g ,Difunctor h)⇒ Hom g h → Hom f g → Hom f h
ρ1 } ρ2 = appHom ρ1 . ρ2

For this composition, we then obtain the desired equation for all ρ1 :: Hom g h
and ρ2 :: Hom f g :

appHom ρ1 . appHom ρ2 = appHom (ρ1 } ρ2)

In fact, we can also compose an arbitrary algebra with a term homomorphism:

(�) :: Difunctor g ⇒ Alg g a → Hom f g → Alg f a
φ� ρ = free φ id . ρ

where

free :: Difunctor f ⇒ Alg f a → (b → a)→ Cxt h f a b → a
free φ f (In t) = φ (fmap (free φ f) t)
free (Var x) = x
free f (Hole h) = f h

The composition of algebras and homomorphisms satisfies the following equation:

cata φ . appHom ρ = cata (φ� ρ) for all φ :: Alg g a and ρ :: Hom f g

For example, in order to evaluate a term with syntactic sugar, rather than
composing eval and desug , we can use the function cata (φEval � ρDesug), which
only traverses the term once. This transformation can be automated using GHC’s
rewrite mechanism [11] and our experimental results for CDTs show that the thus
obtained speedup is significant [4].

6 Generalised Parametric Compositional Data Types

In this section we briefly describe how to lift the construction of mutually re-
cursive data types and—more generally—GADTs from CDTs to PCDTs. The
construction is based on the work of Johann and Ghani [10]. For CDTs the gen-
eralisation, roughly speaking, amounts to lifting functors to (generalised) higher-
order functors [10], and functions on terms to natural transformations, as shown
earlier [4]:

102

type a .→ b = ∀ i . a i → b i

class HFunctor f where
hfmap :: a .→ b → f a .→ f b

Now, signatures are of the kind (∗ → ∗) → ∗ → ∗, rather than ∗ → ∗, which
reflects the fact that signatures are now indexed types, and so are terms (or
contexts in general). Consequently, the carrier of an algebra is a type constructor
of kind ∗ → ∗:

type Alg f a = f a .→ a

Since signatures will be defined as GADTs, we effectively deal with many-sorted
algebras. If a subterm has the type index i , then the value computed recursively
by a catamorphism will have the type a i . The coproduct :+: and the auto-
matic injections :≺: carry over straightforwardly from functors to higher-order
functors [4].

In order to lift the ideas from CDTs to PCDTs, we need to consider indexed
difunctors. This prompts the notion of higher-order difunctors:

class HDifunctor f where
hdimap :: (a .→ b)→ (c .→ d)→ f b c .→ f a d

instance HDifunctor f ⇒ HFunctor (f a) where
hfmap = hdimap id

Note the familiar pattern from ordinary PCDTs: a higher-order difunctor gives
rise to a higher-order functor when the contravariant argument is fixed.

To illustrate higher-order difunctors, consider a modular GADT encoding of
our core language:

data TArrow i j

data TInt

data Lam :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
Lam :: (a i → b j)→ Lam a b (i ‘TArrow ‘ j)

data App :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
App :: b (i ‘TArrow ‘ j)→ b i → App a b j

data Lit :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
Lit :: Int → Lit a b TInt

data Plus :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
Plus :: b TInt → b TInt → Plus a b TInt

data Err :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
Err :: Err a b i

type Sig ′ = Lam :+: App :+: Lit :+: Plus :+: Err

Note, in particular, the type of Lam: now the bound variable is typed!
We use TArrow and TInt as type indices for the GADT definitions above. The

preference of these fresh types over Haskell’s → and Int is meant to emphasise
that these phantom types are only labels that represent the type constructors of
our object language.

103

We use the coproduct :+: of higher-order difunctors above to combine sig-
natures, which is easily defined, and as for CDTs it is straightforward to lift
instances of HDifunctor for f and g to an instance for f :+: g . Similarly, we can
generalise the relation :≺: from difunctors to higher-order difunctors, so we omit
its definition here.

The type of generalised parametric (pre)terms can now be constructed as an
indexed type:

newtype Term f i = Term {unTerm :: ∀ a . Trm f a i }
data Trm f a i = In (f a (Trm f a) i) | Var (a i)

Moreover, we use smart constructors as for PCDTs to compactly construct terms,
for instance:

e :: Term Sig ′ TInt
e = Term (iLam (λx → x ‘iPlus‘ x) ‘iApp‘ iLit 2)

Finally, we can lift algebras and their induced catamorphisms by lifting the
definitions in Section 3.2.2 via natural transformations and higher-order difunc-
tors:

type Alg f a = f a a .→ a

cata :: HDifunctor f ⇒ Alg f a → Term f .→ a
cata φ (Term t) = cat t

where cat (In t) = φ (hfmap cat t) -- recall: hfmap = hdimap id
cat (Var x) = x

With the definitions above we can now define a call-by-value interpreter for
our typed example language. To this end, we must provide a type-level function
that, for a given object language type constructed from TArrow and TInt , selects
the corresponding subset of the semantic domain Sem m from Section 4.1. This
can be achieved via Haskell’s type families [17]:

type family Sem (m :: ∗ → ∗) i
type instance Sem m (i ‘TArrow ‘ j) = Sem m i → m (Sem m j)
type instance Sem m TInt = Int

The type Sem m t is obtained from an object language type t by replacing each
function type t1 ‘TArrow ‘ t2 occurring in t with Sem m t1 → m (Sem m t2) and
each TInt with Int .

To make Sem into a proper type—as opposed to a mere type synonym—and
simultaneously add the monad m at the top level, we define a newtype M :

newtype M m i = M {unM :: m (Sem m i)}
class Monad m ⇒ Eval m f where
φEval :: f (M m) (M m) i → m (Sem m i)

-- M . φEval :: Alg f (M m) is the actual algebra

eval :: (Monad m,HDifunctor f ,Eval m f)⇒ Term f i → m (Sem m i)
eval = unM . cata (M . φEval)

104

We can then provide the instance declarations for the signatures of the core
language, and effectively obtain a tagless, modular, and extendable monadic in-
terpreter:

instance Monad m ⇒ Eval m Lam where
φEval (Lam f) = return (unM . f .M . return)

instance Monad m ⇒ Eval m App where
φEval (App (M mf) (M mx)) = do f ← mf

mx >>= f

instance Monad m ⇒ Eval m Lit where
φEval (Lit n) = return n

instance Monad m ⇒ Eval m Plus where
φEval (Plus (M mx) (M my)) = do x ← mx

y ← my
return (x + y)

instance MonadError String m ⇒ Eval m Err where
φEval Err = throwError "error"

With the above definition of eval we have, for instance, that the expression eval e::
Either String Int evaluates to the value Right 4. Due to the fact that we now
have a typed language, the Err constructor is the only source of an erroneous
computation—the interpreter cannot get stuck. Moreover, since the modular
specification of the interpreter only enforces the constraint MonadError String m
for the signature Err , the term e can in fact be interpreted in the identity monad,
rather than the Either String monad, as it does not contain error. Consequently,
we know statically that the evaluation of e cannot fail!

Note that computations over generalised PCDTs are not limited to the tagless
approach that we have illustrated above. We could have easily reformulated the
semantic domain Sem m from Section 4.1 as a GADT to use it as the carrier of
a many-sorted algebra. Other natural carriers for many-sorted algebras are the
type families of terms Term f , of course.

Other concepts that we have introduced for vanilla PCDTs before can be
transferred straightforwardly to generalised PCDTs in the same fashion. This
includes contexts and term homomorphisms.

7 Practical Considerations

The motivation for introducing CDTs was to make Swierstra’s data types à la
carte [22] readily useful in practice. Besides extending data types à la carte with
various aspects, such as monadic computations and term homomorphisms, the
CDTs library provides all the generic functionality as well as automatic derivation
of boilerplate code. With (generalised) PCDTs we have followed that path. Our
library provides Template Haskell [20] code to automatically derive instances of
the required type classes, such as Difunctor and Ditraversable, as well as smart
constructors and lifting of algebra type classes to coproducts. Moreover, our
library supports automatic derivation of standard type classes Show , Eq , and
Ord for terms, similar to Haskell’s deriving mechanism. We show how to derive

105

instances of Eq in the following subsection. Ord follows in the same fashion, and
Show follows an approach similar to the pretty printer in Section 3.2.2, but using
the monad FreshM that is also used to determine equality, as we shall see below.

Figure 1 provides the complete source code needed to implement our exam-
ple language from Section 2.1. Note that we have derived Show , Eq , and Ord
instances for terms of the language—in particular the term e is printed as Let

(Lit 2) (\a -> App (Lam (\b -> Plus b a)) (Lit 3)).

7.1 Equality

A common pattern when programming in Haskell is to derive instances of the
type class Eq , for instance in order to test the desugaring transformation in
Section 3.2.3. While the use of PHOAS ensures that all functions are invariant
under α-renaming, we still have to devise an algorithm that decides α-equivalence.
To this end, we will turn the rather elusive representation of bound variables via
functions into a concrete form.

In order to obtain concrete representations of bound variables, we provide
a method for generating fresh variable names. This is achieved via a monad
FreshM offering the following operations:

withName :: (Name → FreshM a)→ FreshM a

evalFreshM :: FreshM a → a

FreshM is an abstraction of an infinite sequence of fresh names. The function
withName provides a fresh name. Names are represented by the abstract type
Name, which implements instances of Show , Eq , and Ord .

We first introduce a variant of the type class Eq that uses the FreshM monad:

class PEq a where
peq :: a → a → FreshM Bool

This type class is used to define the type class EqD of equatable difunctors, which
lifts to coproducts:

class EqD f where
eqD :: PEq a ⇒ f Name a → f Name a → FreshM Bool

instance (EqD f ,EqD g)⇒ EqD (f :+: g) where
eqD (Inl x) (Inl y) = x ‘eqD ‘ y
eqD (Inr x) (Inr y) = x ‘eqD ‘ y
eqD = return False

We then obtain equality of terms as follows (we do not consider contexts here for
simplicity):

instance EqD f ⇒ PEq (Trm f Name) where
peq (In t1) (In t2) = t1 ‘eqD ‘ t2
peq (Var x1) (Var x2) = return (x1 ≡ x2)
peq = return False

106

instance (Difunctor f ,EqD f)⇒ Eq (Term f) where
(≡) (Term x) (Term y) = evalFreshM ((x :: Trm f Name) ‘peq ‘ y)

Note that we need to explicitly instantiate the parametric type in x to Name in
the last instance declaration, in order to trigger the instance for Trm f Name
defined above.

Equality of terms, i.e. α-equivalence, has thus been reduced to providing
instances of EqD for the difunctors comprising the signature of the term, which
for Lam can be defined as follows:

instance EqD Lam where
eqD (Lam f) (Lam g) = withName (λx → f x ‘peq ‘ g x)

That is, f and g are considered equal if they are equal when applied to the same
fresh name x .

8 Discussion and Related Work

Implementing languages with binders can be a difficult task. Using explicit vari-
able names, we have to be careful in order to make sure that functions on ASTs are
invariant under α-renaming. HOAS [15] is one way of tackling this problem, by
reusing the binding mechanisms of the implementation language to define those
of the object language. The challenge with HOAS, however, is that it is difficult
to perform recursive computations over ASTs with binders [8, 13, 19, 25]. Besides
what is documented in this paper, we have also lifted (generalised) parametric
compositional data types to other (co)recursion schemes, such as anamorphisms
and histomorphisms. Moreover, term homomorphisms can be straightforwardly
extended with a state space: depending on how the state is propagated, this
yields bottom-up resp. top-down tree transducers [7].

Our approach of using PHOAS [6] amounts to the same restriction on em-
bedded functions as Fegeras and Sheard [8], and Washburn and Weirich [25].
However, unlike Washburn and Weirich’s Haskell implementation, our approach
does not rely on making the type of terms abstract. Not only is it interesting
to see that we can do without type abstraction, in fact, we sometimes need to
inspect terms in order to write functions that produce terms, such as our constant
folding algorithm. With Washburn and Weirich’s encoding this is not possible.

Ahn and Sheard [1] recently showed how to generalise the recursion schemes
of Washburn and Weirich to Mendler-style recursion schemes, using the same rep-
resentation for terms as Washburn and Weirich. Hence their approach also suffers
from the inability to inspect terms. Although we could easily adopt Mendler-style
recursion schemes in our setting, their generality does not make a difference in a
non-strict language such as Haskell. Additionally, Ahn and Sheard pose the open
question whether there is a safe (i.e., terminating) way to apply histomorphisms
to terms with negative recursive occurrences: although we have not investigated
termination properties of our histomorphisms, we conjecture that the use of our
parametric terms—which are purely inductive—may provide one solution.

The finally tagless approach of Carette et al. [5] has been proposed as an
alternative solution to the expression problem [24]. While the approach is very

107

simple and elegant, and also supports (typed) higher-order encodings, the ap-
proach falls short when we want to define recursive, modular computations that
construct modular terms too. Atkey et al. [3], for instance, use the finally tagless
approach to build a modular interpreter. However, the interpreter cannot be
made modular in the return type, i.e. the language defining values. Hence, when
Atkey et al. extend their expression language they need to also change the data
type that represents values, which means that the approach is not fully modular.
Although our interpreter in Section 4.1 also uses a fixed domain of values Sem,
we can make the interpreter fully modular by also using a PCDT for the return
type, and using a multi-parameter type class definition similar to the desugaring
transformation in Section 3.2.3.

Nominal sets [16] is another approach for dealing with binders, in which vari-
ables are explicit, but recursively defined functions are guaranteed to be invariant
with respect to α-equivalence of terms. Implementations of this approach, how-
ever, require extensions of the metalanguage [21], and the approach is therefore
not immediately usable in Haskell.

Acknowledgement

The authors wish to thank Andrzej Filinski for his insightful comments on an
earlier version of this paper.

Bibliography

[1] K. Y. Ahn and T. Sheard. A hierarchy of Mendler style recursion com-
binators: taming inductive datatypes with negative occurrences. In Pro-
ceedings of the 16th ACM SIGPLAN International Conference on Func-
tional Programming, pages 234–246, New York, NY, USA, 2011. ACM. doi:
10.1145/2034773.2034807.

[2] R. Atkey. Syntax for Free: Representing Syntax with Binding Using Para-
metricity. In P.-L. Curien, editor, Typed Lambda Calculi and Applications,
volume 5608 of Lecture Notes in Computer Science, pages 35–49. Springer
Berlin / Heidelberg, 2009. doi: 10.1007/978-3-642-02273-9˙5.

[3] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific languages.
In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, pages 37–
48, New York, NY, USA, 2009. ACM. doi: 10.1145/1596638.1596644.

[4] P. Bahr and T. Hvitved. Compositional data types. In Proceedings of the
seventh ACM SIGPLAN Workshop on Generic Programming, pages 83–94,
New York, NY, USA, 2011. ACM. doi: 10.1145/2036918.2036930.

[5] J. Carette, O. Kiselyov, and C.-C. Shan. Finally tagless, par-
tially evaluated: Tagless staged interpreters for simpler typed lan-
guages. Journal of Functional Programming, 19(05):509–543, 2009. doi:
10.1017/S0956796809007205.

108

http://dx.doi.org/10.1145/2034773.2034807
http://dx.doi.org/10.1145/2034773.2034807
http://dx.doi.org/10.1007/978-3-642-02273-9_5
http://dx.doi.org/10.1145/1596638.1596644
http://dx.doi.org/10.1145/2036918.2036930
http://dx.doi.org/10.1017/S0956796809007205
http://dx.doi.org/10.1017/S0956796809007205

[6] A. Chlipala. Parametric higher-order abstract syntax for mechanized seman-
tics. In Proceeding of the 13th ACM SIGPLAN International Conference on
Functional Programming, pages 143–156, New York, NY, USA, 2008. ACM.
doi: 10.1145/1411204.1411226.

[7] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
Available on http://www.grappa.univ-lille3.fr/tata, 2008.

[8] L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with
embedded functions (or, programs from outer space). In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 284–294, New York, NY, USA, 1996. ACM. doi:
10.1145/237721.237792.

[9] M. M. Fokkinga. A Gentle Introduction to Category Theory: the calcu-
lational approach. In Lecture Notes of the STOP 1992 Summerschool on
Constructive Algorithmics, pages 1–72 of Part 1. University of Utrecht, 1992.

[10] P. Johann and N. Ghani. Foundations for structured programming with
GADTs. In POPL ’08, pages 297–308, New York, New York, USA, 2008.
ACM Press. doi: 10.1145/1328438.1328475.

[11] S. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as
a practical optimisation technique in GHC. In Proceedings of the ACM
SIGPLAN Haskell Workshop, page 203, 2001.

[12] S. Marlow. Haskell 2010 Language Report, 2010.

[13] E. Meijer and G. Hutton. Bananas in Space: Extending Fold and Unfold to
Exponential Types. In Proceedings of the seventh International Conference
on Functional Programming languages and computer architecture, pages 324–
333, New York, NY, USA, 1995. ACM. doi: 10.1145/224164.224225.

[14] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Functional
Programming Languages and Computer Architecture, volume 523 of Lecture
Notes in Computer Science, pages 124–144. Springer Berlin / Heidelberg,
1991. doi: 10.1007/3540543961˙7.

[15] F. Pfenning and C. Elliot. Higher-Order Abstract Syntax. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language Design
and Implementation, pages 199–208, New York, NY, USA, 1988. ACM. doi:
10.1145/53990.54010.

[16] A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM,
53(3):459–506, 2006. doi: 10.1145/1147954.1147961.

[17] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann. Type
checking with open type functions. In Proceedings of the 13th ACM SIG-
PLAN International Conference on Functional Programming, pages 51–62,
New York, NY, USA, 2008. ACM. doi: 10.1145/1411204.1411215.

109

http://dx.doi.org/10.1145/1411204.1411226
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1145/237721.237792
http://dx.doi.org/10.1145/237721.237792
http://dx.doi.org/10.1145/1328438.1328475
http://dx.doi.org/10.1145/224164.224225
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1145/1147954.1147961
http://dx.doi.org/10.1145/1411204.1411215

[18] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete
and decidable type inference for GADTs. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Programming, pages 341–
352, New York, NY, USA, 2009. ACM. doi: 10.1145/1596550.1596599.

[19] C. Schürmann, J. Despeyroux, and F. Pfenning. Primitive recursion for
higher-order abstract syntax. Theoretical Computer Science, 266(1-2):1–57,
2001. ISSN 0304-3975. doi: 10.1016/S0304-3975(00)00418-7.

[20] T. Sheard and S. P. Jones. Template Meta-programming for Haskell. In
Proceedings of the ACM SIGPLAN Haskell Workshop, volume 37 of SIG-
PLAN Notices, pages 60–75, New York, NY, USA, 2002. ACM. doi:
10.1145/636517.636528.

[21] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: programming
with binders made simple. In Proceedings of the eighth ACM SIGPLAN
International Conference on Functional Programming, pages 263–274, New
York, NY, USA, 2003. ACM. doi: 10.1145/944705.944729.

[22] W. Swierstra. Data types à la carte. Journal of Functional Programming,
18(4):423–436, 2008. ISSN 0956-7968. doi: 10.1017/S0956796808006758.

[23] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees.
Theoretical Computer Science, 73(2):231–248, 1990. doi: 10.1016/0304-
3975(90)90147-A.

[24] P. Wadler. The Expression Problem. Available on http://homepages.inf.

ed.ac.uk/wadler/papers/expression/expression.txt, 1998.

[25] G. Washburn and S. Weirich. Boxes go bananas: Encoding higher-order
abstract syntax with parametric polymorphism. Journal of Functional Pro-
gramming, 18(1):87–140, 2008. doi: 10.1017/S0956796807006557.

110

http://dx.doi.org/10.1145/1596550.1596599
http://dx.doi.org/10.1016/S0304-3975(00)00418-7
http://dx.doi.org/10.1145/636517.636528
http://dx.doi.org/10.1145/636517.636528
http://dx.doi.org/10.1145/944705.944729
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://dx.doi.org/10.1017/S0956796807006557

import Data.Comp.Param

import Data.Comp.Param.Show ()

import Data.Comp.Param.Equality ()

import Data.Comp.Param.Ordering ()

import Data.Comp.Param.Derive

import Control.Monad.Error (MonadError, throwError)

data Lam a b = Lam (a → b)

data App a b = App b b

data Lit a b = Lit Int

data Plus a b = Plus b b

data Let a b = Let b (a → b)

data Err a b = Err

$(derive [smartConstructors, makeDifunctor, makeShowD, makeEqD, makeOrdD]

[’’Lam, ’’App, ’’Lit, ’’Plus, ’’Let, ’’Err])

e :: Term (Lam :+: App :+: Lit :+: Plus :+: Let :+: Err)

e = Term (iLet (iLit 2) (λx → (iLam (λy → y ‘iPlus‘ x) ‘iApp‘ iLit 3)))

-- ∗ Desugaring

class Desug f g where

desugHom :: Hom f g

$(derive [liftSum] [’’Desug]) -- lift Desug to coproducts

desug :: (Difunctor f, Difunctor g, Desug f g) ⇒ Term f → Term g

desug (Term t) = Term (appHom desugHom t)

instance (Difunctor f, Difunctor g, f :<: g) ⇒ Desug f g where

desugHom = In . fmap Hole . inj -- default instance for core signatures

instance (App :<: f, Lam :<: f) ⇒ Desug Let f where

desugHom (Let e1 e2) = inject (Lam (Hole . e2)) ‘iApp‘ Hole e1

-- ∗ Constant folding

class Constf f g where

constfAlg :: forall a. Alg f (Trm g a)

$(derive [liftSum] [’’Constf]) -- lift Constf to coproducts

constf :: (Difunctor f, Constf f g) ⇒ Term f → Term g

constf t = Term (cata constfAlg t)

instance (Difunctor f, f :<: g) ⇒ Constf f g where

constfAlg = inject . dimap Var id -- default instance

instance (Plus :<: f, Lit :<: f) ⇒ Constf Plus f where

constfAlg (Plus e1 e2) = case (project e1, project e2) of

(Just (Lit n),Just (Lit m)) → iLit (n + m)

_ → e1 ‘iPlus‘ e2

-- ∗ Call-by-value evaluation

data Sem m = Fun (Sem m → m (Sem m)) | Int Int

class Monad m ⇒ Eval m f where

evalAlg :: Alg f (m (Sem m))

$(derive [liftSum] [’’Eval]) -- lift Eval to coproducts

eval :: (Difunctor f, Eval m f) ⇒ Term f → m (Sem m)

eval = cata evalAlg

instance Monad m ⇒ Eval m Lam where

evalAlg (Lam f) = return (Fun (f . return))

instance MonadError String m ⇒ Eval m App where

evalAlg (App mx my) = do x ← mx

case x of Fun f → my >>= f

_ → throwError "stuck"

instance Monad m ⇒ Eval m Lit where

evalAlg (Lit n) = return (Int n)

instance MonadError String m ⇒ Eval m Plus where

evalAlg (Plus mx my) = do x ← mx

y ← my

case (x,y) of (Int n,Int m) → return (Int (n + m))

_ → throwError "stuck"

instance MonadError String m ⇒ Eval m Err where

evalAlg Err = throwError "error"

Figure 1: Complete example using the parametric compositional data types li-
brary.

111

Modular Tree Automata

Patrick Bahr

Department of Computer Science, University of Copenhagen

Abstract

Tree automata are traditionally used to study properties of tree lan-
guages and tree transformations. In this paper, we consider tree automata
as the basis for modular and extensible recursion schemes. We show, using
well-known techniques, how to derive from standard tree automata highly
modular recursion schemes. Functions that are defined in terms of these
recursion schemes can be combined, reused and transformed in many ways.
This flexibility facilitates the specification of complex transformations in a
concise manner, which is illustrated with a number of examples.

Contents

1 Introduction 114

2 Bottom-Up Tree Acceptors 116

2.1 Deterministic Bottom-Up Tree Acceptors 116

2.2 Algebras and Catamorphisms . 118

2.3 Bottom-Up State Transition Functions 118

3 Making Tree Automata Modular 120

3.1 Product Automata . 121

3.2 Compositional Data Types . 123

4 Bottom-Up Tree Transducers 124

4.1 Deterministic Bottom-Up Tree Transducers 125

4.2 Contexts in Haskell . 126

4.3 Bottom-Up Transduction Functions 127

4.4 Tree Homomorphisms . 129

4.5 Combining Tree Homomorphisms with State Transitions 130

4.6 Refining Dependent Bottom-Up State Transition Functions 132

5 Top-Down Automata 133

5.1 Deterministic Top-Down Tree Transducers 134

5.2 Top-Down Transduction Functions 135

5.3 Top-Down State Transition Functions 136

5.4 Making Top-Down State Transition Functions Modular 139

113

6 Bidirectional State Transitions 141

6.1 Avoiding the Problem . 141

6.2 A Direct Implementation . 143

7 Discussion 145

7.1 Why Tree Transducers? . 146

7.2 Extensions & Future Work . 146

Acknowledgements 147

Bibliography 147

1 Introduction

Functional programming languages are an excellent tool for specifying abstract
syntax trees (ASTs) and defining syntax-directed transformations on them: al-
gebraic data types provide a compact notation for both defining types of ASTs
as well as constructing and manipulating ASTs. As a complement to that, recur-
sively defined functions on algebraic data types allow us to traverse ASTs defined
by algebraic data types.

For example, writing an evaluation function for a small expression language
is easily achieved in Haskell [19] as follows:

data Exp = Val Int | Plus Exp Exp

eval :: Exp → Int
eval (Val i) = i
eval (Plus x y) = eval x + eval y

Unfortunately, this simple approach does not scale very well. As soon as we
have to implement more complex transformations that work on more than just
a few types of ASTs, simple recursive function definitions become too inflexible
and complicated.

Specifying and implementing such transformations is an everyday issue for
compiler construction and thus has prompted a lot of research in this area. One
notable approach to address both sides is the use of attribute grammars [15, 22].
These systems facilitate compact specification and efficient implementation of
syntax-directed transformations.

In this paper, we take a different but not unrelated approach. We still want to
implement the transformations in a functional language. But instead of writing
transformation functions as general recursive functions as the one above, our
goal is to devise recursion schemes, which can then be used to define the desired
transformations. The use of these recursion schemes will allow us reuse, combine
and reshape the syntax-directed transformations that we write. In addition, the
embedding into a functional language will give us a lot of flexibility and expressive
power such as a powerful type system and generic programming techniques.

As a starting point for our recursion schemes we consider various kinds of
tree automata [3]. For each such kind we show how to implement them in

114

Haskell. From the resulting recursion schemes we then derive more sophisti-
cated and highly modular recursion schemes. In particular, our contributions are
the following:

• We implement bottom-up tree acceptors (Section 2), bottom-up tree trans-
ducers (Section 4) and top-down tree transducers (Section 5) as recursion
schemes in Haskell. While the implementation of the first two is well-known,
the implementation of the last one is new but entirely straightforward.

• From the thus obtained recursion schemes, we derive more modular variants
(Section 3) using a variation of the well-know product automaton construc-
tion (Section 3.1) and Swierstra’s data types à la carte [23] (Section 3.2).

• We decompose the recursion schemes derived from bottom-up and from top-
down tree transducer into a homomorphism part and a state transition part
(Section 4.5 and Section 5.3). This makes it possible to specify these two
parts independently and to modify and combine them in a flexible manner.

• We derive a recursion scheme that combines both bottom-up and top-down
state propagation (Section 6).

• We illustrate the merit of our recursion schemes by a running example
in which we develop a simple compiler for a simple expression language.
Utilising the modularity of our approach, we extend the expression language
throughout the paper in order to show how the more advanced recursion
schemes help us in devising an increasingly more complex compiler. In
addition to that, the high degree of modularity of our approach not only
simplifies the construction of the compiler but also allows us to reuse earlier
iterations of the compiler.

Apart from the abovementioned running example, we also include a number of
independent examples illustrating the mechanics of the presented tree automata.

The remainder of this paper is structured as follows: we start in Section 2
with bottom-up tree acceptors and their implementation in Haskell. In Section 3,
we introduce two dimensions of modularity that can be exploited in the recursion
scheme obtained from bottom-up tree acceptors. In Section 4, we will turn to
bottom-up tree transducers, which, based on a state that is propagated upwards,
perform a transformation of an input term to an output term. In Section 4.5 we
will then introduce yet another dimension of modularity by separating the state
propagation in tree transducers from the tree transformation. This will also allow
us to adopt the modularity techniques from Section 3. In Section 5, we will do
the same thing again, however, for top-down tree transducers in which the state
is propagated top-down rather than bottom-up. Finally, in Section 6, we will
combine both bottom-up and top-down state transitions.

The library of recursion schemes that we develop in this paper is available as
part of the compdata package [2]. Additionally, this paper is written as a literate
Haskell file1, which can be directly loaded into the GHCi Haskell interpreter.

1Available from the author’s web site.

115

2 Bottom-Up Tree Acceptors

The tree automata that we consider in this paper operate on terms over some
signature F . In the setting of tree automata, a signature F is simply a set of
function symbols with a fixed arity and we write f/n ∈ F to indicate that f is
a function symbol in F of arity n. Given a signature F and some set X , the set
of terms over F and X , denoted T (F ,X), is the smallest set T such that X ⊆ T
and if f/n ∈ F and t1, . . . , tn ∈ T then f(t1, . . . , tn) ∈ T . Instead of T (F , ∅) we
also write T (F) and call elements of T (F) terms over F . Tree automata run on
terms in T (F).

Each of the tree automata that we describe in this paper consists at least of
a finite set Q of states and a set of rules according to which an input term is
transformed into an output term. While performing such a transformation, these
automata maintain state information, which is stored in the intermediate results
of the transformation. To this end each state q ∈ Q is considered as a unary
function symbol and a subterm t is annotated with state q by writing q(t). For
example, f(q0(a), q1(b)) represents the term f(a, b), where the two subterms a
and b are annotated with states q0 and q1, respectively.

The rules of the tree automata in this paper will all be of the form l→ r with
l, r ∈ T (F ′,X), where F ′ = F] {q/1 | q ∈ Q}. The rules can be read as term
rewrite rules, i.e. the variables in l and t are placeholders that are instantiated
with terms when the rule is applied. Running an automaton is then simply a
matter of applying these term rewrite rules to a term. The different kinds of tree
automata only differ in the set of rules they allow.

2.1 Deterministic Bottom-Up Tree Acceptors

A deterministic bottom-up tree acceptor (DUTA) over a signature F consists of
a (finite) set of states Q, a set of accepting states Qa ⊆ Q, and a set of transition
rules of the form

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)), with f/n ∈ F and q, q1, . . . , qn ∈ Q

The variable symbols x1, . . . , xn serve as placeholders in these rules and states in
Q are considered as function symbols of arity 1. The set of transition rules must
be deterministic – i.e. there are no two different rules with the same left-hand
side – and complete – i.e. for each f/n ∈ F and q1, . . . , qn ∈ Q, there is a rule
with the left-hand side f(q1(x1), . . . , qn(xn)). The state q on the right-hand side
of the transition rule is also called the successor state of the transition.

By repeatedly applying the transition rules to a term t over F , initial states
are created at the leaves which then get propagated upwards through function
symbols. Eventually, we obtain a final state qf at the root of the term. That is,
an input term t is transformed into qf (t). The term t is accepted by the DUTA
iff qf ∈ Qa. In this way, a DUTA defines a term language.

Example 1. Consider the signature F = {and/2, not/1, tt/0,ff/0} and the DUTA

116

over F with Q = {q0, q1}, Qa = {q1} and the following transition rules:

ff → q0(ff)

tt→ q1(tt)

not(q0(x))→ q1(not(x))

not(q1(x))→ q0(not(x))

and(q1(x), q1(y))→ q1(and(x, y))

and(q0(x), q1(y))→ q0(and(x, y))

and(q1(x), q0(y))→ q0(and(x, y))

and(q0(x), q0(y))→ q0(and(x, y))

Terms over signature F are Boolean expressions and the automaton accepts
such an expression iff it evaluates to true.

Note that the rules are complete – for each function symbol, every combination
of input states occurs in the left-hand side of some rule – and deterministic – there
are no two rules with the same left-hand side.

The transition rules are applied by interpreting them as rules in a term rewrit-
ing system, where variables are placeholders for terms. For the term and(tt,ff),
we get the following derivation:

and(tt,ff)→ and(q1(tt),ff)→ and(q1(tt), q0(ff))→ q0(and(tt,ff))

The result of this derivation is the final state q0; the term is rejected.

The following picture illustrates a run of the automaton on the bigger term
not(and(not(ff), and(tt,ff))):

not

and

not

ff

and

tt ff

not

and

not

q0

ff

and

q1

tt

q0

ff

not

and

q1

not

ff

q0

and

tt ff

not

q0

and

not

ff

and

tt ff

q1

not

and

not

ff

and

tt ff

3 2

For the sake of conciseness, we applied rules in parallel where possible. At first
we apply the rules to the leaves of the term, performing three rewrite steps in
parallel. This effectively produces the initial states of the run. Subsequent rule
applications propagate the states according to the rules until we obtain the final
state at the root of the term.

Note that in both runs, apart from the final state at the root, the result term
is the same as the one we started with. This is expected. The only significant
output of a DUTA run is the final state.

The rules of a DUTA contain some syntactic overhead as they explicitly copy
the function symbol from the left-hand side to the right-hand side. This formu-
lation serves two purposes: first, it makes it possible to describe the run of a
DUTA as a term reduction as in the above example. Secondly, we will see that
the more sophisticated automata that we will consider later are simply general-
isations of the rules of a DUTA, which for example do not require copying the
function symbol but allow arbitrary transformations.

117

2.2 Algebras and Catamorphisms

For the representation of recursion schemes in Haskell, we consider data types as
fixed points of polynomial functors:

data Term f = In (f (Term f))

Given a functor f that represents some signature, Term f constructs its fixed
point, which represents the terms over f . For example, the data type Exp from
the introduction may be instead defined as Term Sig with2

data Sig e = Val Int | Plus e e

The functoriality of Sig is given by an instance of the type class Functor :

instance Functor Sig where
fmap f (Val i) = Val i
fmap f (Plus x y) = Plus (f x) (f y)

The function eval from the introduction is defined by a simple recursion
scheme: its recursive definition closely follows the recursive definition of the data
type Exp. This recursion scheme is known as catamorphism (or also fold). Given
an algebra, i.e. a functor f and type a together with a function of type f a → a,
its catamorphism is a function of type Term f → a constructed as follows:

cata :: Functor f ⇒ (f a → a)→ (Term f → a)
cata φ (In t) = φ (fmap (cata φ) t)

In the definition of the algebra for the evaluation function, we make use of
the fact that the arguments of the Plus constructor are already the results of
evaluating the corresponding subexpressions:

evalAlg :: Sig Int → Int
evalAlg (Val i) = i
evalAlg (Plus x y) = x + y

eval :: Term Sig → Int
eval = cata evalAlg

Programming in algebras and catamorphisms or other algebraic or coalgebraic
recursion schemes is a well-known technique in functional programming [20]. We
shall use this representation in order to implement the recursion schemes that we
derive from the tree automata.

2.3 Bottom-Up State Transition Functions

If we omit the syntactic overhead of the state transition rules of DUTAs, we see
that DUTAs are algebras – in fact, they were originally defined as such [5]. For
instance, the algebra of the automaton in Example 1 is an algebra that evaluates
Boolean expressions. Speaking in Haskell terms, a DUTA over a signature functor
F is given by a type of states Q , a state transition function in the form of an

2Term Sig is “almost” isomorphic to Exp. The only difference stems from the fact that the
constructor In is non-strict.

118

F -algebra trans :: F Q → Q , and a predicate acc :: Q → Bool . A term over F is
an element of type Term F . When running a DUTA on a term t of type Term F ,
we obtain the final state cata trans t of the run. Afterwards, the predicate acc
checks whether the final state is accepting:

runDUTA :: Functor f ⇒ (f q → q)→ (q → Bool)→ Term f → Bool
runDUTA trans acc = acc . cata trans

Example 2. We implement the DUTA from Example 1 in Haskell as follows:

data F a = And a a
| Not a
| TT | FF

data Q = Q0 | Q1

acc :: Q → Bool
acc Q1 = True
acc Q0 = False

trans :: F Q → Q
trans FF = Q0
trans TT = Q1
trans (Not Q0) = Q1
trans (Not Q1) = Q0
trans (And Q1 Q1) = Q1
trans (And) = Q0

The automaton is run on a term of type Term F as follows:

evalBool :: Term F → Bool
evalBool = runDUTA trans acc

The restriction to a finite state space is not crucial for our purposes as we
are not interested in deciding properties of automata. Instead, we want to use
automata as powerful recursion schemes that allow for modular definitions of
functions on terms. Since we are only interested in the traversal of the term that
an automaton provides, we also drop the predicate and consider the final state as
the output of a run of the automaton. We, therefore, consider only the transition
function of a DUTA:

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState = cata

With the functions evalAlg from Section 2.2 and trans from Example 2, we
have already seen two simple examples of bottom-up state transition functions.
In practice, only few state transitions of interest are that simple, of course.

In the following, we want to write a simple compiler for our expression lan-
guage that generates code for a simple virtual machine with a single accumulator
register and a random access memory indexed by non-negative integers. At first,
we devise the instructions of the virtual machine:

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr]

For simplicity, we use integers to represent addresses for the random access mem-
ory. The four instructions listed above write an integer constant to the accumu-
lator, load the contents of a memory cell into the accumulator, store the contents

119

of the accumulator into a memory cell, and add the contents of a memory cell to
the contents of the accumulator, respectively.

The code that we want to produce for an expression e of type Term Sig should
evaluate e, i.e. after executing the code, the virtual machine’s accumulator is
supposed to contain the integer value eval e:

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = x ++ [Store a] ++ y ++ [Add a]

where a = . . .

In order to perform addition, the result of the computation for the first summand
has to be stored into a temporary memory cell at some address a. However, we
also have to make sure that this memory cell is not overwritten by the computa-
tion for the second summand. To this end, we maintain a counter that tells us
which address is safe to use:

codeAddrSt :: UpState Sig (Code,Addr)
codeAddrSt (Val i) = ([Acc i], 0)
codeAddrSt (Plus (x , a ′) (y , a)) = (x ++ [Store a] ++ y ++ [Add a],

1 + max a a ′)

code :: Term Sig → Code
code = fst . runUpState codeAddrSt

While this definition yields the desired code generator, it is not very elegant
as it mixes the desired output state – the code – with an auxiliary state – the
fresh address. This flaw can be mitigated by using a state monad to carry around
the auxiliary state. In this way we can still benefit from computing both states
side by side has, which means that the input term is only traversed once.

This however still leaves the specification of two computations uncomfortably
entangled, which is not only more prone to errors but also inhibits reuse and
flexibility: the second component of the state, which we use as a fresh address, is
in fact the height of the expression and might be useful for other computations:

heightSt :: UpState Sig Int
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

Moreover, as we extend the expression language with new language features,
we might have to change the way we allocate memory locations for intermedi-
ate results. Thus, separating the two components of the computation is highly
desirable since it would then allow us to replace the heightSt component with a
different one while reusing the rest of the code generator.

The next section addresses this concern.

3 Making Tree Automata Modular

Our goal is to devise modular recursion schemes. In this section, we show how to
leverage two dimensions of modularity inherent in tree automata, viz. the state

120

space and the signature. For each dimension, we present a well-know technique
to make use of the modularity in the specification of automata. In particular,
we shall demonstrate these techniques on bottom-up state transitions. However,
due to their generality, both techniques are applicable also to the more advanced
tree automata that we consider in later sections.

3.1 Product Automata

A common construction in automata theory combines two automata by simply
forming the cartesian product of their state spaces and defining the state transi-
tion componentwise according to the state transitions of the original automata.
The resulting automaton runs the original automata in parallel. We shall follow
the same idea to construct the state transition codeAddrSt from Section 2.3 by
combining the state transition heightSt with a state transition that computes the
machine code using the state maintained by heightSt .

However, in contrast to the standard product automaton construction, the
two computations in our example are not independent from each other – the
code generator depends on the height in order to allocate memory addresses.
Therefore, we need a means of communication between the constituent automata.

In order to allow access to components of a compound state space, we define
a binary type class ∈ that tells us if a type is a component of a product type and
provides a projection for that component:

class a ∈ b where
pr :: b → a

Using overlapping instance declarations, we define the relation a ∈ b as follows:

instance a ∈ a where pr = id

instance a ∈ (a, b) where pr = fst

instance (c ∈ b)⇒ c ∈ (a, b) where pr = pr . snd

That is, we have a ∈ b if b is of the form (b1, (b2, ...)) and a = bi for some i .

We generalise bottom-up state transitions by allowing the successor state of
a transition to be dependent on a potentially larger state space:

type DUpState f p q = (q ∈ p)⇒ f p → q

The result state of type q for the state transition of the above type may depend
on the states that are propagated from below. However, in contrast to ordi-
nary bottom-up state transitions, these states – of type p – may contain more
components in addition to the component of type q .

Every ordinary bottom-up state transition such as heightSt can be readily
converted into such a dependent bottom-up state transition function by precom-
posing the projection pr :

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap pr

121

A dependent state transition function is the same as an ordinary state tran-
sition function if the state spaces p and q coincide. Hence, we can run such a
dependent state transition function in the same way:

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState f = runUpState f

When defining a dependent state transition function, we can make use of the
fact that the state propagated from below may contain additional components.
For the definition of the state transition function generating the code, we declare
that we expect an additional state component of type Int .

codeSt :: (Int ∈ q)⇒ DUpState Sig q Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = pr x ++ [Store a] ++ pr y ++ [Add a]

where a = pr y

Using the method pr of the type class ∈, we project to the desired components
of the state: pr x and the first occurrence of pr y are of type Code whereas the
second occurrence of pr y is of type Int .

The product construction that combines two dependent state transition func-
tions is simple: it takes two state transition functions depending on the same
(compound) state space and combines them by forming the product of their re-
spective outcomes:

(⊗) :: (p ∈ c, q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t , sq t)

We obtain the desired code generator from Section 2.3 by combining our two
(dependent) state transition functions and running the resulting state transition
function:

code :: Term Sig → Code
code = fst . runDUpState (codeSt ⊗ dUpState heightSt)

Note that combining state transition functions in this way is not restricted to
such simple dependencies. State transition functions may depend on each other.
The construction that we have seen in this section makes it possible to decompose
state spaces into isolated modules with a typed interface to access them. This
practice of decomposing state spaces is not different from the abstraction and
reuse that we perform when writing mutual recursive functions. Functions which
can be defined in this way are also known as mutumorphisms [6].

There are still two minor shortcomings, which we shall address when we con-
sider other types of automata below. First, the extraction of components from
compound states is purely based on the type information, which can easily result
in confusion of distinct state components that happen to have the same type.
This can be seen in the instance declarations for the type class ∈, which are over-
lapping and will simply select the left-most occurrence of a type. Secondly, we

122

only allow access to the state of the children of the current node. In principle, this
restriction is no problem as we can use the states of the children nodes to compute
the state of the current node. For example, if, in the code generation, we needed
the height of the current expression instead of the height of the right summand,
we could have computed it from the height of both summands. However, this
means that code as well as the corresponding computations are duplicated since
the state of the current node is already computed by the corresponding state
transition.

3.2 Compositional Data Types

We also want to leverage the modularity that stems from the data types on which
we want to define functions. This modularity is based on the ability to combine
functors by forming coproducts:

data (f ⊕ g) e = Inl (f e) | Inr (g e)

instance (Functor f ,Functor g)⇒ Functor (f ⊕ g) where
fmap f (Inl e) = Inl (fmap f e)
fmap f (Inr e) = Inr (fmap f e)

Using the ⊕ operator, we can extend the signature functor Sig with an increment
operation, for example:

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

In order to make use of this composition of functors for defining automata on
functors in a modular fashion, we will follow Swierstra’s data types à la carte [23]
approach, which we will summarise briefly below.

The use of coproducts entails that each (sub)term has to be explicitly tagged
with zero or more Inl or Inr tags. In order to add the correct tags automatically,
injections are derived using a type class:

class sub � sup where
inj :: sub a → sup a

Similarly to the type class ∈, we define the subsignature relation � as follows:

instance f � f where inj = id

instance f � (f ⊕ g) where inj = Inl

instance (f � g)⇒ f � (h ⊕ g) where inj = Inr . inj

That is, we have f � g if g is of the form g1 ⊕ (g2 ⊕ ...) and f = gi for some i .
From the injection function inj , we derive an injection function for terms:

inject :: (g � f)⇒ g (Term f)→ Term f
inject = In . inj

Additionally, in order to reduce syntactic overhead, we assume, for each signature
functor such as Sig or Inc, smart constructors that comprise the injection, e.g.:

123

plus :: (Sig � f)⇒ Term f → Term f → Term f
plus x y = inject (Plus x y)

inc :: (Inc � f)⇒ Term f → Term f
inc x = inject (Inc x)

Using these smart constructors, we can write, for example, inc (val 3 ‘plus‘ val 4)
to denote the expression inc(3 + 4).

For writing modular functions on compositional data types, we use type
classes. For example, for recasting the definition of the heightSt state transition
function, we introduce a new type class and make it propagate over coproducts:

class HeightSt f where
heightSt :: UpState f Int

instance (HeightSt f ,HeightSt g)⇒ HeightSt (f ⊕ g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

The above instance declaration lifts instances of HeightSt over coproducts in a
straightforward manner. Subsequently, we will omit these instance declarations
as they always follow the same pattern and thus can be generated automatically
like instances declarations for Functor .

We then instantiate this class for each (atomic) signature functor separately:

instance HeightSt Sig where
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

instance HeightSt Inc where
heightSt (Inc x) = 1 + x

Due to the propagation of instances over coproducts, we obtain an instance of
HeightSt for Sig ′ for free.

With the help of the type class HeightSt , we eventually obtain an extensible
definition of the height function.

height :: (Functor f ,HeightSt f)⇒ Term f → Int
height = runUpState heightSt

Since we have instantiated HeightSt for the signature Sig ′ and all its subsig-
natures, the function height may be given any argument of type Term f , where
f is the Sig ′ or any of its subsignatures. Moreover, by simply providing further
instance declarations for HeightSt , we can extend the domain of height to further
signatures.

4 Bottom-Up Tree Transducers

A compiler usually consists of several stages that perform diverse kinds of trans-
formations on the abstract syntax tree, e.g. renaming variables or removing syn-
tactic sugar. Representing syntax trees as terms, i.e. values of type Term f ,

124

such transformations are functions of type Term f → Term g that map terms
over some signature to terms over a potentially different signature. Tree trans-
ducers are a well-established technique for specifying such transformations [3, 7].
Moreover, there are a number of composition theorems that permit the compo-
sition of certain tree transducers such that the transformation function denoted
by the composition is equal to the composition of the transformation functions
denoted by the original tree transducers [7]. These composition theorems permit
us to perform deforestation [26], i.e. eliminating intermediate results by fusing
several stages of a compiler to a single tree transducer [16, 25], thus making tree
transducers an attractive recursion scheme.

4.1 Deterministic Bottom-Up Tree Transducers

A deterministic bottom-up tree transducer (DUTT) defines – like a DUTA –
for each function symbol a successor state. But, additionally, it also defines an
expression that should replace the original function symbol. More formally, a
DUTT from signature F to signature G consists of a set of states Q and a set of
transduction rules of the form

f(q1(x1), . . . , qn(xn))→ q(u), with f ∈ F and q, q1, . . . , qn ∈ Q

where u ∈ T (G,X) is a term over signature G and the set of variables X =
{x1, . . . , xn}. Compare this to the state transition rules of DUTAs, which are
simply a restriction of the transduction rules above with u = f(x1, . . . , xn), thus
only allowing the identity transformation. By repeatedly applying its transduc-
tion rules in a bottom-up fashion, a run of a DUTT transforms an input term
over F into an output term over G plus – similarly to DUTAs – a final state at
the root.

Example 3. Consider the signature F = {and/2, not/1,ff/0, tt/0, b/0} and the
DUTT from F to F with Q = {q0, q1, q2} and the following transduction rules:

tt→ q1(tt)

ff → q0(ff)

b→ q2(b)

not(q0(x))→ q1(tt)

not(q1(x))→ q0(ff)

not(q2(x))→ q2(not(x))

and(q(x), p(y))→ q0(ff) if q0 ∈ {p, q}

and(q1(x), q1(y))→ q1(tt)

and(q1(x), q2(y))→ q2(y)

and(q2(x), q1(y))→ q2(x)

and(q2(x), q2(y))→ q2(and(x, y))

The signature F allows us to express Boolean expression containing a single
Boolean variable b. When applied to such an expression, the automaton per-
forms constant folding, i.e. it evaluates subexpression if possible. With the
states q0 and q1 it signals that a subexpression is false respectively true; q2
indicates uncertainty. For example, applying the automaton to the expression
and(not(b), not(and(ff, b))) yields the following derivation:

125

and

not

b

not

and

ff b

and

not

q2

b

not

and

q0

ff

q2

b

and

q2

not

b

not

q0

ff

and

q2

not

b

q1

tt

q2

not

b

3 2

The rules for the constant symbols do not perform any transformation in this
example and simply provide initial states. Then the first real transformation is
performed, which collapses the subterm rooted in and to q0(ff). The run of the
automaton is completed as soon as a state appears at the root, the final state of
the run.

4.2 Contexts in Haskell

In order to, represent transduction rules in Haskell, we need a representation of
the set T (F ,X) of terms over signature F and variables X . We call such extended
terms contexts. These contexts appear on the right-hand side of transduction
rules of DUTTs. We obtain a representation of contexts by simply extending the
definition of the data type Term by an additional constructor:

data Context f a = In (f (Context f a)) | Hole a

We call this additional constructor Hole as we will use it also for things other than
variables. For example, the holes in a context may be filled by other contexts
over the same signature. The following function substitutes the contexts in the
holes into the surrounding context.

appCxt :: Functor f ⇒ Context f (Context f a)→ Context f a
appCxt (Hole x) = x
appCxt (In t) = In (fmap appCxt t)

Context f is in fact the free monad of the functor f with Hole and appCxt as
unit and multiplication operation, respectively. The functoriality of Context f is
given as follows:

instance Functor f ⇒ Functor (Context f) where
fmap f (Hole v) = Hole (f v)
fmap f (In t) = In (fmap (fmap f) t)

Recall that the set of terms T (F) is defined as the set T (F , ∅) of terms
without variables. We can do the same in the Haskell representation and replace
our definition of the type Term with the following:

data Empty
type Term f = Context f Empty

126

Here, Empty is simply an empty type.3 This definition of Term allows us to use
terms and context in a uniform manner. For example, the function appCxt defined
above can also be given the type Context f (Term f)→ Term f . Moreover, this
encoding allows us to give a more general type for the injection function:

inject :: (g � f)⇒ g (Context f a)→ Context f a

The definition of inject remains the same. The same also applies to smart con-
structors; for example, the smart constructor plus has now the more general type

plus :: (Sig � f)⇒ Context f a → Context f a → Context f a

Most of the time we are using very simple contexts that only consist of a
single functor application as constructed by the following function:

simpCxt :: Functor f ⇒ f a → Context f a
simpCxt t = In (fmap Hole t)

4.3 Bottom-Up Transduction Functions

The transduction rules of a DUTT use placeholder variables x1, x2, etc. in order
to refer to arguments of function symbols. These placeholder variables can then
be used on the right-hand side of a transduction rule. This mechanism makes it
possible to rearrange, remove and duplicate the terms that are matched against
these placeholder variables. On the other hand, it is not possible to inspect them.
For instance, in Example 3, not(q0(ff))→ q1(tt) would not be a valid transduction
rule as we are not allowed to pattern match on the arguments of not. We can
only observe the state.

When representing transduction rules as Haskell functions, we have to be
careful in order to maintain this restriction on DUTTs. In their categorical
representation, Hasuo et al. [11] recognised that the restriction due to placeholder
variables in the transduction rules can be enforced by a naturality condition.
Naturality, in turn, can be represented in Haskell’s type system as parametric
polymorphism. Following this approach, we represent DUTTs from signature
functor f to signature functor g with state space q by the following type:

type UpTrans f q g = ∀ a . f (q , a)→ (q ,Context g a)

In the definition of tree automata, states are used syntactically as a unary function
symbol – an argument with state q is written as q(x) in the left-hand side. In
the Haskell representation, we use pairs and simply write (q , x).

In the type UpTrans, the type variable a represents the type of the placeholder
variables. The universal quantification over a makes sure that placeholders can
only be used if they appear on the left-hand side and that they cannot be in-
spected.

3Note that in Haskell, every data type – including Empty – is inhabited by ⊥. Thus the
definition of Term is not entirely accurate. However, for the sake of simplicity, we prefer this
definition over a more precise one such as in [1].

127

Example 4. We implement the DUTT from Example 3 in Haskell. At first we
define the signature and the state space.

data F a = And a a | Not a | TT | FF | B
data Q = Q0 | Q1 | Q2

For the definition of the transduction function, we use the smart constructors
and , not, tt , ff and b for the constructors of the signature F . These smart
constructors are defined as before, e.g.

and :: (F � f)⇒ Context f a → Context f a → Context f a
and x y = inject (And x y)

The definition of the transduction function is a one-to-one translation of the
transduction rules of the DUTT from Example 3.

trans :: UpTrans F Q F

trans TT = (Q1 , tt); trans (Not (Q0 , x)) = (Q1 , tt)
trans FF = (Q0 ,ff); trans (Not (Q1 , x)) = (Q0 ,ff)
trans B = (Q2 , b); trans (Not (Q2 , x)) = (Q2 , not (Hole x))

trans (And (q , x) (p, y))
| q ≡ Q0 ∨ p ≡ Q0 = (Q0 ,ff)

trans (And (Q1 , x) (Q1 , y)) = (Q1 , tt)
trans (And (Q1 , x) (Q2 , y)) = (Q2 ,Hole y)
trans (And (Q2 , x) (Q1 , y)) = (Q2 ,Hole x)
trans (And (Q2 , x) (Q2 , y)) = (Q2 , and (Hole x) (Hole y))

Since we do not constrain ourselves to finite state spaces, DUTTs do not add
any expressive power to the state transition functions of DUTAs. Each DUTT
can be transformed into an algebra whose catamorphism is the transformation
denoted by the DUTT:

runUpTrans :: (Functor f ,Functor g)⇒ UpTrans f q g
→ Term f → (q ,Term g)

runUpTrans trans = cata (appCxt ′ . trans)
where appCxt ′ (x , y) = (x , appCxt y)

For instance, we run the DUTT from Example 4 as follows:

foldBool :: Term F → (Q ,Term F)
foldBool = runUpTrans trans

As we have seen in Section 3.1, a tree acceptor with a compound state space
comprises several computations which may be disentangled in order to increase
modularity. A tree transducer intrinsically combines two computations: the state
transition and the actual transformation of the term. We will see in Section 4.5
how to disentangle these two components. Before that, we shall look at a special
case of DUTTs.

128

4.4 Tree Homomorphisms

To simplify matters, Bahr and Hvitved [1] focused on tree transducers with a
singleton state space, also known as tree homomorphisms [3]:

type Hom f g = ∀ a . f a → Context g a

runHom :: (Functor f ,Functor g)⇒ Hom f g → Term f → Term g
runHom hom = cata (appCxt . hom)

Tree homomorphisms can only transform the tree structure uniformly without the
ability to maintain a state. Nonetheless, tree homomorphisms provide a useful
recursion scheme. For example, desugaring, i.e. transforming syntactic sugar of
a language to the language’s core operations, can in many cases be implemented
as a tree homomorphism. Reconsider the signature Sig ′ = Inc⊕Sig that extends
Sig with an increment operator. The increment operator is only syntactic sugar
for adding the value 1. The corresponding desugaring transformation can be
implemented as a tree homomorphism:

class DesugHom f g where
desugHom :: Hom f g

-- instance declaration lifting DesugHom to coproducts omitted

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where
desugHom = simpCxt . inj

The first instance declaration states that as long as the target signature g
contains Sig , we can desugar the signature Inc to g by mapping inc(x) to x+ 1.
Using overlapping instances, the second instance declaration then defines the
desugaring for all other signatures f – provided f is contained in the target
signature – by leaving the input untouched.

The above instance declarations make it now possible to use the desugar
function with type Term Sig ′ → Term Sig . That is, desugar transforms a term
over signature Sig ′ to a term over signature Sig .

As an ordinary recursive Haskell function we would implement desugaring as
follows:

data Exp = Val Int | Plus Exp Exp
data Exp′ = Val ′ Int | Plus ′ Exp′ Exp′ | Inc′ Exp′

desugExp :: Exp′ → Exp
desugExp (Val ′ i) = Val i
desugExp (Plus ′ e f) = desugExp e ‘Plus‘ desugExp f
desugExp (Inc′ e) = desugExp e ‘Plus‘ Val 1

Note that we have to provide two separate data types for the input and
output types of the function instead of using the compositionality of signatures.

129

Moreover, the function desugar is applicable more broadly. It can be used as a
function of type Term (f ⊕ Inc)→ Term f for any signature f that contains Sig ,
i.e. for which we have Sig � f . Apart from these advantages in modularity and
extensibility we also obtain all the advantages of using a transducer, which we
shall discuss in more detail in Section 7.

4.5 Combining Tree Homomorphisms with State Transitions

We aim to combine the simplicity of tree homomorphisms and the expressivity
of bottom-up tree transducers. To this end, we shall devise a method to combine
a tree homomorphism and a state transition function to form a DUTT. This
construction will be complete in the sense that any DUTT can be constructed in
this way.

At first, compare the types of automata that we have considered so far:

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q , a)→ (q ,Context g a)

We can observe from this – admittedly suggestive – comparison that a bottom-
up tree transducer is roughly a combination of a tree homomorphism and a state
transition function. Our aim is to make use of this observation by decompos-
ing the specification of a bottom-up tree transducer into a tree homomorphism
and a bottom-up state transition function. Like for the product construction of
state transition functions from Section 3.1, we have to provide a mechanism to
deal with dependencies between the two components. Since the state transition
is independent from the tree transformation, we only need to allow the tree ho-
momorphism to access the state information that is produced by the bottom-up
state transition.

A stateful tree homomorphism can thus be (tentatively) defined as follows:

type QHom f q g = ∀ a . f (q , a)→ Context g a

Since q appears to the left of the function arrow but not to the right, functions of
the above type have access to the states of the arguments, but do not transform
the state themselves. However, we want to make it easy to ignore the state if
it is not needed as the state is often only needed for a small number of cases.
This goal can be achieved by replacing the pairing with the state space q by an
additional argument of type a → q .

type QHom f q g = ∀ a . (a → q)→ f a → Context g a

We can still push this interface even more to the original tree homomorphism
type Hom by turning the function argument into an implicit parameter [17]:

type QHom f q g = ∀ a . (?state :: a → q)⇒ f a → Context g a

In a last refinement step, we add an implicit parameter that provides access to
the state of the current node as well:

130

type QHom f q g = ∀ a . (?above :: q , ?below :: a → q)
⇒ f a → Context g a

Functions with implicit parameters have to be invoked in the scope of appro-
priate bindings. For functions of the above type this means that ?below has to
be bound to a function of type a → q and ?above to a value of type q . We shall
use the following function to make implicit parameters explicit:

explicit :: ((?above :: q , ?below :: a → q)⇒ b)→ q → (a → q)→ b
explicit x ab be = x where ? above = ab; ?below = be

In particular, given a stateful tree homomorphism h of type QHom f q g , we
thus obtain a function explicit h of type q → (a → q)→ f a → Context g a.

The use of implicit parameters is solely for reasons of syntactic appearance
and convenience. One can think of implicit parameters as reader monads with-
out the syntactic overhead of monads. If, in the definition of a stateful tree
homomorphism, the state is not needed, it can be easily ignored. Hence, tree
homomorphisms are, in fact, also syntactic special cases of stateful tree homo-
morphisms.

The following construction combines a stateful tree homomorphism of type
QHom f q g and a state transition function of type UpState f q into a tree
transducer of type UpTrans f q g , which can then be used to perform the desired
transformation:

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g

upTrans st hom t = (q , c) where
q = st (fmap fst t)
c = fmap snd (explicit hom q fst t)

runUpHom :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → Term f → (q ,Term g)

runUpHom st hom = runUpTrans (upTrans st hom)

Often the state space accessed by a stateful tree homomorphism is compound.
Therefore, it is convenient to have the projection function pr built into the in-
terface to the state space:

above :: (?above :: q , p ∈ q)⇒ p
above = pr ? above

below :: (?below :: a → q , p ∈ q)⇒ a → p
below = pr . ?below

In order to illustrate how stateful tree homomorphisms are programmed, we
extend the signature Sig with variables and let bindings:

type Name = String
data Let e = LetIn Name e e | Var Name
type LetSig = Let ⊕ Sig

131

We shall implement a simple optimisation that removes let bindings whenever
the variable that is bound is not used in the scope of the let binding. To this
end, we define a state transition that computes the set of free variables:

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars

instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union‘ y
freeVarsSt (Val) = empty

instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v
freeVarsSt (LetIn v e s) = if v ‘member ‘ s then delete v (e ‘union‘ s)

else s

Note that the free variables occurring in the right-hand side of a binding are
only included if the bound variable occurs in the scope of the let binding. The
transformation itself is simple:

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars ∈ q ,Let � g ,Functor g)⇒ RemLetHom Let q g where
remLetHom (LetIn v s) | ¬ (v ‘member ‘ below s) = Hole s
remLetHom t = simpCxt (inj t)

instance (Functor f ,Functor g , f � g)⇒ RemLetHom f q g where
remLetHom = simpCxt . inj

The homomorphism removes a let binding whenever the bound variable is not
found in the set of free variables. Otherwise, no transformation is performed.
Notice that the type specifies that the transformation depends on a state space
that at least contains a set of variables. In addition, we make use of overlapping
instances to define the transformation for all signatures different from Let . We
then obtain the desired transformation function by combining the stateful tree
homomorphism with the state transition computing the free variables:

remLet :: (Functor f ,FreeVarsSt f ,RemLetHom f Vars f)
⇒ Term f → Term f

remLet = snd . runUpHom freeVarsSt remLetHom

In particular, we can give remLet the type Term LetSig → Term LetSig but also
Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig).

4.6 Refining Dependent Bottom-Up State Transition Functions

The implicit parameters ?below and ?above of stateful tree homomorphisms pro-
vide an interface to the states of the children of the current node as well as the
state of the current node itself. The same interface can be given to dependent
bottom-up state transition functions as well. We therefore redefine the type of
these state transitions from Section 3.1 as follows:

132

type DUpState f p q = ∀ a . (?below :: a → p, ?above :: p, q ∈ p)
⇒ f a → q

While the definition of the product operator ⊗ remains the same, we have to
change the other functions slightly to accommodate this change:

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap below

upState :: DUpState f q q → UpState f q
upState st s = res where

res = explicit st res id s

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState = runUpState . upState

Note that definition of res in upState is cyclic and thus crucially depends on
Haskell’s non-strict semantics. This also means that dependent state transition
functions do not necessarily yield a terminating run since one can create a cyclic
dependency by defining a state transition that depends on its own result such as
the following:

loopSt :: DUpState f p q
loopSt = above

The definition of the code generator from Section 3.1 is easily adjusted to
the slightly altered interface of dependent state transitions. Since we intend to
extend the code generator in Section 6, we also turn it into a type class:

class CodeSt f q where
codeSt :: DUpState f q Code

code :: (Functor f ,CodeSt f (Code, Int),HeightSt f)
⇒ Term f → (Code,Addr)

code = runDUpState (codeSt ⊗ dUpState heightSt)

instance (Int ∈ q)⇒ CodeSt Sig q where
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = below x ++ [Store a] ++ below y ++ [Add a]

where a = below y

Note that the access to the state of the current node – via above – solves one
of the minor issues we have identified at the end of Section 3.1. In order to obtain
the state of the current node, we do not have to duplicate the corresponding state
transition anymore. Moreover, we can use the same interface when we move to
top-down state transitions in the next section.

5 Top-Down Automata

Operations on abstract syntax trees are often dependent on a state that is prop-
agated top-down rather than bottom-up, e.g. typing environments and variable

133

bindings. For such operations, recursion schemes derived from bottom-up au-
tomata are not sufficient. Hence, we shall consider top-down automata as a
complementary paradigm to overcome this restriction.

Unlike the bottom-up case, we will not start with acceptors but with trans-
ducers. Our interest for bottom-up acceptors was based on the fact that such
automata produce an output state. For top-down acceptors this application van-
ishes since such automata rather consume an input state than produce an output
state. We will however come back to top-down state transition in order to make
the state transition of top-down transducer modular – using the same stateful
tree homomorphisms that we introduced in Section 4.5.

5.1 Deterministic Top-Down Tree Transducers

Deterministic top-down tree transducers (DDTTs) are able to produce transfor-
mations that depend on a top-down flow of information. They work in a fashion
similar to bottom-up tree transducers but propagate their state downwards rather
than upwards. More formally, a DDTT from signature F to signature G consists
of a set of states Q, an initial state q0 ∈ Q and a set of transduction rules of the
form

q(f(x1, . . . , xn))→ u with f ∈ F and q ∈ Q

where u ∈ T (G, Q(X)) is a term over G and Q(X) = {p(xi) | p ∈ Q, 1 ≤ i ≤ n}.
That is, the right-hand side is a term that may have subterms of the form p(xi)
with xi a variable from the left-hand side and p a state in Q. In other words,
each occurrence of a variable on the right-hand side is given a successor state.

In order to run a DDTT on a term t ∈ T (F), we have to provide an initial
state q0 and then apply the transduction rules to q0(t) in a top-down fashion.
Eventually, this yields a result term t′ ∈ T (G).

Example 5. Consider the signature F = {or/2, and/2, not/1, tt/0,ff/0, b/0} and
the DDTT from F to F with the set of states Q = {q0, q1}, initial state q0 and
the following transduction rules:

q0(b)→ b q0(tt)→ tt q0(ff)→ ff

q1(b)→ not(b) q1(tt)→ ff q1(ff)→ tt

q0(not(x))→ q1(x)

q1(not(x))→ q0(x)

q0(and(x, y))→ and(q0(x), q0(y)) q0(or(x, y))→ or(q0(x), q0(y))

q1(and(x, y))→ or(q1(x), q1(y)) q1(or(x, y))→ and(q1(x), q1(y))

Terms over F are Boolean expressions with a single Boolean variable b. The
above DDTT transforms such an expression into negation normal form by mov-
ing the operator not inwards. For instance, applied to the Boolean expression
not(and(not(b), or(tt, b))), the automaton yields the following derivation:

134

q0

not

and

not

b

or

tt b

q1

and

not

b

or

tt b

or

q1

not

b

q1

or

tt b

or

q0

b

and

q1

tt

q1

b

or

b and

ff not

b

2 3

In order to start the run of a DDTT, the initial state q0 has to be explicitly
inserted at the root of the input term. The run of the automaton is completed
as soon as all states in the term have vanished; there is no final state.

5.2 Top-Down Transduction Functions

Similar to bottom-up tree transducers, we follow the placeholders-via-naturality
principle of Hasuo et al. [11] in order to represent top-down transduction func-
tions:

type DownTrans f q g = ∀ a . (q , f a)→ Context g (q , a)

Now the state comes from above and is propagated downwards to the holes of the
context, which defines the actual transformation that the transducer performs.

Running a top-down tree transducer on a term is a straightforward affair:

runDownTrans :: (Functor f ,Functor g)⇒ DownTrans f q g → q
→ Term f → Term g

runDownTrans tr q t = run (q , t) where
run (q , In t) = appCxt (fmap run (tr (q , t)))

A top-down transducer is run by applying its transduction function – tr (q , t) –
then recursively running the transformation in the holes of the produced context
– fmap run – and finally joining the context with the thus produced embedded
terms – appCxt .

Example 6. We implement the DDTT from Example 5 in Haskell as follows:

data F a = Or a a | And a a | Not a | TT | FF | B
data Q = Q0 | Q1

trans :: DownTrans F Q F

trans (Q0 ,TT) = tt ; trans (Q0 ,B) = b
trans (Q1 ,TT) = ff ; trans (Q1 ,B) = not b

trans (Q0 ,FF) = ff ; trans (Q0 ,Not x) = Hole (Q1 , x)
trans (Q1 ,FF) = tt ; trans (Q1 ,Not x) = Hole (Q0 , x)

trans (Q0 ,And x y) = Hole (Q0 , x) ‘and ‘ Hole (Q0 , y)
trans (Q1 ,And x y) = Hole (Q1 , x) ‘or ‘ Hole (Q1 , y)

trans (Q0 ,Or x y) = Hole (Q0 , x) ‘or ‘ Hole (Q0 , y)
trans (Q1 ,Or x y) = Hole (Q1 , x) ‘and ‘ Hole (Q1 , y)

135

The definition of the transduction function trans is a one-to-one translation of the
transduction rules of the DDTT from Example 5. Note, that we use the smart
constructors or , and , not, tt , ff and b on the right-hand side of the definitions.
We apply the thus defined DDTT to a term of type Term F as follows:

negNorm :: Term F → Term F
negNorm = runDownTrans trans Q0

5.3 Top-Down State Transition Functions

Unfortunately, we cannot provide a full decomposition of DDTTs into a state
transition and a homomorphism part in the way we did for DUTTs in Section 4.5.
Unlike in DUTTs, the state transition in a DDTT is inherently dependent on the
transformation: since a placeholder variable may be copied on the right-hand
side, each copy may be given a different successor state! For example, a DDTT
may have a transduction rule

q0(f(x))→ g(q1(x), q2(x))

which transforms a function symbol f into g and copies the argument of f .
However, the two copies are given different successor states, viz. q1 and q2.

In order to avoid this dependency of state transitions on the transformation,
we restrict ourselves to DDTTs in which successor states are given to placeholder
variables and not their occurrences. That is, for each two occurrences of subterms
q1(x) and q2(x) on the right-hand side of a transduction rule, we require that
q1 = q2. The DDTT given in Example 5 is, in fact, of this form.

The top-down state transitions we are aiming for are dual to bottom-up state
transitions. The run of a bottom-up state transition function assigns a state to
each node by an upwards state propagation, performing the same computation
as an upwards accumulation [8]. The run of a top-down state transition function,
on the other hand, should do the same by a downwards state propagation and
thus perform the same computation as a downwards accumulation [9, 10].

However, representing top-down state transitions is known to be challeng-
ing [8–10]. A first attempt yields the type ∀ a . (q , f a) → f q . This type,
however, allows apart from the state transition also a transformation. The result
is not required to have the same shape as the input. For example, the following
equation (partially) defines a function bad of type ∀ a . (Q ,Sig a)→ Sig Q :

bad (q ,Plus x y) = Val 1

In order to assign a successor state to each child of the input node without
permitting changes to its structure, we use explicit placeholders to which we can
assign the successor states:

type DownState f q = ∀ i .Ord i ⇒ (q , f i)→ Map i q

The type Map i q represents finite mappings from type i to type q . Since such
finite mappings are implemented by search trees, we require that the domain type
i is of class Ord , which provides a total ordering.

136

The idea is to produce, from a state transition function of the above type,
a function of type ∀ a . (q , f a) → f q that does preserve the structure of the
input and only produces the successor states. This is achieved by injecting unique
placeholders of type i into a value of type f a – one for each child node. We can
then produce the desired value of type f q from the mapping of type Map i q
given by the state transition function. A placeholder that is not mapped to a
state explicitly is assumed to keep the state of the current node by default.

To work with finite mappings, we assume an interface with ∅ denoting the
empty mapping, x 7→ y the singleton mapping that maps x to y , m ∪ n the left-
biased union of two mappings m and n, and a lookup function lookup :: Ord i ⇒
i → Map i q → Maybe q . Moreover, we define the lookup with default as follows:

findWithDefault :: Ord i ⇒ q → i → Map i q → q
findWithDefault def i m = case lookup i m of

Nothing → def
Just q → q

At first, we need a mechanism to introduce unique placeholders into the struc-
ture of a functorial value. To this end, we will use the standard Haskell type class
Traversable that provides the method

mapM :: (Traversable f ,Monad m)⇒ (a → m b)→ f a → m (f b)

which allows us to apply a monadic function to the components of a functorial
value and then sequence the resulting monadic effects. Every polynomial functor
can be made an instance of Traversable. Declarations to that effect can be derived
automatically.

Ultimately, we want to number the elements in a functorial value to make
them unique placeholders. To this end, we introduce a type of numbered values.

newtype Numbered a = Numbered (Int , a)

unNumbered :: Numbered a → a
unNumbered (Numbered (, x)) = x

instance Eq (Numbered a) where
Numbered (i ,) ≡ Numbered (j ,) = i ≡ j

instance Ord (Numbered a) where
compare (Numbered (i ,)) (Numbered (j ,)) = compare i j

The instance declarations allow us to use elements of the type Numbered a as
placeholders.

With the help of the mapM combinator, we define a function that numbers
the components in a functorial value by counting up using a state monad:

number :: Traversable f ⇒ f a → f (Numbered a)
number x = fst (runState (mapM run x) 0) where

run b = do n ← get
put (n + 1)
return (Numbered (n, b))

137

where runState :: State s a → s → (a, s) runs a state monad with state type s,
put :: s → State s m () sets the state and get :: State s s queries the state inside
a state monad.

Using the above numbering combinator to create unique placeholders, we
construct the explicit top-down propagation of states from a mapping of place-
holders to successor states. Since the mapping of placeholders to successor states
is partial, we also have to give a default state:

appMap :: Traversable f ⇒ (∀ i .Ord i ⇒ f i → Map i q)
→ q → f a → f (q , a)

appMap qmap q s = fmap qfun s ′ where
s ′ = number s
qfun k = (findWithDefault q k (qmap s ′), unNumbered k)

Finally, we can combine a top-down state transition function with a state-
ful tree homomorphism by propagating the successor states using the appMap
combinator. As the default state, we take the state of the current node, i.e. by
default the state remains unchanged.

downTrans :: Traversable f ⇒ DownState f q → QHom f q g
→ DownTrans f q g

downTrans st f (q , s) = explicit f q fst (appMap (curry st q) q s)

runDownHom :: (Traversable f ,Functor g)⇒ DownState f q
→ QHom f q g → q → Term f → Term g

runDownHom st h = runDownTrans (downTrans st h)

Note that we use the same type of stateful tree homomorphisms that we intro-
duced for bottom-up state transitions. The roles of ?above and ?below are simply
swapped: ?above refers to the state propagated from above whereas ?below pro-
vides the successor states of the current subterm. Stateful tree homomorphisms
are ignorant of the direction in which the state is propagated.

Example 7. We reconstruct the DDTT from Example 6 by defining the state
transition and the transformation separately:

state :: DownState F Q
state (Q0 ,Not x) = x 7→ Q1
state (Q1 ,Not x) = x 7→ Q0
state = ∅
hom :: QHom F Q F
hom TT = if above ≡ Q0 then tt else ff
hom FF = if above ≡ Q0 then ff else tt
hom B = if above ≡ Q0 then b else not b
hom (Not x) = Hole x
hom (And x y) = if above ≡ Q0 then Hole x ‘and ‘ Hole y

else Hole x ‘or ‘ Hole y
hom (Or x y) = if above ≡ Q0 then Hole x ‘or ‘ Hole y

else Hole x ‘and ‘ Hole y

138

Note that in the definition of the state transition function, we return the empty
mapping for all constructors different from Not . Consequently, the input state
for these constructors is propagated unchanged by default.

By combining the state transition function and the stateful homomorphism,
we obtain the same transformation function as in Example 6.

negNorm ′ :: Term F → Term F
negNorm ′ = runDownHom state hom Q0

Instead of introducing explicit placeholders in order to distribute the succes-
sor state, we could have also simply taken the encoding we first suggested, i.e.
via a function ρ of type ∀ a . (q , f a) → f q , and required as (an unchecked)
side condition that ρ must preserve the shape of the input. This approach was
taken in Gibbons’ generic downwards accumulations [10] in which he requires the
accumulation operation to be shape preserving.

Alternatively, we could have also adopted Gibbons’ earlier approach to down-
wards accumulations [9], which instead represents the downward flow of informa-
tion as a fold over a separately constructed data type called path. This path data
type is constructed as the fixed point of a functor that is constructed from the
signature functor. Unfortunately, this functor is quite intricate and not easy to
program with in practice. Apart from that, it would be difficult to construct this
path functor for each signature functor in Haskell.

In the end, our approach yields a straightforward representation of downward
state transitions that is easy to work with in practise. Moreover, the ability to
have a default behaviour for unspecified transitions makes for compact specifica-
tions as we have seen in Example 7. However, this default behaviour may also
lead to errors more easily due to forgotten transitions.

5.4 Making Top-Down State Transition Functions Modular

Analogously to bottom-up state transition functions, we also define a variant of
top-down state transition functions that has access to a bigger state space whose
components are defined separately.

type DDownState f p q = ∀ i . (Ord i , ?below :: i → p, ?above :: p, q ∈ p)
⇒ f i → Map i q

Translations between ordinary top-down state transitions and their gener-
alised variants are produced as follows:

dDownState :: DownState f q → DDownState f p q
dDownState f t = f (above, t)

downState :: DDownState f q q → DownState f q
downState f (q , s) = res where

res = explicit f q bel s
bel k = findWithDefault q k res

Similarly to their bottom-up counterparts, dependent top-down state transi-
tion functions that depend on the same state space can be combined to form a
product state transition:

139

(~) :: (p ∈ c, q ∈ c)⇒ DDownState f c p → DDownState f c q
→ DDownState f c (p, q)

(sp ~ sq) t = prodMap above above (sp t) (sq t)

prodMap :: Ord i ⇒ p → q → Map i p → Map i q → Map i (p, q)

This construction is based on the pointwise product of mappings defined by
prodMap, which we do not give in detail here. Since the mappings are partial, we
have to provide a default state that is used in case only one of the mappings has
a value for a given index. In accordance with the default behaviour of top-down
state transition functions, this default state is the state from above.

As an example, we will define a transformation that replaces variables bound
by let expressions with de Bruijn indices. For the sake of demonstration, we will
implement this transformation using two states: the scope level, i.e. the number
of let-bindings that are in scope, and a mapping from bound variables to the
scope level of their respective binding site.

The scope level state simply counts the nesting of let bindings:

class ScopeLvlSt f where
scopeLvlSt :: DownState f Int

instance ScopeLvlSt Let where
scopeLvlSt (d ,LetIn b) = b 7→ (d + 1)
scopeLvlSt = ∅

instance ScopeLvlSt f where
scopeLvlSt = ∅

Here we use the fact that if a successor state is not defined for a subexpression,
then the current state is propagated by default.

The state that maintains a mapping from variables to the scope level of their
respective binding site is dependent on the scope level state:

type VarLvl = Map Name Int

class VarLvlSt f q where
varLvlSt :: DDownState f q VarLvl

instance (Int ∈ q)⇒ VarLvlSt Let q where
varLvlSt (LetIn v b) = b 7→ ((v 7→ above) ∪ above)
varLvlSt = ∅

instance VarLvlSt f q where
varLvlSt = ∅

Note that the first occurrence of above is of type Int – derived from the type
constraint Int ∈ q – whereas the second occurrence is of type VarLvl – derived
from the type constraint VarLvl ∈ q in the type DDownState f q VarLvl .

Since we want to replace explicit variables with de Bruijn indices, we have to
replace the signature Let with the following signature in the output term:

data Let ′ e = LetIn ′ e e | Var ′ Int
type LetSig ′ = Let ′ ⊕ Sig

140

The actual transformation is defined as a stateful tree homomorphism:

class DeBruijnHom f q g where
deBruijnHom :: QHom f q g

instance (VarLvl ∈ q , Int ∈ q ,Let ′ � g)⇒ DeBruijnHom Let q g where
deBruijnHom (LetIn a b) = letIn ′ (Hole a) (Hole b)
deBruijnHom (Var v) = case lookup v above of

Nothing → error "free variable"

Just i → var ′ (above − i)

instance (Functor f ,Functor g , f � g)⇒ DeBruijnHom f q g where
deBruijnHom = simpCxt . inj

Note that we issue an error if we encounter a variable that is not bound by a let
expression. Otherwise, we create the de Bruijn index by subtracting the variable’s
scope level from the current scope level.

Finally, we have to tie the components together by forming the product state
transition and providing an initial state:

deBruijn :: Term LetSig → Term LetSig ′

deBruijn = runDownHom stateTrans deBruijnHom init
where init = (∅, 0) :: (VarLvl , Int)

stateTrans :: DownState LetSig (VarLvl , Int)
stateTrans = downState (varLvlSt ~ dDownState scopeLvlSt)

Due to its open definition, we can give the function deBruijn also the type
Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig ′), for example.

6 Bidirectional State Transitions

We have seen recursion schemes that use an upwards flow of information as well as
recursion schemes that use a downwards flow of information. Some computations,
however, require the combination of both. For example, if we want to extend the
code generator from Section 4.6 to also work on let bindings, we need to propagate
the generated code upwards but the symbol table for bound variables downwards.

In this section, we show two ways of achieving this combination.

6.1 Avoiding the Problem

The issue of combining two directions of information flow is usually circumvented
by splitting up the computation in several runs instead. For the code generator,
for instance, we can introduce a preprocessing step that translates let bindings
into explicit assignments to memory addresses and variables into corresponding
references to memory addresses.

This preprocessing step is easily implemented by modifying the stateful tree
homomorphism from Section 5.4 that transforms variables into de Bruijn indices.
Instead of de Bruijn indices we generate memory addresses.

At first, we define the signature that contains explicit addresses for bound
variables:

141

data LetAddr e = LetAddr Addr e e | VarAddr Addr
type AddrSig = LetAddr ⊕ Sig

The following stateful homomorphism then transforms a term over a signature
containing Let into a signature containing LetAddr instead. The homomorphism
depends on the same state as the de Bruijn homomorphism from Section 5.4:

class AddrHom f q g where
addrHom :: QHom f q g

instance (VarLvl ∈ q , Int ∈ q ,LetAddr � g)⇒ AddrHom Let q g where
addrHom (LetIn x y) = letAddr above (Hole x) (Hole y)
addrHom (Var v) = case lookup v above of

Nothing → error "free variable"

Just a → varAddr a

instance (Functor f ,Functor g , f � g)⇒ AddrHom f q g where
addrHom = simpCxt . inj

By combining all components of the computation including the state transi-
tion functions varLvlSt and scopeLvlSt from Section 5.4, we obtain the desired
transformation:

toAddr :: Addr → Term LetSig → Term AddrSig
toAddr startAddr = runDownHom stateTrans addrHom init

where init = (∅, startAddr) :: (VarLvl , Int)
stateTrans :: DownState LetSig (VarLvl , Int)
stateTrans = downState (varLvlSt ~ dDownState scopeLvlSt)

The additional argument of type Addr allows us to control from which address
we should start when assigning addresses to variables.

The actual code generation can then proceed on the signature LetAddr instead
of Let :

instance CodeSt LetAddr q where
codeSt (LetAddr a s e) = below s ++ [Store a] ++ below e
codeSt (VarAddr a) = [Load a]

To this end, we must also extend the HeightSt type class, which is used by the
code generator:

instance HeightSt LetAddr where
heightSt (LetAddr x y) = 1 + max x y
heightSt (VarAddr) = 0

Now, we can use the function code from Section 4.6 with the type

code :: Term AddrSig → (Code,Addr)

Combining this function with the above defined transformation toAddr , yields
the desired code generator:

142

codeLet :: Term LetSig → Code
codeLet t = c
where t ′ = toAddr (addr + 1) t

(c, addr) = code t ′

When combining the two functions toAddr and code, we have to be careful to
avoid clashes in the use of addresses for storing intermediate results on the one
hand and for storing results of let bindings on the other hand. To this end, we use
the result addr of the code generator function code, which is the highest address
used for intermediate results, to initialise the address counter for the transfor-
mation toAddr . This makes sure that we use different addresses for intermediate
results and bound variables.

6.2 A Direct Implementation

An alternative approach performs the bottom-up and the top-down computations
side-by-side, taking advantage of the non-strict semantics of Haskell. This ap-
proach avoids the construction of an intermediate syntax tree that contains the
required information.

For implementing a suitable recursion scheme, we make use of the fact that
both bottom-up as well as top-down state transition functions in their dependent
form share the same interface to access other components of the state space via
the implicit parameters ?above and ?below .

The following combinator runs a bottom-up and a top-down state transition
function that both depend on the product of the state spaces they define:

runDState :: Traversable f ⇒ DUpState f (u, d) u
→ DDownState f (u, d) d → d → Term f → u

runDState up down d (In t) = u where
bel (Numbered (i , s)) =

let d ′ = findWithDefault d (Numbered (i ,⊥)) qmap
in Numbered (i , (runDState up down d ′ s, d ′))

t ′ = fmap bel (number t)
qmap = explicit down (u, d) unNumbered t ′

u = explicit up (u, d) unNumbered t ′

The definition of runDState looks convoluted but follows a simple structure: the
two lines at the bottom apply both state transition functions at the current node.
To this end, the state from above and the state from below is given as (u, d) and
unNumbered , respectively. The latter works as t ′ is computed by first numbering
the child nodes and then using the numbering to lookup the successor states from
qmap as well as recursively applying runDState at the child nodes.

Note that the definition of runDState is cyclic in several different ways and
thus essentially depends on Haskell’s non-strict semantics: the result u of the
bottom-up state transition function is used also as input for the bottom-up state
transition function. Likewise the result qmap of the top-down state transition
function is fed into the construction of t ′, which is given as argument to the
top-down state transition function. Moreover, the definition of both u and qmap
depend on each other.

143

The above combinator allows us to write a code generator for the signature
LetSig without resorting to an intermediate syntax tree. However, we have to be
careful as this requires combining state transition functions with the same state
space type: both heightSt and scopeLvlSt use the type Int .

However, the ambiguity can be easily resolved by “tagging” the types using
newtype type synonyms. For the scopeLvlSt state transition, we define such a
type like this:

newtype ScopeLvl = ScopeLvl {scopeLvl :: Int }

The tagging itself is a straightforward construction given the isomorphism
between the type and its synonym in the form of a forward and a backward
function:

tagDownState :: (q → p)→ (p → q)→ DownState f q → DownState f p
tagDownState i o t (q , s) = fmap i (t (o q , s))

We thus obtain a tagged variant of scopeLvlSt :

scopeLvlSt ′ :: ScopeLvlSt f ⇒ DownState f ScopeLvl
scopeLvlSt ′ = tagDownState ScopeLvl scopeLvl scopeLvlSt

The state maintained by scopeLvlSt ′ can now be accessed via the function
scopeLvl in any compound state space containing ScopeLvl . A similar combinator
can be defined for bottom-up state transitions.

Using the above state, we define a state transition function that assigns a
memory address to each bound variable.

type VarAddr = Map Name Addr

class VarAddrSt f q where
varAddrSt :: DDownState f q VarAddr

instance (ScopeLvl ∈ q)⇒ VarAddrSt Let q where
varAddrSt (LetIn v e) = e 7→ ((v 7→ scopeLvl above) ∪ above)
varAddrSt = ∅

instance VarAddrSt f q where
varAddrSt = ∅

Here, we use again overlapping instance declarations to give a uniform instance
of VarAddrSt for all signatures different from Let .

We can now extend the type class CodeSt for the signature Let :

instance HeightSt Let where
heightSt (LetIn x y) = 1 + max x y
heightSt (Var) = 0

instance (ScopeLvl ∈ q ,VarAddr ∈ q)⇒ CodeSt Let q where
codeSt (LetIn b e) = below b ++ [Store a] ++ below e
where a = scopeLvl above

codeSt (Var v) = case lookup v above of

144

Nothing → error "unbound variable"

Just i → [Load i]

Again, we have to be careful to avoid clashes in the use of addresses for storing
intermediate results on the one hand and for storing results of let bindings on the
other hand. Similar to our implementation in Section 6.1, we use the output of
the bottom-up state transition to obtain the maximum address used for storing
intermediate results.

Thus, we tie the different components of the computation together as follows:

codeLet ′ :: Term LetSig → Code
codeLet ′ t = c
where (c, addr) = runDState (codeSt ⊗ dUpState heightSt)

(varAddrSt ~ dDownState scopeLvlSt ′)
(∅ :: VarLvl ,ScopeLvl (addr + 1)) t

Note that in both implementations, we could have avoided the use of the
result of the state transition function heightSt to initialise the address counter
for bound variables. The modularity of our recursion schemes makes it possible
to replace the heightSt state transition function with a different one. In this way,
we could avoid clashes by using even address numbers for intermediate results
and odd address numbers for variables.

We already observed that stateful tree homomorphisms cannot discern the
direction in which the state is propagated. Thus we can supply them with a
state using either bottom-up or top-down state transitions. In fact, following
the bidirectional state transitions we considered above, we can provide a stateful
tree homomorphism with a combined state given by both a bottom-up and a
top-down state transition function. Such a transformation can for example be
used to rename apart all bound variables or inline simple let bindings.

7 Discussion

We have seen that with some adjustments tree automata can be turned into highly
modular recursion schemes. These recursion schemes allow us to take advantage
of two orthogonal dimensions of modularity: modularity in the state that is
propagated and – courtesy of Swierstra’s [23] data types à la carte – modularity
in the structure of terms. In addition to that, we also showed how to decompose
transducers into a homomorphism and into a state transition part. This high level
of modularity makes our automata-based recursion schemes especially valuable
for constructing modular compilers as we have illustrated in our running example.
However, we should point out that there are many more aspects to consider when
constructing compilers in a modular fashion [4].

The dependent forms of bottom-up and top-down state transitions that we
have developed in this paper are nothing else than the synthesised and inher-
ited attributes known from attribute grammars [22]. In fact, the combinator
runDState that runs both a bottom-up and a top-down state transition can be
seen as a run of an attribute grammar with corresponding synthesised and inher-
ited attributes. Viera et al. [24] have developed a Haskell library that allows to
specify such attribute grammars in Haskell in a very concise way.

145

We also obtain an added value by using a powerful functional language for the
embedding of our recursion schemes. One immediate benefit that we obtain is the
use of further generic programming techniques. For example, the heightSt state
transition function could have been defined entirely generically, without having
to extend the definition for every new signature.

7.1 Why Tree Transducers?

In principle, tree transducers offer no increase in expressiveness over (depen-
dent) bottom-up state transition functions since we allow for infinite state spaces
anyway. However, due to their additional structure they provide at least two
advantages.

First of all, tree transducers are very flexible in the way they can be manipu-
lated in order to form new transformations. For example, we can extend a given
signature functor f with annotations of some type a by using the construction

data (f :&: a) e = f e :&: a

A term over the signature (f :&: a) is similar to a term over f but it additionally
contains annotations of type a at every subterm. We can provide a combinator
that modifies a tree transducer from F to G into one from F :&: A to G :&: A
that propagates the annotations from the input term to the output term [1].

Secondly, tree transducers can be composed. That is, given two bottom-
up (respectively top-down) tree transducers – one from F to G , the other one
from G to H , we can generically construct a bottom-up (respectively top-down)
transducer from F to H whose transformation is equal to the composition of the
transformations denoted by the original transducers [7]. The resulting transducer
then only has to traverse the input term once and avoids the construction of the
intermediate term [26]. Note that tree homomorphisms can be considered both
a special case of bottom-up and of top-down tree transducers and can thus be
composed with either kind.

The two abovementioned features also set tree transducers apart from other
generic programming approaches such as Scrap your Boilerplate [12, 13, 18] or
Uniplate [21]. We do not give the full technical details of the two features here
but the implementation can be found in the compdata package [2].

7.2 Extensions & Future Work

While we only considered single recursive data types, this restriction is not es-
sential: following the construction of Yakushev et al. [27] and Bahr and Hvitved
[1], our recursion schemes can be readily extended to work on mutually recursive
data types as well.

Note that the runDState combinator of Section 6.2 constructs the product of
the two state spaces u and d . Consequently, if u is a compound state space, we
obtain a product type that is not a right-associative nesting of pairs which we
require for the type class ∈ to work properly. However, this can be remedied by
a more clever encoding of compound state spaces as heterogeneous lists [14] or
generating instance declarations for products of a limited number of components
via Template Haskell.

146

The transducers that we have considered here have one severe limitation. This
limitation can be seen when looking at the implementation of these transducers
in Haskell: the parametric polymorphism of the type for placeholder variables
prevents us from using these placeholder variables in the state transition. This
would allow us to store and retrieve subterms that the placeholder variables
are instantiated with. The ability to do that is necessary in order to perform
“non-local” transformations such as inlining of arbitrary let bindings or applying
substitutions. However, we can remedy this issue by making the state a functor.
The type of bottom-up respectively top-down transducers would then look as
follows:

type UpTrans f q g = ∀ a . f (q a, a)→ (q (Context g a),Context g a)
type DownTrans f q g = ∀ a . (q a, f a)→ Context g (q (Context g a), a)

We can then, for example, instantiate q with Map Var such that the state is a
substitution, i.e. a mapping from variables to terms (respectively term placehold-
ers).

The above types represent a limited form of macro tree transducers [7]. Wile
the decomposition of such an extended bottom-up transducer into a homomor-
phism and a state transition function is again straightforward, the decomposition
of an extended top-down transducer is trickier: at least the representation with
explicit placeholders that we used for dependent top-down state transition func-
tions does not straightforwardly generalise to polymorphic states.

Note that the abovementioned limitation only affects transducers, not state
transition functions. We can, of course, implement inlining and substitution as
a bidirectional state transition. However, if we want to make use of the nice
properties of transducers, we have to move to the extended tree transducers
illustrated above.

Acknowledgements

The author would like to thank Tom Hvitved, Jeremy Gibbons, Wouter Swierstra,
Doaitse Swierstra and the anonymous referees for valuable comments, corrections,
suggestions for improvements and pointers to the literature.

Bibliography

[1] P. Bahr and T. Hvitved. Compositional data types. In Proceedings of the
seventh ACM SIGPLAN Workshop on Generic Programming, pages 83–94,
New York, NY, USA, 2011. ACM. doi: 10.1145/2036918.2036930.

[2] P. Bahr and T. Hvitved. Compdata Haskell library, 2012. mod-
ule Data.Comp.Automata, available from http://hackage.haskell.org/

package/compdata.

147

http://dx.doi.org/10.1145/2036918.2036930
http://hackage.haskell.org/package/compdata
http://hackage.haskell.org/package/compdata

[3] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
Available on http://www.grappa.univ-lille3.fr/tata, 2008.

[4] L. Day and G. Hutton. Towards Modular Compilers For Effects. In Proceed-
ings of the Symposium on Trends in Functional Programming, volume 7193
of Lecture Notes in Computer Science, Madrid, Spain, 2011. Springer-Verlag.
doi: 10.1007/978-3-642-32037-8˙4.

[5] S. Eilenberg and J. B. Wright. Automata in general algebras. Information
and Control, 11(4):452–470, 1967. ISSN 0019-9958. doi: 10.1016/S0019-
9958(67)90670-5.

[6] M. M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of
Twente, 7500 AE Enschede, Netherlands, 1992.

[7] Z. Fülöp and H. Vogler. Syntax-Directed Semantics: Formal Models Based on
Tree Transducers. Springer-Verlag New York, Inc., 1998. ISBN 3540646078.

[8] J. Gibbons. Upwards and downwards accumulations on trees. In R. Bird,
C. Morgan, and J. Woodcock, editors, Mathematics of Program Construc-
tion, volume 669 of Lecture Notes in Computer Science, pages 122–138.
Springer Berlin / Heidelberg, 1993. doi: 10.1007/3-540-56625-2˙11.

[9] J. Gibbons. Polytypic downwards accumulations. In J. Jeuring, editor, Math-
ematics of Program Construction, volume 1422 of Lecture Notes in Computer
Science, pages 207–233. Springer Berlin / Heidelberg, 1998. ISBN 978-3-540-
64591-7. doi: 10.1007/BFb0054292.

[10] J. Gibbons. Generic downwards accumulations. Science of Computer Pro-
gramming, 37(1-3):37–65, 2000. ISSN 0167-6423. doi: 10.1016/S0167-
6423(99)00022-2.

[11] I. Hasuo, B. Jacobs, and T. Uustalu. Categorical Views on Computations
on Trees (Extended Abstract). In L. Arge, C. Cachin, T. Jurdzinski, and
A. Tarlecki, editors, Automata, Languages and Programming, volume 4596
of Lecture Notes in Computer Science, pages 619–630. Springer Berlin /
Heidelberg, 2007. doi: 10.1007/978-3-540-73420-8˙54.

[12] R. Hinze and A. Löh. ”Scrap your boilerplate” revolutions. In Proceedings of
the Eighth International Conference on Mathematics of Program Construc-
tion, volume 4014 of Lecture Notes in Computer Science, pages 180–208,
Berlin, Heidelberg, 2006. Springer-Verlag. doi: 10.1007/11783596˙13.

[13] R. Hinze, A. Löh, and B. C. d. S. Oliveira. ”Scrap Your Boilerplate”
Reloaded. In M. Hagiya and P. Wadler, editors, Functional and Logic Pro-
gramming, volume 3945 of Lecture Notes in Computer Science, pages 13–29.
Springer Berlin Heidelberg, 2006. doi: 10.1007/11737414˙3.

[14] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heterogeneous
collections. In Haskell 2004: Proceedings of the ACM SIGPLAN Workshop
on Haskell, pages 96–107. ACM Press, 2004. doi: 10.1145/1017472.1017488.

148

http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1007/978-3-642-32037-8_4
http://dx.doi.org/10.1016/S0019-9958(67)90670-5
http://dx.doi.org/10.1016/S0019-9958(67)90670-5
http://dx.doi.org/10.1007/3-540-56625-2_11
http://dx.doi.org/10.1007/BFb0054292
http://dx.doi.org/10.1016/S0167-6423(99)00022-2
http://dx.doi.org/10.1016/S0167-6423(99)00022-2
http://dx.doi.org/10.1007/978-3-540-73420-8_54
http://dx.doi.org/10.1007/11783596_13
http://dx.doi.org/10.1007/11737414_3
http://dx.doi.org/10.1145/1017472.1017488

[15] D. E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145, 1968. ISSN 1432-4350. doi: 10.1007/BF01692511.

[16] A. Kühnemann. Benefits of Tree Transducers for Optimizing Functional
Programs. In V. Arvind and S. Ramanujam, editors, Foundations of Software
Technology and Theoretical Computer Science, volume 1530 of Lecture Notes
in Computer Science, page 1046. Springer Berlin / Heidelberg, 1998. doi:
10.1007/978-3-540-49382-2˙13.

[17] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit
parameters: dynamic scoping with static types. In Proceedings of the
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 108–118, New York, NY, USA, 2000. ACM. doi:
10.1145/325694.325708.

[18] R. Lämmel and S. P. Jones. Scrap your boilerplate with class: extensible
generic functions. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN
International Conference on Functional Programming, pages 204–215, New
York, NY, USA, 2005. ACM. doi: 10.1145/1086365.1086391.

[19] S. Marlow. Haskell 2010 Language Report, 2010.

[20] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Functional
Programming Languages and Computer Architecture, volume 523 of Lecture
Notes in Computer Science, pages 124–144. Springer Berlin / Heidelberg,
1991. doi: 10.1007/3540543961˙7.

[21] N. Mitchell and C. Runciman. Uniform boilerplate and list processing. In
Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 49–60, New
York, NY, USA, 2007. ACM. doi: 10.1145/1291201.1291208.

[22] J. Paakki. Attribute grammar paradigms - a high-level methodology in lan-
guage implementation. ACM Computing Surveys, 27(2):196–255, 1995. ISSN
0360-0300. doi: 10.1145/210376.197409.

[23] W. Swierstra. Data types à la carte. Journal of Functional Programming,
18(4):423–436, 2008. ISSN 0956-7968. doi: 10.1017/S0956796808006758.

[24] M. Viera, S. D. Swierstra, and W. Swierstra. Attribute grammars fly first-
class. In Proceedings of the 14th ACM SIGPLAN International Conference
on Functional Programming - ICFP ’09, page 245, New York, New York,
USA, 2009. ACM Press. doi: 10.1145/1596550.1596586.

[25] J. Voigtländer. Formal Efficiency Analysis for Tree Transducer Composition.
Theory of Computing Systems, 41(4):619–689, 2007. ISSN 1432-4350. doi:
10.1007/s00224-006-1235-9.

[26] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees.
Theoretical Computer Science, 73(2):231–248, 1990. doi: 10.1016/0304-
3975(90)90147-A.

149

http://dx.doi.org/10.1007/BF01692511
http://dx.doi.org/10.1007/978-3-540-49382-2_13
http://dx.doi.org/10.1007/978-3-540-49382-2_13
http://dx.doi.org/10.1145/325694.325708
http://dx.doi.org/10.1145/325694.325708
http://dx.doi.org/10.1145/1086365.1086391
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1145/1291201.1291208
http://dx.doi.org/10.1145/210376.197409
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1145/1596550.1596586
http://dx.doi.org/10.1007/s00224-006-1235-9
http://dx.doi.org/10.1007/s00224-006-1235-9
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/0304-3975(90)90147-A

[27] A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic pro-
gramming with fixed points for mutually recursive datatypes. In ICFP ’09:
Proceedings of the 14th ACM SIGPLAN International Conference on Func-
tional Programming, pages 233–244, New York, NY, USA, 2009. ACM. doi:
10.1145/1596550.1596585.

150

http://dx.doi.org/10.1145/1596550.1596585
http://dx.doi.org/10.1145/1596550.1596585

Domain-Specific Languages for Enterprise Systems

Tom Hvitved Patrick Bahr Jesper Andersen

Department of Computer Science, University of Copenhagen

Abstract

The process-oriented event-driven transaction systems (POETS) archi-
tecture introduced by Henglein et al. is a novel software architecture for
enterprise resource planning (ERP) systems. POETS employs a pragmatic
separation between (i) transactional data, that is what has happened; (ii) re-
ports, that is what can be derived from the transactional data; and (iii) con-
tracts, that is which transactions are expected in the future. Moreover,
POETS applies domain-specific languages (DSLs) for specifying reports and
contracts, in order to enable succinct declarative specifications as well as
rapid adaptability and customisation. In this report we document an im-
plementation of a generalised and extended variant of the POETS archi-
tecture. The generalisation is manifested in a detachment from the ERP
domain, which is rather an instantiation of the system than a built-in as-
sumption. The extensions amount to a customisable data model based on
nominal subtyping; support for run-time changes to the data model, reports
and contracts, while retaining full auditability; and support for referable
data that may evolve over time, also while retaining full auditability as well
as referential integrity. Besides the revised architecture, we present the DSLs
used to specify data definitions, reports, and contracts respectively, and we
provide the complete specification for a use case scenario, which demon-
strates the conciseness and validity of our approach. Lastly, we describe
technical aspects of our implementation, with focus on the techniques used
to implement the tightly coupled DSLs.

Contents

1 Introduction 153

1.1 Outline and Contributions . 155

2 Revised POETS Architecture 155

2.1 Data Model . 156

2.1.1 Types . 157

2.1.2 Values . 159

2.1.3 Type Checking . 160

2.1.4 Ontology Language . 162

2.1.5 Predefined Ontology . 163

2.2 Event Log . 164

2.3 Entity Store . 166

2.4 Report Engine . 168

151

2.4.1 The Report Language . 169
2.4.2 Incrementalisation . 171
2.4.3 Lifecycle of Reports . 172

2.5 Contract Engine . 173
2.5.1 Contract Templates . 173
2.5.2 Contract Instances . 174
2.5.3 The Contract Language . 175

3 Use Case: µERP 178
3.1 Data Model . 179
3.2 Reports . 180
3.3 Contracts . 182
3.4 Bootstrapping the System . 184

4 Implementation Aspects 185
4.1 External Interface . 185
4.2 Domain-Specific Languages . 186

5 Conclusion 188
5.1 Future Work . 188

Bibliography 190

A Predefined Ontology 192
A.1 Data . 192
A.2 Event . 192
A.3 Transaction . 192
A.4 Report . 192
A.5 Contract . 192

B Static and Dynamic Semantics of the Report Language 193
B.1 Types, Type Constraints and Type Schemes 193
B.2 Built-in Symbols . 193
B.3 Type System . 195
B.4 Operational Semantics . 195

C µERP Specification 200
C.1 Ontology . 200

C.1.1 Data . 200
C.1.2 Transaction . 201
C.1.3 Report . 201
C.1.4 Contract . 202

C.2 Reports . 202
C.2.1 Prelude Functions . 202
C.2.2 Domain-Specific Prelude Functions 204
C.2.3 Internal Reports . 206
C.2.4 External Reports . 208

C.3 Contracts . 211
C.3.1 Prelude . 211

152

C.3.2 Domain-Specific Prelude . 212

C.3.3 Contract Templates . 212

1 Introduction

Enterprise resource planning (ERP) systems are comprehensive software systems
used to manage daily activities in enterprises. Such activities include—but are
not limited to—financial management (accounting), production planning, sup-
ply chain management and customer relationship management. ERP systems
emerged as a remedy to heterogeneous systems, in which data and functional-
ity are spread out—and duplicated—amongst dedicated subsystems. Instead, an
ERP system it built around a central database, which stores all information in
one place.

Traditional ERP systems such as Microsoft Dynamics NAV1, Microsoft Dy-
namics AX2, and SAP3 are three-tier architectures with a client, an application
server, and a centralised relational database system. The central database stores
information in tables, and the application server provides the business logic, typi-
cally coded in a general purpose, imperative programming language. A shortcom-
ing to this approach is that the state of the system is decoupled from the business
logic, which means that business processes—that is, the daily activities—are not
represented explicitly in the system. Rather, business processes are encoded
implicitly as transition systems, where the state is maintained by tables in the
database, and transitions are encoded in the application server, possibly spread
out across several different logical modules.

The process-oriented event-driven transaction systems (POETS) architecture
introduced by Henglein et al. [6] is a qualitatively different approach to ERP
systems. Rather than storing both transactional data and implicit process state in
a database, POETS employs a pragmatic separation between transactional data,
which is persisted in an event log, and contracts, which are explicit representations
of business processes, stored in a separate module. Moreover, rather than using
general purpose programming languages to specify business processes, POETS
utilises a declarative domain-specific language (DSL) [1]. The use of a DSL not
only enables explicit formalisation of business processes, it also minimises the gap
between requirements and a running system. In fact, Henglein et al. take it as a
goal of POETS that “[...] the formalized requirements are the system” [6, page
382].

The bird’s-eye view of the POETS architecture is presented in Figure 1. At the
heart of the system is the event log, which is an append-only list of transactions.
Transactions represent “things that take place” such as a payment by a customer,
a delivery of goods by a shipping agency, or a movement of items in an inventory.
The append-only restriction serves two purposes. First, it is a legal requirement
in ERP systems that transactions, which are relevant for auditing, are retained.
Second, the report engine utilises monotonicity of the event log for optimisation,
as shown by Nissen and Larsen [12].

1http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx.
2http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx.
3http://www.sap.com.

153

http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx
http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx
http://www.sap.com

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add report
delete report
get report
query report

Event
log

events updates

query results

Figure 1: Bird’s-eye view of the POETS architecture (diagram copied from [6]).

Whereas the event log stores historical data, contracts play the role of describ-
ing which events are expected in the future. For instance, a yearly payment of
value-added tax (VAT) to the tax authorities is an example of a (recurring) busi-
ness process. The amount to be paid to the tax authorities depends, of course,
on the financial transactions that have taken place. Therefore, information has
to be derived from previous transactions in the event log, which is realised as a
report. A report provides structured data derived from the transactions in the
event log. Like contracts, reports are written in a declarative domain-specific
language—not only in order to minimise the semantic gap between requirements
and the running system, but also in order to perform automatic optimisations.

Besides the radically different software architecture, POETS distinguishes
itself from existing ERP systems by abandoning the double-entry bookkeeping
(DEB) accounting principle [17] in favour of the resources, events, and agents
(REA) accounting model of McCarthy [10].

In double-entry bookkeeping, each transaction is recorded as two postings in
a ledger—a debit and a credit. When, for instance, a customer pays an amount
x to a company, then a debit of x is posted in a cash account, and a credit of
x is posted in a sales account, which reflects the flow of cash from the customer
to the company. The central invariant of DEB is that the total credit equals the
total debit—if not, resources have either vanished or spontaneously appeared.
DEB fits naturally in the relational database oriented architectures, since each
ledger is similar in structure to a table. Moreover, DEB is the de facto standard
accounting method, and therefore used by current ERP systems.

In REA, transactions are not registered in accounts, but rather as the events
that take place. An event in REA is of the form (a1, a2, r) meaning that agent
a1 transfers resource r to agent a2. Hence, when a customer pays an amount x
to a company, then it is represented by a single event (customer, company, x).
Since events are atomic, REA does not have the same redundancy4 as DEB, and
inconsistency is not a possibility: resources always have an origin and a destina-
tion. The POETS architecture not only fits with the REA ontology, it is based
on it. Events are stored as first-class objects in the event log, and contracts
describe the expected future flow of resources.5 Reports enable computation of

4In traditional DEB, redundancy is a feature to check for consistency. However, in a computer
system such redundancy is superfluous.

5Structured contracts are not part of the original REA ontology but instead due to Andersen
et al. [1].

154

derived information that is inherent in DEB, and which may be a legal require-
ment for auditing. For instance, a sales account—which summarises (pending)
sales payments—can be reconstructed from information about initiated sales and
payments made by customers. Such a computation will yield the same derived
information as in DEB, and the principles of DEB consistency will be fulfilled
simply by construction.

1.1 Outline and Contributions

The motivation for our work is to assess the POETS architecture in terms of a
prototype implementation. During the implementation process we have added
features to the architecture that were painfully missing. Moreover, in the process
we found that the architecture need not be tailored to the REA ontology—indeed
to ERP systems—but the applicability of our generalised architecture to other
domains remains future research. Our contributions are as follows:

• We present a generalised and extended POETS architecture (Section 2)
that has been fully implemented.

• We present domain-specific languages for data modelling (Section 2.1), re-
port specification (Section 2.4), and contract specification (Section 2.5).

• We demonstrate how to implement a small use case, from scratch, in our im-
plemented system (Section 3). We provide the complete specification of the
system, which demonstrates both the conciseness and domain-orientation6

of our approach. We conclude that the extended architecture is indeed
well-suited for implementing ERP systems—although the DSLs and the
data model may require additions for larger systems. Most notably, the
amount of code needed to implement the system is but a fraction of what
would be have to be implemented in a standard ERP system.

• We describe how we have utilised state-of-the art software development
tools in our implementation, especially how the tightly coupled DSLs are
implemented (Section 4).

2 Revised POETS Architecture

Our generalised and extended architecture is presented in Figure 2. Compared
to the original architecture in Figure 1, the revised architecture sees the addition
of three new components: a data model, an entity store, and a rule engine. The
rule engine is currently not implemented, and we will therefore not return to this
module until Section 5.1.

As in the original POETS architecture, the event log is at the heart of the
system. However, in the revised architecture the event log plays an even greater
role, as it is the only persistent state of the system. This means that the states of
all other modules are also persisted in the event log, hence the flow of information
from all other modules to the event log in Figure 2. For example, whenever a

6Compare the motto: “[...] the formalized requirements are the system” [6, page 382].

155

Contract Engine

- manage templates
- manage contracts
- retrieve contracts
- register transactions

Report Engine

- manage reports
- query reports

Entity Store

- manage entities

Rule Engine

- manage rules
- apply rules

Event
log

Data Model

- manage data definitions
- retrieve data definitions

information pushed information pulled

Figure 2: Bird’s-eye view of the generalised and extended POETS architecture.

contract is started or a new report is added to the system, then an event reflecting
this operation is persisted in the event log. This, in turn, means that the state
of each module can—in principle—be derived from the event log. However, for
performance reasons each module—including the event log—maintains its own
state in memory.

The addition of a data model constitutes the generalisation of the new ar-
chitecture over the old architecture. In the data model, data definitions can be
added to the system—at run-time—such as data defining customers, resources,
or payments. Therefore, the system is not a priori tailored to ERP systems or
the REA ontology, but it can be instantiated to that, as we shall see in Section 3.

The entity store is added to the architecture in order to support entities—
unique “objects” with associated data that may evolve over time. For instance, a
concrete customer can suitably be modelled as an entity: Although information
attributed to that customer—such as address, or even name—are likely to change
over time, it is still the same customer. Moreover, we do not want a copy of the
customer data in for instance a sale, but rather a reference to that customer.
Hence by modelling customers as entities, we are able to derive, for instance,
all transactions in which that customer has participated—even if the customer
attributes have changed over time.

We describe each module of the revised architecture in the following subsec-
tions. Since we will focus on the revised architecture in the remainder of the text,
we will refer to said architecture simply as POETS.

2.1 Data Model

The data model is a core component of the extended architecture, and the inter-
face it provides is summarised in Figure 3. The data model defines the types of
data that are used throughout the system, and it includes predefined types such
as events. Custom types such as invoices can be added to the data model at run-

156

Data Model

Function Input Output

addDataDefs ontology specification
getRecordDef record name type definition
getSubTypes record name list of record names

Figure 3: Data model interface.

time via addDataDefs—for simplicity, we currently only allow addition of types,
not updates and deletions. Types define the structure of the data in a running
POETS instance manifested as values. A value—such as a concrete invoice—is
an instance of the data specified by a type. Values are not only communicated
between the system and its environment but they are also stored in the event log,
which is simply a list of values of a certain type.

2.1.1 Types

Structural data such as payments and invoices are represented as records, that
is typed finite mappings from field labels to values. Record types define the
structure of such records by listing the constituent field labels and their associated
types. In order to form a hierarchical ontology of record types, we use a nominal
subtyping system [14]. That is, each record type has a unique name, and one
type is a subtype of another if and only if stated so explicitly or by transitivity.
For instance, a customer can be defined as a subtype of a person, which means
that a customer contains all the data of a person, similar to inheritance in object
oriented programming.

The choice of nominal types over structural types [14] is justified by the
domain: the nominal type associated with a record may have a semantic impact.
For instance, the type of customers and premium customers may be structurally
equal, but a value of one type is considered different from the other, and clients
of the system may for example choose to render them differently. Moreover, the
purpose of the rule engine, which we return to in Section 5.1, is to define rules
for values of a particular semantic domain, such as invoices. Hence it is wrong
to apply these rules to data that happens to have the same structure as invoices.
Although we use nominal types to classify data, the DSLs support full record
polymorphism [13] in order to minimise code duplication. That is, it is possible
for instance to use the same piece of code with customers and premium customers,
even if they are not related in the subtyping hierarchy.

The grammar for types is as follows:

T ::= Bool | Int | Real | String | Timestamp | Duration (type constants)
| RecordName (record type)
| [T] (list type)
| 〈RecordName〉 (entity type)

Type constants are standard types Booleans, integers, reals, and strings, and
less standard types timestamps (absolute time) and durations (relative time).
Record types are named types, and the record typing environment—which we will

157

describe shortly—defines the structure of records. For record types we assume a
set RecordName = {Customer,Address, Invoice, . . . } of record names ranged over
by r. Concrete record types are typeset in sans-serif, and they always begin with a
capital letter. Likewise, we assume a set FieldName of all field names ranged over
by f . Concrete field names are typeset in sans-serif beginning with a lower-case
letter.

List types [τ] represent lists of values, where each element has type τ , and
it is the only collection type currently supported. Entity types 〈r〉 represent
entity values that have associated data of type r. For instance, if the record
type Customer describes the data of a customer, then a value of type 〈Customer〉
is a (unique) customer entity, whose associated Customer data may evolve over
time. The type system ensures that a value of an entity type in the system will
have associated data of the given type, similar to referential integrity in database
systems [3]. We will return to how entities are created and modified in Section 2.3.

A record typing environment provides the record types that are available,
their subtype relation, and the fields they define.

Definition 2.1. A record typing environment is a tuple (R,A, F, ρ,≤) consisting
of finite sets R ⊆ RecordName and F ⊆ FieldName, a set A ⊆ R, a mapping
ρ : R→ Pfin(F ×T), and a relation ≤ ⊆ R×R, where Pfin(X) denotes the set of
all finite subsets of a set X.

Intuitively, R is the set of defined record types, ρ gives for each defined record
type its fields and their types, ≤ gives the subtyping relation between record
types, and record types in A are considered to be abstract. Abstract record
types are not supposed to be instantiated, they are only used to structure the
record type hierarchy. The functions getRecordDef and getSubTypes from Fig-
ure 3 provide the means to retrieve the record typing environment from a running
system.

Record types can depend on other record types by having them as part of the
type of a constituent field:

Definition 2.2. The immediate dependency relation of a record typing environ-
ment R = (R,A, F, ρ,≤), denoted →R, is the binary relation on R such that
r1 →R r2 iff there is some (f, τ) ∈ ρ(r1) such that a record name r occurs in τ
with r2 ≤ r. The dependency relation →+

R of R is the transitive closure of →R.

We do not permit all record typing environments. Firstly, we do not allow
the subtyping to be cyclic, that is a record type r cannot have a proper subtype
which has r as a subtype. Secondly, the definition of field types must be unique
and must follow the subtyping, that is a subtype must define at least the fields
of its supertypes. Lastly, we do not allow recursive record type definitions, that
is a cycle in the dependency relation. The two first restrictions are sanity checks,
but the last restriction makes a qualitative difference: the restriction is imposed
for simplicity, and moreover we have not encountered practical situations where
recursive types were needed.

Definition 2.3. A record typing environment R = (R,A, F, ρ,≤) is well-formed,
whenever the following is satisfied:

158

• ≤ is a partial order, (acyclic inheritance)

• each ρ(r) is the graph of a partial function F ⇀ T , (unique typing)

• r1 ≤ r2 implies ρ(r1) ⊇ ρ(r2), and (consistent typing)

• →+
R is irreflexive, that is r1 →+

R r2 implies r1 6= r2. (non-recursive)

Well-formedness of a record typing environment combines both conditions
for making it easy to reason about them—for instance, transitivity of ≤ and
inclusion of fields of supertypes—and hard restrictions such as non-recursiveness
and unique typing. If a record typing environment fails to be well-formed due to
the former only, it can be uniquely closed to a well-formed one:

Definition 2.4. The closure of a record typing environment R = (R,A, F, ρ,≤)
is the record typing environment Cl (R) = (R,A, F, ρ′,≤′) such that ≤′ is the
transitive, reflexive closure of ≤ and ρ′ is the consistent closure of ρ with respect
to ≤′, that is ρ′(r) =

⋃
r≤′r′ ρ(r′).

The definition of closure allows us to easily build a well-formed record typing
environment from an incomplete specification.

Example 2.5. As an example, we may define a record typing environment R =
(R,A, F, ρ,≤) for persons and customers as follows:

R = {Person,Customer,Address} ρ(Person) = {(name,String)}
A = {Person} ρ(Customer) = {(address,Address)}
F = {name, address, road, no} ρ(Address) = {(road,String), (no, Int)} ,

with Customer ≤ Person. The only properties that prevent R from being well-
formed are the missing field typing (name,String) that Customer should inherit
from Person and the missing reflexivity of ≤. Hence, the closure Cl (R) of R is
indeed a well-formed record typing environment.

In order to combine record typing environments we define the union R1 ∪R2

of two record typing environmentsRi = (Ri, Ai, Fi, ρi,≤i) as the pointwise union:

R1 ∪R2 = (R1 ∪R2, A1 ∪A2, F1 ∪ F2, ρ1 ∪ ρ2,≤1 ∪ ≤2),

where (ρ1 ∪ ρ2)(r) = ρ1(r)∪ ρ2(r) for all r ∈ R1 ∪R2. Note that the union of two
well-formed record typing environments need not be well-formed—either due to
incompleteness, which can be resolved by forming the closure of the union, or due
to inconsistencies respectively cyclic dependencies, which cannot be resolved.

2.1.2 Values

The set of values Value supplementing the types from the previous section is
defined inductively as the following disjoint union:

Value = Bool] Int]Real]String]Timestamp]Duration]Record]List]Ent ,

159

with

Bool = {true, false} String = Char∗ Record = RecordName × Fields

Int = Z Timestamp = N Fields = FieldName ⇀fin Value

Real = R Duration = Z List = Value∗,

where X∗ denotes the set of all finite sequences over a set X; Char is a set
of characters; Ent is an abstract, potentially infinite set of entity values; and
A ⇀fin B denotes the set of finite partial mappings from a set A to a set B.

Timestamps are modelled using UNIX time7 and durations are measured in
seconds. A record (r,m) ∈ Record consists of a record name r ∈ RecordName
together with a finite set of named values m ∈ Fields. Entity values e ∈ Ent are
abstract values that only permit equality testing and dereferencing—the latter
takes place only in the report engine (Section 2.4), and the type system ensures
that dereferencing cannot get stuck, as we shall see in the following subsection.

Example 2.6. As an example, a customer record value c ∈ Record may be as
follows:

c = (Customer,m) m′(road) = Universitetsparken

m(name) = John Doe m′(no) = 1,

m(address) = (Address,m′)

where m,m′ ∈ Fields.

2.1.3 Type Checking

All values are type checked before they enter the system, both in order to check
that record values conform with the record typing environment, but also to check
that entity values have valid associated data. In particular, events—which are
values—are type checked before they are persisted in the event log. In order
to type check entities, we assume an entity typing environment E : Ent ⇀fin

RecordName, that is a finite partial mapping from entities to record names. In-
tuitively, an entity typing environment maps an entity to the record type that it
has been declared to have upon creation.

The typing judgement has the form R, E ` v : τ , where R is a well-formed
record typing environment, E is an entity typing environment, v ∈ Value is a
value, and τ ∈ T is a type. The typing judgment uses the auxiliary subtyping
judgement R ` τ1 <: τ2, which is a generalisation of the subtyping relation from
Section 2.1.1 to arbitrary types.

The typing rules are given in Figure 4. The typing rules for base types and lists
are standard. In order to type check a record, we need to verify that the record
contains all and only those fields that the record typing environment prescribes,
and that the values have the right type. The typing rule for entities uses the
entity typing environment to check that each entity has associated data, and
that the data has the required type. The last typing rule enables values to be
coerced to a supertype in accordance with the subtyping judgement, which is

7http://en.wikipedia.org/wiki/Unix time.

160

http://en.wikipedia.org/wiki/Unix_time

R, E ` v : τ b ∈ Bool
R, E ` b : Bool

n ∈ Int
R, E ` n : Int

r ∈ Real
R, E ` r : Real

s ∈ String

R, E ` s : String

t ∈ Timestamp

R, E ` t : Timestamp
d ∈ Duration

R, E ` d : Duration

(r,m) ∈ Record

R = (R,A, F, ρ,≤)

r ∈ R \A
dom(ρ(r)) = dom(m)

∀f ∈ dom(m) : R, E ` m(f) : ρ(r)(f)

R, E ` (r,m) : r

(v1, . . . , vn) ∈ List ∀i ∈ {1, . . . , n}.R, E ` vi : τ

R, E ` (v1, . . . , vn) : [τ]

e ∈ Ent E(e) = r

R, E ` e : 〈r〉

R, E ` v : τ ′ R ` τ ′ <: τ

R, E ` v : τ

R ` τ1 <: τ2
R ` τ <: τ

R ` τ1 <: τ2 R ` τ2 <: τ3
R ` τ1 <: τ3

R ` Int <: Real
r1 ≤ r2

(R,A, F, ρ,≤) ` r1 <: r2

R ` τ1 <: τ2
R ` [τ1] <: [τ2]

r1 ≤ r2
(R,A, F, ρ,≤) ` 〈r1〉 <: 〈r2〉

Figure 4: Type checking of values R, E ` v : τ and subtyping R ` τ1 <: τ2.

also given in Figure 4. The rules for the subtyping relation extend the relation
from Section 2.1.1 to include subtyping of base types, and contextual rules for
lists and entities. We remark that the type system in Figure 4 is declarative: in
our implementation, an equivalent algorithmic type system is used.

Example 2.7. Reconsider the record typing environment R and its closure
Cl (R) from Example 2.5, and the record value c from Example 2.6. Using the typ-
ing rules in Figure 4, we can derive the typing judgement Cl (R) , E ` c : Customer
for any entity typing environment E . Moreover, since Customer is a subtype of
Person we also have that Cl (R) , E ` c : Person.

In the following, we want to detail how the typing rules guarantee the integrity
of entities, which involves reasoning about the evolution of the system over time.
To this end, we use Rt = (Rt, At, Ft, ρt,≤t) and Et to indicate the record typing
environment and the entity typing environment respectively, at a point in time
t ∈ Timestamp. In order to reason about the data associated with an entity, we
assume for each point in time t ∈ Timestamp an entity environment εt : Ent ⇀fin

Record that maps an entity to its associated data. Entity (typing) environments
form the basis of the entity store, which we will describe in detail in Section 2.3.

Given T ⊆ Timestamp and sequences (Rt)t∈T , (Et)t∈T and (εt)t∈T of record
typing environments, entity typing environments, and entity environments re-
spectively, which represent the evolution of the system over time, we require

161

the following invariants to hold for all t, t′ ∈ Timestamp, r, r′ ∈ RecordName,
e ∈ Ent , and v ∈ Record :

if Et(e) = r and Et′(e) = r′, then r = r′, (stable type)

if Et(e) is defined, then so is εt(e), and (well-definedness)

if εt(e) = v, then Et(e) = r and Rt′ , Et′ ` v : r for some t′ ≤ t. (well-typing)

We refer to the three invariants above collectively as the entity integrity invari-
ants. The stable type invariant states that each entity can have at most one
declared type throughout its lifetime. The well-definedness invariant guarantees
that every entity that is given a type also has an associated record value. Fi-
nally, the well-typing invariant guarantees that the record value associated with
an entity was well-typed at some earlier point in time t′.

The well-typing invariant is, of course, not strong enough. What we need
is that the value v associated with an entity e remains well-typed throughout
the lifetime of the system. This is, however, dependant on the record typing
environment and the entity typing environment, which both may change over
time. Therefore, we need to impose restrictions on the possible evolution of the
record typing environment, and we need to take into account that entities used
in the value v may have been deleted. We return to these issues in Section 2.2
and Section 2.3, and in the latter we will see that the entity integrity invariants
are indeed satisfied by the system.

2.1.4 Ontology Language

Section 2.1.1 provides the semantic account of record types, and in order to
specify record types, we use a variant of Attempto Controlled English [4] due
to Jønsson Thomsen [8], referred to as the ontology language. The approach is
to define data types in near-English text, in order to minimise the gap between
requirements and specification. As an example, the record typing environment
from Example 2.5 is specified in the ontology language as follows:

Person is abstract.
Person has a String called name.

Customer is a Person.
Customer has an Address.

Address has a String called road.
Address has an Int called no.

An ontology definition consists of a sequence of sentences as defined by the
grammar below (where [·] denotes optionality):

162

Ontology ::= Sentence∗ (ontology)
Sentence ::= RecordName is [a | an] RecordName. (supertype declaration)

| RecordName is abstract. (abstract declaration)
| RecordName has [a | an] Type (field declaration)

[called FieldName].
Type ::= Bool | Int | Real (type constants)

| String | Timestamp | Duration
| RecordName (record type)
| list of Type (list type)
| RecordName entity (entity type)

The language of types Type reflects the definition of types in T and there is
an obvious bijection J·K : Type → T with Jlist of tK = [JtK], Jr entityK = 〈r〉, and
otherwise JtK = t.

The semantics of the ontology language is given by a straightforward mapping
into the domain of record typing environments. Each sentence is translated into
a record typing environment. The semantics of a sequence of sentences is simply
the closure of the union of each sentence’s record typing environment:

Js1 · · · snK = Cl (Js1K ∪ Js2K ∪ · · · ∪ JsnK)
Jr1 is [a | an] r2.K = ({r1, r2} , ∅, ∅, {r1 7→ ∅, r2 7→ ∅} , {(r1, r2)})
Jr is abstract.K = ({r} , {r} , ∅, {r 7→ ∅} , ∅)

Jr has [a | an] t called f.K = ({r} , ∅, {f} , {r 7→ {(f, JtK)}} , ∅)

We omit the case where the optional FieldName is not supplied in a field
declaration. We treat this form as syntactic sugar for r has (a | an) t called f.
where f is derived from the type t. In this case a default name is used based on the
type, simply by changing the first letter to a lower-case. Hence, in the example
above the field name of a customer’s address is address. Note that the record
typing environment need not be well-formed (Definition 2.3), and a subsequent
check for well-formedness has to be performed.

Data definitions added to the system via addDataDefs are specified in the
ontology language. We require, of course, that the result of adding data defini-
tions must yield a well-defined record typing environment. Moreover, we impose
further monotonicity constraints which ensure that existing data in the system
remain well-typed. We return to these constraints when we discuss the event log
in Section 2.2. Type definitions retrieved via getRecordDef provide the seman-
tic structure of a record type, that is its immediate supertypes, its fields, and
an indication whether the record type is abstract. getSubTypes returns a list of
immediate subtypes of a given record type, hence getRecordDef and getSubTypes
provide the means for clients of the system to traverse the type hierarchy—both
upwards and downwards.

2.1.5 Predefined Ontology

Unlike the original POETS architecture [6], our generalised architecture is not
fixed to an enterprise resource planning (ERP) domain. However, we require a
set of predefined record types, which are included in Appendix A. That is, the

163

record typing environment R0 denoted by the ontology in Appendix A is the
initial record typing environment in all POETS instances.

The predefined ontology defines five root concepts in the data model, that
is record types maximal with respect to the subtype relation ≤. Each of these
five root concepts Data, Event, Transaction, Report, and Contract are abstract and
only Event and Contract define record fields. Custom data definitions added via
addDataDefs are only permitted as subtypes of Data, Transaction, Report, and
Contract. In contrast to that, Event has a predefined and fixed hierarchy.

Data types represent elements in the domain of the system such as customers,
items, and resources.

Transaction types represent events that are associated with a contract, such as
payments, deliveries, and issuing of invoices.

Report types are result types of report functions, that is the data of reports, such
as inventory status, income statement, and list of customers. The Report
structure does not define how reports are computed, only what kind of
result is computed. We will return to this discussion in Section 2.4.

Contract types represent the different kinds of contracts, such as sales, purchases,
and manufacturing procedures. Similar to Report, the structure does not
define what the contract dictates, only what is required to instantiate the
contract. The purpose of Contract is hence dual to the purpose of Report:
the former determines an input type, and the latter determines an output
type. We will return to contracts in Section 2.5.

Event types form a fixed hierarchy and represent events that are logged in the
system. Events are conceptually separated into internal events and external
events, which we describe further in the following section.

2.2 Event Log

The event log is the only persistent state of the system, and it describes the
complete state of a running POETS instance. The event log is an append-only
list of records of the type Event defined in Appendix A. Each event reflects an
atomic interaction with the running system. This approach is also applied at the
“meta level” of POETS: in order to allow agile evolution of a running POETS
instance, changes to the data model, reports, and contracts are reflected in the
event log as well.

The monotonic nature of the event log—data is never overwritten or deleted
from the system—means that the state of the system can be reconstructed at any
previous point in time. In particular, transactions are never deleted, which is a
legal requirement for ERP systems. The only component of the architecture that
reads directly from the event log is the report engine (compare Figure 2), hence
the only way to access data in the log is via a report.

All events are equipped with an internal timestamp (internalTimeStamp), the
time at which the event is registered in the system. Therefore, the event log
is always monotonically decreasing with respect to internal timestamps, as the

164

Event Description

AddDataDefs A set of data definitions is added to the system. The field defs
contains the ontology language specification.

CreateEntity An entity is created. The field data contains the data associated
with the entity, the field recordType contains the string represen-
tation of the declared type, and the field ent contains the newly
created entity value.

UpdateEntity The data associated with an entity is updated.
DeleteEntity An entity is deleted.

CreateReport A report is created. The field code contains the specification of
the report, and the fields description and tags are meta data.

UpdateReport A report is updated.
DeleteReport A report is deleted.

CreateContractDef A contract template is created. The field code contains the spec-
ification of the contract template, and the fields recordType and
description are meta data.

UpdateContractDef A contract template is updated.
DeleteContractDef A contract template is deleted.

CreateContract A contract is instantiated. The field contractId contains the
newly created identifier of the contract and the field contract
contains the name of the contract template to instantiate, as
well as data needed to instantiate the contract template.

UpdateContract A contract is updated.
ConcludeContract A contract is concluded.

Figure 5: Internal events.

newest event is at the head of the list. Conceptually, events are divided into
external and internal events.

External events are events that are associated with a contract, and only
the contract engine writes external events to the event log. The event type
TransactionEvent models external events, and it consists of three parts: (i) a con-
tract identifier (contractId), (ii) a timestamp (timeStamp), and (iii) a transaction
(transaction). The identifier associates the external event with a contract, and
the timestamp represents the time at which the external event takes place. Note
that the timestamp need not coincide with the internal timestamp. For instance,
a payment in a sales contract may be registered in the system the day after it
takes place. There is hence no a priori guarantee that external events have de-
creasing timestamps in the event log—only external events that pertain to the
same contract are required to have decreasing timestamps. The last component,
transaction, represents the actual action that takes place, such as a payment
from one person or company to another. The transaction is a record of type
Transaction, for which the system has no presumptions.

Internal events reflect changes in the state of the system at a meta level. This
is the case for example when a contract is instantiated or when a new record
definition is added. Internal events are represented by the remaining subtypes of
the Event record type. Figure 5 provides an overview of all non-abstract record
types that represent internal events.

165

Entity Store

Function Input Output

createEntity record name, record entity
updateEntity entity, record
deleteEntity entity

Figure 6: Entity store interface.

A common pattern for internal events is to have three event types to represent
creation, update, and deletion of respective components. For instance, when a
report is added to the report engine, a CreateReport event is persisted to the log,
and when it is updated or deleted, UpdateReport and DeleteReport events are per-
sisted accordingly. This means that previous versions of the report specification
can be retrieved, and more generally that the system can be restarted simply by
replaying the events that are persisted in the log on an initially empty system.
Another benefit to the approach is that the report engine, for instance, does not
need to provide built-in functionality to retrieve, say, the list of all reports added
within the last month—such a list can instead be computed as a report itself!
We will see how to write such a “meta” report in Section 2.4. Similarly, lists of
entities, contract templates, and running contracts can be defined as reports.

Since we allow the data model of the system to evolve over time, we must be
careful to ensure that the event log, and thus all data in it, remains well-typed at
any point in time. Let (Rt)t∈T , (Et)t∈T , and (lt)t∈T be sequences of record typing
environments, entity typing environments, and event logs respectively. Since an
entity might be deleted over time, and thus is removed from the entity typing
environment, the event log may not be well-typed with respect to the current
entity typing environment. To this end, we type the event log with respect to
the accumulated entity typing environment Êt =

⋃
t′≤t Et′ . That is, Êt(e) = r iff

there is some t′ ≤ t with Et′(e) = r. The stable type invariant guarantees that Êt
is indeed well-defined.

For changes to the record typing environment, we require the following in-
variants for any points in time t, t′ and the event log lt at time t:

if t′ ≥ t then Rt′ = Rt ∪R∆ for some R∆, and (monotonicity)

Rt, Êt ` lt : [Event] . (log typing)

Note that the log typing invariant follows from the monotonicity invariant and
the type checking Rt, Et ` e : Event for each new incoming event, provided that
for each record name r occurring in the event log, no additional record fields
are added to r, and r is not made an abstract record type. We will refer to the
two invariants above collectively as record typing invariants. They will become
crucial in the following section.

2.3 Entity Store

The entity store provides very simple functionality, namely creation, deletion
and updating of entities, respectively. To this end, the entity store maintains the

166

current entity typing environment Et as well as the history of entity environments
ε0, . . . , εt. The interface of the entity store is summarised in Figure 6.

The creation of a new entity via createEntity at time t+ 1 requires a declared
type r and an initial record value v, and it is checked that Rt, Et ` v : r. If
the value type checks, a fresh entity value e 6∈ ⋃

t′≤t dom(εt′) is created, and the
entity environment and the entity typing environment are updated accordingly:

εt+1(x) =

{
v if x = e,

εt(x) otherwise,
Et+1(x) =

{
r if x = e,

Et(x) otherwise.

Moreover, a CreateEntity event is persisted to the event log containing e, r, and
v for the relevant fields.

Similarly, if the data associated with an entity e is updated to the value v
at time t + 1, then it is checked that Rt, Et ` v : Et(e), and the entity store is
updated like above. Note that the entity typing environment is unchanged, that
is Et+1 = Et. A corresponding UpdateEntity event is persisted to the event log
containing e and v for the relevant fields.

Finally, if an entity e is deleted at time t + 1, then it is removed from both
the entity store and the entity typing environment:

εt+1(x) = εt(x) iff x ∈ dom(εt) \ {e}
Et+1(x) = Et(x) iff x ∈ dom(Et) \ {e} .

A corresponding DeleteEntity event is persisted to the event log containing e for
the relevant field.

Note that, by default, εt+1 = εt and Et+1 = Et, unless one of the situations
above apply. It is straightforward to show that the entity integrity invariants are
maintained by the operations described above (the proof follows by induction on
the timestamp t). Internally, that is, for the report engine compare Figure 2,
the entity store provides a lookup function lookupt : Ent × [0, t] ⇀fin Record ,
where lookupt(e, t

′) provides the latest value associated with the entity e at time
t′, where t is the current time. Note that this includes the case in which e has
been deleted at or before time t′. In that case, the value associated with e just
before the deletion is returned. Formally, lookupt is defined in terms of the entity
environments as follows:

lookupt(e, t1) = v iff ∃t2 ≤ t1 : εt2(e) = v and ∀t2 < t3 ≤ t1 : e 6∈ dom(εt3).

In particular, we have that if e ∈ dom(εt1) then lookupt(e, t1) = εt1(e).

From this definition and the invariants of the system, we obtain the following
property:

Corollary 2.8. Let (Rt)t∈T , (Et)t∈T , and (εt)t∈T be sequences of record typing
environments, entity typing environments, and entity environments respectively,
satisfying the entity integrity invariants and the record typing invariants. Then
the following holds for all timestamps t ≤ t1 ≤ t2 and entities e ∈ Ent:

If Rt, Êt ` e : 〈r〉 then lookupt2(e, t1) = v for some v and Rt2 , Êt2 ` v : r.

167

Report Engine

Function Input Output

addReport name, type, description, tags, report definition
updateReport name, type, description, tags, report definition
deleteReport name
queryReport name, list of values value

Figure 7: Report engine interface.

Proof. Assume that Rt, Êt ` e : 〈r〉. Then it follows from the typing rule for
entity values and the subtyping rules that Êt(e) = r′ for some r′ with r′ ≤t r.
That is, there is some t′ ≤ t with Et′(e) = r′. Hence, from the well-definedness
invariant it follows that εt′(e) is defined. Since t′ ≤ t ≤ t1, we can thus conclude
that lookupt2(e, t1) = (r′′,m), for some record value (r′′,m).

According to the definition of lookupt2 , we then have some t3 ≤ t1 with
εt3(e) = (r′′,m). Applying the well-typing invariant, we obtain some t4 ≤ t3 with
Rt4 , Et4 ` (r′′,m) : Et3(e). Since, by the stable type invariant, Et3(e) = Et′ = r′,
we then have Rt4 , Et4 ` (r′′,m) : r′. Moreover, according to the typing rules, this
can only be the case if r′′ ≤t4 r′.

Due to the monotonicity invariant, we know that Rt2 = Rt4 ∪ R∆ for some
R∆. In particular, this means that r′′ ≤t4 r′ implies that r′′ ≤t2 r′. Similarly,
r′ ≤t r implies that r′ ≤t2 r. Hence, by transitivity of ≤t2 , we have that r′′ ≤t2 r.

According to the implementation of the entity store, we know that εt3(e) =
(r′′,m) implies that (r′′,m) occurs in the event log (as part of an event of type
CreateEntity or UpdateEntity) at least from t3 onwards, in particular in the event
log lt2 at t2. Since, by the log typing invariant, the event log lt2 is well-typed as

Rt2 , Êt2 ` lt2 : [Event], we know that Rt2 , Êt2 ` (r′′,m) : r′′. From the subtype

relation r′′ ≤t2 r we can thus conclude Rt2 , Êt2 ` (r′′,m) : r.

The corollary above describes the fundamental safety property with respect
to entity values: if an entity value previously entered the system, and hence type
checked, then all future dereferencing will not get stuck, and the obtained value
will be well-typed with respect to the accumulated entity typing environment.

2.4 Report Engine

The purpose of the report engine is to provide a structured view of the database
that is constituted by the system’s event log. This structured view of the data
in the event log comes in the form of a report, which provides a collection of
condensed structured information compiled from the event log. Conceptually,
the data provided by a report is compiled from the event log by a function of
type [Event] → Report, a report function. The report language provides a means
to specify such a report function in a declarative manner. The interface of the
report engine is summarised in Figure 7.

168

2.4.1 The Report Language

In this section, we provide an overview over the report language. For a detailed
description of the language including the full static and dynamic semantics con-
sult Appendix B.

The report language is—much like the query fragment of SQL—a functional
language without side effects. It only provides operations to non-destructively
manipulate and combine values. Since the system’s storage is based on a shallow
event log, the report language must provide operations to relate, filter, join,
and aggregate pieces of information. Moreover, as the data stored in the event
log is inherently heterogeneous—containing data of different kinds—the report
language offers a comprehensive type system that allows us to safely operate in
this setting.

Example 2.9. Consider the following simple report function that lists all reports
available in the system:

reports : [PutReport]
reports = nubProj (λx → x.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events,

ur.name ≡ cr.name]]

The report function above uses the two functions nubProj and first, which are
defined in the standard library of the report language. The function nubProj of
type (Eq b) ⇒ (a → b) → [a] → [a] removes duplicates in the given list according
to the equality on the result of the provided projection function. In the example
above, reports with the same name are considered duplicates. The function
first : a → [a] → a returns the first element of the given list or the default value
provided as first argument if the list is empty.

Every report function implicitly has as its first argument the event log of type
[Event]—a list of events—bound to the name events. The syntax—and to large
parts also the semantics—is based on Haskell [9]. The central data structure
is that of lists. In order to formulate operations on lists concisely, we use list
comprehensions [16] as seen in Example 2.9. A list comprehension of the form
[e | c] denotes a list containing elements of the form e generated by c, where c
is a sequence of generators and filters.

As we have mentioned, access to type information and its propagation to
subsequent computations is essential due to the fact that the event log is a
list of heterogeneously typed elements—events of different kinds. The gener-
ator cr : CreateReport ← events iterates through elements of the list events,
binding each element to the variable cr. The typing cr : CreateReport restricts
this iteration to elements of type CreateReport, a subtype of Event. This type in-
formation is propagated through the subsequent generators and filters of the list
comprehension. In the filter ur.name ≡ cr.name, we use the fact that elements
of type ReportEvent have a field name of type String. When binding the first
element of the result of the nested list comprehension to the variable pr it is also
checked whether this element is in fact of type PutReport. Thus we ignore reports
that are marked as deleted via a DeleteReport event.

169

The report language is based on the simply typed lambda calculus extended
with polymorphic (non-recursive) let expressions as well as type case expressions.
The core language is given by the following grammar:

e ::= x | c | λx .e | e1 e2 | let x = e1 in e2 | type x = e of {r → e1; → e2} ,

where x ranges over variables, and c over constants which include integers,
Booleans, tuples and list constructors as well as operations on them like +, if-
then-else etc. In particular, we assume a fold operation fold of type (α → β →
β) → β → [α] → β. This is the only operation of the report language that
permits recursive computations on lists. List comprehensions are mere syntactic
sugar and can be reduced to fold and let expressions as for example in Haskell [9].

The extended list comprehensions of the report language that allow filtering
according to run-time type information depend on type case expressions of the
form type x = e of {r → e1; → e2}. In such a type case expression, an expres-
sion e of some record type re gets evaluated to record value v which is then bound
to a variable x. The record type r that the record value v is matched against can
be any subtype of re. Further evaluation of the type case expression depends on
the type rv of the record value v. This type can be any subtype of re. If rv ≤ r
then the evaluation proceeds with e1, otherwise with e2. Binding e to a variable
x allows us to use the stricter type r in the expression e1.

Another important component of the report language consists of the derefer-
encing operators ! and @, which give access to the lookup operator provided by
the entity store. Given an expression e of an entity type 〈r〉, both dereferencing
operators provide a value v of type r. That is, both ! and @ are unary operators
of type 〈r〉 → r for any record type r. In the case of the operator !, the resulting
record value v is the latest value associated with the entity to which e evaluates.
More concretely, given an entity value v, the expression v! evaluates to the record
value lookupt(v, t), where t is the current timestamp.

On the other hand, the contextual dereference operator @ provides as the
result the value associated with the entity at the moment the entity was used in
the event log (based on the internalTimeStamp field). This is the case when the
entity is extracted from some event from the event log. Otherwise, the entity
value stems from an actual argument to the report function. In the latter case @
behaves like the ordinary dereference operator !. In concrete terms, every entity
value v that enters the event log is annotated with the timestamp of the event
it occurs in. That is, each entity value embedded in an event e in the event log,
occurs in an annotated form (v, s), where s is the value of e’s internalTimeStamp
field. Given such an annotated entity value (v, s), the expression (v,s)@ evaluates
to lookupt(v, s) and given a bare entity value v the expression v@ evaluates to
lookupt(v, t).

Note that in each case for either of the two dereference operators, Corollary 2.8
guarantees that the lookup operation yields a record value of the right type. That
is, both ! : 〈r〉 → r and @ : 〈r〉 → r are total functions that never get stuck.

Example 2.10. The entity store and the contextual dereferencing operator pro-
vide a solution to a recurring problem in ERP systems, namely how to maintain
historical data for auditing. For example, when an invoice is issued in a sale,
then a copy of the customer information at the time of the invoice is needed for

170

auditing. Traditional ERP systems solve the problem by explicit copying of data,
since referenced data might otherwise get destructively updated.

Since data is never deleted in a POETS system, we can solve the problem
without copying. Consider the following definition of transactions that represent
issuing of invoices, and invoices respectively (we assume that the record types
Customer and OrderLine are already defined):

IssueInvoice is a Transaction.
IssueInvoice has a Customer entity.
IssueInvoice has a list of OrderLine.

Invoice is Data.
Invoice has a Customer.
Invoice has a list of OrderLine.

Rather than containing a Customer record, an IssueInvoice transaction contains a
Customer entity, which eliminates copying of data. From an IssueInvoice transac-
tion we can instead derive the invoice data by the following report function:

invoices : [Invoice]
invoices = [Invoice{customer = ii.customer@, orderLines = ii.orderLines} |

tr : TransactionEvent ← events,
ii : IssueInvoice = tr.transaction]

Note how the @ operator is used to dereference the customer data: since the
ii.customer value originates from an event in the event log, the contextual deref-
erencing will produce data associated with the customer at the time when the
invoice was issued, as required.

2.4.2 Incrementalisation

While the type system is important in order to avoid obvious specification errors,
it is also important to ensure a fast execution of the thus obtained functional
specifications. This is, of course, a general issue for querying systems. In our
system it is, however, of even greater importance since shifting the structure
of the data—from the data store to the domain of queries—means that queries
operate on the complete data set of the database. In principle, the data of each
report has to be recomputed after each transaction by applying the corresponding
report function to the updated event log. In other words, if treated näıvely, the
conceptual simplification provided by the flat event log has to be paid via more
expensive computations.

This issue can be addressed by transforming a given report function f into
an incremental function f ′ that updates the report data computed previously
according to the changes that have occurred since the report data was computed
before. That is, given an event log l and an update to it l ⊕ e, we require that
f(l ⊕ e) = f ′(f(l), e). The new report data f(l ⊕ e) is obtained by updating the
previous report data f(l) according to the changes e. In the case of the event
log, we have a list structure. Changes only occur monotonically, by adding new
elements to it: given an event log l and a new event e, the new event log is e# l,
where # is the list constructor of type α→ [α]→ [α].

Here it is crucial that we have restricted the report language such that opera-
tions on lists are limited to the higher-order function fold. The fundamental idea
of incrementalising report functions is based on the following equation satisfied

171

by fold:

fold f e (x# xs) = f x (fold f e (xs))

Based on this idea, we are able to make the computation of most report func-
tions independent of the size of the event log but only dependent of the changes to
the event log and the previous result of the report function [12]. Unfortunately, if
we consider for example list comprehensions containing more than one generator,
we have functions with nested folds. In order to properly incrementalise such
functions, we need to move from list structures to multisets. This is, however,
only rarely a practical restriction since most aggregation functions are based on
commutative binary operations and are thus oblivious to ordering.

2.4.3 Lifecycle of Reports

Like entities, the set of reports registered in a running POETS instance—and
thus available for querying—can be changed via the external interface to the
report engine. To this end, the report engine interface provides the operations
addReport, updateReport, and deleteReport. The former two take a report specifi-
cation that contains the name of the report, the definition of the report function
that generates the report data and the type of the report function. Optionally, it
may also contain further meta information in the form of a description text and
a list of tags.

Example 2.11. Reconsider the function defined in Example 2.9 that lists all
active reports with all their meta data. The following report specification uses
the report function from Example 2.9 in order to define a report function that
lists the names of all active report:

name: ReportNames
description: A list of names of all registered reports.
tags: internal, report

reports : [PutReport]
reports = nubProj (λx → x.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events,

ur.name ≡ cr.name]]

report : [String]
report = [r.name | r ← reports]

In the header of the report specification, the name and optionally also a
description text as well as a list of tags is provided as meta data to the actual
report function specification. Every report specification must define a top-level
function called report, which provides the report function that derives the report
data from the event log. In the example above, this function takes no (additional)
arguments and returns a list of strings—the names of active reports.

Calls to addReport and updateReport are both reflected by a correspond-
ing event of type CreateReport and UpdateReport respectively. Both events are

172

Contract Engine

Function Input Output

createTemplate name, type, description, specification
updateTemplate name, type, description, specification
deleteTemplate name

createContract meta data contract ID
updateContract contract ID, meta data
concludeContract contract ID
getContract contract ID contract state
registerTransaction contract ID, timestamp, transaction

Figure 8: Contract engine interface.

subtypes of PutReport and contain the meta information as well as the original
specification text of the concerning report. When a report is no longer needed,
it can be removed from the report engine by a corresponding deleteReport oper-
ation. Note that the change and removal of reports only affect the state of the
POETS system from the given point in time. Transactions that occurred prior
to a change or deletion of a report are not affected. This is important for the
system’s ability to fully recover after a crash by replaying the events from the
event log.

The last operation provided by the report engine—queryReport—constitutes
the core functionality of the reporting system. Given a name of a registered
report and a list of arguments, this operation supplies the given arguments to
the corresponding report function and returns the result. For example, the Re-
portNames report specified in Example 2.11 does not require any arguments—its
type is [String]—and returns the names of registered reports.

2.5 Contract Engine

The role of the contract engine is to determine which transactions—that is ex-
ternal events, compare Section 2.2—are expected by the system. Transactions
model events that take place according to an agreement, for instance a delivery
of goods in a sale, a payment in a lease agreement, or a movement of items from
one inventory to another in a production plan. Such agreements are referred to
as contracts, although they need not be legally binding contracts. The purpose
of a contract is to provide a detailed description of what is expected, by whom,
and when. A sales contract, for example, may stipulate that first the company
sends an invoice, then the customer pays within a certain deadline, and finally
the company delivers goods within another deadline.

The interface of the contract engine is summarised in Figure 8.

2.5.1 Contract Templates

In order to specify contracts such as the aforementioned sales contract, we use an
extended variant of the contract specification language (CSL) of Hvitved et al. [7],
which we will refer to as the POETS contract specification language (PCSL) in

173

the following. For reusability, contracts are always specified as contract templates
rather than as concrete contracts. A contract template consists of four parts: (i) a
template name, (ii) a template type, which is a subtype of the Contract record
type, (iii) a textual description, and (iv) a PCSL specification. We describe PCSL
in Section 2.5.3.

The template name is a unique identifier, and the template type determines
the parameters that are available in the contract template.

Example 2.12. We may define the following type for sales contracts in the on-
tology language (assuming that the record types Customer, Company, and Goods
have been defined):

Sale is a Contract.
Sale has a Customer entity.
Sale has a Company entity.
Sale has a list of Goods.
Sale has an Int called amount.

With this definition, contract templates of type Sale are parametrised over the
fields customer, company, goods, and amount of types 〈Customer〉, 〈Company〉,
[Goods], and Int, respectively.

The contract engine provides an interface to add contract templates (cre-
ateTemplate), update contract templates (updateTemplate), and remove con-
tract templates (deleteTemplate) from the system at run-time. The structure
of contract templates is reflected in the external event types CreateContractDef,
UpdateContractDef, and DeleteContractDef, compare Section 2.2. A list of (non-
deleted) contract templates can hence be computed by a report, similar to the
list of (non-deleted) reports from Example 2.11.

2.5.2 Contract Instances

A contract template is instantiated via createContract by supplying a record value
v of a subtype of Contract. Besides custom fields, which depend on the type at
hand, such a record always contains the fields templateName and startDate inher-
ited from the Contract record type, compare Appendix A. The field templateName
contains the name of the template to instantiate, and the field startDate deter-
mines the start date of the contract. The fields of v are substituted into the
contract template in order to obtain a contract instance, and the type of v must
therefore match the template type. For instance, if v has type Sale then the field
templateName must contain the name of a contract template that has type Sale.
We refer to the record v as contract meta data.

When a contract c is instantiated by supplying contract meta data v, a fresh
contract identifier i is created, and a CreateContract event is persisted in the
event log with with contract = v and contractId = i. Hereafter, transactions t
can be registered with the contract via registerTransaction, which will update the

contract to a residual contract c′, written c
t→ c′, and a TransactionEvent with

transaction = t and contractId = i is written to the event log. The state of the
contract can be acquired from the contract engine at any given point in time via

174

getContract, which enables run-time analyses of contracts, for instance in order
to generate a list of expected transactions.

Registration of a transaction c
t→ c′ is only permitted if the transaction is

expected in the current state c. That is, there need not be a residual state for

all transactions. After zero or more successful transactions, c
t1→ c1

t2→ · · · tn→ cn,
the contract may be concluded via concludeContract, provided that the resid-
ual contract cn does not contain any outstanding obligations. This results in a
ConcludeContract event to be persisted in the event log.

The lifecycle described above does not take into account that contracts may
have to be updated at run-time, for example if it is agreed to extend the payment
deadline in a sales contract. To this end, running contracts are allowed to be
updated, simply by supplying new contract meta data (updateContract). The
difference in the new meta data compared to the old meta data may not only
be a change of, say, items to be sold, but it may also be a change in the field
templateName. The latter makes it is possible to replace the old contract by a
qualitatively different contract, since the new contract template may describe
a different workflow. There is, however, an important restriction: a contract
can only be updated if any previous transactions registered with the contract
also conform with the new contract. That is, if the contract has evolved like

c
t1→ c1

t2→ · · · tn→ cn, and an update to a new contract c′ is requested, then only

if c′
t1→ c′1

t2→ · · · tn→ c′n, for some c′1, . . . , c
′
n, is the update permitted. A successful

update results in an UpdateContract event to be written to the event log with the
new meta data.

Note that, for simplicity, we only allow the updates described above. Another
possibility is to allow updates where the current state of the contract c is replaced
directly by a new state c′. Although we can achieve this effect via a suitably
defined contract template and the updateContract function above, a direct update
is preferable.

Similarly to contract templates, a list of (non-concluded) contract instances
can be computed by a report that inspects CreateContract, UpdateContract, and
ConcludeContract events respectively.

2.5.3 The Contract Language

The fourth component of contract templates—the PCSL specification—is the
actual normative content of contract templates. The core grammar for PCSL is
presented in Figure 9. PCSL extends CSL mainly at the level of expressions E,
by adding support for the value types in POETS, as well as lambda abstractions
and function applications. At the level of clauses C, PCSL is similar to CSL,
albeit with a slightly altered syntax.

The semantics of PCSL is a straightforward extension of that of CSL [7],
although we use a partial small-step semantics rather than CSL’s total small-step
semantics. That is, there need not be a residue for all clauses and transactions,
as described in Section 2.5.2. This is simply in order to prevent “unexpected”
events from entering the system, for instance we only allow a payment to be
entered into the system if a running contract expects that payment.

The type system for clauses is identical with CSL. Typing of expressions is,

175

Tmp ::= name : ContractName (contract template)
type : RecordName
description : String
Def . . .Def contract = C

Def ::= val Var = E (value definition)
| clause ClauseName(Var : T , . . . ,Var : T) (clause template)

〈Var : T , . . . ,Var : T 〉 = C

C ::= fulfilment (no obligations)
| 〈E 〉 RecordName(F , . . . ,F) (obligation)

where E due D remaining Var then C
| when RecordName(F , . . . ,F) (external choice)

where E due D remaining Var then C else C
| if E then C else C (internal choice)
| C and C (conjunction)
| C or C (disjunction)
| ClauseName(E , . . . ,E)〈E , . . . ,E 〉 (instantiation)

F ::= FieldName Var (field binder)

R ::= RecordName Var (record binder)

T ::= TypeVar (type variable)
| () (unit type)
| Bool | Int | Real | String (type constants)
| Timestamp | Duration
| RecordName (record type)
| [T] (list type)
| 〈T 〉 (entity type)
| T → T (function type)

E ::= Var (variable)
| BaseValue (base value)
| RecordName{FieldName = E , . . . ,FieldName = E} (record expression)
| [E , . . . ,E] (list expression)
| λVar → E (function abstraction)
| E E (function application)
| E ⊕ E (binary expression)
| E .FieldName (field projection)
| E{FieldName = E} (field update)
| if E then E else E (conditional)
| case E of R → E | · · · |R → E (record type casing)

D ::= after E within E (deadline expression)

⊕ ::= × | / | + | 〈×〉 | 〈+〉 | # | ≡ | ≤ | ∧ (binary operators)

Figure 9: Grammar for the core contract language PCSL. ContractName is the
set of all contract template names, ClauseName is the set of all clause template
names ranged over by k, Var is the set of all variable names ranged over by x,
TypeVar is the set of all type variable names ranged over by α, and BaseValue =
Bool] Int] Real] String] Timestamp]Duration] Ent .

176

name: salesContract
type: Sale
description: "A simple sales contract between a company and a customer"

fun elem x = foldr (λy b → x ≡ y ∨ b) false
fun filter f = foldr (λx b → if f x then x # b else b) []
fun subset l1 l2 = all (λx → elem x l2) l1
fun diff l1 l2 = filter (λx → ¬ (elem x l2)) l1

clause sale(goods : [Goods], amount : Int)〈comp : 〈Company〉, cust : 〈Customer〉〉 =
〈comp〉 IssueInvoice(goods g, amount a)

where g ≡ goods ∧ a ≡ amount due immediately
then
〈cust〉 Payment(amount a)

where a ≡ amount due within 14D
and
delivery(goods, 1W)〈comp〉

clause delivery(goods : [Goods], deadline : Duration)〈comp : 〈company〉〉 =
if goods ≡ [] then

fulfilment
else
〈comp〉 Delivery(goods g)

where g 6≡ [] ∧ subset g goods due within deadline remaining r
then
delivery(diff goods g, r)〈comp〉

contract = sale(goods, amount)〈company, customer〉

Figure 10: PCSL sales contract template of type Sale.

however, more challenging since we have introduced (record) polymorphism as
well as subtyping. We will not present the extended semantics nor the extended
typing rules, but only remark that the typing serves the same purpose as in CSL:
evaluation of expressions does not get stuck and always terminates, and contracts
have unique blame assignment.

Example 2.13. We demonstrate PCSL by means of an example, presented in
Figure 10. The contract template is of the type Sale from Example 2.12, which
means that the fields goods, amount, company, and customer are available in
the body of the contract template, that is the right-hand side of the contract
keyword. Hence, concrete values are substituted from the contract meta data
when the template is instantiated, as described in Section 2.5.2.

The example uses standard syntactic sugar at the level of expressions, for in-
stance ¬e means if e then false else true and e1∨ e2 means ¬(¬e1∧¬e2). More-
over, we omit the after part of a deadline if it is 0, we write immediately
for within 0, we omit the remaining part if it is not used, and we write
fun f x1 · · ·xn = e for val f = λx1 → · · · λxn → e.

The template implements a simple workflow: first the company issues an
invoice, then the customer pays within 14 days, and simultaneously the company

177

delivers goods within a week. Delivery of goods is allowed to take place in multiple
deliveries, which is coded as the recursive clause template delivery . Note how
the variable r is bound to the remainder of the deadline: All deadlines in a
then branch are relative to the time of the guarding event, hence the relative
deadline for delivering the remaining goods is whatever remains of the original one
week deadline. Note also that the initial reference time of a contract instance is
determined by the field startDate in the contract meta data, compare Appendix A.
Hence if the contract above is instantiated with start date t ∈ Timestamp, then
the invoice is supposed to be issued at time t.

Finally, we remark that obligation clauses are binders. That is, for instance
the variable g is bound to value of the field goods of the IssueInvoice transaction
when it takes place, and the scope of g is the where clause and the continuation
clause following the then keyword.

Built-in symbols PCSL has a small set of built-in symbols, from which other
standard functions can be derived:

foldl : (a → b → a) → a → [b] → a
foldr : (a → b → b) → b → [a] → b
ceil : Real → Int
reports : Reports

The list includes fold operations in order to iterate over lists, since explicit recur-
sion is not permitted, and a special constant reports of type Reports. The record
type Reports is internally derived from the active reports in the report engine, and
it is used only in the contract engine in order to enable querying of reports from
within contracts. The record type contains one field per report. For instance, if
the report engine contains a single report Inventory of type Inventory, then the
typing of Report is (using the same notation as in Section 2.1.1):

ρ(Reports) = {(inventory, ()→ Inventory)} ,

and the expression reports.inventory () invokes the report.

3 Use Case: µERP

In this section we describe a use case instantiation of POETS, which we refer to
as µERP. With µERP we model a simple ERP system for a small bicycle shop.
Naturally, we do not intend to model all features of a full-blown ERP system,
but rather we demonstrate a limited set of core ERP features. In our use case,
the shop purchases bicycles from a bicycle vendor, and sells those bicycles to
customers. We want to make sure that the bicycle shop only sells bicycles in
stock, and we want to model a repair guarantee, which entitles customers to have
their bikes repaired free of charge up until three months after purchase.

Following Henglein et al. [6], we also provide core financial reports, namely
the income statement, the balance sheet, the cash flow statement, the list of
open (not yet paid) invoices, and the value-added tax (VAT) report. These
reports are typical, minimal legal requirements for running a business. We provide
some example code in this section, and the complete specification is included in

178

Appendix C. As we have seen in Section 2, instantiating POETS amounts to
defining a data model, a set of reports, and a set of contract templates. We
describe each of these components in the following subsections.

3.1 Data Model

The data model of µERP is tailored to the ERP domain in accordance with
the REA ontology [10]. Therefore, the main components of the data model are
resources, transactions (that is, events associated with contracts), and agents.
The complete data model is provided in Appendix C.1.

Agents are modelled as an abstract type Agent. An agent is either a Customer, a
Vendor, or a special Me agent. Customers and Vendors are equipped with a name
and an address. The Me type is used to represent the bicycle company itself.
In a more elaborate example, the Me type will have subtypes such as Inventory
or SalesPerson to represent subdivisions of, or individuals in, the company. The
agent model is summarised below:

Agent is Data.

Customer is an Agent.
Customer has a String called name.
Customer has an Address.

Me is an Agent.

Vendor is an Agent.
Vendor has a String called name.
Vendor has an Address.

Resources are—like agents—Data. In our modelling of resources, we make a
distinction between resource types and resources. A resource type represents a
kind of resource, and resource types are divided into currencies (Currency) and
item types (ItemType). Since we are modelling a bicycle shop, the only item
type (for now) is bicycles (Bicycle). A resource is an instance of a resource type,
and—similar to resource types—resources are divided into money (Money) and
items (Item). Our modelling of items assumes an implicit unit of measure, that
is we do not explicitly model units of measure such as pieces, boxes, pallets, etc.
Our resource model is summarised below:

ResourceType is Data.
ResourceType is abstract.

Currency is a ResourceType.
Currency is abstract.

DKK is a Currency.
EUR is a Currency.

ItemType is a ResourceType.
ItemType is abstract.

Bicycle is an ItemType.

Bicycle has a String called model.

Resource is Data.
Resource is abstract.

Money is a Resource.
Money has a Currency.
Money has a Real called amount.

Item is a Resource.
Item has an ItemType.
Item has a Real called quantity.

Transactions (events in the REA terminology) are, not surprisingly, subtypes of
the built-in Transaction type. The only transactions we consider in our use case

179

are bilateral transactions (BiTransaction), that is transactions that have a sender
and a receiver. Both the sender and the receiver are agent entities, that is a
bilateral transaction contains references to two agents rather than copies of agent
data. For our use case we model payments (Payment), deliveries (Delivery), issuing
of invoices (IssueInvoice), requests for repair of a set of items (RequestRepair),
and repair of a set of items (Repair). Issuing of invoices contain the relevant
information for modelling of VAT, encapsulated in the OrderLine type. We include
some of these definitions below:

BiTransaction is a Transaction.
BiTransaction is abstract.
BiTransaction has an Agent entity

called sender.
BiTransaction has an Agent entity

called receiver.

Transfer is a BiTransaction.
Transfer is abstract.

Payment is a Transfer.

Payment is abstract.
Payment has Money.

CashPayment is a Payment.
CreditCardPayment is a Payment.
BankTransfer is a Payment.

IssueInvoice is a BiTransaction.
IssueInvoice has a list of OrderLine

called orderLines.

Besides agents, resources, and transactions, the data model defines the output
types of reports (Appendix C.1.3) the input types of contracts (Appendix C.1.4),
and generic data definitions such as Address and OrderLine. The report types
define the five mandatory reports mentioned earlier, and additional Inventory
and TopNCustomers report types. The contract types define the two types of
contracts for the bicycle company, namely Purchase and Sale.

3.2 Reports

The specification of reports is divided into four parts: prelude functions (Ap-
pendix C.2.1), domain-specific prelude functions (Appendix C.2.2), internal re-
ports (Appendix C.2.3), and external reports (Appendix C.2.4).

Prelude functions are utility functions that are independent of the custom
data model. These functions are automatically added to all POETS instances,
but they are included in the appendix for completeness. The prelude includes
standard functions such as filter, but it also includes generators for accessing
event log data such as reports. The event log generators provide access to data
that has a lifecycle such as contracts or reports, compare Section 2.2.

Domain-specific prelude functions are utility functions that depend on the
custom data model. The itemsReceived function, for example, computes a list
of all items that have been delivered to the company, and it hence relies on
the Delivery transaction type (normaliseItems and isMe are also defined in Ap-
pendix C.2.2):

itemsReceived : [Item]
itemsReceived = normaliseItems [is |

tr ← transactionEvents,

180

Report Result

Me The special Me entity.
Entities A list of all non-deleted entities.
EntitiesByType A list of all non-deleted entities of a given type.
ReportNames A list of names of all non-deleted reports.
ReportNamesByTags A list of names of all non-deleted reports whose tags

contain a given set and do not contain another given set.
ReportTags A list of all tags used by non-deleted reports.
ContractTemplates A list of names of all non-deleted contract templates.
ContractTemplatesByType A list of names of all non-deleted contract templates of

a given type.
Contracts A list of all non-deleted contract instances.
ContractHistory A list of previous transactions for a given contract in-

stance.
ContractSummary A list of meta data for a given contract instance.

Figure 11: Internal reports.

del : Delivery = tr.transaction,
¬(isMe del.sender) ∧ isMe del.receiver,
is ← del.items]

Internal reports are reports that are needed either by clients of the system or
by contracts. For instance, the ContractTemplates report is needed by clients
of the system in order to instantiate contracts, and the Me report is needed by
the two contracts, as we shall see in the following subsection. A list of internal
reports, including a short description of what they compute, is summarised in
Figure 11. Except for the Me report, all internal reports are independent from
the custom data model.

External reports are reports that are expected to be rendered directly in clients
of the system, but they may also be invoked by contracts. The external reports
in our use case are the reports mentioned earlier, namely the income statement,
the balance sheet, the cash flow statement, the list of unpaid invoices, and the
VAT report. Moreover, we include reports for calulating the list of items in the
inventory, and the list of top-n customers, respectively. We include the inventory
report below as an example:

report : Inventory
report =
let itemsSold’ = map (λi → i{quantity = 0 − i.quantity}) itemsSold
in
−− The available items is the list of received items minus the
−− list of reserved or sold items
Inventory{availableItems = normaliseItems (itemsReceived ++ itemsSold’)}

The value itemsSold is defined in the domain-specific prelude, similar to the value
itemsReceived. But unlike itemsReceived, the computation takes into account that
items can be reserved but not yet delivered. Hence when we check that items are
in stock using the inventory report, we also take into account that some items in
the inventory may have been sold, and therefore cannot be sold again.

181

The five standard reports are defined according to the specifications given
by Henglein et al. [6, Section 2.1], but for simplicity we do not model fixed
costs, depreciation, and fixed assets. We do, however, model multiple currencies,
exemplified via Danish Kroner (DKK) and Euro (EUR). This means that financial
reports, such as IncomeStatement, provide lists of values of type Money—one for
each currency used.

3.3 Contracts

The specification of contracts is divided into three parts: prelude functions (Ap-
pendix C.3.1), domain-specific prelude functions (Appendix C.3.2), and contract
templates (Appendix C.3.3).

Prelude functions are utility functions similar to the report engine’s prelude
functions. They are independent from the custom data model, and are automat-
ically added to all POETS instances. The prelude includes standard functions
such as filter.

Domain-specific prelude functions are utility functions that depend on the
custom data model. The inStock function, for example, checks whether the items
described in a list of order lines are in stock, by querying the Inventory report
(we assume that the item types are different for each line):

fun inStock lines =
let inv = (reports.inventory ()).availableItems
in
all (λl → any (λi → (l.item).itemType ≡ i.itemType ∧

(l.item).quantity ≤ i.quantity) inv) lines

Contract templates describe the daily activities in the company, and in our
µERP use case we only consider a purchase contract and a sales contract. The
purchase contract is presented below:

name: purchase
type: Purchase
description: "Set up a purchase"

clause purchase(lines : [OrderLine])〈me : 〈Me〉, vendor : 〈Vendor〉〉 =
〈vendor〉 Delivery(sender s, receiver r, items i)

where s ≡ vendor ∧ r ≡ me ∧ i ≡ map (λx → x.item) lines
due within 1W

then
when IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ vendor ∧ r ≡ me ∧ sl ≡ lines
due within 1Y

then
payment(lines, vendor, 14D)〈me〉

clause payment(lines : [OrderLine], vendor : 〈Vendor〉, deadline : Duration)
〈me : 〈Me〉〉 =

if null lines then

182

fulfilment
else
〈me〉 BankTransfer(sender s, receiver r, money m)

where s ≡ me ∧ r ≡ vendor ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, vendor, newDeadline)〈me〉

contract = purchase(orderLines)〈me, vendor〉
The contract describes a simple workflow, in which the vendor delivers items,

possibly followed by an invoice, which in turn is followed by a bank transfer of the
company. Note how the me parameter in the contract template body refers to
the value from the domain-specific prelude, which in turn invokes the Me report.
Note also how the payment clause template is recursively defined in order to
accommodate for potentially different currencies. That is, the total payment is
split up in as many bank transfers as there are currencies in the purchase.

The sales contract is presented below:

name: sale
type: Sale
description: "Set up a sale"

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)

where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

then
repair(map (λx → x.item) lines, customer, 3M)〈me〉

clause payment(lines : [OrderLine], me : 〈Me〉, deadline : Duration)
〈customer : 〈Customer〉〉 =

if null lines then
fulfilment

else
〈customer〉 Payment(sender s, receiver r, money m)

where s ≡ customer ∧ r ≡ me ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, me, newDeadline)〈customer〉

clause repair(items : [Item], customer : 〈Customer〉, deadline : Duration)
〈me : 〈Me〉〉 =

when RequestRepair(sender s, receiver r, items i)
where s ≡ customer ∧ r ≡ me ∧ subset i items
due within deadline

183

remaining newDeadline
then
〈me〉 Repair(sender s, receiver r, items i’)

where s ≡ me ∧ r ≡ customer ∧ i ≡ i’
due within 5D

and
repair(items, customer, newDeadline)〈me〉

contract = sale(orderLines)〈me, customer〉

The contract describes a workflow, in which the company issues an invoice to
the customer—but only if the items on the invoice are in stock. The issuing of
invoice is followed by an immediate (within an hour) payment by the customer to
the company, and a delivery of goods by the company within a week. Moreover,
we also model the repair guarantee mentioned in the introduction.

3.4 Bootstrapping the System

The previous subsections described the specification code for µERP. Since data
definitions, report specifications, and contract specifications are added to the
system at run-time, µERP is instantiated by invoking the following sequence of
services on an initially empty POETS instance:

1. Add data definitions in Appendix C.1 via addDataDefs.

2. Create a designated Me entity via createEntity.

3. Add report specifications via addReport.

4. Add contract specifications via createTemplate.

Hence, the event log will, conceptually, have the form (we write the value of
the field internalTimeStamp before each event):

t1: AddDataDefs{defs = "ResourceType is ..."}

t2: CreateEntity{ent = e1, recordType = "Me", data = Me}

t3: CreateReport{name = "Me", description = "Returns the ...",
code = "name: Me\n ...", tags = ["internal","entity"]}

...

ti: CreateReport{name = "TopNCustomers", description = "A list ...",
code = "name: TopNCustomers\n ...",
tags = ["external","financial","crm"]}

ti+1: CreateContractDef{name = "Purchase", recordType = "Purchase",
code = "name: purchase\n ...", description = "Set up ..."}

ti+2: CreateContractDef{name = "Sale", recordType = "Sale",
code = "name: sale\n ...", description = "Set up a sale"}

184

for some increasing timestamps t1 < t2 < . . . < ti+2. Note that the entity value
e1 of the CreateEntity event is automatically generated by the entity store, as
described in Section 2.3.

After executing these operations, the system is operational. That is, (i) cus-
tomers and vendors can be managed via createEntity, updateEntity, and dele-
teEntity, (ii) contracts can be instantiated, updated, concluded, and inspected via
createContract, updateContract, concludeContract, and getContract respectively,
(iii) transactions can be registered via registerTransaction, and (iv) reports can
be queried via queryReport.

For example, if a sale is initiated with a new customer John Doe, starting at
time t, then the following events will be added to the event log:

ti+3: CreateEntity{ent = e2, recordType = "Customer", data = Customer{
name = "John Doe", address = Address{
string = "Universitetsparken 1", country = Denmark}}}

ti+4: CreateContract{contractId = 0, contract = Sale{
startDate = t, templateName = "sale", customer = e2,
orderLines = [OrderLine{
item = Item{itemType = Bicycle{model = "Avenue"}, quantity = 1.0},
unitPrice = Money{currency = DKK, amount = 4000.0},
vatPercentage = 25.0}]}}

That is, first the customer entity is created, and then we can instantiate a new
sales contract. In this particular sale, one bicycle of the model “Avenue” is sold
at a unit price of 4000 DKK, with an additional VAT of 25 percent. Note that
the contract id 0 of the CreateContract is automatically generated and that the
start time t is explicitly given in the CreateContract’s startDate field independent
from the internalTimeStamp field.

Following the events above, if the contract is executed successfully, events
of type IssueInvoice, Delivery, and Payment will persisted in the event log with
appropriate values—in particular, the payment will be 5000 DKK.

4 Implementation Aspects

In this section we briefly discuss some of the implementation techniques used in
our implementation of POETS. POETS is implemented in Haskell [9], and the
logical structure of the implementation reflects the diagram in Figure 2, that is
each component is implemented as a separate Haskell module.

4.1 External Interface

The external interface to the POETS system is implemented in a separate Haskell
module. We currently use Thrift [15] for implementing the communication layer
between the server and its clients, but other communication layers can in principle
be used. Changing the communication layer will only require a change in one
module.

185

Besides offering an abstract, light-weight interface to communication, Thrift
enables type-safe communication. The types and services of the server are spec-
ified in a language-independent description language, from which Haskell code is
generated (or code in other languages for the clients). For example, the external
interface to querying a report can be specified as follows:

Value queryReport(

1 : string name // name of the report to execute

2 : list<Value> args // input arguments

) throws (

1 : ReportNotFoundException notFound

2 : RunTimeException runtime

3 : TypeException type

)

From this specification, Thrift generates the Haskell code for the server interface,
and implementing the interface amounts to supplying a function of the type
String → [Value]→ IO Value—namely the query function.

4.2 Domain-Specific Languages

The main ingredient of the POETS implementation is the implementation of
the domain-specific languages. What is interesting in that respect—compared to
implementations of domain-specific languages in isolation of each other—is the
common core shared by the languages, in particular types and values.

In order to reuse and extend the structure of types and values in the re-
port language and the contract language, we make use of the compositional data
types [2] library. Compositional data types take the data types as fixed points [11]
view on abstract syntax trees (ASTs), namely a separation of the recursive struc-
ture of ASTs from their signatures. As an example, we define the signatures of
types from Section 2.1.1 as follows:

type RecordName = String
data TypeConstant a = TBool | TInt | · · ·
data TypeRecord a = TRecord RecordName
data TypeList a = TList a
data TypeEnt a = TEnt RecordName

The signature for the types of the data model is then obtained by combin-
ing the individual signatures above TSig = TypeConstant :+: TypeRecord :+:
TypeList :+: TypeEnt , where (:+:) :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ is the sum
of two functors. Finally, the data type for ASTs of types can be defined by tying
the recursive knot T = Term TSig , where Term :: (∗ → ∗) → ∗ is the functor
fixed point.

Recursive functions over ASTs are defined as type classes, with one instance
per atomic signature. For instance, a pretty printer for types can be defined as
follows:

class Functor f ⇒ Render f where
render :: f String → String

186

instance Render TypeConstant where
render TInt = "Int"

render TBool = "Bool"

· · ·
instance Render TypeRecord where

render (TRecord r) = r

instance Render TypeList where
render (TList τ) = "[" ++ τ ++ "]"

instance Render TypeEnt where
render (TEnt r) = "<" ++ r ++ ">"

and pretty printing of terms is subsequently obtained by lifting the render algebra
to a catamorphism, that is a function of type Render f ⇒ Term f → String .

Extendability The first benefit of the approach above is that we can extend
the signature for types to fit, for example, the contract language as in Figure 9:

type TypeVar = String
data TypeUnit a = TUnit
data TypeVar a = TVar TypeVar
data TypeFunction a = TFunction a a

Extending the pretty printer amounts to only providing the new cases:

instance render TypeUnit where
render TUnit = "()"

instance render TypeVar where
render (TVar α) = α

instance render TypeFunction where
render (TFunction τ1 τ2) = τ1 ++ " -> " ++ τ2

A similar modular encoding is used for the language of values:

data Value a = VInt Int | VBool Bool | VString String | · · ·

and the signature of expressions in the contract language of Figure 9 can be
obtained by providing the extensions compared to the language of values:

type Var = String
data Exp a = EVar Var | ELambda Var a | EApply a a | · · ·

That is, Term (Exp :+: Value) represents the type of ASTs for expressions of the
contract language. Reusing the signature for (core) values means that the values
of Section 2.1.2, which are provided as input to the system for instance in the
registerTransaction function, can be automatically coerced to the richer language
of expressions. That is, values of type Term Value can be readily used as values
of type Term (Exp :+: Value), without explicit copying or translation.

Notice the difference in the granularity of (core) value signatures and (core)
type signatures: types are divided into three signatures, whereas values are in

187

one signature. The rule of thumb we apply is to divide signatures only when a
function needs the granularity. For instance, the type inference algorithm used in
the report language and the contract language implements a simplification pro-
cedure [5], which reduces type constraints to atomic type constraints. In order to
guarantee this transformation invariant statically, we hence need a signature of
atomic types, namely TypeConstant :+: TypeVar , which prompts the finer gran-
ularity on types.

Syntactic sugar Besides enabling a common core of ASTs and functions on
them, compositional data type enable AST transformations where the invariant
of the transformation is witnessed by the type. Most notably, desugaring can be
implemented by providing a signature for syntactic sugar:

data ExpSug a = ELet Var a a | · · ·

as well as a transformation to the core signature:

instance Desugar ExpSug where
desugar (ELet x e1 e2) = ELam x e2 ‘EApp‘ e1

· · ·

This approach yields a desugaring function of the type Term (ExpSug :+: Exp :+:
Value) → Term (Exp :+: Value), which witnesses that the syntactic sugar has
indeed been removed.

Moreover, since we define the desugaring translation in the style of a term
homomorphism [2], we automatically get a lifted desugaring function that prop-
agates AST annotations, such as source code positions, to the desugared term.
This means, for instance, that type error messages can provide detailed source
position information also for terms that originate from syntactic sugar.

5 Conclusion

We have presented an extended and generalised version of the POETS architec-
ture [6], which we have fully implemented. We have presented domain-specific
languages for specifying the data model, reports, and contracts of a POETS in-
stance, and we have demonstrated an application of POETS in a small use case.
The use case demonstrates the conciseness of our approach—Appendix C con-
tains the complete source needed for a running system—as well as the domain-
orientation of our specification languages. We believe that non-programmers
should be able to read and understand the data model of Appendix C.1, to some
extent the contract specifications of Appendix C.3.3, and to a lesser extent the
reports of Appendix C.2 (after all, reports describe computations).

5.1 Future Work

With our implementation and revision of POETS we have only taken the first
steps towards a software system that can be used in practice. In order to properly
verify our hypothesis that POETS is practically feasible, we want to conduct a

188

larger use case in a live, industrial setting. Such use case will both serve as a
means of testing the technical possibilities of POETS, that is whether we can
model and implement more complex scenarios, as well as a means of testing our
hypothesis that the use of domain-specific languages shortens the gap between
requirements and implementation.

Expressivity As mentioned above, a larger and more realistic use case is
needed in order to fully evaluate POETS. In particular, we are interested in
investigating whether the data model, the report language, and the contract lan-
guage have sufficient expressivity. For instance, a possible extension of the data
model is to introduce finite maps. Such extension will, for example, simplify the
reports from our µERP use case that deal with multiple currencies. Moreover,
finite maps will enable a modelling of resources that is closer in structure to that
of Henglein et al. [6].

Another possible extension is to allow types as values in the report language.
For instance, the EntitiesByType report in Appendix C.2.3 takes a string repre-
sentation of a record type, rather than the record type itself. Hence the function
cannot take subtypes into account, that is if we query the report with input A,
then we only get entities of declared type A and not entities of declared subtypes
of A.

Rules A rule engine is a part of our extended architecture (Figure 2), however
it remains to be implemented. The purpose of the rule engine is to provide
rules—written in a separate domain-specific language—that can constrain the
values that are accepted by the system. For instance, a rule might specify that
the items list of a Delivery transaction always be non-empty.

More interestingly, the rule engine will enable values to be inferred from the
rules in the engine. For instance, a set of rules for calculating VAT will enable
the field vatPercentage of an OrderLine to be inferred automatically in the context
of a Sale record. That is, based on the information of a sale and the items that
are being sold, the VAT percentage can be calculated automatically for each item
type.

The interface to the rule engine will be very simple: A record value, as defined
in Section 2.1.2, with zero or more holes is sent to the engine, and the engine will
return either (i) an indication that the record cannot possibly fulfil the rules in
the engine, or (ii) a (partial) substitution that assigns inferred values to (some
of) the holes of the value as dictated by the rules. Hence when we, for example,
instantiate the sale of a bicycle in Section 3.4, then we first let the rule engine
infer the VAT percentage before passing the contract meta data to the contract
engine.

Forecasts A feature of the contract engine, or more specifically of the reduction
semantics of contract instances, is the possibility to retrieve the state of a running
contract at any given point in time. The state is essentially the AST of a contract
clause, and it describes what is currently expected in the contract, as well as what
is expected in the future.

189

Analysing the AST of a contract enables the possibility to do forecasts, for
instance to calculate the expected outcome of a contract or the items needed
for delivery within the next week. Forecasts are, in some sense, dual to reports.
Reports derive data from transactions, that is facts about what has previously
happened. Forecasts, on the other hand, look into the future, in terms of calcu-
lations over running contracts. We have currently implemented a single forecast,
namely a forecast that lists the set of immediately expected transactions for a
given contract. A more ambitious approach is to devise (yet another) language
for writing forecasts, that is functions that operate on contract ASTs.

Practicality In order to make POETS useful in practice, many features are
still missing. However, we see no inherent difficulties in adding them to POETS
compared to traditional ERP architectures. To mention a few: (i) security, that
is authorisation, users, roles, etc.; (ii) module systems for the report language and
contract language, that is better support for code reuse; and (iii) check-pointing
of a running system, that is a dump of the memory of a running system, so the
event log does not have to be replayed from scratch when the system is restarted.

Acknowledgements We are grateful to Fritz Henglein for many fruitful dis-
cussions and for convincing us of the POETS approach in the first place. Morten
Ib Nielsen and Mikkel Jønsson Thomsen both contributed to our implementa-
tion and design of POETS, for which we are thankful. Lastly, we thank the
participants of the DIKU course “POETS Summer of Code” for valuable input.

Bibliography

[1] J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Stefansen.
Compositional specification of commercial contracts. International Journal
on Software Tools for Technology Transfer, 8(6):485–516, 2006. ISSN 1433-
2779. doi: 10.1007/s10009-006-0010-1.

[2] P. Bahr and T. Hvitved. Compositional data types. In Proceedings of the
seventh ACM SIGPLAN Workshop on Generic Programming, pages 83–94,
New York, NY, USA, 2011. ACM. doi: 10.1145/2036918.2036930.

[3] A. J. Bernstein and M. Kifer. Databases and Transaction Processing: An
Application-Oriented Approach. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 2001. ISBN 0321185579.

[4] N. E. Fuchs, K. Kaljurand, and T. Kuhn. Attempto Controlled English for
Knowledge Representation. In C. Baroglio, P. A. Bonatti, J. Maluszynski,
M. Marchiori, A. Polleres, and S. Schaffert, editors, Reasoning Web, 4th
International Summer School 2008, Venice, Italy, September 7-11, 2008,
Tutorial Lectures, volume 5224, pages 104–124. Springer-Verlag, Berlin, Hei-
delberg, 2008. ISBN 978-3-540-85656-6. doi: 10.1007/978-3-540-85658-0˙3.

[5] Y.-C. Fuh and P. Mishra. Type inference with subtypes. Theoretical Com-
puter Science, 73(2):155–175, 1990. ISSN 0304-3975. doi: 10.1016/0304-
3975(90)90144-7.

190

http://dx.doi.org/10.1007/s10009-006-0010-1
http://dx.doi.org/10.1145/2036918.2036930
http://dx.doi.org/10.1007/978-3-540-85658-0_3
http://dx.doi.org/10.1016/0304-3975(90)90144-7
http://dx.doi.org/10.1016/0304-3975(90)90144-7

[6] F. Henglein, K. F. Larsen, J. G. Simonsen, and C. Stefansen. POETS:
process-oriented event-driven transaction system. The Journal of Logic
and Algebraic Programming, 78:381–401, 2009. ISSN 1567-8326. doi:
10.1016/j.jlap.2008.08.007.

[7] T. Hvitved, F. Klaedtke, and E. Zalinescu. A trace-based model for multi-
party contracts. Journal of Logic and Algebraic Programming, 81(2):72–98,
2012. ISSN 1567-8326. doi: 10.1016/j.jlap.2011.04.010.

[8] M. Jønsson Thomsen. Using Controlled Natural Language for specifying
ERP Requirements. Master’s thesis, University of Copenhagen, Department
of Computer Science, 2010.

[9] S. Marlow. Haskell 2010 Language Report, 2010.

[10] W. E. McCarthy. The REA Accounting Model: A Generalized Framework
for Accounting Systems in a Shared Data Environment. The Accounting
Review, LVII(3):554–578, 1982.

[11] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Functional
Programming Languages and Computer Architecture, volume 523 of Lecture
Notes in Computer Science, pages 124–144. Springer Berlin / Heidelberg,
1991. doi: 10.1007/3540543961˙7.

[12] M. Nissen and K. F. Larsen. FunSETL—Functional Reporting For ERP Sys-
tems. In O. Chitil, editor, Procedings of the 19th International Symposium
on Implementation and Application of Functional Languages (IFL), pages
268–289, 2007.

[13] A. Ohori. A Polymorphic Record Calculus and Its Compilation. ACM Trans-
actions on Programming Languages and Systems, 17(6):844–895, 1995. ISSN
0164-0925. doi: 10.1145/218570.218572.

[14] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
ISBN 0262162091.

[15] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable Cross-Language
Services Implementation. Technical report, Facebook, Palo Alto, CA, 2007.

[16] P. Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2(4):461–493, 1992. doi: 10.1017/S0960129500001560.

[17] J. J. Weygandt, D. E. Kieso, and P. D. Kimmel. Financial Accounting, with
Annual Report. Wiley, 2004.

191

http://dx.doi.org/10.1016/j.jlap.2008.08.007
http://dx.doi.org/10.1016/j.jlap.2008.08.007
http://dx.doi.org/10.1016/j.jlap.2011.04.010
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1145/218570.218572
http://dx.doi.org/10.1017/S0960129500001560

A Predefined Ontology

A.1 Data
Data is abstract.

A.2 Event

Event is abstract.
Event has a Timestamp

called internalTimeStamp.

Add data definitions to the system
AddDataDefs is an Event.
AddDataDefs has a String called defs.

Events associated with entities
EntityEvent is an Event.
EntityEvent is abstract.
EntityEvent has a Data entity called ent.

Put entity event
PutEntity is an EntityEvent.
PutEntity has Data.
PutEntity is abstract.

Create entity event
CreateEntity is a PutEntity.
CreateEntity has a String called recordType.

Update entity event
UpdateEntity is a PutEntity.

Delete entity event
DeleteEntity is an EntityEvent.

Events associated with a report definition
ReportEvent is an Event.
ReportEvent has a String called name.

Put report definition event
PutReport is a ReportEvent.
PutReport is abstract.
PutReport has a String called code.
PutReport has a String called description.
PutReport has a list of String called tags.

Create report definition event
CreateReport is a PutReport.

Update report definition event
UpdateReport is a PutReport.

Delete report definition event
DeleteReport is a ReportEvent.

Events associated with a contract template
ContractDefEvent is an Event.
ContractDefEvent has a String called name.

Put contract template event
PutContractDef is a ContractDefEvent.
PutContractDef is abstract.
PutContractDef has a String called recordType.
PutContractDef has a String called code.
PutContractDef has a String called description.

Create contract template event
CreateContractDef is a PutContractDef.

Update contract template event
UpdateContractDef is a PutContractDef.

Delete contract template event
DeleteContractDef is a ContractDefEvent.

Events associated with a contract
ContractEvent is an Event.
ContractEvent is abstract.
ContractEvent has an Int called contractId.

Put contract event
PutContract is a ContractEvent.
PutContract has a Contract.
PutContract is abstract.

Create contract event
CreateContract is a PutContract.

Update contract event
UpdateContract is a PutContract.

Conclude contract event
ConcludeContract is a ContractEvent.

Transaction super class
TransactionEvent is a ContractEvent.
TransactionEvent has a Timestamp.
TransactionEvent has a Transaction.

A.3 Transaction
Transaction is abstract.

A.4 Report
Report is abstract.

A.5 Contract
Contract is abstract.
Contract has a Timestamp called startDate.
Contract has a String called templateName.

192

B Static and Dynamic Semantics of the Report Lan-
guage

B.1 Types, Type Constraints and Type Schemes

The following grammar describes the type expressions that are used in the report
language:

τ ::= r | α | Bool | Int | Real | Char | Timestamp | Duration
| DurationTimestamp | [τ] | 〈r〉 | τ1 → τ2 | τ1 + τ2 | (τ1 , τ2) | ()

where r ranges over record names and α over type variables.
The report language is polymorphically typed and permits to put constraints

on types, for example, subtyping constraints. The language of type constraints
is defined as follows:

C ::= τ1 <: τ2 | τ1 .f : τ2 | Eq(τ) | Ord(τ)

Intuitively, these constraints can be interpreted as follows:

• A subtype constraint of the form τ1 <: τ2 requires τ1 to be a subtype of τ2,

• a field constraint of the form τ1.f : τ2 requires τ1 to be a record type
containing a field f of type τ2,

• an equality constraint of the form Eq(τ) requires the type τ to have an
equality predicate ≡ defined on it, and

• an order constraint of the form Ord(τ) requires the type τ to have order
predicates (<, ≤) defined on it.

In order to accommodate for the polymorphic typing, we have to move from
types to type schemes. Type schemes are of the form ∀α.C ⇒ τ , that is, a type
with a universal quantification over a sequence of type variables, restricted by
a sequence of constraints. We abbreviate ∀ 〈〉 .C ⇒ τ by writing C ⇒ τ , and
〈〉 ⇒ τ by τ . The universal closure of a type scheme C ⇒ τ , that is, ∀α.C ⇒ τ
for α the free variables fv(C, τ) in C and τ , is abbreviated by ∀C ⇒ τ .

B.2 Built-in Symbols

In the following we give an overview of the constants provided by the language.
Along with each constant c we will associate a designated type scheme σc.

One part of the set of constants consists of literals: Numeric literals R,
Boolean literals {True,False}, character literals {’a’, ’b’, . . .}, and string lit-
erals. Each literal is associated with its obvious type: Int (respectively Real),
Bool, Char, respectively String. Moreover, we also have entity values 〈r, e〉 of
type 〈r〉 with e a unique identifier.

In the following we list the remaining built-in constants along with their
respective type schemes. Many of the given constant symbols are used as mixfix
operators. This is indicated by placeholders . For example a binary infix operator
◦ is then written as a constant ◦ . For a constant c we write c : C ⇒ τ in order
to indicate the type scheme σc = ∀C ⇒ τ assigned to c.

193

◦ : α <: Real⇒ α→ α→ α ∀◦ ∈ {+,−, ∗}
/ : Real→ Real→ Real

≡ : Eq(α)⇒ α→ α→ Bool

◦ : Ord(α)⇒ α→ α→ Bool ∀◦ ∈ {>,≥, <,≤}
◦ : α <: DurationTimestamp⇒ α→ Duration→ α ∀◦ ∈ {〈+〉, 〈−〉}

r {f1 = , . . . , fn = } : τ1 → . . . τn → r where ρ(r) = {(f1, τ1), . . . , (fn, τn)}
.f : α.f : β ⇒ α→ β

{f1 = , . . . , fn = } : α.f1 : α1, . . . , α.fn : αn ⇒ α→ α1 → . . .→ αn → α

¬ : Bool→ Bool

◦ : Bool→ Bool→ Bool ∀◦ ∈ {∧,∨}
if then else : Bool→ α→ α→ α

[] : [α]

: α→ [α]→ [α]

fold : Eq(β)⇒ (α→ β → β)→ β → [α]→ β

() : ()

(,) : α→ β → (α, β)

Inl : α→ α+ β

Inr : β → α+ β

case : α+ β → (α→ γ)→ (β → γ)→ γ

.1: (α, β)→ α

.2: (α, β)→ β

! : 〈r〉 → r

@: 〈r〉 → r

〈〈 − − : : 〉〉 : Int→ · · · → Int︸ ︷︷ ︸
6×

→ Timestamp

〈〈 s, min, h, d, w, mon, y〉〉 : Int→ · · · → Int︸ ︷︷ ︸
7×

→ Duration

error : String→ α

We assume that there is always defined a record type Event which is the type
of an event stored in the central event log of the system. The list of all events in
the event log can be accessed by the following constant:

events : [Event]

194

When considering built-in constants, we also distinguish between defined func-
tions f and constructors F . Constructors are the constants 〈〈 − − : : 〉〉,
〈〈 s, min, h, d, w, mon, y〉〉, r {f1 = , . . . , fn = }, #, [], (), (,),
Inl, Inr and error as well as all literals. The remaining constants are defined
functions.

Derived from its type scheme we can also assign an arity ar(c) to each constant
c by defining ar(c) as the largest n such that σc = ∀α.C ⇒ τ1 → τ2 → · · · → τn+1

B.3 Type System

Before we can present the type system of the report language, we have to give the
rules for the type constraints. To this end we extend the subtyping judgement
R ` τ1 <: τ2 for values from Figure 4. The constraint entailment judgement
R, C C states that a constraint C follows from the set of constraints C and the
record typing environment R.

The type constraint entailment judgement R, C C is straightforwardly
extended to sequences of constraints C. We define that R, C C1, . . . , Cn iff
R, C Ci for all 1 ≤ i ≤ n.

The type system of the report language is a straightforward polymorphic
lambda calculus extended with type constraints. The typing judgement for the
report language is writtenR, C,Γ ` e : σ, whereR is a record typing environment,
C a set of type constraints, Γ a type environment, e an expression and σ a type
scheme. The inference rules for this judgement are given in Figure 13.

A typing R, C′,Γ′ ` e : τ ′ is an instance of R, C,Γ ` e : τ iff there is a
substitution S such that Γ′ ⊇ ΓS, τ ′ = τS, and R, C′ CS. Deriving from that
we say that the type scheme σ′ = ∀α′.C ′ ⇒ τ ′ is an instance of σ = ∀α.C ⇒ τ ,
written σ′ < σ, iff there is a substitution S with dom(S) = α such that τ ′ = τS
and R, C′ CS.

Top-level function definitions are of the form

f x1 . . . xn = e

and can be preceded by an explicit type signature declaration of the form f : σ.

Depending on whether an explicit type signature is present, the following
inference rules define the typing of top-level function definitions:

R, C ∪ C,Γ ∪ {x1 : τ1, . . . , xn : τn} ` e : τ α 6∈ fv(C) ∪ fv(Γ)
(Fun)

R, C,Γ ` f x1 . . . xn = e : ∀α.C ⇒ τ1 → · · · → τn → τ

R, C,Γ ` f x1 . . . xn = e : σ σ′ < σ
(Fun’)R, C,Γ ` f : σ′; f x1 . . . xn = e : σ′

B.4 Operational Semantics

In order to simplify the presentation of the operational semantics we assign to
each constant c of the language its set of strict argument positions strict(c) ⊆
{1, . . . , ar(c)}:

195

C ∈ C
(Hyp)R, C C

r1 ≤ r2 (<: Rec)
(R,A, F, ρ,≤), C r1 <: r2

(<: Refl)R, C τ <: τ
R, C τ1 <: τ2 R, C τ2 <: τ3

(<: Trans)R, C τ1 <: τ3

R, C τ1 <: τ2 R, C τ3 <: τ4
(<: Fun)R, C τ2 → τ3 <: τ1 → τ4

R, C τ1 <: τ2
(<: List)R, C [τ1] <: [τ2]

R, C τ1 <: τ2 R, C τ3 <: τ4
(<: Sum)R, C τ1 + τ3 <: τ2 + τ4

R, C τ1 <: τ2 R, C τ3 <: τ4
(<: Prod)R, C (τ1, τ3) <: (τ2, τ4)

(<: Num)R, C Int <: Real

(<: Timestamp)R, C Timestamp <: DurationTimestamp

(<: Duration)R, C Duration <: DurationTimestamp

(f, τ) ∈ ρ(r)
(Field)

(R,A, F, ρ,≤), C r.f : τ

R, C τ1.f : τ2 R, C τ ′1 <: τ1
(Field Prop)R, C τ ′1.f : τ2

τ ∈ {Bool, Int,Real,Char,Duration,Timestamp,DurationTimestamp}
(Ord Base)R, C Ord(τ)

R, C Ord(τ)
(Eq Ord)R, C Eq(τ)

r ∈ R
(Eq Rec)

(R,A, F, ρ,≤), C Eq(r)

F ∈ {(·, ·),+, [·] , 〈·〉} P ∈ {Ord(·),Eq(·)} ∀1 ≤ i ≤ n : R, C P (τi)
(P F)R, C P (F (τ1, . . . , τn))

Figure 12: Type constraint entailment R, C C.

196

x : σ ∈ Γ
(Var)R, C,Γ ` x : σ

(Const)R, C,Γ ` c : σc

R, C,Γ ` e : τ C τ <: τ ′
(Sub)R, C,Γ ` e : τ ′

R, C,Γ ∪ {x : τ} ` e : τ ′
(Abs)R, C,Γ ` λx→ e : τ → τ ′

R, C,Γ ` e1 : τ1 → τ2 R, C,Γ ` e2 : τ1
(App)R, C,Γ ` e1 e2 : τ2

R, C,Γ ` e1 : σ R, C,Γ ∪ {x : σ} ` e2 : τ
(Let)R, C,Γ ` let x = e1 in e2 : τ

R, C,Γ ` e : r′

R, C r <: r′
R, C,Γ ∪ {x : r} ` e1 : τ

R, C,Γ ∪ {x : r′} ` e2 : τ
(Type Of)R, C,Γ ` type x = e of {r → e1; → e2} : τ

R, C,Γ ` e : 〈r′〉
R, C r <: r′

R, C,Γ ∪ {x : 〈r〉} ` e1 : τ

R, C,Γ ∪ {x : 〈r′〉} ` e2 : τ
(Type Of Ref)R, C,Γ ` type x = e of {〈r〉 → e1; → e2} : τ

R, C ∪ C,Γ ` e : τ α 6∈ fv(C) ∪ fv(Γ)
(∀ Intro)

R, C,Γ ` e : ∀α.C ⇒ τ

R, C,Γ ` e : ∀α.C ⇒ τ ′ R, C C [α/τ]
(∀ Elim)R, C,Γ ` e : τ ′ [α/τ]

Figure 13: Type inference rules for the report language.

strict(◦) = {1, 2} for all binary operators ◦ 6= #

strict(c) = {1} ∀c ∈ {¬, if then else , case, error, @, !}
strict(.f) = {1}

strict({fi = ei}) = {1}
strict(.i) = {1}

For all other constraints c for which the above equations do not apply strict(c) is
defined as the empty set ∅.

Values form a subset of expressions which are fully evaluated at the top-
level. Such expressions are also said to be in weak head normal form (whnf).
An expression is in weak head normal form, if it is an application of a built-
in function to too few arguments, an application of a constructor, or a lambda
abstraction. Moreover, if a value is not of the form error v, it is called defined :

v ::= c e1 . . . en n < ar(f)

|F e1 . . . en n = ar(F), ∀i ∈ strict(F) ei is defined value

|λx→ e

197

An even more restricted subset of the set of values is the set of constructor
values which are expressions in constructor head normal form. It is similar to
weak head normal form, but with the additional restriction, that arguments of a
fully applied constructor are in constructor normal form as well:

V ::= c e1 . . . en n < ar(f)

|F V1 . . . Vn n = ar(F), ∀i ∈ strict(F) Vi is defined

|λx→ e

To further simplify the presentation we introduce evaluation contexts. The
following evaluation context E corresponds to weak head normal forms:

E ::= [·] | E e | type x = E of {r → e1; → e2}
|c e1 . . . ei−1 E ei+1 . . . en i ∈ strict(c), n = ar(c),

∀j < i, j ∈ strict(c) : ej is defined value

The evaluation context F corresponds to constructor head normal forms:

F ::= [·] | E e | type x = E of {r → e1; → e2}
|f e1 . . . ei−1 E ei+1 . . . en i ∈ strict(f), n = ar(f),

∀j < i, j ∈ strict(f) : ej is defined value

|F V1 . . . Vi−1 F ei+1 . . . en n = ar(F), V1 . . . Vi−1 are defined

Computations take place in a context of an event log, i.e. a sequence of values
of type Event. In the following definition of the semantics of the report language
we use (evi)i<n to refer to this sequence, where each evi is of the form r{fj = ej}
with r ≤ Event.

We assume that the Event record type has a field internalTimeStamp that
records the time at which the event was added to the log. For each evi, we
define its extension ev′i as follows: Each occurrence of an entity value 〈r, e〉 is
replaced by 〈r, e, t〉 where t is the value of the internalTimeStamp field of evi.
This will allow us to define the semantics of the contextual dereference operator
@. The semantics of both the @ and the ! operator are given by the lookup
operator, which is provided by the entity store, compare Section 2.3. In order to
retrieve the latest value associated to an entity, we assume the timestamp tnow

that denotes the current time.
The rules describing the semantics of the report language in the form of a

small step transition relation → are given in Figure 14.

198

e→ e′ (Context)
F [e]→ F [e′]

(Error)
F [error v]→ error v

(Abs)
(λx→ e1)e2 → e1 [x/e2]

(Let)
let x = e1 in e2 → e2 [x/e1]

r′ ≤ r v = r′{. . . }
(Type suc)

type x = v of {r → e1; → e2} → e1 [x/v]

r′ 6≤ r v = r′{. . . }
(Type def)

type x = v of {r → e1; → e2} → e2 [x/v]

injection φ : {1, . . . ,m} ↪→ {1, . . . , n}
∀j ∈ {1, . . . ,m} : f ′j = fφ(j)

e′′i =

{
e′φ−1(i) if i ∈ Im(φ)

ei otherwise

(Mod)
r{f1 = e1, . . . , fn = en} {f ′1 = e′1, . . . , f

′
m = e′m} → r{f1 = e′′1 , . . . , fn = e′′n}

(Acc)
r{f1 = e1, . . . , fn = en}.fi → ei

(If True)
if True then e1 else e2 → e1

(If False)
if False then e1 else e2 → e2

(Case Left)
case (Inl e) e1 e2 → e1 e

(Case Right)
case (Inr e) e1 e2 → e2 e

i ∈ {1, 2}
(Proj)

(e1, e2).i→ ei

(Events)
events→ [ev1, ev2, . . . , evn]

(Fold Empty)
fold e1 e2 []→ e2

(Fold Cons)
fold e1 e2 (e3 # e4)→ e1 e3 (fold e1 e2 e4)

lookuptnow
(e, tnow) = v

(! ignore)〈r, e, t〉!→ v

lookuptnow(e, tnow) = v
(!)〈r, e〉!→ v

lookuptnow
(e, t) = v

(@)〈r, e, t〉@→ v

lookuptnow(e, tnow) = v
(@ now)〈r, e〉@→ v

Figure 14: Small step operational semantics of the report language.

199

C µERP Specification

C.1 Ontology

C.1.1 Data

ResourceType is Data.
ResourceType is abstract.

Currency is a ResourceType.
Currency is abstract.

DKK is a Currency.
EUR is a Currency.

ItemType is a ResourceType.
ItemType is abstract.

Bicycle is an ItemType.
Bicycle has a String called model.

Resource is Data.
Resource is abstract.

Money is a Resource.
Money has a Currency.
Money has a Real called amount.

Item is a Resource.
Item has an ItemType.
Item has a Real called quantity.

Agent is Data.

Me is an Agent.

Customer is an Agent.
Customer has a String called name.
Customer has an Address.

Vendor is an Agent.
Vendor has a String called name.
Vendor has an Address.

Address is Data.
Address has a String.
Address has a Country.

Country is Data.
Country is abstract.

Denmark is a Country.

OrderLine is Data.
OrderLine has an Item.
OrderLine has Money called unitPrice.
OrderLine has a Real called vatPercentage.

CurrentAssets is Data.
CurrentAssets has a list of Money called currentAssets.
CurrentAssets has a list of Money called inventory.
CurrentAssets has a list of Money called accountsReceivable.
CurrentAssets has a list of Money called cashPlusEquiv.

Liabilities is Data.
Liabilities has a list of Money called liabilities.

200

Liabilities has a list of Money called accountsPayable.
Liabilities has a list of Money called vatPayable.

Invoice is Data.
Invoice has an Agent called sender.
Invoice has an Agent called receiver.
Invoice has a list of OrderLine called orderLines.

UnpaidInvoice is Data.
UnpaidInvoice has an Invoice.
UnpaidInvoice has a list of Money called remainder.

CustomerStatistics is Data.
CustomerStatistics has a Customer entity.
CustomerStatistics has Money called totalPaid.

C.1.2 Transaction

BiTransaction is a Transaction.
BiTransaction is abstract.
BiTransaction has an Agent entity called sender.
BiTransaction has an Agent entity called receiver.

Transfer is a BiTransaction.
Transfer is abstract.

Payment is a Transfer.
Payment is abstract.
Payment has Money.

CashPayment is a Payment.
CreditCardPayment is a Payment.
BankTransfer is a Payment.

Delivery is a Transfer.
Delivery has a list of Item called items.

IssueInvoice is a BiTransaction.
IssueInvoice has a list of OrderLine called orderLines.

RequestRepair is a BiTransaction.
RequestRepair has a list of Item called items.

Repair is a BiTransaction.
Repair has a list of Item called items.

C.1.3 Report

IncomeStatement is a Report.
IncomeStatement has a list of Money called revenue.
IncomeStatement has a list of Money called costOfGoodsSold.
IncomeStatement has a list of Money called contribMargin.
IncomeStatement has a list of Money called fixedCosts.
IncomeStatement has a list of Money called depreciation.
IncomeStatement has a list of Money called netOpIncome.

BalanceSheet is a Report.
BalanceSheet has a list of Money called fixedAssets.
BalanceSheet has CurrentAssets.
BalanceSheet has a list of Money called totalAssets.
BalanceSheet has Liabilities.
BalanceSheet has a list of Money called ownersEquity.
BalanceSheet has a list of Money called totalLiabilitiesPlusEquity.

CashFlowStatement is a Report.
CashFlowStatement has a list of Payment called expenses.
CashFlowStatement has a list of Payment called revenues.

201

CashFlowStatement has a list of Money called revenueTotal.
CashFlowStatement has a list of Money called expenseTotal.

UnpaidInvoices is a Report.
UnpaidInvoices has a list of UnpaidInvoice called invoices.

VATReport is a Report.
VATReport has a list of Money called outgoingVAT.
VATReport has a list of Money called incomingVAT.
VATReport has a list of Money called vatDue.

Inventory is a Report.
Inventory has a list of Item called availableItems.

TopNCustomers is a Report.
TopNCustomers has a list of CustomerStatistics.

C.1.4 Contract

Purchase is a Contract.
Purchase has a Vendor entity.
Purchase has a list of OrderLine called orderLines.

Sale is a Contract.
Sale has a Customer entity.
Sale has a list of OrderLine called orderLines.

C.2 Reports

C.2.1 Prelude Functions

−− Arithmetic
min : (Ord a) ⇒ a → a → a
min x y = if x < y then x else y

max : (Ord a) ⇒ a → a → a
max x y = if x > y then x else y

−− List functions
null : [a] → Bool
null = fold (λe r → False) True

first : a → [a] → a
first = fold (λx a → x)

head : [a] → a
head = first (error "’head’ applied to empty list")

elemBy : (a → a → Bool) → a → [a] → Bool
elemBy f e = fold (λx a → a ∨ f x e) False

elem : (Ord a) ⇒ a → [a] → Bool
elem = elemBy (≡)

sum : (a < Real, Int < a) ⇒ [a] → a
sum = fold (+) 0

length : [a] → Int
length = fold (λ x y → y+1) 0

map : (a → b) → [a] → [b]
map f = fold (λx a → (f x) # a) []

filter : (a → Bool) → [a] → [a]
filter f = fold (λx a → if f x then x # a else a) []

nupBy : (a → a → Bool) → [a] → [a]

202

nupBy f = fold (λx a → x # filter (λ y → ¬ (f x y)) a) []

nup : (Ord a) ⇒ [a] → [a]
nup = nupBy (≡)

all : (a → Bool) → [a] → Bool
all f = fold (λx a → f x ∧ a) True

any : (a → Bool) → [a] → Bool
any f = fold (λx a → f x ∨ a) False

concat : [[a]] → [a]
concat = fold (λx a → x ++ a) []

concatMap : (a → [b]) → [a] → [b]
concatMap f l = concat (map f l)

take : Int → [a] → [a]
take n l = (fold (λx a → if a.2 > 0 then (x # a.1,a.2 − 1) else a) ([],n) l).1

−− Grouping functions
addGroupBy : (a → a → Bool) → a → [[a]] → [[a]]
addGroupBy f a ll =

let felem l = fold (λ el r → f el a) False l
run el r =

if r.1 then (True,el # r.2)
else if felem el then (True, (a # el) # r.2)
else (False, el # r.2)

res = fold run (False,[]) ll
in if res.1 then res.2 else [a] # res.2

groupBy : (a → a → Bool) → [a] → [[a]]
groupBy f = fold (addGroupBy f) []

addGroupProj : (Ord b) ⇒ (a → b) → a → [(b,[a])] → [(b,[a])]
addGroupProj f a ll =

let run el r =
if r.1 then(True,el # r.2)
else if el.1 ≡ f a then (True, (el.1,a # el.2) # r.2)
else (False, el # r.2)

res = fold run (False,[]) ll
in if res.1 then res.2 else (f a,[a]) # res.2

groupProj : (Ord b) ⇒ (a → b) → [a] → [(b, [a])]
groupProj f = fold (addGroupProj f) []

−− Sorting functions
insertBy : (a → a → Bool) → a → [a] → [a]
insertBy le a l =

let ins e r =
if r.1 then (True, e # r.2)
else if le e a then (True,e # a # r.2)
else (False, e # r.2)

res = fold ins (False,[]) l
in if res.1 then res.2 else a # res.2

insertProj : (Ord b) ⇒ (a → b) → a → [a] → [a]
insertProj proj = insertBy (λx y → proj x ≤ proj y)

insert : (Ord a) ⇒ a → [a] → [a]
insert = insertBy (≤)

sortBy : (a → a → Bool) → [a] → [a]
sortBy le = fold (λe r → insertBy le e r) []

sortProj : (Ord b) ⇒ (a → b) → [a] → [a]

203

sortProj proj = sortBy (λx y → proj x ≤ proj y)

sort : (Ord a) ⇒ [a] → [a]
sort = sortBy (≤)

−− Generators for ’lifecycled’ data
reports : [PutReport]
reports = nupBy (λpr1 pr2 → pr1.name ≡ pr2.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events, ur.name ≡ cr.name]]

entities : [(〈Data〉,String)]
entities = [(ce.ent,ce.recordType) |

ce : CreateEntity ← events,
null [de | de : DeleteEntity ← events, de.ent ≡ ce.ent]]

contracts : [PutContract]
contracts = [pc |

cc : CreateContract ← events,
pc = first cc [uc | uc : UpdateContract ← events, uc.contractId ≡ cc.contractId],
null [cc | cc : ConcludeContract ← events, cc.contractId ≡ pc.contractId]]

contractDefs : [PutContractDef]
contractDefs = nupBy (λpcd1 pcd2 → pcd1.name ≡ pcd2.name) [pcd |

ccd : CreateContractDef ← events,
pcd : PutContractDef = first ccd [ucd | ucd : ContractDefEvent ← events, ucd.name ≡ ccd.name]]

transactionEvents : [TransactionEvent]
transactionEvents = [tr | tr : TransactionEvent ← events]

transactions : [Transaction]
transactions = [tr.transaction | tr ← transactionEvents]

C.2.2 Domain-Specific Prelude Functions

−− Check if an agent is the company itself
isMe : 〈Agent〉 → Bool
isMe a = a :? 〈Me〉

−− Normalise a list of money by grouping currencies together
normaliseMoney : [Money] → [Money]
normaliseMoney ms = [Money{currency = m.1, amount = sum (map (λm → m.amount) m.2)} |

m ← groupProj (λm → m.currency) ms]

−− Add one list of money from another
addMoney : [Money] → [Money] → [Money]
addMoney m1 m2 = normaliseMoney (m1 ++ m2)

−− Subtract one list of money from another
subtractMoney : [Money] → [Money] → [Money]
subtractMoney m1 m2 = addMoney m1 (map (λm → m{amount = 0 − m.amount}) m2)

−− Produce normalised list of all items given in list
normaliseItems : [Item] → [Item]
normaliseItems its = [Item{itemType = i.1, quantity = sum (map (λis → is.quantity) i.2)} |

i ← groupProj (λis → is.itemType) its]

−− List of all invoices and their associated contract ID
invoices : [(Int,IssueInvoice)]
invoices = [(tr.contractId,inv) |

tr ← transactionEvents,
inv : IssueInvoice = tr.transaction]

−− List of all received invoices and their associated contract ID
invoicesReceived : [(Int,IssueInvoice)]
invoicesReceived =

204

filter (λinv → ¬ (isMe (inv.2).sender) ∧ isMe (inv.2).receiver) invoices

−− List of all sent invoices and their associated contract ID
invoicesSent : [(Int,IssueInvoice)]
invoicesSent = filter (λinv → isMe inv.2.sender ∧ ¬ (isMe inv.2.receiver)) invoices

−− Calculate the total price including VAT on an invoice
invoiceTotal : (a.orderLines : [OrderLine]) ⇒ a → [Money]
invoiceTotal inv = normaliseMoney [line.unitPrice{amount = price} |

line ← inv.orderLines,
quantity = line.item.quantity,
price = ((100 + line.vatPercentage) × line.unitPrice.amount × quantity) / 100]

−− List of all items delivered to the company
itemsReceived : [Item]
itemsReceived = normaliseItems [is |

tr ← transactionEvents,
del : Delivery = tr.transaction,
¬(isMe del.sender) ∧ isMe del.receiver,
is ← del.items]

−− List of all items that have been sold
itemsSold : [Item]
itemsSold = normaliseItems [line.item | inv ← invoicesSent, line ← inv.2.orderLines]

−− Inventory acquisitions, that is a list of all received items and the unit
−− price of each item, exluding VAT.
invAcq : [(Item,Money)]
invAcq = [(item,line.unitPrice) |

inv ← invoicesReceived,
tr ← transactionEvents,
tr.contractId ≡ inv.1,
deliv : Delivery = tr.transaction,
item ← deliv.items,
line ← inv.2.orderLines,
line.item.itemType ≡ item.itemType]

−− FIFO costing: Calculate the cost of all sold goods based on FIFO costing.
fifoCost : [Money]
fifoCost = let
−− Check whether a set of items equals the current set of items in the
−− inventory. If so, ’take’ as many of the inventory items as possible
−− and add the price of these items to the totals.
checkInventory y x = let

invItem = y.1 −− The current item in the inventory
invPrice = y.2 −− The price of the current item in the inventory
oldInv = x.1 −− The part of the inventory that has been processed
item = x.2 −− The item to find in the inventory
total = x.3 −− The total costs so far

in
if item.itemType ≡ invItem.itemType then let

deltaInv =
if invItem.quantity ≤ item.quantity then

[]
else

[(invItem{quantity = invItem.quantity − item.quantity},invPrice)]
remainingItem = item{quantity = max 0 (item.quantity − invItem.quantity)}
price = invPrice{amount = invPrice.amount × (min item.quantity invItem.quantity)}

in
(oldInv ++ deltaInv, remainingItem, price # total)

else
(oldInv ++ [(invItem,invPrice)], item, total)

−− Process a sold item
processSoldItem soldItem x = let

total = x.1 −− the total costs so far
inv = x.2 −− the remaning inventory so far

205

y = fold checkInventory ([],soldItem,total) inv
in
(y.3,y.1)

in
normaliseMoney ((fold processSoldItem ([],invAcq) itemsSold).1)

−− Outoing VAT
vatOutgoing : [Money]
vatOutgoing = normaliseMoney [price |

inv ← invoicesReceived,
l ← inv.2.orderLines,
price = l.unitPrice{amount = (l.vatPercentage × l.unitPrice.amount × l.item.quantity) / 100}]

−− Incoming VAT
vatIncoming : [Money]
vatIncoming = normaliseMoney [price |

inv ← invoicesSent,
l ← inv.2.orderLines,
price = l.unitPrice{amount = (l.vatPercentage × l.unitPrice.amount × l.item.quantity) / 100}]

C.2.3 Internal Reports

Me

name: Me
description:

Returns the pseudo entity ’Me’ that represents the company.
tags: internal, entity

report : 〈Me〉
report = head [me | me : 〈Me〉 ← map (λe → e.1) entities]

Entities

name: Entities
description:

A list of all entities.
tags: internal, entity

report : [〈Data〉]
report = map (λe → e.1) entities

EntitiesByType

name: EntitiesByType
description:

A list of all entities with the given type.
tags: internal, entity

report : String → [〈Data〉]
report t = map (λe → e.1) (filter (λe → e.2 ≡ t) entities)

ReportNames

name: ReportNames
description:

A list of names of all registered reports.
tags: internal, report

report : [String]
report = [r.name | r ← reports]

206

ReportNamesByTags
name: ReportNamesByTags
description:

A list of reports that have the all tags provided as first argument to the
function and none of the tags provided as second argument.

tags: internal, report

filt allOf noneOf rep =
all (λx → elem x rep.tags) allOf ∧
¬ (any (λx → elem x rep.tags) noneOf)

report : [String] → [String] → [String]
report allOf noneOf = [r.name | r ← filter (filt allOf noneOf) reports]

ReportTags
name: ReportTags
description:

A list of tags that are used in registered reports.
tags: internal, report

report : [String]
report = nup (concatMap (λx → x.tags) reports)

ContractTemplates
name: ContractTemplates
description:

A list of ’PutContractDef’ events for each non−deleted contract template.
tags: internal, contract

report : [PutContractDef]
report = contractDefs

ContractTemplatesByType
name: ContractTemplatesByType
description:

A list of ’PutContractDef’ events for each non−deleted contract template of the
given type.

tags: internal, contract

report : String → [PutContractDef]
report r = filter (λx → x.recordType ≡ r) contractDefs

Contracts
name: Contracts
description:

A list of all running (i.e. non−concluded) contracts.
tags: internal, contract

report : [PutContract]
report = contracts

ContractHistory
name: ContractHistory
description:

A list of previous transactions for the given contract.
tags: internal, contract

report : Int → [TransactionEvent]
report cid = [transaction |

transaction : TransactionEvent ← events,
transaction.contractId ≡ cid]

207

ContractSummary

name: ContractSummary
description:

A list of meta data for the given contract.
tags: internal, contract

report : Int → [PutContract]
report cid = [createCon |

createCon : PutContract ← contracts,
createCon.contractId ≡ cid]

C.2.4 External Reports

IncomeStatement

name: IncomeStatement
description:

The Income Statement.
tags: external, financial

−− Revenue
revenue = normaliseMoney [line.unitPrice{amount = amount} |
inv ← invoicesSent,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.items.numberOfItems]

costOfGoodsSold = fifoCost
contribMargin = subtractMoney revenue fifoCost
fixedCosts = [] −− For simplicity
depreciation = [] −− For simplicity
netOpIncome = subtractMoney (subtractMoney contribMargin fixedCosts) depreciation

report : IncomeStatement
report = IncomeStatement{

revenue = revenue,
costOfGoodsSold = costOfGoodsSold,
contribMargin = contribMargin,
fixedCosts = fixedCosts,
depreciation = depreciation,
netOpIncome = netOpIncome}

BalanceSheet

name: BalanceSheet
description:

The Balance Sheet.
tags: external, financial

−− List of all payments and their associated contract ID
payments : [(Int,Payment)]
payments = [(tr.contractId,payment) |

tr ← transactionEvents,
payment : Payment = tr.transaction]

−− List of all received payments and their associated contract ID
paymentsReceived : [(Int,Payment)]
paymentsReceived = filter (λp → ¬ (isMe p.2.sender) ∧ isMe p.2.receiver) payments

−− List of all payments made and their associated contract ID
paymentsMade : [(Int,Payment)]
paymentsMade = filter (λp → isMe p.2.sender ∧ ¬ (isMe p.2.receiver)) payments

cashReceived : [Money]
cashReceived = normaliseMoney (map (λp → p.2.money) paymentsReceived)

208

cashPaid : [Money]
cashPaid = normaliseMoney (map (λp → p.2.money) paymentsMade)

netCashFlow : [Money]
netCashFlow = subtractMoney cashReceived cashPaid

depreciation : [Money]
depreciation = [] −− For simplicity

fAssetAcq : [Money]
fAssetAcq = [] −− For simplicity

fixedAssets : [Money]
fixedAssets = subtractMoney fAssetAcq depreciation

inventory : [Money]
inventory =

let inventoryValue = [price |
item ← invAcq,
price = item.2{amount = item.2.amount × item.1.quantity}]

in
subtractMoney inventoryValue fifoCost

accReceivable : [Money]
accReceivable =

let paymentsDue = normaliseMoney [line.unitPrice{amount = amount} |
inv ← invoicesSent,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.item.quantity]

in
subtractMoney paymentsDue cashReceived

currentAssets : [Money]
currentAssets = addMoney inventory (addMoney accReceivable netCashFlow)

totalAssets : [Money]
totalAssets = addMoney fixedAssets currentAssets

accPayable : [Money]
accPayable =

let paymentsDue = [line.unitPrice{amount = amount} |
inv ← invoicesReceived,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.item.quantity]

in
subtractMoney paymentsDue cashPaid

vatPayable : [Money]
vatPayable = subtractMoney vatIncoming vatOutgoing

liabilities : [Money]
liabilities = addMoney accPayable vatPayable

ownersEq : [Money]
ownersEq = subtractMoney totalAssets liabilities

totalLiabPlusEq : [Money]
totalLiabPlusEq = addMoney liabilities ownersEq

report : BalanceSheet
report = BalanceSheet{

fixedAssets = fixedAssets,
currentAssets = CurrentAssets{

currentAssets = currentAssets,
inventory = inventory,
accountsReceivable = accReceivable,
cashPlusEquiv = netCashFlow},

209

totalAssets = totalAssets,
liabilities = Liabilities{

liabilities = liabilities,
accountsPayable = accPayable,
vatPayable = vatPayable},

ownersEquity = ownersEq,
totalLiabilitiesPlusEquity = totalLiabPlusEq}

CashFlowStatement

name: CashFlowStatement
description:

The Cash Flow Statement.
tags: external, financial

sumPayments : [Payment] → [Money]
sumPayments ps = normaliseMoney (map (λp → p.money) ps)

report : CashFlowStatement
report = let

payments = [payment | payment : Payment ← transactions]
mRevenues = [payment | payment ← payments, isMe (payment.receiver)]
mExpenses = [payment | payment ← payments, isMe (payment.sender)]

in
CashFlowStatement{

revenues = mRevenues,
expenses = mExpenses,
revenueTotal = sumPayments mRevenues,
expenseTotal = sumPayments mExpenses}

UnpaidInvoices

name: UnpaidInvoices
description:

A list of unpaid invoices.
tags: external, financial

−− Generate a list of unpaid invoices
unpaidInvoices : [UnpaidInvoice]
unpaidInvoices = [UnpaidInvoice{invoice = inv, remainder = remainder} |

invS ← invoicesSent,
inv = Invoice{

sender = invS.2.sender @,
receiver = invS.2.receiver @,
orderLines = invS.2.orderLines},

payments = [payment.money |
tr ← transactionEvents,
tr.contractId ≡ invS.1,
payment : Payment = tr.transaction],

remainder = subtractMoney (invoiceTotal inv) payments,
any (λm → m.amount > 0) remainder]

report : UnpaidInvoices
report = UnpaidInvoices{invoices = unpaidInvoices}

VATReport

name: VATReport
description:

The VAT report.
tags: external, financial

report : VATReport
report = VATReport{

outgoingVAT = vatOutgoing,

210

incomingVAT = vatIncoming,
vatDue = subtractMoney vatIncoming vatOutgoing}

Inventory

name: Inventory
description:

A list of items in the inventory available for sale (regardless of whether we
have paid for them).

tags: external, inventory

report : Inventory
report =

let itemsSold’ = map (λi → i{quantity = 0 − i.quantity}) itemsSold
in
−− The available items is the list of received items minus the list of reserved
−− or sold items
Inventory{availableItems = normaliseItems (itemsReceived ++ itemsSold’)}

TopNCustomers

name: TopNCustomers
description:

A list of customers who have spent must money in the given currency.
tags: external, financial, crm

customers : [〈Customer〉]
customers = [c | c : 〈Customer〉 ← map (λe → e.1) entities]

totalPayments : Currency → 〈Customer〉 → Real
totalPayments c cu = sum [d |

p : Payment ← transactions,
p.sender ≡ cu ∨ p.receiver ≡ cu,
p.money.currency ≡ c,
d = if p.sender ≡ cu then p.money.amount else 0 − p.money.amount]

customerStatistics : Currency → [CustomerStatistics]
customerStatistics c = [CustomerStatistics{customer = cu, totalPaid = p} |

cu ← customers,
p = Money{currency = c, amount = totalPayments c cu}]

topN : Int → [CustomerStatistics] → [CustomerStatistics]
topN n cs = take n (sortBy (λcs1 cs2 → cs1.totalPaid > cs2.totalPaid) cs)

report : Int → Currency → TopNCustomers
report n c = TopNCustomers{customerStatistics = topN n (customerStatistics c)}

C.3 Contracts

C.3.1 Prelude

// Arithmetic
fun floor x = let n = ceil x in if n > x then n − 1 else n
fun round x = let n1 = ceil x in let n2 = floor x in if n1 + n2 > 2 × x then n2 else n1
fun max a b = if a > b then a else b
fun min a b = if a > b then b else a

// List functions
fun filter f = foldr (λx b → if f x then x # b else b) []
fun map f = foldr (λx b → (f x) # b) []
val length = foldr (λx b → b + 1) 0
fun null l = l ≡ []
fun elem x = foldr (λy b → x ≡ y ∨ b) false
fun all f = foldr (λx b → b ∧ f x) true

211

fun any f = foldr (λx b → b ∨ f x) false
val reverse = foldl (λa e → e # a) []
fun append l1 l2 = foldr (λe a → e # a) l2 l1

// Lists as sets
fun subset l1 l2 = all (λx → elem x l2) l1
fun diff l1 l2 = filter (λx → ¬ (elem x l2)) l1

C.3.2 Domain-Specific Prelude

// Check if ’lines’ are in stock by invoking the ’Inventory’ report
fun inStock lines =

let inv = (reports.inventory ()).availableItems
in
all (λl → any (λi → (l.item).itemType ≡ i.itemType ∧ (l.item).quantity ≤ i.quantity) inv) lines

// Check that amount ’m’ equals the total amount in m’s currency of a list of sales lines
fun checkAmount m orderLines =

let a = foldr (λx acc →
if (x.unitPrice).currency ≡ m.currency then

(x.item).quantity × (100 + x.vatPercentage) × (x.unitPrice).amount + acc
else

acc) 0 orderLines
in
m.amount × 100 ≡ a

// Remove sales lines that have the currency of ’m’
fun remainingOrderLines m = filter (λx → (x.unitPrice).currency 6≡ m.currency)

// A reference to the designated entity that represents the company
val me = reports.me ()

C.3.3 Contract Templates

Purchase

name: purchase
type: Purchase
description: "Set up a purchase"

clause purchase(lines : [OrderLine])〈me : 〈Me〉, vendor : 〈Vendor〉〉 =
〈vendor〉 Delivery(sender s, receiver r, items i)

where s ≡ vendor ∧ r ≡ me ∧ i ≡ map (λx → x.item) lines
due within 1W

then
when IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ vendor ∧ r ≡ me ∧ sl ≡ lines
due within 1Y

then
payment(lines, vendor, 14D)〈me〉

clause payment(lines : [OrderLine], vendor : 〈Vendor〉, deadline : Duration)
〈me : 〈Me〉〉 =

if null lines then
fulfilment

else
〈me〉 BankTransfer(sender s, receiver r, money m)

where s ≡ me ∧ r ≡ vendor ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, vendor, newDeadline)〈me〉

contract = purchase(orderLines)〈me, vendor〉

Sale

212

name: sale
type: Sale
description: "Set up a sale"

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)

where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

then
repair(map (λx → x.item) lines, customer, 3M)〈me〉

clause payment(lines : [OrderLine], me : 〈Me〉, deadline : Duration)
〈customer : 〈Customer〉〉 =

if null lines then
fulfilment

else
〈customer〉 Payment(sender s, receiver r, money m)

where s ≡ customer ∧ r ≡ me ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, me, newDeadline)〈customer〉

clause repair(items : [Item], customer : 〈Customer〉, deadline : Duration)
〈me : 〈Me〉〉 =

when RequestRepair(sender s, receiver r, items i)
where s ≡ customer ∧ r ≡ me ∧ subset i items
due within deadline
remaining newDeadline

then
〈me〉 Repair(sender s, receiver r, items i’)

where s ≡ me ∧ r ≡ customer ∧ i ≡ i’
due within 5D

and
repair(items, customer, newDeadline)〈me〉

contract = sale(orderLines)〈me, customer〉

213

Appendix B

Papers on the Partial-Order
Approach to Infinitary
Rewriting

Paper B1 P. Bahr. Abstract Models of Transfinite Reductions. In C. Lynch,
editor, Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 49–66, Dagstuhl, Germany, 2010. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2010.49

Paper B21 P. Bahr. Partial Order Infinitary Term Rewriting and Bhm Trees.
In C. Lynch, editor, Proceedings of the 21st International Conference on Rewriting
Techniques and Applications, volume 6 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 67–84, Dagstuhl, Germany, 2010. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2010.67

Paper B32 P. Bahr. Modes of Convergence for Term Graph Rewriting. Logical
Methods in Computer Science, 8(2):6, 2012. doi: 10.2168/LMCS-8(2:6)2012

Paper B4 P. Bahr. Convergence in Infinitary Term Graph Rewriting Systems
is Simple. Submitted to Math. Struct. in Comp. Science, 2012

Paper B5 P. Bahr. Infinitary Term Graph Rewriting is Simple, Sound and
Complete. In A. Tiwari, editor, 23rd International Conference on Rewriting
Techniques and Applications (RTA’12), volume 15 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 69–84, Dagstuhl, Germany, 2012. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2012.69

1The paper that is included here is an extended and revised version that is currently under
peer review for publication in Logical Methods in Computer Science.

2This paper is an extended and revised version of [11].

215

http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.2168/LMCS-8(2:6)2012
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69

Abstract Models of Transfinite Reductions

Patrick Bahr

Department of Computer Science, University of Copenhagen

Abstract

We investigate transfinite reductions in abstract reduction systems. To
this end, we study two abstract models for transfinite reductions: a metric
model generalising the usual metric approach to infinitary term rewriting
and a novel partial order model. For both models we distinguish between
a weak and a strong variant of convergence as known from infinitary term
rewriting. Furthermore, we introduce an axiomatic model of reductions that
is general enough to cover all of these models of transfinite reductions as well
as the ordinary model of finite reductions. It is shown that, in this unifying
axiomatic model, many basic relations between termination and confluence
properties known from finite reductions still hold. The introduced models
are applied to term rewriting but also to term graph rewriting. We can show
that for both term rewriting as well as for term graph rewriting the partial
order model forms a conservative extension to the metric model.

Contents

1 Introduction 217
1.1 Related Work . 217

2 Preliminaries 218
2.1 Transfinite Sequences . 218
2.2 Metric Spaces . 218
2.3 Partial Orders . 218
2.4 Term Rewriting Systems . 219

3 Abstract Reduction Systems 219

4 Transfinite Abstract Reduction Systems 221

5 Metric Model of Transfinite Reductions 226

6 Partial Order Model of Transfinite Reductions 229

7 Metric vs. Partial Order Model 232

8 Conclusions 233

Acknowledgements 233

216

Bibliography 233

1 Introduction

The study of infinitary term rewriting, introduced by Dershowitz et al. [7], is
concerned with reductions of possibly infinite length. To formalise the concept of
transfinite reductions, a variety of different models were investigated in the last 20
years. The most thoroughly studied model is the metric model, both its weak [7]
and its strong [13] variant. Other models, using for example general topological
spaces [18] or partial orders [5, 6], were mostly considered to pursue specific pur-
poses. Within these models many fundamental properties do not depend on the
particular structure of terms, e.g. the property that strongly converging reduc-
tions in the metric model have countable length. Moreover, when studying these
different approaches to transfinite reductions, one realises that they often share
many basic properties, e.g. in how reductions can be composed and decomposed.

The purpose of this paper is to study transfinite reductions on an abstract
level using several different models. This includes a metric model (Section 5) as
well as a novel partial order model (Section 6), each of which induces a weak and
a strong variant of convergence. Moreover, we introduce an axiomatic model of
transfinite abstract reduction systems (Section 4) which captures the fundamental
properties of transfinite reductions. This model subsumes both variants of the
metric and the partial order model, respectively, as well as ordinary finite reduc-
tions. In fact, we formulate these more concrete models in terms of the axiomatic
model, which simplifies their presentation and their analysis substantially. To
illustrate this, we reformulate well-known termination and confluence properties
in the unifying axiomatic model and show that this then yields the corresponding
standard termination and confluence properties for standard finite term rewriting
resp. infinitary term rewriting. Additionally, we also prove that basic relations
between these properties known from the finite setting also hold in this more
general setting.

Lastly, we briefly mention that our models can be applied to term graph
rewriting [4] (Section 7) which yields the first formalisation of infinitary term
graph rewriting. Moreover, we show that the partial order model is in fact su-
perior to the metric model, at least for interesting cases like terms and term
graphs: It can model convergence as in the metric model but additionally allows
to distinguish between different levels of divergence.

1.1 Related Work

The idea of investigating transfinite reductions on an abstract level was first pur-
sued by Kennaway [11] by studying strongly convergent reductions in an abstract
metric framework similar to ours. In this paper we will show that almost all of
Kennaway’s positive results (except countability of strong convergence) already
hold in our more general axiomatic framework, and that countability already holds
for strongly continuous reductions.

Kahrs [9] investigated a more concrete model in which he considered weakly
convergent reductions in term rewriting systems parametrised by the metric on

217

terms. Although being parametric in the metric space, the results of Kahrs are
tied to term rewriting and are for example not applicable to term graph rewriting
[2].

The use of partial orders and their notion of limit inferior for transfinite
reductions is inspired by Blom [5] who studied strongly convergent reductions in
lambda calculus using a partial order and compared this to the ordinary metric
model of strongly convergent reductions.

2 Preliminaries

We assume familiarity with the basic theory of ordinal numbers, orders and topo-
logical spaces [10], as well as term rewriting [20]. In the following, we briefly recall
the most important notions.

2.1 Transfinite Sequences

We use α, β, γ, λ, ι to denote ordinal numbers. A transfinite sequence (or simply
called sequence) S of length α in a set A, written (aι)ι<α, is a function from α
to A with ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If α
is a limit ordinal, then S is called open. Otherwise, it is called closed. If α is a
finite ordinal, then S is called finite. Otherwise, it is called infinite. For a finite
sequence (aι)ι<n, we also write 〈a0, a1, . . . , an−1〉.

The concatenation (aι)ι<α · (bι)ι<β of two sequences is the sequence (cι)ι<α+β
with cι = aι for ι < α and cα+ι = bι for ι < β. A sequence S is a (proper) prefix
of a sequence T , denoted S ≤ T (resp. S < T), if there is a (non-empty) sequence
S′ with S · S′ = T . The prefix of T of length β is denoted T |β . The relation ≤
forms a complete semilattice.

2.2 Metric Spaces

A pair (M,d) is called a metric space if d : M ×M → R+
0 is a function satisfying

d(x, y) = 0 iff x = y (identity), d(x, y) = d(y, x) (symmetry), and d(x, z) ≤
d(x, y) + d(y, z) (triangle inequality), for all x, y, z ∈ M . If d instead of the
triangle inequality, satisfies the stronger property d(x, z) ≤ max {d(x, y),d(y, z)}
(strong triangle), (M,d) is called an ultrametric space. If a sequence (aι)ι<α in
a metric space converges to an element a, we write limι→α aι to denote a. A
sequence (aι)ι<α in a metric space is called Cauchy if, for any ε ∈ R+, there is a
β < α such that, for all β < ι < ι′ < α, we have that d(mι,mι′) < ε. A metric
space is called complete if each of its non-empty Cauchy sequences converges.

2.3 Partial Orders

A partial order ≤ on a class A is a binary relation on A that is transitive, reflexive,
and antisymmetric. A partial order ≤ on A is called a complete semilattice if it
has a least element, every directed subset D of A has a least upper bound (lub)

⊔
D

in A, and every subset of A having an upper bound in A also has a least upper
bound in A. Hence, complete semilattices also admit a greatest lower bound (glb)d
B for every non-empty subset B of A. In particular, this means that for any

218

non-empty sequence (aι)ι<α in a complete semilattice, its limit inferior, defined
by lim infι→α aι =

⊔
β<α

(d
β≤ι<α aι

)
, always exists. A partial order is called a

linear order if a ≤ b or b ≤ a holds for each pair of elements a, b. A linearly
ordered subclass of a partially ordered class is also called a chain.

2.4 Term Rewriting Systems

Instead of finite terms, we consider the set T ∞(Σ,V) of infinitary terms over some
signature Σ and a countably infinite set V of variables. We consider T ∞(Σ,V) as
a superset of the set T (Σ,V) of finite terms. For a term t ∈ T ∞(Σ,V) we use the
notation P(t) to denote the set of positions in t. For terms s, t ∈ T ∞(Σ,V) and
a position π ∈ P(t), we write t|π for the subterm of t at π, and t[s]π for the term
t with the subterm at π replaced by s.

On T ∞(Σ,V) a distance function d can be defined by d(s, t) = 0 if s = t and
d(s, t) = 2−k if s 6= t, where k is the minimal depth at witch s and t differ. The
pair (T ∞(Σ,V),d) is known to form a complete ultrametric space [1]. Partial
terms, i.e. terms over signature Σ⊥ = Σ] {⊥}, can be endowed with a relation
≤⊥ by defining s ≤⊥ t iff s can be obtained from t by replacing some subterm
occurrences in t by ⊥. The pair (T ∞(Σ⊥,V),≤⊥) is known to form a complete
semilattice [8].

A term rewriting system (TRS) R is a pair (Σ, R) consisting of a signature
Σ and a set R of term rewrite rules of the form l → r with l ∈ T (Σ,V) \ V and
r ∈ T ∞(Σ,V) such that all variables in r are contained in l. Note that this notion
of a TRS is standard in infinitary rewriting [12], but deviates from standard TRSs
as it allows infinitary terms on the right-hand side of rules.

As in the finitary case, every TRS R defines a rewrite relation →R:

s→R t ⇐⇒ ∃π ∈ P(s), l→ r ∈ R, σ : s|π = lσ, t = s[rσ]π

We write s→π,ρ t in order to indicate the applied rule ρ and the position π.

3 Abstract Reduction Systems

In order to analyse transfinite reductions on an abstract level, we consider abstract
reduction systems (ARS). In ARSs, the principal items of interest are the reduction
steps of the system. Therefore, the structure of the individual objects on which
the reductions are performed is neglected. This abstraction is usually modelled
by a pair (A,R) consisting of a set A of objects and a binary relation R on A
describing the possible reductions on the objects. The ARS induced by a TRS R
is then simply the pair (T ∞(Σ,V), R) with (s, t) ∈ R iff s→R t.

In the setting of infinitary rewriting, however, this model is not appropriate.
Instead, we need a model which reifies the reduction steps of the system since the
semantics of transfinite reductions does not only depend on the objects involved
in the reduction but also on how each reduction step is performed – at least when
we consider strong convergence. However, it is not always possible to reconstruct
how a reduction was performed given only the starting and end object of it due
to so-called syntactic accidents [17]: Consider the term rewrite rule ρ : f(x)→ x

219

and the term f(f(x)). The rule ρ can be applied both at root position 〈〉 and at
position 〈0〉 of f(f(x)). In both cases the resulting term is f(x).

Therefore, we rather choose a model in which reduction steps are “first-class
citizens” [20] similarly to morphisms in a category:

Definition 3.1 (abstract reduction system). An abstract reduction system (ARS)
A is a quadruple (A,Φ, src, tgt) consisting of a set of objects A, a set of reduc-
tion steps Φ, and source and target functions src : Φ → A and tgt : Φ → A,
respectively. We write ϕ : a →A b whenever there are ϕ ∈ Φ, a, b ∈ A such that
src(ϕ) = a and tgt(ϕ) = b.

In order to define the semantics of a TRS in terms of an ARS we only need
to define an appropriate notion of a reduction step:

Definition 3.2 (operational semantics of TRSs). Let R = (Σ, R) be a TRS.
The ARS induced by R, denoted AR, is given by (T ∞(Σ,V),Φ, src, tgt), where
Φ = {(s, π, ρ, t) | s→π,ρ t}, src(ϕ) = s and tgt(ϕ) = t, for each ϕ = (s, π, ρ, t) ∈ Φ.

A reduction in this setting is simply a sequence of reduction steps in an ARS
such that consecutive steps are “compatible”:

Definition 3.3 (reduction). A sequence S = (ϕι)ι<α of reduction steps in an ARS
A is called a reduction if there is a sequence of objects (aι)ι<α̂ in the underlying set
A, where α̂ = α if S is open, and α̂ = α+1 if S is closed, such that ϕι : aι → aι+1

for all ι < α. For such a sequence, we also write (ϕ : aι → aι+1)ι<α or simply
(aι → aι+1)ι<α. The reduction S is said to start in a0, and if S is closed, it is said
to end in aα. If S is finite, we write S : a0 →∗A aα. We use the notation Red(A)
to refer to the class of all non-empty reductions in A.

Observe that the empty sequence 〈〉 is always a reduction, and that 〈〉 starts
and ends in a for every object a of the ARS. Also note that this notion of reduc-
tions alone does only make sense for sequences of length at most ω. For longer
reductions, the ω-th step is not related to the preceding steps of the reduction:

Example 3.4. In the TRS consisting of the rules a → f(a) and b → g(b) the
following constitutes a valid reduction of length ω · 2:

S : a→ f(a)→ f(f(a))→ f(f(f(a)))→ . . . b→ g(b)→ g(g(b))→ . . .

The second half of the reduction is completely unrelated to the first half. The
reason for this issue is that the ω-th reduction step b → g(b) has no immediate
predecessor.

The above problem can occur for all reduction steps indexed by a limit ordinal.
For successor ordinals, this is not a problem as by Definition 3.3 the (ι+1)-st step is
required to start in the object that the ι-th step ends in. Meaningful definitions for
reductions of length beyond ω have to include an appropriate notion of continuity
which bridges the gaps caused by limit ordinals. Exploring different variants of
such a notion of continuity is the topic of the subsequent sections.

220

4 Transfinite Abstract Reduction Systems

In the last section we have seen that we need a notion of continuity in order to
obtain a meaningful model of transfinite reductions. In this section we introduce
an axiomatic framework for convergence in which we can derive a corresponding
notion of continuity.

The resulting notion of continuity is quite natural and resembles the definition
of continuity of real-valued functions: A reduction is continuous if every proper
prefix converges to the object the subsequent suffix is starting in. In order to use
this idea, we need to endow an ARS with a notion of convergence:

Definition 4.1 (transfinite abstract reduction system). A transfinite abstract
reduction system (TARS) T is a tuple (A,Φ, src, tgt, conv), such that

(i) A = (A,Φ, src, tgt) is an ARS, called the underlying ARS of T , and

(ii) conv : Red(A) ⇀ A is a partial function, called notion of convergence, which
satisfies the following two axioms:

conv(〈ϕ〉) = tgt(ϕ) for all ϕ ∈ Φ (step)

conv(S) = a and conv(T) = b ⇐⇒ conv(S · T) = b

for all a, b ∈ A, S, T ∈ Red(A) with T starting in a.
(concatenation)

That is, we require convergence to include single reduction steps and to be
preserved by both composition and decomposition.

Axiom (concatenation) is, in fact, quite comprehensive. But we can split
it up into two axioms whose conjunction is equivalent to it:

conv(S) = a =⇒ conv(S · T) = conv(T) (composition)

conv(S · T) defined =⇒ conv(S) = a (continuity)

where S and T range over reductions in Red(A) with T starting in a ∈ A.
Axiom (composition) states that the composition of reductions preserves

the convergence behaviour whereas (continuity) ensures that every notion of
convergence already includes continuity. To see the latter we need to define con-
vergence and continuity in TARSs:

Definition 4.2 (convergence, continuity). Let T = (A,Φ, src, tgt, conv) be a
TARS and S ∈ Red(T) a non-empty reduction starting in a ∈ A. S is said
to converge to b ∈ A, written S : a�T b, if conv(S) = b. S is said to be continu-
ous, written S : a�T . . . , if for every two S1, S2 ∈ Red(T) with S = S1 · S2, we
have that S1 converges to the object S2 is starting in. If S is continuous but not
converging, then S is called divergent. For the empty reduction 〈〉, we define to
have 〈〉 : a�T a and 〈〉 : a�T . . . for all a ∈ A, i.e. 〈〉 is always convergent and
continuous. To indicate the length α of a reduction we use the notation �α

T . For
some object a ∈ A, we write Cont(T , a) and Conv(T , a) to denote the class of all
continuous resp. convergent reductions in T starting in a.

221

Axiom (continuity) is equivalent to the statement that every converging re-
duction is also continuous. That is, only meaningful – i.e. continuous – reductions
can be convergent. This is a natural model which is in particular also adopted in
the theory of infinitary term rewriting [12].

Returning to Example 3.4, we can see that for S to be continuous the prefix
S|ω has to converge to b. However, as one might expect, all notions of convergence
for TRSs we will introduce in this paper agree on that S|ω converges to fω.

Since for closed reductions not only does convergence imply continuity, but
also the converse holds true, we have the following proposition:

Proposition 4.3 (convergence of closed reductions). Let T be a TARS and S a
closed reduction in T . Then S is continuous iff S is converging.

Proof. The “if” direction follows from (continuity). The “only if” direction is
trivial if S is empty and follows from (step) if S has length one. Otherwise, S
is of the form T · ϕ. Since ϕ is converging by (step) and T is converging by
(continuity), S is converging due to (composition).

It is obvious from the definition that a well-defined notion of convergence has
to include at least all finite (non-empty) reductions. In fact, the trivial notion of
convergence which consists of precisely the finite reductions is the least notion of
convergence w.r.t. set inclusion of its domain:

Definition 4.4 (finite convergence). Let A = (A,Φ, src, tgt) be an ARS. Then
the finite convergence of A is the TARS Af = (A,Φ, src, tgt, conv), where conv
is defined by conv(S) = b iff S : a →∗A b. That is, conv(S) is undefined iff S is
infinite.

The TARS given above can be easily checked to be well-defined, i.e. conv
satisfies the axioms given in Definition 4.1. We then obtain for every reduction
S that S : a →∗A b iff S : a �Af b. This shows that TARSs merely provide a
generalisation of what is considered to be a well-formed reduction.

Defining conv for the finite convergence was simple. In general, however, it is
quite cumbersome to define, as a notion of convergence has to already comprise
the corresponding notion of continuity, i.e. satisfy (continuity). We can avoid
this by defining for each partial function conv : Red(A) ⇀ A its continuous core
conv : Red(A) ⇀ A. For each non-empty reduction S = (aι → aι+1)ι<α in A we
define

conv(S) =

{
conv(S) if ∀0 < β < α conv(S|β) = aβ

undefined otherwise

We then have the following lemma:

Lemma 4.5 (continuous core). Let A = (A,Φ, src, tgt) be an ARS and conv :
Red(A) ⇀ A a partial function satisfying (step) and (composition). Then conv
satisfies (step) and (concatenation), i.e. A = (A,Φ, src, tgt, conv) is a TARS.

Proof. Straightforward.

222

Next we have a look at transfinite versions of well-known termination and
confluence properties. The basic idea for lifting these properties to the setting
of transfinite reductions is to replace finite reductions, i.e. →∗, with transfinite
reductions, i.e. �.

Applied to the properties confluence (CR), normalisation (WN), and the
unique normal form property w.r.t. reduction (UN→) we obtain the following
transfinite properties:

• CR∞: If b� a� c, then b� d� c.

• WN∞: For each a, there is a normal form b with a� b.

• UN∞→: If b� a� c and b, c are normal forms, then b = c.

For properties involving convertibility, i.e. ↔∗, one has to be more careful.
The seemingly straightforward formalisation using transfinite reductions in the
symmetric closure of the underlying ARS does not work since we do not have a
notion of convergence for the symmetric closure. Even if we had one, as in the
more concrete models that use a metric space or a partial order, the resulting
transfinite convertibility relation would not be symmetric [2].

We therefore follow the approach of Kennaway [11]:

Definition 4.6 (transfinite convertibility). Let T be a TARS, and a, b objects
in T . The objects a and b are called transfinitely convertible, written a ��T b,
whenever there is a finite sequence of objects a0, . . . , an, n ≥ 0, in T such that
a0 = a, an = b, and, for each 0 ≤ i < n, we have ai �T ai+1 or ai �T ai+1. The
minimal n of such a sequence is called the length of a��T b.

This definition of transfinite convertibility is in some sense not “fully transfi-
nite”: For two objects to be transfinitely convertible, there has to be a transfinite
“reduction” which may only finitely often changes its direction. However, with this
definition, transfinite convertibility is an equivalence relation as desired, and we
can establish an alternative characterisation of CR∞ analogously to the original
finite version:

Proposition 4.7 (alternative characterisation of CR∞). Let T be a TARS.

T is CR∞ ⇐⇒ Whenever a�� b, then a� c� b.

Proof. The argument is the same as for finite reductions: The “if” direction is
trivial, and the “only if” direction can be proved by an induction on the length of
a�� b.

With the definition of transfinite convertibility in place, we can define the
transfinite versions of the normal form property (NF) and the unique normal
form property (UN):

• NF∞: For each object a and normal form b with a�� b, we have a� b.

• UN∞: All normal forms a, b with a�� b are identical.

223

The above definition of NF∞ differs from that of Kennaway et al. [13] who,
instead of a �� b, use a � c � b as the precondition. One can, however, easily
show that both definitions are equivalent.

Having these transfinite properties, we can establish some relations between
them analogously to the setting of finite reductions:

Proposition 4.8 (confluence properties). For every TARS, the following impli-
cations hold:

(i) CR∞ =⇒ NF∞ =⇒ UN∞ =⇒ UN∞→

(ii) WN∞ & UN∞→ =⇒ CR∞

Proof. The arguments are the same as for their finite variants.

Also when formulating a transfinite version of the termination property, we
have to be careful. In fact, several different formalisations of transfinite termina-
tion can be found in the literature [11, 16, 18].

We suggest a notion of transfinite termination which we belief is a direct gen-
eralisation of finite termination. Recall that an object a in an ARS is terminating
iff there is no infinite reduction starting in a. From this we can see that for finite
reductions, we can make use of infinite reductions as a meta-concept for defin-
ing finite termination. A corresponding meta-concept for transfinite reductions is
provided by the class Conv(T , a) of converging reductions starting in a ordered by
the prefix order ≤. The analogue of an infinite reduction, which witnesses finite
non-termination, is an unbounded chain in Conv(T , a), which witnesses transfinite
non-termination:

Definition 4.9 (transfinite termination). Let T be a TARS. An object a in T
is said to be transfinitely terminating (SN∞) if each chain in Conv(T , a) has an
upper bound in Conv(T , a). The TARS T itself is called transfinitely terminating
(SN∞) if every object in T is.

The following alternative characterisation of SN∞ will be useful for comparing
our definition to other formalisations of SN∞ in the literature:

Proposition 4.10 (transfinite termination). An object a in a TARS T is SN∞

iff

(a) Cont(T , a) ⊆ Conv(T , a), and

(b) every chain in Conv(T , a) is a set.

Proof. Note that (b) is equivalent to the statement that, for every chain C in
Conv(T , a), there is an upper bound on the length of the reductions in C.

We show the “only if” direction by proving its contraposition: If (a) is vio-
lated, then there is a divergent reduction S : a� Hence, the set of all proper
prefixes of S forms a chain in Conv(T , a) which has no upper bound. Conse-
quently, a is not SN∞. If (b) is violated, transfinite non-termination of a follows
immediately.

For the “if” direction, consider an arbitrary chain C in Conv(T , a). Because
of (b), C has a lub S. For each proper prefix S′ < S, there has to be an extension

224

S′′ ≥ S in C. Since S′′ is converging, so is S′. Consequently, S is continuous
and, therefore, also convergent, due to (a). Hence, S is an upper bound for C in
Conv(T , a).

The above characterisation shows that there are two different reasons for trans-
finite non-termination: Diverging reductions and reductions that can be extended
indefinitely. This characterisation of termination closely resembles that of Roden-
burg [18] which, however, additionally to (a) and instead of (b) requires an upper
bound on the length of reductions. This is too restrictive, since an object, in which
for each ordinal α a reduction of length α to a normal form starts, is not trans-
finitely terminating according to Rodenburg’s definition.1 An example witnessing
this difference to our definition can be devised straightforwardly.

In order to verify that our formalisation of SN∞ is appropriate, we have to
make sure that it implies WN∞:

Proposition 4.11 (SN∞ is stronger than WN∞). For every TARS T , it holds
that SN∞ implies WN∞ for every object in T .

Proof. We prove the contraposition of the implication using Proposition 4.10. For
this purpose, let T be an TARS and a some object in T that is not WN∞. We
show that then (a) or (b) of Proposition 4.10 is violated. For this purpose, we
assume (a) and show that then (b) does not hold. To this end we define a function
f on the class On of ordinal numbers such that, for each α ∈ On, (1) f(α) is a
converging reduction of length α starting in a and (2) f(α) is a proper extension
of f(ι) for all ι < α, i.e. f(α) > f(ι). Hence, the class {f(α) |α ∈ On} is a chain
in Conv(T , a) which is not a set since f is a bijection from the proper class On to
{f(α) |α ∈ On}. The construction of f is justified by the principle of transfinite
recursion, and the properties (1) and (2) are established by transfinite induction.

For α = 0, both (1) and (2) are trivial. Let α be a successor ordinal β + 1.
By induction hypothesis, we have f(β) : a�β b for some b. Since a is not WN∞,
b cannot be a normal form. Hence, there is a step ϕ : b → b′ in M. Define
f(α) = f(β) · 〈ϕ〉. That is, f(α) : a�α b′ which shows (1). (2) follows from the
induction hypothesis since f(β) < f(α).

Let α be a limit ordinal. Since, by the induction hypothesis, (2) holds for all
f(β), we have that F = {f(β) |β < α} is a directed set. Hence, f(α) =

⊔
F is

well-defined. Consequently, all elements in F are proper prefixes of f(α). This
shows (2) and, additionally, it shows that f(α) is a reduction of length α starting
in a. Since, by the induction hypothesis f(β) is converging for each β < α, we
have that f(α) is continuous. Due to (a), f(α) is also convergent, which shows
(1).

Note that the transfinite properties we have introduced are equivalent to their
finite counterpart if we consider the finite convergence of an ARS. This shows that
the transfinite properties that we have given here are in fact generalisations of
their original finite versions to the setting of TARS. Moreover, all counterexamples
known from the finite setting carry over to the setting of transfinite reductions.

1In fact, in an earlier draft of this paper we adopted Rodenburg’s definition. We thank the
anonymous referee who pointed out the mentioned issue.

225

This means, for example, that the implications shown in Proposition 4.11 and
Proposition 4.8 are in fact strict as they are in the setting of finite reductions.

There are also many interrelations between finite properties which do not
hold in the transfinite setting. Notable examples are Newman’s Lemma and the
implication from subcommutativity to confluence. Counterexamples for these and
other interrelations are given by Kennaway [11].

5 Metric Model of Transfinite Reductions

The most common model of infinitary term rewriting is based on the complete
ultrametric space of T ∞(Σ,V). One usually distinguishes between two different
variants in this context: A weak variant [7], which only takes into account the
metric space, and a strong variant [13], which stipulates additional restrictions on
the applications of rewrite rules in order to obtain a more well-behaved notion of
convergence.

At first we introduce the abstract theory of metric reduction systems. After-
wards, we describe how this can be applied to term rewriting.

Definition 5.1 (metric reduction system). A metric reduction system (MRS)M
is a tuple (A,Φ, src, tgt,d, hgt), such that

(i) A = (A,Φ, src, tgt) is an ARS, called the underlying ARS ofM,

(ii) d : A×A→ R+
0 is a function such that (A,d) is a metric space,

(iii) hgt : Φ→ R+ is a function, called the height function, and

(iv) if ϕ : a→A b, then d(a, b) ≤ hgt(ϕ).

If the metric of an MRS M is an ultrametric, then M is called an ultrametric
reduction system (URS). Furthermore, an MRS is referred to as complete if the
underlying metric space is complete. We use the notation ϕ : a→h b to indicate
that hgt(ϕ) = h.

The definition of metric reduction systems follows the idea of metric abstract
reduction systems investigated by Kennaway [11]. The essential difference between
our approach and that of Kennaway is the use of abstract reduction systems with
reified reduction steps instead of a family of binary relations. Moreover, unlike
Kennaway, we do not restrict ourselves to complete ultrametric spaces. This will
allow us to distinguish in which circumstances completeness or an ultrametric is
necessary and in which not.

Before continuing the discussion of the abstract model, let us have a look at
how TRSs fit into it:

Definition 5.2 (MRS semantics of TRSs). Let R = (Σ, R) be a TRS. The
MRS induced byR, denotedMR, is given by (T ∞(Σ,V),Φ, src, tgt,d, hgt), where
(T ∞(Σ,V),Φ, src, tgt) is the ARS AR induced by R, d is the metric on T ∞(Σ,V),
and hgt is defined as

hgt(ϕ) = 2−|π|, where ϕ : t→π,ρ t
′.

226

One can easily check thatMR indeed forms an MRS for each TRS R. In fact,
since the metric on T ∞(Σ,V) is a complete ultrametric [1],MR is a complete URS.

Next we define for each MRS two notions of convergence:

Definition 5.3 (convergence in MRSs). Let M = (A,Φ, src, tgt,d, hgt) be an
MRS. The weak convergence of M, denoted Mw, is the TARS given by the
tuple (A,Φ, src, tgt, convw), where convw(S) = limι→α̂ aι for a reduction S =
(aι → aι+1)ι<α. The strong convergence of M, denoted Ms, is the TARS given
by the tuple (A,Φ, src, tgt, convs), where convs(S) = limι→α̂ aι for a reduction
S = (aι →hι aι+1)ι<α if S is closed or limι→α hι = 0; otherwise it is undefined.

The notions of convergence defined above yield precisely the weakly converg-
ing [7] resp. the strongly converging [13] reductions typically considered in the
literature on infinitary term rewriting [12].

From the definition we can immediately derive that strong convergence implies
weak convergence. Hence, also strong continuity implies weak continuity.

Note that the height function hgt provides an overapproximation hgt(ϕ) of the
real distance d(a, b) between the objects a, b involved in a reduction step ϕ : a→ b.
Intuitively, speaking, the difference between weak and strong convergence is that,
in the latter variant, the underlying sequence of objects (aι)ι<α̂ has to converge
for the overapproximation provided by hgt as well. In fact, if it is a precise
approximation, then weak and strong convergence coincide:

Fact 5.4 (equivalence of weak and strong convergence). Let M be an MRS
(A,Φ, src, tgt,d, hgt) with hgt(ϕ) = d(a, b) for every reduction step ϕ : a→ b ∈ Φ.
Then for each reduction S inM we have

(i) S : a�Mw . . . iff S : a�Ms . . . , and (ii) S : a�Mw b iff S : a�Ms b.

Proof. We only need to show that convs and convw coincide for M. For closed
reductions this is trivial. Let S = (aι →hι aι+1)ι<α be an open reduction. If
convw(S) is undefined, then so is convs(S). If convw(S) is defined, then the
sequence (aι)ι<α converges and is therefore Cauchy. Consequently, the sequence
(d(aι, aι+1))ι<α tends to 0 which implies that also (hι)ι<α tends to 0 as hι =
d(aι, aι+1) for each ι < α. Thus, convs(S) = convw(S).

It is instructive to see how hgt provides an overapproximation of the distance
function for the example of terms: It assumes that the metric distance between
redex and contractum is maximal. That is, the height function only provides a
precise approximation if every redex has a root symbol different from the one of
its contractum as it is the case for the rule ρ1 : c→ g(c): The reduction f(c)→ρ1

f(g(c))→ρ1 f(g(g(c)))→ρ1 . . . converges both weakly and strongly to f(gω). For
the rule ρ2 : f(x)→ f(g(x)) this is not the case; both redex and contractum have
the same root symbol f . The reduction f(c)→ρ2 f(g(c))→ρ2 f(g(g(c)))→ρ2 . . .
now converges weakly to f(gω) but is not strongly converging.

Note that this also shows the need for reifying reduction steps since in a
system containing both ρ1 and ρ2 a reduction of the shape f(c) → f(g(c)) →
f(g(g(c))) → . . . can be strongly convergent or not, depending on which rules
are applied. Similarly, with only a single rule ρ3 : g(x) → g(g(x)) a reduction of

227

the shape g(c) → g(g(c)) → g(g(g(c))) → . . . can be strongly converging or not,
depending on where ρ3 is applied.

The reason for considering strong convergence is that it is considerably more
well-behaved [13] than weak convergence [19]. However, weak convergence in the
systems characterised in Fact 5.4 inherit the nice properties of strong convergence.
For TRSs these systems are precisely those for which the root-symbol of each right-
hand side is a function symbol different from the root symbol of the corresponding
left-hand side.

When dealing with complete URSs, strong convergence can be characterised
by the height only:

Proposition 5.5 (strong convergence in complete URSs). Let M be a complete
URS. Every open strongly continuous reduction (aι →hι aι+1)ι<α inM is strongly
convergent iff (hι)ι<α tends to 0.

Proof. The “only if” direction is immediate from the definition of strong conver-
gence. For the “if” direction, assume a strongly continuous reduction S = (aι →hι

aι+1)ι<α with limι→α hι = 0. Then limι→α d(aι, aι+1) = 0 which in turn implies
that (aι)ι<α is Cauchy as d is an ultrametric. Since we have a complete metric
space, this means that (aι)ι<α converges. From this and limι→α hι = 0 we can
conclude that S is strongly converging.

Having a complete URS is crucial for the “if” direction of Proposition 5.5. If
M it is not a URS, the underlying sequence (aι)ι<α might not be Cauchy:

Example 5.6. Consider the MRSM in the complete metric (but not ultrametric)
space (R,d) with reduction steps of the form a→b (a+b), for each a ∈ R, b ∈ R+.
More formally,M is defined byM = (R,R×R+, src, tgt,d, hgt) with src((a, b)) =
a, tgt((a, b)) = a + b, and hgt((a, b)) = b for all (a, b) ∈ R × R+. We then have
the following reduction inM:

0 →1 1 → 1
2

(
1 +

1

2

)
→ 1

3

(
1 +

1

2
+

1

3

)
→ 1

4
. . .

This reduction is trivially strongly continuous but not strongly convergent even
though the sequence (1

1+i)i<ω of heights tends to 0. It is not even weakly con-
verging since the series

∑∞
k=1

1
k is known to be diverging.

On the other hand, ifM is not complete (aι)ι<α might not converge:

Example 5.7. Consider the TRS R with the single rule a→ f(a) and the MRS
M which can be obtained from the induced MRSMR by taking T (Σ,V) as the
set of objects instead of T ∞(Σ,V). Then we have the following reduction inM:

a→1 f(a)→ 1
2
f(f(a))→ 1

4
f(f(f(a)))→ 1

8
. . .

This reduction is trivially strongly continuous but not strongly convergent, even
though the sequence (2−i)i<ω of heights tends to 0. The reduction is not even
weakly convergent as the sequence (f i(a))i<ω does converge to fω in the com-
plete ultrametric space (T ∞(Σ,V),d) but does not converge in the incomplete
ultrametric space (T (Σ,V),d)

228

From the above characterisation of strong convergence, we can derive the
following more general characterisation:

Proposition 5.8 (strong convergence). Let S be a reduction in an MRSM.

(i) If S is strongly convergent, then, for any h ∈ R+, there are at most finitely
many steps in S whose height is greater than h.

(ii) If S is weakly continuous and, for any h ∈ R+, there are at most finitely
many steps in S whose height is greater than h, then S is strongly continuous.
If, additionally,M is a complete URS, then S is even strongly convergent.

Proof. (i) The proof of Kennaway [11] also works for MRSs.
(ii) Let S = (aι →hι aι+1)ι<α be a reduction inM. Suppose that S is weakly

continuous, and that the set {ι |hι > h} is finite for each h ∈ R+. We have to
show that limι→λ hι = 0 for each limit ordinal λ < α. To this end, let ε > 0. Then
choose some h such that 0 < h < ε. Since, by hypothesis, the set {ι |hι > h} is
finite, there is some ordinal β < λ such that hι ≤ h < ε for all β < ι < λ. Hence,
limι→λ hι = 0.

The second part of (ii) is follows from Proposition 4.3 if S is closed. Otherwise
it follows from Proposition 5.5.

The restriction to complete URSs in the second part of (ii) is essential as
Example 5.6 and Example 5.7 illustrate.

From this proposition, the following corollary follows as shown by Kennaway
[11]:

Corollary 5.9 (countable length of strongly convergent reductions). In an MRS
every strongly convergent reduction has countable length.

As a result of the above corollary, part (b) of Proposition 4.10 is always satis-
fied for strong convergence. This makes our definition of SN∞ equivalent to that
of Klop and de Vrijer [16], who considered strong convergence only.

By employing an argument similar to the one used by Klop and de Vrijer [16]
for the particular case of infinitary term rewriting, we can generalise Corollary 5.9
to strongly continuous reductions, provided we have a complete URS.

Proposition 5.10 (countable length of strongly continuous reductions). Every
strongly continuous reduction in a complete URS has countable length.

This generalises corresponding results of Kennaway [11] and Klop and de Vrijer
[16]. The above proposition is not true for weakly continuous (or convergent)
reductions as pointed out by Kennaway [11].

6 Partial Order Model of Transfinite Reductions

The metric model of transfinite reductions has rather restrictive notions of con-
vergence. For example, suppose that we have a TRS consisting of the rules

f(x, a)→ f(s(x), b), f(x, b)→ f(s(x), a).

229

Then we can construct the reduction

f(0, a)→ f(s(0), b)→ f(s(s(0)), a)→ f(s(s(s(0))), b)→ . . .

which is neither strongly nor weakly convergent in terms of its MRS semantics.
The culprit is the second argument of the f symbol which constantly changes
between a and b. However, excluding this “flickering”, the reduction seems to
converge somehow. The investigation of partial reduction systems is aimed at
formalising this relaxation of the notion of convergence. With this tool we will be
able to identify f(sω,⊥) as the limit of the reduction above.

To this end, a partially ordered set is employed rather than a metric space,
and the limit construction is replaced by the limit inferior.

Definition 6.1 (partial reduction system). A partial reduction system (PRS) P
is a tuple (A,Φ, src, tgt,≤, cxt) such that

(i) A = (A,Φ, src, tgt) is an ARS, called the underlying ARS of P,

(ii) (A,≤) is a partially ordered set,

(iii) cxt : Φ→ A is a function, called the context function, and

(iv) if ϕ : a→A b, then cxt(ϕ) ≤ a, b.

If the partial order ≤ is a complete semilattice, then P is called complete. We use
the notation ϕ : a→c b to indicate that cxt(ϕ) = c.

Also this model can be applied to TRSs. Note, however, that we have to add
a fresh constant symbol ⊥ to the signature in order to use the partial order ≤⊥:

Definition 6.2 (PRS semantics of TRSs). Let R = (Σ, R) be a TRS. The PRS
induced by R, denoted PR, is given by (T ∞(Σ⊥,V),Φ, src, tgt,≤⊥, cxt), with
(T ∞(Σ⊥,V),Φ, src, tgt) the ARS AR′ induced by the TRS R′ = (Σ⊥, R), ≤⊥ the
usual partial order on T ∞(Σ⊥,V), and cxt defined by

cxt(ϕ) = t[⊥]π, where ϕ : t→π,ρ t
′.

One can easily verify that the context function defined for TRSs satisfies the
condition cxt(ϕ : a→ b) ≤ a, b. Since the partial order on terms forms a complete
semilattice, this means that the PRS PR induced by a TRS R is always a complete
PRS.

Definition 6.3 (convergence of PRSs). Let P = (A,Φ, src, tgt,≤, cxt) be a PRS.
The weak convergence of P, denoted Pw, is the TARS (A,Φ, src, tgt, convw), where
convw(S) = lim infι→α̂ aι for a reduction S = (aι → aι+1)ι<α. The strong con-
vergence of P, denoted Ps, is the TARS (A,Φ, src, tgt, convs), where, for a re-
duction S = (aι →cι aι+1)ι<α, convs(S) = aα if α is a successor ordinal, and
convs(S) = lim infι→α cι if α is a limit ordinal.

Since the limit inferior is always defined for complete semilattices, we im-
mediately obtain that for complete PRSs, continuity and convergence coincide.
That is, a reduction is weakly (resp. strongly) continuous iff it is weakly (resp.

230

strongly) convergent. This fact is the main motivation for considering the partial
order model as an alternative to the metric model. As a consequence, part (a) of
Proposition 4.10 is always satisfied for complete PRSs.

Returning to the initial example of this section we can now observe that the
given reduction sequence weakly converges to f(sω,⊥) and strongly converges to
⊥.

This example also illustrates a major difference compared to the metric model:
In MRSs strong convergence is defined by restricting weak convergence. Hence,
if a reduction is both weakly and strongly converging, the final result is the same
and strong convergence implies weak convergence. For PRSs, however, strong
convergence and weak convergence are defined differently. As a result, unlike for
MRSs, strong convergence does not imply weak convergence. In order to obtain
this behaviour we have to consider total reductions:

Definition 6.4 (total reduction). Let P be a PRS and S = (aι → aι+1)ι<α a
reduction in P. We say that S is total if each element aι is maximal w.r.t. the
partial order of P. If we write S as S : a0 �Pw aα or S : a0 �Ps aα, i.e. the
convergence of the reduction is explicitly stated, we additionally require aα to be
maximal for S to be total.

Proposition 6.5 (strong convergence implies weak convergence). For every total
reduction S in a PRS P, it holds that

(i) S : a�Ps . . . implies S : a�Pw . . . , and that

(ii) S : a�Ps b implies S : a�Pw b.

Proof. Let S = (aι →cι aι+1)ι<α. We only need to show that convs(S) =
convw(S) whenever convs(S) is a maximal object in P. If S is closed, this is
trivial. If S is open we have convs(S) = lim infι→α cι ≤ lim infι→α aι = convw(S)
since, by definition, cι ≤ aι for each ι < α. Because convs(S) is maximal, we can
conclude that convs(S) = convw(S).

Despite this difference to MRSs, the intuition of the distinction between weak
and strong convergence remains the same: Like the height in an MRS, the con-
text cxt(ϕ) in a PRS overapproximates the difference between the objects a, b
involved in a reduction step ϕ : a→ b. More precisely, it underapproximates the
shared structure a u b of a and b, where a u b denotes the glb of {a, b} w.r.t.
the partial order of the PRS. This follows from the condition cxt(ϕ) ≤ a, b which
implies cxt(ϕ) ≤ a u b. Likewise, weak and strong convergence coincide if the
approximation provided by cxt is precise:

Fact 6.6 (equivalence of weak and strong convergence). Let P = (A,Φ, src, tgt,≤
, cxt) be a complete PRS with cxt(ϕ) = aub for every reduction step ϕ : a→ b ∈ Φ.
Then for each reduction S in P we have

(i) S : a�Pw . . . iff S : a�Ps . . . , and (ii) S : a�Pw b iff S : a�Ps b.

Proof. Analogously to the proof of Fact 5.4 using the equality lim infι→λ aι =
lim infι→λ(aι u aι+1) for all open sequences (aι)ι<λ in a complete semilattice.

231

Again this fact allows us to transfer results for strong convergence [2] to the
setting of weak convergence. And as for Fact 5.4 we can derive from Fact 6.6
that weak and strong convergence coincide for TRSs for which the root symbol
of each right-hand side is a function symbol different from the root symbol of the
corresponding left-hand side.

7 Metric vs. Partial Order Model

The main motivation for the partial order model is to have a more fine-grained
notion of convergence. That is, instead of only being able to distinguish converging
and diverging reductions, we have intermediate levels between full convergence
and full divergence. Since, in complete PRSs, continuous reductions are always
convergent, the final object of a reduction S indicates the “level of convergence”
according to the partial order on objects. If it is ⊥, the least element of the partial
order, then S can be considered fully diverging. If it is a maximal element, e.g.
in T ∞(Σ⊥,V) a term not containing ⊥, then S is fully converging.

Using this intuition, the partial order model also gives rise to a notion of
meaninglessness: We can consider an object a of a complete PRS meaningless if
there is an open reduction from a converging to ⊥. In fact, for strong convergence
in orthogonal TRSs, this concept of meaninglessness coincides with so-called root-
active terms [3].

Under certain quite natural conditions [2], metric convergence can be consid-
ered as the fragment of partial order convergence that only considers full conver-
gence. Vice versa, partial order convergence is a conservative extension to metric
convergence which also allows partial convergence. This is, in fact, the case for
TRSs:

Theorem 7.1 (PRS semantics of TRSs extends MRS semantics). For each TRS
R, the following holds for each c ∈ {w, s}:

(i) S : a�PcR . . . is total iff S : a�Mc
R . . .

(ii) S : a�PcR b is total iff S : a�Mc
R b.

It has been shown [2] that also on so-called term graphs, a generalisation
of terms, an appropriate complete ultrametric and complete semilattice can be
defined. These concepts generalise the metric and the partial order on terms
and allow to define infinitary term graph rewriting in our models of transfinite
reductions. Following the framework of term graph rewriting systems (TGRSs) of
Barendregt et al. [4] one can show that, at least for weak convergence, the same
relation between the partial order and the metric model can be observed:

Theorem 7.2 (PRS semantics of TGRSs extends MRS semantics). For each
TGRS R, the following holds:

(i) S : a�PwR . . . is total iff S : a�Mw
R . . .

(ii) S : a�PwR b is total iff S : a�Mw
R b.

232

8 Conclusions

The axiomatic model of transfinite reductions provides a simple framework to
formulate and analyse the more concrete models presented here and is yet pow-
erful enough to establish many of their fundamental properties. Moreover, the
equivalence of transfinite properties for finite convergence and their respective
finite counterparts provides additional evidence for the appropriateness of the
definition of these transfinite properties.

Fact 5.4 and Fact 6.6 suggest that the metric and the partial order model
have a considerable similarity in their discrimination between weak and strong
convergence. This raises the question whether there is an appropriate abstraction
of these two models that, in contrast to the axiomatic model, is also able to
distinguish between weak and strong convergence.

Theorems 7.1 and 7.2 indicate that the partial order model is superior to
the metric model as it is able to express convergence as the metric model but
additionally allows to explore different levels of divergence in the metric model.
Moreover, these results allow to make use of well-known properties of metric
infinitary term rewriting in order to study partial order infinitary term rewriting.
This was used in [3] to establish several properties of partial order infinitary
orthogonal term rewriting such as compression and convergence.

The models that we presented here can be, of course, easily applied to higher-
order rewriting systems [15]. However, in the metric approach to infinitary
lambda-calculus [14] one usually considers various different metrics and it is not
clear what the corresponding partial orders are which then admit a higher-order
version of Theorem 7.1.

Acknowledgements

I would like to thank Jakob Grue Simonsen and the alert anonymous referees
for carefully reading earlier drafts of this paper and providing valuable feedback.
Especially, I want to thank Bernhard Gramlich for his support and his challenging
questions during my work on my master’s thesis which made this work possible.

Bibliography

[1] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and
topological properties. Fundamenta Informaticae, 3(4):445–476, 1980.

[2] P. Bahr. Infinitary Rewriting - Theory and Applications. Master’s thesis,
Vienna University of Technology, Vienna, 2009.

[3] P. Bahr. Abstract Models of Transfinite Reductions. In C. Lynch, editor, Pro-
ceedings of the 21st International Conference on Rewriting Techniques and
Applications, volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 49–66, Dagstuhl, Germany, 2010. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2010.49.

233

http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49

[4] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In P. C. T. de
Bakker A. J. Nijman, editor, Parallel Architectures and Languages Europe,
Volume II: Parallel Languages, volume 259 of Lecture Notes in Computer
Science, pages 141–158. Springer Berlin / Heidelberg, 1987. doi: 10.1007/3-
540-17945-3_8.

[5] S. Blom. An Approximation Based Approach to Infinitary Lambda Calculi.
In V. van Oostrom, editor, Rewriting Techniques and Applications, volume
3091 of Lecture Notes in Computer Science, pages 221–232. Springer Berlin
/ Heidelberg, 2004. doi: 10.1007/b98160.

[6] A. Corradini. Term rewriting in CTΣ. In M.-C. Gaudel and J.-P. Jouan-
naud, editors, TAPSOFT’93: Theory and Practice of Software Development,
volume 668 of Lecture Notes in Computer Science, pages 468–484. Springer
Berlin / Heidelberg, 1993. doi: 10.1007/3-540-56610-4_83.

[7] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, rewrite, rewrite,
rewrite, rewrite, ... Theoretical Computer Science, 83(1):71–96, 1991. ISSN
0304-3975. doi: 10.1016/0304-3975(91)90040-9.

[8] G. Kahn and G. D. Plotkin. Concrete domains. Theoretical Computer
Science, 121(1-2):187–277, 1993. ISSN 0304-3975. doi: 10.1016/0304-
3975(93)90090-G.

[9] S. Kahrs. Infinitary rewriting: meta-theory and convergence. Acta Infor-
matica, 44(2):91–121, 2007. ISSN 0001-5903 (Print) 1432-0525 (Online). doi:
10.1007/s00236-007-0043-2.

[10] J. L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics.
Springer-Verlag, 1955. ISBN 0387901256.

[11] R. Kennaway. On transfinite abstract reduction systems. Technical report,
CWI (Centre for Mathematics and Computer Science), Amsterdam, 1992.

[12] R. Kennaway and F.-J. de Vries. Infinitary Rewriting. In Terese, editor,
Term Rewriting Systems, chapter 12, pages 668–711. Cambridge University
Press, 1st edition, 2003. ISBN 9780521391153.

[13] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite Reduc-
tions in Orthogonal Term Rewriting Systems. Information and Computation,
119(1):18–38, 1995. ISSN 0890-5401. doi: 10.1006/inco.1995.1075.

[14] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93–125, 1997. ISSN 0304-
3975. doi: 10.1016/S0304-3975(96)00171-5.

[15] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems.
In J. Giesl, editor, Term Rewriting and Applications, volume 3467 of Lecture
Notes in Computer Science, pages 438–452. Springer Berlin / Heidelberg,
2005. doi: 10.1007/b135673.

234

http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1007/b98160
http://dx.doi.org/10.1007/3-540-56610-4_83
http://dx.doi.org/10.1016/0304-3975(91)90040-9
http://dx.doi.org/10.1016/0304-3975(93)90090-G
http://dx.doi.org/10.1016/0304-3975(93)90090-G
http://dx.doi.org/10.1007/s00236-007-0043-2
http://dx.doi.org/10.1007/s00236-007-0043-2
http://dx.doi.org/10.1006/inco.1995.1075
http://dx.doi.org/10.1016/S0304-3975(96)00171-5
http://dx.doi.org/10.1007/b135673

[16] J. W. Klop and R. C. de Vrijer. Infinitary Normalization. In S. N. Artëmov,
H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, and J. Woods, editors, We
Will Show Them! Essays in Honour of Dov Gabbay, volume 2, pages 169–192.
College Publications, 2005. ISBN 1-904987-26-5.

[17] J.-J. Lévy. Réductions Correctes et Optimales dans le Lambda-Calcul. PhD
thesis, Université Paris VII, 1978.

[18] P. H. Rodenburg. Termination and Confluence in Infinitary Term Rewriting.
The Journal of Symbolic Logic, 63(4):1286–1296, 1998. ISSN 00224812.

[19] J. G. Simonsen. On confluence and residuals in Cauchy convergent transfinite
rewriting. Information Processing Letters, 91(3):141–146, 2004. ISSN 0020-
0190. doi: 10.1016/j.ipl.2004.03.018.

[20] Terese. Term Rewriting Systems. Cambridge University Press, 1st edition,
2003. ISBN 9780521391153.

235

http://dx.doi.org/10.1016/j.ipl.2004.03.018

Partial Order Infinitary Term Rewriting and Böhm
Trees

Patrick Bahr

Department of Computer Science, University of Copenhagen

Abstract

We study an alternative model of infinitary term rewriting. Instead of
a metric on terms, a partial order on partial terms is employed to formalise
convergence of reductions. We consider both a weak and a strong notion of
convergence and show that the metric model of convergence coincides with
the partial model restricted to total terms. Hence, partial order convergence
constitutes a conservative extension of metric convergence that additionally
offers a fine-grained distinction between different levels of divergence.

In the second part, we focus our investigation on strong convergence of
orthogonal systems. The main result is that the gap between the metric
model and the partial order model can be bridged by simply extending the
term rewriting system by additional rules. These extensions are the well-
known Böhm extensions. Based on this result, we are able to establish that
– contrary to the metric setting – orthogonal systems are both infinitarily
confluent and infinitarily normalising in the partial order setting. The unique
infinitary normal forms that the partial order model admits are Böhm trees.

Contents

Introduction 238

1 Preliminaries 240
1.1 Transfinite Sequences . 240
1.2 Metric Spaces . 240
1.3 Partial Orders . 240
1.4 Terms . 241
1.5 Term Rewriting Systems . 242

2 Metric Infinitary Term Rewriting 243
2.1 Metric Convergence . 244
2.2 Meaningless Terms and Böhm Trees 246

3 Partial Order Infinitary Rewriting 248
3.1 Partial Order Convergence . 249
3.2 Strong p-Convergence . 253

237

4 Comparing m-Convergence and p-Convergence 257
4.1 Complete Semilattice vs. Complete Metric Space 258
4.2 p-Convergence vs. m-Convergence 260

5 Strongly p-Converging Complete Developments 263
5.1 Residuals . 263
5.2 Constructing Complete Developments 269
5.3 Uniqueness of Complete Developments 271
5.4 The Infinitary Strip Lemma . 281

6 Strong p-Convergence vs. Böhm-Convergence 283
6.1 From Strong p-Convergence to Böhm-Convergence 284
6.2 From Böhm-convergence to Strong p-Convergence 286
6.3 Corollaries . 290

7 Conclusions 291
7.1 Related Work . 292
7.2 Future Work . 292

Acknowledgements 293

Bibliography 293

Introduction

Infinitary term rewriting [13] extends the theory of term rewriting by giving a
meaning to transfinite rewriting sequences. Its formalisation [8] is chiefly based
on the metric space of terms as studied by Arnold and Nivat [2]. Other models for
transfinite reductions, using for example general topological spaces [21] or partial
orders [5, 6], were mainly considered to pursue quite specific purposes and have
not seen nearly as much attention as the metric model. In this paper we introduce
a novel formalisation of infinitary term rewriting based on the partially ordered
set of partial terms [11]. We show that this model of infinitary term rewriting
is superior to the metric model. This assessment includes two parts: First, the
partial order model of infinitary term rewriting conservatively extends the metric
model. That is, anything that can be done in the metric model can be achieved
in the partial order model as well by simply restricting it to the set of total terms.
Secondly, unlike the metric model, the partial order model provides a fine-grained
distinction between different levels of divergence and exhibits nice properties like
infinitary confluence and normalisation of orthogonal systems.

The defining core of a theory of infinitary term rewriting is its notion of con-
vergence for transfinite reductions: Which transfinite reductions are “admissible”
and what is their final outcome. In this paper we study both variants of conver-
gence that are usually considered in the established theory of metric infinitary
term rewriting: Weak convergence [8] and strong convergence [15]. For both vari-
ants we introduce a corresponding notion of convergence based on the partially
ordered set of partial terms.

238

The first part of this paper is concerned with comparing the metric model
and the partial order model both in their respective weak and strong variants. In
both cases, the partial order approach constitutes a conservative extension of the
metric approach: A reduction in the metric model is converging iff it is converging
in the partial order model and only contains total terms.

In the second part we focus on strong convergence in orthogonal systems.
To this end we reconsider the theory of meaningless terms of Kennaway et al.
[16]. In particular, we consider Böhm extensions. The Böhm extension of a term
rewriting system adds rewrite rules which allow to contract meaningless terms
to ⊥. The central result of the second part of this paper is that the additional
rules in Böhm extensions close the gap between partial order convergence and
metric convergence. More precisely, we show that reachability w.r.t. partial order
convergence in a term rewriting system coincides with reachability w.r.t. metric
convergence in the corresponding Böhm extension.

From this result we can easily derive a number of properties for strong partial
order convergence in orthogonal systems:

• Infinitary confluence,

• infinitary normalisation, and

• compression, i.e. each reduction can be compressed to length at most ω

The first two properties exhibit another improvement over the metric model which
does not have neither of these. Moreover, it means that each term has a unique
infinitary normal form – its Böhm tree.

The most important tool for establishing these results is provided by a notion
of complete developments that we have transferred from the metric approach to
infinitary rewriting [15]. We show, that the final outcome of a complete develop-
ment is unique and that, in contrast to the metric model, the partial order model
admits complete developments for any set of redex occurrences. To this end, we
use a technique similar to paths and finite jumps known from metric infinitary
term rewriting [13, 20].

Outline

After providing the basic preliminaries for this paper in Section 1, we will briefly
recapitulate the metric model of infinitary term rewriting including meaningless
terms and Böhm extensions in Section 2. In Section 3, we introduce our novel
approach to infinitary term rewriting based on the partial order on terms. In
Section 4, we compare both models and establish that the partial order model
provides a conservative extension of the metric model. In the remaining part of
this paper, we focus on the strong notion of convergence. In Section 5, we estab-
lish a theory of complete developments in the setting of partial order convergence.
This is then used in Section 6 to prove the equality of reachability w.r.t. partial
order convergence and reachability w.r.t. metric convergence in the Böhm exten-
sion. Finally, we evaluate our results and point to interesting open questions in
Section 7.

239

1 Preliminaries

We assume the reader to be familiar with the basic theory of ordinal numbers,
orders and topological spaces [12], as well as term rewriting [23]. In the following,
we briefly recall the most important notions.

1.1 Transfinite Sequences

We use α, β, γ, λ, ι to denote ordinal numbers. A transfinite sequence (or simply
called sequence) S of length α in a set A, written (aι)ι<α, is a function from α
to A with ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If
α is a limit ordinal, then S is called open. Otherwise, it is called closed. If α
is a finite ordinal, then S is called finite. Otherwise, it is called infinite. For a
finite sequence (ai)i<n we also use the notation 〈a0, a1, . . . , an−1〉. In particular,
〈〉 denotes an empty sequence.

The concatenation (aι)ι<α · (bι)ι<β of two sequences is the sequence (cι)ι<α+β

with cι = aι for ι < α and cα+ι = bι for ι < β. A sequence S is a (proper) prefix
of a sequence T , denoted S ≤ T (resp. S < T), if there is a (non-empty) sequence
S′ with S ·S′ = T . The prefix of T of length β is denoted T |β . The binary relation
≤ forms a complete semilattice. Similarly, a sequence S is a (proper) suffix of a
sequence T if there is a (non-empty) sequence S′ with S′ · S = T .

Let S = (aι)ι<α be a sequence. A sequence T = (bι)ι<β is called a subsequence
of S if there is a monotone function f : β → α such that bι = af(ι) for all ι < β.
To indicate this, we write S/f for the subsequence T . If f(ι) = f(0) + ι for all
ι < β, then S/f is called a segment of S. That is, T is a segment of S iff there are
two sequences T1, T2 such that S = T1 · T · T2. We write S|[β,γ) for the segment
S/f , where f : α′ → α is the mapping defined by f(ι) = β + ι for all ι < α′, with
α′ the unique ordinal with γ = β + α′. Note that in particular S|[0,α) = S|α for
each sequence S and ordinal α ≤ |S|.

1.2 Metric Spaces

A pair (M,d) is called a metric space if d : M ×M → R+
0 is a function satisfying

d(x, y) = 0 iff x = y (identity), d(x, y) = d(y, x) (symmetry), and d(x, z) ≤
d(x, y) + d(y, z) (triangle inequality), for all x, y, z ∈ M . If d instead of the
triangle inequality, satisfies the stronger property d(x, z) ≤ max {d(x, y),d(y, z)}
(strong triangle), then (M,d) is called an ultrametric space. Let (aι)ι<α be a
sequence in a metric space (M,d). The sequence (aι)ι<α converges to an element
a ∈ M , written limι→α aι, if, for each ε ∈ R+, there is a β < α such that
d(a, aι) < ε for every β < ι < α; (aι)ι<α is continuous if limι→λ aι = aλ for each
limit ordinal λ < α. The sequence (aι)ι<α is called Cauchy if, for any ε ∈ R+,
there is a β < α such that, for all β < ι < ι′ < α, we have that d(mι,mι′) < ε.
A metric space is called complete if each of its non-empty Cauchy sequences
converges.

1.3 Partial Orders

A partial order ≤ on a set A is a binary relation on A that is transitive, reflexive,
and antisymmetric. The pair (A,≤) is then called a partially ordered set. We use

240

< to denote the strict part of ≤, i.e. a < b iff a ≤ b and b 6≤ a. A sequence (aι)ι<α
in (A,≤) is called a (strict) chain if aι ≤ aγ (resp. aι < aγ) for all ι < γ < α.
A subset D of the underlying set A is called directed if it is non-empty and each
pair of elements in D has an upper bound in D. A partially ordered set (A,≤)
is called a complete semilattice if it has a least element, every directed subset D
of A has a least upper bound (lub)

⊔
D, and every subset of A having an upper

bound also has a least upper bound. Hence, complete semilattices also admit a
greatest lower bound (glb)

d
B for every non-empty subset B of A. In particular,

this means that for any non-empty sequence (aι)ι<α in a complete semilattice, its
limit inferior, defined by lim infι→α aι =

⊔
β<α

(d
β≤ι<α aι

)
, always exists.

It is easy to see that the limit inferior of closed sequences is simply the last
element of the sequence. This is, however, only a special case of the following
more general proposition:

Proposition 1.1 (invariance of the limit inferior). If (aι)ι<α is a sequence in a
partially ordered set and (bι)ι<β a non-empty suffix of (aι)ι<α, then lim infι→α aι =
lim infι→β bι.

Proof. We have to show that
⊔
γ<α

d
γ≤ι<α aι =

⊔
β≤γ<α

d
γ≤ι<α aι = a′ holds

for each β < α. Let bγ =
d
γ≤ι<α aι for each γ < α, A = {bγ | γ < α} and

A′ = {bγ |β ≤ γ < α}. Note that a =
⊔
A and a′ =

⊔
A′. Because A′ ⊆ A, we

have that a′ ≤ a. On the other hand, since bγ ≤ bγ′ for γ ≤ γ′, we find, for
each bγ ∈ A, some bγ′ ∈ A′ with bγ ≤ bγ′ . Hence, a ≤ a′. Therefore, due to the
antisymmetry of ≤, we can conclude that a = a′.

Note that the limit in a metric space has the same behaviour as the one for
the limit inferior described by the proposition above. However, one has to keep
in mind that – unlike the limit – the limit inferior is not invariant under taking
cofinal subsequences!

With the prefix order ≤ on sequences we can generalise concatenation to
arbitrary sequences of sequences: Let (Sι)ι<α be a sequence of sequences in a
common set. The concatenation of (Sι)ι<α, written

∏
ι<α Sι, is recursively defined

as the empty sequence 〈〉 if α = 0,
(∏

ι<α′ Sι
)
·Sα′ if α = α′+1, and

⊔
γ<α

∏
ι<γ Sι

if α is a limit ordinal.

1.4 Terms

Unlike in the traditional – i.e. finitary – framework of term rewriting, we consider
the set T ∞(Σ,V) of infinitary terms (or simply terms) over some signature Σ
and a countably infinite set V of variables. A signature Σ is a countable set of
symbols. Each symbol f is associated with its arity ar(f) ∈ N, and we write Σ(n)

for the set of symbols in Σ which have arity n. The set T ∞(Σ,V) is defined as
the greatest set T such that, for each element t ∈ T , we either have t ∈ V or
t = f(t1, . . . , tk), where f ∈ Σ(k), and t1, . . . , tk ∈ T . We consider T ∞(Σ,V) as a
superset of the set T (Σ,V) of finite terms. For a term t ∈ T ∞(Σ,V) we use the
notation P(t) to denote the set of positions in t. For terms s, t ∈ T ∞(Σ,V) and
a position π ∈ P(t), we write t|π for the subterm of t at π, t(π) for the symbol in
t at π, and t[s]π for the term t with the subterm at π replaced by s. Two terms s

241

and t are said to coincide in a set of positions P ⊆ P(s) ∩ P(t) if s(π) = t(π) for
all π ∈ P . A position is also called an occurrence if the focus lies on the subterm
at that position rather than the position itself. Two positions π1, π2 are called
disjoint if neither π1 ≤ π2 nor π2 ≤ π1.

A context is a “term with holes” which are represented by a distinguished
variable �. We write C[, . . . ,] for a context with at least one occurrence of �,
and C〈, . . . , 〉 for a context with zero more occurrences of �. C[t1, . . . , tn] denotes
the result of replacing the occurrences of � in C (from left to right) by t1, . . . , tn.
C〈t1, . . . , tn〉 is defined accordingly.

A substitution σ is a mapping from V to T ∞(Σ,V). Its domain, denoted
dom(σ), is the set {x ∈ V |σ(x) 6= x} of variables not mapped to itself by σ. Sub-
stitutions are uniquely extended to morphisms from T ∞(Σ,V) to T ∞(Σ,V), by
the finality of the coalgebra T ∞(Σ,V), via σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn))
for f ∈ Σ(n) and t1, . . . , tn ∈ T (Σ,V). Instead of σ(s), we shall also write sσ.

On T ∞(Σ,V) a similarity measure sim(·, ·) ∈ N ∪ {∞} can be defined by
setting

sim(s, t) = min {|π| |π ∈ P(s) ∩ P(t), s(π) 6= t(π)}∪{∞} for s, t ∈ T ∞(Σ,V)

That is, sim(s, t) is the minimal depth at which s and t differ, resp. ∞ if s = t.
Based on this, a distance function d can be defined by d(s, t) = 2−sim(s,t), where
we interpret 2−∞ as 0. The pair (T ∞(Σ,V),d) is known to form a complete
ultrametric space [2]. Partial terms, i.e. terms over signature Σ⊥ = Σ] {⊥}
with ⊥ a fresh constant symbol, can be endowed with a binary relation ≤⊥ by
defining s ≤⊥ t iff s can be obtained from t by replacing some subterm occur-
rences in t by ⊥. Interpreting the term ⊥ as denoting “undefined”, ≤⊥ can be
read as “is less defined than”. The pair (T ∞(Σ⊥,V),≤⊥) is known to form a
complete semilattice [11]. For a partial term t ∈ T ∞(Σ⊥,V) we use the notation
P6⊥(t) and PΣ(t) for the set {π ∈ P(t) | t(π) 6= ⊥} of non-⊥ positions resp. the
set {π ∈ P(t) | t(π) ∈ Σ} of positions of function symbols. With this, ≤⊥ can
be characterised alternatively by s ≤⊥ t iff s(π) = t(π) for all π ∈ P6⊥(s). To
explicitly distinguish them from partial terms, we call terms in T ∞(Σ,V) total.

1.5 Term Rewriting Systems

A term rewriting system (TRS) R is a pair (Σ, R) consisting of a signature Σ
and a set R of term rewrite rules of the form l → r with l ∈ T ∞(Σ,V) \ V and
r ∈ T ∞(Σ,V) such that all variables in r are contained in l. Note that this notion
of a TRS deviates slightly from the standard notion of TRSs in the literature
on infinitary rewriting [13] in that it allows infinite terms on the left-hand side
of rewrite rules! This generalisation will be necessary to accommodate Böhm
extensions which are introduced later in Section 2.2. TRSs having only finite
left-hand sides are called left-finite.

As in the finitary setting, every TRS R defines a rewrite relation →R:
s→R t ⇐⇒ ∃π ∈ P(s), l→ r ∈ R, σ : s|π = lσ, t = s[rσ]π

Instead of s →R t, we sometimes write s →π,ρ t in order to indicate the applied
rule ρ and the position π, or simply s→ t. The subterm s|π is called a ρ-redex or
simply redex, rσ its contractum, and s|π is said to be contracted to rσ.

242

Let ρ : l → r be an term rewrite rule. The pattern of ρ is the context lσ�,
where σ� is the substitution {x 7→ � |x ∈ V } that maps all variables to �. If t
is a ρ-redex, then the pattern P of ρ is also called the redex pattern of t w.r.t. ρ.
When referring to the occurrences in a pattern, occurrences of the symbol � are
neglected.

Let ρ1 : l1 → r1, ρ2 : l2 → r2 be rules in a TRS R. The rules ρ1, ρ2 are said to
overlap if there is a non-variable position π in l1 such that l1|π and l2 are unifiable
and π is not the root position 〈〉 in case ρ1, ρ2 are renamed copies of the same rule.
A TRS is called non-overlapping if none of its rules overlap. A term t is called
linear if each variable occurs at most once in t. The TRS R is called left-linear
if the left-hand side of every rule in R is linear. It is called orthogonal if it is
left-linear and non-overlapping.

2 Metric Infinitary Term Rewriting

In this section we briefly recall the metric model of infinitary term rewriting [15]
and some of its properties. We will use the metric model in two ways: Firstly,
it will serve as a yardstick to compare the partial order model to. But most
importantly, we will use known results for metric infinitary rewriting and transfer
them to the partial order model. In order to accomplish the latter, we will make
use of Theorem 4.12 which we shall present at the end of Section 4.2.

At first we have to make clear what a reduction in our setting of infinitary
rewriting is:

Definition 2.1 (reduction (step)). Let R be a TRS. A reduction step ϕ in R is
a tuple (s, π, ρ, t) such that s →π,ρ t; we also write ϕ : s →π,ρ t. A reduction S
in R is a sequence (ϕι)ι<α of reduction steps in R such that there is a sequence
(tι)ι<α̂ of terms, with α̂ = α if S is open and α̂ = α + 1 if S is closed, such that
ϕι : tι → tι+1. If S is finite, we write S : t0 →∗ tα.

This definition of reductions is a straightforward generalisation of finite re-
ductions. As an example consider the TRS with the single rule a→ f(a). In this
system we get a reduction S : a→∗ f(f(f(a))) of length 3:

S = 〈ϕ0 : a→ f(a), ϕ1 : f(a)→ f(f(a)), ϕ2 : f(f(a))→ f(f(f(a)))〉

In a more concise notation we write

S : a→ f(a)→ f2(a)→ f3(a)

Clearly, we can extend this reduction arbitrarily often which results in the follow-
ing infinite reduction of length ω:

T : a→ f(a)→ f2(a)→ f3(a)→ f4(a)→ . . .

However, this is as far we can go with this simple definition of reductions. As soon
as we go beyond ω, we get reductions which do not make sense. For example,
consider the following reduction:

T · S : a→ f(a)→ f2(a)→ f3(a)→ f4(a)→ . . . a→ f(a)→ f2(a)→ f3(a)

243

The reduction T of length ω can be extended by an arbitrary reduction, e.g. by
the reduction S. The notion of reductions according to Definition 2.1 is only
meaningful if restricted to reductions of length at most ω. The problem is that
the ω-th step in the reduction, viz. the second step of the form a → f(a) in the
example above, is completely independent of all previous steps since it does not
have an immediate predecessor. This issue occurs at each limit ordinal number.
An appropriate definition of a reduction of length beyond ω requires a notion of
continuity to bridge the gaps that arise at limit ordinals. In the next section we
will present the well-know metric approach to this. Later in Section 3, we will
introduce a novel approach using partial orders.

2.1 Metric Convergence

In this section we consider two notions of convergence modelled by the metric on
terms – a weak [8] and a strong [15] variant. Related to this notion of convergence
is a corresponding notion of continuity. In order to distinguish both from the
partial order model that we will introduce in Section 3 we will use the names
weak resp. strong m-convergence and weak resp. strong m-continuity.

It is important to understand that a reduction is a sequence of reduction steps
rather than just a sequence of terms. This is crucial for a proper definition of
strong convergence resp. continuity, which does not only depend on the sequence of
terms that are derived within the reduction but does also depend on the positions
where the contractions take place:

Definition 2.2 (m-continuity/-convergence). LetR be a TRS and S a non-empty
reduction (ϕι : tι →πι tι+1)ι<α in R. Then reduction S is called

(i) weakly m-continuous in R, written S : t0 ↪→m R . . . , if limι→λ tι = tλ for each
limit ordinal λ < α.

(ii) strongly m-continuous in R, written S : t0 �m R . . . , if it is weakly m-
continuous and for each limit ordinal λ < α, the sequence (|πι|)ι<λ of con-
traction depths tends to infinity.

(iii) weakly m-converging to t in R, written S : t0 ↪→m R t, if it is weakly m-
continuous and t = limι→α̂ tι.

(iv) strongly m-converging to t in R, written S : t0 �m R t, if it is strongly m-
continuous, weakly m-converges to t and, in case that S is open, (|πι|)ι<α
tends to infinity.

Whenever S : t0 ↪→m R t or S : t0 �m R t, we say that t is weakly resp. strongly
m-reachable from t0 in R. By abuse of notation we use ↪→m R and �m R as a binary
relation to indicate weakly resp. strongly m-reachability. In order to indicate the
length of S and the TRS R, we write S : t0 ↪→m α

R t resp. S : t0 �m α
R t. The empty

reduction 〈〉 is considered weakly/strongly m-continuous and m-convergent for
any start and end term, i.e. 〈〉 : t�m R t for all t ∈ T (Σ,V).

From the above definition it is clear that strong m-convergence implies both
weak m-convergence and strong m-continuity and that both weak m-convergence

244

strong m-convergence

weak m-convergence strong m-continuity

weak m-continuity

Figure 1: Relation between continuity and convergence properties.

and strong m-continuity imply weak m-continuity, respectively. This is indicated
in Figure 1. It is important to recognise that m-convergence implies m-continuity.
Hence, only meaningful, i.e. m-continuous, reductions can be m-convergent.

For a reduction to be weakly m-continuous, each open proper prefix of the
underlying sequence (tι)ι<α̂ of terms must converge to the term following next
in the sequence – or, equivalently, (tι)ι<α̂ must be continuous. For strong m-
continuity, additionally, the depth at which contractions take place has to tend
to infinity for each of the reduction’s open proper prefixes. The convergence
properties do only differ from the continuity properties in that they require the
above conditions to hold for all open prefixes, i.e. including the whole reduction
itself unless it is closed. For example, considering the rule a→ f(a), the reduction
g(a) → g(f(a)) → g(f(f(a))) → . . . strongly m-converges to the infinite term
g(fω). The first step takes place at depth 1, the next step at depth 2 and so
on. Having the rule g(x) → g(f(x)) instead, the reduction g(a) → g(f(a)) →
g(f(f(a))) → . . . is trivially strongly m-continuous but is now not strongly m-
convergent since every step in this reduction takes place at depth 0, i.e. the
sequence of reduction depths does not tend to infinity. However, the reduction
still weakly m-converges to g(fω).

In contrast to the strong notions of continuity and convergence, the corre-
sponding weak variants are independent from the rules that are applied during
the reduction. What makes strong m-convergence (and -continuity) strong is
the fact that it employs a conservative overapproximation of the differences be-
tween consecutive terms in the reduction. For weak m-convergence the distance
d(tι, tι+1) between consecutive terms in a reduction (tι →πι tι+1)ι<λ has to tend
to 0. For strongm-convergence the depth |πι| of the reduction steps has to tend to
infinity. In other words, 2−|πι| has to tend to 0. Note that 2−|πι| is a conservative
overapproximation of d(tι, tι+1), i.e. 2−|πι| ≥ d(tι, tι+1). So strong m-convergence
is simply weak m-convergence w.r.t. this overapproximation of d [4]. If this ap-
proximation is actually precise, i.e. coincides with the actual value, both notions
of m-convergence coincide.

Remark 2.3. The notion of m-continuity can be defined solely in terms of m-
convergence [4]. More precisely, we have for each reduction S = (tι → tι+1)ι<α
that S is weakly m-continuous iff every (open) proper prefix of S|β weakly m-
converges to tβ . Analogously, strong m-continuity can be characterised in terms

245

of strongm-convergence. An easy consequence of this is thatm-converging reduc-
tions are closed under concatenation, i.e. S : s ↪→m t, T : t ↪→m u implies S·T : s ↪→m u
and likewise for strong m-convergence.

For the most part our focus in this paper is set on strong m-convergence
and its partial order correspondent that we will introduce in Section 3. Weak
m-convergence is well-known to be rather unruly [22]. Strong convergence is far
more well-behaved [15]. Most prominently, we have the following Compression
Lemma [15] which in general does not hold for weak m-convergence:

Theorem 2.4 (Compression Lemma). For each left-linear, left-finite TRS, s�m t
implies s�m ≤ω t.

As an easy corollary we obtain that the final term of a strongly m-converging
reduction can be approximated arbitrarily accurately by a finite reduction:

Corollary 2.5 (finite approximation). Let R be a left-linear, left-finite TRS and
s�m t. Then, for each depth d ∈ N, there is a finite reduction s→∗ t′ such that t
and t′ coincide up to depth d, i.e. d(t, t′) < 2−d.

Proof. Assume s�m t. By Theorem 2.4, there is a reduction S : s�m ≤ω t. If S is
of finite length, then we are done. If S : s�m ω t, then, by strong m-convergence,
there is some n < ω such that all reductions steps in S after n take place at a
depth greater than d. Consider S|n : s→∗ t′. It is clear that t and t′ coincide up
to depth d.

An important difference between m-converging reductions and finite reduc-
tions is the confluence of orthogonal systems. In contrast to finite reachability,
m-reachability of orthogonal TRSs – even in its strong variant – does not neces-
sarily have the diamond property, i.e. orthogonal systems are confluent but not
infinitarily confluent [15]:

Example 2.6 (failure of infinitary confluence). Consider the orthogonal TRS
consisting of the collapsing rules ρ1 : f(x)→ x and ρ2 : g(x)→ x and the infinite
term t = g(f(g(f(. . .)))). We then obtain the reductions S : t�m gω and T : t�m
fω by successively contracting all ρ1- resp. ρ2-redexes. However, there is no term
s such that gω �m s �m fω (or gω ↪→m s ←↩m fω) as both gω and fω can only be
rewritten to themselves, respectively.

In the following section we discuss a method for obtaining an appropriate
notion of transfinite reachability based on strong m-reachability which actually
has the diamond property.

2.2 Meaningless Terms and Böhm Trees

At the end of the previous section we have seen that orthogonal TRSs are in
general not infinitarily confluent. However, as Kennaway et al. [15] have shown,
orthogonal TRSs are infinitarily confluent modulo so-called hyper-collapsing terms
– in the sense that two forking strongly m-converging reductions t �m t1, t �m t2
can always be extended by two strongly m-converging reductions t1 �m t3, t2 �m t′3

246

such that the resulting terms t3, t′3 only differ in the hyper-collapsing subterms
they contain.

This result was later generalised by Kennaway et al. [16] to develop an ax-
iomatic theory of meaningless terms. Intuitively, a set of meaningless terms in
this setting consists of terms that are deemed meaningless since, from a term
rewriting perspective, they cannot be distinguished from one another and they do
not contribute any information to any computation. Kennaway et al. capture this
by a set of axioms that characterise a set of meaningless terms. For orthogonal
TRSs, one such set of terms, in fact the least such set, is the set of root-active
terms [16]:

Definition 2.7 (root-activeness). Let R be a TRS and t ∈ T ∞(Σ,V). Then t is
called root-active if for each reduction t →∗ t′, there is a reduction t′ →∗ s to a
redex s. The set of all root-active terms of R is denoted RAR or simply RA if
R is clear from the context.

Intuitively speaking, as the name already suggests, root-active terms are terms
that can be contracted at the root arbitrarily often, e.g. the terms fω and gω from
Example 2.6.

In this paper we are only interested in this particular set of meaningless terms.
So for the sake of brevity we restrict our discussion in this section to the set RA
instead of the original more general axiomatic treatment by Kennaway et al. [16].

Since, operationally, root-active terms cannot be distinguished from each other
it is appropriate to equate them [16]. This can be achieved by introducing a new
constant symbol ⊥ and making each root-active term equal to ⊥. By adding
rules which enable rewriting root-active terms to ⊥, this can be encoded into an
existing TRS [16]:

Definition 2.8 (Böhm extension). LetR = (Σ, R) be a TRS, and U ⊆ T ∞(Σ,V).

(i) A term t ∈ T ∞(Σ,V) is called a ⊥,U-instance of a term s ∈ T ∞(Σ⊥,V) if
t can be obtained from s by replacing each occurrence of ⊥ in s with some
term in U .

(ii) U⊥ is the set of terms in T ∞(Σ⊥,V) that have a ⊥,U-instance in U .

(iii) The Böhm extension of R w.r.t. U is the TRS BR,U = (Σ⊥, R ∪B), where

B = {t→ ⊥| t ∈ U⊥ \ {⊥}}

We write s →U ,⊥ t for a reduction step using a rule in B. If R and U
are clear from the context, we simply write B and →⊥ instead of BR,U and
→U ,⊥, respectively.

A reduction that is strongly m-converging in the Böhm extension B is called
Böhm-converging. A term t is called Böhm-reachable from s if there is a Böhm-
converging reduction from s to t.

It is at this point where we, in fact, need the generality of allowing infinite
terms on the left-hand side of rewrite rules: The additional rules of a Böhm
extension allow possibly infinite terms t ∈ U⊥ \ {⊥} on the left-hand side.

247

Remark 2.9 (closure under substitution). Note that, for orthogonal TRSs, RA
is closed under substitutions and, hence, so is RA⊥ [16]. Therefore, whenever
C[t]→RA,⊥ C[⊥], we can assume that t ∈ RA⊥.

With the additional rules provided by the Böhm extension, we gain infinitary
confluence of orthogonal systems:

Theorem 2.10 (infinitary confluence of Böhm-converging reductions, [16]). Let
R be an orthogonal, left-finite TRS. Then the Böhm extension B of R w.r.t. RA
is infinitarily confluent, i.e. s1 �mB t�m B s2 implies s1 �m B t′ �mB s2.

The lack of confluence for strongly m-converging reductions is resolved in
Böhm extensions by allowing (sub-)terms, which where previously not joinable,
to be contracted to ⊥. Returning to Example 2.6, we can see that gω and fω can
be rewritten to ⊥ as both terms are root-active.

In fact, w.r.t. Böhm-convergence, every term of an orthogonal TRS has a
normal form:

Theorem 2.11 (infinitary normalisation of Böhm-converging reductions, [16]).
Let R be an orthogonal, left-finite TRS. Then the Böhm extension B of R w.r.t.
RA is infinitarily normalising, i.e. for each term t there is a B-normal form
Böhm-reachable from t.

This means that each term t of an orthogonal, left-finite TRS R has a unique
normal form in BR,RA. This normal form is called the Böhm tree of t (w.r.t. RA)
[16].

The rest of this paper is concerned with establishing an alternative to the
metric notion of convergence based on the partial order on terms that is equivalent
to the Böhm extension approach.

3 Partial Order Infinitary Rewriting

In this section we introduce an alternative model of infinitary term rewriting which
uses the partial order on terms to formalise convergence of transfinite reductions.
To this end we will turn to partial terms which, like in the setting of Böhm
extensions, have an additional constant symbol ⊥. The result will be a more
fine-grained notion of convergence in which, intuitively speaking, a reduction can
be diverging in some positions but at the same time converging in other positions.
The “diverging parts” are then indicated by a ⊥-occurrence in the final term of
the reduction:

Example 3.1. Consider the TRS consisting of the rules h(x)→ h(g(x)), b→ g(b)
and the term t = f(a, b). In this system, we have the reduction

S : f(h(a), b)→ f(h(g(a)), b)→ f(h(g(a)), g(b))→ f(h(g(g(a))), g(b))→ . . .

which alternately contracts the redex in the left and in the right argument of f .

The reduction S weakly m-converges to the term f(h(gω), gω). But it does
not strongly m-converge as the depth at which contractions are performed does

248

not tend to infinity. However, this does only happen in the left argument of f ,
not in the other one. Within the partial order model we will still be able to obtain
that S weakly converges to f(h(gω), gω) but we will also obtain that it strongly
converges to the term f(⊥, gω). That is, we will be able to identify that the
reduction S strongly converges except at position 〈0〉, the first argument of f .

3.1 Partial Order Convergence

In order to formalise continuity and convergence in terms of the complete semi-
lattice (T ∞(Σ⊥,V),≤⊥) instead of the complete metric space (T ∞(Σ,V),d), we
move from the limit of the metric space to the limit inferior of the complete
semilattice:

Definition 3.2 (p-continuity/-convergence). Let R = (Σ, R) be a TRS and S =
(ϕι : tι →πι tι+1)ι<α a non-empty reduction in R⊥ = (Σ⊥, R). The reduction S
is called

(i) weakly p-continuous in R, written S : t0 ↪→p R . . . , if lim infι→λ tι = tλ for
each limit ordinal λ < α.

(ii) strongly p-continuous in R, written S : t0 �p R . . . , if lim infι→λ cι = tλ for
each limit ordinal λ < α, where cι = tι[⊥]πι . Each cι is called the context of
the reduction step ϕι, which we indicate by writing ϕι : tι →cι tι+1.

(iii) weakly p-converging to t in R, written S : t0 ↪→p R t, if it is weakly p-
continuous and t = lim infι→α̂ tι.

(iv) strongly p-converging to t in R, written S : t0 �p R t, if it is strongly p-
continuous and S is closed with t = tα+1 or t = lim infι→α cι.

Whenever S : t0 ↪→p R t or S : t0 �p R t, we say that t is weakly resp. strongly
p-reachable from t0 in R. By abuse of notation we use ↪→p R and �p R as a binary
relation to indicate weak resp. strong p-reachability. In order to indicate the
length of S and the TRS R, we write S : t0 ↪→p α

R t resp. S : t0 �p α
R t. The empty

reduction 〈〉 is considered weakly/strongly p-continuous and p-convergent for any
start and end term, i.e. 〈〉 : t�p R t for all t ∈ T (Σ,V).

The definitions of weak p-continuity and weak p-convergence are straightfor-
ward “translations” from the metric setting to the partial order setting replacing
the limit limι→α by the limit inferior lim infι→α. On the other hand, the defi-
nitions of the strong counterparts seem a bit different compared to the metric
model: Whereas strong m-convergence simply adds a side condition regarding
the depth |πι| of the reduction steps, strong p-convergence is defined in a different
way compared to the weak variant. Instead of the terms tι of the reduction, it
considers the contexts cι = tι[πι]⊥. However, one can surmise some similarity due
to the face that the partial order model of strong convergence indirectly takes into
account the position πι of each reduction step as well. Moreover, for the sake of
understanding the intuition of strong p-convergence it is better to compare the
contexts cι rather with the glb of two consecutive terms tι u⊥ tι+1 instead of the
term tι itself. The following proposition allows precisely that.

249

Proposition 3.3 (limit inferior of open sequences). Let (aι)ι<λ be an open se-
quence in a complete semilattice. Then it holds that lim infι<λ aι = lim infι<λ(aιu
aι+1).

Proof. Let a = lim infι<λ aι and â = lim infι<λ(aι u aι+1). Since aι u aι+1 ≤ aι
for each ι < λ, we have â ≤ a. On the other hand, consider the sets Aα =
{aι |α ≤ ι < λ} and Âα = {aι u aι+1 |α ≤ ι < λ} for each α < λ. Of course, we
then have

d
Aα ≤ aι for all α ≤ ι < λ, and thus also

d
Aα ≤ aι u aι+1 for all

α ≤ ι < λ. Hence,
d
Aα is a lower bound of Âα which implies that

d
Aα ≤

d
Âα.

Consequently, a ≤ â and, due to the antisymmetry of ≤, we can conclude that
a = â.

With this in mind we can replace lim infι→λ tι in the definition of weak p-
convergence resp. p-continuity with lim infι→λ tι u⊥ tι+1. From there it is easier
to see the intention of moving from tι u⊥ tι+1 to the context tι[⊥]πι in order to
model strong convergence:

What makes the notion of strong p-convergence (and p-continuity) strong, sim-
ilar to the notion of strong m-convergence (resp. m-continuity), is the choice of
taking the contexts tι[⊥]πι for defining the limit behaviour of reductions instead of
the whole terms tι. The context tι[⊥]πι provides a conservative underapproxima-
tion of the shared structure tιu⊥ tι+1 of two consecutive terms tι and tι+1 in a re-
duction step ϕι : tι →πι tι+1. More specifically, we have that tι[⊥]πι ≤⊥ tιu⊥ tι+1.
That is, as in the metric model of strong convergence, the difference between two
consecutive terms is overapproximated by using the position of the reduction step
as an indicator. Likewise, strong p-convergence is simply weak p-convergence
w.r.t. this underapproximation of tι u⊥ tι+1 [4]. If this approximation is actu-
ally precise, i.e. coincides with the actual value, both notions of p-convergence
coincide.

Remark 3.4. As for the metric model, also in the partial order model, continuity
can be defined solely in terms of convergence [4]. More precisely, we have for each
reduction S = (tι → tι+1)ι<α that S is weakly p-continuous iff every (open)
proper prefix of S|β weakly p-converges to tβ . Analogously, strong p-continuity
can be characterised in terms of strong p-convergence. An easy consequence of
this is that p-converging reductions are closed under concatenation, i.e. S : s ↪→ t,
T : t ↪→ u implies S · T : s ↪→ u and likewise for strong p-convergence.

In order to understand the difference between weak and strong p-convergence
let us look at a simple example:

Example 3.5. Consider the TRS with the single rule f(x, y) → f(y, x). This
rule induces the following reduction:

S : f(a, f(g(a), g(b)))→ f(a, f(g(b), g(a)))→ f(a, f(g(a), g(b)))→ . . .

S simply alternates between the terms f(a, f(g(a), g(b))) and f(a, f(g(b), g(a)))
by swapping the arguments of the inner f occurrence. The reduction is depicted
in Figure 2. The picture illustrates the parts of the terms that remain unchanged
and those that remain completely untouched by the corresponding reduction step

250

f

a f

g

a

g

b

f

a f

g

b

g

a

f

a f

g

a

g

b

Figure 2: Reduction with stable context.

f

a f

g

⊥

g

⊥

(a) Limit w.r.t. strong p-convergence.

f

a ⊥

(b) Limit w.r.t. strong p-convergence.

Figure 3: Limits of a p-converging reduction.

by using a lighter resp. a darker shade of grey. The unchanged part corresponds
to the glb of the two terms of a reduction step, viz. for the first step

f(a, f(g(a), g(b))) u⊥ f(a, f(g(b), g(a))) = f(a, f(g(⊥), g(⊥)))

By symmetry, the glb of the terms of the second step is the same one. It is
depicted in Figure 3a. Let (ti)i<ω be the sequence of terms of the reduction S. By
definition, S weakly p-converges to lim infi<ω ti. According to Proposition 3.3, this
is equal to lim infi<ω(tiu⊥ ti+1). Since tiu⊥ ti+1 is constantly f(a, f(g(⊥), g(⊥))),
the reduction sequence weakly p-converges to f(a, f(g(⊥), g(⊥))).

Similarly, the part of the term that remains untouched by the reduction step
corresponds to the context. For the first step, this is f(a,⊥). It is depicted
in Figure 3b. By definition, S strongly p-converges to lim infi<ω ci for (ci)i<ω
the sequence of contexts of S. As one can see in Figure 2, the context constantly
remains f(a,⊥). Hence, S strongly p-converges to f(a,⊥). The example sequence
is a particularly simple one as both the glbs ti u⊥ ti+1 and the contexts ci remain
stable. In general, this is not necessary, of course.

One can clearly see from the definition that, as for their metric counterparts,
weak resp. strong p-convergence implies weak resp. strong p-continuity. In con-
trast to the metric model, however, also the converse implication holds! Since the
partial order ≤⊥ on partial terms forms a complete semilattice, the limit inferior
is defined for any non-empty sequence of partial terms. Hence, any weakly resp.
strongly p-continuous reduction is also weakly resp. strongly p-convergent. This

251

is a major difference to m-convergence/-continuity. Nevertheless, p-convergence
constitutes a meaningful notion of convergence: The final term of a p-convergent
reduction contains a ⊥ subterm at each position at which the reduction is “locally
diverging” as we have seen in Example 3.1 and Example 3.13. In fact, as we will
show in Section 4, whenever there are no ’⊥’s involved, i.e. if there is no “local
divergence”, m-convergence and p-convergence coincide – both in the weak and
the strong variant.

Recall that strongm-continuity resp. p-convergence implies weakm-continuity
resp. m-convergence. This is not the case in the partial order setting. The rea-
son for this is that strong p-convergence resp. p-continuity is defined differently
compared to its weak variant. It uses the contexts instead of the terms in the
reduction, whereas in the metric setting the strong notion of convergence is a
mere restriction of the weak counterpart as we have observed earlier.

Example 3.6. Consider the TRS consisting of the rules ρ1 : h(x) → h(g(x)),
ρ2 : f(x)→ g(x) and the following two reductions it induces:

S : f(h(a))→ρ1 f(h(g(a)))→ρ1 f(h(g(g(a))))→ρ1 . . .

T : f(⊥)→ρ2 g(⊥)

Then the reduction

S · T : f(h(a))→ρ1 f(h(g(a)))→ρ1 f(h(g(g(a))))→ρ1 . . . f(⊥)→ρ2 g(⊥)

is clearly both strongly p-continuous and -convergent. On the other hand it is
neither weakly p-continuous nor -convergent for the simple fact that S does not
weakly p-converge to f(⊥) but to f(h(gω).

Nevertheless, by observing that lim infι→α cι ≤⊥ lim infι→α tι since cι ≤⊥ tι
for each ι < α, we obtain the following weaker relation between weak and strong
p-convergence:

Proposition 3.7. Let R be a left-linear TRS with s�p R t. Then there is a term
t′ ≥⊥ t with s ↪→p R t′.
Proof. Let S = (ϕι : tι →ρι tι+1)ι<α be a reduction strongly p-converging to tα.
By induction we construct for each prefix S|β of S a reduction S′β = (ϕ′ι : t

′
ι →ρι

t′ι+1)ι<β weakly p-converging to a term t′β such that tι ≤⊥ t′ι for each ι ≤ α. The
proposition then follows from the case where β = α.

The case β = 0 is trivial. If β = γ + 1, then by induction hypothesis we have
a reduction S′γ : t′0 ↪→p R t′γ . Since tγ ≤⊥ t′γ and tγ is a ργ-redex, also t′γ is a ργ-
redex due to the left-linearity of R. Hence, there is a reduction step ϕ′γ : t′γ → t′β .
One can easily see that then tβ ≤⊥ t′β . Hence, S′β = S′γ · 〈ϕ′γ〉 satisfies desired
conditions.

If β is a limit ordinal, we can apply the induction hypothesis to obtain for
each γ < β a reduction S′γ = (ϕ′ι : t

′
ι →ρι t

′
ι+1)ι<γ that weakly p-converges to

t′γ ≥⊥ tγ . Hence, according to Remark 3.4, S′β = (ϕ′ι : t
′
ι →ρι t

′
ι+1)ι<β is weakly p-

continuous. Therefore, we obtain that S′β weakly p-converges to t′β = lim infι→β t′ι.
Moreover, since cι ≤⊥ tι and tι ≤⊥ t′ι for each ι < β, we can conclude that

tβ = lim inf
ι→β

cι ≤⊥ lim inf
ι→β

tι ≤⊥ lim inf
ι→β

t′ι = t′β.

252

And indeed, returning to Example 3.6, we can see that there is a reduction

f(h(a))→ρ1 f(h(g(a)))→ρ1 f(h(g(g(a))))→ρ1 . . . f(h(gω))→ρ2 g(h(gω))

that, starting from f(h(a)), weakly p-converges to g(h(gω)) which is strictly larger
than g(⊥).

A simple example shows that left-linearity is crucial for the above proposition:

Example 3.8. Let R be a TRS consisting of the rules

ρ1 : a→ a, ρ2 : b→ b, ρ3 : f(x, x)→ c.

We then get the strongly p-converging reduction

f(a, b)→ρ1 f(a, b)→ρ2 f(a, b)→ρ1 f(a, b)→ρ2 . . . f(⊥,⊥)→ρ3 c

Yet, there is no reduction in R that, starting from f(a, b), weakly p-converges to
c.

3.2 Strong p-Convergence

In this paper we are mainly focused on the strong notion of convergence. To
this end, the rest of this section will be concerned exclusively with strong p-
convergence. We will, however, revisit weak p-convergence in Section 4 when
comparing it to weak m-convergence.

Note that in the partial order model we have to consider reductions over the
extended signature Σ⊥, i.e. reductions containing partial terms. Thus, from now
on, we assume reductions in a TRS over Σ to be implicitly over Σ⊥. When we
want to make it explicit that a reduction S contains only total terms, we say that
S is total. When we say that a strongly p-convergent reduction S : s�p t is total,
we mean that both the reduction S and the final term t are total.1

In order to understand the behaviour strong p-convergence, we need to look
at how the lub and glb of a set of terms looks like. The following two lemmas
provide some insight.

Lemma 3.9 (lub of terms). For each T ⊆ T ∞(Σ⊥,V) and t =
⊔⊥ T , the follow-

ing holds

(i) P(t) =
⋃
s∈T P(s)

(ii) t(π) = f iff there is some s ∈ T with s(π) = f for each f ∈ Σ ∪ V, and
position π.

Proof. Clause (i) follows straightforwardly from clause (ii). The “if” direction of
(ii) follows from the fact that if s ∈ T , then s ≤⊥ t and, therefore, s(π) = f
implies t(π) = f . For the “only if” direction assume that no s ∈ T satisfies
s(π) = f . Since, s ≤⊥ t for each s ∈ T , we have π 6∈ P 6⊥(s) for each s ∈ T .
But then t′ = t[⊥]π is an upper bound of T with t′ <⊥ t. This contradicts the
assumption that t is the least upper bound of T .

1Note that if S is open, the final term t is not explicitly contained in S. Hence, the totality
of S does not necessarily imply the totality of t.

253

Lemma 3.10 (glb of terms). Let T ⊆ T ∞(Σ⊥,V) and P a set of positions closed
under prefixes such that all terms in T coincide in all occurrences in P , i.e.
s(π) = t(π) for all π ∈ P and s, t ∈ T . Then the glb t =

d⊥ T also coincides
with all terms in T in all occurrences in P .

Proof. Construct a term t̂ such that it coincides with all terms in T in all posi-
tions in P and has ⊥ at all other positions. Then t̂ is a lower bound of T . By
construction, t̂ coincides with all terms in T in all positions in P . Since t̂ ≤⊥ t,
this property carries over to t.

Following the two lemmas above, we can observe that – intuitively speaking
– the limit inferior lim infι→α tι of a sequence of terms is the term that contains
those parts that become eventually stable in the sequence. Remaining holes in
the term structure are filled with ’⊥’s. Let us see what this means for strongly
p-converging reductions:

Lemma 3.11 (non-⊥ symbols in open reductions). Let R = (Σ, R) be a TRS and
S : s �p λ

R t an open reduction with S = (tι →πι,cι tι+1)ι<λ. Then the following
statements are equivalent for all positions π:

(a) π ∈ P6⊥(t).

(b) there is some α < λ such that cι(π) = t(π) 6= ⊥ for all α ≤ ι < λ.

(c) there is some α < λ such that tα(π) = t(π) 6= ⊥ and πι 6≤ π for all α ≤ ι < λ.

(d) there is some α < λ such that π ∈ P6⊥(tα) and πι 6≤ π for all α ≤ ι < λ.

Proof. At first consider the implication from (a) to (b). To this end, let π ∈ P6⊥(t)
and sγ =

d⊥
γ≤ι<λ cι for each γ < λ. Note that then t =

⊔⊥
γ<λ sγ . Applying

Lemma 3.9 yields that there is some α < λ such that sα(π) = t(π). Moreover, for
each α ≤ ι < λ, we have sα ≤⊥ cι and, therefore, sα(π) = cι(π). Consequently,
we obtain cι(π) = t(π) for all α ≤ ι < λ.

Next consider the implication from (b) to (c). Let α < λ be such that cι(π) =
t(π) 6= ⊥ for all α ≤ ι < λ. Recall that cι = tι[⊥]πι for all ι < λ. Hence, the fact
that π ∈ P 6⊥(cι) for all α ≤ ι < λ implies that tα(π) = cα(π) and that πι 6≤ π for
all α ≤ ι < λ. Since cα(π) = t(π) 6= ⊥, we also have tα(π) = t(π) 6= ⊥.

The implication from (c) to (d) is trivial.
Finally, consider the implication from (d) to (a). For this purpose, let α < λ

be such that (1) π ∈ P6⊥(tα) and (2) πι 6≤ π for all α ≤ ι < λ. Consider the set P
consisting of all positions in tα that are prefixes of π. P is obviously closed under
prefixes and, because of (2), all terms in the set T = {cι |α ≤ ι < λ} coincide in
all positions in P . According to Lemma 3.10, also sα =

d⊥ T coincides with all
terms in T in all positions in P . Since π ∈ P and cα ∈ T , we thereby obtain that
cα(π) = sα(π). As we also have tα(π) = cα(π), due to (2), and π ∈ P6⊥(tα) we
can infer that π ∈ P6⊥(sα). Since sα ≤⊥ t, we can then conclude π ∈ P6⊥(t).

The above lemma is central for dealing with strongly p-convergent reductions.
It also reveals how the final term of a strongly p-convergent reduction is con-
structed. According to the equality of (a) and (c), the final term has the non-⊥
symbol f at some position π iff some term tα in the reduction also had this symbol

254

f

s

0

s

h

0

f

s

0

s

g

0

f

s

0

s

h

s

0

f

s

0

s

g

s

0

f

s

0

s

h

s

s

0

. . .

Figure 4: Reduction with two nested volatile positions.

f at this position π and no reduction after that term occurred at π or above. In
this way, the final outcome of a strongly p-convergent reduction consists of pre-
cisely those parts of the intermediate terms which become eventually persistent
during the reduction, i.e. are from some point on not subjected to contraction any
more.

Now we turn to a characterisation of the parts that are not included in the
final outcome of a strongly p-convergent reduction, i.e. those that do not become
persistent. These parts either are either omitted or are filled by the placeholder
⊥. We will call these positions volatile:

Definition 3.12 (volatility). Let R be a TRS and S = (tι →πι tι+1)ι<λ an open
p-converging reduction in R. A position π is said to be volatile in S if, for each
ordinal β < λ, there is some β ≤ γ < λ such that πγ = π. If π is volatile in S
and no proper prefix of π is volatile in S, then π is called outermost-volatile.

In Example 3.1 the position 〈0〉 is outermost-volatile in the reduction S.

Example 3.13 (volatile positions). Consider the TRS R consisting of the rules

ρ1 : h(x)→ g(x), ρ2 : s(g(x))→ s(h(s(x)))

R admits the following reduction S of length ω:

S : f(s(0), s(h(0)))→ρ1 f(s(0), s(g(0)))→ρ2 f(s(0), s(h(s(0))))

→ρ1 f(s(0), s(g(s(0))))→ρ2 f(s(0), s(h(s(s(0)))))

The reduction S p-converges to f(s(0),⊥), i.e. we have S : f(s(0), s(h(0))) �p ω
R

f(s(0),⊥). Figure 4 illustrates the reduction indicating the position of each re-
duction step by two circles and a reduction arrow in between. One can clearly see
that both π1 = 〈1〉 and π2 = 〈1, 0〉 are volatile in S. Again and again reductions
takes place at π1 and π2. Since these are the only volatile positions and π1 is a
prefix of π2, we have that π1 is an outermost-volatile position in S.

The following lemma shows that ⊥ symbols are produced in open reductions
precisely at outermost-volatile positions.

255

Lemma 3.14 (⊥ subterms in open reductions). Let S = (tι →πι tι+1)ι<α an
open reduction p-converging to tα in some TRS. Then, for every position π, we
have the following:

(i) If π is volatile in S, then π 6∈ P6⊥(tα).

(ii) tα(π) = ⊥ iff

(a) π is outermost-volatile in S, or

(b) there is some β < α such that tβ(π) = ⊥ and πι 6≤ π for all β ≤ ι < α.

(iii) Let tι be total for all ι < α. Then tα(π) = ⊥ iff π is outermost-volatile in
S.

Proof. (i) This follows from Lemma 3.11, in particular the equivalence of (a) and
(c).

(ii) At first consider the “only if” direction. To this end, suppose that tα(π) =
⊥. In order to show that then (iia) or (iib) holds, we will prove that (iib) must
hold true whenever (iia) does not hold. For this purpose, we assume that π is
not outermost-volatile in S. Note that no proper prefix π′ of π can be volatile in
S as this would imply, according to clause (i), that π′ 6∈ P6⊥(tα) and, therefore,
π 6∈ P(tα). Hence, π is also not volatile in S. In sum, no prefix of π is volatile
in S. Consequently, there is an upper bound β < α on the indices of reduction
steps taking place at π or above. But then tβ(π) = ⊥ since otherwise Lemma 3.11
would imply that tα(π) 6= ⊥. This shows that (iib) holds.

For the converse direction, we will show that both (iia) and (iib) independently
imply that tα(π) = ⊥:

(iia) Let π be outermost-volatile in S. By clause (i), this implies π 6∈ P6⊥(tα).
Hence, it remains to be shown that π ∈ P(tα). If π = 〈〉, then this is trivial.
Otherwise, π is of the form π′ · i. Since all proper prefixes of π are not volatile,
there is some β < α such that πβ = π and πι 6≤ π′ for all β ≤ ι < α. This implies
that π ∈ P(tβ). Hence, tβ(π′) = f is a symbol having an arity of at least i + 1.
Consequently, according to Lemma 3.11, also tα(π′) = f . Since f ’s arity is at
least i+ 1, also π = π′ · i ∈ P(tα).

(iib) Let β < α such that tβ(π) = ⊥ and πι 6≤ π for all β ≤ ι < α. Ac-
cording to Proposition 1.1, we have that tα =

⊔⊥
β≤γ<α

d⊥
γ≤ι<α cι. Define

sγ =
d⊥

γ≤ι<α cι for each γ < α. Since from β onwards no reduction takes
place at π or above, it holds that all cι, for β ≤ ι < α, coincide in all prefixes
of π. By Lemma 3.10, this also holds for all sι and cι with β ≤ ι < α. Since
cβ(π) = tβ(π) = ⊥, this means that sι(π) = ⊥ for all β ≤ ι < α. Recall
that tα =

⊔⊥
β≤γ<α sγ . Hence, according to Corollary 3.9, we can conclude that

tα(π) = ⊥.
(iii) is a special case of (ii): If each tι, ι < α, is total, then (iib) cannot be

true.

Clause (ii) shows that a ⊥ subterm in the final term can only have its origin
either in a preceding term which already contains this ⊥ which then becomes
stable, or in an outermost-volatile position. That is, it is exactly the outermost-
volatile positions that generate ’⊥’s.

256

We can apply this lemma to Example 3.13: As we have seen, the position
π1 = 〈1〉 is outermost-volatile in the reduction S mentioned in the example.
Hence, S strongly p-converges to a term that has, according to Lemma 3.14, the
symbol ⊥ at position π1. That is, S strongly p-converges to f(s(0),⊥).

This characterisation of the final outcome of a p-converging reduction clearly
shows that the partial order model captures the intuition of strong convergence
in transfinite reductions even though it allows that every continuous reduction
is also convergent: The final outcome only represents the parts of the reduction
that are converging. Locally diverging parts are cut off and replaced by ⊥.

In fact, the absence of such local divergence, or volatility, as we call it here, is
equivalent to the absence of ⊥:
Lemma 3.15 (total reductions). Let R be a TRS, s a total term in R, and
S : s�p R t. S : s�p R t is total iff no prefix of S has a volatile position.

Proof. The “only if” direction follows straightforwardly from Lemma 3.14.
We prove the “if” direction by induction on the length of S. If |S| = 0, then

the totality of S follows from the assumption of s being total. If |S| is a successor
ordinal, then the totality of S follows from the induction hypothesis since single
reduction steps preserve totality. If |S| is a limit ordinal, then the totality of S
follows from the induction hypothesis using Lemma 3.14.

Moreover, as we shall show in the next section, if local divergences are ex-
cluded, i.e. if total reductions are considered, both the metric model and the
partial order model coincide.

4 Comparing m-Convergence and p-Convergence

In this section we want to compare the metric and the partial order model of
convergence. In particular, we shall show that the partial order model is only a
conservative extension of the metric model: If we only consider total reductions,
i.e. reductions over terms in T ∞(Σ,V), then m-convergence and p-convergence
coincide in its weak and strong variant, respectively.

The first and rather trivial observation to this effect is that already on the
level of single reduction steps the partial order model conservatively extends the
metric model:

Fact 4.1. Let R = (Σ, R) be a TRS, R⊥ = (Σ⊥, R), and s, t ∈ T ∞(Σ⊥,V). Then
we have

s→R,π t iff s→R⊥,π t and s is total.

The next step is to establish that the underlying structures that are used to
formalise convergence exhibit this behaviour as well. That is, the limit inferior in
the complete semilattice (T ∞(Σ⊥,V),≤⊥) is conservative extension of the limit
in the complete metric space (T ∞(Σ,V),d). More precisely, we want to have that
for a sequence (tι)ι<α in T ∞(Σ,V)

lim inf
ι→α

tι = lim
ι→α

tι whenever
lim
ι→α

is defined, or

lim inf
ι→α

tι is total.

257

In Section 4.1 we shall establish the above property. This result is then used
in Section 4.2 in order to show the desired property that p-convergence is a con-
servative extension of m-convergence in both their respective weak and strong
variant.

4.1 Complete Semilattice vs. Complete Metric Space

In order to compare the complete semilattice of partial terms with the complete
metric space of term, it is convenient to have an alternative characterisation of
the similarity sim(s, t) of two terms s, t, which in turn provides an alternative
characterisation of the metric d on terms. To this end we use the truncation of a
term at a certain depth. This notion was originally used by Arnold and Nivat [2]
to show that the d is a complete ultrametric on terms:

Definition 4.2 (truncation). Let d ∈ N∪ {∞} and t ∈ T ∞(Σ⊥,V). The trunca-
tion t|d of t at depth d is defined inductively on d as follows

t|0 = ⊥ t|∞ = t

t|d+ 1 =

{
t if t ∈ V ∪ Σ(0)

f(t1|d, . . . , tk|d) if t = f(t1, . . . , tk)

More concisely we can say that the truncation of a term t at depth d replaces
all subterms at depth d with ⊥. From this we can easily establish the following
two properties of the truncation:

Proposition 4.3 (truncation). For each two s, t ∈ T ∞(Σ⊥,V) we have

(i) t|d ≤⊥ t for all d ∈ N ∪ {∞}.

(ii) s|d ≤⊥ t implies s|d = t|d for all d ∈ N ∪ {∞}.

(iii) s|d = t|d for all d ∈ N iff s = t.

Proof. Straightforward.

Recall that the similarity of two terms is the minimal depth at which they
differ resp.∞ if they are equal. However, saying that two terms differ at a certain
minimal depth d is the same as saying that the truncation of the two terms at
that depth d coincide. This provides an alternative characterisation of similarity:

Proposition 4.4 (characterisation of similarity). For each pair s, t ∈ T ∞(Σ,V)
we have

sim(s, t) = max {d ∈ N ∪ {∞} | s|d = t|d}

Proof. Straightforward.

We can use this characterisation to show the first part of the compatibility of
the metric and the partial order:

Lemma 4.5 (metric limit equals limit inferior). Let (tι)ι<α be a convergent se-
quence in (T ∞(Σ,V),d). Then limι→α tι = lim infι→α tι.

258

Proof. If α is a successor ordinal, this is trivial. Let α be a limit ordinal, t̂ =
limι→α tι, and t = lim infι→α tι. Then for each ε ∈ R+ there is a β < α such that
d(t̂, tι) < ε for all β ≤ ι < α. Hence, for each d ∈ N there is a β < α such that
sim(t̂, tι) > d for all β ≤ ι < α. According to Proposition 4.4, sim(t̂, tι) > d implies
t̂|d = tι|d, which, according to Proposition 4.3, implies t̂|d ≤⊥ tι. Therefore,
t̂|d is a lower bound of Tβ = {tι |β ≤ ι < α}, i.e. t̂|d ≤⊥

d⊥ Tβ . Since t =⊔⊥
β<α

d⊥ Tβ , we also have that
d⊥ Tβ ≤⊥ t. By transitivity, we obtain t̂|d ≤⊥ t

for each d ∈ N. According to Proposition 4.3, we can conclude t̂ = t from this.

Before we continue, we want introduce another characterisation of similarity
which bridges the gap to the partial order ≤⊥. In order to follow this approach,
we need the to define the ⊥-depth of a term t ∈ T ∞(Σ⊥,V). It is the minimal
depth of an occurrence of the subterm ⊥ in t:

⊥-depth(t) = min {|π| | t(π) = ⊥} ∪ {∞}

Intuitively, the glb su⊥t of two terms s, t represents the common structure that
both terms share. The similarity sim(s, t) is a much more condensed measure. It
only provides the depth up two which the terms share a common structure. Using
the ⊥-depth we can directly condense the glb s u⊥ t to the similarity sim(s, t):

Proposition 4.6 (characterisation of similarity). For each pair s, t ∈ T ∞(Σ,V)
we have

sim(s, t) = ⊥-depth(s u⊥ t)
Proof. Follows from Lemma 3.10.

We can employ this alternative characterisation of similarity to show the sec-
ond part of the compatibility of the metric and the partial order:

Lemma 4.7 (total limit inferior implies Cauchy). Let (tι)ι<α be a sequence in
T ∞(Σ,V) such that lim infι→α tι is total. Then (tι)ι<α is Cauchy.

Proof. For α a successor ordinal this is trivial. For the case that α is a limit
ordinal, suppose that (tι)ι<α is not Cauchy. That is, there is an ε ∈ R+ such that
for all β < α there is a pair β < ι, ι′ < α with d(tι, tι′) ≥ ε. Hence, there is a
d ∈ N such that for all β < α there is a pair β < ι, ι′ < α with sim(tι, tι′) ≤ d,
which, according to Proposition 4.6, is equivalent to ⊥-depth(tι u⊥ tι′) ≤ d. That
is,

for each β < α there are β < ι, ι′ < α with ⊥-depth(tι u⊥ tι′) ≤ d (1)

Let sβ =
d⊥

β≤ι<α tι. Then sβ ≤⊥ tι u⊥ tι′ for all β ≤ ι, ι′ < α, which
implies ⊥-depth(sβ) ≤ ⊥-depth(tι u⊥ tι′). By combining this with (1), we obtain
⊥-depth(sβ) ≤ d. More precisely, we have that

for each β < α there is a π ∈ P(sβ) with |π| ≤ d and sβ(π) = ⊥. (2)

Let t = lim infι→α tι. Note that t =
⊔⊥

β<α sβ . Since, according to Lemma 3.9,
P(t) =

⋃
β<α P(sβ) we can reformulate (2) as follows:

for each β < α there is a π ∈ P(t) with |π| ≤ d and sβ(π) = ⊥. (2’)

259

Since there are only finitely many positions in t of length at most d, there is some
π∗ ∈ P(t) such that

for each β < α there is a β ≤ γ < α with sγ(π∗) = ⊥. (3)

Since sβ ≤⊥ sγ , whenever β ≤ γ, we can rewrite (3) as follows:

sβ(π∗) = ⊥ for all β < α with π∗ ∈ P(sβ). (3’)

Since π∗ ∈ P(t), we can employ Lemma 3.9 to obtain from (3’) that t(π∗) = ⊥.
This contradicts the assumption that t = lim infι→α tι is total.

The following proposition combines Lemma 4.5 and Lemma 4.7 in order to
obtain the desired property that the metric and the partial order are compatible:

Proposition 4.8 (partial order conservatively extends metric). For every se-
quence (tι)ι<α in T ∞(Σ,V) the following holds:

lim inf
ι→α

tι = lim
ι→α

tι whenever
lim
ι→α

is defined, or

lim inf
ι→α

tι is total.

Proof. If limι→α is defined, the equality follows from Lemma 4.5. If lim infι→α tι
is total, the sequence (tι)ι<α is Cauchy by Lemma 4.7. Then, as the metric space
(T ∞(Σ,V),d) is complete, (tι)ι<α converges and we can apply Lemma 4.5 to
conclude the equality.

4.2 p-Convergence vs. m-Convergence

In the previous section we have established that the metric and the partial order
on (partial) terms are compatible in the sense that the corresponding notions of
limit and limit inferior coincide whenever the limit is defined or the limit inferior
is a total term. As weak m-convergence and weak p-convergence are solely based
on the limit in the metric space resp. the limit inferior in the partially ordered
set, we can directly apply this result to show that both notions of convergence
coincide on total reductions:

Theorem 4.9 (total weak p-convergence = weak m-convergence). For every re-
duction S in a TRS the following equivalences hold:

(i) S : s ↪→p . . . is total iff S : s ↪→m . . . , and (ii) S : s ↪→p t is total iff S : s ↪→m t.

Proof. Both equivalences follow directly from Proposition 4.8 and Fact 4.1, both of
which are applicable as we presuppose that each term in the reduction is total.

In order to replicate Theorem 4.9 for the strong notions of convergence, we first
need the following two lemmas that link the property of increasing contraction
depth to volatile positions and the limit inferior, respectively:

Lemma 4.10 (strong m-convergence). Let S = (tι →πι tι+1)ι<λ be an open
reduction. Then (|πι|)ι<λ tends to infinity iff, for each position π, there is an
ordinal α < λ such that πι 6= π for all α ≤ ι < λ.

260

Proof. The “only if” direction is trivial. For the converse direction, suppose that
|πι| does not tend to infinity as ι approaches λ. That is, there is some depth d ∈ N
such that there is no upper bound on the indices of reduction steps taking place
at depth d. Let d∗ be the minimal such depth. That is, there is some α < λ such
that all reduction steps in S|[α,λ) are at depth at least d∗, i.e. |πι| ≥ d∗ holds for
all α ≤ ι < λ. Of course, also in S|[α,λ) the indices of steps at depth d∗ are not
bounded from above. As all reduction steps in S|[α,λ) take place at depth d∗ or
below, tι|d∗ = tι′ |d∗ holds for all α ≤ ι, ι′ < λ. That is, all terms in S|[α,λ) have
the same set of positions of length d∗. Let P ∗ = {π ∈ P(tn) | |π| = d∗ } be this
set. Since there is no upper bound on the indices of steps in S|[α,λ) taking place
at a position in P ∗, yet, P ∗ is finite, there has to be some position π∗ ∈ P ∗ for
which there is also no such upper bound. This contradicts the assumption that
there is always such an upper bound.

Lemma 4.11 (limit inferior of truncations). Suppose (tι)ι<λ is a sequence in
T ∞(Σ⊥,V) and (dι)ι<λ is a sequence in N such that λ is a limit ordinal and
(dι)ι<λ tends to infinity. Then lim infι→λ tι = lim infι→λ tι|dι.
Proof. Let t = lim infι→λ tι|dι and t̂ = lim infι→λ tι. Since, according to Proposi-
tion 4.3, tι|dι ≤⊥ tι for each ι < λ, we have that t ≤⊥ t̂. Thus, it remains to be
shown that also t̂ ≤⊥ t holds. That is, we have to show that t̂(π) = t(π) holds for
all π ∈ P6⊥(t̂).

Let π ∈ P6⊥(t̂). That is, t̂(π) = f 6= ⊥. Hence, by Lemma 3.9, there is some
α < λ with (

d⊥
α≤ι<λ tι)(π) = f . Let P = {π′ |π′ ≤ π} be the set of all prefixes

of π. Note that
d⊥

α≤ι<λ tι ≤⊥ tγ for all α ≤ γ < λ. Hence,
d⊥

α≤ι<λ tι and tγ
coincide in all occurrences in P for all α ≤ γ < λ. Because (dι)ι<λ tends to infinity,
there is some α ≤ β < λ such that dγ > |π| for all β ≤ γ < λ. Consequently, since
tγ |dγ and tγ coincide in all occurrences of length smaller than dγ for all γ < λ,
we have that tγ |dγ and tγ coincide in all occurrences in P for all β ≤ γ < λ.
Hence, tγ |dγ and

d⊥
α≤ι<λ tι coincide in all occurrences in P for all β ≤ γ < λ.

Hence, according to Lemma 3.10,
d⊥

α≤ι<λ tι and
d⊥

β≤ι<λ tι|dι coincide in all
occurrences in P . Particularly, it holds that (

d⊥
β≤ι<λ tι|dι)(π) = f which in

turn implies by Lemma 3.9 that t(π) = f .

We now can prove the counterpart of Theorem 4.9 for strong convergences:

Theorem 4.12 (total strong p-convergence = strong m-convergence). For every
reduction S in a TRS the following equivalences hold:

(i) S : s�p . . . is total iff S : s�m . . . , and (ii) S : s�p t is total iff S : s�m t.

Proof. It suffices to only prove (ii) since (i) follows from (ii) according to Re-
mark 3.4 resp. Remark 2.3.

Let S = (ϕι : tι →πι,cι tι+1)ι<α be a reduction in a TRS R⊥. We continue
the proof by induction on α. The case α = 0 is trivial. If α is a successor ordinal
β + 1, we can reason as follows

S : t0 �p tα total iff S|β : t0 �p tβ and tβ →R tα (Remark 3.4, Fact 4.1)
iff S|β : t0 �m tβ and tβ →R tα (ind. hyp.)
iff S : t0 �m tα (Remark 2.3)

261

Let α be a limit ordinal. At first consider the “only if” direction. That is,
we assume that S : t0 �p tα is total. According to Remark 3.4, we have that
S|β : t0 �p tβ for each β < α. Applying the induction hypothesis yields S|β : t0 �m
tβ for each β < α. That is, following Remark 2.3, we have S : t0 �m Since
cι ≤⊥ tι for all ι < α, we have that tα = lim infι→α cι ≤⊥ lim infι→α tι. Because tα
is total and, therefore, maximal w.r.t. ≤⊥, we can conclude that tα = lim infι→α tι.
According to Proposition 4.8, this also means that tα = limι→α tι. For strong m-
convergence it remains to be shown that (|πι|)ι<α tends to infinity. So let us
assume that this is not the case. By Lemma 4.10, this means that there is a
position π such that, for each β < α, there is some β ≤ γ < α such that the step
ϕγ takes place at position π. By Lemma 3.14, this contradicts the fact that tα is
a total term.

Now consider the converse direction and assume that S : t0 �m tα. Fol-
lowing Remark 2.3 we obtain S|β : t0 �m tβ for all β < α, to which we can
apply the induction hypothesis in order to get S|β : t0 �p tβ for all β < α
so that we have S : t0 �p . . . , according to Remark 3.4. It remains to be
shown that tα = lim infι→α cι. Since S strongly m-converges to tα, we have
that (a) tα = limι→α tι, and that (b) the sequence of depths (dι = |πι|)ι<α tends
to infinity. Using Proposition 4.8 we can deduce from (a) that tα = lim infι→α tι.
Due to (b), we can apply Lemma 4.11 to obtain

lim inf
ι→α

tι = lim inf
ι→α

tι|dι and lim inf
ι→α

cι = lim inf
ι→α

cι|dι.

Since tι|dι = cι|dι for all ι < α, we can conclude that

tα = lim inf
ι→α

tι = lim inf
ι→α

tι|dι = lim inf
ι→α

cι|dι = lim inf
ι→α

cι.

The main result of this section is that we do not loose anything when switching
from the metric model to the partial order model of infinitary term rewriting. Re-
stricted to the domain of the metric model, i.e. total terms, both models coincide
in the strongest possible sense as Theorem 4.9 and Theorem 4.12 confirm.

At the same time, however, the partial order model provides more structure.
Whenever the metric model can only conclude divergence, the partial order model
can qualify the degree of divergence. If a reduction p-converges to ⊥, it can be
considered completely divergent. If it p-converges to a term that only contains ⊥
as proper subterms, it can be recognised as being only partially divergent with
the diverging parts of the reduction indicated by ’⊥’s, whereas complete absence
of ’⊥’s then indicates complete convergence.

In the rest of this paper we will put our focus on strong convergence. The-
orem 4.12 will be one of the central tools in Section 6 where we shall discover
that Böhm-reachability coincides with strong p-reachability in orthogonal sys-
tems. The other crucial tool that we will leverage is the existence and uniqueness
of complete developments. This is the subject of the subsequent section.

262

5 Strongly p-Converging Complete Developments

The purpose of this section is to establish a theory of residuals and complete devel-
opments in the setting of strongly p-convergent reductions. Intuitively speaking,
the residuals of a set of redexes are the remains of this set of redexes after a
reduction, and a complete development of a set of redexes is a reduction which
only contracts residuals of these redexes and ends in a term with no residuals.

Complete developments are a well-known tool for proving (finitary) confluence
of orthogonal systems [23]. It has also been lifted to the setting of strongly m-
convergent reductions in order to establish (restricted forms of) infinitary conflu-
ence of orthogonal systems [15]. As we have seen in Example 2.6, m-convergence
in general does not have this property.

After introducing residuals and complete developments in Section 5.1, we will
show in Section 5.2 resp. Section 5.3 that complete developments do always exist
and that their final terms are uniquely determined. We then use this in Section 5.4
to show the Infinitary Strip Lemma for strongly p-converging reductions which is
a crucial tool for proving our main result in Section 6.

5.1 Residuals

At first we need to formalise the notion of residuals. It is virtually equivalent to
the definition for strongly m-convergent reduction by Kennaway et al. [15]:

Definition 5.1 (descendants, residuals). Let R be a TRS, S : t0 �p α
R tα, and

U ⊆ P6⊥(t0). The descendants of U by S, denoted U//S, is the set of positions in
tα inductively defined as follows:

(a) If α = 0, then U//S = U .

(b) If α = 1, i.e. S : t0 →π,ρ t1 for some ρ : l → r, take any u ∈ U and define
the set Ru as follows: If π 6≤ u, then Ru = {u}. If u is in the pattern of
the ρ-redex, i.e. u = π · π′ with π′ ∈ PΣ(l), then Ru = ∅. Otherwise, i.e.
if u = π · w · x, with l|w ∈ V, then Ru = {π · w′ · x | r|w′ = l|w }. Define
U//S =

⋃
u∈U Ru.

(c) If α = β + 1, then U//S = (U//S|β)//S|[β,α)

(d) If α is a limit ordinal, then U//S = P6⊥(tα) ∩ lim infι→α U//S|ι
That is, u ∈ U//S iff u ∈ P6⊥(tα) and ∃β < α∀β ≤ ι < α : u ∈ U//S|ι

If, in particular, U is a set of redex occurrences, then U//S is also called the set
of residuals of U by S. Moreover, by abuse of notation, we write u//S instead of
{u} //S.

Clauses (a), (b) and (c) are as in the finitary setting. Clause (d) lifts the
definition to the infinitary setting. However, the only difference to the definition
of Kennaway et al. is, that we consider partial terms here. Yet, for technical
reasons, the notion of descendants has to be restricted to non-⊥ occurrences.
Since ⊥ cannot be a redex, this is not a restriction for residuals, though.

263

Remark 5.2. One can see that the descendants of a set of non-⊥-occurrences is
again a set of non-⊥-occurrences. The restriction to non-⊥-occurrences has to be
made explicit for the case of open reductions. In fact, without this explicit restric-
tion the definition would yield descendants which might not even be occurrences
in the final term tα of the reduction. For example, consider the system with the
single rule f(x)→ x and the strongly p-convergent reduction

S : fω → fω → . . . ⊥

in which each reduction step contracts the redex at the root of fω. Consider the
set U = {〈〉, 〈0〉, 〈0, 0〉, 〈0, 0, 0〉, . . . } of all positions in tω. Without the abovemen-
tioned restriction, the descendants of U by S would be U itself as the descen-
dants of U by each proper prefix of S is also U . However, none of the positions
〈0〉, 〈0, 0〉, 〈0, 0, 0〉, · · · ∈ U is even a position in the final term ⊥. The position
〈〉 ∈ U occurs in ⊥, but only as a ⊥-occurrence. With the restriction to non-⊥-
occurrences we indeed get the expected result U//S = ∅.

The definition of descendants of open reductions is quite subtle which makes
it fairly cumbersome to use in proofs. The lemma below establishes an alternative
characterisation which will turn out to be useful in later proofs:

Lemma 5.3 (descendants of open reductions). Let R be a TRS, S : s�p λ
R t and

U ⊆ P6⊥(s), with λ a limit ordinal and S = (tι →πι,cι tι+1)ι<λ. Then it holds that
for each position π

π ∈ U//S iff there is some β < λ with π ∈ U//S|β and ∀β ≤ ι < λ πι 6≤ π.

Proof. We first prove the “only if” direction. To this end, assume that π ∈ U//S.
Hence, it holds that

π ∈ P6⊥(t) and there is some γ1 < λ such that π ∈ U//S|ι for all γ1 ≤ ι < λ (1)

Particularly, we have that t(π) 6= ⊥. Applying Lemma 3.11 then yields that

there is some γ2 < λ such that πι 6≤ π for all γ2 ≤ ι < λ (2)

Now take β = max {γ1, γ2}. Then it holds that π ∈ U//S|β and that πι 6≤ π for
all β ≤ ι < λ due to (1) and (2), respectively.

Next, consider the converse direction of the statement: Let β < λ be such
that π ∈ U//S|β and πι 6≤ π for all β ≤ ι < λ. We will show that π ∈ U//S by
proving the stronger statement that π ∈ U//S|γ for all β ≤ γ ≤ λ. We do this by
induction on γ.

For γ = β, this is trivial. Let γ = γ′ + 1 > β. Note that, by definition,
U//S|γ =

(
U//S|γ′

)
//S|[γ′,γ). Hence, since for the γ′-th step we have, by assump-

tion, πγ′ 6≤ π and for the preceding reduction we have, by induction hypothesis,
that π ∈ U//S|γ′ , we can conclude that π ∈ U//S|γ .

Let γ > β be a limit ordinal. By induction hypothesis, we have that π ∈ U//S|ι
for each β ≤ ι < γ. Particularly, this implies that π ∈ P6⊥(tβ). Together with the
assumption that πι 6≤ π for all β ≤ ι < γ, this yields that π ∈ P6⊥(tγ) according
to Lemma 3.11. Hence, π ∈ U//S|γ .

264

The following lemma confirms the expected monotonicity of descendants:

Lemma 5.4 (monotonicity of descendants). Let R be a TRS, S : s �p R t and
U, V ⊆ P6⊥(s). If U ⊆ V , then U//S ⊆ V//S.
Proof. Straightforward induction on the length of S.

This lemma can be generalised such that we can see that descendants are
defined “pointwise”:

Proposition 5.5 (pointwise definition of descendants). Suppose R is a TRS,
S : s�p R t and U ⊆ P6⊥(s). Then it holds that U//S =

⋃
u∈U u//S.

Proof. Let S = (tι →πι,cι tι+1)ι<α. For α = 0 and α = 1, the statement is
trivially true. If α = α′ + 1 > 1, then abbreviate S|α′ and S|[α′,α) by S1 and S2,
respectively, and reason as follows:

U//S = (U//S1)//S2
IH
= (

⋃

u∈U

Vu︷ ︸︸ ︷
u//S1)

︸ ︷︷ ︸
V

//S2
IH
=
⋃

u∈V
u//S2

=
⋃

u∈U

⋃

v∈Vu
v//S2

IH
=
⋃

u∈U
Vu//S2 =

⋃

u∈U
(u//S1)//S2 =

⋃

u∈U
u//S

Let α be a limit ordinal. The “⊇” direction of the equation follows from
Lemma 5.4. For the converse direction, assume that π ∈ U//S. By Lemma 5.3,
there is some β < α such that πι 6≤ π for all β ≤ ι < α and π ∈ U//S|β . Applying
the induction hypothesis yields that π ∈ ⋃u∈U u//S|β , i.e. there is some u∗ ∈ U
such that π ∈ u∗//S|β . By employing Lemma 5.3 again, we can conclude that
π ∈ u∗//S and, therefore, that π ∈ ⋃u∈U u//S.

Note that the above proposition fails if we would include ⊥-occurrences in our
definition of descendants: Reconsider the example in Remark 5.2 and assume we
would drop the restriction to non-⊥-occurrences. Then the residuals u//S of each
occurrence u ∈ U would be empty, whereas the residuals U//S of all occurrences
would be the root occurrence 〈〉.
Proposition 5.6 (uniqueness of descendants). Let R be TRS, S : s �p R t and
U, V ⊆ P6⊥(s). If U ∩ V = ∅, then U//S ∩ V//S = ∅.
Proof. We will prove the contraposition of the statement. To this end, suppose
that there is some occurrence w ∈ U//S ∩ V//S. By Proposition 5.5, there are
occurrences u ∈ U and v ∈ V such that w ∈ u//S ∩ v//S. We will show by
induction on the length of S that then u = v and, therefore, U ∩ V 6= ∅. If S is
empty, then this is trivial. If S is of successor ordinal length, then this follows
straightforwardly from the induction hypothesis. If S is open, then u = v follows
from the induction hypothesis using Lemma 5.3.

Remark 5.7. The two propositions above imply that each descendant u′ ∈ U//S
of a set U of occurrences is the descendant of a uniquely determined occurrence
u ∈ U , i.e. u′ ∈ u//S for exactly one u ∈ U . This occurrence u is also called the
ancestor of u′ by S.

265

The following proposition confirms a property of descendants that one expects
intuitively: The descendants of descendants are again descendants. That is, the
concept of descendants is composable.

Proposition 5.8 (descendants of sequential reductions). Suppose R is a TRS,
S : t0 �p R t1, T : t1 �p R t2, and U ⊆ P6⊥(t0). Then U//S · T = (U//S)//T .

Proof. Straightforward proof by induction on the length of T .

The following proposition confirms that the disjointness of occurrences is prop-
agated through their descendants:

Proposition 5.9 (disjoint descendants). The descendants of a set of pairwise
disjoint occurrences are pairwise disjoint as well.

Proof. Let S : s�p α t and let U be a set of pairwise disjoint occurrences in s. We
show that U//S is also a set of pairwise disjoint occurrences by induction on α.

For α being 0, the statement is trivial, and, for α being a successor ordinal,
the statement follows straightforwardly from the induction hypothesis. Let α be
limit ordinal and suppose that there are two occurrences u, v ∈ U//S which are
not disjoint. By definition, there are ordinals β1, β2 < α such that u ∈ U//S|ι for
all β1 ≤ ι < α, and v ∈ U//S|ι for all β2 ≤ ι < α. Let β = max {β1, β2}. Then
we have that u, v ∈ U//S|β . This, however, contradicts the induction hypothesis
which, in particular, states that U//S|β is a set of pairwise disjoint occurrences.

For the definition of complete developments it is important that the descen-
dants of redex occurrences are again redex occurrences:

Proposition 5.10 (residuals). Let R be an orthogonal TRS, S : s �p R t and U
a set of redex occurrences in s. Then U//S is a set of redex occurrences in t.

Proof. Let S = (tι →πι,cι tι+1)ι<α. We proceed by induction on α. For α being
0, the statement is trivial, and, for α a successor ordinal, the statement follows
straightforwardly from the induction hypothesis.

So assume that α is a limit ordinal and that π ∈ U//S. We will show that t|π
is a redex. From Lemma 5.3 we obtain that

there is some β < α with π ∈ U//S|β and πι 6≤ π for all β ≤ ι < α. (1)

By applying the induction hypothesis, we get that π is a redex occurrence in tβ .
Hence, there is some rule l→ r ∈ R such that tβ|π is an instance of l.

We continue this proof by showing the following stronger claim:

for all β ≤ γ ≤ α tγ |π is an instance of l, and (2)
cι|π is an instance of l for all β ≤ ι < γ (3)

For the special case γ = α the above claim (2) implies that t|π is a redex.
We proceed by an induction on γ. For γ = β, part (2) of the claim has

already been shown and (3) is vacuously true. Let γ = γ′ + 1 > β. According to
the induction hypothesis, (2) and (3) hold for γ′. Hence, it remains to be shown

266

that both tγ |π and cγ′ |π are instances of l. At first consider cγ′ |π. Recall that
cγ′ = tγ′ [⊥]πγ′ . At first consider the case where π and π′γ are disjoint. Then
cγ′ |π = tγ′ |π. Since, by induction hypothesis, tγ′ |π is an instance of l, so is cγ′ |π.
Next, consider the case where π and πγ′ are not disjoint. Because of (1), we then
have that π < πγ′ , i.e. there is some non-empty π′ with πγ′ = π · π′. Since R is
non-overlapping, π′ cannot be a position in the pattern of the redex tγ′ |π w.r.t. l.
Therefore, also cγ′ |π is an instance of l. So in either case cγ′ |π is an instance of l.
Since cγ′ ≤⊥ tγ , also tγ |π is an instance of l.

Let γ > β be a limit ordinal. Part (3) of the claim follows immediately from
the induction hypothesis. Hence, cι|π is an instance of l for all β ≤ ι < γ.
This and (1) implies that all terms in the set T = {cι |β ≤ ι < γ } coincide in all
occurrences in the set

P =
{
π′
∣∣π′ ≤ π

}
∪
{
π · π′

∣∣π′ ∈ PΣ(l)
}

P is obviously closed under prefixes. Therefore, we can apply Lemma 3.10 in
order to obtain that

d⊥ T coincides with all terms in T in all occurrences in P .
Since

d⊥ T ≤⊥ tγ , this property carries over to tγ . Consequently, also tγ |π is an
instance of l.

Next we want to establish an alternative characterisation of descendants based
on labellings. This is a well-known technique [23] that keeps track of descendants
by labelling the symbols at the relevant positions in the initial term. In order to
formalise this idea, we need to extend a given TRS such that it can also deal with
terms that contain labelled symbols:

Definition 5.11 (labelled TRSs/terms). Let R = (Σ, R) be a TRS.

(i) The labelled signature Σl is defined as Σ ∪
{
f l
∣∣ f ∈ Σ

}
. The arity of the

function symbol f l is the same as that of f . The symbols f l are called
labelled ; the symbols f ∈ Σ are called unlabelled. Terms over Σl are called
labelled terms. Note that the symbol ⊥ ∈ Σ⊥ has no corresponding labelled
symbol ⊥l in the labelled signature Σl

⊥.

(ii) Labelled terms can be projected back to the original unlabelled ones by
removing the labels via the projection function ‖·‖:

‖·‖ : T ∞(Σl
⊥,V)→ T ∞(Σ⊥,V)

‖⊥‖ = ⊥ ‖x‖ = x for all x ∈ V, and∥∥∥f l(t1, . . . , tk)
∥∥∥ = ‖f(t1, . . . , tk)‖ = f(‖t1‖ , . . . , ‖tk‖) for all f ∈ Σ(k)

(iii) The labelled TRS Rl is defined as (Σl, Rl) with Rl = {l→ r | ‖l‖ → r ∈ R}.

(iv) For each rule l→ r ∈ Rl, we define its unlabelled original ‖l→ r‖ = ‖l‖ → r
in R.

(v) Let t ∈ T ∞(Σ⊥,V) and U ⊆ P 6⊥(t). The term t(U) ∈ T ∞(Σl
⊥,V) is defined

by

t(U)(π) =

{
t(π) if π 6∈ U
t(π)l if π ∈ U

267

That is,
∥∥t(U)

∥∥ = t and the labelled symbols in t(U) are exactly those at
positions in U .

The key property which is needed in order to make the labelling approach
work is that any reduction in a left-linear TRS that starts in some term t can be
lifted for any labelling t′ of t to a unique equivalent reduction in the corresponding
labelled TRS that starts in t′:

Proposition 5.12 (lifting reductions to labelled TRSs). Let R = (Σ, R) be a
left-linear TRS, S = (sι →ρι,πι sι+1)ι<α a reduction strongly p-converging to sα
in R , and t0 ∈ T ∞(Σl

⊥,V) a labelled term with ‖t0‖ = s0. Then there is a unique
reduction T = (tι →ρ′ι,πι tι+1)ι<α strongly p-converging to tα in Rl such that

(a) ‖tι‖ = sι, ‖ρ′ι‖ = ρι, for all ι < α, and

(b) ‖tα‖ = sα.

Proof. We prove this by an induction on α. For the case of α being zero, the
statement is trivially true. For the case of α being a successor ordinal, the state-
ment follows straightforwardly from the induction hypothesis (the argument is
the same as for finite reductions; e.g. consult [23]).

Let α be a limit ordinal. By induction hypothesis, for each proper prefix S|γ of
S there is a uniquely defined strongly p-convergent reduction Tγ in Rl satisfying
(a) and (b). Since the sequence (S|ι)ι<α forms a chain w.r.t. the prefix order ≤,
so does the corresponding sequence (Tι)ι<α. Hence the sequence T =

⊔
ι<α Tι

is well-defined. By construction, Tγ ≤ T holds for each γ < α, and we can use
the induction hypothesis to obtain part (a) of the proposition. In order to show
sα = ‖tα‖, we prove the two inequalities sα ≤⊥ ‖tα‖ and sα ≥⊥ ‖tα‖:

To show ‖tα‖ ≤⊥ sα, we take some π ∈ P 6⊥(‖tα‖) and show that ‖tα‖ (π) =
sα(π). Let f = ‖tα‖ (π). That is, either tα(π) = f or tα(π) = f l. In either
case, we can employ Lemma 3.11 to obtain some β < α such that tβ(π) = f resp.
tβ(π) = f l and πι 6≤ π for all β ≤ ι < α. Since, by (a), sβ = ‖tβ‖, we have in both
cases that sβ(π) = f . By applying Lemma 3.11 again, we get that sα(π) = f ,
too.

Lastly, we show the converse inequality sα ≤⊥ ‖tα‖. For this purpose, let
π ∈ P6⊥(sα) and f = sα(π). By Lemma 3.11, there is some β < α such that
sβ(π) = f and πι 6≤ π for all β ≤ ι < α. Since, by (a), sβ = ‖tβ‖, we have that
tβ(π) ∈

{
f, f l

}
. Applying Lemma 3.11 again then yields that tα(π) ∈

{
f, f l

}

and, therefore, ‖tα‖ (π) = f .

Having this, we can establish an alternative characterisation of descendants
using labellings:

Proposition 5.13 (alternative characterisation of descendants). Let R be a left-
linear TRS, S : s0 �p R sα, and U ⊆ P 6⊥(s0). Following Proposition 5.12, let
T : t0 �p R tα be the unique lifting of S to Rl starting with the term t0 = s

(U)
0 .

Then it holds that tα = s
(U//S)
α . That is, for all π ∈ P6⊥(sα), it holds that tα(π) is

labelled iff π ∈ U//S.

268

Proof. Let S = (sι →πι sι+1)ι<α and T = (tι →πι tι+1)ι<α. We prove the
statement by an induction on the length α of S. If α = 0, then the statement is
trivially true. If α is a successor ordinal, then a straightforward argument shows
that the statement follows from the induction hypothesis. Here the restriction to
left-linear systems is vital.

Let α be a limit ordinal and let π ∈ P6⊥(sα). We can then reason as follows:

tα(π) is labelled
iff ∃β < α : tβ(π) is labelled and ∀β ≤ ι < α : πι 6≤ π (Lem. 3.11)
iff π ∈ U//S|β and ∀β ≤ ι < α : πι 6≤ π (ind. hyp.)
iff π ∈ U//S (Lem. 5.3)

5.2 Constructing Complete Developments

Complete developments are usually defined for (almost) orthogonal systems. This
ensures that the residuals of redexes are again redexes. Since we are going to use
complete developments for potentially overlapping systems as well, we need to
make restrictions on the set of redex occurrences instead:

Definition 5.14 (conflicting redex occurrences). Two distinct redex occurrences
u, v in a term t are called conflicting if there is a position π such that v = u · π
and π is a pattern position of the redex at u, or, vice versa, u = v · π and π is a
pattern position of the redex at v. If this is not the case, then u and v are called
non-conflicting.

One can easily see that in an orthogonal TRS any pair of redex occurrences
is non-conflicting.

Definition 5.15 ((complete) development). Let R be a left-linear TRS, s a par-
tial term in R, and U a set of pairwise non-conflicting redex occurrences in s.

(i) A development of U in s is a strongly p-converging reduction S : s�p α t in
which each reduction step ϕι : tι →πι tι+1 contracts a redex at πι ∈ U//S|ι.

(ii) A development S : s�p t of U in s is called complete, denoted S : s�p U t, if
U//S = ∅.

This is a straightforward generalisation of complete developments known from
the finitary setting and coincides with the corresponding formalisation for metric
infinitary rewriting [15] if restricted to total terms.

The restriction to non-conflicting redex occurrences is essential in order guar-
antee that the redex occurrences are independent from each other:

Proposition 5.16 (non-conflicting residuals). Let R be a left-linear TRS, s a
partial term in R, U a set of pairwise non-conflicting redex occurrences in s,
and S : s �U t a development of U in s. Then also U//S is a set of pairwise
non-conflicting redex occurrences.

269

Proof. This can be proved by induction on the length of S. The part showing that
the descendants are again redex occurrences can be copied almost verbatim from
Proposition 5.10. Instead of referring to the non-overlappingness of the system
one can refer to the non-conflictingness of the preceding residuals which can be
assumed by the induction hypothesis. The part of the induction proof that shows
non-conflictingness is analogous to Proposition 5.9.

It is rather easy to show that complete developments of sets of non-conflicting
redex occurrences do always exists in the partial order setting. The reason for
this is that strongly p-continuous reductions do always strongly p-converge as
well. This means that as long as there are (residuals of) redex occurrences left
after an incomplete development, one can extend this development arbitrarily
by contracting some of the remaining redex occurrences. The only thing that
remains to be shown is that one can devise a reduction strategy which eventu-
ally contracts (all residuals of) all redexes. The proposition below shows that a
parallel-outermost reduction strategy will always yield a complete development
in a left-linear system.

Proposition 5.17 (complete developments). Let R be a left-linear TRS, t a
partial term in R, and U a set of pairwise non-conflicting redex occurrences in t.
Then U has a complete development in t.

Proof. Let t0 = t, U0 = U and V0 the set of outermost occurrences in U0. Fur-
thermore, let S0 : t0 �p V0 t1 be some complete development of V0 in t0. S0 can
be constructed by contracting the redex occurrences in V0 in a left-to-right or-
der. This step can be continued for each i < ω by taking Ui+1 = Ui//Si, where
Si : ti �p Vi ti+1 is some complete development of Vi in ti with Vi the set of outer-
most redex occurrences in Ui.

Note that then, by iterating Proposition 5.8, it holds that

U//S0 · . . . · Sn−1 = Un for all n < ω (1)

If there is some n < ω for which Un = ∅, then S0 · . . . · Sn−1 is a complete
development of U according to (1).

If this is not the case, consider the reduction S =
∏
i<ω Si, i.e. the concatena-

tion of all ’Si’s. We claim that S is a complete development of U . Suppose that
this is not the case, i.e. U//S 6= ∅. Hence, there is some u ∈ U//S. Since all ’Ui’s
are non-empty, so are the ’Vi’s. Consequently, all ’Si’s are non-empty reductions
which implies that S is a reduction of limit ordinal length, say λ. Therefore, we
can apply Lemma 5.3 to infer from u ∈ U//S that there is some α < λ such
that u ∈ U//S|α and all reduction steps beyond α do not take place at u or
above. This is not possible due to the parallel-outermost reduction strategy that
S adheres.

This shows that complete developments of any set of redex occurrences do
always exist in any (almost) orthogonal system. This is already an improvement
over strongly m-converging reductions which only allow this if no collapsing rules
are present or the considered set of redex occurrences does not contain a so-called
infinite collapsing tower.

270

t

l1

l2

l1

l2

r1

r2

R

x x

y y

(a) Constructing a path in a term.

t r1 t r2 t

(b) The constructed path.

Figure 5: A path.

In the subsequent section we shall show that complete developments are also
unique in the sense that the final outcome is uniquely determined by the initial
set of redexes occurrences.

5.3 Uniqueness of Complete Developments

The goal of this section is to show that the final term of a complete development
is uniquely determined by the initial set of redex occurrences U . There are several
techniques to show that in the metric model. One of these approaches, introduced
by Kennaway and de Vries [13] and detailed by Ketema and Simonsen [18, 19]
for infinitary combinatory reduction systems, uses so-called paths. Paths are con-
structed such that they, starting from the root, run through the initial term t of
the complete development, and whenever a redex occurrence of the development
is encountered, the path jumps to the root of the right-hand side of the corre-
sponding rule and jumps back to the term t when it reaches a variable in the
right-hand side.

Figure 5a illustrates this idea. It shows a path in a term t that encounters
two redex occurrences of the complete development. As soon as such a redex
occurrence is encountered, the path jumps to the right-hand side of the corre-
sponding rule as indicated by the dashed arrows. Then the path runs through
the right-hand side. When a variable is encountered, the path jumps back to the
position of the term t that matches the variable. This jump is again indicated
by a dashed arrow. The path that is obtained by this construction is shown in

271

Figure 5b. With the collection of the thus obtained paths one can then construct
the final term of the complete development. This technique – slightly modified –
can also be applied in the present setting:

Definition 5.18 (path). Let R be a left-linear TRS, t a partial term in R, and
U a set of pairwise non-conflicting redex occurrence in t. A U,R-path (or simply
path) in t is a sequence of length at most ω containing so-called nodes and edges
in an alternating manner like this:

〈n0, e0, n1, e1, n2, e2, . . .〉

where the ’ni’s are nodes and the ’ei’s are edges. A node is either a pair of the
form (>, π) with π ∈ P(t) or a triple of the form (r, π, u) with r the right-hand
side of a rule in R, π ∈ P(r), and u ∈ U . Edges are denoted by arrows →. Both
edges and nodes might be labelled by elements in Σ⊥∪V and N, respectively. We
write paths as the one sketched above as

n0 → n1 → n2 → · · ·

or, when explicitly indicating labels, as

n0
l0 l1→ n1

l2 l3→ n2
l4 l5→ · · ·

where empty labels are explicitly given by the symbol ∅. If a path has a segment
of the form n → n′, then we say there is an edge from n to n′ or that n has an
outgoing edge to n′.

Every path starts with the node (>, 〈〉) and is either infinitely long or ends
with a node. For each node n having an outgoing edge to a node n′, the following
must hold:

(1) If n is of the form (>, π), then

(a) n′ = (>, π · i) and the edge is labelled by i, with π · i ∈ P(t) and π 6∈ U ,
or

(b) n′ = (r, 〈〉, π) and the edge is unlabelled, with t|π a ρ-redex for ρ : l →
r ∈ R and π ∈ U .

(2) If n is of the form (r, π, u), then

(a) n′ = (r, π · i, u) and the edge is labelled by i, with π · i ∈ P(r), or

(b) n′ = (>, u · π′) and the edge is unlabelled, with t|u a ρ-redex for ρ : l →
r ∈ R, r|π a variable, and π′ the unique occurrence of r|π in l. .

Additionally, the nodes of a path are supposed to be labelled in the following
way:

(3) A node of the form (>, π) is unlabelled if π ∈ U and is labelled by t(π)
otherwise.

(4) A node of the form (r, π, u) is unlabelled if r|π is a variable and labelled by
r(π) otherwise.

272

Remark 5.19. The above definition is actually a coinductive one. This is neces-
sary to also define paths of infinite length. Also in [13] paths are considered to be
possibly infinite, although they are defined inductively and are, therefore, finite.

The purpose of nodes of the form (>, π) and (r, π, u), respectively, is that
they encode that the path is currently at position π in the term t resp. r. The
additional component u provides the information that the path jumped to the
right-hand side r from the redex t|u. The labellings of the nodes represent the
symbols at the current location of the path, unless it is a redex occurrence in the
main term or a variable occurrence in a right-hand side. The labellings of the
edges provide information on how the path moves through the terms: A labelling
i represents a move along the i-th edge in the term tree from the current location
whereas an empty labelling indicates a jump from or to a right-hand side of a
rule.

Remark 5.20. Our definition of paths deviates slightly from the usual definition
found in the literature [15, 19, 20]: In our setting, term nodes are of the form
(>, π). The symbol > is used to indicate that we are in the host term t. In the
definitions found in the literature, the term t itself is used for that, i.e. term nodes
are of the form (t, π). Our definition of paths makes them less dependant on the
term t they are constructed in. This makes it easier to construct a path in a host
term from other paths in different host terms. This will become necessary in the
proof of Lemma 5.33. However, we have to keep in mind that the node labels in
a path are dependent on the host term under consideration. Thus, the labelling
of a path might be different depending on which host term it is considered to be
in.

Returning to the schematic example illustrated in Figure 5, we can observe
how the construction of a path is carried out: The path starts with a segment in
the term t. This segment is entirely regulated by the rule (1a); all its edges and
nodes are labelled according to (1a) and (3). The jump to the right-hand side r1

following that initial segment is justified by rule (1b). This jump consists of a
node (>, u1), unlabelled according to (3), corresponding to the redex occurrence
u1, and an unlabelled edge to the node (r1, 〈〉, u1), corresponding to the root of
the right-hand side r1. The segment of the path that runs through the right-hand
side r1 is subject to rule (2a); again all its nodes and edges are labelled, now
according to (2a) and (4). As soon as a variable is reached in the right-hand side
term (in the schematic example it is the variable x) a jump to the main term t
is performed as required by rule (2b). This jump consists of a node (r1, π, u1),
unlabelled according to (4), where π is the current position in r1, i.e. the variable
occurrence, and an unlabelled edge to the node (>, u1 ·π′). The position π′ is the
occurrence of the variable x in the left-hand side. As we only consider left-linear
systems, this occurrence is unique. Afterwards, the same behaviour is repeated:
A segment in t is followed by a jump to a segment in the right-hand side r2 which
is in turn followed by a jump back to a final segment in t.

Note that paths do not need to be maximal. As indicated in the schematic
example, the path ends somewhere within the main term, i.e. not necessarily at
a constant symbol or a variable. What the example does not show, but which is

273

obvious from the definition, is that paths can also terminate within a right-hand
side. A jump back to the main term is only required if variable is encountered.

The purpose of the concept of paths is to simulate the contraction of all redexes
of the complete development in a locally restricted manner, i.e. only along some
branch of the term tree. This locality will keep the proofs more concise and
makes them easier to understand once we have grasped the idea behind paths.
The strategy to prove our conjecture of uniquely determined final terms is to show
that paths can be used to define a term and that a contraction of a redex of the
complete development preserves a property of the collection of all paths which
ensures that the induced term remains invariant. Then we only have to observe
that the induced term of paths in a term with no redexes (in U) is the term itself.

The following fact is obvious from the definition of a path.

Fact 5.21. Let R be a left-linear TRS, t a partial term in R, and U a set of redex
occurrences in t.

(i) An edge in a U,R-path in t is unlabelled iff the preceding node is unlabelled.

(ii) Any prefix of a U,R-path in t that ends in a node is also a U,R-path in t.

As we have already mentioned, collapsing rules and in particular so-called
infinite collapsing towers play a significant role inm-convergent reductions as they
obstruct complete developments. Also in our setting of p-convergent reductions
they are important as they are responsible for volatile positions:

Definition 5.22 (collapsing rules). Let R be a TRS.

(i) A rule l→ r in R is called collapsing if r is a variable. The unique position
of the variable r in l is called the collapsing position of the rule.

(ii) A ρ-redex is called collapsing if ρ is a collapsing rule.

(iii) A collapsing tower is a non-empty sequence (ui)i<α of collapsing redex oc-
currences in a term t such that ui+1 = ui · πi for each i < α, where πi is
a collapsing position of the redex at ui. It is called maximal if it is not a
proper prefix of another collapsing tower.

One can easily see that, in orthogonal TRSs, maximal collapsing towers in
the same term are uniquely determined by their topmost redex occurrence. That
is, two maximal collapsing towers (ui)i<α, (vi)i<α in the same term are equal iff
u0 = v0.

As mentioned, we shall use the U,R-paths in a term t in order to define the
final term of a complete development of U in t. However, in order to do that,
we only need the information that is available from the labellings. The inner
structure of nodes is only used for the bookkeeping that necessary for defining
paths. The following notion of traces defines projections to the labels of paths:

Definition 5.23 (trace). Let R be a left-linear TRS, t a partial term in R, and
U a set of pairwise non-conflicting redex occurrences in t.

(i) Let Π be a U,R-path in t. The trace of Π, denoted trt(Π), is the projection
of Π to the labelling of its nodes and edges ignoring empty labels and the
node label ⊥.

274

(ii) P(t, U,R) is used to denote the set of all U,R-paths in t that end in a
labelled node, or are infinite but have a finite trace. The set of traces of
paths in P(t, U,R) is denoted by T r(t, U,R).

By Fact 5.21, the trace of a path is a sequence alternating between elements
in Σ ∪ V and N, which, if non-empty, starts with an element in Σ ∪ V. Moreover,
by definition, T r(t, U,R) is a set of finite traces of U,R-paths in t.

As we have mentioned in Remark 5.20, the labelling of a path depends on the
host term under consideration. Hence, also the trace of a path is depended on
the host term. That is why we need to index the trace mapping trt(·) with the
corresponding host term t.

Example 5.24. Consider the term t = g(f(g(h(⊥)))) and the TRS R consisting
of the two rules

f(x)→ h(x), h(x)→ x.

Furthermore, let U be the set of all redex occurrences in t, viz. U =
{
〈0〉, 〈0〉3

}
.

The following path Π is a U,R-path in t:

(>, 〈〉)g 0→ (>, 〈0〉)∅ ∅→ (r1, 〈〉, 〈0〉)h 0→ (r1, 〈0〉, 〈0〉)∅ ∅→ (>, 〈0〉2)
g

0→ (>, 〈0〉3)
∅ ∅→ (r2, 〈〉, 〈0〉3)

∅ ∅→ (>, 〈0〉4)
⊥

As a matter of fact, Π is the greatest path of t. Hence, according to Fact 5.21,
the set of all prefixes of Π ending in a node is the set of all U,R-paths in t. Note
that since Π itself ends in a labelled node, it is contained in P(t, U,R). The trace
trt(Π) of Π is the sequence

〈g, 0, h, 0, g, 0〉
Now consider the term t′ = g(f(g(hω))) and the set U ′ of all its redexes, viz.

U ′ = {〈0〉} ∪
{
〈0〉3, 〈0〉4, . . .

}
. Then the following path Π′ is a U,R-path in t′:

(>, 〈〉)g 0→ (>, 〈0〉)∅ ∅→ (r1, 〈〉, 〈0〉)h 0→ (r1, 〈0〉, 〈0〉)∅ ∅→ (>, 〈0〉2)
g 0→ (>, 〈0〉3)

∅

∅→ (r2, 〈〉, 〈0〉3)
∅ ∅→ (>, 〈0〉4)

∅ ∅→ (r2, 〈〉, 〈0〉4)
∅ ∅→ (>, 〈0〉5)

∅ ∅→ . . .

Π′ is the greatest path of t′. The trace trt′(Π
′) of Π′ is the sequence

〈g, 0, h, 0, g, 0〉

Since Π′ is infinitely long but has a finite trace, it is contained in P(t′, U,R).

The lemma below shows that there is a one-to-one correspondence between
paths in P(t, U,R) and their traces in T r(t, U,R).

Lemma 5.25 (trt(·) is a bijection). Let R be an orthogonal TRS, t a partial term
in R, and U a set of redex occurrences in t. trt(·) is a bijection from P(t, U,R)
to T r(t, U,R).

Proof. By definition, trt(·) is surjective. Let Π1,Π2 be two paths having the same
trace. We will show that then Π1 = Π2 by an induction on the length of the
common trace.

275

Let trt(Π1) = 〈〉. Following Fact 5.21, there are two different cases: The first
case is that Π1 = Π · (>, π)⊥, where the prefix Π corresponds to a finite maximal
collapsing tower (ui)i≤α starting at the root of t or Π is empty if such a collapsing
tower does not exists. If the collapsing tower exists, then

Π = (>, u0)∅ ∅→ (r0, 〈〉, u0)∅ ∅→ (>, u1)∅ ∅→ (r1, 〈〉, u1)∅ ∅→ . . .
∅→ (>, uα)∅ ∅→

But then also Π2 starts with the prefix Π · (>, π) due to the uniqueness of the
collapsing tower and the involved rules. In both cases, Π1 = Π2 follows immedi-
ately.

The second case is that Π1 is infinite. Then there is an infinite collapsing
tower (ui)i<ω starting at the root of t. Hence,

Π1 = (>, u0)∅ ∅→ (r0, 〈〉, u0)∅ ∅→ (>, u1)∅ ∅→ (r1, 〈〉, u1)∅ ∅→ . . .

Π1 = Π2 follows from the uniqueness of the infinite collapsing tower.
At first glance one might additionally find a third case where Π1 = Π ·

(>, π)∅ ∅→ (r, 〈〉, π)⊥ with Π a prefix corresponding to a collapsing tower as in
the first case. However, this is not possible as it would require the occurrence of
⊥ in a rule.

Let trt(Π1) = f . Then there are two cases: Either Π1 = Π · (>, π)f or
Π1 = Π · (>, π)∅ ∅→ (r, 〈〉, π)f , where the prefix Π corresponds to a finite maximal
collapsing tower (ui)i≤α starting at the root of t or Π is empty if such a collapsing
tower does not exists. The argument is analogous to the argument employed for
the first case of the induction base above.

Finally, we consider the induction step. Hence, there are the two cases: Either
trt(Π1) = T · 〈i〉 or trt(Π1) = T · 〈i, f〉. For both cases, the induction hypothesis
can be invoked by taking two prefixes Π′1 and Π′2 of Π1 and Π2, respectively,
which both have the trace T and, therefore, are equal according to the induction
hypothesis. The argument that the remaining suffixes of Π1 and Π2 are equal is
then analogous to the argument for two base cases.

As mentioned above, the traces of paths contain all information necessary to
define a term which we will later identify to be the final term of the corresponding
complete development. The following definition explains how such a term, called
a matching term, is determined:

Definition 5.26 (matching term). Let R be a left-linear TRS, t a partial term
in R, and U a set of pairwise non-conflicting redex occurrences in t.

(i) The position of a trace T ∈ T r(t, U,R), denoted pos(T), is the subsequence
of T containing only the edge labels. The set of all positions of traces in
T r(t, U,R) is denoted PT r(t, U,R).

(ii) The symbol of a trace T ∈ T r(t, U,R), denoted symt(T), is f if T ends in
a node label f , and is ⊥ otherwise, i.e. whenever T is empty or ends in an
edge label.

(iii) A term t′ is said to match T r(t, U,R) if both P(t′) = PT r(t, U,R) and
t′(pos(T)) = symt(T) for all T ∈ T r(t, U,R).

276

Returning to the definition of paths, one can see that the label of a node is
the symbol of the “current” position in a term. Similarly, the label of an edge
says which edge in the term tree was taken at that point in the construction of
the path. Hence, by projecting to the edge labels, we obtain the “history” of the
path, i.e. the position. In the same way we obtain the symbol of that node by
taking the label of the last node of the path, provided the corresponding path
ends in a non-⊥-labelled node. In the other case that the trace does not end in a
node label, the corresponding path either ends in a node labelled ⊥ or is infinite.
As we will see, infinite paths with finite traces correspond to infinite collapsing
towers, which in turn yield volatile positions within the complete development.
Eventually, these volatile positions will also give rise to ⊥ subterms.

The following lemma shows that there is also a one-to-one correspondence
between the traces in T r(t, U,R) and their positions in PT r(t, U,R):

Lemma 5.27 (pos(·) is a bijection). Let R be an orthogonal TRS, t a partial term
in R and U a set of redex occurrences in t. pos(·) is a bijection from T r(t, U,R)
to PT r(t, U,R).

Proof. An argument similar to the one for Lemma 5.25 can be given in order to
show that the composition pos(·)◦trt(·) is a bijection. Together with the bijectivity
of trs(·), according to Lemma 5.25, this yields the bijectivity of pos(·).

Having this lemma, the following proposition is an easy consequence of the
definition of matching terms. It shows that matching terms do always exists and
are uniquely determined:

Proposition 5.28 (unique matching term). Let R be an orthogonal TRS, t a
partial term in R, and U a set of redex occurrences in t. Then there is a unique
term, denoted F(t, U,R), that matches T r(t, U,R).

Proof. Define the mapping ϕ : PT r(t, U,R) → Σ⊥ ∪ V by setting ϕ(pos(T)) =
symt(T) for each trace T ∈ T r(t, U,R). By Lemma 5.27, ϕ is well-defined. More-
over, it is easy to see from the definition of paths, that PT r(t, U,R) is closed under
prefixes and that ϕ respects the arity of the symbols, i.e. π · i ∈ PT r(t, U,R) iff
0 ≤ i < ar(ϕ(π)). Hence, ϕ uniquely determines a term s with s(π) = ϕ(π) for all
π ∈ PT r(t, U,R). By construction, s matches T r(t, U,R). Moreover, any other
term s′ matching T r(t, U,R) must satisfy s′(π) = ϕ(π) for all π ∈ PT r(t, U,R)
and is therefore equal to s.

It is also obvious that the matching term of a term t w.r.t. an empty set of
redex occurrences is the term t itself.

Lemma 5.29 (matching term w.r.t. empty redex set). For any TRS R and any
partial term t in R, it holds that F(t, ∅,R) = t.

Proof. Straightforward.

Remark 5.30. Now it only remains to be shown that the matching term stays
invariant during a development, i.e. that, for each development S : t �p t′ of U ,
the matching terms F(t, U,R) and F(t′, U//S,R) coincide. Since the matching
term F(t, U,R) only depends on the set T r(t, U,R) of traces, it is sufficient to

277

show that T r(t, U,R) and T r(t′, U//S,R) coincide. The key observation is that
in each step s → s′ in a development the paths in s′ differ from the paths in s
only in that they might omit some jumps. This can be seen in Figure 5a: In a
step s → s′ of a development, (some residual of) some redex occurrence in U is
contracted. In the picture this corresponds to removing the pattern, say l1, of the
redex and replacing it by the corresponding right-hand side r1 of the rule. One
can see that, except for the jump to and from the right-hand side r1 the path
remains the same.

In order to establish the above observation formally, we need a means to
simulate reduction steps in a development directly as an operation on paths. The
following definition provides a tool for this.

Definition 5.31 (position and prefix of a path). Let R be a left-linear TRS, t a
partial term in R, U a set of pairwise non-conflicting redex occurrences in t, and
Π ∈ P(t, U,R).

(i) Π is said to contain a position π ∈ P(t) if it contains the node (>, π).

(ii) For each u ∈ U , the prefix of Π by u, denoted Π(u), is defined as Π whenever
Π does not contain u and otherwise as the unique prefix of Π that ends in
(>, π).

Remark 5.32. It is obvious from the definition that each prefix Π(u) of a path Π ∈
P(t, U,R) by an occurrence u is the maximal prefix of Π, that does not contain
positions that are proper extensions of u. Equivalently, Π(u) is the maximal prefix
of Π that only contains prefixes of u (including u itself).

The following lemma is the key step towards proving the invariance of match-
ing terms in developments. It formalises the observation described in Remark 5.30.

Lemma 5.33 (preservation of traces). Let R be an orthogonal TRS, t a partial
term in R, U a set of redex occurrences in t, and S : t �p t′ a development of
U in t. There is a surjective mapping ϑS : P(t, U,R)→ P(t′, U//S,R) such that
trt(Π) = trt′(ϑS(Π)) for all Π ∈ P(t, U,R).

Proof. Let S = (tι →πι,cι tι+1)ι<α. We prove the statement by an induction on
α.

If α = 0, then the statement is trivially true.
Suppose that α is a successor ordinal β + 1. Let T : t0 �p β tβ be the prefix of

S of length β and ϕβ : tβ →πβ tα the last step of S, i.e. S = T · 〈ϕβ〉. By the in-
duction hypothesis, there is a surjective mapping ϑT : P(t, U,R)→ P(tβ, U

′,R),
with U ′ = U//T and trt(Π) = trtβ (ϑT (Π)) for all Π ∈ P(t, U,R). By a careful
case analysis (as done in [20]), one can show that there is a surjective map-
ping ϑ : P(tβ, U

′,R)→ P(tα, U
′′,R), with U ′′ = U ′//〈ϕβ〉 = U//S and trtβ (Π) =

trtα(ϑ(Π)) for all Π ∈ P(tβ, U
′,R). Hence, the composition ϑS = ϑ◦ϑT is a surjec-

tive mapping from P(t, U,R) to P(t′, U//S,R) and satisfies trt(Π) = trt′(ϑS(Π))
for all Π ∈ P(t, U,R).

Let α be a limit ordinal. By induction hypothesis, there is a surjective mapping
ϑS|ι for each proper prefix S|ι of S satisfying trt0(Π) = trtι(ϑs|ι(Π)) for all Π ∈

278

P(t, U,R). Let Π ∈ P(t, U,R) and Πι = ϑS|ι(Π) for each ι < α. We define ϑS(Π)
as follows:

ϑS(Π) = lim inf
ι→α

Π(πι)
ι

At first we have to show that ϑS is well-defined, i.e. that lim infι→α Π
(πι)
ι

is indeed a path in P(t′, U//S,R), and that it preserves traces. There are two
cases to be considered: If there is an outermost-volatile position π in S that is
contained in Πι whenever πι = π, then there is some β < α with πι 6< π for all
β ≤ ι < α. Hence, ϑS(Π) = Π

(π)
β . By Lemma 3.11 and Lemma 3.14, we have

that Π
(π)
β ∈ P(t′, U//S,R), in particular because t′(π) = ⊥. Since the suffix Π′

with Πβ = Π
(π)
β · Π′ follows an infinite collapsing tower and is therefore entirely

unlabelled, it cannot contribute to the trace of Πβ . Consequently,

trt(Π)
IH
= trtβ (Πβ) = trt′(Π

(π)
β) = trt′(ϑS(Π)).

If, on the other hand, there is no such outermost-volatile position, then either the
sequence (Π

(πι)
ι)ι<α becomes stable at some point or the sequence (

d
ι<γ Π

(πι)
ι)γ<α

grows monotonically towards the infinite path ϑS(Π). In either case, both well-
definedness and preservation of traces follows easily from the induction hypothesis.

Lastly, we show the surjectivity of ϑS . To this end, assume some Π ∈
P(t′, U//S,R). We show the existence of a path Π ∈ P(t, U,R) with ϑS(Π) = Π
by distinguishing three cases:

(a) Π ends in a redex node (r, π, u). Hence, u ∈ U//S. According to Lemma 5.3,
this means that there is some β < α such that

πι 6≤ u for all β ≤ ι < α. (1)

Consequently, all terms in {tι |β ≤ ι < α} coincide in all prefixes of u, and
each v ∈ U//S with v ≤ u is in U//S|ι for all β ≤ ι < α. Hence, for
all β ≤ γ < α we have Π ∈ P(tγ , U//S|γ ,R) with trt′(Π) = trtγ (Π). By
induction hypothesis there is for each β ≤ γ < α some Πγ ∈ P(t, U,R) that
is mapped to Π ∈ P(tγ , U//S|γ ,R) by ϑS|γ with trt(Πγ) = trtγ (Π). Hence,
trt(Πγ) = trt′(Π) which means that all paths Πγ , with β ≤ γ < α, have the
same trace in t and are therefore equal according to Lemma 5.25. Let us call
this path Π. That is, ϑS|γ (Π) = Π for all β ≤ γ < α. Since πγ 6≤ u, we also
have (ϑS|γ (Π))(πγ) = Π. Consequently, ϑS(Π) = Π.

(b) Π ends in a term node (>, π). Let f = t′(π). If f 6= ⊥, then we can apply
Lemma 3.11 to obtain some β < α such that πι 6≤ π for all β ≤ ι < α. Then
we can reason as in case (a) starting from (1). If f = ⊥, then we have to
distinguish two cases according to Lemma 3.14: If there is some β < α with
tβ(π) = ⊥ and πι 6≤ π for all β ≤ ι < α, then we can again employ the
same argument as for case (a) starting from (1). Otherwise, i.e. if π is an
outermost-volatile position in S, then we have some β < α such that πι 6< π
for all β ≤ ι < α and such that

for each β ≤ γ < α there is some γ ≤ γ′ < α with π′γ = π. (2)

279

Hence, we have for each β ≤ γ < α some Πγ ∈ P(tγ , U//S|γ ,R) and an
infinite collapsing tower (ui)i<ω in U//S|γ with u0 = π such that Πγ is of the
form

Π· ∅→ (r0, 〈〉, u0)∅ ∅→ (>, u1)∅ ∅→ (r1, 〈〉, u1)∅ ∅→ . . .

Therefore, trtγ (Πγ) = trt′(Π). By induction hypothesis there is some Πγ ∈
P(t, T,R) with ϑS|γ (Πγ) = Πγ and trt(Πγ) = trtγ (Πγ). Hence, trt(Πγ) =

trt′(Π), i.e. all Πγ have the same trace in t and are therefore equal according
to Lemma 5.25. Let us call this path Π. Since (ϑS|γ (Π))(π) = Π

(π)
γ = Π we

can use (2) to obtain that ϑS(Π) = Π.

(c) Π is infinite. Hence, Π is of the form

Π′ · (>, u0)∅ ∅→ (r0, 〈〉, u0)∅ ∅→ (>, u1)∅ ∅→ (r1, 〈〉, u1)∅ ∅→ . . .

with (ui)i<ω an infinite collapsing tower in U//S. Consequently, according to
Lemma 5.3, for each ui ∈ U//S there is some βi < α such that

ui ∈ U//S|γ and πγ 6≤ uγ for all βi ≤ γ < α. (3)

Since (ui)i<ω is a chain (w.r.t. the prefix order), we can assume w.l.o.g. that
(βi)i<ω is a chain as well. Following Remark 5.7, we obtain for each ui ∈
U//S its ancestor vi ∈ U with vi//S = ui. Let Π be the unique path in
P(t, U,R) that contains each vi and for each j < ω let Πj be the unique path
in P(tβj , U//S|βj ,R) containing each vi//S|βj . Clearly, ϑS|βj (Π) = Πj . Note

that we have for each j < ω that all paths ϑS|ι(Π) with βj ≤ ι < α coincide
in their prefix by uj , which is a prefix of Π. Since additionally (ui)i<ω is a
strict chain and because of (3), we can conclude that ϑS(Π) = Π.

The above lemma effectively establishes the invariance of matching terms dur-
ing a development. Together with Lemma 5.29 this implies the uniqueness of final
terms of complete developments of the same redex occurrences. As a corollary
from this, we obtain that descendants are also unique among all complete devel-
opments:

Proposition 5.34 (final term and descendants of complete developments). Let
R be an orthogonal TRS, t a partial term in R, and U a set of redex occurrences
in t. Then the following holds:

(i) Each complete development of U in t strongly p-converges to F(t, U,R).

(ii) For each set V ⊆ P6⊥(t) and two complete developments S and T of U in t,
respectively, it holds that V//S = V//T .

Proof. (i) Let S : t �p U t′ be a complete development of U in t strongly p-
converging to t′. By Lemma 5.33, there is a surjective mapping ϑ : P(t, U,R)→
P(t′, U ′,R) with trt(Π) = trt′(ϑ(Π)) for all Π ∈ P(t, U,R), where U ′ = U//S.
Hence, it holds that T r(t, U,R) = T r(t′, U ′,R) and, consequently, F(t, U,R) =

280

F(t′, U ′,R). Since S is a complete development of U in t, we have that U ′ = ∅
which implies, according to Lemma 5.29, that F(t′, U ′,R) = t′. Therefore,
F(t, U,R) = t′.

(ii) Let t′ = t(V). By Proposition 5.13, both reductions S and T can be
uniquely lifted to reductions S′ and T ′ in Rl, respectively, such that V//S and
V//T are determined by the final term of S′ and T ′, respectively. It is easy to see
that also Rl is an orthogonal TRS and that S′ and T ′ are complete developments
of U in t′. Hence, we can invoke clause (i) of this proposition to conclude that
the final terms of S′ and T ′ coincide and that, therefore, also V//S and V//T
coincide.

By the above proposition, the descendants of a complete development of a
particular set of redex occurrences are unique. Therefore, we adopt the notation
U//V for the descendants U//S of U by some complete development S of V .
According to Proposition 5.17 and Proposition 5.34, U//V is well-defined for any
orthogonal TRS.

Furthermore, Proposition 5.34 yields the following corollary establishing the
diamond property of complete developments:

Corollary 5.35 (diamond property of complete developments). Let R be an
orthogonal TRS and t �p U t1 and t �p V t2 be two complete developments of
U respectively V in t. Then t1 and t2 are joinable by complete developments
t1 �p V//U t

′ and t2 �p U//V t′.

Proof. By Proposition 5.5, it holds that

(U ∪ V)//U = U//U ∪ V//U = V//U.

Let S : t�p U t1, T : t�p V t2, S′ : t1 �p V//U t
′ and T ′ : t2 �p U//V t′′. By the equa-

tion above and Proposition 5.8, we have that S ·S′ : t�p U t1 �p V//U t
′ is a complete

development of U ∪V . Analogously, we obtain that T ·T ′ : t�p V t2 �p U//V t′′ is a
complete development of U ∪ V , too. According to Proposition 5.34, this implies
that both S · S′ and T · T ′ strongly p-converge in the same term, i.e. t′ = t′′.

In the next section we shall make use of complete developments in order to
obtain the Infinitary Strip Lemma for p-converging reductions and a limited form
of infinitary confluence for orthogonal systems.

5.4 The Infinitary Strip Lemma

In this section we use the results we have obtained for complete developments in
the previous two sections in order to establish that a complete development of a set
of pairwise disjoint redex occurrences commutes with any strongly p-convergent
reduction:

Proposition 5.36 (Infinitary Strip Lemma). Suppose R is an orthogonal TRS,
S : t0 �p α tα is a strongly p-convergent reduction, and t0 �p U s0 is a complete
development of a set U of pairwise disjoint redex occurrences in t0. Then tα
and s0 are joinable by a reduction S/T : s0 �p sα and a complete development
T/S : tα �p U//S sα.

281

t0 t1 tβ tβ+1 tα

s0 s1 sβ sβ+1 sα

v0

U0 U1

vβ

Uβ Uβ+1 Uα

v0//U0 vβ//Uβ

S

Figure 6: The Infinitary Strip Lemma.

Proof. We prove this statement by constructing the diagram shown in Figure 6.
The ’Uι’s in the diagram are sets of redex occurrences: Uι = U//S|ι for all 0 ≤
ι ≤ α. In particular, U0 = U . All arrows in the diagram represent complete
developments of the indicated sets of redex occurrences. Particularly, in each ι-th
step of S the redex at vι is contracted. We will construct the diagram by an
induction on α.

If α = 0, then the diagram is trivial. If α is a successor ordinal β + 1, then
we can take the diagram for the prefix S|β , which exists by induction hypothesis,
and extend it to a diagram for S. The existence of the additional square that
completes the diagram for S is affirmed by Corollary 5.35 since Uβ+1 = Uβ//vβ .

Let α be a limit ordinal. Moreover, let s′α be the uniquely determined final
term of a complete development of Uα in tα. By induction hypothesis, the diagram
exists for each proper prefix of S. Let Tι : s0 �p sι denote the reduction at the
bottom of the diagram for the reduction S|ι for each ι < α. The set of all Tι is
directed. Hence, T =

⊔
ι<α Tι exists. Since Tι < T for each ι < α, the diagram for

S with T : s0 �p sα at the bottom satisfies almost all required properties. Only
the equality of sα and s′α remains to be shown.

Note that, by Proposition 5.9, the redex occurrences in Uα are pairwise dis-
joint. Let π ∈ Uα. By Lemma 5.3 and the definition of descendants, there is some
β < α such that π ∈ Uι and vι 6≤ π for all β ≤ ι < α. Hence, for all π′ ∈ vι//Uι
with β ≤ ι < α, we also have π′ 6≤ π. That is, in the remaining reductions tβ �p tα
and tβ �p Uβ sβ �p sα, no reduction takes place at a proper prefix of π. Hence,
by Lemma 3.11, tβ coincides with tα and sα in all proper prefixes of π. Since in
the reduction tα �p Uα s

′
α also no reduction takes place at a proper prefix of π, we

obtain that tα and s′α and, thus, also sα and s′α coincide in all proper prefixes of
π.

Let ρ : l → r be the rule for the redex tβ|π and C〈, . . . , 〉, D〈, . . . , 〉 ground
contexts such that l = C〈x1, . . . , xk〉 and r = D〈xp(1), . . . , xp(m)〉 for some pair-
wise distinct variables x1, . . . , xk and an appropriate mapping p : {1, . . . ,m} →
{1, . . . , k}. Moreover, let tι1, . . . , tιk be terms such that tι = tι[C〈tι1, . . . , tιk〉]π and
sι = sι[D〈tιp(1), . . . , t

ι
p(m)〉]π for all β ≤ ι ≤ α. The argument in the previous para-

graph justifies the assumption of these elements. From β onward, all horizontal
reduction steps in the diagram take place within the contexts tι[·]π and sι[·]π,
respectively, or inside the terms tιi, and all vertical reductions take place within
the contexts tι[C〈, . . . , 〉]π and sι[D〈, . . . , 〉]π, respectively. In particular, we have
tα = tα[C〈tα1 , . . . , tαk 〉]π and sα = sα[D〈tαp(1), . . . , t

α
p(m)〉]π. Let tα →π t′α. This

reduction contracts the redex C〈tα1 , . . . , tαk 〉 to the term D〈tαp(1), . . . , t
α
p(m)〉 using

282

rule ρ. Note that a complete development tα �p Uα s
′
α contracts, besides π, only

redex occurrences disjoint with π. Hence, t′α and s′α coincide in all extensions of
π. Since t′α = tα[D〈tαp(1), . . . , t

α
p(k)〉]π (and sα = sα[D〈tαp(1), . . . , t

α
p(m)〉]π), we can

conclude that sα and s′α coincide in all extensions of π.
Since the residual π ∈ Uα was chosen arbitrarily, the above holds for all

elements in Uα. That is, sα and s′α coincide in all prefixes and all extensions of
elements in Uα. It remains to be shown, that they also coincide in positions that
are disjoint to all positions in Uα. To this end, we only need to show that tα and
sα coincide in these positions since the complete development tα �p Uα s

′
α keeps

positions disjoint with all positions in Uα unchanged. Let π be such a position.
Suppose tα(π) = f 6= ⊥. By Lemma 3.11, there is some β < α such that

tβ(π) = f and vι 6≤ π for all β ≤ ι < α. Note that no prefix π′ of π is in Uβ since
otherwise π′ ∈ Uα, by Lemma 5.3, which contradicts the assumption that π is
disjoint to all positions in Uα. Hence, sβ(π) = f and π′ 6≤ π for all π′ ∈ vι//Uι and
β ≤ ι < α, which means that no reduction step in sβ �p sα takes place at some
prefix of π. Thus, we can conclude, according to Lemma 3.11, that sα(π) = f .
Similarly, one can show that sα(π) = f 6= ⊥ implies tα(π) = f .

Suppose tα(π) = ⊥. Hence, according to Lemma 3.14, π is outermost-volatile
in S or there is some β < α such that tβ(π) = ⊥ and vι 6≤ π for all β ≤ ι < α.
For the latter case, we can argue as in the case for tα(π) 6= ⊥ above. In the
former case, π is outermost-volatile in T as well. Thus, by applying Lemma 3.14,
we obtain that sα(π) = ⊥. A similar argument can be employed for the reverse
direction.

The reduction S/T constructed in the proof above is called the projection of
S by T . Likewise, the reduction T/S is called the projection of T by S. As a
corollary we obtain the following semi-infinitary confluence result:

Corollary 5.37 (semi-infinitary confluence). In every orthogonal TRS, two re-
ductions t�p t2 and t→∗ t1 can be joined by two reductions t2 �p t3 and t1 �p t3.

Proof. This can be shown by an induction on the length of the reduction t→∗ t1.
If it is empty, the statement trivially holds. The induction step follows from
Proposition 5.36.

In the next section we shall, based on the Infinitary Strip Lemma, show
that strong p-reachability coincides with Böhm-reachability, which then yields,
amongst other things, full infinitary confluence of orthogonal systems.

6 Strong p-Convergence vs. Böhm-Convergence

In this section we shall show the core result of this paper: For orthogonal, left-
finite TRSs, strong p-reachability and Böhm-reachability w.r.t. the setRA of root-
active terms coincide. As corollaries of that, leveraging the properties of Böhm-
convergence, we obtain both infinitary normalisation and infinitary confluence of
orthogonal systems in the partial order model. Moreover, we will show that strong
p-convergence also satisfies the compression property.

283

The central step of the proof of the equivalence of both models of infinitary
rewriting is an alternative characterisation of root-active terms which is captured
by the following definition:

Definition 6.1 (destructiveness, fragility). Let R be a TRS.

(i) A reduction S : t�p s is called destructive if 〈〉 is a volatile position in S.

(ii) A partial term t in R is called fragile if a destructive reduction starts in t.

Looking at the definition, fragility seems to be a more general concept than
root-activeness: A term is fragile iff it admits a reduction in which infinitely often
a redex at the root is contracted. For orthogonal TRSs, root-active terms are
characterised in almost the same way. The difference is that only total terms
are considered and that the stipulated reduction contracting infinitely many root
redexes has to be of length ω. However, we shall show the set of total fragile
terms to be equal to the set of root-active terms by establishing a compression
lemma for destructive reductions.

Using Lemma 3.14 we can immediately derive the following alternative char-
acterisations:

Fact 6.2 (destructiveness, fragility). Let R be a TRS.

(i) A reduction S : s�p t is destructive iff S is open and t = ⊥

(ii) A partial term t in R is fragile iff there is an open strongly p-convergent
reduction t�p ⊥.

One has to keep in mind, however, that a closed reduction to ⊥ is not destruc-
tive. Such a notion of destructiveness would include the empty reduction from ⊥
to ⊥, and reductions that end with the contraction of a collapsing redex as, for ex-
ample, in the single step reduction f(⊥)→ ⊥ induced by the rule f(x)→ x. Such
reductions do not “produce” the term ⊥. They are merely capable of “moving” an
already existent subterm ⊥ by a collapsing rule. In this sense, fragile terms are,
according to Lemma 3.15, the only terms which can produce the term ⊥. This is
the key observation for studying the relation between strong p-convergence and
Böhm-convergence.

In order to show that strong p-reachability and Böhm-reachability w.r.t. RA
coincide we will proceed as follows: At first we will show that strong p-reachability
implies Böhm-reachability w.r.t. the set of total fragile terms, i.e. the fragile
terms in T ∞(Σ,V). From this we will derive a compression lemma for destructive
reductions. We will then use this to show that the set RA of root-active terms
coincides with the set of total fragile terms. From this we conclude that strong
p-reachability implies Böhm-reachability w.r.t. RA. Finally, we then show the
other direction of the equality.

6.1 From Strong p-Convergence to Böhm-Convergence

For the first step we have to transform a strongly p-converging reduction in to
a Böhm-converging reduction w.r.t. the set of total fragile terms, i.e. a strongly
m-converging reduction w.r.t. the corresponding Böhm extension B. Recall that,

284

π1

π2

π3

π4

π5

(a) Nested volatile positions.

s t

〈〉
π1

π2

π3

π4

π5

0 ω ω · 2 ω · 3 ω · 4

⊥

⊥

⊥ ⊥

⊥

⊥

(b) Replacing nested destructive reductions by →⊥ steps.

Figure 7: Turning a p-converging reduction into a Böhm-converging reduction.

by Theorem 4.12, the only difference between strongly p-converging reductions
and strongly m-converging reductions is the ability of the former to produce ⊥
subterms. This happens, according to Lemma 3.14, precisely at volatile positions.

We can, therefore, proceed as follows: Given a strongly p-converging reduction
we construct a Böhm-converging reduction by removing reduction steps which
cause the volatility of a position in some open prefix of the reduction and then
replacing them by a single →⊥-step.

The intuition of this construction is illustrated in Figure 7. It shows a strongly
p-converging reduction of length ω ·4 from s to t. In order to maintain readability,
we restrict the attention to a particular branch of the term (tree) as indicated in
Figure 7a. The picture shows five positions which are volatile in some open prefix
of the reduction. We assume that they are the only volatile positions at least in the
considered branch. Note that the positions do not need to occur in all of the terms
in the reduction. They might disappear and reappear repeatedly. Each of them,
however, appears in infinitely many terms in the reduction, as, by definition of
volatility, infinitely many steps take place at each of these positions. In Figure 7b,
the prefixes of the reduction that contain a volatile position are indicated by a
waved rewrite arrow pointing to a ⊥. The level of an arrow indicates the position
which is volatile. A prefix might have multiple volatile positions. For example,
both π2 and π4 are volatile in the prefix of length ω. But a position might also
be volatile for several prefixes. For instance, π3 is volatile in the prefix of length
ω · 2 and the prefix of length ω · 4.

By Lemma 3.14, outermost-volatile positions are responsible for the generation
of ⊥ subterms. By their nature, at some point there are no reductions taking
place above outermost-volatile positions. The suffix where this is the case is a
nested destructive reduction. The subterm where this suffix starts is, therefore, a
fragile term and we can replace this suffix with a single →⊥-step. The segments
which are replaced in this way are highlighted by dashed boxes in Figure 7b. As

285

indicated by the dotted lines, this then also includes reduction steps which occur
below the outermost-volatile positions. Therefore, also volatile positions which
are not outermost are removed as well. Eventually, we obtain a reduction without
volatile positions, which is, by Lemma 3.15, a strongly m-converging reduction in
the Böhm extension, i.e. a Böhm-converging reduction in the original system:

Proposition 6.3 (strong p-reachability implies Böhm-reachability). Let R be
a TRS, U the set of fragile terms in T ∞(Σ,V), and B the Böhm extension of
R w.r.t. U . Then, for each strongly p-convergent reduction s �p R t, there is a
Böhm-convergent reduction s�m B t.

Proof. Assume that there is a reduction S = (tι →πι tι+1)ι<α inR that strongly p-
converges to tα. We will construct a stronglym-convergent reduction T : t0 �m B tα
in B by removing reduction steps in S that take place at or below outermost-
volatile positions of some prefix of S and replace them by →⊥-steps.

Let π be an outermost-volatile position of some prefix S|λ. Then there is
some ordinal β < λ such that no reduction step between β and λ in S takes place
strictly above π, i.e. πι 6< π for all β ≤ ι < λ. Such an ordinal β must exist since
otherwise π would not be an outermost-volatile position in S|λ. Hence, we can
construct a destructive reduction S′ : tβ|π �p ⊥ by taking the subsequence of the
segment S|[β,λ) that contains the reduction steps at π or below. Note that tβ|π
might still contain the symbol ⊥. Since ⊥ is not relevant for the applicability of
rules in R, each of the ⊥ symbols in tβ|π can be safely replaced by arbitrary total
terms, in particular by terms in U . Let r be a term that is obtained in this way.
Then there is a destructive reduction S′′ : r �p ⊥ that applies the same rules at
the same positions as in S′. Hence, r ∈ U . By construction, r is a ⊥,U-instance
of tβ|π which means that tβ|π ∈ U⊥. Additionally, tβ|π 6= ⊥ since there is a
non-empty reduction S′ : tβ|π �p ⊥ starting in tβ|π. Consequently, there is a rule
tβ|π → ⊥ in B. Let T ′ be the reduction that is obtained from S|λ by replacing the
β-th step, which we can assume w.l.o.g. to take place at π, by a step with the rule
tβ|π → ⊥ at the same position π and removing all reduction steps ϕι taking place
at π or below for all β < ι < λ. Let t′ be the term that the reduction T ′ strongly
p-converges to. tλ and t′ can only differ at position π or below. However, by
construction, we have t′(π) = ⊥ and, by Lemma 3.14, tλ(π) = ⊥. Consequently,
t′ = tλ.

This construction can be performed for all prefixes of S and their respective
outermost-volatile positions. Thereby, we obtain a strongly p-converging reduc-
tion T : t0 �p B tα for which no prefix has a volatile position. By Lemma 3.15,
T is a total reduction. Note that B is a TRS over the extended signature
Σ′ = Σ] {⊥}, i.e. terms containing ⊥ are considered total. Hence, by Theo-
rem 4.12, T : t0 �m B tα.

6.2 From Böhm-convergence to Strong p-Convergence

Next, we establish a compression lemma for destructive reductions, i.e. that each
destructive reduction can be compressed to length ω. Before we continue with
this, we need to mention the following lemma from Kennaway et al. [16]:

286

Lemma 6.4 (postponement of →⊥-steps). Let R be a left-linear, left-finite TRS
and B some Böhm extension of R. Then s�m B t implies s�m R s′ �m ⊥ t for some
term s′.2

In the next proposition we show that, excluding ⊥ subterms, the final term of
a strongly p-converging reduction can be approximated arbitrarily well by a finite
reduction. This corresponds to Corollary 2.5 which establishes finite approxima-
tions for strongly m-convergent reductions.

Proposition 6.5 (finite approximation). Let R be a left-linear, left-finite TRS
and s �p R t. Then, for each finite set P ⊆ P6⊥(t), there is a reduction s →∗R t′

such that t and t′ coincide in P .

Proof. Assume that s �p R t. Then, by Proposition 6.3, there is a reduction
s�m B t, where B is the Böhm extension of R w.r.t. the set of total, fragile terms
of R. By Lemma 6.4, there is a reduction s �m R s′ �m ⊥ t. Clearly, s′ and t
coincide in P6⊥(t). Let d = max {|π| |π ∈ P }. Since P is finite, d is well-defined.
By Corollary 2.5, there is a reduction s →∗R t′ such that t′ and s′ coincide up to
depth d and, thus, in particular they coincide in P . Consequently, since s′ and t
coincide in P6⊥(t) ⊇ P , t and t′ coincide in P , too.

In order to establish a compression lemma for destructive reductions we need
that fragile terms are preserved by finite reductions. We can obtain this from the
following more general lemma showing that destructive reductions are preserved
by forming projections as constructed in the Infinitary Strip Lemma:

Lemma 6.6 (preservation of destructive reductions by projections). Let R be an
orthogonal TRS, S : t0 �p tα a destructive reduction, and T : t0 �p U s0 a complete
development of a set U of pairwise disjoint redex occurrences. Then the projection
S/T : s0 �p sα is also destructive.

Proof. We consider the situation depicted in Figure 6. Since S : t0 �p tα is de-
structive, we have, for each β < α, some β ≤ γ < α such that vγ = 〈〉. If vγ = 〈〉,
then also 〈〉 ∈ vγ//Uγ unless 〈〉 ∈ Uγ . As by Proposition 5.9, Uγ is a set of pairwise
disjoint positions, 〈〉 ∈ Uγ implies Uγ = {〈〉}. This means that if vγ = 〈〉 and
〈〉 ∈ Uγ , then Uι = ∅ for all γ < ι < α. Thus, there is only at most one γ < α
with 〈〉 ∈ Uγ . Therefore, we have, for each β < α, some β ≤ γ < α such that
〈〉 ∈ vγ//Uγ . Hence, T is destructive.

As a consequence of this preservation of destructiveness by forming projec-
tions, we obtain that the set of fragile terms is closed under finite reductions:

Lemma 6.7 (closure of fragile terms under finite reductions). In each orthogonal
TRS, the set of fragile terms is closed under finite reductions.

Proof. Let t be a fragile term and T : t →∗ t′ a finite reduction. Hence, there is
a destructive reduction starting in t. A straightforward induction proof on the
length of T , using Lemma 6.6, shows that there is a destructive reduction starting
in t′. Thus, t′ is fragile.

2Strictly speaking, if s is not a total term, i.e. it contains ⊥, then we have to consider the
system that is obtained from R by extending its signature to Σ⊥.

287

Now we can show that destructiveness does not need more that ω steps in or-
thogonal, left-finite TRSs. This property will be useful for proving the equivalence
of root-activeness and fragility of total terms as well the Compression Lemma for
strongly p-convergent reductions.

Proposition 6.8 (Compression Lemma for destructive reductions). Let R be an
orthogonal, left-finite TRS and t a partial term in R. If there is a destructive
reduction starting in t, then there is a destructive reduction of length ω starting
in t.

Proof. Let S : t0 �p λ ⊥ be a destructive reduction starting in t0. Hence, there is
some α < λ such that S|α : t0 �p s1, where s1 is a ρ-redex for some ρ : l→ r ∈ R.
Let P be the set of pattern positions of the ρ-redex s1, i.e. P = PΣ(l). Due to
the left-finiteness of R, P is finite. Hence, by Proposition 6.5, there is a finite
reduction t0 →∗ s′1 such that s1 and s′1 coincide in P . Hence, because R is left-
linear, also s′1 is a ρ-redex. Now consider the reduction T0 : t0 →∗ s′1 →ρ,〈〉 t1
ending with a contraction at the root. T0 is of finite length and, according to
Lemma 6.7, t1 is fragile.

Since t1 is again fragile, the above argument can be iterated arbitrarily often
which yields for each i < ω a finite non-empty reduction Ti : ti →∗ ti+1 whose
last step is a contraction at the root. Then the concatenation T =

∏
i<ω Ti of

these reductions is a destructive reduction of length ω starting in t0.

The above proposition bridges the gap between fragility and root-activeness.
Whereas the former concept is defined in terms of transfinite reductions, the latter
is defined in terms of finite reductions. By Proposition 6.8, however, a fragile
term is always finitely reducible to a redex. This is the key to the observation
that fragility is not only quite similar to root-activeness but is, in fact, essentially
the same concept.

Proposition 6.9 (root-activeness = fragility). Let R be an orthogonal, left-finite
TRS and t a total term in R. Then t is root-active iff t is fragile.

Proof. The “only if” direction is easy: If t is root-active, then there is a reduction
S of length ω starting in t with infinitely many steps taking place at the root.
Hence, S : t�p ω ⊥ is a destructive reduction, which makes t a fragile term.

For the converse direction we assume that t is fragile and show that, for each
reduction t →∗ s, there is a reduction s →∗ t′ to a redex t′. By Lemma 6.7,
also s is fragile. Hence, there is a destructive reduction S : s �p ⊥ starting in
s. According to Proposition 6.8, we can assume that S has length ω. Therefore,
there is some n < ω such that S|n : s→∗ t′ for a redex t′.

Before we prove the missing direction of the equality of strong p-reachability
and Böhm-reachability we need the property that strongly m-convergent reduc-
tions consisting only of →⊥-steps can be compressed to length at most ω as well.
In order to show this, we will make use of the following lemma from Kennaway
et al. [16]:

Lemma 6.10 (⊥,U-instances). Let RA be the root-active terms of an orthogonal,
left-finite TRS and t ∈ T ∞(Σ⊥,V). If some ⊥,RA-instance of t is in RA, then
every ⊥,RA-instance of t is.

288

Lemma 6.11 (compression of →⊥-steps). Consider the Böhm extension of an
orthogonal TRS w.r.t. its root-active terms and S : s �m ⊥ t with s ∈ T ∞(Σ,V),
t ∈ T ∞(Σ⊥,V). Then there is a strongly m-converging reduction T : s �m ⊥ t of
length at most ω that is a complete development of a set of disjoint occurrences
of root-active terms in s.

Proof. The proof is essentially the same as that of Lemma 7.2.4 from Ketema
[17].

Let S = (tι →πι tι+1)ι<α be the mentioned reduction strongly m-converging
to tα, and let π be a position at which some reduction step in S takes place.
That is, there is some β such that πβ = π. We will prove by induction on β that
t0|π ∈ RA.

Consider the term tβ|π. Since a →⊥-rule is applied here, we have, according
to Remark 2.9, that tβ|π ∈ RA⊥. Let V = P⊥(tβ|π). Hence, for each v ∈ V ,
there is some γ < β such that πγ = π · v. Therefore, we can apply the induction
hypothesis and get that t0|π·v ∈ RA for all v ∈ V . It is clear that we can obtain
t0|π from tβ|π by replacing each ⊥-occurrence at v ∈ V with the corresponding
term t0|π·v. That is, t0|π is a ⊥,RA-instance of tβ|π. Because tβ|π ∈ RA⊥, there
is some ⊥,RA-instance of tβ|π in RA. Thus, by Lemma 6.10, also t0|π is in RA.
This closes the proof of the claim.

Now let V = P⊥(tα). Clearly, all positions in V are pairwise disjoint. More-
over, for each v ∈ V , there is a step in S that takes place at v. Hence, by the
claim shown above, V is a set of occurrences in t0 of terms in RA. A complete
development of V in t0 leads to tα and can be performed in at most ω steps by
an outermost reduction strategy.

The important part of the above lemma is the statement that only terms in
RA are contracted instead of the general case where a→⊥ -step contracts a term
in RA⊥ ⊃ RA.

Finally, we have gathered all tools necessary in order to prove the converse
direction of the equivalence of strong p-reachability and Böhm-reachability w.r.t.
root-active terms.

Theorem 6.12 (strong p-reachability = Böhm-reachability w.r.t. RA). Let R be
an orthogonal, left-finite TRS and B the Böhm extension of R w.r.t. its root-active
terms. Then s�p R t iff s�m B t.
Proof. The “only if” direction follows from Proposition 6.9 and Proposition 6.3.

Now consider the converse direction: Let s �m B t be a strongly m-convergent
reduction in B. W.l.o.g. we assume s to be total. Due to Lemma 6.4, there
is a term s′ ∈ T ∞(Σ,V) such that there are strongly m-convergent reductions
S : s �m R s′ and T : s′ �m ⊥ t. By Lemma 6.11, we can assume that in s′ �m ⊥ t
only pairwise disjoint occurrences of root-active terms are contracted. By Propo-
sition 6.9, each root-active term r ∈ RA is fragile, i.e. we have a destructive
reduction r �p R ⊥ starting in r. Thus, following Remark 2.9, we can con-
struct a strongly p-converging reduction T ′ : s′ �p R t by replacing each step
C[r] →⊥ C[⊥] in T with the corresponding reduction C[r] �p R C[⊥]. By com-
bining T ′ with the strongly m-converging reduction S, which, according to The-
orem 4.12, is also strongly p-converging, we obtain the strongly p-converging re-
duction S · T ′ : s�p R t.

289

6.3 Corollaries

With the equivalence of strong p-reachability and Böhm-reachability established
in the previous section, strongly p-convergent reductions inherit a number of im-
portant properties that are enjoyed by Böhm-convergent reductions:

Theorem 6.13 (infinitary confluence). Every orthogonal, left-finite TRS is in-
finitarily confluent. That is, for each orthogonal, left-finite TRS, s1 �p t �p s2

implies s1 �p t′ �p s2.

Proof. Leveraging Theorem 6.12, this theorem follows from Theorem 2.10.

Returning to Example 2.6 again, we can see that, in the setting of strongly
p-converging reduction, the terms gω and fω can now be joined by repeatedly
contracting the redex at the root which yields two destructive reductions gω �p ⊥
and fω �p ⊥, respectively.

Theorem 6.14 (infinitary normalisation). Every orthogonal, left-finite TRS is
infinitarily normalising. That is, for each orthogonal, left-finite TRS R and a
partial term t in R, there is an R-normal form strongly p-reachable from t.

Proof. This follows immediately from Theorem 6.12 and Theorem 2.11.

Combining Theorem 6.13 and Theorem 6.14, we obtain that each term in an
orthogonal TRS has a unique normal form w.r.t. strong p-convergence. Due to
Theorem 6.12, this unique normal form is the Böhm tree w.r.t. root-active terms.

Since strongly p-converging reductions in orthogonal TRS can always be trans-
formed such that they consist of a prefix which is a strongly m-convergent reduc-
tion and a suffix consisting of nested destructive reductions, we can employ the
Compression Lemma for strongly m-convergent reductions (Theorem 2.4) and
the Compression Lemma for destructive reductions (Proposition 6.8) to obtain
the Compression Lemma for strongly p-convergent reductions:

Theorem 6.15 (Compression Lemma for strongly p-convergent reductions). For
each orthogonal, left-finite TRS, s�p t implies s�p ≤ω t.

Proof. Let s �p R t. According to Theorem 6.12, we have s �m B t for the Böhm
extension B of R w.r.t. RA and, therefore, by Lemma 6.4, we have reductions
S : s �m R s′ and T : s′ �m ⊥ t. Due to Theorem 2.4, we can assume S to be
of length at most ω and, due to Theorem 4.12, to be strongly p-convergent, i.e
S : s �p ≤ωR s′. If T is the empty reduction, then we are done. If not, then T
is a complete development of pairwise disjoint occurrences of root-active terms
according to Lemma 6.11. Hence, each step is of the form C[r]→⊥ C[⊥] for some
root-active term r. By Proposition 6.9, for each such term r, there is a destructive
reduction r �p R ⊥ which we can assume, in accordance with Proposition 6.8, to
be of length ω. Hence, each step C[r]→⊥ C[⊥] can be replaced by the reduction
C[r]�p ω

R C[⊥]. Concatenating these reductions results in a reduction T ′ : s′ �p R t
of length at most ω · ω. If S : s �p ≤ωR s′ is of finite length, we can interleave the
reduction steps in T ′ such that we obtain a reduction T ′′ : s′ �p ω

R t of length
ω. Then we have S · T ′′ : s �p ω

R t. If S : s �p ≤ωR s′ has length ω, we construct
a reduction s �p R t as follows: As illustrated above, T ′ consists of destructive

290

reductions taking place at some pairwise disjoint positions. These steps can be
interleaved into the reduction S resulting into a reduction s �p R t of length ω.
The argument for that is similar to that employed in the successor case of the
induction proof of the Compression Lemma of Kennaway et al. [15].

We do not know whether full orthogonality is essential for the Compression
Lemma. However, as for strongly m-convergent reductions, the left-linearity part
of it is:

Example 6.16 ([15]). Consider the TRS consisting of the rules f(x, x)→ c, a→
g(a), b→ g(b). Then there is a strongly p-converging reduction

f(a, b)→ f(g(a), b)→ f(g(a), g(b))→ f(g(g(a)), g(b))→ . . . f(gω, gω)→ c

of length ω+1. However, there is no strongly p-converging reduction f(a, b)�p ≤ω c
(since there is no such strongly m-converging reduction).

We can use the Compression Lemma for strongly p-convergent reductions to
obtain a stronger variant of Theorem 4.12 for orthogonal TRSs:

Corollary 6.17 (strong m-reachability = strong p-reachability of total terms).
Let R be an orthogonal, left-finite TRS and s, t ∈ T ∞(Σ,V). Then s �m t iff
s�p t.

Proof. The “only if” direction follows immediately from Theorem 4.12. For the
“if” direction assume a reduction S : s �p t. According to Theorem 6.15, there
is a reduction T : s �p ≤ω t. Hence, since s is total and totality is preserved by
single reduction steps, T : s �p ≤ω t is total. Applying Theorem 4.12, yields that
T : s�m ≤ω t.

7 Conclusions

Infinitary term rewriting in the partial order model provides a more fine-grained
notion of convergence. Formally, every meaningful, i.e. p-continuous, reduction is
also p-converging. However, p-converging reductions can end in a term containing
’⊥’s indicating positions of local divergence. Theorem 4.9, Theorem 4.12 and
Corollary 6.17 show that the partial model coincides with the metric model but
additionally allows a more detailed inspection of non-m-converging reductions.
Instead of the coarse discrimination between convergence and divergence provided
by the metric model, the partial order model allows different levels between full
convergence (a total term as result) and full divergence (⊥ as result).

The equivalence of strong p-reachability and Böhm-reachability shows that the
differences between the metric and the partial order model can be compensated
by simply adding rules that allow to replicate destructive reductions by→⊥-steps.
By this equivalence, we additionally obtain infinitary normalisation and infinitary
confluence for orthogonal systems – a considerable improvement over strong m-
convergence. Both strong p-convergence and Böhm-convergence are defined quite
differently and have independently justified intentions, yet they still induce the

291

same notion of transfinite reachability. This suggests that this notion of transfinite
reachability can be considered a “natural” choice also because of their properties
that admit unique normal forms. Nevertheless, while achieving the same goals as
Böhm-extensions, the partial order approach provides a more intuitive and more
elegant model for transfinite reductions as it does not need the cumbersomely
defined “shortcuts” provided by →⊥-steps which depend on allowing infinite left-
hand sides in rewrite rules. Vice versa destructive reductions in the partial order
model provide a justification for admitting these shortcuts.

7.1 Related Work

This study of partial order convergence is inspired by Blom [5] who investigated
strong partial order convergence in lambda calculus and compared it to strong
metric convergence. Similarly to our findings for orthogonal term rewriting sys-
tems, Blom has shown for lambda calculus that reachability in the metric model
coincides with reachability in the partial order model modulo equating so-called
0-undefined terms.

Also Corradini [6] studied a partial order model. However, he uses it to de-
velop a theory of parallel reductions which allows simultaneous contraction of a
set of mutually independent redexes of left-linear rules. To this end, Corradini
defines the semantics of redex contraction in a non-standard way by allowing a
partial matching of left-hand sides. Our definition of complete developments also
provides, at least for orthogonal systems, a notion of parallel reductions but does
so using the standard semantics of redex contraction.

7.2 Future Work

While we have studied both weak and strong p-convergence and have compared
it to the respective metric counterparts, we have put the focus on strong p-
convergence. It would be interesting to find out whether the shift to the par-
tial order model has similar benefits for weak convergence, which is known to be
rather unruly in the metric model [22].

Moreover, we have focused on orthogonal systems in this paper. It should be
easy to generalise our results to almost orthogonal systems. The only difficulty
is to deal with the ambiguity of paths when rules are allowed to overlay. This
could be resolved by considering equivalence classes of paths instead. The move to
weakly orthogonal systems is much more complicated: For strong m-convergence
Endrullis et al. [10] have shown that weakly orthogonal systems do not even satisfy
the infinitary unique normal form property (UN∞), a property that orthogonal
systems do enjoy [15]. Due to Theorem 4.12, this means that also in the setting
of strong p-convergence, weakly orthogonal systems do not satisfy UN∞ and are
therefore not infinitarily confluent either! Endrullis et al. [10] have shown that
this can be resolved in the metric setting by prohibiting collapsing rules. However,
it is not clear whether this result can be transferred to the partial order setting.

Another interesting direction to follow is the ability to finitely simulate transfi-
nite reductions by term graph rewriting. For strongm-convergence this is possible,
at least to some extent [14]. We think that a different approach to term graph

292

rewriting, viz. the double-pushout approach [9] or the equational approach [1], is
more appropriate for the present setting of p-convergence [3, 7].

Acknowledgements

I want to thank Bernhard Gramlich for his constant support during the work on
my master’s thesis which made this work possible.

Bibliography

[1] Z. M. Ariola and J. W. Klop. Equational term graph rewriting. Fundamenta
Informaticae, 26(3-4):207–240, 1996. ISSN 0169-2968. doi: 10.3233/FI-1996-
263401.

[2] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and
topological properties. Fundamenta Informaticae, 3(4):445–476, 1980.

[3] P. Bahr. Infinitary Rewriting - Theory and Applications. Master’s thesis,
Vienna University of Technology, Vienna, 2009.

[4] P. Bahr. Abstract Models of Transfinite Reductions. In C. Lynch, editor, Pro-
ceedings of the 21st International Conference on Rewriting Techniques and
Applications, volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 49–66, Dagstuhl, Germany, 2010. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2010.49.

[5] S. Blom. An Approximation Based Approach to Infinitary Lambda Calculi.
In V. van Oostrom, editor, Rewriting Techniques and Applications, volume
3091 of Lecture Notes in Computer Science, pages 221–232. Springer Berlin
/ Heidelberg, 2004. doi: 10.1007/b98160.

[6] A. Corradini. Term rewriting in CTΣ. In M.-C. Gaudel and J.-P. Jouan-
naud, editors, TAPSOFT’93: Theory and Practice of Software Development,
volume 668 of Lecture Notes in Computer Science, pages 468–484. Springer
Berlin / Heidelberg, 1993. doi: 10.1007/3-540-56610-4_83.

[7] A. Corradini and F. Drewes. (Cyclic) Term Graph Rewriting is adequate for
Rational Parallel Term Rewriting. Technical Report TR-14-97, Universita di
Pisa, Dipartimento di Informatica, 1997.

[8] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, rewrite, rewrite,
rewrite, rewrite, ... Theoretical Computer Science, 83(1):71–96, 1991. ISSN
0304-3975. doi: 10.1016/0304-3975(91)90040-9.

[9] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic
approach. In 14th Annual Symposium on Switching and Automata Theory,
pages 167–180, Washington, DC, USA, 1973. IEEE Computer Society. doi:
10.1109/SWAT.1973.11.

293

[10] J. Endrullis, C. Grabmayer, D. Hendriks, J. W. Klop, and V. van Oost-
rom. Unique Normal Forms in Infinitary Weakly Orthogonal Rewrit-
ing. In C. Lynch, editor, Proceedings of the 21st International Confer-
ence on Rewriting Techniques and Applications, volume 6 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 85–102, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2010.85.

[11] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
Algebra Semantics and Continuous Algebras. Journal of the ACM, 24(1):
68–95, 1977. ISSN 0004-5411. doi: 10.1145/321992.321997.

[12] J. L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics.
Springer-Verlag, 1955. ISBN 0387901256.

[13] R. Kennaway and F.-J. de Vries. Infinitary Rewriting. In Terese, editor,
Term Rewriting Systems, chapter 12, pages 668–711. Cambridge University
Press, 1st edition, 2003. ISBN 9780521391153.

[14] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. On the adequacy
of graph rewriting for simulating term rewriting. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):493–523, 1994. ISSN 0164-0925.
doi: 10.1145/177492.177577.

[15] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite Reduc-
tions in Orthogonal Term Rewriting Systems. Information and Computation,
119(1):18–38, 1995. ISSN 0890-5401. doi: 10.1006/inco.1995.1075.

[16] R. Kennaway, V. van Oostrom, and F.-J. de Vries. Meaningless Terms in
Rewriting. Journal of Functional and Logic Programming, 1999(1):1–35,
1999.

[17] J. Ketema. Böhm-Like Trees for Rewriting. PhD thesis, Vrije Universiteit
Amsterdam, 2006.

[18] J. Ketema and J. G. Simonsen. On Confluence of Infinitary Combinatory Re-
duction Systems. In G. Sutcliffe and A. Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning, volume 3835 of Lecture Notes in
Computer Science, pages 199–214. Springer Berlin / Heidelberg, 2005. doi:
10.1007/11591191_15.

[19] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems:
Normalising Reduction Strategies. Logical Methods in Computer Science, 6
(1):7, 2010. doi: 10.2168/LMCS-6(1:7)2010.

[20] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems.
Information and Computation, 209(6):893–926, 2011. ISSN 0890-5401. doi:
10.1016/j.ic.2011.01.007.

[21] P. H. Rodenburg. Termination and Confluence in Infinitary Term Rewriting.
The Journal of Symbolic Logic, 63(4):1286–1296, 1998. ISSN 00224812.

294

http://dx.doi.org/10.3233/FI-1996-263401
http://dx.doi.org/10.3233/FI-1996-263401
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49
http://dx.doi.org/10.1007/b98160
http://dx.doi.org/10.1007/3-540-56610-4_83
http://dx.doi.org/10.1016/0304-3975(91)90040-9
http://dx.doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.85
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.85
http://dx.doi.org/10.1145/321992.321997

[22] J. G. Simonsen. On confluence and residuals in Cauchy convergent transfinite
rewriting. Information Processing Letters, 91(3):141–146, 2004. ISSN 0020-
0190. doi: 10.1016/j.ipl.2004.03.018.

[23] Terese. Term Rewriting Systems. Cambridge University Press, 1st edition,
2003. ISBN 9780521391153.

295

http://dx.doi.org/10.1145/177492.177577
http://dx.doi.org/10.1006/inco.1995.1075
http://dx.doi.org/10.1007/11591191_15
http://dx.doi.org/10.1007/11591191_15
http://dx.doi.org/10.2168/LMCS-6(1:7)2010
http://dx.doi.org/10.1016/j.ic.2011.01.007
http://dx.doi.org/10.1016/j.ic.2011.01.007
http://dx.doi.org/10.1016/j.ipl.2004.03.018

Modes of Convergence for Term Graph Rewriting

Patrick Bahr

Department of Computer Science, University of Copenhagen

Abstract

Term graph rewriting provides a simple mechanism to finitely represent re-
stricted forms of infinitary term rewriting. The correspondence between
infinitary term rewriting and term graph rewriting has been studied to some
extent. However, this endeavour is impaired by the lack of an appropriate
counterpart of infinitary rewriting on the side of term graphs. We aim to fill
this gap by devising two modes of convergence based on a partial order re-
spectively a metric on term graphs. The thus obtained structures generalise
corresponding modes of convergence that are usually studied in infinitary
term rewriting.

We argue that this yields a common framework in which both term
rewriting and term graph rewriting can be studied. In order to substan-
tiate our claim, we compare convergence on term graphs and on terms. In
particular, we show that the modes of convergence on term graphs are con-
servative extensions of the corresponding modes of convergence on terms
and are preserved under unravelling term graphs to terms. Moreover, we
show that many of the properties known from infinitary term rewriting are
preserved. This includes the intrinsic completeness of both modes of conver-
gence and the fact that convergence via the partial order is a conservative
extension of the metric convergence.

Contents
1 Introduction 298

1.1 Motivation . 299
1.1.1 Lazy Evaluation . 299
1.1.2 Rational Terms . 301

1.2 Contributions & Related Work . 302
1.2.1 Contributions . 302
1.2.2 Related Work . 303

1.3 Overview . 303

2 Preliminaries 303
2.1 Sequences . 303
2.2 Metric Spaces . 304
2.3 Partial Orders . 304
2.4 Terms . 305
2.5 Term Rewriting Systems . 306

297

3 Infinitary Term Rewriting 306

4 Graphs & Term Graphs 309
4.1 Homomorphisms . 311
4.2 Isomorphisms & Isomorphism Classes 314

4.2.1 Canonical Term Graphs . 315
4.2.2 Labelled Quotient Trees . 315
4.2.3 Terms, Term Trees & Unravelling 318

5 A Rigid Partial Order on Term Graphs 318
5.1 Partial Orders on Term Graphs . 319
5.2 The Rigid Partial Order . 323

5.2.1 Characterising Rigidity . 324
5.2.2 Convergence . 325
5.2.3 Maximal Term Graphs . 330

6 A Rigid Metric on Term Graphs 330
6.1 Truncating Term Graphs . 331
6.2 The Effect of Truncation . 334
6.3 Deriving a Metric on Term Graphs 337

7 Metric vs. Partial Order Convergence 338

8 Infinitary Term Graph Rewriting 341
8.1 Term Graph Rewriting Systems . 342
8.2 Convergence of Transfinite Reductions 344

9 Term Graph Rewriting vs. Term Rewriting 348
9.1 Soundness and Completeness Properties 348
9.2 Preservation of Convergence under Unravelling 349
9.3 Finite Representations of Transfinite Term Reductions 353

10 Conclusions & Future Work 354

Acknowledgement 355

Bibliography 355

A Proof of Lemma 5.14 358

B Proof of Lemma 6.10 361

1 Introduction
Non-terminating computations are not necessarily undesirable. For instance,
the termination of a reactive system would be usually considered a critical fail-
ure. Even computations that, given an input x, should produce an output y are
not necessarily terminating in nature either. For example, the various iterative
approximation algorithms for π produce approximations of increasing accuracy

298

without ever terminating with the exact value of π. While such iterative approx-
imation computations might not reach the exact target value, they are able to
come arbitrary close to the correct value within finite time.

It is this kind of non-terminating computations which is the subject of in-
finitary term rewriting [23]. It extends the theory of term rewriting by giving
a meaning to transfinite reductions instead of dismissing them as undesired and
meaningless artifacts. Following the paradigm of iterative approximations, the
result of a transfinite reduction is simply the term that is approximated by the
reduction. In general, such a result term can be infinite. For example, starting
from the term rep(0), the rewrite rule rep(x)→ x :: rep(x) produces a reduction

rep(0)→ 0 :: rep(0)→ 0 :: 0 :: rep(0)→ 0 :: 0 :: 0 :: rep(0)→ . . .

that approximates the infinite term 0 :: 0 :: 0 :: Here, we use :: as a binary
symbol that we write infix and assume to associate to the right. That is, the
term 0 :: 0 :: rep(0) is parenthesised as 0 :: (0 :: rep(0)). Think of the :: symbol as
the list constructor cons.

Term graphs, on the other hand, allow us to explicitly represent and reason
about sharing and recursion [3] by dropping the restriction to a tree structure,
which we have for terms. Apart from that, term graphs also provide a finite repre-
sentation of certain infinite terms, viz. rational terms. As Kennaway et al. [22, 24]
have shown, this can be leveraged in order to finitely represent restricted forms
of infinitary term rewriting using term graph rewriting.

In this paper, we extend the theory of infinitary term rewriting to the setting
of term graphs. To this end, we devise modes of convergence that constrain
reductions of transfinite length in a meaningful way. Our approach to convergence
is twofold: we generalise the metric on terms that is used to define convergence
for infinitary term rewriting [13] to term graphs. In a similar way, we generalise
the partial order on terms that has been recently used to define a closely related
notion of convergence for infinitary term rewriting [7]. The use of two different
– but on terms closely related – approaches to convergence will allow us both to
assess the appropriateness of the resulting infinitary calculi and to compare them
against the corresponding infinitary calculi of term rewriting.

1.1 Motivation
1.1.1 Lazy Evaluation

Term rewriting is a useful formalism for studying declarative programs, in partic-
ular, functional programs. A functional program essentially consists of functions
defined by a set of equations and an expression that is supposed to be evaluated
according to these equations. The conceptual process of evaluating an expression
is nothing else than term rewriting.

A particularly interesting feature of modern functional programming lan-
guages, such as Haskell [28], is the ability to use conceptually infinite compu-
tations and data structures. For example, the following definition of a function
from constructs for each number n the infinite list of consecutive numbers starting
from n:

from(n) = n :: from(s(n))

299

Here, we use the binary infix symbol :: to denote the list constructor cons and s
for the successor function. While we cannot use the infinite list generated by from
directly – the evaluation of an expression of the form from n does not terminate
– we can use it in a setting in which we only read a finite prefix of the infinite list
conceptually defined by from. Functional languages such as Haskell allow this use
of semantically infinite data structures through a non-strict evaluation strategy,
which delays the evaluation of a subexpression until its result is actually required
for further evaluation of the expression. This non-strict semantics is not only a
conceptual neatness but in fact one of the major features that make functional
programs highly modular [17].

The above definition of the function from can be represented as a term rewrit-
ing system with the following rule:

from(x)→ x :: from(s(x))

Starting with the term from(0), we then obtain the following infinite reduction:

from(0)→ 0 :: from(s(0))→ 0 :: s(0) :: from(s(s(0)))→ . . .

Infinitary term rewriting [23] provides a notion of convergence that may
assign a meaningful result term to such an infinite reduction provided there
exists one. In this sense, the above reduction converges to the infinite term
0 :: s(0) :: s(s(0)) :: . . . , which represents the infinite list of numbers 0, 1, 2,
Due to this extension of term rewriting with explicit limit constructions for
non-terminating reductions, infinitary term rewriting allows us to directly reason
about non-terminating functions and infinite data structures.

Non-strict evaluation is rarely found unescorted, though. Usually, it is im-
plemented as lazy evaluation [16], which complements a non-strict evaluation
strategy with sharing. The latter avoids duplication of subexpressions by using
pointers instead of copying. For example, the function from above duplicates its
argument n – it occurs twice on the right-hand side of the defining equation. A
lazy evaluator simulates this duplication by inserting two pointers pointing to the
actual argument. Sharing is a natural companion for non-strict evaluation as it
avoids re-evaluation of expressions that are duplicated before they are evaluated.

The underlying formalism that is typically used to obtain sharing for func-
tional programming languages is term graph rewriting [29, 30]. Term graph
rewriting [10, 31] uses graphs to represent terms thus allowing multiple arcs to
point to the same node. For example, term graphs allows us to change the rep-
resentation of the term rewrite rule defining the function from by replacing

::

x from

s

x

the tree representation

::

x from

s

by a graph representation

which shares the variable x by having two arcs pointing to it.

300

While infinitary term rewriting is used to model the non-strictness of lazy
evaluation, term graph rewriting models the sharing part of it. By endowing
term graph rewriting with a notion of convergence, we aim to unify the two
formalisms into one calculus, thus allowing us to model both aspects withing the
same calculus.

1.1.2 Rational Terms

Term graphs can do more than only share common subexpressions. Through
cycles term graphs may also provide a finite representation of certain infinite
terms – so-called rational terms. For example, the infinite term 0 :: 0 :: 0 :: . . . can
be represented as the finite term graph

::

0

Since a single node on a cycle in a term graph represents infinitely many corre-
sponding subterms, the contraction of a single term graph redex may correspond
to a transfinite term reduction that contracts infinitely many term redexes. For
example, if we apply the rewrite rule 0→ s(0) to the above term graph, we obtain
a term graph that represents the term s(0) :: s(0) :: s(0) :: . . . , which can only be
obtained from the term 0 :: 0 :: 0 :: . . . via a transfinite term reduction with the
rule 0 → s(0). Kennaway et al. [24] investigated this correspondence between
cyclic term graph rewriting and infinitary term rewriting. Among other results
they characterise a subset of transfinite term reductions – called rational reduc-
tions – that can be simulated by a corresponding finite term graph reduction.
The above reduction from the term 0 :: 0 :: 0 :: . . . is an example of such a rational
reduction.

With the help of a unified formalism for infinitary and term graph rewriting,
it should be easier to study the correspondence between infinitary term rewriting
and finitary term graph rewriting further. The move from an infinitary term
rewriting system to a term graph rewriting system only amounts to a change
in the degree of sharing if we use infinitary term graph rewriting as a common
framework.

Reconsider the term rewrite rule rep(x)→ x :: rep(x), which defines a function
rep that repeats its argument infinitely often:

rep(0)→ 0 :: rep(0)→ 0 :: 0 :: rep(0)→ 0 :: 0 :: 0 :: rep(0)→ . . . 0 :: 0 :: 0 :: . . .

This reduction happens to be not a rational reduction in the sense of Kennaway
et al. [24].

The move from the term rule rep(x) → x :: rep(x) to a term graph rule is a
simple matter of introducing sharing of common subexpressions:

rep

x

::

x rep

x

rep

xis represented by

::

301

Instead of creating a fresh copy of the redex on the right-hand side, the redex
is reused by placing an edge from the right-hand side of the rule to its left-hand
side. This allows us to represent the infinite reduction approximating the infinite
term 0 :: 0 :: 0 :: . . . with the following single step term graph reduction induced
by the above term graph rule:

rep

0

::

0

Via its cyclic structure the resulting term graph represents the infinite term
0 :: 0 :: 0 ::

Since both transfinite term reductions and the corresponding finite term graph
reductions can be treated within the same formalism, we hope to provide a tool for
studying the ability of cyclic term graph rewriting to finitely represent transfinite
term reductions.

1.2 Contributions & Related Work

1.2.1 Contributions

The main contributions of this paper are the following:

(i) We devise a partial order on term graphs based on a restricted class of graph
homomorphisms. We show that this partial order forms a complete semi-
lattice and thus is technically suitable for defining a notion of convergence
(Theorem 5.15). Moreover, we illustrate alternative partial orders and show
why they are not suitable for formalising convergence on term graphs.

(ii) Independently, we devise a metric on term graphs and show that it forms a
complete ultrametric space on term graphs (Theorem 7.4).

(iii) Based on the partial order respectively the metric we define a notion of weak
convergence for infinitary term graph rewriting. We show that – similar to
the term rewriting case [7] – the metric calculus of infinitary term graph
rewriting is the total fragment of the partial order calculus of infinitary term
graph rewriting (Theorem 8.10).

(iv) We confirm that the partial order and the metric on term graphs generalise
the partial order respectively the metric that is used for infinitary term
rewriting (Proposition 5.19 and 6.16). Moreover, we show that the corre-
sponding notions of convergence are preserved by unravelling term graphs
to terms thus establishing the soundness of our notions of convergence on
term graphs w.r.t. the convergence on terms (Theorems 9.9 and 9.11).

(v) We substantiate the appropriateness of our calculi by a number of examples
that illustrate how increasing the sharing gradually reduces the number of
steps necessary to reach the final result – eventually, from an infinite number
of steps to a finite number (Sections 8 and 9).

302

1.2.2 Related Work

Calculi with explicit sharing and/or recursion, e.g. via letrec, can also be con-
sidered as a form of term graph rewriting. Ariola and Klop [3] recognised that
adding such an explicit recursion mechanism to the lambda calculus may break
confluence. In order to reconcile this, Ariola and Blom [1, 2] developed a notion
of skew confluence that allows them to define an infinite normal form in the vein
of Böhm trees.

Recently, we have investigated other notions of convergence for term graph
rewriting [8, 9] that use simpler variants of the partial order and the metric that
we use in this paper. Both of them have theoretically pleasing properties, e.g.
the ideal completion and the metric completion of the set of finite term graphs
both yield the set of all term graphs. However, the resulting notions of weak
convergence are not fully satisfying and in fact counterintuitive for some cases.
We will discuss this alternative approach and compare it to the present approach
in more detail in Sections 5 and 6.

1.3 Overview

The structure of this paper is as follows: in Section 2, we provide the necessary
background for metric spaces, partially ordered sets and term rewriting. In Sec-
tion 3, we give an overview of infinitary term rewriting. Section 4 provides the
necessary theory for graphs and term graphs. Sections 5 and 6 form the core
of this paper. In these sections we study the partial order and the metric on
term graphs that are the basis for the modes of convergence we propose in this
paper. In Section 7, we then compare the two resulting modes of convergence.
Moreover, in Section 8, we use these two modes of convergence to study two
corresponding infinitary term graph rewriting calculi. In Section 9, we study
the correspondences between infinitary term graph rewriting and infinitary term
rewriting.

Some proofs have been omitted from the main body of the text. These proofs
can be found in the appendix of this paper.

Contents

2 Preliminaries
We assume the reader to be familiar with the basic theory of ordinal numbers,
orders and topological spaces [20], as well as term rewriting [33]. In order to
make this paper self-contained, we briefly recall all necessary preliminaries.

2.1 Sequences

We use the von Neumann definition of ordinal numbers. That is, an ordinal
number (or simply ordinal) α is the set of all ordinal numbers strictly smaller
than α. In particular, each natural number n ∈ N is an ordinal number with
n = {0, 1, . . . , n− 1}. The least infinite ordinal number is denoted by ω and is

303

the set of all natural numbers. Ordinal numbers will be denoted by lower case
Greek letters α, β, γ, λ, ι.

A sequence S of length α in a set A, written (aι)ι<α, is a function from α
to A with ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If α
is a limit ordinal, then S is called open. Otherwise, it is called closed. If α is
a finite ordinal, then S is called finite. Otherwise, it is called infinite. For a
finite sequence (ai)i<n we also use the notation 〈a0, a1, . . . , an−1〉. In particular,
〈〉 denotes the empty sequence. We write A∗ for the set of all finite sequences in
A.

The concatenation (aι)ι<α · (bι)ι<β of two sequences is the sequence (cι)ι<α+β
with cι = aι for ι < α and cα+ι = bι for ι < β. A sequence S is a (proper)
prefix of a sequence T , denoted S ≤ T (respectively S < T), if there is a (non-
empty) sequence S′ with S ·S′ = T . The prefix of T of length β ≤ |T | is denoted
T |β. Similarly, a sequence S is a (proper) suffix of a sequence T if there is a
(non-empty) sequence S′ with S′ · S = T .

2.2 Metric Spaces
A pair (M,d) is called a metric space if d is a metric on the set M . That
is, d : M ×M → R+

0 is a function satisfying d(x, y) = 0 iff x = y (identity),
d(x, y) = d(y, x) (symmetry), and d(x, z) ≤ d(x, y)+d(y, z) (triangle inequality),
for all x, y, z ∈ M . If d instead of the triangle inequality, satisfies the stronger
property d(x, z) ≤ max {d(x, y),d(y, z)} (strong triangle), then (M,d) is called
an ultrametric space.

Let (aι)ι<α be a sequence in a metric space (M,d). The sequence (aι)ι<α
converges to an element a ∈ M , written limι→α aι, if, for each ε ∈ R+, there
is a β < α such that d(a, aι) < ε for every β < ι < α; (aι)ι<α is continuous
if limι→λ aι = aλ for each limit ordinal λ < α. Intuitively speaking, (aι)ι<α
converges to a if the metric distance between the elements aι of the sequence and
a tends to 0 as the index ι approaches α, i.e. they approximate a arbitrarily well.
Accordingly, (aι)ι<α is continuous if it does not leap to a distant object at limit
ordinal indices.

The sequence (aι)ι<α is called Cauchy if, for any ε ∈ R+, there is a β < α
such that, for all β < ι < ι′ < α, we have that d(mι,mι′) < ε. That is, the
elements aι of the sequence move closer and closer to each other as the index ι
approaches α.

A metric space is called complete if each of its non-empty Cauchy sequences
converges. That is, whenever the elements aι of a sequence move closer and
closer together, they in fact approximate an existing object of the metric space,
viz. limι→α aι.

2.3 Partial Orders
A partial order ≤ on a set A is a binary relation on A such that x ≤ y, y ≤ z
implies x ≤ z (transitivity); x ≤ x (reflexivity); and x ≤ y, y ≤ x implies x = y
(antisymmetry) for all x, y, z ∈ A. The pair (A,≤) is then called a partially
ordered set. A subset D of the underlying set A is called directed if it is non-
empty and each pair of elements in D has an upper bound in D. A partially

304

ordered set (A,≤) is called a complete partial order (cpo) if it has a least element
and each directed set D has a least upper bound (lub) ⊔D. A cpo (A,≤) is called
a complete semilattice if every non-empty set B has greatest lower bound (glb)d
B. In particular, this means that, in a complete semilattice, the limit inferior

of any sequence (aι)ι<α, defined by lim infι→α aι = ⊔
β<α

(d
β≤ι<α aι

)
, always

exists.
There is also an alternative characterisation of complete semilattices: a par-

tially ordered set (A,≤) is called bounded complete if each set B ⊆ A that has an
upper bound in A also has a least upper bound in A. Two elements a, b ∈ A are
called compatible if they have a common upper bound, i.e. there is some c ∈ A
with a, b ≤ c.

Proposition 2.1 (bounded complete cpo = complete semilattice, [18]). Given a
cpo (A,≤) the following are equivalent:

(i) (A,≤) is a complete semilattice.

(ii) (A,≤) is bounded complete.

(iii) Each two compatible elements in A have a least upper bound.

Given two partially ordered sets (A,≤A) and (B,≤B), a function φ : A→ B
is called monotonic iff a1 ≤A a2 implies φ(a1) ≤B φ(a2). In particular, we have
that a sequence (bι)ι<α in (B,≤B) is monotonic if bι ≤B bγ for all ι ≤ γ < α.

2.4 Terms
Since we are interested in the infinitary calculus of term rewriting, we consider
the set T ∞(Σ) of infinitary terms (or simply terms) over some signature Σ. A
signature Σ is a countable set of symbols such that each symbol f ∈ Σ is associ-
ated with an arity ar(f) ∈ N, and we write Σ(n) for the set of symbols in Σ that
have arity n. The set T ∞(Σ) is defined as the greatest set T such that t ∈ T
implies t = f(t1, . . . , tk) for some f ∈ Σ(k) and t1, . . . , tk ∈ T . For each constant
symbol c ∈ Σ(0), we write c for the term c(). For a term t ∈ T ∞(Σ) we use the
notation P(t) to denote the set of positions in t. P(t) is the least subset of N∗
such that 〈〉 ∈ P(t) and 〈i〉 · π ∈ P(t) if t = f(t0, . . . , tk−1) with 0 ≤ i < k and
π ∈ P(ti). For terms s, t ∈ T ∞(Σ) and a position π ∈ P(t), we write t|π for the
subterm of t at π, t(π) for the function symbol in t at π, and t[s]π for the term
t with the subterm at π replaced by s. As positions are sequences, we use the
prefix order ≤ defined on them. A position is also called an occurrence if the
focus lies on the subterm at that position rather than the position itself. The set
T (Σ) of finite terms is the subset of T ∞(Σ) that contains all terms with a finite
set of positions.

On T ∞(Σ) a similarity measure sim(·, ·) : T ∞(Σ)×T ∞(Σ)→ ω+1 is defined
as follows

sim(s, t) = min {|π| |π ∈ P(s) ∩ P(t), s(π) 6= t(π)} ∪ {ω} for s, t ∈ T ∞(Σ)

That is, sim(s, t) is the minimal depth at which s and t differ, respectively ω
if s = t. Based on this similarity measure, a distance function d is defined by

305

d(s, t) = 2−sim(s,t), where we interpret 2−ω as 0. The pair (T ∞(Σ),d) is known
to form a complete ultrametric space [4].

Partial terms, i.e. terms over signature Σ⊥ = Σ] {⊥} with ⊥ a fresh nullary
symbol, can be endowed with a binary relation ≤⊥ by defining s ≤⊥ t iff s can be
obtained from t by replacing some subterm occurrences in t by ⊥. Interpreting
the term ⊥ as denoting “undefined”, ≤⊥ can be read as “is less defined than”. The
pair (T ∞(Σ⊥),≤⊥) is known to form a complete semilattice [15]. To explicitly
distinguish them from partial terms, we call terms in T ∞(Σ) total.

2.5 Term Rewriting Systems
For term rewriting systems, we have to consider terms with variables. To this
end, we assume a countably infinite set V of variables and extend a signature Σ
to a signature ΣV = Σ] V with variables in V as nullary symbols. Instead of
T ∞(ΣV) we also write T ∞(Σ,V). A term rewriting system (TRS) R is a pair
(Σ, R) consisting of a signature Σ and a set R of term rewrite rules of the form
l → r with l ∈ T ∞(Σ,V) \ V and r ∈ T ∞(Σ,V) such that all variables occurring
in r also occur in l. Note that both the left- and the right-hand side may be
infinite. We usually use x, y, z and primed respectively indexed variants thereof
to denote variables in V. A substitution σ is a mapping from V to T ∞(Σ,V).
Such a substitution σ can be uniquely lifted to a homomorphism from T ∞(Σ,V)
to T ∞(Σ,V) mapping a term t ∈ T ∞(Σ,V) to tσ by setting xσ = σ(x) if x ∈ V
and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) if f ∈ Σ(n).

As in the finitary setting, every TRS R defines a rewrite relation →R that
indicates rewrite steps:

s→R t ⇐⇒ ∃π ∈ P(s), l→ r ∈ R, σ : s|π = lσ, t = s[rσ]π

Instead of s →R t, we sometimes write s →π,ρ t in order to indicate the applied
rule ρ and the position π, or simply s → t. The subterm s|π is called a ρ-redex
or simply redex, rσ its contractum, and s|π is said to be contracted to rσ.

3 Infinitary Term Rewriting
Before pondering over the right approach to an infinitary calculus of term graph
rewriting, we want to provide a brief overview of infinitary term rewriting [7, 12,
23]. This should give an insight into the different approaches to dealing with
infinite reductions. However, in contrast to the majority of the literature on
infinitary term rewriting, which is concerned with strong convergence [23, 25],
we will only consider weak notions of convergence in this paper; cf. [13, 19, 32].
This weak form of convergence, also called Cauchy convergence, is entirely based
on the sequence of objects produced by rewriting without considering how the
rewrite rules are applied.

A (transfinite) reduction in a term rewriting system R, is a sequence S =
(tι →R tι+1)ι<α of rewrite steps in R. Note that the underlying sequence of
terms (tι)ι<α̂ has length α̂, where α̂ = α if S is open, and α̂ = α + 1 if S is
closed. The reduction S is called m-continuous in R, written S : t0 ↪→m R . . . , if
the sequence of terms (tι)ι<α̂ is continuous in (T ∞(Σ),d), i.e. limι→λ tι = tλ for

306

each limit ordinal λ < α. The reduction S is said to m-converge to a term t in
R, written S : t0 ↪→m R t, if it is m-continuous and limι→α̂ tι = t.

Example 3.1. Consider the TRS R containing the rule ρ1 : a ::x → b :: a ::x.
By repeatedly applying ρ1, we obtain the infinite reduction

S : a :: c→ b :: a :: c→ b :: b :: a :: c→ . . .

The position at which two consecutive terms differ moves deeper and deeper
during the reduction S, i.e. the d-distance between them tends to 0. Hence, S
m-converges to the infinite term s = b :: b :: b :: . . . , i.e. S : a :: c ↪→m s.

Now consider a TRS with the slightly different rule ρ2 : a ::x→ a :: b ::x. This
TRS yields a reduction

S′ : a :: c→ a :: b :: c→ a :: b :: b :: c→ . . .

Even though the rule ρ2 is applied at the root of the term in each step of S′,
the d-distance between two consecutive terms tends to 0 again. The reduction
S′ m-converges to the infinite term s′ = a :: b :: b :: . . . , i.e. S′ : a :: c ↪→m s′.

In contrast to the weak m-convergence that we consider here, strong m-
convergence [23, 25] additionally requires that the depth of the contracted redexes
tends to infinity as the reduction approaches a limit ordinal. Concerning Exam-
ple 3.1 above, we have for instance that S also strongly m-converges – the rule is
applied at increasingly deep redexes – whereas S′ does not strongly m-converge
– each step in S′ results from a contraction at the root.

In the partial order model of infinitary rewriting [7], convergence is defined via
the limit inferior in the complete semilattice (T ∞(Σ⊥),≤⊥). Given a TRS R =
(Σ, R), we extend it toR⊥ = (Σ⊥, R) by adding the fresh constant symbol ⊥ such
that it admits all terms in T ∞(Σ⊥). A reduction S = (tι →R⊥ tι+1)ι<α in this
systemR⊥ is called p-continuous inR, written S : t0 ↪→p R . . . , if lim infι→λ tι = tλ
for each limit ordinal λ < α. The reduction S is said to p-converge to a term t
in R, written S : t0 ↪→p R t, if it is p-continuous and lim infι→α̂ tι = t.

The distinguishing feature of the partial order approach is that each contin-
uous reduction also converges due to the semilattice structure of partial terms.
Moreover, p-convergence provides a conservative extension tom-convergence that
allows rewriting modulo meaningless terms [7] by essentially mapping those parts
of the reduction to ⊥ that are divergent according to the metric mode of conver-
gence.

Intuitively, the limit inferior in (T ∞(Σ⊥),≤⊥) – and thus p-convergence –
describes an approximation process that accumulates each piece of information
that remains stable from some point onwards. This is based on the ability of
the partial order ≤⊥ to capture a notion of information preservation, i.e. s ≤⊥ t
iff t contains at least the same information as s does but potentially more. A
monotonic sequence of terms t0 ≤⊥ t1 ≤⊥ . . . thus approximates the information
contained in ⊔i<ω ti. Given this reading of ≤⊥, the glb

d
T of a set of terms T

captures the common (non-contradicting) information of the terms in T . Lever-
aging this observation, a sequence that is not necessarily monotonic can be turned
into a monotonic sequence tj =

d
j≤i<ω si such that each tj contains exactly the

307

information that remains stable in (si)i<ω from j onwards. Hence, the limit in-
ferior lim inf i→ω si = ⊔

j<ω

d
j≤i<ω si is the term that contains the accumulated

information that eventually remains stable in (si)i<ω. This is expressed as an
approximation of the monotonically increasing information that remains stable
from some point on.

Example 3.2. Reconsider the system from Example 3.1. The reduction S also
p-converges to s. This can be seen by forming the sequence (

d
j≤i<ω si)i<ω of

stable information of the underlying sequence (si)i<ω of terms in S:

::

⊥ ⊥

::

b ::

⊥ ⊥

::

b ::

b ::

⊥ ⊥

::

b ::

b ::

b

(
d

0≤i<ω si) (
d

1≤i<ω si) (
d

2≤i<ω si) . . . (s)

This sequence approximates the term s = b :: b :: b ::
Now consider the rule ρ1 together with the rule ρ3 : b ::x→ a :: b ::x. Starting

with the same term, but applying the two rules alternately at the root, we obtain
the reduction sequence

T : a :: c→ b :: a :: c→ a :: b :: a :: c→ b :: a :: b :: a :: c→ . . .

Now the differences between two consecutive terms occur right below the root
symbol “ :: ”. Hence, T does not m-converge. This, however, only affects the
left argument of each “ :: ”. Following the right argument position, the bare list
structure becomes eventually stable. The sequence (

d
j≤i<ω si)i<ω of stable in-

formation
::

⊥ ⊥

::

⊥ ::

⊥ ⊥

::

⊥ ::

⊥ ::

⊥ ⊥

::

⊥ ::

⊥ ::

⊥

(
d

0≤i<ω si) (
d

1≤i<ω si) (
d

2≤i<ω si) . . . (t)

approximates the term t = ⊥ ::⊥ ::⊥ Hence, T p-converges to t.

Note that in both the metric and the partial order setting continuity is simply
the convergence of every proper prefix: a reduction S = (tι → tι+1)ι<α is m-
continuous (respectively p-continuous) iff every proper prefix S|β m-converges
(respectively p-converges) to tβ.

308

In order to define p-convergence, we had to extend terms with partiality.
However, apart from this extension, both m- and p-convergence coincide. To
describe this more precisely we use the following terms: a reduction S : s ↪→p . . .
is p-continuous in T ∞(Σ) iff each term in S is total, i.e. in T ∞(Σ); a reduction
S : s ↪→p t is called p-convergent in T ∞(Σ) iff t and each term in S is total. We
then have the following theorem:
Theorem 3.3 (p-convergence in T ∞(Σ) = m-convergence, [5]). For every reduc-
tion S in a TRS the following equivalences hold:

(i) S : s ↪→p t in T ∞(Σ) iff S : s ↪→m t
(ii) S : s ↪→p . . . in T ∞(Σ) iff S : s ↪→m . . .

Example 3.2 illustrates the correspondence between p- and m-convergence:
the reduction S p-converges in T ∞(Σ) and m-converges whereas the reduction T
p-converges but not in T ∞(Σ) and thus does not m-converge.

Kennaway [21] and Bahr [6] investigated abstract models of infinitary rewrit-
ing based on metric spaces respectively partially ordered sets. We shall take these
abstract models as a basis to formulate a theory of infinitary term graph reduc-
tions. The key question that we have to address is what an appropriate metric
space respectively partial order on term graphs looks like.

4 Graphs & Term Graphs
This section provides the basic notions for term graphs and more generally for
graphs. Terms over a signature, say Σ, can be thought of as rooted trees whose
nodes are labelled with symbols from Σ. Moreover, in these trees a node labelled
with a k-ary symbol is restricted to have out-degree k and the outgoing edges
are ordered. In this way the i-th successor of a node labelled with a symbol f is
interpreted as the root node of the subtree that represents the i-th argument of f .
For example, consider the term f(a, h(a, b)). The corresponding representation
as a tree is shown in Figure 1a.

In term graphs, the restriction to a tree structure is abolished. The corre-
sponding notion of term graphs we are using is taken from Barendregt et al. [10].
We begin by defining the underlying notion of graphs.
Definition 4.1 (graphs). Let Σ be a signature. A graph over Σ is a tuple
g = (N, lab, suc) consisting of a set N (of nodes), a labelling function lab : N → Σ,
and a successor function suc : N → N∗ such that |suc(n)| = ar(lab(n)) for each
node n ∈ N , i.e. a node labelled with a k-ary symbol has precisely k successors.
The graph g is called finite whenever the underlying set N of nodes is finite.
If suc(n) = 〈n0, . . . , nk−1〉, then we write suci(n) for ni. Moreover, we use the
abbreviation arg(n) for the arity ar(lab(n)) of n.
Example 4.2. Let Σ = {f/2, h/2, a/0, b/0} be a signature. The graph over Σ,
depicted in Figure 1b, is given by the triple (N, lab, suc) with N = {n0, n1, n2, n3,
n4}, lab(n0) = f, lab(n1) = lab(n4) = h, lab(n2) = b, lab(n3) = a and suc(n0) =
〈n1, n2〉, suc(n1) = 〈n0, n3〉, suc(n2) = suc(n3) = 〈〉, suc(n4) = 〈n2, n3〉.
Definition 4.3 (paths, reachability). Let g = (N, lab, suc) be a graph and n,m ∈
N .

309

f

a h

a b

(a) f(a, h(a, b)).

f

h

a

b

h

(b) A graph.

f

f

a

h

(c) A term graph g.

h

f

a

(d) Sub-term graph of g.

Figure 1: Tree representation of a term and generalisation to (term) graphs.

(i) A path in g from n to m is a finite sequence π ∈ N∗ such that either

• π is empty and n = m, or
• π = 〈i〉 · π′ with 0 ≤ i < arg(n) and the suffix π′ is a path in g from

suci(n) to m.

(ii) If there exists a path from n to m in g, we say that m is reachable from n
in g.

Since paths are sequences, we may use the prefix order on sequences for paths
as well. That is, we write π1 ≤ π2 (respectively π1 < π2) if there is a (non-empty)
path π3 with π1 · π3 = π2.

Definition 4.4 (term graphs). Given a signature Σ, a term graph g over Σ is a
tuple (N, lab, suc, r) consisting of an underlying graph (N, lab, suc) over Σ whose
nodes are all reachable from the root node r ∈ N . The term graph g is called
finite if the underlying graph is finite, i.e. the set N of nodes is finite. The class
of all term graphs over Σ is denoted G∞(Σ); the class of all finite term graphs
over Σ is denoted G(Σ). We use the notation Ng, labg, sucg and rg to refer to
the respective components N ,lab, suc and r of g. In analogy to subterms, term
graphs have sub-term graphs. Given a graph or a term graph h and a node n in
h, we write h|n to denote the sub-term graph of h rooted in n.

Example 4.5. Let Σ = {f/2, h/2, c/0} be a signature. The term graph g over
Σ, depicted in Figure 1c, is given by the quadruple (N, lab, suc, r), where N =
{r, n1, n2, n3}, suc(r) = 〈n1, n2〉, suc(n1) = 〈n1, n3〉, suc(n2) = 〈n1, n3〉, suc(n3) =
〈〉 and lab(r) = lab(n1) = f , lab(n2) = h, lab(n3) = c. Figure 1d depicts the sub-
term graph g|n2 of g.

Paths in a graph are not absolute but relative to a starting node. In term
graphs, however, we have a distinguished root node from which each node is
reachable. Paths relative to the root node are central for dealing with term
graphs:

310

Definition 4.6 (positions, depth, cyclicity, trees). Let g ∈ G∞(Σ) and n ∈ Ng.

(i) A position of n in g is a path in the underlying graph of g from rg to n.
The set of all positions in g is denoted P(g); the set of all positions of n in
g is denoted Pg(n).1

(ii) The depth of n in g, denoted depthg(n), is the minimum of the lengths of
the positions of n in g, i.e. depthg(n) = min {|π| |π ∈ Pg(n)}.

(iii) For a position π ∈ P(g), we write nodeg(π) for the unique node n ∈ Ng

with π ∈ Pg(n) and g(π) for its symbol labg(n).

(iv) A position π ∈ P(g) is called cyclic if there are paths π1 < π2 ≤ π with
nodeg(π1) = nodeg(π2), i.e. π passes a node twice. The non-empty path π′
with π1 · π′ = π2 is then called a cycle of nodeg(π1). A position that is not
cyclic is called acyclic. If g has a cyclic position, g is called cyclic; otherwise
g is called acyclic.

(v) The term graph g is called a term tree if each node in g has exactly one
position.

Note that the labelling function of graphs – and thus term graphs – is total.
In contrast, Barendregt et al. [10] considered open (term) graphs with a partial
labelling function such that unlabelled nodes denote holes or variables. This is
reflected in their notion of homomorphisms in which the homomorphism condition
is suspended for unlabelled nodes.

4.1 Homomorphisms
Instead of a partial node labelling function for term graphs, we chose a syntac-
tic approach that is closer to the representation in terms: variables, holes and
“bottoms” are represented as distinguished syntactic entities. We achieve this
on term graphs by making the notion of homomorphisms dependent on a set of
constant symbols ∆ for which the homomorphism condition is suspended:

Definition 4.7 (∆-homomorphisms). Let Σ be a signature, ∆ ⊆ Σ(0), and g, h ∈
G∞(Σ).

(i) A function φ : Ng → Nh is called homomorphic in n ∈ Ng if the following
holds:

labg(n) = labh(φ(n)) (labelling)
φ(sucgi (n)) = suchi (φ(n)) for all 0 ≤ i < arg(n) (successor)

(ii) A ∆-homomorphism φ from g to h, denoted φ : g →∆ h, is a function
φ : Ng → Nh that is homomorphic in n for all n ∈ Ng with labg(n) 6∈ ∆
and satisfies

φ(rg) = rh (root)
1The notion/notation of positions is borrowed from terms: Every position π of a node n

corresponds to the subterm represented by n occurring at position π in the unravelling of the
term graph to a term.

311

f

h

a

a

f

h

a

φ

g1φ : g2

(a) A homomorphism.

f

a b

f

h

a

ψ

g3ψ : g4
{a, b}

(b) A {a, b}-homomorphism.

Figure 2: ∆-homomorphisms.

Note that, for ∆ = ∅, we get the usual notion of homomorphisms on term
graphs (e.g. Barendsen [11]). The ∆-nodes can be thought of as holes in the
term graphs that can be filled with other term graphs. For example, if we have a
distinguished set of variable symbols V ⊆ Σ(0), we can use V-homomorphisms to
formalise the matching step of term graph rewriting, which requires the instanti-
ation of variables.

Example 4.8. Figure 2 depicts two functions φ and ψ. Whereas φ is a homo-
morphism, the function ψ is not a homomorphism since, for example, the node
labelled a in g3 is mapped to a node labelled h in g3. Nevertheless, ψ is a {a, b}-
homomorphism. Note that ∆-homomorphisms may introduce additional sharing
in the target term graph by mapping several nodes in the source to the same
node in the target.

Proposition 4.9 (∆-homomorphism preorder). ∆-homomorphisms on G∞(Σ)
form a category that is a preorder, i.e. there is at most one ∆-homomorphism
from one term graph to another.

Proof. The identity ∆-homomorphism is obviously the identity mapping on the
set of nodes. Moreover, an easy equational reasoning reveals that the composition
of two ∆-homomorphisms is again a ∆-homomorphism. Associativity of this
composition is obvious as ∆-homomorphisms are functions.

To show that the category is a preorder, assume that there are two ∆-
homomorphisms φ1, φ2 : g →∆ h. We prove that φ1 = φ2 by showing that
φ1(n) = φ2(n) for all n ∈ Ng by induction on the depth of n in g.

Let depthg(n) = 0, i.e. n = rg. By the root condition for φ, we have that
φ1(rg) = rh = φ2(rg). Let depthg(n) = d > 0. Then n has a position π · 〈i〉 in g
such that depthg(n′) < d for n′ = nodeg(π). Hence, we can employ the induction
hypothesis for n′. Moreover, since n′ has at least one successor node, viz. n, it
cannot be labelled with a nullary symbol and a fortiori not with a symbol in ∆.
Therefore, the ∆-homomorphisms φ1 and φ2 are homomorphic in n′ and we can
thus reason as follows:

φ1(n) = suchi (φ1(n′)) (successor condition for φ1)
= suchi (φ2(n′)) (ind. hyp.)
= φ2(n) (successor condition for φ2)

312

As a consequence, whenever there are two ∆-homomorphisms φ : g →∆ h and
ψ : h →∆ g, they are inverses of each other, i.e. ∆-isomorphisms. If two term
graphs are ∆-isomorphic, we write g ∼=∆ h.

For the two special cases ∆ = ∅ and ∆ = {σ}, we write φ : g → h respectively
φ : g →σ h instead of φ : g →∆ h and call φ a homomorphism respectively a
σ-homomorphism. The same convention applies to ∆-isomorphisms.

The structure of positions permits a convenient characterisation of ∆-homo-
morphisms:

Lemma 4.10 (characterisation of ∆-homomorphisms). For g, h ∈ G∞(Σ), a
function φ : Ng → Nh is a ∆-homomorphism φ : g →∆ h iff the following holds
for all n ∈ Ng:

(a) Pg(n) ⊆ Ph(φ(n)), and
(b) labg(n) 6∈ ∆ =⇒ labg(n) = labh(φ(n)).

Proof. For the “only if” direction, assume that φ : g →∆ h. (b) is the labelling
condition and is therefore satisfied by φ. To establish (a), we show the equivalent
statement

∀π ∈ P(g). ∀n ∈ Ng. π ∈ Pg(n) =⇒ π ∈ Ph(φ(n))

We do so by induction on the length of π: if π = 〈〉, then π ∈ Pg(n) implies n = rg.
By the root condition, we have φ(rg) = rh and, therefore, π = 〈〉 ∈ φ(rg). If
π = π′ · 〈i〉, then let n′ = nodeg(π′). Consequently, π′ ∈ Pg(n′) and, by induction
hypothesis, π′ ∈ Ph(φ(n′)). Since π = π′ · 〈i〉, we have sucgi (n′) = n. By the
successor condition we can conclude φ(n) = suchi (φ(n′)). This and π′ ∈ Ph(φ(n′))
yields that π′ · 〈i〉 ∈ Ph(φ(n)).

For the “if” direction, we assume (a) and (b). The labelling condition follows
immediately from (b). For the root condition, observe that since 〈〉 ∈ Pg(rg),
we also have 〈〉 ∈ Ph(φ(rg)). Hence, φ(rg) = rh. In order to show the successor
condition, let n, n′ ∈ Ng and 0 ≤ i < arg(n) such that sucgi (n) = n′. Then there
is a position π ∈ Pg(n) with π · 〈i〉 ∈ Pg(n′). By (a), we can conclude that
π ∈ Ph(φ(n)) and π · 〈i〉 ∈ Ph(φ(n′)) which implies that suchi (φ(n)) = φ(n′).

By Proposition 4.9, there is at most one ∆-homomorphism between two term
graphs. The lemma above uniquely defines this ∆-homomorphism: if there is a
∆-homomorphism from g to h, it is defined by φ(n) = n′, where n′ is the unique
node n′ ∈ Nh with Pg(n) ⊆ Ph(n′). Moreover, while it is not true for arbitrary
∆-homomorphisms, we have that homomorphisms are surjective.

Lemma 4.11 (homomorphisms are surjective). Every homomorphism φ : g → h,
with g, h ∈ G∞(Σ), is surjective.

Proof. Follows from an easy induction on the depth of the nodes in h.

The {a, b}-homomorphism illustrated in Figure 2b, shows that the above
lemma does not hold for ∆-homomorphisms in general.

313

4.2 Isomorphisms & Isomorphism Classes
When dealing with term graphs, in particular, when studying term graph trans-
formations, we do not want to distinguish between isomorphic term graphs. Dis-
tinct but isomorphic term graphs do only differ in the naming of nodes and are
thus an unwanted artifact of the definition of term graphs. In this way, equality
up to isomorphism is similar to α-equivalence of λ-terms and has to be dealt
with.

In this section, we shall characterise isomorphisms and, more generally, ∆-
isomorphisms. From this we derive two canonical representations of isomorphism
classes of term graphs. One is simply a subclass of the class of term graphs while
the other one is based on the structure provided by the positions of term graphs.
The relevance of the former representation is derived from the fact that we still
have term graphs that can be easily manipulated whereas the latter is more
technical and will be helpful for constructing term graphs up to isomorphism.

Note that a bijective ∆-homomorphism is not necessarily a ∆-isomorphism.
To realise this, consider two term graphs g, h, each with one node only. Let the
node in g be labelled with a and the node in h with b then the only possible
a-homomorphism from g to h is clearly a bijection but not an a-isomorphism.
On the other hand, bijective homomorphisms indeed are isomorphisms.

Lemma 4.12 (bijective homomorphisms are isomorphisms). Let g, h ∈ G∞(Σ)
and φ : g → h. Then the following are equivalent

(a) φ is an isomorphism.

(b) φ is bijective.

(c) φ is injective.

Proof. The implication (a) ⇒ (b) is trivial. The equivalence (b) ⇔ (c) follows
from Lemma 4.11. For the implication (b) ⇒ (a), consider the inverse φ−1 of φ.
We need to show that φ−1 is a homomorphism from h to g. The root condition
follows immediately from the root condition for φ. Similarly, an easy equational
reasoning reveals that φ−1 is homomorphic in Nh since φ is homomorphic in all
n ∈ Ng.

From the characterisation of ∆-homomorphisms in Lemma 4.10, we immedi-
ately obtain a characterisation of ∆-isomorphisms as follows:

Lemma 4.13 (characterisation of ∆-isomorphisms). For all g, h ∈ G∞(Σ), a
function φ : Ng → Nh is a ∆-isomorphism iff for all n ∈ Ng

(a) Ph(φ(n)) = Pg(n), and

(b) labg(n) = labh(φ(n)) or labg(n), labh(φ(n)) ∈ ∆.

Proof. Immediate consequence of Lemma 4.10 and Proposition 4.9.

Note that whenever ∆ is a singleton set, the condition labg(n), labh(φ(n)) ∈ ∆
in the above lemma implies labg(n) = labh(φ(n)). Therefore, we obtain the
following corollary:

314

Corollary 4.14 (σ-isomorphism = isomorphism). Given g, h ∈ G∞(Σ) and σ ∈
Σ(0), we have g ∼= h iff g ∼=σ h.

Note that the above equivalence does not hold for ∆-homomorphisms with
more than one symbol in ∆: consider the term graphs g = a and h = b consisting
of a single node labelled a respectively b. While g and h are ∆-isomorphic for
∆ = {a, b}, they are not isomorphic.

4.2.1 Canonical Term Graphs

From the Lemmas 4.12 and 4.13 we learned that isomorphisms between term
graphs are bijections that preserve and reflect the positions as well as the labelling
of each node. These findings motivate the following definition of canonical term
graphs as candidates for representatives of isomorphism classes:

Definition 4.15 (canonical term graphs). A term graph g is called canonical if
n = Pg(n) holds for each n ∈ Ng. That is, each node is the set of its positions
in the term graph. The set of all (finite) canonical term graphs over Σ is de-
noted G∞C (Σ) (respectively GC(Σ)). Given a term graph h ∈ G∞C (Σ), its canonical
representative C(h) is the canonical term graph given by

NC(h) = {Ph(n) |n ∈ N } rC(h) = Ph(r)
labC(h)(Ph(n)) = labh(n) for all n ∈ N
sucC(h)

i (Ph(n)) = Ph(suchi (n)) for all n ∈ N, 0 ≤ i < arh(n)

The above definition follows a well-known approach to obtain, for each term
graph g, a canonical representative C(g) [31]. One can easily see that C(g) is
a well-defined canonical term graph. With this definition we indeed capture a
notion of canonical representatives of isomorphism classes:

Proposition 4.16 (canonical term graphs are isomorphism class representa-
tives). Given g ∈ G∞(Σ), the term graph C(g) canonically represents the equiva-
lence class [g]∼=. More precisely, it holds that

(i) [g]∼= = [C(g)]∼=, and (ii) [g]∼= = [h]∼= iff C(g) = C(h).

In particular, we have, for all canonical term graphs g, h, that g = h iff g ∼= h.

Proof. Straightforward consequence of Lemma 4.13.

4.2.2 Labelled Quotient Trees

Intuitively, term graphs can be thought of as “terms with sharing”, i.e. terms in
which occurrences of the same subterm may be identified. The representation of
isomorphic term graphs as labelled quotient trees, which we shall study in this
section, makes use of and formalises this intuition. To this end, we introduce an
equivalence relation on the positions of a term graph that captures the sharing
in a term graph:

Definition 4.17 (aliasing positions). Given a term graph g and two positions
π1, π2 ∈ P(g), we say that π1 and π2 alias each other in g, denoted π1 ∼g π2, if
nodeg(π1) = nodeg(π2).

315

One can easily see that the thus defined relation ∼g on P(g) is an equiva-
lence relation. Moreover, the partition on P(g) induced by ∼g is simply the set
{Pg(n) |n ∈ Ng } that contains the sets of positions of nodes in g.

Example 4.18. For the term graph g2 illustrated in Figure 2a, we have that
〈0, 0〉 ∼g2 〈1〉 as both 〈0, 0〉 and 〈1〉 are positions of the a-node in g2. For the
term graph g4 in Figure 2b, 〈〉 ∼g4 〈1〉 ∼g4 〈1, 1〉 ∼g4 . . . as all finite sequences
over 1 are positions of the f -node in g4.

The characterisation of ∆-homomorphisms of Lemma 4.10 can be recast in
terms of aliasing positions, which then yields the following characterisation of the
existence of ∆-homomorphisms:

Lemma 4.19 (characterisation of ∆-homomorphisms). Given g, h ∈ G∞(Σ),
there is a ∆-homomorphism φ : g →∆ h iff, for all π, π′ ∈ P(g), we have

(a) π ∼g π′ =⇒ π ∼h π′, and
(b) g(π) 6∈ ∆ =⇒ g(π) = h(π).

Proof. For the “only if” direction, assume that φ is a ∆-homomorphism from g
to h. Then we can use the properties (a) and (b) of Lemma 4.10, which we will
refer to as (a’) and (b’) to avoid confusion. In order to show (a), assume π ∼g π′.
Then there is some node n ∈ Ng with π, π′ ∈ Pg(n). (a’) yields π, π′ ∈ φ(n) and,
therefore, π ∼h π′. To show (b), we assume some π ∈ P(g) with g(π) 6∈ ∆. Then
we can reason as follows:

g(π) = labg(nodeg(π)) (b’)= labh(φ(nodeg(π))) (a’)= labh(nodeh(π)) = h(π)

For the converse direction, assume that both (a) and (b) hold. Define the
function φ : Ng → Nh by φ(n) = m iff Pg(n) ⊆ Ph(m) for all n ∈ Ng and
m ∈ Nh. To see that this is well-defined, we show at first that, for each n ∈ Ng,
there is at most one m ∈ Nh with Pg(n) ⊆ Ph(m). Suppose there is another node
m′ ∈ Nh with Pg(n) ⊆ Ph(m′). Since Pg(n) 6= ∅, this implies Ph(m)∩Ph(m′) 6= ∅.
Hence,m = m′. Secondly, we show that there is at least one such nodem. Choose
some π∗ ∈ Pg(n). Since then π∗ ∼g π∗ and, by (a), also π∗ ∼h π∗ holds, there
is some m ∈ Nh with π∗ ∈ Ph(m). For each π ∈ Pg(n), we have π∗ ∼g π and,
therefore, π∗ ∼h π by (a). Hence, π ∈ Ph(m). So we know that φ is well-defined.
By construction, φ satisfies (a’). Moreover, because of (b), it is also easily seen
to satisfy (b’). Hence, φ is a homomorphism from g to h.

Intuitively, Clause (a) states that h has at least as much sharing of nodes as
g has, whereas Clause (b) states that h has at least the same non-∆-labelling
as g. In this sense, the above characterisation confirms the intuition about ∆-
homomorphisms that we mentioned in Example 4.8, viz. ∆-homomorphisms may
only introduce sharing and relabel ∆-nodes. This can be observed in the two
∆-homomorphisms illustrated in Figure 2.

From the above characterisations of the existence of ∆-homomorphisms, we
can easily derive the following characterisation of ∆-isomorphisms using the
uniqueness of ∆-homomorphisms between two term graphs:

316

Lemma 4.20 (characterisation of ∆-isomorphisms). For all g, h ∈ G∞(Σ), we
have g ∼=∆ h iff

(a) ∼g = ∼h, and (b) g(π) = h(π) or g(π), h(π) ∈ ∆ for all π ∈ P(g).

Proof. Immediate consequence of Lemma 4.19 and Proposition 4.9.

Remark 4.21. ∆-homomorphisms can be naturally lifted to the set of iso-
morphism classes G∞(Σ)/∼=: we say that two ∆-homomorphisms φ : g →∆ h,
φ′ : g′ →∆ h′, are isomorphic, written φ ∼= φ′ iff there are isomorphisms ψ1 : g ∼=
g′ and ψ2 : h ∼= h′ such that ψ2◦φ = φ′◦ψ1. Given a ∆-homomorphism φ : g →∆ h
in G∞(Σ), [φ]∼= : [g]∼= →∆ [h]∼= is a ∆-homomorphism in G∞(Σ)/∼=. These ∆-
homomorphisms then form a category which can easily be show to be isomorphic
to the category of ∆-homomorphisms on G∞C (Σ) via the mapping [·]∼=.

Lemma 4.20 has shown that term graphs can be characterised up to isomor-
phism by only giving the equivalence ∼g and the labelling g(·) : π 7→ g(π) of the
involved term graphs. This observation gives rise to the following definition:

Definition 4.22 (labelled quotient trees). A labelled quotient tree over signature
Σ is a triple (P, l,∼) consisting of a non-empty set P ⊆ N∗, a function l : P → Σ,
and an equivalence relation ∼ on P that satisfies the following conditions for all
π, π′ ∈ N∗ and i ∈ N:

π · 〈i〉 ∈ P =⇒ π ∈ P and i < ar(l(π)) (reachability)

π ∼ π′ =⇒
{
l(π) = l(π′) and
π · 〈i〉 ∼ π′ · 〈i〉 for all i < ar(l(π))

(congruence)

In other words, a labelled quotient tree (P, l,∼) is a ranked tree domain P
together with a congruence ∼ on it and a labelling function l : P/∼ → Σ that
honours the rank. Also note that since P must be non-empty, the reachability
condition implies that 〈〉 ∈ P .

Example 4.23. The term graph g2 depicted in Figure 2a is represented up to
isomorphism by the labelled quotient tree (P, l,∼) with P = {〈〉, 〈0〉, 〈0, 0〉, 〈1〉},
l(〈〉) = f , l(〈0〉) = h, l(〈0, 0〉) = l(〈1〉) = a and ∼ the least equivalence relation
on P with 〈0, 0〉 ∼ 〈1〉.

The following lemma confirms that labelled quotient trees uniquely charac-
terise any term graph up to isomorphism:

Lemma 4.24 (labelled quotient trees are canonical). Each term graph g ∈
G∞(Σ) induces a canonical labelled quotient tree (P(g), g(·),∼g) over Σ. Vice
versa, for each labelled quotient tree (P, l,∼) over Σ there is a unique canoni-
cal term graph g ∈ G∞C (Σ) whose canonical labelled quotient tree is (P, l,∼), i.e.
P(g) = P , g(π) = l(π) for all π ∈ P , and ∼g = ∼.

Proof. The first part is trivial: (P(g), g(·),∼g) satisfies the conditions from Def-
inition 4.22.

317

For the second part, let (P, l,∼) be a labelled quotient tree. Define the term
graph g = (N, lab, suc, r) by

N = P/∼ lab(n) = f iff ∃π ∈ n. l(π) = f

r = [〈〉]∼ suci(n) = n′ iff ∃π ∈ n. π · 〈i〉 ∈ n′

The functions lab and suc are well-defined due to the congruence condition satis-
fied by (P, l,∼). Since P is non-empty and closed under prefixes, it contains 〈〉.
Hence, r is well-defined. Moreover, by the reachability condition, each node in N
is reachable from the root node. An easy induction proof shows that Pg(n) = n
for each node n ∈ N . Thus, g is a well-defined canonical term graph. The canon-
ical labelled quotient tree of g is obviously (P, l,∼). Whenever there are two
canonical term graphs with the same canonical labelled quotient tree (P, l,∼),
they are isomorphic due to Lemma 4.20 and, therefore, have to be identical by
Proposition 4.16.

Labelled quotient trees provide a valuable tool for constructing canonical term
graphs as we shall see. Nevertheless, the original graph representation remains
convenient for practical purposes as it allows a straightforward formalisation of
term graph rewriting and provides a finite representation of finite cyclic term
graphs, which induce an infinite labelled quotient tree.

4.2.3 Terms, Term Trees & Unravelling

Before we continue, it is instructive to make the correspondence between terms
and term graphs clear. First, note that, for each term tree t, the equivalence ∼t
is the identity relation IP(t) on P(t), i.e. π1 ∼t π2 iff π1 = π2. Consequently,
we have the following one-to-one correspondence between canonical term trees
and terms: each term t ∈ T ∞(Σ) induces the canonical term tree given by the
labelled quotient tree (P(t), t(·), IP(t)). For example, the term tree depicted in
Figure 1a corresponds to the term f(a, h(a, b)). We thus consider the set of terms
T ∞(Σ) as the subset of canonical term trees of G∞C (Σ).

With this correspondence in mind, we can define the unravelling of a term
graph g as the unique term t such that there is a homomorphism φ : t→ g. The
unravelling of cyclic term graphs yields infinite terms, e.g. in Figure 8 on page 345,
the term hω is the unravelling of the term graph g2. We use the notation U(g)
for the unravelling of g.

5 A Rigid Partial Order on Term Graphs
In this section, we shall establish a partial order suitable for formalising conver-
gence of sequences of canonical term graphs similarly to p-convergence on terms.

Recall that p-convergence in term rewriting systems is based on a partial
order ≤⊥ on the set T ∞(Σ⊥) of partial terms. The partial order ≤⊥ instantiates
occurrences of ⊥ from left to right, i.e. s ≤⊥ t iff t is obtained by replacing
occurrences of ⊥ in s by arbitrary terms in T ∞(Σ⊥).

Since we are considering term graph rewriting as a generalisation of term
rewriting, our aim is to generalise the partial order ≤⊥ on terms to term graphs.

318

That is, the partial order we are looking for should coincide with ≤⊥ if restricted
to term trees. Moreover, we also want to maintain the characteristic properties
of the partial order ≤⊥ when generalising to term graphs. The most important
characteristic we are striving for is a complete semilattice structure in order to
define p-convergence in terms of the limit inferior. Apart from that, we also want
to maintain the intuition of the partial order ≤⊥, viz. the intuition of information
preservation, which ≤⊥ captures on terms as we illustrated in Section 2. We will
make this last guiding principle clearer as we go along.

Analogously to partial terms, we consider the class of partial term graphs
simply as term graphs over the signature Σ⊥ = Σ] {⊥}. In order to gener-
alise the partial order ≤⊥ to term graphs, we need to formalise the instantiation
of occurrences of ⊥ in term graphs. ∆-homomorphisms, for ∆ = {⊥} – or
⊥-homomorphisms for short – provide the right starting point for that. A ho-
momorphism φ : g → h maps each node in g to a node in h while preserving the
local structure of each node, viz. its labelling and its successors. In the case of
a ⊥-homomorphisms φ : g →⊥ h, the preservation of the labelling is suspended
for nodes labelled ⊥ thus allowing φ to instantiate each ⊥-node in g with an
arbitrary node in h.

Therefore, we shall use ⊥-homomorphisms as the basis for generalising ≤⊥ to
canonical partial term graphs. This approach is based on the observation that ⊥-
homomorphisms characterise the partial order ≤⊥ on terms. Considering terms
as canonical term trees, we obtain the following equivalence:

s ≤⊥ t ⇐⇒ there is a ⊥-homomorphism φ : s→⊥ t.

Thus, ⊥-homomorphisms constitute the ideal tool for defining a partial order on
canonical partial term graphs that generalises ≤⊥. In the following subsection,
we shall explore different partial orders on canonical partial term graphs based
on ⊥-homomorphisms.

5.1 Partial Orders on Term Graphs
Consider the simple partial order ≤S

⊥ defined on term graphs as follows: g ≤S
⊥ h iff

there is a ⊥-homomorphism φ : g →⊥ h. This is a straightforward generalisation
of the partial order ≤⊥ to term graphs. In fact, this partial order forms a complete
semilattice on G∞C (Σ⊥) [9].

As we have explained in Section 2, p-convergence on terms is based on the
ability of the partial order ≤⊥ to capture information preservation between terms
– s ≤⊥ t means that t contains at least the same information as s does. The limit
inferior – and thus p-convergence – comprises the accumulated information that
eventually remains stable. Following the approach on terms, a partial order
suitable as a basis for convergence for term graph rewriting, has to capture an
appropriate notion of information preservation as well.

One has to keep in mind, however, that term graphs encode an additional
dimension of information through sharing of nodes, i.e. the fact that nodes may
have multiple positions. Since ≤S

⊥ specialises to ≤⊥ on terms, it does preserve
the information on the tree structure in the same way as ≤⊥ does. The difficult
part is to determine the right approach to the role of sharing.

319

f

c c

f

c

f

c c

f

c

f

c c

(g0) (g1) (g2) (g4) (gω)

Figure 3: Limit inferior w.r.t. ≤S
⊥ in the presence of acyclic sharing.

Indeed, ⊥-homomorphisms instantiate occurrences of ⊥ and are thereby able
to introduce new information. But while ⊥-homomorphisms preserve the local
structure of each node, they may change the global structure of a term graph
by introducing sharing: for the term graphs g0 and g1 in Figure 3, we have an
obvious ⊥-homomorphism – in fact a homomorphism – φ : g0 →⊥ g1 and thus
g0 ≤S

⊥ g1.
There are at least two different ways to interpret the differences in g0 and

g1. The first one dismisses ≤S
⊥ as a partial order suitable for our purposes: the

term graphs g0 and g1 contain contradicting information. While in g0 the two
children of the f -node are distinct, they are identical in g1. We will indeed follow
this view in this paper and introduce a rigid partial order ≤R

⊥ that addresses
this concern. There is, however, also a second view that does not see g0 and g1
in contradiction: both term graphs show the f -node with two successors, both
of which are labelled with c. The term graph g1 merely contains the additional
piece of information that the two successor nodes of the f -node are identical.
The simple partial order ≤S

⊥, which follows this view, is studied further in [9].
One consequence of the above behaviour of ≤S

⊥ is that total term graphs are
not necessarily maximal w.r.t. ≤S

⊥, e.g. g0 is total but not maximal. The second
– more severe – consequence is that there can be no metric on total term graphs
such that the limit w.r.t. that metric coincides with the limit inferior on total
term graph. To see this consider the sequence (gi)i<ω of term graphs illustrated in
Figure 3. Its limit inferior w.r.t.≤S

⊥ is the total term graph gω. On the other hand,
there is no metric w.r.t. which (gi)i<ω converges since the sequence alternates
between two distinct term graphs. That is, the correspondence between metric
and partial order convergence that we know from term rewriting, cf. Theorem 3.3,
is impossible.

To avoid the introduction of sharing, we need to consider ⊥-homomorphisms
that preserve the structure of term graphs more rigidly, i.e. not only locally.
Recall that by Lemma 4.24, the structure of a term graph is essentially given
by the positions of nodes and their labelling. Labellings are already taken into
consideration by ⊥-homomorphisms. Thus, we can define a partial order ≤P

⊥
that preserves the structure of term graphs as follows: g ≤P

⊥ h iff there is a ⊥-
homomorphism φ : g →⊥ h with Ph(φ(n)) = Pg(n) for all n ∈ Ng with labg(n) 6=
⊥. While this would again yield a complete semilattice, it is unfortunately too
restrictive. For example, consider the sequence of term graphs (gi)i<ω depicted
in Figure 4. Due to the cycle, we have for each term graph gi that ⊥ is the only
term graph strictly smaller than gi w.r.t. ≤P

⊥. The reason for this is the fact that
the only way to maintain the positions of the root node of the term graph gi
is to keep all nodes of the cycle in gi. Hence, in order to obtain a term graph

320

f f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

⊥

(g0) (g1) (g2) (g3) (gω) (g′2). . .

Figure 4: Varying acyclic sharing.

h with h ≤P
⊥ gi, we have to either keep the whole term graph gi or collapse it

completely, yielding ⊥. For example, we neither have g′2 ≤P
⊥ g2 nor g′2 ≤P

⊥ g3 for
the term graph g′2 illustrated in Figure 4. As a consequence, the limit inferior of
the sequence (gi)i<ω is ⊥ and not the expected term graph gω.

The fact that the root nodes g2 and g′2 have different sets of positions is solely
caused by the edge to the root node of g2 that comes from below and thus closes
a cycle. Even though the edge occurs below the root node, it affects its positions.
Cutting off that edge, like in g′2, changes the sharing. As a consequence, in the
complete semilattice (G∞C (Σ⊥),≤P

⊥), we do not obtain the intuitively expected
convergence behaviour depicted in Figure 8c on page 345.

This observation suggests that we should only consider the upward structure
of each node, ignoring the sharing that is caused by edges occurring below a node.
We will see that by restricting our attention to acyclic positions, we indeed obtain
the desired properties for a partial order on term graphs.

Recall that a position π in a term graph g is called cyclic iff there are positions
π1, π2 with π1 < π2 ≤ π such that nodeg(π1) = nodeg(π2), i.e. π passes a node
twice. Otherwise it is called acyclic. We will use the notation Pa(g) for the set of
all acyclic positions in g, and Pag (n) for the set of all acyclic positions of a node
n in g. That is, Pa(g) is the set of positions in g that pass each node in g at
most once. Clearly, every node has at least one acyclic position, i.e. Pag (n) is a
non-empty set.

Definition 5.1 (rigidity). Let Σ be a signature, ∆ ⊆ Σ(0) and g, h ∈ G∞(Σ)
such that φ : g →∆ h.

(i) Given n ∈ Ng, φ is said to be rigid in n if it satisfies the equation

Pag (n) = Pah(φ(n)) (rigid)

(ii) φ is called a rigid ∆-homomorphism if it is rigid in all n ∈ Ng with labg(n) 6∈
∆.

Proposition 5.2 (category of rigid ∆-homomorphisms). The rigid ∆-homo-
morphisms on G∞(Σ) form a subcategory of the category of ∆-homomorphisms
on G∞(Σ).

321

Proof. Straightforward.

Note that, for each node n in a term graph g, the positions in Pag (n) are
minimal positions of n w.r.t. the prefix order. Rigid ⊥-homomorphisms thus
preserve the upward structure of each non-⊥-node and, therefore, provide the
desired structure for a partial order that captures information preservation on
term graphs:

Definition 5.3 (rigid partial order ≤R
⊥). For every g, h ∈ G∞(Σ⊥), define g ≤R

⊥ h
iff there is a rigid ⊥-homomorphism φ : g →⊥ h.

Proposition 5.4 (partial order ≤R
⊥). The relation ≤R

⊥ is a partial order on
G∞C (Σ⊥).

Proof. Reflexivity and transitivity of≤R
⊥ follow immediately from Proposition 5.2.

For antisymmetry, assume g ≤R
⊥ h and h ≤R

⊥ g. By Proposition 4.9, this implies
g ∼=⊥ h. Corollary 4.14 then yields that g ∼= h. Hence, according to Proposi-
tion 4.16, g = h.

Example 5.5. Figure 8c on page 345 shows a sequence (hι)ι<ω of term graphs
and its limit inferior hω in (G∞C (Σ⊥),≤R

⊥): a cyclic list structure is repeatedly
rewritten by inserting an element b in front of the a. We can see that in each
step the newly inserted b (including the additional :: -node) remains unchanged
afterwards. In terms of positions, however, each of the nodes changes in each step
since the length of the cycle in the term graph grows with each step. Since this
affects only cyclic positions, we still get the following sequence (

d
β≤ι<ω hι)β<ω

of canonical term trees:

〈⊥ ::⊥, b ::⊥ ::⊥, b :: b ::⊥ ::⊥, . . .〉

The least upper bound of this sequence (
d
β≤ι<ω hι)β<ω and thus the limit inferior

of (hι)ι<ω is the infinite canonical term tree hω = b :: b :: b :: Since the cycle
changes in each step and is thus cut through in each element of (

d
β≤ι<ω hι)β<ω,

the limit inferior has no cycles at all.
Note that we do not have this intuitively expected convergence behaviour for

the partial order ≤P
⊥ based on positions: since the length of the cycle grows along

the sequence (hι)ι<ω, we have that the set of positions of the root nodes changes
constantly. Hence, the limit inferior of (hι)ι<ω in (G∞C (Σ⊥),≤P

⊥) is ⊥.

The partial order ≤R
⊥ based on rigid ⊥-homomorphisms is defined in a rather

non-local fashion as the definition of rigidity uses the set of all acyclic posi-
tions. This poses the question whether there is a more natural definition of a
suitable partial order. One such candidate is the partial order ≤I

⊥, which uses
injectivity in order to restrict the introduction of sharing: g ≤I

⊥ h iff there is a
⊥-homomorphism φ : g →⊥ h that is injective on non-⊥-nodes, i.e. φ(n) = φ(m)
and labg(n), labg(m) 6= ⊥ implies n = m. While this yields indeed a cpo on
G∞C (Σ⊥), we do not get a complete semilattice. To see this, consider Figure 5.
The two term graphs g3, g4 are two distinct maximal lower bounds of the two
term graphs g1, g2 w.r.t. the partial order ≤I

⊥. Hence, the set {g1, g2} does not
have a greatest lower bound in (G∞C (Σ⊥),≤I

⊥), which is therefore not a complete

322

f

g g

g n1

c

f

g g

g

g

c

f

g

gn2

c

g

⊥

f

g

⊥

g

g n3

⊥

f

g

⊥

g

⊥

(g1) (g2) (g3) (g4) (g5)

Figure 5: Term graphs g1, g2 with maximal lower bounds g3, g4 w.r.t. ≤I
⊥.

semilattice. The same phenomenon occurs if we consider a partial order derived
from ⊥-homomorphisms that are injective on all nodes.

The rigid partial order ≤R
⊥ resolves the issue of ≤I

⊥ illustrated in Figure 5:
g3 and g4 are not lower bounds of g1 and g2 w.r.t. ≤R

⊥. The (unique) ⊥-
homomorphism from g3 to g1 is not rigid as it maps the node n2 to n1 and
Pag3(n2) = {〈0, 0〉} whereas Pag1(n1) = {〈0, 0〉, 〈1, 0〉}. Hence, g3 6≤R

⊥ g1. Likewise,
g4 6≤R

⊥ g1 as the (unique) ⊥-homomorphism from g4 to g1 maps n3 to n1, which
again have different acyclic positions. We do find, however, a greatest lower
bound of g1 and g2 w.r.t. ≤R

⊥, viz. g5.

5.2 The Rigid Partial Order

In the remainder of this section, we will study the rigid partial order ≤R
⊥. In par-

ticular, we shall give a characterisation of rigidity in terms of labelled quotient
trees analogous to Lemma 4.19, show that (G∞C (Σ⊥),≤R

⊥) forms a complete semi-
lattice, illustrate the resulting mode of convergence, and give a characterisation
of term graphs that are maximal w.r.t. ≤R

⊥.
The partial order≤I

⊥, derived from injective⊥-homomorphisms, failed to form
a complete semilattice, which is why we abandoned that approach. The following
lemma shows that rigidity is, in fact, a stronger property than injectivity on non-
∆-nodes. Hence, ≤R

⊥ is a restriction of ≤I
⊥.

Lemma 5.6 (rigid ∆-homomorphisms are injective for non-∆-nodes). Let g, h ∈
G∞(Σ) and φ : g →∆ h rigid. Then φ is injective for all non-∆-nodes in g. That
is, for two nodes n,m ∈ Ng with labg(n), labg(m) 6∈ ∆ we have that φ(n) = φ(m)
implies n = m.

Proof. Let n,m ∈ Ng with labg(n), labg(m) 6∈ ∆ and φ(n) = φ(m). Since φ is
rigid, it is rigid in n and m. That is, in particular we have Pah(φ(n)) ⊆ Pg(n)
and Pah(φ(m)) ⊆ Pg(m). Moreover, because Pah(φ(n)) = Pah(φ(m)) 6= ∅, we can
conclude that Pg(n) ∩ Pg(m) 6= ∅ and, therefore, m = n.

323

5.2.1 Characterising Rigidity

The goal of this subsection is to give a characterisation of rigidity in terms of la-
belled quotient trees. We will then combine this characterisation with Lemma 4.19
to obtain a characterisation of the partial order ≤R

⊥.
The following lemma provides a characterisation of rigid ∆-homomorphisms

that reduces the proof obligations necessary to show that a ∆-homomorphism is
rigid.

Lemma 5.7 (rigidity). Let g, h ∈ G∞(Σ), φ : g →∆ h. Then φ is rigid iff
Pah(φ(n)) ⊆ Pg(n) for all n ∈ Ng with labg(n) 6∈ ∆.

Proof. The “only if” direction is trivial. For the “if” direction, suppose that φ
satisfies Pah(φ(n)) ⊆ Pg(n) for all n ∈ Ng with labg(n) 6∈ ∆. In order to prove
that φ is rigid, we will show that Pah(φ(n)) = Pag (n) holds for each n ∈ Ng with
labg(n) 6∈ ∆.

We first show the inclusion Pah(φ(n)) ⊆ Pag (n). For this purpose, let π ∈
Pah(φ(n)). Due to the hypothesis, this implies that π ∈ Pg(n). Now suppose
that π is cyclic in g, i.e. there are two positions π1, π2 of a node m ∈ Ng with
π1 < π2 ≤ π. By Lemma 4.10, we can conclude that π1, π2 ∈ Ph(φ(m)). This is
a contradiction to the assumption that π is acyclic in h. Hence, π ∈ Pag (n).

For the other inclusion, assume some π ∈ Pag (n). Using Lemma 4.10 we
obtain that π ∈ Ph(φ(n)). It remains to be shown that π is acyclic in h. Suppose
that this is not true, i.e. there are two positions π1, π2 of a node m ∈ Nh with
π1 < π2 ≤ π. Note that since π ∈ P(g), also π1, π2 ∈ P(g). Let mi = nodeg(πi),
i = 1, 2. According to Lemma 4.10, we have that φ(m1) = m = φ(m2). Moreover,
observe that g(π1), g(π2) 6∈ ∆: g(π1) cannot be a nullary symbol because π1 <
π ∈ P(g). The same argument applies for the case that π2 < π. If this is not the
case, then π2 = π and g(π) 6∈ ∆ follows from the assumption that labg(n) 6∈ ∆.
Thus, we can apply Lemma 5.6 to conclude that m1 = m2. Consequently, π is
cyclic in g, which contradicts the assumption. Hence, π ∈ Pah(φ(n)).

From the above lemma we learn that ∆-isomorphisms are also rigid ∆-homo-
morphisms.

Corollary 5.8 (∆-isomorphisms are rigid). Let g, h ∈ G∞(Σ). If φ : g ∼=∆ h,
then φ is a rigid ∆-homomorphism.

Proof. This follows from Lemma 4.13 and Lemma 5.7.

Similarly to Lemma 4.19, we provide a characterisation of rigid ∆-homo-
morphisms in terms of labelled quotient trees:

Lemma 5.9 (characterisation of rigid ∆-homomorphisms). Given g, h ∈ G∞(Σ),
a ∆-homomorphism φ : g →∆ h is rigid iff

π ∼h π′ =⇒ π ∼g π′ for all π ∈ P(g) with g(π) 6∈ ∆ and π′ ∈ Pa(h).

Proof. For the “only if” direction, assume that φ is rigid. Moreover, let π ∈ P(g)
with g(π) 6∈ ∆ and π′ ∈ Pa(h) such that π ∼h π′, and let n = nodeg(π). By
applying Lemma 4.10, we get that π ∈ Ph(φ(n)). Because of π ∼h π′, also

324

π′ ∈ Ph(φ(n)). Since, according to the assumption, π′ is acyclic in h, we know in
particular that π′ ∈ Pah(φ(n)). Since φ is rigid and labg(n) 6∈ ∆, we know that φ
is rigid in n which yields that π′ ∈ Pg(n). Hence, π ∼g π′.

For the converse direction, let n ∈ Ng with labg(n) 6∈ ∆. We need to show
that φ is rigid in n. Due to Lemma 5.7, it suffices to show that Pah(φ(n)) ⊆
Pg(n). Since Pg(n) 6= ∅, we can choose some π∗ ∈ Pg(n). Then, according to
Lemma 4.10, also π∗ ∈ Ph(φ(n)). Let π ∈ Pah(φ(n)). Then π∗ ∼h π holds. Since
π is acyclic in h and g(π∗) 6∈ ∆, we can use the hypothesis to obtain that π∗ ∼g π
holds which shows that π ∈ Pg(n).

Note that the above characterisation of rigidity is independent of the ∆-
homomorphism at hand. This is expected since ∆-homomorphisms between a
given pair of term graphs are unique.

By combining the above characterisation of rigidity with the corresponding
characterisation of ∆-homomorphisms, we obtain the following compact charac-
terisation of ≤R

⊥:

Corollary 5.10 (characterisation of ≤R
⊥). Let g, h ∈ G∞(Σ⊥). Then g ≤R

⊥ h iff
the following conditions are met:

(a) π ∼g π′ =⇒ π ∼h π′ for all π, π′ ∈ P(g)

(b) π ∼h π′ =⇒ π ∼g π′ for all π ∈ P(g) with g(π) ∈ Σ and π′ ∈ Pa(h)

(c) g(π) = h(π) for all π ∈ P(g) with g(π) ∈ Σ.

Proof. This follows immediately from Lemma 4.19 and Lemma 5.9.

Note that for term trees (b) is always true and (a) follows from (c). Hence,
on term trees, ≤R

⊥ is characterised by (c) alone. This observation shows that ≤R
⊥

is indeed a generalisation of ≤⊥.

Corollary 5.11. For all s, t ∈ T ∞(Σ⊥), we have that s ≤R
⊥ t iff s ≤⊥ t.

Proof. Follows from Corollary 5.10.

5.2.2 Convergence

In the following, we shall show that ≤R
⊥ indeed forms a complete semilattice on

G∞C (Σ⊥). We begin by showing that it constitutes a complete partial order.

Theorem 5.12 (≤R
⊥ is a cpo). The pair (G∞C (Σ⊥),≤R

⊥) forms a cpo. In partic-
ular, it has the least element ⊥, and the least upper bound of a directed set G is
given by the following labelled quotient tree (P, l,∼):

P =
⋃

g∈G
P(g) ∼ =

⋃

g∈G
∼g l(π) =

{
f if f ∈ Σ and ∃g ∈ G. g(π) = f

⊥ otherwise

Proof. The least element of ≤R
⊥ is obviously ⊥. Hence, it remains to be shown

that each directed subset G of G∞C (Σ⊥) has a least upper bound w.r.t. ≤R
⊥. To this

end, we show that the canonical term graph g given by the labelled quotient tree

325

(P, l,∼) described above is indeed the lub of G. We will make extensive use of
Corollary 5.10 to do so. Therefore, we write (a), (b), (c) to refer to corresponding
conditions of Corollary 5.10.

At first we need to show that l is indeed well-defined. For this purpose, let
g1, g2 ∈ G and π ∈ P(g1)∩P(g2) with g1(π), g2(π) ∈ Σ. Since G is directed, there
is some g ∈ G such that g1, g2 ≤R

⊥ g. By (c), we can conclude g1(π) = g(π) =
g2(π).

Next we show that (P, l,∼) is indeed a labelled quotient tree. Recall that
∼ needs to be an equivalence relation. For the reflexivity, assume that π ∈ P .
Then there is some g ∈ G with π ∈ P(g). Since ∼g is an equivalence relation,
π ∼g π must hold and, therefore, π ∼ π. For the symmetry, assume that π1 ∼ π2.
Then there is some g ∈ G such that π1 ∼g π2. Hence, we get π2 ∼g π1 and,
consequently, π2 ∼ π1. In order to show transitivity, assume that π1 ∼ π2, π2 ∼
π3. That is, there are g1, g2 ∈ G with π1 ∼g1 π2 and π2 ∼g2 π3. Since G is
directed, we find some g ∈ G such that g1, g2 ≤R

⊥ g. By (a), this implies that also
π1 ∼g π2 and π2 ∼g π3. Hence, π1 ∼g π3 and, therefore, π1 ∼ π3.

For the reachability condition, let π · 〈i〉 ∈ P . That is, there is a g ∈ G
with π · 〈i〉 ∈ P(g). Hence, π ∈ P(g), which in turn implies π ∈ P . Moreover,
π · 〈i〉 ∈ P(g) implies that i < ar(g(π)). Since g(π) cannot be a nullary symbol
and in particular not ⊥, we obtain that l(π) = g(π). Hence, i < ar(l(π)).

For the congruence condition, assume that π1 ∼ π2 and that l(π1) = f . If
f ∈ Σ, then there are g1, g2 ∈ G with π1 ∼g1 π2 and g2(π1) = f . Since G is
directed, there is some g ∈ G such that g1, g2 ≤R

⊥ g. Hence, by (a) respectively
(c), we have π1 ∼g π2 and g(π1) = f . Using Lemma 4.24 we can conclude that
g(π2) = g(π1) = f and that π1 · i ∼g π2 · i for all i < ar(g(π1)). Because g ∈ G,
it holds that l(π2) = f and that π1 · i ∼ π · i for all i < ar(l(π1)). If f = ⊥, then
also l(π2) = ⊥, for if l(π2) = f ′ for some f ′ ∈ Σ, then, by the symmetry of ∼ and
the above argument (for the case f ∈ Σ), we would obtain f = f ′ and, therefore,
a contradiction. Since ⊥ is a nullary symbol, the remainder of the condition is
vacuously satisfied.

This shows that (P, l,∼) is a labelled quotient tree which, by Lemma 4.24,
uniquely defines a canonical term graph. Next we show that the thus obtained
term graph g is an upper bound for G. To this end, let g ∈ G. We will show that
g ≤R

⊥ g by establishing (a),(b) and (c). (a) and (c) are an immediate consequence
of the construction. For (b), assume that π1 ∈ P(g), g(π1) ∈ Σ, π2 ∈ Pa(g) and
π1 ∼ π2. We will show that then also π1 ∼g π2 holds. Since π1 ∼ π2, there is
some g′ ∈ G with π1 ∼g′ π2. Because G is directed, there is some g∗ ∈ G with
g, g′ ≤R

⊥ g
∗. Using (a), we then get that π1 ∼g∗ π2. Note that since π2 is acyclic in

g, it is also acyclic in g∗: Suppose that this is not the case, i.e. there are positions
π3, π4 with π3 < π4 ≤ π2 and π3 ∼g∗ π4. But then we also have π3 ∼ π4, which
contradicts the assumption that π2 is acyclic in g. With this knowledge we are
able to apply (b) to π1 ∼g∗ π2 in order to obtain π1 ∼g π2.

In the final part of this proof, we will show that g is the least upper bound
of G. For this purpose, let ĝ be an upper bound of G, i.e. g ≤R

⊥ ĝ for all g ∈ G.
We will show that g ≤R

⊥ ĝ by establishing (a), (b) and (c). For (a), assume that
π1 ∼ π2. Hence, there is some g ∈ G with π1 ∼g π2. Since, by assumption,
g ≤R

⊥ ĝ, we can conclude π1 ∼ĝ π2 using (a). For (b), assume π1 ∈ P , l(π1) ∈ Σ,

326

f
r1

⊥
n1

(g)

f
r2

⊥
n2

(h)

f

r

(g t h)

Figure 6: Least upper bound g t h of compatible term graphs g and h.

π2 ∈ Pa(ĝ) and π1 ∼ĝ π2. That is, there is some g ∈ G with g(π1) ∈ Σ. Together
with g ≤R

⊥ ĝ this implies π1 ∼g π2 by (b). π1 ∼ π2 follows immediately. For (c),
assume π ∈ P and l(π) = f ∈ Σ. Then there is some g ∈ G with g(π) = f .
Applying (c) then yields ĝ(π) = f since g ≤R

⊥ ĝ.

Remark 5.13. Following Remark 4.21, we define an order ≤R
⊥ on G∞(Σ⊥)/∼=

which is isomorphic to the order ≤R
⊥ on G∞C (Σ⊥). Define [g]∼= ≤R

⊥ [h]∼= iff there is
a rigid ⊥-homomorphism φ : g →⊥ h.

The extension of ≤R
⊥ to equivalence classes is easily seen to be well-defined: as-

sume some rigid ⊥-homomorphism φ : g →⊥ h and two isomorphisms g′ ∼= g and
h′ ∼= h. Since, by Corollary 5.8, isomorphisms are also rigid (⊥-)homomorphisms,
we have two rigid ⊥-homomorphisms φ1 : g′ →⊥ g and φ2 : h →⊥ h′. Hence, by
Proposition 5.2, φ2 ◦ φ ◦ φ1 is a rigid ⊥-homomorphism from g′ to h′.

The isomorphism illustrated above allows us switch between the two par-
tially ordered sets (G∞C (Σ⊥),≤R

⊥) and (G∞(Σ⊥)/∼=,≤R
⊥) in order to use the struc-

ture that is more convenient for the given setting. In particular, the proof of
Lemma 5.14 below is based on this isomorphism.

By Proposition 2.1, a cpo is a complete semilattice iff each two compatible
elements have a least upper bound. Recall that compatible elements in a partially
ordered set are elements that have a common upper bound. We make use of
this proposition in order to show that (G∞C (Σ⊥),≤R

⊥) is a complete semilattice.
However, showing that each two term graphs g, h ∈ G∞C (Σ⊥) with a common
upper bound also have a least upper bound is not easy. The issue that makes the
construction of the lub of compatible term graphs a bit more complicated than in
the case of directed sets is illustrated in Figure 6. Note that the lub g t h of the
term graphs g and h has an additional cycle. The fact that in g t h the second
successor of r has to be r itself is enforced by g saying that the first successor of
r1 is r1 itself and by h saying that the first and the second successor of r2 must
be identical. Because of the additional cycle in g t h, we have that the set of
positions in g t h is a proper superset of the union of the sets of positions in g
and h. This makes the construction of g t h using a labelled quotient tree quite
intricate.

Our strategy to construct the lub is to form the disjoint union of the two
term graphs in question and then identify nodes that have a common position
w.r.t. the term graph they originate from. In our example, we have four nodes
r1, n1, r2 and n2. At first r1 and r2 have to be identified as both have the position
〈〉. Next, r1 and n2 are identified as they share the position 〈0〉. And eventually,

327

also n2 and n1 are identified since they share the position 〈1〉. Hence, all four
nodes have to be identified. The result is, therefore, a term graph with a single
node r. The following lemma and its proof, given in Appendix A, show that, for
any two compatible term graphs, this construction always yields their lub.

Lemma 5.14 (compatible elements have lub). Each pair g1, g2 of compatible
term graphs in (G∞C (Σ⊥),≤R

⊥) has a least upper bound.

Theorem 5.15. The pair (G∞C (Σ⊥),≤R
⊥) forms a complete semilattice.

Proof. This is, according to Proposition 2.1, a consequence of Theorem 5.12 and
Lemma 5.14.

In particular, this means that the limit inferior is defined for every sequence
of term graphs.

Corollary 5.16 (limit inferior of ≤R
⊥). Each sequence in (G∞C (Σ⊥),≤R

⊥) has a
limit inferior.

Recall that the intuition of the limit inferior on terms is that it contains the
accumulated information that eventually remains stable in the sequence. This in-
terpretation is, of course, based on the partial order ≤⊥ on terms, which embodies
the underlying notion of “information encoded in a term”.

The same interpretation can be given for the limit inferior based on the rigid
partial order ≤R

⊥ on term graphs. Given a sequence (gι)ι<α of term graphs, its
limit inferior lim infι→α gι is the term graph that contains the accumulation of all
pieces of information that from some point onwards remain unchanged in (gι)ι<α.

Example 5.17. 9d and 9e on page 347 each show a sequence of term graphs and
its limit inferior in (G∞C (Σ⊥),≤R

⊥).

(i) Figure 9d shows a simple example of how acyclic sharing is preserved by
the limit inferior. The corresponding sequence (

d
β≤ι<ω gι)β<ω of greatest

lower bounds is given as follows:

⊥

(
d

0≤ι<ω gι)

f

⊥

(
d

1≤ι<ω gι)

f

f

⊥

(
d

2≤ι<ω gι)

f

f

f

⊥
(
d

3≤ι<ω gι) . . .

The least upper bound of this sequence of term graphs and thus the limit
inferior of (gι)ι<ω is the term graph gω depicted in Figure 9d.

328

(ii) The situation is slightly different in the sequence (gι)ι<ω from Figure 9e.
Here we also have acyclic sharing, viz. in the c-node. However, unlike in
the previous example from Figure 9d, the acyclic sharing changes in each
step. Hence, a lower bound of two distinct term graphs in (gι)ι<ω cannot
contain a c-node because a rigid ⊥-homomorphism must map such a c-node
to a c-node with the same acyclic sharing, i.e. the same acyclic positions.
Consequently, the sequence of greatest lower bounds (

d
β≤ι<ω gι)β<ω looks

as follows:

⊥

(
d

0≤ι<ω gι)

f

⊥ h

⊥

(
d

1≤ι<ω gι)

f

f

⊥ h

h

⊥

(
d

2≤ι<ω gι)

f

f

f

⊥ h

h

h

⊥

(
d

3≤ι<ω gι) . . .

We thus get the term graph gω, depicted in Figure 9e, as the limit inferior
of (gι)ι<ω. The ⊥ labelling is necessary because of the change in acyclic
sharing throughout the sequence.

While we have confirmed in Corollary 5.11 that the partial order ≤R
⊥ gener-

alises the partial order ≤⊥ on terms, we still have to show that this also carries
over to the limit inferior. We can derive this property from the following simple
lemma:

Lemma 5.18. If g ∈ G∞C (Σ⊥) and t ∈ T ∞(Σ⊥) with g ≤R
⊥ t, then g ∈ T ∞(Σ⊥).

Proof. Since t is a term tree, ∼t is an identity relation. According to Corol-
lary 5.10, g ≤R

⊥ t implies that ∼g ⊆ ∼t. Hence, also ∼g is an identity relation,
which means that g is a term tree as well.

Proposition 5.19. Given a sequence (tι)ι<α over T ∞(Σ⊥), the limit inferior of
(tι)ι<α in (T ∞(Σ⊥),≤⊥) equals the limit inferior of (tι)ι<α in (G∞C (Σ⊥),≤R

⊥).

Proof. Since both structures are complete semilattices, both limit inferiors exist.
For each β < α, let sβ be the glb of Tβ = {tι |β ≤ ι < α} in (T ∞(Σ⊥),≤⊥) and
gβ the glb of Tβ in (G∞C (Σ⊥),≤R

⊥). Since then gβ ≤R
⊥ tβ, we know by Lemma 5.18

that gβ is a term tree. By Corollary 5.11, this implies that gβ is the glb of Tβ in
(T ∞(Σ⊥),≤⊥) as well, which means that gβ = sβ.

Let t and g be the limit inferior of (tι)ι<α in (T ∞(Σ⊥),≤⊥) and (G∞C (Σ⊥),≤R
⊥

), respectively. By the above argument, we know that t and g are the lub of the
set S = {sβ |β < α} in (T ∞(Σ⊥),≤⊥) respectively (G∞C (Σ⊥),≤R

⊥). By Corol-
lary 5.11, t is an upper bound of S in (G∞C (Σ⊥),≤R

⊥). Since g is the least such up-
per bound, we know that g ≤R

⊥ t. According to Lemma 5.18, this implies that g is
a term tree. Hence, by Corollary 5.11, g is an upper bound of S in (T ∞(Σ⊥),≤⊥)
and g ≤⊥ t. Since t is the least upper bound of S in (T ∞(Σ⊥),≤⊥), we can con-
clude that t = g.

329

5.2.3 Maximal Term Graphs

Intuitively, partial term graphs represent partial results of computations where
⊥-nodes act as placeholders denoting the uncertainty or ignorance of the actual
“value” at that position. On the other hand, total term graphs do contain all
the information of a result of a computation – they have the maximally possible
information content. In other words, they are the maximal elements w.r.t. ≤R

⊥.
The following proposition confirms this intuition.

Proposition 5.20 (total term graphs are maximal). Let Σ be a non-empty sig-
nature. Then G∞C (Σ) is the set of maximal elements in (G∞C (Σ⊥),≤R

⊥).

Proof. At first we need to show that each element in G∞C (Σ) is maximal. For this
purpose, let g ∈ G∞C (Σ) and h ∈ G∞C (Σ⊥) such that g ≤R

⊥ h. We have to show
that then g = h. Since g ≤R

⊥ h, there is a rigid ⊥-homomorphism φ : g →⊥ h. As
g does not contain any ⊥-node, φ is even a rigid homomorphism. By Lemma 5.6,
φ is injective and, therefore, according to Lemma 4.12, an isomorphism. Hence,
we obtain that g ∼= h and, consequently, using Proposition 4.16, that g = h.

Secondly, we need to show that G∞C (Σ⊥) does not contain any other maximal
elements besides those in G∞C (Σ). Suppose there is a term graph g ∈ G∞C (Σ⊥) \
G∞C (Σ) which is maximal in G∞C (Σ⊥). Hence, there is a node n∗ ∈ Ng with
labg(n∗) = ⊥. If Σ contains a nullary symbol c, construct a term graph h from g
by relabelling the node n∗ from ⊥ to c. However, then g <R

⊥ h, which contradicts
the assumption that g is maximal w.r.t. ≤R

⊥. Otherwise, if Σ(0) = ∅, let n be a
fresh node (i.e. n 6∈ Ng) and f some k-ary symbol in Σ. Define the term graph h
by

Nh = Ng] {n} rh = rg

labh(n) =

f if n = n∗

⊥ if n = n

labg(n) otherwise
such(n) =

〈n, . . . , n〉 if n = n∗

ε if n = n

sucg(n) otherwise

That is, h is obtained from g by relabelling n∗ with f and setting the ⊥-labelled
node n as the target of all outgoing edges of n∗. We assume that n was chosen
such that h is canonical (i.e. n = Ph(n)). Obviously, g and h are distinct.
Define φ : Ng → Nh by n 7→ n for all n ∈ Ng. Clearly, φ defines a rigid ⊥-
homomorphism from g to h. Hence, g ≤R

⊥ h. This contradicts the assumption of
g being maximal. Consequently, no element in G∞C (Σ⊥) \ G∞C (Σ) is maximal.

Note that this property does not hold for the simple partial order ≤S
⊥ that we

have considered briefly in the beginning of this section. Figure 3 shows the total
term graph g0, which is strictly smaller than g1 w.r.t. ≤S

⊥.

6 A Rigid Metric on Term Graphs
In this section, we pursue the metric approach to convergence in rewriting sys-
tems. To this end, we shall define a metric space on canonical term graphs. We
base our approach to defining a metric distance on the definition of the metric

330

distance d on terms. In particular, we shall define a truncation operation on term
graphs, which cuts off certain nodes depending on their depth in the term graph.
Subsequently, we study the interplay of the truncation with ∆-homomorphisms
and the depth of nodes within a term graph. Finally, we use the truncation
operation to derive a metric on term graphs.

6.1 Truncating Term Graphs
Originally, Arnold and Nivat [4] used a truncation of terms to define the metric
on terms. The truncation of a term t at depth d ≤ ω, denoted t|d, replaces all
subterms at depth d by ⊥:

t|0 = ⊥, f(t1, . . . , tk)|d+ 1 = f(t1|d, . . . , tk|d), t|ω = t

Recall that the metric distance d on terms is defined by d(s, t) = 2−sim(s,t).
The underlying notion of similarity sim(·, ·) can be characterised via truncations
as follows:

sim(s, t) = max {d ≤ ω | s|d = t|d}
We adopt this approach for term graphs as well. To this end, we shall define

a rigid truncation on term graphs. In Section 6.3 we will then show that this
truncation indeed yields a complete metric space.

Definition 6.1 (rigid truncation of term graphs). Let g ∈ G∞(Σ⊥) and d < ω.

(i) Given n,m ∈ Ng, m is an acyclic predecessor of n in g if there is an acyclic
position π · 〈i〉 ∈ Pag (n) with π ∈ Pg(m). The set of acyclic predecessors of
n in g is denoted Preag(n).

(ii) The set of retained nodes of g at d, denoted Ng
<d, is the least subset M of

Ng satisfying the following two conditions for all n ∈ Ng:

(T1) depthg(n) < d =⇒ n ∈M (T2) n ∈M =⇒ Preag(n) ⊆M

(iii) For each n ∈ Ng and i ∈ N, we use ni to denote a fresh node, i.e.{
ni
∣∣n ∈ Ng, i ∈ N

}
is a set of pairwise distinct nodes not occurring in Ng.

The set of fringe nodes of g at d, denoted Ng
=d, is defined as the singleton

set {rg} if d = 0, and otherwise as the set
{
ni
∣∣∣∣∣
n ∈ Ng

<d, 0 ≤ i < arg(n) with sucgi (n) 6∈ Ng
<d

or depthg(n) ≥ d− 1, n 6∈ Preag(sucgi (n))

}

(iv) The rigid truncation of g at d, denoted g‡d, is the term graph defined by

Ng‡d = Ng
<d]N

g
=d rg‡d = rg

labg‡d(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucg‡di (n) =
{

sucgi (n) if ni 6∈ Ng
=d

ni if ni ∈ Ng
=d

Additionally, we define g‡ω to be the term graph g itself.

331

h
r

hn

h
r

h
n

⊥ n0

f

h

...

h

a

n
tim

es

(g) (g‡2) (gn = gn‡2)
(a) Cyclic vs. acyclic sharing.

f

h

h

h

a

f

h

⊥

h

⊥

f

h

h

h

⊥
(g) (g†2) (g‡2)

(b) Comparison with simple truncation.

Figure 7: Examples of truncations.

Before discussing the intuition behind this definition of rigid truncation, let
us have a look at the rôle of retained and fringe nodes: the set of retained nodes
Ng
<d contains the nodes that are preserved by the rigid truncation. All other

nodes in Ng \Ng
<d are cut off. The “holes” that are thus created are filled by the

fringe nodes in Ng
=d. This is expressed in the condition sucgi (n) 6∈ Ng

<d which, if
satisfied, yields a fringe node ni. That is, a fresh fringe node is inserted for each
successor of a retained node that is not a retained node itself. As fringe nodes
function as a replacement for cut-off sub-term graphs, they are labelled with ⊥
and have no successors.

But there is another circumstance that can give rise to a fringe node: if
depthg(n) ≥ d − 1 and n 6∈ Preag(sucgi (n)), we also get a fringe node ni. This
condition is satisfied whenever an outgoing edge from a retained node closes a
cycle. The lower bound for the depth is chosen such that a successor node of
n is not necessarily a retained node. An example is depicted in Figure 7a. For
depth d = 2, the node n in the term graph g is just above the fringe, i.e. satisfies
depthg(n) ≥ d − 1. Moreover, it has an edge to the node r that closes a cycle.
Hence, the rigid truncation g‡2 contains the fringe node n0 which is now the 0-th
successor of n.

We chose this admittedly complicated notion of truncation in order to make
it compatible with the partial order ≤R

⊥: first of all, the rigid truncation of a term
graph is supposed to yield a smaller term graph w.r.t. the rigid partial order ≤R

⊥,
i.e. g‡d ≤R

⊥ g. Hence, whenever a node is kept as a retained node, also its acyclic
positions have to be kept in order to preserve its upward structure. To achieve
this, with each node also its acyclic ancestors have to be retained. The closure
condition (T2) is enforced exactly for this purpose.

To see what this means, consider Figure 7b. It shows a term graph g and
its truncation at depth 2, once without the closure condition (T2), denoted g†2,
and once including (T2), denoted g‡2. The grey area highlights the nodes that
are at depth smaller than 2, i.e. the nodes contained in Ng

<2 due to (T1). The
nodes within the area surrounded by a dashed line are all the nodes in Ng

<2. One

332

can observe that with the simple truncation g†d without (T2), we do not have
g†2 ≤R

⊥ g. The reason in this particular example is the bottommost h-node whose
acyclic sharing in g differs from that in the simple truncation g†2 as one of its
predecessors was removed due to the truncation. This effect is avoided in our
definition of rigid truncation, which always includes all acyclic predecessors of a
node.

Nevertheless, the simple truncation g†d has its benefits. It is much easier to
work with and provides a natural counterpart for the simple partial order ≤S

⊥ [9].
The following lemma confirms that we were indeed successful in making the

truncation of term graphs compatible with the rigid partial order ≤R
⊥:

Lemma 6.2 (rigid truncation is smaller). Given g ∈ G∞(Σ⊥) and d ≤ ω, we
have that g‡d ≤R

⊥ g.

Proof. The cases d = ω and d = 0 are trivial. Assume 0 < d < ω and define the
function φ as follows:

φ : Ng‡d → Ng

Ng
<d 3 n 7→ n

Ng
=d 3 ni 7→ sucgi (n)

We will show that φ is a rigid ⊥-homomorphism from g‡d to g and, thereby,
g‡d ≤R

⊥ g.
Since rg‡d = rg and rg‡d ∈ Ng

<d, we have φ(rg‡d) = rg and, therefore, the
root condition. Note that all nodes in Ng

=d are labelled with ⊥ in g‡d, i.e. all
non-⊥-nodes are in Ng

<d. Thus, the labelling condition is trivially satisfied as for
all n ∈ Ng

<d we have

labg‡d(n) = labg(n) = labg(φ(n)).

For the successor condition, let n ∈ Ng
<d. If ni ∈ Ng

=d, then sucg‡di (n) = ni.
Hence, we have

φ(sucg‡di (n)) = φ(ni) = sucgi (n) = sucgi (φ(n)).

If, on the other hand, ni 6∈ Ng
=d, then sucg‡di (n) = sucgi (n) ∈ Ng

<d. Hence, we have

φ(sucg‡di (n)) = φ(sucgi (n)) = sucgi (n) = sucgi (φ(n)).

This shows that φ is a ⊥-homomorphism. In order to prove that φ is rigid, we
will show that Pag (φ(n)) ⊆ Pg‡d(n) for all n ∈ Ng

<d, which is sufficient according
to Lemma 5.7. Note that we can replace φ(n) by n since n ∈ Ng

<d. Therefore, we
can show this statement by proving

∀π ∈ N∗∀n ∈ Ng
<d. (π ∈ Pag (n) =⇒ π ∈ Pg‡d(n))

by induction on the length of π. If π = 〈〉, then n = rg and, therefore, π ∈
Pg‡d(n). If π = π′ · 〈i〉, let m = nodeg(π′). Then we have m ∈ Preag(n) and,
therefore, m ∈ Ng

<d by the closure property (T2). And since π′ ∈ Pag (m), we can
apply the induction hypothesis to obtain that π′ ∈ Pg‡d(m). Moreover, because
sucgi (m) = n, this implies that mi 6∈ Ng

=d. Thus, sucg‡di (m) = n and, therefore,
π′ · 〈i〉 ∈ Pg‡d(n).

333

Also note that the rigid truncation on term graphs generalises Arnold and
Nivat’s [4] truncation on terms.

Proposition 6.3. For each t ∈ T ∞(Σ⊥) and d ≤ ω, we have that t‡d ∼= t|d.

Proof. For the case that d ∈ {0, ω}, the equation t‡d = t|d holds trivially. For the
other cases, we can easily see that t|d is obtained from t by replacing all subterms
at depth d by ⊥. On the other hand, since in a term tree each node has at most
one (acyclic) predecessor, which has a strictly smaller depth, we know that the
set of retained nodes N t

<d is the set of nodes of depth smaller than d and the set
of fringe nodes N t

=d is the set
{
ni
∣∣n ∈ N t, deptht(sucti(n)) = d

}
. Hence, t‡d is

obtained from t by replacing each node at depth d with a fresh node labelled ⊥.
We can thus conclude that t‡d ∼= t|d.

Consequently, if we use the rigid truncation to define a metric on term graphs
analogously to Arnold and Nivat, we obtain a metric on term graphs that gener-
alises the metric d on terms.

6.2 The Effect of Truncation

In order to characterise the effect of a truncation to a term graph, we need to
associate an appropriate notion of depth to a whole term graph:

Definition 6.4 (symbol/graph depth). Let g ∈ G∞(Σ) and ∆ ⊆ Σ.

(i) The depth of g, denoted depth(g), is the least upper bound of the depth of
nodes in g, i.e.

depth(g) =
⊔{

depthg(n)
∣∣∣n ∈ Ng

}
.

(ii) The ∆-depth of g, denoted ∆-depth(g), is the minimum depth of nodes in
g labelled in ∆, i.e.

∆-depth(g) = min
{

depthg(n)
∣∣∣n ∈ Ng, labg(n) ∈ ∆

}
∪ {ω} .

If ∆ is a singleton set {σ}, we also write σ-depth(g) instead of {σ}-depth(g).

Notice the difference between depth and ∆-depth. The former is the least
upper bound of the depth of nodes in a term graph whereas the latter is the min-
imum depth of nodes labelled by a symbol in ∆. Thus, we have that depth(g) = ω
iff g is infinite; and ∆-depth(g) = ω iff g does not contain a ∆-node.

In the following, we will prove a number of lemmas that show how ∆-homo-
morphisms preserve the depth of nodes in term graphs. Understanding how
∆-homomorphisms affect the depth of nodes will become important for relating
the rigid truncation to the rigid partial order ≤R

⊥.

Lemma 6.5 (reverse depth preservation of ∆-homomorphisms). Let g, h ∈ G∞(Σ)
and φ : g →∆ h. Then, for all n ∈ Nh with depthh(n) ≤ ∆-depth(g), there is a
node m ∈ φ−1(n) with depthg(m) ≤ depthh(n).

334

Proof. We prove the statement by induction on depthh(n). If depthh(n) = 0, then
n = rh. With m = rg, we have φ(m) = n and depthg(m) = 0. If depthh(n) > 0,
then there is some n′ ∈ Nh with suchi (n′) = n and depthh(n′) < depthh(n).
Hence, we can employ the induction hypothesis to obtain some m′ ∈ Ng with
depthg(m′) ≤ depthh(n′) and φ(m′) = n′. Since depthg(m′) ≤ depthh(n′) <
depthh(n) ≤ ∆-depth(g), we have labg(m′) 6∈ ∆. Hence, φ is homomorphic in m′.
For m = sucgi (m′), we can then reason as follows:

φ(m) = φ(sucgi (m′)) = suchi (φ(m′)) = suchi (n′) = n, and
depthg(m) ≤ depthg(m′) + 1 ≤ depthh(n).

Lemma 6.6 (∆-depth preservation of ∆-homomorphisms). Let g, h ∈ G∞(Σ)
and φ : g →∆ h, then ∆-depth(g) ≤ ∆-depth(h).

Proof. Let n ∈ Nh with depthh(n) < ∆-depth(g). To prove the lemma, we have
to show that labh(n) 6∈ ∆. According to Lemma 6.5, we find a node m ∈ Ng with
depthg(m) ≤ depthh(n) < ∆-depth(g) and φ(m) = n. Since then labg(m) 6∈ ∆,
we also have labh(n) 6∈ ∆ by the labelling condition for φ.

For rigid ∆-homomorphisms, we even have a stronger form of depth preser-
vation.

Lemma 6.7 (depth preservation of rigid ∆-homomorphisms). Let g, h ∈ G∞(Σ)
and φ : g →∆ h a rigid ∆-homomorphism. Then depthg(n) = depthh(φ(n)) for
all n ∈ Ng with labg(n) 6∈ ∆.

Proof. If labg(n) 6∈ ∆, then Pag (n) = Pah(φ(n)). Hence, depthg(n) = depthh(φ(n))
follows since a shortest position of a node must be acyclic.

The gaps that are caused by a truncation due to the removal of nodes are
filled by fresh ⊥-nodes. The following lemma provides a lower bound for the
depth of the introduced ⊥-nodes.

Lemma 6.8 (⊥-depth in rigid truncations). For all g ∈ G∞(Σ) and d < ω, we
have that

(i) ⊥-depth(g‡d) ≥ d, and

(ii) if d > depth(g) + 1, then g‡d = g, i.e. ⊥-depth(g‡d) = ω.

Proof. (i) From the proof of Lemma 6.2, we obtain a rigid ⊥-homomorphism
φ : g‡d→⊥ g. Note that the only ⊥-nodes in g‡d are those in Ng

=d. Each of these
nodes has only a single predecessor, a node n ∈ Ng

<d with depthg(n) ≥ d− 1. By
Lemma 6.7, we also have depthg‡d(n) ≥ d − 1 for these nodes since φ is rigid, n
is not labelled with ⊥ and φ(n) = n. Hence, we have depthg‡d(m) ≥ d for each
node m ∈ Ng

=d. Consequently, it holds that ⊥-depth(g‡d) ≥ d.
(ii) Note that if d > depth(g) + 1, then Ng

<d = Ng and Ng
=d = ∅. Hence,

g‡d = g.

335

Remark 6.9. Note that the precondition for the statement of clause (ii) in the
lemma above reads d > depth(g)+1 rather than d > depth(g) as one might expect.
The reason for this is that a truncation might cut off an edge that emanates from
a node at depth d−1 and closes a cycle. For an example of this phenomenon, take
a look at Figure 7a. It shows a term graph g of depth 1 and its rigid truncation
at depth 2. Even though there is no node at depth 2 the truncation introduces a
⊥-node.

On the other hand, although a term graph has depth greater than d, the
truncation at depth d might still preserve the whole term graph. An example for
this behaviour is the family of term graphs (gn)n<ω depicted in Figure 7a. Each
of the term graphs gn has depth n+ 1. Yet, the truncation at depth 2 preserves
the whole term graph gn for each n > 0. Even though there might be h-nodes
which are at depth ≥ 2 these nodes are directly or indirectly acyclic predecessors
of the a-node and are, thus, included in Ngn

<2.

Intuitively, the following lemma states that a rigid ⊥-homomorphism has the
properties of an isomorphism up to the depth of the shallowest ⊥-node:

Lemma 6.10 (≤R
⊥ and rigid truncation). Given g, h ∈ G∞(Σ⊥) and d < ω with

g ≤R
⊥ h and ⊥-depth(g) ≥ d, we have that g‡d ∼= h‡d.

The proof of the above lemma is based on a generalisation of Lemma 6.7,
which states that rigid ⊥-homomorphisms map non-⊥-nodes to nodes of the same
depth. However, since the rigid truncation of a term graph does not only depend
on the depth of nodes but also the acyclic sharing in the term graph, we cannot
rely on this statement on the depth of nodes alone. The two key components
of the proof of Lemma 6.10 are 1. the property of rigid ⊥-homomorphisms to
map retained nodes of the source term graph exactly to the retained nodes of the
target term graph and 2. that in the same way fringe nodes are exactly mapped
to fringe nodes. Showing the isomorphism between g‡d and h‡d can thus be
reduced to the injectivity on retained nodes in g‡d which is obtained from the
rigid ⊥-homomorphism from g to h by applying Lemma 5.6. The full proof of
Lemma 6.10 is given in Appendix B.

We can use the above findings in order to obtain the following properties of
truncations that one would intuitively expect from a truncation operation:

Lemma 6.11 (smaller truncations). For all g, h ∈ G∞(Σ) and e ≤ d ≤ ω, the
following holds:

(i) g‡e ∼= (g‡d)‡e, and (ii) g‡d ∼= h‡d =⇒ g‡e ∼= h‡e.

Proof. (i) For d = ω, this is trivial. Suppose d < ω. From Lemma 6.2, we obtain
g‡d ≤R

⊥ g. Moreover, by Lemma 6.8, we have ⊥-depth(g‡d) ≥ d and, a fortiori,
⊥-depth(g‡d) ≥ e. Hence, we can employ Lemma 6.10 to get (g‡d)‡e ∼= g‡e.

(ii) Since g‡d ∼= h‡d, we also have (g‡d)‡e ∼= (h‡d)‡e, as the construction of
the truncation only depends on the structure of the term graphs. Hence, using
(i) we can conclude

g‡e ∼= (g‡d)‡e ∼= (h‡d)‡e ∼= h‡e.

336

6.3 Deriving a Metric on Term Graphs
We may now define a rigid distance measure on canonical term graphs in the
style of Arnold and Nivat:

Definition 6.12 (rigid distance). The rigid similarity of two term graphs g, h ∈
G∞C (Σ), written sim‡(g, h), is the maximum depth at which the rigid truncation
of both term graphs coincide:

sim‡(g, h) = max {d ≤ ω | g‡d ∼= h‡d} .

The rigid distance between two term graphs g, h ∈ G∞C (Σ), written d‡(g, h) is
defined as

d‡(g, h) = 2−sim‡(g,h), where we interpret 2−ω as 0.

Indeed, the resulting distance forms an ultrametric on the set of canonical
term graphs:

Proposition 6.13 (rigid ultrametric). The pair (G∞C (Σ),d‡) forms an ultramet-
ric space.

Proof. The identity condition is derived as follows:

d‡(g, h) = 0 ⇐⇒ sim‡(g, h) = ω ⇐⇒ g ∼= h
Prop. 4.16⇐⇒ g = h

The symmetry condition is satisfied by the following equational reasoning:

d‡(g, h) = 2−sim‡(g,h) = 2−sim‡(h,g) = d‡(h, g)

For the strong triangle condition, we have to show that

d‡(g1, g3) ≤ max {d‡(g1, g2),d‡(g2, g3)} ,

which is equivalent to

sim‡(g1, g3) ≥ min {sim‡(g1, g2), sim‡(g2, g3)} .

Let d = sim‡(g1, g2) and e = sim‡(g2, g3). By symmetry, we can assume w.l.o.g.
that d ≤ e, i.e. d = min {sim‡(g1, g2), sim‡(g2, g3)}. By definition of rigid similar-
ity, we have both g1‡d ∼= g2‡d and g2‡e ∼= g3‡e. From the latter we obtain, by
Lemma 6.11, that g2‡d ∼= g3‡d. That is, g1‡d ∼= g2‡d ∼= g3‡d which means that
sim‡(g1, g3) ≥ d.

Example 6.14. Figures 8c and 9d on pages 345 and 347, respectively, show two
sequences of term graphs that are converging in the metric space (G∞C (Σ),d‡).
In the sequence (hi)i<ω from Figure 8c, we have that the rigid truncation at 0
is trivially ⊥ for all term graphs in the sequence. From h1 onwards, the rigid
truncation at 1 is the term tree ⊥ ::⊥; from h2 onwards, the rigid truncation
at 2 is the term tree b ::⊥ ::⊥; etc. Hence, for each n < ω, the metric distance
d‡(hi, hj) between two term graphs from hn onwards, i.e. with n ≤ i, j < ω,
is at most 2−n. That is, the sequence (hi)i<ω is Cauchy. Even more, for the
term tree hω = b :: b :: b :: . . . depicted in Figure 8c we also have that hω‡0 = ⊥,

337

hω‡1 = ⊥ ::⊥, hω‡2 = b ::⊥ ::⊥, etc. Hence, for each n < ω, the metric distance
d‡(hn, hω) is at most 2−n. That is, the sequence (hi)i<ω converges to hω. In a
similar fashion, the sequence depicted in Figure 9d converges as well.

Figure 9e shows a sequence (gi)i<ω of term graphs that does not converge.
In fact, it is not even Cauchy. To see this, notice that the c-node is at depth 1
in g0 and at depth 2 from g1 onwards. As in each term graph gi the c-node is
reachable from any node in gi without forming a cycle, we have that each node is
an acyclic ancestor of the c-node. That is, whenever the c-node is retained by a
rigid truncation, so is any other node. Consequently, we have that gi‡d = gi for
each i < ω and d > 2. Hence, the metric distance d‡(gi, gj) between each pair of
term graphs with i 6= j is at least 2−2. That is, (gi)i<ω is not Cauchy.

Since we defined the metric on term graphs in the same style as Arnold and
Nivat [4] defined the partial order d on terms, we can use the correspondence
between the rigid truncation and the truncation on terms in order to derive that
the metric d‡ generalises the metric d on terms.

Corollary 6.15. For all s, t ∈ T ∞(Σ), we have that d‡(s, t) = d(s, t).

Proof. Follows from Proposition 6.3.

From the above observation, we obtain that convergence in the metric space of
term graphs (G∞C (Σ),d‡) is a conservative extension of convergence in the metric
space of terms (T ∞(Σ),d):

Proposition 6.16. Every non-empty sequence over T ∞(Σ) converges to t in
(G∞C (Σ),d‡) iff it converges to t in (T ∞(Σ),d).

Proof. The “if” direction follows immediately from Corollary 6.15.
For the “iff” direction we assume a sequence S over T ∞(Σ) that converges

to t in (G∞C (Σ),d‡). Consequently, S is also Cauchy in (G∞C (Σ),d‡). Due to
Corollary 6.15, S is then also Cauchy in (T ∞(Σ),d). Since (T ∞(Σ),d) is com-
plete, S converges to some term t′ in (T ∞(Σ),d). Using the “if” direction of this
proposition, we then obtain that S converges to t′ in (G∞C (Σ),d‡). Since limits
are unique in metric spaces, we can conclude that t = t′.

7 Metric vs. Partial Order Convergence
In this section we study both the partially ordered set (G∞C (Σ⊥),≤R

⊥) and the
metric space (G∞C (Σ),d‡). In particular, we are interested in the notion of con-
vergence that each of the two structures provides. We shall show that on total
term graphs – i.e. in G∞C (Σ) – both structures yield the same notion of conver-
gence. That is, we obtain the same correspondence that we already know from
infinitary term rewriting as stated in Theorem 3.3. Moreover, as a side product,
this finding will also show the completeness of the metric space (G∞C (Σ),d‡).

The cornerstone of this comparison of the rigid metric d‡ and the rigid partial
order ≤R

⊥ is the following characterisation of the rigid similarity sim‡(·, ·) in terms
of greatest lower bounds in (G∞C (Σ⊥),≤R

⊥):

338

Proposition 7.1 (characterisation of rigid similarity). Let g, h ∈ G∞C (Σ) and
g u h the greatest lower bound of g and h in (G∞C (Σ⊥),≤R

⊥). Then sim‡(g, h) =
⊥-depth(g u h).

Proof. At first assume that g = h. Hence, guh = g and, consequently ⊥-depth(gu
h) = ω as g does not contain any node labelled ⊥. On the other hand, g = h
implies g‡ω ∼= h‡ω, and, therefore, sim‡(g, h) = ω. If g 6= h, then g 6∼= h by
Proposition 4.16. Hence, sim‡(g, h) < ω. Moreover, since g 6∼= h, we know that
g u h has to be strictly smaller than g or h w.r.t. ≤R

⊥. Hence, according to
Proposition 5.20, guh has to contain some node labelled ⊥, i.e. ⊥-depth(guh) <
ω as well. We prove that ⊥-depth(g u h) = sim‡(g, h) by showing that both
⊥-depth(g u h) ≤ sim‡(g, h) and ⊥-depth(g u h) ≥ sim‡(g, h) hold.

In order to show the former, let d = ⊥-depth(g u h). Since g u h ≤R
⊥ g, h, we

can apply Lemma 6.10 twice in order to obtain g‡d ∼= (g u h)‡d ∼= h‡d. Hence,
sim‡(g, h) ≥ d.

To show the converse direction, let d = sim‡(g, h), i.e. g‡d ∼= h‡d. According
to Lemma 6.2, we have both g‡d ≤R

⊥ g and h‡d ≤R
⊥ h. Note that, for the canonical

representation, we then have C(g‡d) = C(h‡d), C(g‡d) ≤R
⊥ g and C(h‡d) ≤R

⊥ h (cf.
Proposition 4.16 respectively Remark 5.13). That is, C(g‡d) is a lower bound of
g and h. Thus, C(g‡d) ≤R

⊥ g u h and we can reason as follows:

d ≤ ⊥-depth(g‡d) (Lem. 6.8)
= ⊥-depth(C(g‡d)) (Lem. 6.7, Cor. 5.8)
≤ ⊥-depth(g u h) (C(g‡d) ≤R

⊥ g u h, Lem. 6.6)

Remark 7.2. From now on, we are not dealing with the concrete construction
of rigid truncations g‡d anymore. Therefore, we will rather use the canonical
representation C(g‡d) of g‡d. In order to avoid the notational overhead, we write
g‡d instead of C(g‡d).

In the next step we show that the metric space (G∞C (Σ),d‡) is indeed complete.
The following proposition states even more: the limit of Cauchy sequences in the
metric space equals its limit inferior in the partially ordered set (G∞C (Σ⊥),≤R

⊥):

Proposition 7.3 (metric limit = limit inferior). Let (gι)ι<α be a non-empty
Cauchy sequence in the metric space (G∞C (Σ),d‡) and lim infι→α gι its limit infe-
rior in (G∞C (Σ⊥),≤R

⊥). Then limι→α gι = lim infι→α gι.

Proof. If α is a successor ordinal, this is trivial, as the limit and the limit inferior
are then gα−1. Assume that α is a limit ordinal and let g be the limit inferior of
(gι)ι<α. Since, according to Theorem 5.15, (G∞C (Σ⊥),≤R

⊥) is a complete semilat-
tice, g is well-defined. Since (gι)ι<α is Cauchy, we obtain that, for each ε ∈ R+,
there is a β < α such that we have d‡(gι, gι′) < ε for all β ≤ ι, ι′ < α. A fortiori,
we get that, for each ε ∈ R+, there is a β < α such that we have d‡(gβ, gι) < ε
for all β ≤ ι < α. By definition of d‡, this is equivalent to 2−sim‡(gβ ,gι) < ε.
Consequently, we have, for each d < ω, a β < α such that sim‡(gβ, gι) > d for all
β ≤ ι < α. Due to Lemma 6.11, sim‡(gβ, gι) > d implies gβ‡d = gι‡d which in

339

turn implies gβ‡d ≤R
⊥ gι, according to Lemma 6.2. Hence, gβ‡d is a lower bound

for Gβ = {gι |β ≤ ι < α}, i.e. gβ‡d ≤R
⊥

d
Gβ. Moreover, by the definition of the

limit inferior, it holds that
d
Gβ ≤R

⊥ g. Consequently, gβ‡d ≤R
⊥ g, i.e. we have

∀d < ω∃β < α : gβ‡d ≤R
⊥ g (1)

Since, by Lemma 6.8, we have ⊥-depth(gβ‡d) ≥ d, we can apply Lemma 6.10 to
obtain (gβ‡d)‡d ∼= g‡d. Hence, by Lemma 6.11, we have gβ‡d ∼= g‡d and therefore
sim‡(g, gβ) ≥ d. That is, we have shown that

∀d < ω∃β < α : sim‡(g, gβ) ≥ d

Since, for each ε ∈ R+, we find a d < ω with 2−d < ε, this implies

∀ε ∈ R+∃β < α : d‡(g, gβ) < ε

This shows that (gι)i<α converges to g. Now it remains to be shown that g is
indeed in G∞C (Σ), i.e. it does not contain any node labelled ⊥. Suppose that g does
contain a node labelled with ⊥. Then ⊥-depth(g) < ω. Let d = ⊥-depth(g) + 1.
By (1), there is a β with gβ‡d ≤R

⊥ g. By applying Lemma 6.8 and Lemma 6.6,
we then get

⊥-depth(g) + 1 = d ≤ ⊥-depth(gβ‡d) ≤ ⊥-depth(g).

This is a contradiction. Hence, g is indeed in G∞C (Σ).

This result has two obvious but important consequences: firstly, the limit of
a converging sequence in the rigid metric space is equal to the limit inferior in
the rigid complete semilattice. Secondly, the rigid metric space (G∞C (Σ),d‡) is
complete:

Theorem 7.4 (completeness of rigid metric). The metric space (G∞C (Σ),d‡) is
complete.

Proof. Immediate consequence of Proposition 7.3.

In the following proposition, we show the converse direction of the relation
between the limits of the rigid metric and the limit inferiors of the rigid partial
order:

Proposition 7.5 (total limit inferior = limit). Let (gι)ι<α be a non-empty se-
quence in (G∞C (Σ),d‡) and lim infι→α gι its limit inferior in (G∞C (Σ⊥),≤R

⊥). If
lim infι→α gι ∈ G∞C (Σ), then lim infι→α gι = limι→α gι.

Proof. If α is a successor ordinal, then both the limit and the limit inferior are
equal to gα−1. Let α be a limit ordinal. According to Proposition 7.3, in order
to show that (gι)ι<α converges and that its limit coincides with its limit inferior,
it suffices to prove that (gι)ι<α is Cauchy.

Let g = lim infι→α gι, and define Gβ = {gι |β ≤ ι < α} and hβ =
d
Gβ for

each β < α. Note that g = ⊔
β<α hβ. Since g is total, i.e. no node in g is labelled

with ⊥, we have, according to Theorem 5.12, that for each π ∈ P(g) there is
some βπ < α with hβπ(π) = g(π).

340

Note that (hι)ι<α is monotonic w.r.t. ≤R
⊥, i.e. ι ≤ ι′ implies hι ≤R

⊥ hι′ . Since
hι ≤R

⊥ hι′ together with hι(π) ∈ Σ implies hι′(π) = hι(π) by Corollary 5.10, we
have hγ(π) = g(π) for all π ∈ P(g) and βπ ≤ γ < α.

Let d < ω. Since there are only finitely many positions in P(g) of length
smaller than d, we know that βd = max {βπ |π ∈ P(g), |π| < d} is a well-defined
ordinal smaller than α. Hence, for all π ∈ P(g) with |π| < d we have hβd(π) =
g(π). Since g is total, we thus have that ⊥-depth(hβd) ≥ d.

Since gι, gι′ ∈ Gβd for each βd ≤ ι, ι′ < α, we have hβd ≤R
⊥ gι, gι′ and thus

hβd ≤R
⊥ gι u gι′ . Consequently, by Lemma 6.6, we have that ⊥-depth(gι u gι′) ≥

⊥-depth(hβd). That is, for all ι, ι′ with βd < ι, ι′ < α, we have the following:

sim‡(gι, gι′)
Prop. 7.1= ⊥-depth(gι u gι′) ≥ ⊥-depth(hβd) ≥ d

Now, let ε ∈ R+. We then find some d < ω with ε > 2−d. Consequently, we
have

d‡(gι, gι′) = 2−sim‡(gι,gι′) ≤ 2−d < ε for all βd ≤ ι, ι′ < α.

Hence, (gι)ι<α is Cauchy.

Note that Proposition 7.5 depends on the finiteness of the arity of the symbols
in the signature. (This is used in the proof above when observing that a term
graph has only finitely many positions of a bounded length.) This restriction also
applies to terms as the following example shows:

Example 7.6. Let Σ = {f/ω, a/0, b/0} and (ti)i<ω a sequence with

t0 = f(a, a, a, a, a . . .),
t1 = f(b, a, a, a, a . . .),
t2 = f(b, b, a, a, a . . .),
t3 = f(b, b, b, a, a . . .),

...

(ti)i<ω has the limit inferior f(b, b, b, b, b, . . .). On the other hand, the sequence
is not even Cauchy since, for each i 6= j, we have sim‡(ti, tj) = 1 and, therefore,
d‡(ti, tj) = 1

2 .

8 Infinitary Term Graph Rewriting
In the previous sections, we have constructed and investigated the necessary
metric and partial order structures upon which the infinitary calculus of term
graph rewriting that we shall introduce in this section is based. After describing
the framework of term graph rewriting that we consider, we will explore two
different modes of convergence on term graphs. In the same way that infinitary
term rewriting is based on the abstract notions of m- and p-convergence [6],
infinitary term graph rewriting is an instantiation of these abstract modes of
convergence for term graphs. However, as in the overview of infinitary term
rewriting in Section 2, we restrict ourselves to weak notions of convergence.

341

8.1 Term Graph Rewriting Systems
In this paper, we adopt the term graph rewriting framework of Barendregt et
al. [10]. In order to represent placeholders in rewrite rules, this framework uses
variables – in a manner much similar to term rewrite rules. To this end, we
consider a signature ΣV = Σ] V that extends the signature Σ with a set V of
nullary variable symbols.

Definition 8.1 (term graph rewriting systems).

(i) Given a signature Σ, a term graph rule ρ over Σ is a triple (g, l, r) where g is
a graph over ΣV and l, r ∈ Ng such that all nodes in g are reachable from l
or r. We write ρl respectively ρr to denote the left- respectively right-hand
side of ρ, i.e. the term graph g|l respectively g|r. Additionally, we require
that, for each variable v ∈ V, there is at most one node n in g labelled v
and that n is different but still reachable from l.

(ii) A term graph rewriting system (GRS) R is a pair (Σ, R) with Σ a signature
and R a set of term graph rules over Σ.

The requirement that the root l of the left-hand side is not labelled with a
variable symbol is analogous to the requirement that the left-hand side of a term
rule is not a variable. Similarly, the restriction that nodes labelled with variable
symbols must be reachable from the root of the left-hand side corresponds to the
restriction on term rules that every variable occurring on the right-hand side of
a rule must also occur on the left-hand side.

Term graphs can be used to compactly represent terms, which is formalised
by the unravelling operator U(·). We extend this operator to term graph rules.
Figure 8a illustrates two term graph rules that both represent the term rule
a ::x→ b :: a ::x from Example 3.1 to which they unravel.

Definition 8.2 (unravelling of term graph rules). Let ρ be a term graph rule
with ρl and ρr its left- respectively right-hand side term graph. The unravelling
of ρ, denoted U(ρ) is the term rule U(ρl)→ U(ρr).

The application of a rewrite rule ρ (with root nodes l and r) to a term graph
g is performed in three steps: at first a suitable sub-term graph of g rooted in
some node n of g is matched against the left-hand side of ρ. This amounts to
finding a V-homomorphism φ : ρl →V g|n from the term graph rooted in l to
the sub-term graph rooted in n, the redex. The V-homomorphism φ allows us to
instantiate variables in the rule with sub-term graphs of the redex. In the second
step, nodes and edges in ρ that are not reachable from l are copied into g, such
that each edge pointing to a node m in the term graph rooted in l is redirected
to φ(m). In the last step, all edges pointing to n are redirected to (the copy of) r
and all nodes not reachable from the root of (the now modified version of) g are
removed.

The formal definition of this construction is given below:

Definition 8.3 (application of term graph rewrite rules, [10]). Let ρ = (Nρ, labρ,
sucρ, lρ, rρ) be a term graph rewrite rule in a GRS R = (Σ, R), g ∈ G∞(Σ) with

342

Nρ ∩ Ng = ∅ and n ∈ Ng. ρ is called applicable to g at n if there is a V-
homomorphism φ : ρl →V g|n. φ is called the matching V-homomorphism of the
rule application, and g|n is called a ρ-redex. Next, we define the result of the
application of the rule ρ to g at n using the V-homomorphism φ. This is done by
constructing the intermediate graphs g1 and g2, and the final result g3.

(i) The graph g1 is obtained from g by adding the part of ρ that is not contained
in its left-hand side:

Ng1 = Ng] (Nρ \Nρl)

labg1(m) =
{

labg(m) if m ∈ Ng

labρ(m) if m ∈ Nρ \Nρl

sucg1
i (m) =

sucgi (m) if m ∈ Ng

sucρi (m) if m, sucρi (m) ∈ Nρ \Nρl

φ(sucρi (m)) if m ∈ Nρ \Nρl , sucρi (m) ∈ Nρl

(ii) Let n′ = φ(rρ) if rρ ∈ Nρl and n′ = rρ otherwise. The graph g2 is obtained
from g1 by redirecting edges ending in n to n′:

Ng2 = Ng1 labg2 = labg1 sucg2
i (m) =

{
sucg1

i (m) if sucg1
i (m) 6= n

n′ if sucg1
i (m) = n

(iii) The term graph g3 is obtained by setting the root node r′, which is n′ if
n = rg, and otherwise rg. That is, g3 = g2|r′ . This also means that all
nodes not reachable from r′ are removed.

This induces a pre-reduction step ψ = (g, n, ρ, n′, g3) from g to g3, written
ψ : g 7→n,ρ,n′ g3. In order to indicate the underlying GRS R, we also write
ψ : g 7→R g3.

Examples for term graph (pre-)reduction steps are shown in Figure 8. We
revisit them in more detail in Example 8.9 below.

The definition of term graph rewriting in the form of pre-reduction steps
is very operational in style. The result of applying a rewrite rule to a term
graph is constructed in several steps by manipulating nodes and edges explicitly.
While this is beneficial for implementing a rewriting system, it is problematic for
reasoning on term graphs up to isomorphisms, which is necessary for introducing
notions of convergence. In our case, however, this does not cause any harm since
the construction in Definition 8.3 is invariant under isomorphism:

Proposition 8.4 (pre-reduction steps). Let φ : g 7→n,ρ,m h be a pre-reduction
step in some GRS R and ψ1 : g′ ∼= g. Then there is a pre-reduction step of the
form φ′ : g′ 7→n′,ρ,m′ h

′ with ψ2 : h′ ∼= h such that ψ2(n′) = n and ψ1(m′) = m.

Proof. Immediate from the construction in Definition 8.3.

The above finding justifies the following definition of reduction steps:

343

Definition 8.5 (reduction steps). Let R = (Σ, R) be a GRS, ρ ∈ R and g, h ∈
G∞C (Σ) with n ∈ Ng and m ∈ Nh. A tuple φ = (g, n, ρ,m, h) is called a reduction
step, written φ : g →n,ρ,m h, if there is a pre-reduction step φ′ : g′ 7→n′,ρ,m′ h

′ with
C(g′) = g, C(h′) = h, n = Pg′(n′), and m = Ph′(m′). Similarly to pre-reduction
steps, we also write φ : g →R h or simply φ : g → h for short.

In other words, a reduction step is a canonicalised pre-reduction step.
Note that term graph rules do not provide a duplication mechanism. Each

variable is allowed to occur at most once. Duplication must always be simulated
by sharing. This means for example that variables that should occur on the
right-hand side must share the occurrence of that variable on the left-hand side
of the rule with its right-hand side. This can be seen in the term graph rules in
Figure 8a. The sharing can be direct as in ρ1 or indirect as in ρ2. For variables
that are supposed to be duplicated on the right-hand side, for example in the term
rewrite rule h(x) → f(h(x), h(x)), we have to use sharing in order to represent
multiple occurrences of the same variable. This representation can be seen in the
corresponding term graph rules in Figure 9a.

8.2 Convergence of Transfinite Reductions
We now employ the partial order ≤R

⊥ and the metric d‡ for the purpose of defining
convergence of transfinite term graph reductions.

The notion of (transfinite) reductions carries over to GRSs straightforwardly:

Definition 8.6 (transfinite reductions). Let R = (Σ, R) be a GRS. A (transfi-
nite) reduction in R is a sequence (gι →R gι+1)i<α of rewriting steps in R.

Analogously to reductions in TRSs, we need a notion of convergence in or-
der to define well-behaved reductions. The two modes of convergence that we
introduced for this very purpose in Section 5 and Section 6 are only defined
on canonical term graphs. It is therefore crucial to work on reduction steps as
opposed to pre-reduction steps.

Definition 8.7 (convergence of reductions). Let R = (Σ, R) be a GRS.

(i) Let S = (gι →R gι+1)ι<α be a reduction in R. S is m-continuous in R,
written S : g0 ↪→m R . . . , if the underlying sequence of term graphs (gι)ι<α̂
is continuous in R, i.e. limι→λ gι = gλ for each limit ordinal λ < α. S
m-converges to g ∈ G∞C (Σ) in R, written S : g0 ↪→m R g, if it is m-continuous
and limι→α̂ gι = g.

(ii) Let R⊥ be the GRS (Σ⊥, R) over the extended signature Σ⊥ and S =
(gι →R⊥ gι+1)ι<α a reduction in R⊥. S is p-continuous in R, written
S : g0 ↪→p R . . . , if lim infι→λ gi = gλ for each limit ordinal λ < α. S p-
converges to g ∈ G∞C (Σ⊥) in R, written S : g0 ↪→p R g, if it is p-continuous
and lim infι→α̂ gi = g.

(iii) Let S = (gι →R⊥ gι+1)ι<α be a reduction in R⊥. The reduction S is called
p-continuous in G∞C (Σ), if it is p-continuous and gι ∈ G∞C (Σ) for all ι < α̂.
The reduction S is said to p-converge in G∞C (Σ) to g, if it is p-continuous in
G∞C (Σ) and p-converges to g ∈ G∞C (Σ).

344

::l

a x

::r

b ::

a

(ρ1)

::l

a x

::r

b

(ρ2)
(a) Term graph rules that unravel to a ::x → b :: a ::x.

::

a c

(g1)

::

b

(g2)

ρ2

(b) A single ρ2-step.

::

a

(h0)

::

b ::

a

(h1)

::

b ::

b ::

a

(h2)

::

b ::

b ::

b
(hω)

ρ1 ρ1 ρ1

(c) An m-convergent term graph reduction over ρ1.

Figure 8: Term graph rules and their reductions.

Note that, analogously to p-convergence on terms, we extended the signature
of R to Σ⊥ for the definition of p-convergence. Like for terms, this approach
serves two purposes. First, by considering the extended signature Σ⊥, we al-
low any partial term graph to appear in a reduction as opposed to only total
ones. Consequently, we have the whole complete semilattice (G∞C (Σ⊥),≤R

⊥) at
our disposal, which means that p-continuity coincides with p-convergence:

Proposition 8.8. In a GRS, every p-continuous reduction is p-convergent.

Proof. Follows immediately from Corollary 5.16.

The second reasons for the extension to R⊥ is that by not presupposing
that the system’s signature Σ already contains a designated ⊥-symbol, we rule
out the possibility that this ⊥ symbol occurs in one of the rules of the system.
Consequently, any ⊥ symbol present in the final term graph of a reduction is
either due to the initial term graph or the convergence behaviour. This is crucial
for establishing a correspondence result between m- and p-convergence in the
vein of Theorem 3.3.

Example 8.9. Consider the term graph rule ρ1 in Figure 8a, which unravels to
the term rule a ::x → b :: a ::x from Example 3.1. Starting with the term tree
a :: c, depicted as g1 in Figure 8b, we obtain the same transfinite reduction as in
Example 3.1:

S : a :: c→ρ1 b :: a :: c→ρ1 b :: b :: a :: c→ρ1 . . .

Since the modes of convergence of both the partial order ≤R
⊥ and the metric

d‡ coincide with the corresponding modes of convergence on terms (cf. Proposi-
tion 5.19 respectively Proposition 6.16), we know that, for reductions consisting

345

only of term trees, both m- and p-convergence in GRSs coincide with the cor-
responding notions of convergence in TRSs. This observation applies to the
reduction S above. Hence, also in this setting of term graph rewriting, S both
m- and p-converges to the term tree hω shown in Figure 8c. Similarly, we can
reproduce the p-converging but not m-converging reduction T from Example 3.2.

Notice that hω is a rational term tree as it can be obtained by unravelling the
finite term graph g2 depicted in Figure 8b. In fact, if we use the rule ρ2, which
unravels to the term rule a ::x→ b :: a ::x as well, we can immediately rewrite g1
to g2. In ρ2, not only the variable x is shared but the whole left-hand side of the
rule. This causes each redex of ρ2 to be captured by the right-hand side [14].

Figure 8c indicates a transfinite reduction starting with a cyclic term graph
h0 that unravels to the rational term t = a :: a :: a :: This reduction both m-
and p-converges to the rational term tree hω as well. Again, by using ρ2 instead
of ρ1, we can rewrite h0 to the cyclic term graph g2 in one step.

For more detailed explanations of the underlying modes of partial order and
metric convergence for the reductions above, revisit Example 5.17 and Exam-
ple 6.14, respectively.

The following theorem shows that the total fragment of p-converging reduc-
tions is in fact equivalent to m-converging reductions:

Theorem 8.10 (p-convergence in G∞C (Σ) =m-convergence). For every reduction
S in a GRS the following equivalences hold:

(i) S : g ↪→p R h in G∞C (Σ) iff S : g ↪→m R h
(ii) S : g ↪→p R . . . in G∞C (Σ) iff S : g ↪→m R . . .

Proof. We only show (i) since (ii) follows similarly.
Let S = (gι →R⊥ gι+1)ι<α. For the “only if” direction assume S : g ↪→p R h is

p-converging in G∞C (Σ). Since S p-converges in G∞C (Σ), it is a reduction inR. The
p-convergence of S implies that lim infι→λ gi = gλ for each limit ordinal λ < α.
Since each gι is total, we have, according to Proposition 7.5, that limι<λ gi =
lim infι→λ gi = gλ for each limit ordinal λ < α. Hence (gι)ι<α̂ is continuous in
the metric space. Likewise, we also have limι<α̂ gi = lim infι→α̂ gi = h. That is,
S m-converges to h. For the “if” direction assume S : g ↪→m R h. Since (gι)ι<α̂ is
continuous, we have that limι<λ gi = gλ for each limit ordinal λ < α. According to
Proposition 7.3, we then have that lim infι→λ gi = gλ for each limit ordinal λ < α.
Likewise we also have lim infι→α̂ gi = limι<α̂ gi = h. Hence, S is p-converging to
h. Since S is m-converging it is by definition also in G∞C (Σ).

Example 8.11. In order to represent term rewrite rules that are not right-linear,
i.e. which have multiple occurrences of the same variable on the right-hand side,
we have to use sharing to represent the occurrences of a variable by a single node.
Consider the term rewrite rule h(x)→ f(h(x), h(x)) that duplicates the variable
x on the right-hand side. Note that by repeatedly applying this term rewrite
rule starting with term h(c), we obtain a reduction that m-converges to the full
binary tree depicted in Figure 9c.

Figure 9a shows three different ways of representing the term rewrite rule
h(x) → f(h(x), h(x)) as a term graph rule. The rule ρ3 has the lowest degree

346

hl

x

fr

(ρ1)

hl

x

fr

h

(ρ2)

hl

x

fr

h h

(ρ3)
(a) Term graph rules that unravel to h(x) → f(h(x), h(x)).

h

c

(g0)

f

(g1)

ρ1

(b) A single ρ1-step.

f

f

f f

f

f f

(c) The full binary tree of f -nodes.

h

c

(g0)

f

h

c

(g1)

f

f

h

c

(g2)

f

f

ff

(gω)

ρ2 ρ2 ρ2

(d) An m-convergent term graph reduction over ρ2.

h

c

(g0)

f

h

c

h

(g1)

f

f

h h

h

c

(g2)

f

f

f

h

h

h

⊥

(gω)

ρ3 ρ3 ρ3

(e) A p-convergent term graph reduction over ρ3.

Figure 9: Term graph rules for duplicating term rewrite rules.

347

of sharing since it shares the variable node directly; ρ1 has the highest degree of
sharing as it shares its complete left-hand side with its right-hand side; ρ2 lies in
between the two.

We have observed in Figure 8a before that, by sharing the complete left-hand
side with the right-hand side, the redex gets captured by the right-hand side
upon applying the rule to a term graph. This can be seen again in Figure 9b. By
applying ρ1 to the term tree h(c) once, we immediately obtain the cyclic term
graph g1, which unravels to the full binary tree from Figure 9c.

With the rule ρ2, we have to go through an m-convergent reduction of length
ω, depicted in Figure 9d, in order to obtain the desired term graph normal form
that then unravels to the full binary tree as well.

The same can also be achieved via the rule ρ3: Starting from h(c) we can
construct a reduction that m-converges directly to the full binary tree in Fig-
ure 9c. However, we may also form the reduction shown in Figure 9e in which we
always contract the leftmost redex. As we can see in the picture, this means that
the c-node remains constantly at depth 2 while still reachable from any other
node. As we explained in Example 6.14, this means that the reduction does not
m-converge. On the other hand, as described in Example 5.17 the reduction p-
converges to the partial term graph gω. In fact, from this term graph gω we can
then construct a reduction that p-converges to the full binary tree.

9 Term Graph Rewriting vs. Term Rewriting
In order to assess the value of the modes of convergence on term graphs that we
introduced in this paper, we need to compare them to the well-established coun-
terparts on terms. We have already observed that, if restricted to term trees,
both the partial order ≤R

⊥ and the metric d‡ on term graphs coincide with cor-
responding structures ≤⊥ and d on terms, cf. Corollary 5.11 and Corollary 6.15,
respectively. The same holds for the modes of convergence derived from these
structures, cf. Proposition 5.19 and Proposition 6.16.

9.1 Soundness and Completeness Properties

Ideally, we would like to see a strong connection between converging reductions in
a GRS R and converging reductions in the TRS U(R) that is its unravelling. For
example, form-convergence we want to see that g ↪→m R h implies U(g) ↪→m U(R) U(h)
– i.e. soundness – and vice versa that U(g) ↪→m U(R) U(h) implies g ↪→m R h – i.e.
completeness.

Completeness is already an issue for finitary rewriting [10]: a single term
graph redex may corresponds to several term redexes due to sharing. Hence,
contracting a term graph redex may correspond to several term rewriting steps.
For example, given a rewrite rule a→ b, we can rewrite f(a, a) to f(a, b), whereas
we can rewrite

f

a

f

b

only to

348

which corresponds to a term reduction f(a, a) → f(b, b). That is, in the term
graph we cannot choose which of the two term redexes to contract as they are
represented by the same term graph redex.

Note that there are techniques to circumvent this problem by incorporating
reduction steps that copy nodes in order to reduce the sharing in a term graph [31].
In this paper, however, we are only concerned with pure term graph rewriting
steps derived from rewrite rules.

In the context of weak convergence, also soundness becomes an issue. The
underlying reason for this issue is similar to the phenomenon explained above:
a single term graph rewrite step may represent several term rewriting steps, i.e.
g →R h implies U(g) →+

U(R) U(h).2 When we have a converging term graph
reduction (gι → gι+1)ι<α, we know that the underlying sequence of term graphs
(gι) converges. However, the corresponding term reduction does not necessar-
ily produce the sequence (U(gι)) but may intersperse the sequence (U(gι)) with
additional intermediate terms, which might change the convergence behaviour.

A similar phenomenon is know in infinitary lambda calculus[26]: while one
can simulate certain term rewriting systems with lambda terms, this simulation
may fail for infinitary rewriting since a single term rewriting step may require
several β-reduction steps. The problem that arises in this setting is that the
intermediate terms that are introduced in the lambda reduction may cause the
convergence to break.

The same can, in principle, also occur when simulating a term graph reduction
by a term reduction. Since a single term graph rewrite step may require several
term rewrite steps, we may introduce intermediate terms into the reduction that
do not directly correspond to the term graphs in the graph reduction.

9.2 Preservation of Convergence under Unravelling

Due to the abovementioned difficulties, we restrict ourselves in this paper to
the soundness of the modes of convergence alone. By soundness in this setting
we mean that whenever we have a sequence (gι)ι<α of term graphs converging
to g, then the sequence (U(gι))ι<α converges to U(g). That is, convergence is
preserved under unravelling. Since the metric d‡ on term graphs generalises the
metric d on terms, cf. Corollary 6.15, it does not matter whether we consider
the convergence of (U(gι))ι<α in the metric space (G∞C (Σ),d‡) or (T ∞(Σ),d),
according to Proposition 6.16. The same also holds for the limit inferior in
(G∞C (Σ⊥),≤R

⊥) and (T ∞(Σ⊥),≤⊥), due to Corollary 5.11 and Proposition 5.19.
The cornerstone of the investigation of the unravelling of term graphs is the

following simple characterisation of unravelling in terms of labelled quotient trees:

Proposition 9.1. The unravelling U(g) of a term graph g ∈ G∞(Σ) is given by
the labelled quotient tree (P(g), g(·), IP(g)).

Proof. Since IP(g) is a subrelation of ∼g, we know that (P(g), g(·), IP(g)) is a
labelled quotient tree and thus uniquely determines a term tree t. By Lemma 4.19,
there is a homomorphism from t to g. Hence, U(g) = t.

2If the term graph g is cyclic, the corresponding term reduction may even be infinite.

349

Employing the above characterisation, we can easily see that the relation ≤R
⊥

is preserved under unravelling:

Proposition 9.2. Given g, h ∈ G∞C (Σ⊥), we have that g ≤R
⊥ h implies U(g) ≤R

⊥
U(h).

Proof. Immediate consequence of Corollary 5.10 and Proposition 9.1.

Likewise, also least upper bounds of ≤R
⊥ are preserved:

Proposition 9.3 (preservation of lubs under unravelling). Given a directed set
G in (G∞C (Σ⊥),≤R

⊥), also {U(g) | g ∈ G} is directed and U
(⊔

g∈G g
)

= ⊔
g∈G U(g).

Proof. The fact that {U(g) | g ∈ G} is directed in (G∞C (Σ⊥),≤R
⊥) follows from

Proposition 9.2. The equality follows from the characterisation of the lub in
Theorem 5.12 and from Proposition 9.1.

For greatest lower bounds of ≤R
⊥, the situation is more complicated as we have

to consider arbitrary non-empty sets of term graphs instead of only directed sets.
We start with the characterisation of glbs in the partially ordered set of terms

(T ∞(Σ⊥),≤⊥). Since this partially ordered set forms a complete semi-lattice, we
know that it admits glbs of arbitrary non-empty sets. The following lemma
characterises these glbs:

Lemma 9.4 (glb on terms). The glb
d
T of a non-empty set T in (T ∞(Σ⊥),≤⊥)

is given by the labelled quotient tree (P, l, IP) where

P =
{
π ∈

⋂
t∈TP(t)

∣∣∣ ∀π′ < π∃f ∈ Σ⊥∀t ∈ T : t(π′) = f
}

l(π) =
{
f if ∀t ∈ T : f = t(π)
⊥ otherwise

Proof. Special case of Proposition 5.9 in [9].

By combining the above characterisation with the characterisation of unrav-
elled term graphs, we obtain the following:

Corollary 9.5. Given a non-empty set G in (G∞C (Σ⊥),≤R
⊥), the glb

d
g∈G U(g)

is given by the labelled quotient tree (P, l, IP) where

P =
{
π ∈

⋂
g∈GP(g)

∣∣∣∣ ∀π′ < π∃f ∈ Σ⊥∀g ∈ G : g(π′) = f

}

l(π) =
{
f if ∀g ∈ G : f = g(π)
⊥ otherwise

Proof. Follows immediately from Lemma 9.4 and Proposition 9.1.

Before we deal with the preservation of glbs under unravelling, we need the
following property that relates the unravelling of a glb to the original term graphs:

Lemma 9.6 (unravelling of a glb). For each non-empty set G in (G∞C (Σ⊥),≤R
⊥),

the term t = U(
d
G) satisfies the following for all g ∈ G and π ∈ P(t):

350

f

a

f

a a

f

⊥ ⊥

(g) (h) (g u h)

Figure 10: Failure of preservation of glbs under unravelling.

(i) π ∈ P(g) (ii) t(π) ∈ Σ =⇒ t(π) = g(π)

Proof. Let g ∈ G, π ∈ P(t), and h =
d
G. Then π ∈ P(h) and h(π) = t(π)

according to Proposition 9.1. Since h ≤R
⊥ g, we may apply Corollary 5.10 to

obtain (i) that π ∈ P(g) and (ii) that t(π) = g(π) whenever t(π) ∈ Σ.

Proposition 9.7 (weak preservation of glbs under unravelling). If G is a non-
empty set in (G∞C (Σ⊥),≤R

⊥), then U
(d

g∈G g
)
≤R
⊥

d
g∈G U(g).

Proof. Let s = U
(d

g∈G g
)
and t =

d
g∈G U(g). Since both s and t are terms, we

can use the characterisation of ≤⊥ instead of ≤R
⊥. That is, we will show that for

each π ∈ P(s), we have that π ∈ P(t) and that t(π) = s(π) whenever s(π) ∈ Σ.
If π ∈ P(s), then π′ ∈ P(s) for all π′ < π. Since s(π′) cannot be a nullary

symbol if π′ < π, we know that s(π′) 6= ⊥. Hence, we can apply Lemma 9.6
in order to obtain for all g ∈ G that π ∈ P(g) and that s(π′) = g(π′) for all
π′ < π. According to Corollary 9.5, this means that π ∈ P(t). In order to show
the second part, assume that s(π) ∈ Σ. Then, by Lemma 9.6, g(π) = s(π) for all
g ∈ G, which, according to Corollary 9.5, implies that t(π) = s(π).

In general, glbs are not fully preserved under unravelling as the following
example shows:

Example 9.8. Consider the term graphs g and h in Figure 10. The only dif-
ference between the two term graphs is the sharing of the arguments of the root
node. Due to this difference in sharing, the glb g u h of the two term graphs
is a proper partial term graph as depicted in Figure 10. On the other hand,
since the unravelling of the two term graphs coincides, viz. U(g) = U(h) = h,
we have that U(g) u U(h) = h. In particular, we have the strict inequality
U(g u h) <R

⊥ U(g) u U(h).

Unfortunately, this also means that the limit inferior is only weakly preserved
under unravelling as well:

Theorem 9.9. For every sequence (gι)ι<α in (G∞C (Σ⊥),≤R
⊥), we have that

U
(
lim inf
ι→α gι

)
≤R
⊥ lim inf

ι→α U(gι) .

Proof. This follows from Proposition 9.7 and Proposition 9.3.

Again, we can construct a counterexample that shows that the converse in-
equality does not hold in general:

351

Example 9.10. Let (gι)ι<ω be the sequence alternating between g and h from
Figure 10, i.e. g2ι = g and g2ι+1 = h for all ι < ω. Then

d
α≤ι<ω gι = g u h

for each α < ω and, consequently, lim infι→ω gι = g u h. As we have seen in
Example 9.8, g u h is the proper partial term graph depicted in Figure 10. On
the other hand, since U(g) = U(h) = h, we have that lim infι→ω U(gι) = h. In
particular, we have the strict inequality U(lim infι→ω gι) <R

⊥ lim infι→ω U(gι).

Moreover, we cannot expect that any other partial order with properties com-
parable to those of ≤R

⊥ fully preserves the limit inferior under unravelling.
The example above shows that any partial order ≤ on partial term graphs

whose limit inferior is preserved under unravelling must also satisfy either g ≤ h
or h ≤ g for the term graphs in Figure 10. That is, such a partial order has to
give up the property that total term graphs are maximal, cf. Proposition 5.20.
This observation is independent of whether this partial order specialises to ≤⊥
on terms.

The sacrifice for full preservation under unravelling goes even further. If a
partial order ≤ on partial term graphs satisfies preservation of its limit inferior
under unravelling, the limit inferior lim infι→ω gι of the sequence (gι)ι<ω from
Example 9.10 has to unravel to h, a total term. That is, lim infι→ω gι has to be
a total term graph. On the other hand, there is no metric – or any Hausdorff
topology for that matter – for which (gι)ι<ω converges at all because (gι)ι<ω
alternates between two distinct term graphs. In other words, the correspondence
between m- and p-convergence, which we have for ≤R

⊥ as stated in Theorem 8.10,
cannot be satisfied for such a partial order ≤, regardless of the metric on term
graphs.

The simple partial order ≤S
⊥, which we briefly discussed in comparison to

the rigid partial order ≤R
⊥ in Section 5, takes the other side of the trade-off

illustrated above: it satisfies g ≤S
⊥ h and the preservation of the limit inferior

under unravelling but sacrifices the correspondence between total term graphs
and maximality as well as the correspondence between m- and p-convergence [9].

Using the correspondence between the limit inferior in (G∞C (Σ⊥),≤R
⊥) and the

limit in (G∞C (Σ),d‡), we can derive full preservation of limits under unravelling:

Theorem 9.11. For every convergent sequence (gι)ι<α in (G∞C (Σ),d‡), also
(U(g)ι)ι<α is convergent and

U
(

lim
ι→α gι

)
= lim

ι→αU(gι) .

Proof. We prove the equality as follows:

U
(

lim
ι→α gι

) (1)= U
(
lim inf
ι→α gι

) (2)= lim inf
ι→α U(gι)

(3)= lim
ι→αU(gι)

(1) Since (gι)ι<α is convergent, and thus Cauchy, we can apply Proposition 7.3
to obtain that limι→α gι = lim infι→α gι.

(2) Since lim infι→α gι is total, so is U(lim infι→α gι). By Proposition 5.20, this
means that U(lim infι→α gι) is maximal w.r.t. ≤R

⊥. Consequently, the inequal-
ity U(lim infι→α gι) ≤R

⊥ lim infι→α U(gι) due to Theorem 9.9 yields (2).

352

(3) This equality follows from Proposition 7.5 and the fact that lim infι→α U(gι)
is total.

9.3 Finite Representations of Transfinite Term Reductions

One of the motivations for considering modes of convergence on term graphs in
the first place is the study of finite representation of transfinite term reductions
as finite term graph reductions. Since both the metric d‡ and the partial order
≤R
⊥ specialise to the corresponding structures on terms, we can use both the

metric space (G∞C (Σ),d‡) and the partially ordered set (G∞C (Σ⊥),≤R
⊥) to move

seamlessly from terms to term graphs and vice versa.
For instance, Example 8.11 illustrates reductions that perform essentially the

same computations, however, at different levels of sharing / parallelism. This
includes the complete lack of sharing as well, i.e. term rewriting. For each of the
cases we can use the partially ordered set (G∞C (Σ⊥),≤R

⊥) and the metric space
(G∞C (Σ),d‡) as a unifying framework to determine the convergence behaviour.

In order to use the partial order ≤R
⊥ and the metric d‡ as a tool to study finite

representability of infinite term reductions as finite term graph reductions there
still is some work to be done, though.

First and foremost, we need a unifying framework for performing both term
and term graph rewriting. A straightforward approach to achieve this, is to
include copying steps in term graph reductions that allow us to revert the sharing
produced by applying term graph rules [31]. For example while the rule ρ3 from
Figure 9a is the term graph rule with the least sharing that unravels to ρ : h(x)→
f(h(x), h(x)), it still has some sharing in order to represent the duplication of
the variable x on the right-hand side.

The result of this sharing is seen in Figure 9e, which shows that even if we
start with a term tree, the rule ρ3 turns it into a proper term graph. Consequently
it is slightly different from the corresponding term reduction

h

c

f

h

c

h

c

f

f

h

c

h

c

h

c

f

f

f

h

c

h

c

h

c

S : ρ ρ ρ

In fact, while the above term reduction S is m-convergent, the term graph re-
duction via ρ3, depicted in Figure 9e, is not.

However, by interspersing the term graph reduction with reduction steps that
copy nodes – and in general sub-term graphs – we instead obtain the following
term graph reduction:

353

h

c

f

h

c

h

f

h

c

h

c

f

f

h

c

h

h

c

f

f

f

h

c

h

c

h

c

ρ3 copy ρ3 copy

This reduction simulates the corresponding term reduction S more closely and in
fact both reductions m-converge to the same term. Nevertheless, this approach
creates the same issue that we have already noted for soundness: the additional
term graphs that get interspersed with the original term reduction may affect the
convergence behaviour.

The second ingredient that we need in order to study the finite representability
of transfinite term reductions is a compression property [25] for transfinite term
graph reductions that allows us to compress a transfinite term graph reduction
that ends in a finite term graph to a term graph reduction of finite length.

Unfortunately, experience from infinitary term rewriting already shows us
that a general compression property – allowing any reduction to be compressed
to length at most ω – is not possible for weak convergence [23]. However, the more
restrictive version of the compression property that we need, viz. that reductions
ending in a finite term graph may be compressed to finite length, does hold for
weakly m-converging term reductions [27] and there is hope that this carries over
to the term graph rewriting setting.

10 Conclusions & Future Work

With the goal of generalising infinitary term rewriting to term graphs, we have
presented two different modes of convergence for an infinitary calculus of term
graph rewriting. The success of this generalisation effort was demonstrated by a
number of results. Many of the properties of the modes of convergence on terms
have been maintained in this transition to term graphs. First and foremost, this
includes the intrinsic completeness properties of the underlying structures, i.e. the
metric space is still complete and the partially ordered set still forms a complete
semilattice. Moreover, we were also able to maintain the correspondence between
p- and m-convergence as well as the intuition of the partial order to capture a
notion of information preservation.

An important check for the appropriateness of the modes of convergence on
term graphs is their relation to the corresponding modes of convergence on terms.
For both the partial order and the metric approach, we have that convergence on
term graphs is a conservative extension of the convergence on terms. Conversely,
convergence on term graphs carries over to convergence on terms via the unravel-
ling mapping. Unfortunately, this preservation of convergence under unravelling
is only weak in the case of the partial order setting; cf. Theorem 9.9. However,

354

as we have explained in Section 9.2, this phenomenon is an unavoidable side ef-
fect of the generalisation to term graphs unless other important properties are
sacrificed. Fortunately, this phenomenon vanishes in the metric setting and we
in fact obtain full preservation of limits under unravelling; cf. Theorem 9.11.

As a result, we have obtained two modes of convergence, which allow us to
combine both infinitary term rewriting and term graph rewriting within one the-
oretical framework. Our motivation for this effort is derived from studying lazy
evaluation and the correspondence between infinitary term rewriting and finitary
term graph rewriting. For both applications, we still require more understanding
of the matter, though: for the former, we still lack at least a treatment of higher-
order rewriting whereas we are much closer to the latter. We have discussed
issues concerning the correspondence between infinitary term rewriting and fini-
tary term graph rewriting in detail in Section 9.3: while the unified modes of
convergence are already helpful for studying infinitary rewriting with a varying
degree of sharing, we identified two shortcomings that have to be addressed,
viz. the lack of a unifying notion of rewriting for terms and term graphs and a
compression property for transfinite term graph reductions.

Apart from the abovementioned issues, future work should also be concerned
with establishing a stronger correspondence between infinitary term rewriting and
infinitary term graph rewriting beyond the preservation of limits under unravel-
lings, which we showed in this paper. Despite the difficulties that we encountered
in Section 9.1, we think that obtaining such results is possible. However, a more
promising way of approaching this issue is to restrict the notion of convergence
to strong convergence as we know it from infinitary term rewriting [25]. Such a
stricter notion of convergence takes the location of a reduction step into consider-
ation and, thus, provides a closer correspondence between term graph reductions
and their term rewriting counterparts. Indeed, this technique has been applied
successfully to convergence on term graphs based on the simple partial order
≤S
⊥, which we briefly discussed in comparison to the rigid partial order ≤R

⊥ in
Section 5, and a corresponding metric [9].

Acknowledgement
The author would like to thank the anonymous referees of RTA 2011 as well as
the referees for the special issue of LMCS whose comments greatly helped to
improve the presentation of the material.

Bibliography
[1] Z. Ariola and S. Blom. Skew and ω-Skew Confluence and Abstract Böhm

Semantics. In A. Middeldorp, V. van Oostrom, F. van Raamsdonk, and
R. de Vrijer, editors, Processes, Terms and Cycles: Steps on the Road to
Infinity, volume 3838 of Lecture Notes in Computer Science, pages 368–
403. Springer Berlin / Heidelberg, 2005. ISBN 978-3-540-30911-6. doi:
10.1007/11601548_19.

[2] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with

355

http://dx.doi.org/10.1007/11601548_19
http://dx.doi.org/10.1007/11601548_19

letrec. Annals of Pure and Applied Logic, 117(1-3):95–168, 2002. ISSN 0168-
0072. doi: 10.1016/S0168-0072(01)00104-X.

[3] Z. M. Ariola and J. W. Klop. Lambda Calculus with Explicit Recursion.
Information and Computation, 139(2):154–233, 1997. ISSN 0890-5401. doi:
10.1006/inco.1997.2651.

[4] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and
topological properties. Fundamenta Informaticae, 3(4):445–476, 1980.

[5] P. Bahr. Infinitary Rewriting - Theory and Applications. Master’s thesis,
Vienna University of Technology, Vienna, 2009.

[6] P. Bahr. Abstract Models of Transfinite Reductions. In C. Lynch, editor,
Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 49–66, Dagstuhl, Germany, 2010. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2010.49.

[7] P. Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees.
In C. Lynch, editor, Proceedings of the 21st International Conference
on Rewriting Techniques and Applications, volume 6 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 67–84, Dagstuhl, Ger-
many, 2010. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2010.67.

[8] P. Bahr. Convergence in Infinitary Term Graph Rewriting Systems is Simple.
Submitted to Math. Struct. in Comp. Science, 2012.

[9] P. Bahr. Infinitary Term Graph Rewriting is Simple, Sound and Com-
plete. In A. Tiwari, editor, 23rd International Conference on Rewrit-
ing Techniques and Applications (RTA’12), volume 15 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 69–84, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2012.69.

[10] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In P. C. T. de
Bakker A. J. Nijman, editor, Parallel Architectures and Languages Europe,
Volume II: Parallel Languages, volume 259 of Lecture Notes in Computer
Science, pages 141–158. Springer Berlin / Heidelberg, 1987. doi: 10.1007/3-
540-17945-3_8.

[11] E. Barendsen. Term Graph Rewriting. In Terese, editor, Term Rewriting
Systems, chapter 13, pages 712–743. Cambridge University Press, 1st edition,
2003. ISBN 9780521391153.

[12] S. Blom. An Approximation Based Approach to Infinitary Lambda Calculi.
In V. van Oostrom, editor, Rewriting Techniques and Applications, volume
3091 of Lecture Notes in Computer Science, pages 221–232. Springer Berlin
/ Heidelberg, 2004. doi: 10.1007/b98160.

356

http://dx.doi.org/10.1016/S0168-0072(01)00104-X
http://dx.doi.org/10.1006/inco.1997.2651
http://dx.doi.org/10.1006/inco.1997.2651
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69
http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1007/b98160

[13] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, rewrite, rewrite,
rewrite, rewrite, ... Theoretical Computer Science, 83(1):71–96, 1991. ISSN
0304-3975. doi: 10.1016/0304-3975(91)90040-9.

[14] W. M. Farmer and R. J. Watro. Redex capturing in term graph rewriting.
International Journal of Foundations of Computer Science, 1:369–386, 1990.
ISSN 0129-0541. doi: 10.1142/S0129054190000266.

[15] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
Algebra Semantics and Continuous Algebras. Journal of the ACM, 24(1):
68–95, 1977. ISSN 0004-5411. doi: 10.1145/321992.321997.

[16] P. Henderson and J. H. Morris Jr. A lazy evaluator. In Proceedings of
the 3rd ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pages 95–103, New York, NY, USA, 1976. ACM. doi:
10.1145/800168.811543.

[17] J. Hughes. Why Functional Programming Matters. The Computer Journal,
32(2):98–107, 1989. doi: 10.1093/comjnl/32.2.98.

[18] G. Kahn and G. D. Plotkin. Concrete domains. Theoretical Computer
Science, 121(1-2):187–277, 1993. ISSN 0304-3975. doi: 10.1016/0304-
3975(93)90090-G.

[19] S. Kahrs. Infinitary rewriting: meta-theory and convergence. Acta Infor-
matica, 44(2):91–121, 2007. ISSN 0001-5903 (Print) 1432-0525 (Online). doi:
10.1007/s00236-007-0043-2.

[20] J. L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics.
Springer-Verlag, 1955. ISBN 0387901256.

[21] R. Kennaway. On transfinite abstract reduction systems. Technical report,
CWI (Centre for Mathematics and Computer Science), Amsterdam, 1992.

[22] R. Kennaway. Infinitary Rewriting and Cyclic Graphs. In SEGRAGRA 1995,
Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and
Computation, volume 2 of Electronic Notes in Theoretical Computer Science,
pages 153–166, 1995. doi: 10.1016/S1571-0661(05)80192-6.

[23] R. Kennaway and F.-J. de Vries. Infinitary Rewriting. In Terese, editor,
Term Rewriting Systems, chapter 12, pages 668–711. Cambridge University
Press, 1st edition, 2003. ISBN 9780521391153.

[24] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. On the adequacy
of graph rewriting for simulating term rewriting. ACM Transactions on
Programming Languages and Systems, 16(3):493–523, 1994. ISSN 0164-0925.
doi: 10.1145/177492.177577.

[25] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite
Reductions in Orthogonal Term Rewriting Systems. Information and Com-
putation, 119(1):18–38, 1995. ISSN 0890-5401. doi: 10.1006/inco.1995.1075.

357

http://dx.doi.org/10.1016/0304-3975(91)90040-9
http://dx.doi.org/10.1142/S0129054190000266
http://dx.doi.org/10.1145/321992.321997
http://dx.doi.org/10.1145/800168.811543
http://dx.doi.org/10.1145/800168.811543
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1016/0304-3975(93)90090-G
http://dx.doi.org/10.1016/0304-3975(93)90090-G
http://dx.doi.org/10.1007/s00236-007-0043-2
http://dx.doi.org/10.1007/s00236-007-0043-2
http://dx.doi.org/10.1016/S1571-0661(05)80192-6
http://dx.doi.org/10.1145/177492.177577
http://dx.doi.org/10.1006/inco.1995.1075

[26] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93–125, 1997. ISSN 0304-
3975. doi: 10.1016/S0304-3975(96)00171-5.

[27] S. Lucas. Transfinite Rewriting Semantics for Term Rewriting Systems. In
A. Middeldorp, editor, Rewriting Techniques and Applications, volume 2051
of Lecture Notes in Computer Science, pages 216–230. Springer Berlin /
Heidelberg, 2001. doi: 10.1007/3-540-45127-7_17.

[28] S. Marlow. Haskell 2010 Language Report, 2010.

[29] S. Peyton-Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987. ISBN 013453333X.

[30] R. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming and
Parallel Graph Rewriting. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1993. ISBN 0201416638.

[31] D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski,
and G. Rozenberg, editors, Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 2: Applications, Languages, and Tools,
pages 3–61. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1999. ISBN 981-02-4020-1.

[32] J. G. Simonsen. Weak Convergence and Uniform Normalization in Infini-
tary Rewriting. In C. Lynch, editor, Proceedings of the 21st International
Conference on Rewriting Techniques and Applications, volume 6 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 311–324, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2010.311.

[33] Terese. Term Rewriting Systems. Cambridge University Press, 1st edition,
2003. ISBN 9780521391153.

A Proof of Lemma 5.14
Lemma 5.14 (compatible elements have lub). Each pair g1, g2 of compatible
term graphs in (G∞C (Σ⊥),≤R

⊥) has a least upper bound.
Proof of Lemma 5.14. Since {g1, g2} is not necessarily directed, its lub might
have positions that are neither in g1 nor in g2. Therefore, it is easier to employ
a different construction here: Following Remark 5.13, we will use the structure
(G∞(Σ⊥)/∼=,≤R

⊥) which is isomorphic to (G∞C (Σ⊥),≤R
⊥). To this end, we will

construct a term graph g such that [g]∼= is the lub of {[g1]∼=, [g2]∼=}. Since we
assume that {[g1]∼=, [g2]∼=} has an upper bound, say [ĝ]∼=, there are two rigid
⊥-homomorphisms φi : gi →⊥ ĝ.

Let gj = (N j , sucj , labj , rj), j = 1, 2. Since we are dealing with isomorphism
classes, we can assume w.l.o.g. that the nodes in gj are of the form nj for j = 1, 2.
Let M = N1]N2 and define the relation ∼ on M as follows:

nj ∼ mk iff Pgj (nj) ∩ Pgk(mk) 6= ∅

358

http://dx.doi.org/10.1016/S0304-3975(96)00171-5
http://dx.doi.org/10.1007/3-540-45127-7_17
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.311
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.311

∼ is clearly reflexive and symmetric. Hence, its transitive closure ∼+ is an
equivalence relation on M . Now define the term graph g = (N, lab, suc, r) as
follows:

N = M/∼+ lab(N) =
{
f if f ∈ Σ,∃nj ∈ N. labj(nj) = f

⊥ otherwise

r = [r1]∼+ suci(N) = N ′ iff ∃nj ∈ N. sucji (nj) ∈ N ′

Note that since 〈〉 ∈ Pg1(r1) ∩ Pg2(r2), we also have r = [r2]∼+ .
Before we argue about the well-definedness of g, we need to establish some

auxiliary claims:

nj ∼+ mk =⇒ φj(nj) = φk(mk) for all nj ,mk ∈M (1)

φj(nj) = φk(mk) =⇒ nj ∼ mk for all nj ,mk ∈M
with labj(nj), labk(mk) ∈ Σ

(1’)

We show (1) by proving that nj ∼p mk implies φj(nj) = φk(mk) by induction
on p > 0. If p = 1, then nj ∼ mk. Hence, Pgj (nj) ∩ Pgk(mk) 6= ∅. Addition-
ally, from Lemma 4.10 we obtain both Pgj (nj) ⊆ Pĝ(φj(nj)) and Pgk(mk) ⊆
Pĝ(φk(mk)). Consequently, we also have that Pĝ(φj(nj)) ∩ Pĝ(φk(mk)) 6= ∅,
i.e. φj(nj) = φk(mk). If p = q + 1 > 1, then there is some ol ∈ M with
nj ∼ ol and ol ∼q mk. Applying the induction hypothesis immediately yields
φj(nj) = φl(ol) = φk(mk).

For (1’), let nj ,mk ∈ M with labj(nj), labk(mk) ∈ Σ and φj(nj) = φk(mk).
Since φj and φk are rigid ⊥-homomorphisms, we have the following equations:

Pagj (nj) = Pa
ĝ
(φj(nj)) = Pa

ĝ
(φk(mk)) = Pagk(mk).

Hence, Pgj (nj) ∩ Pgk(mk) 6= ∅ and, therefore, nj ∼ mk.
Next we show that lab is well-defined. To this end, let N ∈ N and nj ,mk ∈ N

such that labj(nj) = f1 ∈ Σ and labk(mk) = f2 ∈ Σ. We need to show that
f1 = f2. By (1), we have that φj(nj) = φk(mk). Since f1, f2 ∈ Σ, we can employ
the labelling condition for φj and φk in order to obtain that

f1 = labj(nj) = l̂ab(φj(nj)) = l̂ab(φk(mk)) = labk(mk) = f2.

To argue that suc is well-defined, we first have to show for all N ∈ N that
suci(N) is defined iff i < ar(lab(N)). Suppose that suci(N) is defined. Then
there is some nj ∈ N such that sucji (nj) is defined. Hence, i < ar(labj(nj)). Since
then also labj(nj) ∈ Σ, we have lab(N) = labj(nj). Therefore, i < ar(lab(N)).
If, conversely, there is some i ∈ N with i < ar(lab(N)), then we know that
lab(N) = f ∈ Σ. Hence, there is some nj ∈ N with labj(nj) = f . Hence,
i < ar(labj(nj)) and, therefore, sucji (nj) is defined. Hence, suci(N) is defined.

To finish the argument showing that suc is well-defined, we have to show that,
for all N,N1, N2 ∈ N and nj ,mk ∈ N such that sucji (nj) ∈ N1 and sucki (mk) ∈
N2, we indeed have N1 = N2. As nj ,mk ∈ N , we have nj ∼+ mk and, therefore,

359

φj(nj) = φk(nk) according to (1). Since both sucji (nj) and sucki (mk) are defined,
we have labj(nj), labk(mk) ∈ Σ. By (1’) we then have nj ∼ mk, i.e. there is some
π ∈ Pgj (nj) ∩ Pgk(mk). Consequently, π · 〈i〉 ∈ Pgj (sucji (nj)) ∩ Pgk(sucki (mk)).
Hence, sucji (nj) ∼ sucki (mk) and, therefore, N1 = N2.

Before we begin the main argument we need establish the following auxiliary
claims:

Pgj (nj) ⊆ Pg([nj]∼+) for all nj ∈M (2)

∀π ∈ Pag (N) ∃nj ∈ N. labj(nj) ∈ Σ, π ∈ Pagj (nj)
for all N ∈ N
with lab(N) ∈ Σ (3)

nj ∼+ mk =⇒ Pagj (nj) = Pagk(mk) for all nj ,mj ∈M with
labj(nj), labk(mk) ∈ Σ (4)

For (2), we will show that π ∈ Pgj (nj) implies π ∈ Pg([nj]∼+) by induction on
the length of π. The case π = 〈〉 is trivial. If π = π′ ·〈i〉, then π′ ·〈i〉 ∈ Pgj (nj), i.e.
formj = nodegj (π′), we have sucji (mj) = nj . Employing the induction hypothesis,
we obtain π′ ∈ Pg([mj]∼+). Additionally, according to the construction of g, we
have suci([mj]∼+) = [nj]∼+ . Consequently, π′ · 〈i〉 ∈ Pg([nj]∼+) holds.

Similarly, we also show (3) by induction on the length of π. If π = 〈〉, then
we have 〈〉 ∈ Pag (N), i.e. N = r. Since, by assumption, lab(r) ∈ Σ holds, there is
some j ∈ {1, 2} such that labj(rj) ∈ Σ. Moreover, we clearly have 〈〉 ∈ Pagj (rj).
If π = π′ · 〈i〉, then we have π′ · 〈i〉 ∈ Pag (N). Let N ′ = nodeg(π′). Since
π′ · 〈i〉 is acyclic in g, so is π′, i.e. π′ ∈ Pag (N ′). Moreover, we have that suci(N ′)
is defined, i.e. lab(N ′) is not nullary and in particular not ⊥. Thus, we can
apply the induction hypothesis to obtain some nj ∈ N ′ with labj(nj) ∈ Σ and
π′ ∈ Pagj (nj). Hence, according to the construction of g, we have labj(nj) =
lab(N ′), i.e. sucji (nj) = mj is defined. Furthermore, we then get mj ∈ N . Since
π′ · 〈i〉 ∈ Pgj (mj), it remains to be shown that π′ · 〈i〉 is acyclic in gj . Suppose
that π′ · 〈i〉 is cyclic in gj . As π′ is acyclic in gj , this means that there is some
position π∗ ∈ Pgj (mj) with π∗ < π′ · 〈i〉. Using (2), we obtain that π∗ ∈ Pg(N).
This contradicts the assumption of π′ · 〈i〉 being acyclic in g. Hence, π′ · 〈i〉 is
acyclic.

For (4), suppose that nj ∼+ mk holds with labj(nj), labk(mk) ∈ Σ. From (1),
we obtain φj(nj) = φk(nk). Moreover, since both nj andmk are not labelled with
⊥, we know that φj and φk are rigid in nj and mk, respectively, which yields the
equations

Pagj (nj) = Pa
ĝ
(φj(nj)) = Pa

ĝ
(φk(mk)) = Pagk(mk).

Next we show that [g1]∼=, [g1]∼= ≤R
⊥ [g]∼= holds by giving two rigid ⊥-homo-

morphisms ψj : gj →⊥ g, j = 1, 2. Define ψj : N j → N by nj 7→ [nj]∼+ . From
(2) and the fact that, according to the construction of g, labj(nj) ∈ Σ implies
labj(nj) = lab([nj]∼+), we immediately get that ψj is a ⊥-homomorphism by
applying Lemma 4.10. In order to argue that ψj is rigid, assume that nj ∈ N j

with labj(nj) ∈ Σ. According to Lemma 5.7, it suffices to show that Pag (ψj(nj)) ⊆
Pgj (nj). Suppose that π ∈ Pag (ψj(nj)). Note that, by the construction of g,
ψj(nj) is not labelled with ⊥ either. Hence, we can apply (3) to obtain some

360

mk ∈ ψj(nj) with labk(mk) ∈ Σ and π ∈ Pagk(mk). By definition, mk ∈ ψj(nj) is
equivalent to nj ∼+ mk. Therefore, we can employ (4), which yields Pagk(mk) =
Pagj (nj). Hence, π ∈ Pagj (nj).

Note that the construction of g did not depend on ĝ, viz. for any other upper
bound [ĥ]∼= of [g1]∼=, [g2]∼=, we get the same term graph g. Hence, it is still just an
arbitrary upper bound which means that in order to show that [g]∼= is the least
upper bound, it suffices to show [g]∼= ≤R

⊥ [ĝ]∼=. For this purpose, we will devise
a rigid ⊥-homomorphism ψ : g →⊥ ĝ. Define ψ : N → N̂ by [nj]∼+ 7→ φj(nj).
(1) shows that ψ is well-defined. The root condition for ψ follows from the root
condition for φ1:

ψ(r) = ψ([r1]∼+) = φ1(r1) = r̂.

For the labelling condition, assume that lab(N) = f ∈ Σ for some N ∈ N .
Then there is some nj ∈ N with labj(nj) = f . Therefore, the labelling condition
for φj yields

l̂ab(ψ(N)) = l̂ab(φj(nj)) = labj(nj) = f

For the successor condition, let suci(N) = N ′ for some N,N ′ ∈ N . Then
there is some nj ∈ N with sucji (nj) ∈ N ′. Therefore, the successor condition for
ψ follows from the successor condition for φj as follows:

ψ(suci(N)) = ψ(N ′) = ψ([sucji (nj)]∼+) = φj(sucji (nj))
= ŝuci(φj(nj)) = ŝuci(ψ([nj]∼+)) = ŝuci(ψ(N))

Finally, we show that ψ is rigid. To this end, let N ∈ N with lab(N) ∈ Σ.
That is, there is some nj ∈ N with labj(nj) ∈ Σ. Recall, that we have shown
that ψj : gj →⊥ g is rigid. That is, we have

Pagj (nj) = Pag (ψj(nj)) = Pag ([nj]∼+).

Analogously, we have Pa
ĝ
(φj(nj)) = Pagj (nj) as φj is rigid, too. Using this, we

can obtain the following equations:

Pa
ĝ
(ψ(N)) = Pa

ĝ
(ψ([nj]∼+)) = Pa

ĝ
(φj(nj)) = Pagj (nj) = Pag ([nj]∼+) = Pag (N)

Hence, ψ is a rigid ⊥-homomorphism from g to ĝ.

B Proof of Lemma 6.10
In this appendix, we will give the full proof of Lemma 6.10. Before we can do
this we have to establish a number of technical auxiliary lemmas.

The lemma below will serve as a tool for the two lemmas that are to follow
afterwards. We know that the set of retained nodes Ng

<d contains at least all
nodes at depth smaller than d due to the closure condition (T1). However, due
to the closure condition (T2) also nodes at a larger depth may be included in
Ng
<d. The following lemma shows that this is not possible for nodes labelled with

nullary symbols:

Lemma B.1 (labelling). Let g ∈ G∞(Σ), ∆ ⊆ Σ(0) and d < ω. If ∆-depth(g) ≥
d, then labg(n) 6∈ ∆ for all n ∈ Ng

<d.

361

Proof. We will show that N∇ = {n ∈ Ng | labg(n) 6∈ ∆} satisfies the properties
(T1) and (T2) of Definition 6.1 for the term graph g and depth d. Since Ng

<d is
the least such set, we then obtain Ng

<d ⊆ N∇ and, thereby, the claimed statement.
For (T1), let n ∈ Ng with depthg(n) < d. Since ∆-depth(g) ≥ d, we have

labg(n) 6∈ ∆ and, therefore, n ∈ N∇. For (T2), let n ∈ N∇ and m ∈ Preag(n).
Then m cannot be labelled with a nullary symbol, a fortiori labg(m) 6∈ ∆. Hence,
we have m ∈ N∇.

The following two lemmas are rather technical. They state that rigid ∆-
homomorphisms preserve retained nodes and in a stricter sense also fringe nodes.

Lemma B.2 (preservation of retained nodes). Suppose g, h ∈ G∞(Σ), d < ω,
φ : g →∆ h is rigid, and ∆-depth(g) ≥ d. Then φ(Ng

<d) = Nh
<d.

Proof. Let N∇ = {n ∈ Ng | labg(n) 6∈ ∆}. At first we will show that φ(Ng
<d) ⊆

Nh
<d. To this end, we will show that φ−1(Nh

<d) ∩ N∇ satisfies (T1) and (T2) of
Definition 6.1 for term graph g and depth d. Since Ng

<d is the least such set, we
then obtain Ng

<d ⊆ φ−1(Nh
<d) ∩ N∇ and, a fortiori, Ng

<d ⊆ φ−1(Nh
<d) which is

equivalent to φ(Ng
<d) ⊆ Nh

<d.
For (T1), let n ∈ Ng with depthg(n) < d. Because ∆-depth(g) ≥ d, we know

that labg(n) 6∈ ∆, which means by Lemma 6.7 that we also have depthh(φ(n)) < d.
Hence, φ(n) ∈ Nh

<d by (T1). Since labg(n) 6∈ ∆, we thus have n ∈ φ−1(Nh
<d)∩N∇.

For (T2), let n ∈ φ−1(Nh
<d)∩N∇. That is, we have φ(n) ∈ Nh

<d and labg(n) 6∈
∆. Hence, by (T2), it holds that Preah(φ(n)) ⊆ Nh

<d. We have to show now
that Preag(n) ⊆ φ−1(Nh

<d) ∩ N∇. Let m ∈ Preag(n). That is, there is some
π · 〈i〉 ∈ Pag (n) with π ∈ Pg(m). As labg(n) 6∈ ∆ and φ is rigid, we know that φ
is rigid in n. Consequently, π · 〈i〉 ∈ Pah(φ(n)). Moreover, we have π ∈ Ph(φ(m))
by Lemma 4.10. Hence, φ(m) ∈ Preah(φ(n)) and, therefore, φ(m) ∈ Nh

<d by (T2).
Additionally, as m has a successor in g, it cannot be labelled with a symbol in
∆. Hence, m ∈ φ−1(Nh

<d) ∩N∇.
In order to prove the converse inclusion φ(Ng

<d) ⊇ Nh
<d, we will show that

φ(Ng
<d) satisfies (T1) and (T2) for term graph h and depth d. This will prove

the abovementioned inclusion since Nh
<d is the least such set.

For (T1), let n ∈ Nh with depthh(n) < d. By Lemma 6.5, there is some
m ∈ Ng with depthg(m) < d and φ(m) = n. Hence, according to (T1), we have
m ∈ Ng

<d and, therefore, n ∈ φ(Ng
<d).

For (T2), let n ∈ φ(Ng
<d). That is, there is some m ∈ Ng

<d with φ(m) = n.
By (T2), we have Preag(m) ⊆ Ng

<d. We must show that Preah(n) ⊆ φ(Ng
<d).

Let n′ ∈ Preah(n). That is, there is some π · 〈i〉 ∈ Pah(n) with π ∈ Ph(n′).
Since m ∈ Ng

<d, we have labg(m) 6∈ ∆ by Lemma B.1. Consequently, φ is rigid
in m which yields that π · 〈i〉 ∈ Pag (m). Note that then also π ∈ P(g). Let
m′ = nodeg(π). Thus, m′ ∈ Preag(m) and, therefore, m′ ∈ Ng

<d according to (T2).
Moreover, because π ∈ Pg(m′) ∩ Ph(n′), we are able to obtain from Lemma 4.10
that φ(m′) = n′. Hence, n′ ∈ φ(Ng

<d).

Lemma B.3 (preservation of fringe nodes). Let g, h ∈ G∞(Σ), φ : g →∆ h rigid,
0 < d < ω, ∆-depth(g) ≥ d, n ∈ Ng, and 0 ≤ i < arg(n). Then ni ∈ Ng

=d iff
φ(n)i ∈ Nh

=d.

362

Proof. Note that, by Lemma B.1, we have that labg(n) 6∈ ∆ for all nodes n ∈ Ng
<d.

Additionally, by Lemma B.2, we obtain φ(Ng
<d) = Nh

<d and, therefore, according
to the labelling condition for φ, we get that labh(n) 6∈ ∆ for all n ∈ Nh

<d.
At first we will show the “only if” direction. To this end, let ni ∈ Ng

=d. By
definition, we then have depthg(n) ≥ d−1. Hence, by Lemma 6.7, depthh(φ(n)) ≥
d− 1. Furthermore, we have that sucgi (n) 6∈ Ng

<d or n 6∈ Preag(sucgi (n)). We show
now that in either case we can conclude φ(n)i ∈ Nh

=d.
Let sucgi (n) 6∈ Ng

<d. If we have suchi (φ(n)) 6∈ Nh
<d, then φ(n)i ∈ Nh

=d. So
suppose suchi (φ(n)) ∈ Nh

<d. Since Nh
<d = φ(Ng

<d), according to Lemma B.2, we
find some m ∈ Ng

<d with φ(m) = suchi (φ(n)). However, since sucgi (n) 6∈ Ng
<d, we

know that m 6= sucgi (n). We now show φ(n) 6∈ Preah(suchi (φ(n))) by showing that
π · 〈i〉 6∈ Pah(suchi (φ(n))) whenever π ∈ Pah(φ(n)):

π ∈ Pah(φ(n)) ⇐⇒ π ∈ Pag (n) (φ is rigid in n)
=⇒ π · 〈i〉 6∈ Pag (m) (m 6= sucgi (n))
⇐⇒ π · 〈i〉 6∈ Pah(φ(m)) (φ is rigid in m)
⇐⇒ π · 〈i〉 6∈ Pah(suchi (φ(n))) (φ(m) = suchi (φ(n)))

Together with depthh(φ(n)) ≥ d− 1, this implies that φ(n)i ∈ Nh
=d.

Let n 6∈ Preag(sucgi (n)). If φ(n) 6∈ Preah(suchi (φ(n))), then φ(n)i ∈ Nh
=d. So

suppose that φ(n) ∈ Preah(suchi (φ(n))). Hence, φ(n) ∈ Preah(φ(sucgi (n))) as φ
is homomorphic in n. If labg(sucgi (n)) 6∈ ∆, then φ is rigid in sucgi (n) and we
would also get n ∈ Preag(sucgi (n)) which contradicts the assumption. Hence,
labg(sucgi (n)) ∈ ∆ and, therefore, sucgi (n) 6∈ Ng

<d according to Lemma B.1. Thus,
we can employ the argument for this case that we have already given above.

We now turn to the converse direction. For this purpose, let φ(n)i ∈ Nh
=d.

Then depthh(φ(n)) ≥ d− 1 and, consequently depthg(n) ≥ d− 1 by Lemma 6.7.
Additionally, we also have suchi (φ(n)) 6∈ Nh

<d or φ(n) 6∈ Preah(suchi (φ(n))). Again
we will show that in either case we can conclude ni ∈ Ng

=d.
If suchi (φ(n)) 6∈ Nh

<d, then φ(sucgi (n)) 6∈ Nh
<d and, therefore, φ(sucgi (n)) 6∈

φ(Ng
<d) according to Lemma B.2. Consequently, sucgi (n) 6∈ Ng

<d which implies
that ni ∈ Ng

=d.
Let φ(n) 6∈ Preah(suchi (φ(n))). If n 6∈ Preag(sucgi (n)), then we get ni ∈ Ng

=d
immediately. So assume that n ∈ Preag(sucgi (n)). If labg(sucgi (n)) 6∈ ∆, then φ
would be rigid in sucgi (n). Thereby, we would get φ(n) ∈ Preah(φ(sucgi (n))) which
contradicts the assumption. Hence, labg(sucgi (n)) ∈ ∆. According to Lemma B.1,
we then have sucgi (n) 6∈ Ng

<d and, therefore, ni ∈ Ng
=d.

The above lemma depends on the peculiar definition of fringe nodes – in
particular those fringe nodes that are due to the condition

depthg(n) ≥ d− 1 and n 6∈ Preag(sucgi (n)).

Recall that this condition produces a fringe node for each edge from a retained
node that closes a cycle. Let us have a look at the term graph g depicted in
Figure 11. The rigid truncation g‡2 of g is shown in Figure 7a. If the above-
mentioned alternative condition for fringe nodes would not be present, then the

363

h
r

h
n

h
m

⊥o

h
r

h
n

φ

hφ : g
⊥

Figure 11: Fringe nodes and rigid ⊥-homomorphisms.

set Ng
=2 would be empty (and, thus, g‡2 = g). Then, however, the rigid ⊥-

homomorphism φ illustrated in Figure 11 would violate Lemma B.3. Since the
nodem is cut off from h in the truncation h‡2, there is a fringe node n0 in h‡2. On
the other hand, there would be no fringe node n0 in g‡2 if not for the alternative
condition above.

Lemma 6.10 (≤R
⊥ and rigid truncation). Given g, h ∈ G∞(Σ⊥) and d < ω with

g ≤R
⊥ h and ⊥-depth(g) ≥ d, we have that g‡d ∼= h‡d.

Proof of Lemma 6.10. For d = 0, this is trivial. So assume d > 0. Since g ≤R
⊥ h,

there is a rigid ⊥-homomorphism φ : g →⊥ h. Define the function ψ as follows:

ψ : Ng‡d → Nh‡d

Ng
<d 3 n 7→ φ(n)

Ng
=d 3 ni 7→ φ(n)i

At first we have to argue that ψ is well-defined. For this purpose, we first need
that φ(Ng

<d) ⊆ Ng‡d. Lemma B.2 confirms this. Secondly, we need that ni ∈ Ng
=d

implies φ(n)i ∈ Ng‡d. This is guaranteed by Lemma B.3.
Next we show that ψ is a homomorphism from g‡d to h‡d. The root condition

is inherited from φ as rg‡d ∈ Ng
<d. Note that, according to Lemma B.1, we have

labg(n) ∈ Σ for all n ∈ Ng
<d. Hence, φ is homomorphic in Ng

<d which means
that the labelling condition for nodes in Ng

<d is also inherited from φ. For nodes
ni ∈ Ng

=d, we have labg‡d(ni) = ⊥. Since, by definition, ψ(ni) ∈ Nh
=d, we can

conclude labh‡d(ψ(ni)) = ⊥.
The successor condition is trivially satisfied by nodes in Ng

=d as they do not
have any successors. Let n ∈ Ng

<d and 0 ≤ i < arg‡d(n). We distinguish two cases:
At first assume that ni 6∈ Ng

=d. Hence, sucg‡di (n) = sucgi (n) ∈ Ng
<d. Since, by

Lemma B.3, also φ(n)i 6∈ Nh
=d, we additionally have such‡di (φ(n)) = suchi (φ(n)).

Hence, using the successor condition for φ, we can reason as follows:

ψ(sucg‡di (n)) = ψ(sucgi (n)) = φ(sucgi (n)) = suchi (φ(n))
= such‡di (φ(n)) = such‡di (ψ(n))

364

If, on the other hand, ni ∈ Ng
=d, then sucg‡di (n) = ni. Moreover, since then

φ(n)i ∈ Nh
=d by Lemma B.3, we have such‡di (φ(n)) = φ(n)i, too. Hence, we can

reason as follows:

ψ(sucg‡di (n)) = ψ(ni) = φ(n)i = such‡di (φ(n)) = such‡di (ψ(n))

This shows that ψ is a homomorphism. Note that, according to Lemma 5.6,
φ is injective in Ng

<d. Then also ψ is injective in Ng
<d. For the same reason, ψ is

also injective in Ng
=d. Moreover, we have ψ(Ng

<d) ⊆ Nh
<d and ψ(Ng

=d) ⊆ Nh
=d, i.e.

ψ(Ng
<d)∩ψ(Ng

=d) = ∅. Hence, ψ is injective which implies, by Lemma 4.12, that
ψ is an isomorphism from g‡d to h‡d.

365

Convergence in Infinitary Term Graph Rewriting
Systems is Simple

Patrick Bahr

Department of Computer Science, University of Copenhagen

Abstract

Term graph rewriting provides a formalism for implementing term rewrit-
ing in an efficient manner by avoiding duplication. Infinitary term rewriting
has been introduced to study infinite term reduction sequences. Such infi-
nite reductions can be used to model non-strict evaluation. In this paper, we
unify term graph rewriting and infinitary term rewriting thereby addressing
both components of lazy evaluation: non-strictness and sharing.

In contrast to previous attempts to formalise infinitary term graph rewrit-
ing, our approach is based on a simple and natural generalisation of the
modes of convergence of infinitary term rewriting. We show that this new
approach is better suited for infinitary term graph rewriting as it is simpler
and more general. The latter is demonstrated by the fact that our notions
of convergence give rise to two independent canonical and exhaustive con-
structions of infinite term graphs from finite term graphs via metric and
ideal completion. In addition, we show that our notions of convergence on
term graphs are sound w.r.t. the ones employed in infinitary term rewriting
in the sense that convergence is preserved by unravelling term graphs to
terms. Moreover, the resulting infinitary term graph calculi provide a uni-
fied framework for both infinitary term rewriting and term graph rewriting,
which makes it possible to study the correspondences between these two
worlds more closely.

Contents
1 Introduction 368

1.1 Motivation . 369
1.1.1 Lazy Evaluation . 369
1.1.2 Rational Terms . 370

1.2 Contributions & Related Work . 372
1.2.1 Contributions . 372
1.2.2 Related Work . 372

1.3 Overview . 373

2 Infinitary Term Rewriting 373
2.1 Sequences . 373
2.2 Metric Spaces . 374
2.3 Partial Orders . 374

367

2.4 Terms . 375
2.5 Term Rewriting Systems . 376
2.6 Convergence of Transfinite Term Reductions 376

3 Graphs and Term Graphs 378
3.1 Homomorphisms . 380
3.2 Canonical Term Graphs . 382

4 A Simple Partial Order on Term Graphs 386

5 A Simple Metric on Term Graphs 392
5.1 Truncation Functions . 392
5.2 The Simple Truncation and its Metric Space 394
5.3 Other Truncation Functions and Their Metric Spaces 399

6 Infinitary Term Graph Rewriting 403
6.1 Term Graph Rewriting Systems . 403
6.2 Convergence of Transfinite Reductions 406
6.3 m-Convergence vs. p-Convergence 408

7 Preservation of Convergence through Unravelling 410
7.1 Metric Convergence . 410
7.2 Partial Order Convergence . 412

8 Finite Term Graphs 412
8.1 Finitary Properties . 413
8.2 Ideal Completion . 415
8.3 Metric Completion . 417

9 Conclusions & Outlook 418

Acknowledgement 419

Bibliography 419

1 Introduction
Term graphs are a generalisation of terms, which allow us to avoid duplication of
subterms and instead use pointers in order to refer to the same subterm several
times. In this paper, we aim to extend the theory of infinitary term rewriting to
the setting of term graphs.

As the basis for our infinitary calculi we use the well-established term graph
rewriting formalism of Barendregt et al. [10] as it will allows us to draw on the
work investigating the relation between (infinitary) term rewriting on the one
hand and term graph rewriting on the other hand [21].

In order to devise an infinitary calculus, we have to conceive a notion of
convergence that constrains reductions of transfinite length in a meaningful way.
To this end, we generalise the metric on terms that is used to define convergence
for infinitary term rewriting [13] to term graphs. In a similar way, we generalise

368

the partial order on terms that has been recently used to define a closely related
notion of convergence for infinitary term rewriting [7]. The use of two different
– but on terms closely related – approaches to convergence will allow us both to
assess the appropriateness of the resulting infinitary calculi and to compare them
against the corresponding infinitary calculi of term rewriting.

The focus of the present work is primarily on the foundational aspects of
infinitary term graph rewriting. That is, our major concerns are the underlying
notions of convergence and their appropriateness. That is why we only consider
weak forms of convergence, i.e. notions of convergence that are purely based
on the convergence of the terms respectively term graphs along a reduction, as
opposed to strong convergence [22] that also considers the positions of contracted
redexes.

1.1 Motivation
1.1.1 Lazy Evaluation

Term rewriting is a useful formalism for studying declarative programs, in partic-
ular, functional programs. A functional program essentially consists of functions
defined by a set of equations and an expression that is supposed to be evaluated
according to these equations. The conceptual process of evaluating an expression
is nothing else than term rewriting.

A particularly interesting feature of modern functional programming lan-
guages, such as Haskell [23], is the ability to deal with conceptually infinite data
structures. For example, the following function from constructs for each number
n the infinite list of consecutive numbers starting from n:

from(n) = n :: from(s(n))

Here, we use the binary infix symbol :: to denote the list constructor cons and s
for the successor function. While we cannot use the infinite list generated by from
directly – the evaluation of an expression of the form from n does not terminate
– we can use it in a setting in which we only read a finite prefix of the infinite list
conceptually defined by from. Functional languages such as Haskell allow this use
of semantically infinite data structures through a non-strict evaluation strategy,
which delays the evaluation of a subexpression until its result is actually required
for further evaluation of the expression. This non-strict semantics is not only a
conceptual neatness but in fact one of the major features that make functional
programs highly modular [16]!

The above definition of the function from can be represented as a term rewrit-
ing system with the following rule:

from(x)→ x :: from(s(x))

Starting with the term from(0), we then obtain the following infinite reduction:

from(0)→ 0 :: from(s(0))→ 0 :: s(0) :: from(s(s(0)))→ . . .

The theory of infinitary term rewriting [20] provides a notion of convergence
that may assign a meaningful limit term to such an infinite reduction provided

369

there exists one. In this sense, the above reduction converges to the infinite term
0 :: s(0) :: s(s(0)) :: . . . , which represents the infinite list of numbers 0, 1, 2,
Due to this extension of term rewriting with explicit limit constructions for
non-terminating reductions, infinitary term rewriting allows us to directly reason
about non-terminating functions and infinite data structures.

Non-strict evaluation is rarely found unescorted, though. Usually, it is im-
plemented as lazy evaluation [15], which complements a non-strict evaluation
strategy with sharing. The latter avoids duplication of subexpressions by using
pointers instead of copying. For example, the function from above duplicates its
argument n – it occurs twice on the right-hand side of the defining equation. A
lazy evaluator simulates this duplication by inserting two pointers pointing to the
actual argument. Sharing is a natural companion for non-strict evaluation as it
avoids re-evaluation of expressions that are duplicated before they are evaluated.

The underlying formalism that is typically used to obtain sharing for func-
tional programming languages is term graph rewriting [24, 25]. Term graph
rewriting [10, 26] uses graphs to represent terms thus allowing multiple arcs to
point to the same node. Term graphs allows us, e.g. for the right-hand side
x :: from(s(x)) of the term rewrite rule defining the function from, to replace

::

x from

s

x

the tree representation

::

x from

s

by a graph representation

which shares the variable x by having two arcs pointing to it.
While infinitary term rewriting is used to model the non-strictness of lazy

evaluation, term graph rewriting models the sharing part of it. By endowing
term graph rewriting with a notion of convergence, we aim to unify the two
formalisms into one calculus, thus allowing us to model both aspects withing the
same calculus.

1.1.2 Rational Terms

Term graphs can do more than only share common subexpressions. Through
cycles term graphs may also provide a finite representation of certain infinite
terms – so-called rational terms. For example, the infinite term 0 :: 0 :: 0 :: . . . can
be represented as the finite term graph

::

0

Since a single node on a cycle in a term graph represents infinitely many corre-
sponding subterms, the contraction of a single term graph redex may correspond
to a transfinite term reduction that contracts infinitely many term redexes. For
example, if we apply the rewrite rule 0→ s(0) to the above term graph, we obtain

370

a term graph that represents the term s(0) :: s(0) :: s(0) :: . . . , which can only be
obtained from the term 0 :: 0 :: 0 :: . . . via a transfinite term reduction with the
rule 0 → s(0). Kennaway et al. [21] investigated this correspondence between
cyclic term graph rewriting and infinitary term rewriting. Among other results
they characterise a subset of transfinite term reductions – called rational reduc-
tions – that can be simulated by a corresponding finite term graph reduction.
The above reduction from the term 0 :: 0 :: 0 :: . . . is an example of such a rational
reduction.

With the help of a unified formalism for infinitary and term graph rewriting,
it should be easier to study the correspondence between infinitary term rewriting
and finitary term graph rewriting further. The move from an infinitary term
rewriting system to a term graph rewriting system is then only a change in
the degree of sharing if we use infinitary term graph rewriting as a common
framework.

For example, consider the term rewrite rule rep(x)→ x :: rep(x), which defines
a function rep that repeats its argument infinitely often:

rep(0)→ 0 :: rep(0)→ 0 :: 0 :: rep(0)→ 0 :: 0 :: 0 :: rep(0)→ . . . 0 :: 0 :: 0 :: . . .

This reduction happens to be not a rational reduction in the sense of Kennaway
et al. [21].

The move from the term rule rep(x) → x :: rep(x) to a term graph rule is a
simple matter of introducing sharing of common subexpressions:

rep

x

::

x rep

x

rep

xis represented by

::

Instead of creating a fresh copy of the redex on the right-hand side, the redex
is reused by placing an edge from the right-hand side of the rule to its left-hand
side. This allows us to represent the infinite reduction approximating the infinite
term 0 :: 0 :: 0 :: . . . with the following single step term graph reduction induced
by the above term graph rule:

rep

0

::

0

Via its cyclic structure the resulting term graph represents the infinite term
0 :: 0 :: 0 ::

Since both transfinite term reductions and the corresponding finite term graph
reductions can be treated within the same formalism, we hope to provide a tool for
studying the ability of cyclic term graph rewriting to finitely represent transfinite
term reductions.

371

1.2 Contributions & Related Work
1.2.1 Contributions

The main contributions of this paper are:

1. We devise a simple partial order on term graphs based on graph homomor-
phisms. We show that this partial order forms a complete semilattice and
thus is technically suitable for defining a notion of convergence.

2. We devise a simple metric on term graphs and show that it forms a complete
ultrametric space on term graphs.

3. Based on the partial order respectively the metric we define a notion of
weak convergence for infinitary term graph rewriting. We show that the
partial order convergence subsumes the metric convergence.

4. We confirm that the partial order and the metric on term graphs generalise
the partial order respectively the metric that is used for infinitary term
rewriting. Moreover, we show that the corresponding notions of conver-
gence are preserved by unravelling term graphs to terms thus establishing
the soundness of our notions of convergence on term graphs w.r.t. the con-
vergence on terms.

5. Finally, we show that both the partial order and the metric provide comple-
tion constructions – ideal completion and metric completion, respectively
– that construct the set of finite and infinite term graphs from the set of
finite term graphs.

In this paper we study the foundations of infinitary term graph rewriting
and therefore focus purely on weak notions of convergence, i.e. notions that are
based on the sequence of term graphs produced along a term graph reduction.
Similar to infinitary term rewriting, weak notions of convergence for infinitary
term graph rewriting are difficult to study and often manifest some unexpected
behaviour. In particular, soundness and completeness properties w.r.t. infinitary
term rewriting are hard to come by. Yet, we gathered much evidence that support
the appropriateness of our infinitary calculi. More evidence can be found when
moving to strong convergence, which does exhibit solid soundness and complete-
ness properties w.r.t. infinitary term rewriting [9].

1.2.2 Related Work

Calculi with explicit sharing and/or recursion, e.g. via letrec, can also be con-
sidered as a form of term graph rewriting. Ariola and Klop [3] recognised that
adding such an explicit recursion mechanism to the lambda calculus may break
confluence. In order to reconcile this, Ariola and Blom [1, 2] developed a notion
of skew confluence that allows them to define an infinite normal form in the vein
of Böhm trees.

In previous work, we have investigated notions of convergence for term graph
rewriting [8]. The approach that we have taken in that work is very similar to
the approach adopted in this paper: by generalising the metric and the partial

372

order on terms to term graphs, we devised a weak notion of convergence for
infinitary term graph rewriting. However, both the metric and the partial order
on term graphs are very carefully crafted in order to make them very similar to
the corresponding structures on terms. While the thus obtained two notions of
convergence manifest the same correspondence that is known from infinitary term
rewriting [7], they are too restrictive as we will illustrate in this paper. Due to
the close resemblance to the convergence on terms, these notions of convergence
are not able to capture all forms of sharing appropriately.

In this paper, we follow a different approach by taking the arguably simplest
generalisation of the metric and the partial order to term graphs. We will show
that this approach is better suited for infinitary term graph rewriting as it lifts
the restrictions that we observe in our previous formalisation [8].

1.3 Overview
The structure of this paper is as follows: in Section 2, we give an overview of
infinitary term rewriting including the necessary background for metric spaces
and partially ordered sets. Section 3 provides the necessary theory for graphs
and term graphs. Sections 4 and 5 form the core of this paper. In these sections
we study the partial order and the metric on term graphs that are the basis for the
notions of convergence we consider in this paper. In Section 6, we use these two
notions of convergence to study two corresponding infinitary term graph rewriting
calculi. Sections 7 and 8 are concerned with forms of soundness and completeness
properties of our notions of convergence. In the former, we show that both notions
of convergence generalise the corresponding notions of convergence on terms and
that they are preserved under unravelling term graphs to terms. In the latter,
we show that the set of (finite and infinite) term graphs arises both as the metric
completion and the ideal completion of the set of finite term graphs.

2 Infinitary Term Rewriting
For devising an infinitary calculus, we have to devise a notion of convergence that
constrains transfinite reductions in a meaningful way. Before pondering over the
right approach to an infinitary calculus of term graph rewriting, we want to
provide a brief overview of infinitary term rewriting [7, 20]. In this paper, we will
only consider weak notions of convergence, i.e. convergence is solely determined
by the sequence of terms respectively term graphs that are produced along a
reduction [13].

We assume the reader to be familiar with the basic theory of ordinal numbers,
orders and topological spaces [18], as well as term rewriting [27]. In the following,
we briefly recall the most important notions.

2.1 Sequences
We use the von Neumann definition of ordinal numbers. That is, an ordinal
number (or simply ordinal) α is the set of all ordinal numbers strictly smaller
than α. In particular, each natural number n ∈ N is an ordinal number with
n = {0, 1, . . . , n− 1}. The least infinite ordinal number is denoted by ω and is

373

the set of all natural numbers. Ordinal numbers will be denoted by lower case
Greek letters α, β, γ, δ, λ, ι.

A sequence S of length α in a set A, written (aι)ι<α, is a function from α
to A with ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If α
is a limit ordinal, then S is called open. Otherwise, it is called closed. If α is a
finite ordinal, then S is called finite. Otherwise, it is called infinite. For a finite
sequence (ai)i<n, we also use the notation 〈a0, a1, . . . , an−1〉. In particular, 〈〉
denotes the empty sequence. We write A∗ for the set of all finite sequences in A.

The concatenation (aι)ι<α · (bι)ι<β of two sequences (aι)ι<α and (bι)ι<β is
the sequence (cι)ι<α+β with cι = aι for ι < α and cα+ι = bι for ι < β. A
sequence S is a (proper) prefix of a sequence T , denoted S ≤ T (respectively
S < T), if there is a (non-empty) sequence S′ with S ·S′ = T . The prefix of T of
length β ≤ |T | is denoted T |β. The thus defined binary prefix relation ≤ forms a
complete semilattice (cf. Section 2.3). Similarly, a sequence S is a (proper) suffix
of a sequence T if there is a (non-empty) sequence S′ with S′ · S = T .

2.2 Metric Spaces
Given a set M , a pair (M,d) is called a metric space if d : M ×M → R+

0 is
a function satisfying d(x, y) = 0 iff x = y (identity), d(x, y) = d(y, x) (sym-
metry), and d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality), for all x, y, z ∈ M .
If d, instead of the triangle inequality, satisfies the stronger property d(x, z) ≤
max {d(x, y),d(y, z)} (strong triangle), then (M,d) is called an ultrametric space.
Let (aι)ι<α be a sequence in a metric space (M,d). The sequence (aι)ι<α con-
verges to an element a ∈ M , written limι→α aι, if, for each ε ∈ R+, there is
a β < α such that d(a, aι) < ε for every β < ι < α; (aι)ι<α is continuous if
limι→λ aι = aλ for each limit ordinal λ < α. The sequence (aι)ι<α is called
Cauchy if, for any ε ∈ R+, there is a β < α such that, for all β < ι < γ < α,
we have that d(mι,mγ) < ε. A metric space is called complete if each of its
non-empty Cauchy sequences converges.

Given two metric spaces (M1,d1) and (M2,d2), a function φ : M1 → M2 is
called an isometric embedding of (M1,d1) into (M2,d2) if it preserves distances,
i.e.

d2(φ(x), φ(y)) = d1(x, y) for all x, y ∈M1.

If, additionally, φ is bijective, then it is called an isometry and the metric spaces
(M1,d1) and (M2,d2) are said to be isometric.

2.3 Partial Orders
A partial order ≤ on a set A is a binary relation on A that is transitive, reflexive,
and antisymmetric. The pair (A,≤) is then called a partially ordered set. A
subset D of the underlying set A is called directed if it is non-empty and each
pair of elements in D has an upper bound in D. A partially ordered set (A,≤) is
called a complete partial order (cpo) if it has a least element and each directed set
D has a least upper bound (lub) ⊔D. A cpo (A,≤) is called a complete semilattice
if every non-empty set B has greatest lower bound (glb)

d
B. In particular, this

means that for any sequence (aι)ι<α in a complete semilattice, its limit inferior,
defined by lim infι→α aι = ⊔

β<α

(d
β≤ι<α aι

)
, always exists.

374

There is also a different characterisation of complete semilattices in terms of
bounded complete cpos: a partially ordered set (A,≤) is called bounded complete
if each set B ⊆ A that has an upper bound in A also has a least upper bound in
A.

Proposition 2.1 (complete semilattice, Kahn and Plotkin [17]). Given a cpo
(A,≤), the following are equivalent:

(i) (A,≤) is a complete semilattice.

(ii) (A,≤) is bounded complete.

Given two partially ordered sets (A,≤A) and (B,≤B), a function φ : A→ B
is called monotonic if a1 ≤A a2 implies φ(a1) ≤B φ(a2). In particular, a sequence
(bι)ι<α in (B,≤B) is called monotonic if ι ≤ γ < α implies bι ≤B bγ . An order
isomorphism from (A,≤A) to (B,≤B) is a monotonic function φ : A → B such
that there is a monotonic function ψ : B → A which is the inverse of φ, i.e.
ψ ◦ φ and φ ◦ ψ are identity functions on A respectively B. If there is an order
isomorphism from (A,≤A) to (B,≤B), then (A,≤A) and (B,≤B) are called order
isomorphic.

With the prefix order ≤ on sequences we can generalise concatenation to
arbitrary sequences of sequences: let (Sι)ι<α be a sequence of sequences in some
set A. The concatenation of (Sι)ι<α, written

∏
ι<α Sι, is recursively defined as

the empty sequence 〈〉 if α = 0, (∏ι<α′ Sι) · Sα′ if α = α′ + 1, and ⊔γ<α
∏
ι<γ Sι

if α is a limit ordinal.

2.4 Terms
Since we are interested in the infinitary calculus of term rewriting, we consider
the set T ∞(Σ) of (potentially infinite) terms over some signature Σ. A signature
Σ is a countable set of symbols. Each symbol f has an associated arity ar(f) ∈ N,
and we write Σ(n) for the set of symbols in Σ which have arity n. The set T ∞(Σ)
is defined as the greatest set such that t ∈ T ∞(Σ) implies t = f(t0, . . . , tk−1)
for some f ∈ Σ(k) and t0, . . . , tk−1 ∈ T ∞(Σ). For each nullary symbol c ∈ Σ(0),
we write c for the term c(). For a term t ∈ T ∞(Σ) we use the notation P(t) to
denote the set of positions in t. P(t) is the least subset of N∗ such that 〈〉 ∈ P(t)
and 〈i〉 · π ∈ P(t) if t = f(t0, . . . , tk−1) with 0 ≤ i < k and π ∈ P(ti). For terms
s, t ∈ T ∞(Σ) and a position π ∈ P(t), we write t|π for the subterm of t at π, t(π)
for the function symbol in t at π, and t[s]π for the term t with the subterm at
π replaced by s. The set T (Σ) of finite terms is the set of terms t ∈ T ∞(Σ) for
which P(t) is a finite set.

On T ∞(Σ) a similarity measure sim : T ∞(Σ)×T ∞(Σ)→ ω+1 can be defined
by setting

sim(s, t) = min {|π| |π ∈ P(s) ∩ P(t), s(π) 6= t(π)} ∪ {ω} for s, t ∈ T ∞(Σ)

That is, sim(s, t) is the minimal depth at which s and t differ, respectively ω if
s = t. Based on this, a distance function d can be defined by d(s, t) = 2−sim(s,t),
where we interpret 2−ω as 0. The pair (T ∞(Σ),d) is known to form a complete
ultrametric space [4]. Partial terms, i.e. terms over signature Σ⊥ = Σ]{⊥} with

375

⊥ a fresh nullary symbol, can be endowed with a binary relation ≤⊥ by defining
s ≤⊥ t iff s can be obtained from t by replacing some subterm occurrences in t by
⊥. Interpreting the term ⊥ as denoting “undefined”, ≤⊥ can be read as “is less
defined than”. The pair (T ∞(Σ⊥),≤⊥) is known to form a complete semilattice
[14]. When dealing with terms in T ∞(Σ⊥), we call terms that do not contain the
symbol ⊥, i.e. terms that are contained in T ∞(Σ), total.

2.5 Term Rewriting Systems

For term rewriting systems, we have to consider terms with variables. To this end,
we assume a countably infinite set V of variable symbols and extend a signature
Σ to a signature ΣV = Σ] V with variable symbols in V as nullary symbols.
Instead of T ∞(ΣV) we also write T ∞(Σ,V). A term rewriting system (TRS) R
is a pair (Σ, R) consisting of a signature Σ and a set R of term rewrite rules of
the form l → r with l ∈ T ∞(Σ,V) \ V and r ∈ T ∞(Σ,V) such that all variables
occurring in r also occur in l. Note that both the left- and the right-hand side
may be infinite. We usually use x, y, z and primed respectively indexed variants
thereof to denote variables in V.

Similar to the setting of finitary term rewriting, every TRSR defines a rewrite
relation →R on terms in T ∞(Σ) as follows:

s→R t ⇐⇒ ∃π ∈ P(s), l→ r ∈ R, substitution σ : s|π = lσ, t = s[rσ]π

Instead of s →R t, we sometimes write s →π,ρ t in order to indicate the applied
rule ρ and the position π, or simply s → t. The subterm s|π is called a ρ-redex
or simply redex, rσ its contractum, and s|π is said to be contracted to rσ.

2.6 Convergence of Transfinite Term Reductions

At first, we look at the metric based approach of infinitary term rewriting [13, 20].
The convergence of an infinite reduction is determined by the convergence of the
underlying sequence of terms in the metric space (T ∞(Σ),d).

A reduction in a term rewriting system R, is a sequence S = (tι →R tι+1)ι<α
of rewriting steps in R. The sequence (tι)ι<α̂ is the underlying sequence of terms,
where α̂ = α if α is a limit ordinal, and α̂ = α + 1 otherwise. The reduction S
is called weakly m-continuous, written S : t0 ↪→m . . . , if the underlying sequence
of terms (tι)ι<α̂, is continuous, i.e. limι→λ tι = tλ for each limit ordinal λ < α.
The reduction S is said to weakly m-converge to a term t, written S : t0 ↪→m t, if
it is weakly m-continuous and the underlying sequence of terms converges to t,
i.e. limι→α̂ tι = t.

Example 2.2. Consider the rewrite rule ρ : x :: y :: z → y ::x :: y :: z, where :: is
a binary symbol that we write infix and assume to associate to the right. That is,
in its explicitly parenthesised form ρ reads x :: (y :: z)→ y :: (x :: (y :: z)). Think of
the :: symbol as the list constructor cons. Using the rule ρ, we have the following
reduction S of length ω:

S : a :: a :: c→ a :: a :: a :: c→ a :: a :: a :: a :: c→ a :: a :: a :: a :: a :: c→ . . .

376

The position at which two consecutive terms differ – indicated by the underlining
– moves deeper and deeper into the term structure during the reduction S. Hence,
the underlying sequence of terms converges to the infinite term s satisfying the
equation s = a :: s, i.e. s = a :: a :: a :: This means that S weakly m-converges
to s.

Now consider the starting term a :: b :: c. By repeatedly applying ρ at the root
we obtain the following reduction:

T : a :: b :: c→ b :: a :: b :: c→ a :: b :: a :: b :: c→ b :: a :: b :: a :: b :: c→ . . .

The difference between consecutive terms remains right at the root position.
Hence, the underlying sequence of terms is not Cauchy and, therefore, does not
converge. Consequently, T does not weakly m-converge.

However, we can form a weakly m-converging reduction starting from the
term a :: b :: c by applying the rule ρ at increasingly deep positions:

T ′ : a :: b :: c→ b :: a :: b :: c→ b :: b :: a :: b :: c→ b :: b :: b :: a :: b :: c→ . . .

The reduction T ′ weakly m-converges to the infinite term t′ = b :: b :: b ::

In the partial order approach of infinitary rewriting [6, 7], convergence is
defined in terms of the limit inferior in the partially ordered set (T ∞(Σ⊥),≤⊥):
a reduction S = (tι →R tι+1)ι<α of partial terms is called weakly p-continuous,
written S : t0 ↪→p . . . , if lim infι<λ tι = tλ for each limit ordinal λ < α. The
reduction S is said to weakly p-converge to a term t, written S : t0 ↪→p t, if it is
weakly p-continuous and lim infι<α̂ tι = t.

The distinguishing feature of the partial order approach is that, due to the
complete semilattice structure of (T ∞(Σ⊥),≤⊥), each continuous reduction also
converges. Intuitively, weak p-convergence on terms describes an approximation
process. To this end, the partial order ≤⊥ captures a notion of information
preservation: s ≤⊥ t iff t contains at least the same information as s does but
potentially more. A monotonic sequence of terms t0 ≤⊥ t1 ≤⊥ . . . thus approxi-
mates the information contained in t = ⊔

i<ω ti: any finite part of t is contained is
some ti and subsequently remains stable in ti+1, ti+1, ti+2, Given this reading
of ≤⊥, the glb

d
T of a set of terms T captures the common (non-contradicting)

information of the terms in T . Leveraging this property of the partial order
≤⊥, a sequence of terms (si)i<ω that is not necessarily monotonic can be turned
into a monotonic sequence (tj)j<ω by setting tj =

d
j≤i<ω si. That is, each tj

contains exactly the information that remains stable in (si)i<ω from j onwards.
Hence, the limit inferior lim inf i→ω si = ⊔

j<ω

d
j≤i<ω si is the term that contains

the accumulated information that eventually remains stable in (si)i<ω. This is
expressed as an approximation of the monotonically increasing information that
remains stable from some point on.

Example 2.3. Reconsider the rule ρ and its induced reduction S from Exam-
ple 2.2. The reduction S also weakly p-converges to s, i.e. lim inf i→ω si for (si)i<ω
the underlying sequence of terms in S. To see this, consider the sequence (tj)j<ω
of terms tj =

d
j≤i<ω si each of which intuitively encodes the information that

remains stable from j onwards:

a :: a ::⊥, a :: a :: a ::⊥, a :: a :: a :: a ::⊥, . . .

377

This sequence of terms approximates s = a :: a :: a :: . . . in the sense that s =⊔
j<ω tj . Likewise, also the reduction T ′ from Example 2.2 weakly p-converges to

the term t′ = b :: b :: b :: The sequence of stable information of T ′ is

⊥ ::⊥ ::⊥, b ::⊥ ::⊥ ::⊥, b :: b ::⊥ ::⊥ ::⊥, . . .

As we have seen, the reduction T from Example 2.2 does not weakly m-
converge. However, since T it is trivially weakly p-continuous, it is weakly p-
converging. The corresponding sequence of stable information is

⊥ ::⊥ ::⊥, ⊥ ::⊥ ::⊥ ::⊥, ⊥ ::⊥ ::⊥ ::⊥ ::⊥, . . .

This sequence approximates the term t = ⊥ ::⊥ ::⊥ :: . . . and we thus have that
T weakly p-converges to t.

The relation between weak m- and p-convergence illustrated in the examples
above is characteristic: weak p-convergence is a conservative extension of weakm-
convergence. In order to qualify this, we say that a reduction S = (tι → tι+1)ι<α
weakly p-converges to t in T ∞(Σ) if S weakly p-converges to t and t as well as
each tι with ι < α̂ is in T ∞(Σ). Analogously, we say that S is weakly p-continuous
in T ∞(Σ) if S is weakly p-continuous and each tι with ι < α̂ is in T ∞(Σ). We
then have the following correspondence between m- and p-convergence:

Theorem 2.4 (p-convergence in T ∞(Σ) = m-convergence, Bahr [5]). For every
reduction S in a TRS the following equivalences hold:

(i) S : s ↪→p . . . in T ∞(Σ) iff S : s ↪→m

(ii) S : s ↪→p t in T ∞(Σ) iff S : s ↪→m t.

Kennaway [19] and Bahr [6] investigated abstract models of infinitary rewrit-
ing based on metric spaces respectively partially ordered sets. We will take these
abstract models as a basis to formulate a theory of infinitary term graph reduc-
tions. The key question that we have to address is what an appropriate metric
space respectively partial order on term graphs looks like.

3 Graphs and Term Graphs
This section provides the basic notions for term graphs and more generally for
graphs. Terms over a signature, say Σ, can be thought of as rooted trees whose
nodes are labelled with symbols from Σ. Moreover, in these trees a node labelled
with a k-ary symbol is restricted to have out-degree k and the outgoing edges
are ordered. In this way the i-th successor of a node labelled with a symbol f is
interpreted as the root node of the subtree that represents the i-th argument of f .
For example, consider the term f(a, h(a, b)). The corresponding representation
as a tree is shown in Figure 1a.

In term graphs, the restriction to a tree structure is abolished. The corre-
sponding notion of term graphs we are using is taken from Barendregt et al.
[10].

378

f

a h

a b

(a) f(a, h(a, b)).

f

h

a

b

h

(b) A graph.

f

h

a

f

(c) A term
graph.

Figure 1: Tree representation of a term and generalisation to (term) graphs.

Definition 3.1 (graphs). Let Σ be a signature. A graph over Σ is a triple
g = (N, lab, suc) consisting of a set N (of nodes), a labelling function lab : N → Σ,
and a successor function suc : N → N∗ such that |suc(n)| = ar(lab(n)) for each
node n ∈ N , i.e. a node labelled with a k-ary symbol has precisely k successors.
The graph g is called finite whenever the underlying set N of nodes is finite.
If suc(n) = 〈n0, . . . , nk−1〉, then we write suci(n) for ni. Moreover, we use the
abbreviation arg(n) for the arity ar(lab(n)) of n.

Example 3.2. Let Σ = {f/2, h/2, a/0, b/0} be a signature. The graph over Σ,
depicted in Figure 1b, is given by the triple (N, lab, suc) with N = {n0, n1, n2, n3,
n4}, lab(n0) = f, lab(n1) = lab(n4) = h, lab(n2) = b, lab(n3) = a and suc(n0) =
〈n1, n2〉, suc(n1) = 〈n0, n3〉, suc(n2) = suc(n3) = 〈〉, suc(n4) = 〈n2, n3〉.

Definition 3.3 (paths, reachability). Let g = (N, lab, suc) be a graph and n,m
nodes in g.

(i) A path in g from n to m is a finite sequence π ∈ N∗ such that either

(a) π is empty and n = m, or
(b) π = 〈i〉 ·π′ with 0 ≤ i < arg(n) and the suffix π′ a path in g from suci(n)

to m.

(ii) If there exists a path in g from n to m, we say that m is reachable from n
in g.

Definition 3.4 (term graphs). Given a signature Σ, a term graph g over Σ is a
tuple (N, lab, suc, r) consisting of an underlying graph (N, lab, suc) over Σ whose
nodes are all reachable from the root node r ∈ N . The term graph g is called
finite if the underlying graph is finite, i.e. the set N of nodes is finite. The class
of all term graphs over Σ is denoted G∞(Σ); the class of all finite term graphs
over Σ is denoted G(Σ). We use the notation Ng, labg, sucg and rg to refer to
the respective components N ,lab, suc and r of g. Given a graph or a term graph
h and a node n in h, we write h|n to denote the sub-term graph of h rooted in n.

Example 3.5. Let Σ = {f/2, h/2, c/0} be a signature. The term graph over
Σ, depicted in Figure 1c, is given by the quadruple (N, lab, suc, r), where N =
{r, n1, n2, n3}, suc(r) = 〈n1, n2〉, suc(n1) = 〈r, n3〉, suc(n2) = 〈n1, n3〉, suc(n3) =
〈〉 and lab(r) = lab(n2) = f , lab(n1) = h, lab(n3) = c.

379

Paths in a graph are not absolute but relative to a starting node. In term
graphs, however, we have a distinguished root node from which each node is
reachable. Paths relative to the root node correspond to positions in terms and
are central for dealing with term graphs:

Definition 3.6 (positions, depth, cyclicity, trees). Let g ∈ G∞(Σ) and n ∈ Ng.

(i) A position of n is a path in the underlying graph of g from rg to n. The
set of all positions in g is denoted P(g); the set of all positions of n in g is
denoted Pg(n).1

(ii) The depth of n in g, denoted depthg(n), is the minimum of the lengths of
the positions of n in g, i.e. depthg(n) = min {|π| |π ∈ Pg(n)}.

(iii) For a position π ∈ P(g), we write nodeg(π) for the unique node n ∈ Ng

with π ∈ Pg(n) and g(π) for its symbol labg(n).

(iv) A position π ∈ P(g) is called cyclic if there are paths π1 < π2 ≤ π with
nodeg(π1) = nodeg(π2). The non-empty path π′ with π1 · π′ = π2 is then
called a cycle of nodeg(π1). A position that is not cyclic is called acyclic. If
g has a cyclic position, g is called cyclic; otherwise g is called acyclic.

(v) The term graph g is called a term tree if each node in g has exactly one
position.

Note that the labelling function of graphs – and thus term graphs – is total.
In contrast, Barendregt et al. [10] considered open (term) graphs with a partial
labelling function such that unlabelled nodes denote holes or variables. This is
reflected in their notion of homomorphisms in which the homomorphism condition
is suspended for unlabelled nodes.

3.1 Homomorphisms
Instead of a partial node labelling function, we chose a syntactic approach that
is closer to the representation in terms: variables, holes and “bottoms” are rep-
resented as distinguished syntactic entities. We achieve this on term graphs by
making the notion of homomorphisms dependent on a distinguished set of con-
stant symbols ∆ for which the homomorphism condition is suspended:

Definition 3.7 (∆-homomorphisms). Let Σ be a signature, ∆ ⊆ Σ(0), and g, h ∈
G∞(Σ).

(i) A function φ : Ng → Nh is called homomorphic in n ∈ Ng if the following
holds:

labg(n) = labh(φ(n)) (labelling)
φ(sucgi (n)) = suchi (φ(n)) for all 0 ≤ i < arg(n) (successor)

1The notion/notation of positions is borrowed from terms: every position π of a node n
corresponds to the subterm represented by n occurring at position π in the unravelling of the
term graph to a term.

380

(ii) A ∆-homomorphism φ from g to h, denoted φ : g →∆ h, is a function
φ : Ng → Nh that is homomorphic in n for all n ∈ Ng with labg(n) 6∈ ∆
and satisfies

φ(rg) = rh (root)

It should be obvious that we get the usual notion of homomorphisms on
term graphs if ∆ = ∅. The ∆-nodes can be thought of as holes in the term
graphs which can be filled with other term graphs. For example, if we have a
distinguished set of variable symbols V ⊆ Σ(0), we can use V-homomorphisms to
formalise the matching of a term graph against a term graph rule, which requires
the instantiation of variables.

Proposition 3.8 (∆-homomorphism preorder). ∆-homomorphisms on G∞(Σ)
form a category which is a preorder. That is, there is at most one ∆-homo-
morphism from one term graph to another.

Proof. The identity ∆-homomorphism is obviously the identity mapping on the
set of nodes. Moreover, an easy equational reasoning reveals that the composition
of two ∆-homomorphisms is again a ∆-homomorphism. Associativity of this
composition is obvious as ∆-homomorphisms are functions.

To show that the category is a preorder, assume that there are two ∆-
homomorphisms φ1, φ2 : g →∆ h. We prove that φ1 = φ2 by showing that
φ1(n) = φ2(n) for all n ∈ Ng by induction on the depth of n in g.

Let depthg(n) = 0, i.e. n = rg. By the root condition for φ, we have that
φ1(rg) = rh = φ2(rg). Let depthg(n) = d > 0. Then n has a position π · 〈i〉 in g
such that depthg(n′) < d for n′ = nodeg(π). Hence, we can employ the induction
hypothesis for n′ to obtain the following:

φ1(n) = suchi (φ1(n′)) (successor condition for φ1)
= suchi (φ2(n′)) (induction hypothesis)
= φ2(n) (successor condition for φ2)

As a consequence, each ∆-homomorphism is both monic and epic, and when-
ever there are two ∆-homomorphisms φ : g →∆ h and ψ : h →∆ g, they are in-
verses of each other, i.e. ∆-isomorphisms. If two term graphs are ∆-isomorphic,
we write g ∼=∆ h.

For the two special cases ∆ = ∅ and ∆ = {σ}, we write φ : g → h respectively
φ : g →σ h instead of φ : g →∆ h and call φ a homomorphism respectively a
σ-homomorphism. The same convention applies to ∆-isomorphisms.

Lemma 3.9 (homomorphisms are surjective). Every homomorphism φ : g → h,
with g, h ∈ G∞(Σ), is surjective.

Proof. Follows from an easy induction on the depth of the nodes in h.

381

Note that injectivity of ∆-homomorphisms is in general different from both
being monic and the existence of left-inverses. The same holds for surjectiv-
ity and being epic respectively having right-inverses. Likewise, a bijective ∆-
homomorphism is not necessarily a ∆-isomorphism. To realise this, consider two
term graphs g, h, each with one node only. Let the node in g be labelled with
a and the node in h with b then the only possible a-homomorphism from g to
h is clearly a bijection but not an a-isomorphism. On the other hand, bijective
homomorphisms are isomorphisms.

Lemma 3.10 (bijective homomorphisms are isomorphisms). Let g, h ∈ G∞(Σ)
and φ : g → h. Then the following are equivalent

(a) φ is an isomorphism.

(b) φ is bijective.

(c) φ is injective.

Proof. The implication (a) ⇒ (b) is trivial. The equivalence (b) ⇔ (c) follows
from Lemma 3.9. For the implication (b) ⇒ (a), consider the inverse φ−1 of φ.
We need to show that φ−1 is a homomorphism from h to g. The root condition
follows immediately from the root condition for φ. Similarly, an easy equational
reasoning reveals that the fact that φ is homomorphic in Ng implies that φ−1 is
homomorphic in Nh

3.2 Canonical Term Graphs
In this section, we introduce a canonical representation of isomorphism classes of
term graphs. We use a well-known trick to achieve this [26]. As we shall see at
the end of this section, this will also enable us to construct term graphs modulo
isomorphism very easily.

Definition 3.11 (canonical term graphs). A term graph g is called canonical if
n = Pg(n) holds for each n ∈ Ng. That is, each node is the set of its positions in
the term graph. The set of all (finite) canonical term graphs over Σ is denoted
G∞C (Σ) (respectively GC(Σ)).

By associating nodes with their respective set of positions we obtain a conve-
nient characterisation of ∆-homomorphisms:

Lemma 3.12 (characterisation of ∆-homomorphisms). For g, h ∈ G∞(Σ), a
function φ : Ng → Nh is a ∆-homomorphism φ : g →∆ h iff the following holds
for all n ∈ Ng:

(a) Pg(n) ⊆ Ph(φ(n)), and

(b) labg(n) = labh(φ(n)) whenever labg(n) 6∈ ∆.

Proof. For the “only if” direction, assume that φ : g →∆ h. (b) is the labelling
condition and is therefore satisfied by φ. To establish (a), we show the equivalent
statement

∀π ∈ P(g). ∀n ∈ Ng. π ∈ Pg(n) =⇒ π ∈ Ph(φ(n))

382

We do so by induction on the length of π. If π = 〈〉, then π ∈ Pg(n) implies n = rg.
By the root condition, we have φ(rg) = rh and, therefore, π = 〈〉 ∈ φ(rg). If
π = π′ · 〈i〉, then let n′ = nodeg(π′). Consequently, π′ ∈ Pg(n′) and, by induction
hypothesis, π′ ∈ Ph(φ(n′)). Since π = π′ · 〈i〉, we have sucgi (n′) = n. By the
successor condition we can conclude φ(n) = suchi (φ(n′)). This and π′ ∈ Ph(φ(n′))
yields that π′ · 〈i〉 ∈ Ph(φ(n)).

For the “if” direction, we assume (a) and (b). The labelling condition follows
immediately from (b). For the root condition, observe that since 〈〉 ∈ Pg(rg),
we also have 〈〉 ∈ Ph(φ(rg)). Hence, φ(rg) = rh. In order to show the successor
condition, let n, n′ ∈ Ng and 0 ≤ i < arg(n) such that sucgi (n) = n′. Then there
is a position π ∈ Pg(n) with π · 〈i〉 ∈ Pg(n′). By (a), we can conclude that
π ∈ Ph(φ(n)) and π · 〈i〉 ∈ Ph(φ(n′)) which implies that suchi (φ(n)) = φ(n′).

By Proposition 3.8, there is at most one ∆-homomorphism between two term
graphs. The lemma above uniquely defines this ∆-homomorphism: if there is a
∆-homomorphism from g to h, it is defined by φ(n) = n′, where n′ is the unique
node n′ ∈ Nh with Pg(n) ⊆ Ph(n′).

By associating with each position π in a term graph g the node nodeg(π),
we obtain an equivalence relation ∼g on the set P(g) of positions in g as fol-
lows: π1 ∼g π2 iff nodeg(π1) = nodeg(π2). Using this equivalence relation, the
above characterisation of ∆-homomorphisms can be recast to obtain the following
lemma that characterises the existence of ∆-homomorphisms:

Lemma 3.13 (characterisation of ∆-homomorphisms). Given g, h ∈ G∞(Σ),
there is a ∆-homomorphism φ : g →∆ h iff, for all π, π′ ∈ P(g), we have

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

Proof. For the “only if” direction, assume that φ is a ∆-homomorphism from g
to h. Then we can use the properties (a) and (b) of Lemma 3.12, which we will
refer to as (a’) and (b’) to avoid confusion. In order to show (a), assume π ∼g π′.
Then there is some node n ∈ Ng with π, π′ ∈ Pg(n). (a’) yields π, π′ ∈ φ(n) and,
therefore, π ∼g π′. To show (b), we assume some π ∈ P(g) with g(π) 6∈ ∆. Then
we can reason as follows:

g(π) = labg(nodeg(π)) (b’)= labh(φ(nodeg(π))) (a’)= labh(nodeh(π)) = h(π)

For the converse direction, assume that both (a) and (b) hold. Define the
function φ : Ng → Nh by φ(n) = m iff Pg(n) ⊆ Ph(m) for all n ∈ Ng and
m ∈ Nh. To see that this is well-defined, we show at first that, for each n ∈ Ng,
there is at most one m ∈ Nh with Pg(n) ⊆ Ph(m). Suppose there is another node
m′ ∈ Nh with Pg(n) ⊆ Ph(m′). Since Pg(n) 6= ∅, this implies Ph(m)∩Ph(m′) 6= ∅.
Hence,m = m′. Secondly, we show that there is at least one such nodem. Choose
some π∗ ∈ Pg(n). Since then π∗ ∼g π∗ and, by (a), also π∗ ∼h π∗ holds, there
is some m ∈ Nh with π∗ ∈ Ph(m). For each π ∈ Pg(n), we have π∗ ∼g π and,
therefore, π∗ ∼h π by (a). Hence, π ∈ Ph(m). So we know that φ is well-defined.
By construction, φ satisfies (a’). Moreover, because of (b), it is also easily seen
to satisfy (b’). Hence, φ is a homomorphism from g to h.

383

Intuitively, (a) means that h has at least as much sharing of nodes as g has,
whereas (b) means that h has at least the same non-∆-symbols as g.

From the two characterisations of ∆-homomorphisms that we have developed
above, we can easily derive the following characterisation of ∆-isomorphisms using
the uniqueness of ∆-homomorphisms between two term graphs:

Corollary 3.14 (characterisation of ∆-isomorphisms). Given g, h ∈ G∞(Σ), the
following holds:

(i) φ : Ng → Nh is a ∆-isomorphism iff for all n ∈ Ng

(a) Ph(φ(n)) = Pg(n), and
(b) labg(n) = labh(φ(n)) or labg(n), labh(φ(n)) ∈ ∆.

(ii) g ∼=∆ h iff (a) ∼g = ∼h, and (b) g(π) = h(π) or g(π), h(π) ∈ ∆.

Proof. This follows from Lemma 3.12 and Lemma 3.13 using Proposition 3.8.

From clause (ii) we immediately obtain the following equivalence between
isomorphisms and σ-isomorphisms:

Corollary 3.15 (σ-isomorphism = isomorphism). Given g, h ∈ G∞(Σ) and σ ∈
Σ(0), we have g ∼= h iff g ∼=σ h.

Now we can revisit the notion of canonical term graphs using the above charac-
terisation of ∆-isomorphisms. We will define a function C(·) : G∞(Σ) → G∞C (Σ)
that maps a term graph to its canonical representation. To this end, let g =
(N, lab, suc, r) be a term graph and define C(g) = (N ′, lab′, suc′, r′) as follows:

N ′ = {Pg(n) |n ∈ N } r′ = Pg(r)
lab′(Pg(n)) = lab(n) suc′i(Pg(n)) = Pg(suci(n)) for all n ∈ N, 0 ≤ i < arg(n)

C(g) is obviously a well-defined canonical term graph. With this definition we
indeed obtain canonical representatives isomorphism classes:

Proposition 3.16 (canonical term graphs are a canonical representation). Given
g ∈ G∞(Σ), the term graph C(g) canonically represents the equivalence class [g]∼=.
More precisely, it holds that

(i) [g]∼= = [C(g)]∼=, and (ii) [g]∼= = [h]∼= iff C(g) = C(h).

In particular, we have, for all canonical term graphs g, h, that g = h iff g ∼= h.

Proof. Straightforward consequence of Corollary 3.14.

Corollary 3.14 has shown that term graphs can be characterised up to iso-
morphism by only giving the equivalence ∼g and the labelling g(·) : π 7→ g(π).
This observation gives rise to the following definition:

384

Definition 3.17 (labelled quotient trees). A labelled quotient tree over signature
Σ is a triple (P, l,∼) consisting of a non-empty set P ⊆ N∗, a function l : P → Σ,
and an equivalence relation ∼ on P that satisfies the following conditions for all
π, π′ ∈ N∗ and i ∈ N:

π · 〈i〉 ∈ P =⇒ π ∈ P and i < ar(l(π)) (reachability)

π ∼ π′ =⇒
{
l(π) = l(π′) and
π · 〈i〉 ∼ π′ · 〈i〉 for all i < ar(l(π))

(congruence)

In other words, a labelled quotient tree (P, l,∼) is a ranked tree domain P
together with a congruence ∼ on it and a labelling function l : P/∼ → Σ that
honours the rank.

The following lemma confirms that labelled quotient trees uniquely charac-
terise any term graph up to isomorphism:

Lemma 3.18 (labelled quotient trees are canonical). Each term graph g ∈
G∞(Σ) induces a labelled quotient tree (P(g), g(·),∼g) over Σ. Vice versa, for
each labelled quotient tree (P, l,∼) over Σ there is a unique canonical term graph
g ∈ G∞C (Σ) whose labelled quotient tree is (P, l,∼), i.e. P(g) = P , g(π) = l(π)
for all π ∈ P , and ∼g = ∼.

Proof. The first part is trivial: (P(g), g(·),∼g) satisfies the conditions from Def-
inition 3.17.

For the second part, let (P, l,∼) be a labelled quotient tree. Define the term
graph g = (N, lab, suc, r) by

N = P/∼ lab(n) = f iff ∃π ∈ n. l(π) = f

r = [〈〉]∼ suci(n) = n′ iff ∃π ∈ n. π · 〈i〉 ∈ n′

The functions lab and suc are well-defined due to the congruence condition satis-
fied by (P, l,∼). Since P is non-empty and closed under prefixes, it contains 〈〉.
Hence, r is well-defined. Moreover, by the reachability condition, each node in N
is reachable from the root node. An easy induction proof shows that Pg(n) = n
for each node n ∈ N . Thus, g is a well-defined canonical term graph. The labelled
quotient tree of g is obviously (P, l,∼). Whenever there are two canonical term
graphs with the same labelled quotient tree (P, l,∼), they are isomorphic due to
Corollary 3.14 and, therefore, have to be identical by Proposition 3.16.

Example 3.19. The term graph g1 depicted in Figure 2 on page 390 is given
by the labelled quotient tree (P, l,∼) with P = {〈〉, 〈0〉, 〈1〉}, l(〈〉) = f , l(〈0〉) =
l(〈1〉) = c and ∼ the least equivalence relation on P with 〈0〉 ∼ 〈1〉.

Labelled quotient trees provide a valuable tool for constructing canonical
term graphs. Nevertheless, the original graph representation remains convenient
for practical purposes as it allows a straightforward formalisation of term graph
rewriting and provides a finite representation of finite cyclic term graphs, which
induce an infinite labelled quotient tree.

Before we continue, it is instructive to make the correspondence between terms
and term graphs clear. First note that, for each term tree t, the equivalence ∼t

385

is the identity relation IP(t) on P(t), i.e. π1 ∼t π2 iff π1 = π2. Consequently,
we have the following one-to-one correspondence between canonical term trees
and terms: each term t ∈ T ∞(Σ) induces the canonical term tree given by the
labelled quotient tree (P(t), t(·), IP(t)). For example, the term tree depicted in
Figure 1a corresponds to the term f(a, h(a, b)). We thus consider the set of terms
T ∞(Σ) as the subset of canonical term trees of G∞C (Σ).

With this correspondence in mind, we define the unravelling of a term graph g,
denoted U (g), as the unique term t such that there is a homomorphism φ : t→ g.

For example, the term f(c, c) is the unravelling of the term graph g1 in Fig-
ure 2 and the infinite term b :: b :: b :: . . . representing an infinite list of ’b’s is the
unravelling of both the term graphs h and h′ in Figure 5b.

4 A Simple Partial Order on Term Graphs
In this section, we want to establish a partial order suitable for formalising con-
vergence of sequences of canonical term graphs similarly to weak p-convergence
on terms.

Recall that weak p-convergence on term rewriting systems is based on a partial
order ≤⊥ on the set T ∞(Σ⊥) of partial terms. The partial order ≤⊥ instantiates
occurrences of ⊥ from left to right, i.e. s ≤⊥ t iff t is obtained by replacing
occurrences of ⊥ in s by arbitrary terms in T ∞(Σ⊥).

Analogously, we will consider the class of partial term graphs simply as term
graphs over the signature Σ⊥ = Σ] {⊥}. In order to generalise the partial order
≤⊥ to term graphs, we need to formalise the instantiation of occurrences of ⊥
in term graphs. To this end, we will look more closely at ∆-homomorphisms
with ∆ = {⊥}, or ⊥-homomorphisms for short. A ⊥-homomorphism φ : g →⊥ h
maps each node in g to a node in h while “preserving its structure”. Except for
nodes labelled ⊥ this also includes preserving the labelling. This exception to
the homomorphism condition allows the ⊥-homomorphism φ to instantiate each
⊥-node in g with an arbitrary node in h.

Therefore, we shall use ⊥-homomorphisms as the basis for generalising ≤⊥ to
canonical partial term graphs. This approach is based on the observation that ⊥-
homomorphisms characterise the partial order ≤⊥ on terms. Considering terms
as canonical term trees, we obtain the following characterisation of ≤⊥ on terms
s, t ∈ T ∞(Σ⊥):

s ≤⊥ t ⇐⇒ there is a ⊥-homomorphism φ : s→⊥ t.
Embodying a natural concept on term graphs, ⊥-homomorphisms thus constitute
the ideal tool to define a partial order on canonical partial term graphs that
generalises ≤⊥.

In this paper, we focus on the simplest among these partial orders on term
graphs:
Definition 4.1 (simple partial order ≤S

⊥). The relation ≤S
⊥ on G∞(Σ⊥) is defined

as follows: g ≤S
⊥ h iff there is a ⊥-homomorphism φ : g →⊥ h.

One of our objective is to argue that the simple partial order ≤S
⊥ is indeed a

suitable structure for deriving a notion of convergence on term graphs in general
and for infinitary term graph rewriting in particular.

386

Due to the preorder structure of ⊥-homomorphisms on term graphs and the
characterisation of isomorphisms as given by Corollary 3.15, the relation ≤S

⊥
forms a partial order if restricted to canonical term graphs.

Proposition 4.2 (simple partial order ≤S
⊥). The relation ≤S

⊥ is a partial order
on G∞C (Σ⊥).

Proof. Transitivity and reflexivity of ≤S
⊥ follows from Proposition 3.8. For anti-

symmetry, consider g, h ∈ G∞C (Σ⊥) with g ≤S
⊥ h and h ≤S

⊥ g. Then, by Proposi-
tion 3.8, g ∼=⊥ h. This is equivalent to g ∼= h by Corollary 3.15 from which we
can conclude g = h using Proposition 3.16.

Before we study the properties of the partial order ≤S
⊥, it is helpful to make

its characterisation in terms of labelled quotient trees explicit:

Corollary 4.3 (characterisation of ≤S
⊥). Let g, h ∈ G∞(Σ⊥). Then g ≤S

⊥ h iff
the following conditions are met:

(a) π ∼g π′ =⇒ π ∼h π′ for all π, π′ ∈ P(g)

(b) g(π) = h(π) for all π ∈ P(g) with g(π) ∈ Σ.

Proof. This follows immediately from Lemma 3.13.

Note that the partial order ≤⊥ on terms is entirely characterised by (b).
In other words, the partial order ≤S

⊥ is a combination of the partial order ≤⊥
imposed on the underlying tree structure of term graphs (i.e. their unravelling)
and the preservation of sharing as stipulated by (a).

In order to reflect on the merit of the partial order ≤S
⊥ as a suitable basis

for a notion of convergence on term graphs, recall the characteristics of the par-
tial order-based notion of convergence for terms: weak p-convergence on terms is
based on the ability of the partial order ≤⊥ to capture information preservation
between terms – s ≤⊥ t means that t contains at least the same information as s
does. The limit inferior – and thus weak p-convergence – comprises the accumu-
lated information that eventually remains stable along a sequence. Following the
approach on terms, a partial order suitable as a basis for convergence for term
graph rewriting, has to capture an appropriate notion of information preservation
as well.

One has to keep in mind, however, that term graphs encode an additional
dimension of information through sharing of nodes, i.e. nodes with multiple po-
sitions. Since ≤S

⊥ specialises to ≤⊥ on terms, it does preserve the information on
the tree structure in the same way as ≤⊥ does. The difficult part is to determine
the right approach to the role of sharing.

Indeed, ⊥-homomorphisms instantiate occurrences of ⊥ and are thereby able
to introduce new information. But they also introduce sharing by mapping dif-
ferent nodes to the same target node: for the term graphs g0 and g1 in Figure 2,
we have an obvious ⊥-homomorphism – in fact a homomorphism – φ : g0 →⊥ g1
and thus g0 ≤S

⊥ g1. However, this homomorphism φ maps both c-nodes in g0 to
the single c-node in g1.

There are at least two different ways to interpret the differences in g0 and g1.
The first one dismisses ≤S

⊥ as a partial order suitable for our purposes: the term

387

graphs g0 and g1 contain contradicting information. While in g0 the two children
of the f -node are distinct, they are identical in g1. We adopted this view in our
previous work on convergence for term graphs [8], where we studied a more rigid
partial order ≤R

⊥ for which g0 and g1 are indeed incomparable. The second view,
which we will adopt in this paper, does not see g0 and g1 in contradiction. Both
show the f -nodes with two successors, both of which are labelled with c. The
term graph g1 merely contains the additional piece of information that the two
successor nodes of the f -node are identical. Hence, g0 ≤S

⊥ g1.
The rest of this section is concerned with showing that the partial order ≤S

⊥
has indeed the properties that make it a suitable basis for weak p-convergence,
i.e. that it forms a complete semilattice. At first we show its cpo structure:

Theorem 4.4. The partially ordered set (G∞C (Σ⊥),≤S
⊥) is a cpo. In particular,

it has the least element ⊥, and the least upper bound of a directed set G is given
by the following labelled quotient tree (P, l,∼):

P =
⋃

g∈G
P(g) ∼ =

⋃

g∈G
∼g l(π) =

{
f if f ∈ Σ and ∃g ∈ G. g(π) = f

⊥ otherwise

Proof. The least element of ≤S
⊥ is obviously ⊥. Hence, it remains to be shown

that each each directed subset G of G∞C (Σ⊥) has a least upper bound g given
by the labelled quotient tree (P, l,∼) defined above. To this end, we will make
extensive use of Corollary 4.3 using (a) and (b) to refer to its corresponding
conditions.

At first we need to show that l is indeed well-defined. For this purpose, let
g1, g2 ∈ G and π ∈ P(g1)∩P(g2) with g1(π), g2(π) ∈ Σ. Since G is directed, there
is some g ∈ G such that g1, g2 ≤S

⊥ g. By (b), we can conclude g1(π) = g(π) =
g2(π).

Next we show that (P, l,∼) is indeed a labelled quotient tree. Recall that
∼ needs to be an equivalence relation. For the reflexivity, assume that π ∈ P .
Then there is some g ∈ G with π ∈ P(g). Since ∼g is an equivalence relation,
π ∼g π must hold and, therefore, π ∼ π. For the symmetry, assume that π1 ∼ π2.
Then there is some g ∈ G such that π1 ∼g π2. Hence, we get π2 ∼g π1 and,
consequently, π2 ∼ π1. In order to show transitivity, assume that π1 ∼ π2, π2 ∼
π3. That is, there are g1, g2 ∈ G with π1 ∼g1 π2 and π2 ∼g2 π3. Since G is
directed, we find some g ∈ G such that g1, g2 ≤S

⊥ g. By (a), this implies that also
π1 ∼g π2 and π2 ∼g π3. Hence, π1 ∼g π3 and, therefore, π1 ∼ π3.

For the reachability condition, let π · 〈i〉 ∈ P . That is, there is a g ∈ G
with π · 〈i〉 ∈ P(g). Hence, π ∈ P(g), which in turn implies π ∈ P . Moreover,
π · 〈i〉 ∈ P(g) implies that i < ar(g(π)). Since g(π) cannot be a nullary symbol
and in particular not ⊥, we obtain that l(π) = g(π). Hence, i < ar(l(π)).

For the congruence condition, assume that π1 ∼ π2 and that l(π1) = f . If
f ∈ Σ, then there are g1, g2 ∈ G with π1 ∼g1 π2 and g2(π1) = f . Since G is
directed, there is some g ∈ G such that g1, g2 ≤S

⊥ g. Hence, by (a) respectively
(b), we have π1 ∼g π2 and g(π1) = f . Using Lemma 3.18 we can conclude that
g(π2) = g(π1) = f and that π1 · 〈i〉 ∼g π2 · 〈i〉 for all i < ar(g(π1)). Because g ∈ G,
it holds that l(π2) = f and that π1 · 〈i〉 ∼ π2 · 〈i〉 for all i < ar(l(π1)). If f = ⊥,
then also l(π2) = ⊥, for if l(π2) = f ′ for some f ′ ∈ Σ, then, by the symmetry of

388

∼ and the above argument (for the case f ∈ Σ), we would obtain f = f ′ and,
therefore, a contradiction. Since ⊥ is a nullary symbol, the remainder of the
condition is vacuously satisfied.

This shows that (P, l,∼) is a labelled quotient tree which, by Lemma 3.18,
uniquely defines a canonical term graph. In order to show that the thus obtained
term graph g is an upper bound for G, we have to show that g ≤S

⊥ g for all g ∈ G
by establishing (a) and (b). This is an immediate consequence of the construction
of g.

In the final part of this proof, we will show that g is the least upper bound of
G. For this purpose, let ĝ be an upper bound of G, i.e. g ≤S

⊥ ĝ for all g ∈ G. We
will show that g ≤S

⊥ ĝ by establishing (a) and (b). For (a), assume that π1 ∼ π2.
Hence, there is some g ∈ G with π1 ∼g π2. Since, by assumption, g ≤S

⊥ ĝ, we can
conclude π1 ∼ĝ π2 using (a). For (b), assume π ∈ P and l(π) = f ∈ Σ. Then
there is some g ∈ G with g(π) = f . Applying (b) then yields ĝ(π) = f since
g ≤S

⊥ ĝ.

The following proposition shows that the partial order ≤S
⊥ also admits glbs

of arbitrary non-empty sets:

Proposition 4.5. In the partially ordered set (G∞C (Σ⊥),≤S
⊥) every non-empty

set has a glb. In particular, the glb of a non-empty set G is given by the following
labelled quotient tree (P, l,∼):

P =

π ∈

⋂

g∈G
P(g)

∣∣∣∣∣∣
∀π′ < π∃f ∈ Σ⊥∀g ∈ G : g(π′) = f

l(π) =
{
f if ∀g ∈ G : f = g(π)
⊥ otherwise

∼ =
⋂

g∈G
∼g ∩ P × P

Proof. At first we need to prove that (P, l,∼) is in fact a well-defined labelled
quotient tree. That ∼ is an equivalence relation follows straightforwardly from
the fact that each ∼g is an equivalence relation.

Next, we show the reachability and congruence properties of Definition 3.17.
In order to show the reachability property, assume some π · 〈i〉 ∈ P . Then, for
each π′ ≤ π there is some fπ′ ∈ Σ⊥ such that g(π′) = fπ′ for all g ∈ G. Hence,
π ∈ P . Moreover, we have in particular that i < ar(fπ) = ar(l(π)).

For the congruence condition, assume that π1 ∼ π2. Hence, π1 ∼g π2 for
all g ∈ G. Consequently, we have for each g ∈ G that g(π1) = g(π2) and that
π1 · 〈i〉 ∼g π2 · 〈i〉 for all i < ar(g(π1)). We distinguish two cases: at first assume
that there are some g1, g2 ∈ G with g1(π1) 6= g2(π1). Hence, l(π2) = ⊥. Since
we also have that g1(π2) = g1(π1) 6= g2(π1) = g2(π2), we can conclude that
l(π2) = ⊥ = l(π1). Since ar(⊥) = 0, we are done for this case. Next, consider
the alternative case that there is some f ∈ Σ⊥ such that g(π1) = f for all
g ∈ G. Consequently, l(π1) = f and since also g(π2) = g(π1) = f for all g ∈ G,
we can conclude that l(π2) = f = l(π1). Moreover, we obtain from the initial
assumption for this case, that π1 · 〈i〉, π2 · 〈i〉 ∈ P for all i < ar(f) which implies
that π1 · 〈i〉 ∼ π2 · 〈i〉 for all i < ar(f) = ar(l(π1)).

Next, we show that the term graph g defined by (P, l,∼) is a lower bound of G,
i.e. that g ≤S

⊥ g for all g ∈ G. By Corollary 4.3, it suffices to show ∼ ∩ P×P ⊆ ∼g

389

f

c c

f

c

f

c c

f

c

f

c c

(g0) (g1) (g2) (g4) (gω)

Figure 2: Limit inferior in the presence of acyclic sharing.

and l(π) = g(π) for all π ∈ P with l(π) ∈ Σ. Both conditions follow immediately
from the construction of g.

Finally, we show that g is the greatest lower bound of G. To this end, let
ĝ ∈ G∞C (Σ⊥) with ĝ ≤S

⊥ g for each g ∈ G. We will show that then ĝ ≤S
⊥ g using

Corollary 4.3. At first we show that P(ĝ) ⊆ P . Let π ∈ P(ĝ). We know that
ĝ(π′) ∈ Σ for all π′ < π. According to Corollary 4.3, using the assumption that
ĝ ≤S

⊥ g for all g ∈ G, we obtain that g(π′) = ĝ(π′) for all π′ < π. Consequently,
π ∈ P . Next, we show part (a) of Corollary 4.3. Let π1, π2 ∈ P(ĝ) ⊆ P with
π1 ∼ĝ π2. Hence, using the assumption that ĝ is a lower bound of G, we have
π1 ∼g π2 for all g ∈ G according to Corollary 4.3. Consequently, π1 ∼ π2.
For part (b) of Corollary 4.3 let π ∈ P(ĝ) ⊆ P with ĝ(π) = f ∈ Σ. Using
Corollary 4.3, we obtain that g(π) = f for all g ∈ G. Hence, l(π) = f .

From this we can immediately derive the complete semilattice structure of
≤S
⊥:

Theorem 4.6. The partially ordered set (G∞C (Σ⊥),≤S
⊥) forms a complete semi-

lattice.

Proof. Follows from Theorem 4.4 and Proposition 4.5.

In particular, this means that the limit inferior is defined for every sequence of
term graphs. Moreover, from the constructions given in Theorem 4.4 and Propo-
sition 4.5, we can derive the following direct construction of the limit inferior:

Corollary 4.7. The limit inferior of a sequence (gι)ι<α in (G∞C (Σ⊥),≤S
⊥) is given

by the following labelled quotient tree (P,∼, l):
P =

⋃

β<α

{
π ∈ P(gβ)

∣∣ ∀π′ < π∀β ≤ ι < α : gι(π′) = gβ(π′)
}

∼ =

 ⋃

β<α

⋂

β≤ι<α
∼gι

 ∩ P × P

l(π) =
{
gβ(π) if ∃β < α∀β ≤ ι < α : gι(π) = gβ(π)
⊥ otherwise

for all π ∈ P

In particular, given β < α and π ∈ P(gβ), we have that g(π) = gβ(π) if gι(π′) =
gβ(π′) for all π′ ≤ π and β ≤ ι < α.

Example 4.8. Figure 5c and 5d on page 407 illustrate two sequences of term
graphs (gι)ι<ω and (hι)ι<ω together with their limit inferiors gω respectively
hω. To see how these limits come about, consider first the sequence of glbs
(
d
α≤ι<ω gι)α<ω of (gι)ι<ω:

390

::

⊥ ::

⊥ ⊥

::

⊥ ::

⊥ ::

⊥

::

⊥ ::

⊥ ::

::

⊥

. . .

The lub of this sequence of term graphs is the term graph gω. The corresponding
sequence (

d
α≤ι<ω hι)α<ω of glbs for (hι)ι<ω looks as follows:

::

⊥ ::

⊥ ⊥

::

b ::

⊥ ::

⊥ ⊥

::

b ::

::

⊥ ::

⊥ ⊥

. . .

With each step the number of edges into the b-node increases by one and the
⊥-nodes move further down the graph structure. The lub of this sequence is the
term graph hω.

Changing acyclic sharing may, however, expose an oddity of the partial order
≤S
⊥. Let (gι)ι<ω be the sequence of term graphs illustrated in Figure 2. The

sequence alternates between g0 and g1 which differ only in the sharing of the two
arguments of the f function symbol. Hence, there is an obvious homomorphism
from g0 to g1 and we thus have g0 ≤S

⊥ g1. Therefore, g0 is the greatest lower
bound of every suffix of (gι)ι<ω, which means that lim infι→ω gι = g0.

In our previous work [8], we have used a partial order ≤R
⊥ that is more rigid

than ≤S
⊥. In the context of this partial order ≤R

⊥, limit inferior of the sequence
illustrated in Figure 2 changes to the term tree f(⊥,⊥) instead of f(c, c).

The difference in the convergence behaviour of ≤S
⊥ and ≤R

⊥ stems from their
difference in dealing with sharing, which we have discussed in the beginning of
this section: the partial order ≤S

⊥ sees the term graph g1 as the term graph g0
with the additional information that the two arguments of f coincide. Since this
additional piece of information is not stable throughout the sequence (gi)i<ω, the
limit inferior is only the term graph g0.

The partial order ≤R
⊥, on the other hand, sees the two term graphs g0 and

g1 in conflict due to the difference in the arguments of f . Thus, the sequence
(gi)i<ω is only stable in the root nodes of the term graphs and the limit inferior
is consequently the term tree f(⊥,⊥).

In our previous work [8], we chose the rigid partial order as there is a metric
space that is “compatible” with it. However, this property of the partial order ≤R

⊥
comes at a price: ≤R

⊥ is quite restrictive in its ability to represent acyclic sharing.
For example, the sequence (hι)ι<ω of term graphs depicted in Figure 5d does not
have the anticipated limit inferior hω but instead the term graph obtained from
hω by relabelling the b-node with ⊥.

391

For the partial order ≤S
⊥, we will not be able to find a metric space that is

“compatible” with it in the same way and as a consequence we will not obtain the
same correspondence that Theorem 2.4 exposed for infinitary term rewriting. In
the following section, we will, however, devise a simple metric space that comes
close enough to being “compatible” with ≤S

⊥ such that it is possible to regain
the correspondence between p-convergence and m-convergence in the setting of
strong convergence [9].

5 A Simple Metric on Term Graphs
In this section, we pursue the metric approach to convergence in rewriting sys-
tems. To this end, we shall define a metric space on canonical term graphs. We
base our approach to defining a metric distance on the definition of the metric
distance d on terms.

Originally, Arnold and Nivat [4] used a notion of truncation of terms to define
the metric on terms. The truncation of a term t at depth d, denoted t|d, replaces
all subterms at depth d by ⊥:

t|0 = ⊥, f(t1, . . . , tk)|d+ 1 = f(t1|d, . . . , tk|d), t|ω = t

For technical reasons, we also define the truncation at depth ω, which does not
affect the term at all.

Recall that the metric distance d on terms is defined by d(s, t) = 2−sim(s,t).
The underlying notion of similarity sim : T ∞(Σ)× T ∞(Σ)→ ω + 1 can be char-
acterised via truncations:

sim(s, t) = max {d ≤ ω | s|d = t|d}

We will adopt this approach for term graphs as well. To this end, we will
first define abstractly what a truncation on term graphs is and how a metric
distance can be derived from it. Then we devise a concrete truncation and show
that the induced metric space is in fact complete. We will conclude the section
by showing that the metric space we considered is robust in the sense that it is
invariant under small changes to the definition of truncation. Lastly, we contrast
this finding with the properties of the complete metric that we have previously
studied as a candidate for describing convergence on term graphs [8].

5.1 Truncation Functions
As we have seen above, the truncation on terms is a function that, depending on
a depth value d, transforms a term t to a term t|d. We shall generalise this to
term graphs and stipulate some axioms that ensure that we can derive a metric
distance in the style of Arnold and Nivat [4]:

Definition 5.1 (truncation function). A family of functions on term graphs
τ = (τd : G∞(Σ⊥) → G∞(Σ⊥))d≤ω is called a truncation function if it satisfies
the following properties for all g, h ∈ G∞(Σ⊥) and d ≤ ω:
(a) τ0(g) ∼= ⊥, (b) τω(g) ∼= g, and (c) τd(g) ∼= τd(h) =⇒ τe(g) ∼= τe(h) for
all e < d.

392

Note that from axioms (b) and (c) it follows that truncation functions must
be defined modulo isomorphism, i.e. g ∼= h implies τd(g) ∼= τd(h) for all d ≤ ω.

Given a truncation function, we can define a distance measure in the style of
Arnold and Nivat:

Definition 5.2 (truncation-based similarity/distance). Let τ be a truncation
function. The τ -similarity is the function simτ : G∞(Σ⊥) × G∞(Σ⊥) → ω + 1
defined by

simτ (g, h) = max {d ≤ ω | τd(g) ∼= τd(h)}
The τ -distance is the function dτ : G∞(Σ⊥)× G∞(Σ⊥) → R+

0 that is defined by
dτ (g, h) = 2−simτ (g,h), where 2−ω is interpreted as 0.

The similarity simτ (g, h) induced by a truncation function τ is well-defined
since the axiom (a) of Definition 5.1 insures that the set {d ≤ ω | τd(g) ∼= τd(h)}
is not empty. The following proposition confirms that the τ -distance restricted
to G∞C (Σ) is indeed an ultrametric:

Proposition 5.3 (truncation-based ultrametric). For each truncation function
τ , the τ -distance dτ constitutes an ultrametric on G∞C (Σ).

Proof. The identity respectively the symmetry condition follow by

dτ (g, h) = 0 ⇐⇒ simτ (g, h) = ω ⇐⇒ τω(g) ∼= τω(h) (∗)⇐⇒ g ∼= h
(∗∗)⇐⇒ g = h,

and dτ (g, h) = 2−simτ (g,h) = 2−simτ (h,g) = dτ (h, g).

The equivalences (∗) and (∗∗) are valid by axiom (b) of Definition 5.1 and Propo-
sition 3.16, respectively. For the strong triangle condition, we have to show that

simτ (g1, g3) ≥ min {simτ (g1, g2), simτ (g2, g3)} .

With d = min {simτ (g1, g2), simτ (g2, g3)} we have, by axiom (c) of Definition 5.1,
that τd(g1) ∼= τd(g2) and τd(g2) ∼= τd(g3). Since we have that τd(g1) ∼= τd(g3)
then, we can conclude that simτ (g1, g3) ≥ d.

Given their particular structure, we can reformulate the characterisation of
Cauchy sequences and convergence in metric spaces induced by truncation func-
tions in terms of the truncation function itself:

Lemma 5.4. For each truncation function τ , term graph g ∈ G∞C (Σ), and se-
quence (gι)ι<α in G∞C (Σ)) the following holds:

(i) (gι)ι<α is Cauchy in (G∞C (Σ),dτ) iff for each d < ω there is some β < α
such that τd(gγ) ∼= τd(gι) for all β ≤ γ, ι < α.

(ii) (gι)ι<α converges to g in (G∞C (Σ),dτ) iff for each d < ω there is some β < α
such that τd(g) ∼= τd(gι) for all β ≤ ι < α.

Proof. We only show (i) as (ii) follows analogously. For “only if” direction assume
that (gι)ι<α is Cauchy and that d < ω. We then find some β < α such that
dτ (gγ , gι) < 2−d for all β ≤ γ, ι < α. Hence, we obtain that simτ (gγ , gι) > d for

393

f

h

f

f

a

a

f

h

⊥

f

⊥

f

h

f

f

⊥ ⊥

⊥

(g) (g†2) (g‡2)

Figure 3: Comparing simple and rigid truncations.

all β ≤ γ, ι < α. That is, τe(gγ) ∼= τe(gι) for some e > d. According to axiom (c)
of Definition 5.1, we can then conclude that τd(gγ) ∼= τd(gι) for all β ≤ γ, ι < α.

For the “if” direction assume some positive real number ε ∈ R+. Then there
is some d < ω with 2−d ≤ ε. By the initial assumption we find some β < α with
τd(gγ) ∼= τd(gι) for all β ≤ γ, ι < α, i.e. simτ (gγ , gι) ≥ d. Hence, we have that
dτ (gγ , gι) = 2−simτ (gγ ,gι) < 2−d ≤ ε for all β ≤ γ, ι < α.

5.2 The Simple Truncation and its Metric Space
In this section, we consider a straightforward truncation function that simply
cuts off all nodes at the given depth d. The metric that we obtain from this
truncation will be the companion metric for the simple partial order ≤S

⊥.

Definition 5.5 (simple truncation). Let g ∈ G∞(Σ⊥) and d ≤ ω. The simple
truncation g†d of g at d is the term graph defined as follows:

Ng†d =
{
n ∈ Ng

∣∣∣ depthg(n) ≤ d
}

rg†d = rg

labg†d(n) =
{

labg(n) if depthg(n) < d

⊥ if depthg(n) = d

sucg†d(n) =
{

sucg(n) if depthg(n) < d

〈〉 if depthg(n) = d

One can easily see that the truncated term graph g†d is obtained from g by
relabelling all nodes at depth d to ⊥, removing all their outgoing edges and then
removing all nodes that thus become unreachable from the root. This makes the
simple truncation a straightforward generalisation of the truncation on terms.

Figure 3 shows a term graph g and its simple truncation at depth d = 2. The
shaded part of the term graph g comprises the nodes at depth < d. Note that a
node can get truncated even though some its successor are retained.

The simple truncation indeed induces a truncation function:

394

Proposition 5.6. Let † be the function with †d(g) = g†d for all d ≤ ω. Then †
is a truncation function.

Proof. (a) and (b) of Definition 5.1 follow immediately from the construction of
the truncation. For (c) assume that g†d ∼= h†d. Let 0 ≤ e < d and let φ : g†d→
h†d be the witnessing isomorphism. Note that simple truncations preserve the
depth of nodes, i.e. depthg†d(n) = depthg(n) for all n ∈ Ng†d. This can be shown
by a straightforward induction on depthg(n). Moreover, by Corollary 3.14 also
isomorphisms preserve the depth of nodes. Hence,

depthh(φ(n)) = depthh†d(φ(n)) = depthg†d(n) = depthg(n) for all n ∈ Ng†d

Restricting φ to the nodes in g†e thus yields an isomorphism from g†e to h†e.

Next we show that the metric space (G∞C (Σ),d†) that is induced by the trun-
cation function † is in fact complete. To do this, we give a characterisation of the
simple truncation in terms of labelled quotient trees.

Lemma 5.7 (labelled quotient tree of a simple truncation). Let g ∈ G∞(Σ⊥)
and d ≤ ω. The simple truncation g†d is uniquely determined up to isomorphism
by the labelled quotient tree (P, l,∼) with

(a) P = {π ∈ P(g) | ∀π1 < π∃π2 ∼g π1 with |π2| < d},

(b) l(π) =
{
g(π) if ∃π′ ∼g π with |π′| < d

⊥ otherwise

(c) ∼ = ∼g ∩ P × P

Proof. We just have to show that (P, l,∼) is the labelled quotient tree induced
by g†d. Then the lemma follows from Lemma 3.18. The case d = ω is trivial. In
the following we assume that d < ω.

At first, note that

for each π ∈ P(g†d) we have that π ∈ P(g) and nodeg†d(π) = nodeg(π). (∗)

This can be shown by an induction on the length of π: the case π = 〈〉 is trivial.
If π = π′ · 〈i〉, let n = nodeg†d(π′) and m = nodeg†d(π). Hence, m = sucg†di (n)
and, by construction of g†d, also m = sucgi (n). Since by induction hypothesis
n = nodeg(π′), we can thus conclude that π ∈ P(g) and that nodeg(π) = m =
nodeg†d(π).

(a) P = P(g†d). For the “⊆” direction let π ∈ P . We show by induction on
the length of π that π ∈ P(g†d). The case π = 〈〉 is trivial. If π = π1 · 〈i〉, then by
induction hypothesis π1 ∈ P(g†d). Let n = nodeg†d(π1). By (∗), we know that
n = nodeg(π1). Since π1 · 〈i〉 ∈ P , there is some π2 ∼g π1 with |π2| < d. That is,
depthg(n) < d. Therefore, we have that sucg†d(n) = sucg(n). Since π1 ∈ Pg†d(n),
this means that π1 · 〈i〉 ∈ P(g†d).

For the “⊇” direction, assume some π ∈ P(g†d). By (∗), π is also a position
in g. To show that π ∈ P , let π1 < π. Since only nodes of depth smaller than d
can have a successor node in g†d, the node nodeg†d(π1) in g†d is at depth smaller

395

than d. Hence, there is some π2 ∼g†d π1 with |π2| < d. Because π2 ∼g†d π implies,
by (∗), that π2 ∼g π, we can conclude that π ∈ P .

(b) l(π) = g†d(π) for all π ∈ P . Let π ∈ P and n = nodeg(π). We distinguish
two cases. At first suppose that there is some π′ ∼g π with |π′| < d. Then
l(π) = g(π). Since n = nodeg(π′), we have that depthg(n) < d. Consequently,
labg†d(n) = labg(n) and, therefore, g†d(π) = g(π) = l(π). In the other case that
there is no π′ ∼g π with |π| < d, we have l(π) = ⊥. This also means that
depthg(n) = d. Consequently, g†d(π) = labg†d(n) = ⊥ = l(π).

(c) ∼ = ∼g†d. Using the fact that P = P(g†d), we can conclude the following
for all π1, π2 ∈ P :

π1 ∼g†d π2 ⇐⇒ nodeg†d(π1) = nodeg†d(π2)
(∗)⇐⇒ nodeg(π1) = nodeg(π2)
⇐⇒ π1 ∼g π2

⇐⇒ π1 ∼ π2

Notice that a position π is retained by a truncation, i.e. π ∈ P , iff each node
that π passes through is at a depth smaller than d (and is thus not truncated or
relabelled).

From this characterisation we immediately obtain the following relation be-
tween a term graph and its simple truncations:

Corollary 5.8. Given g ∈ G∞(Σ⊥) and d ≤ ω, we have the following:
(i) π ∈ P(g) iff π ∈ P(g†d) for all π with |π| ≤ d.
(ii) g†d(π) = g(π) for all π ∈ P(g) with |π| < d.
(iii) π1 ∼g π2 iff π1 ∼g†d π2 for all π1, π2 ∈ P(g) with |π1| , |π2| ≤ d.

Proof. Using the reflexivity of ∼g, (i) follows immediately from Lemma 5.7 (a).
Using (i), we obtain (ii) and (iii) immediately from Lemma 5.7 (b) and (c),
respectively.

As expected, we also obtain the following relation between the simple trun-
cation and the simple partial order:

Corollary 5.9. For each g ∈ G∞(Σ⊥) and d ≤ ω, we have that g†d ≤S
⊥ g.

Proof. Immediate from the characterisation of the simple truncation and the
simple partial order in Lemma 5.7 and Corollary 4.3, respectively.

We can now show that the metric space induced by the simple truncation is
complete:

Theorem 5.10. The metric space (G∞C (Σ),d†) is complete. In particular, each
Cauchy sequence (gι)ι<α in (G∞C (Σ),d†) converges to the canonical term graph
given by the following labelled quotient tree (P, l,∼):

P = lim inf
ι→α P(gι) =

⋃

β<α

⋂

β≤ι<α
P(gι) ∼ = lim inf

ι→α ∼gι =
⋃

β<α

⋂

β≤ι<α
∼gι

l(π) = gβ(π) for some β < α with gι(π) = gβ(π) for each β ≤ ι < α

396

Proof. We need to check that (P, l,∼) is a well-defined labelled quotient tree. At
first we show that l is a well-defined function on P . In order to show that l is
functional, assume that there are β1, β2 < α such that there is a π with gι(π) =
gβk(π) for all βk ≤ ι < α, k ∈ {1, 2}. But then we have gβ1(π) = gβ(π) = gβ2(π)
for β = max {β1, β2}.

To show that l is total on P , let π ∈ P and d = |π|. By Lemma 5.4, there
is some β < α such that gγ†d + 1 ∼= gι†d + 1 for all β ≤ γ, ι < α. According to
Corollary 5.8, this means that all gι for β ≤ ι < α agree on positions of length
smaller than d + 1, in particular π. Hence, gι(π) = gβ(π) for all β ≤ ι < α, and
we have l(π) = gβ(π).

One can easily see that ∼ is a binary relation on P : if π1 ∼ π2, then there
is some β < α with π1 ∼gι π2 for all β ≤ ι < α. Hence, π1, π2 ∈ P(gι) for all
β ≤ ι < α and thus π1, π2 ∈ P .

Similarly, it follows that ∼ is an equivalence relation on P . To show reflexivity,
assume π ∈ P . Then there is some β < α such that π ∈ P(gι) for all β ≤ ι < α.
Hence, π ∼gι π for all β ≤ ι < α and, therefore, π ∼ π. In the same way
symmetry and transitivity follow from the symmetry and transitivity of ∼gι .

Finally, we have to show the reachability and the congruence property from
Definition 3.17. To show reachability assume some π · 〈i〉 ∈ P . Then there is
some β < α such that π · 〈i〉 ∈ P(gι) for all β ≤ ι < α. Hence, since then also
π ∈ P(gι) for all β ≤ ι < α, we have π ∈ P . According to the construction of
l, there is also some β ≤ γ < α with gγ(π) = l(π). Since π · 〈i〉 ∈ P(gγ) we can
conclude that i < ar(l(π)).

To establish congruence assume that π1 ∼ π2. Consequently, there is some
β < γ such that π1 ∼gι π2 for all β ≤ ι < α. Therefore, we also have for each
β ≤ ι < α that π1 · 〈i〉 ∼gι π2 · 〈i〉 for all i < ar(gι(π1)) and that gι(π1) = gι(π2).
According to the construction of l, there some β ≤ γ < α such that l(π1) =
gγ(π1) = gγ(π2) = l(π2). Moreover, we can derive that π1 · 〈i〉 ∼ π2 · 〈i〉 for all
i < ar(l(π1)).

This concludes the proof that (P, l,∼) is indeed a labelled quotient tree. Next,
we show that the sequence (gι)ι<α converges to the thus defined canonical term
graph g. By Lemma 5.4, this amounts to giving for each d < ω some β < α such
that g†d ∼= gι†d for all β ≤ ι < α.

To this end, let d < ω. Since (gι)ι<α is Cauchy, there is, according to
Lemma 5.4, some β < α such that

gι†d ∼= gγ†d for all β ≤ ι, γ < α. (∗)

In order to show that this implies that g†d ∼= gι†d for all β ≤ ι < α, we show
that the respective labelled quotient trees of g†d and gι†d as characterised by
Lemma 5.7 coincide. The labelled quotient tree (P1, l1,∼1) for g†d is given by

P1 = {π ∈ P | ∀π1 < π∃π2 ∼ π1 : |π2| < d}
∼1 = ∼ ∩ P1 × P1

l1(π) =
{
l(π) if ∃π′ ∼ π : |π′| < d

⊥ otherwise

397

The labelled quotient tree (P ι2, lι2,∼ι2) for each gι†d is given by

P ι2 = {π ∈ P(gι) | ∀π1 < π∃π2 ∼gι π1 : |π2| < d}
∼ι2 = ∼gι ∩ P ι2 × P ι2

lι2(π) =
{
gι(π) if ∃π′ ∼gι π : |π′| < d

⊥ otherwise

Due to (∗), all (P ι2, lι2,∼ι2) with β ≤ ι < α are pairwise equal. Therefore, we
write (P2, l2,∼2) for this common labelled quotient tree. That is, it remains to
be shown that (P1, l1,∼1) and (P2, l2,∼2) are equal.

(a) P1 = P2. For the “⊆” direction let π ∈ P1. If π = 〈〉, we immediately have
that π ∈ P2. Hence, we can assume that π is non-empty. Since π ∈ P1 implies
π ∈ P , there is some β ≤ β′ < α with π ∈ P(gι) for all β′ ≤ ι < α. Moreover
this means that for each π1 < π there is some π2 ∼ π1 with |π2| < d. That is,
there is some β′ ≤ γπ1 < α such that π2 ∼gι π1 for all γπ1 ≤ ι < α. Since there
are only finitely many proper prefixes π1 < π but at least one, we can define
γ = max {γπ1 |π1 < π} such that we have for each π1 < π some π2 ∼gγ π1 with
|π2| < d. Hence, π ∈ P γ2 = P2.

To show the converse direction, assume that π ∈ P2. Then π ∈ P ι2 ⊆ P(gι)
for all β ≤ ι < α. Hence, π ∈ P . To show that π ∈ P1, assume some π1 < π.
Since π ∈ P β2 , there is some π2 ∼gβ π1 with |π2| < d. Then π1 ∈ P2 because P2
is closed under prefixes and π2 ∈ P2 because |π2| < d. Thus, π2 ∼2 π1 which
implies π2 ∼gι π1 for all β ≤ ι < α. Consequently, π2 ∼ π1, which means that
π ∈ P1.

(c) ∼1 = ∼2. For the “⊆” direction assume π1 ∼1 π2. Hence, π1 ∼ π2 and
π1, π2 ∈ P1 = P2. This means that there is some β ≤ γ < α with π1 ∼gγ π2.
Consequently, π1 ∼2 π2. For the converse direction assume that π1 ∼2 π2. Then
π1, π2 ∈ P2 = P1 and π1 ∼gι π2 for all β ≤ ι < α. Hence, π1 ∼ π2 and we can
conclude that π1 ∼1 π2.

(b) l1 = l2. We show this by proving that, for all β ≤ ι < α, the condition
∃π′ ∼ π : |π′| < d from the definition of l1 is equivalent to the condition ∃π′ ∼gι
π : |π′| < d from the definition of l2 and that l(π) = gι(π) if either condition is
satisfied. The latter is simple: whenever there is some π′ ∼ π with |π′| < d, then
gι(π) = lι2(π) = lβ2 (π) = gβ(π) for all β ≤ ι < α. Hence, l(π) = gβ(π) = gι(π)
for all β ≤ ι < α. For the former, we first consider the “only if” direction of the
equivalence. Let π ∈ P1 and π′ ∼ π with |π′| < d. Then also π′ ∈ P1 which
means that π′ ∼1 π. Since then π′ ∼2 π, we can conclude that π′ ∼gι π for all
β ≤ ι < α. For the converse direction assume that π ∈ P2, π′ ∼gι π and |π′| < d.
Then also π′ ∈ P2 which means that π′ ∼2 π. This implies π′ ∼1 π, which in turn
implies π′ ∼ π.

Example 5.11. Reconsider the two sequences of term graphs (gι)ι<ω and (hι)ι<ω
from Figure 5c respectively 5d on page 407. The simple truncation of the term
graphs gι at depth 2 alternates between the term trees a ::⊥ ::⊥ and b ::⊥ ::⊥.
More precisely, gι†2 = a ::⊥ ::⊥ if ι is even and gι†2 = b ::⊥ ::⊥ if ι is odd.
According to Lemma 5.4, this means that (gι)ι<ω is not Cauchy in (T ∞(Σ),d†)
and is consequently not convergent.

398

On the other hand, (hι)ι<ω does converge to hω in (T ∞(Σ),d†): for each
d ∈ N we have that hω†d+ 1 ∼= hι†d+ 1 for all d ≤ ι < ω. Lemma 5.4 then yields
that limι→ω hι = hω.

As we have seen in Example 4.8, the limit inferior induced by ≤S
⊥ showed

some curios behaviour for the sequence of term graphs illustrated in Figure 2.
This is not the case for the metric d†. In fact, there is no topological space in
which (gι)ι<ω from Figure 2 converges to a unique limit. In particular, this means
that there is no metric space in which (gι)ι<ω converges.

5.3 Other Truncation Functions and Their Metric Spaces
Generalising concepts from terms to term graphs is not a straightforward matter
as we have to decide how to deal with additional sharing that term graphs offer.
The definition of simple truncation seems to be an obvious choice for a generali-
sation of tree truncation. In this section, we shall formally argue that it is in fact
the case. More specifically, we show that no matter how we define the sharing
of the ⊥-nodes that fill the holes caused by the truncation, we obtain the same
topology.

The following lemma is a handy tool for comparing metric spaces induced by
truncation functions:

Lemma 5.12. Let τ, υ be two truncation functions on G∞(Σ⊥) and f : G∞C (Σ)→
G∞C (Σ) a function on G∞C (Σ). Then the following are equivalent

(i) f is a continuous mapping f : (G∞C (Σ),dτ)→ (G∞C (Σ),dυ)

(ii) For each g ∈ G∞C (Σ) and d < ω there is some e < ω such that

simτ (g, h) ≥ e =⇒ simυ(f(g), f(h)) ≥ d for all h ∈ G∞C (Σ)

(iii) For each g ∈ G∞C (Σ) and d < ω there is some e < ω such that

τe(g) ∼= τe(h) =⇒ υd(f(g)) ∼= υd(f(h)) for all h ∈ G∞C (Σ)

Proof. Analogous to Lemma 5.4.

An easy consequence of the above lemma is that if two truncation functions
only differ by a constant depth, they induce the same topology:

Proposition 5.13. Let τ, υ be two truncation functions on G∞(Σ⊥) such that
there is a δ < ω with |simτ (g, h)− simυ(g, h)| ≤ δ for all g, h ∈ G∞C (Σ). Then
(G∞C (Σ),dτ) and (G∞C (Σ),dυ) are topologically equivalent, i.e. they induce the
same topology.

Proof. We show that the identity function id : G∞C (Σ)→ G∞C (Σ) is a homeomor-
phism from (G∞C (Σ),dτ) to (G∞C (Σ),dυ), i.e. both id and id−1 are continuous. Due
to the symmetry of the setting it suffices to show that id is continuous. To this
end, let g ∈ G∞C (Σ) and d < ω. Define e = d + δ and assume some h ∈ G∞C (Σ)
such that simτ (g, h) ≥ e. By Lemma 5.12, it remains to be shown that then
simυ(g, h) ≥ d. Indeed, we have simυ(g, h) ≥ simτ (g, h)− δ ≥ e− δ = d.

399

This shows that metric spaces induced by truncation functions are essentially
invariant under changes in the truncation function bounded by a constant margin.

Remark 5.14. We should point out that the original definition of the metric
on terms by Arnold and Nivat [4] was slightly different from the one we showed
here. Recall that we defined similarity as the maximum depth of truncation that
ensures equality:

simτ (g, h) = max {d ≤ ω | τd(g) ∼= τd(h)}

Arnold and Nivat, on the other hand, defined it as the minimum truncation depth
that still shows inequality:

sim′τ (g, h) = min {d ≤ ω | τd(g) 6∼= τd(h)}

However, it is easy to see that either both simτ (g, h) and sim′τ (g, h) are ω or
sim′τ (g, h) = simτ (g, h)+1. Hence, by Proposition 5.13, both definitions yield the
same topology.

Proposition 5.13 also shows that two truncation functions induce the same
topology if they only differ in way they treat “fringe nodes”, i.e. nodes that are
introduced in place of the nodes that have been cut off. Since the definition of
truncation functions requires that τ0(g) ∼= ⊥ and τω(g) ∼= g, we do not give the
explicit construction of the truncation for the depths 0 and ω in the examples
below.

Example 5.15. Consider the following variant τ of the simple truncation func-
tion †. Let g ∈ G∞(Σ⊥) be a term graph. For each n ∈ Ng and i ∈ N, we use ni
to denote a fresh node, i.e.

{
ni
∣∣n ∈ Ng, i ∈ N

}
is a set of pairwise distinct nodes

not occurring in Ng. Given a depth 0 < d < ω, we define the truncation τd(g) as
follows:

N τd(g) = Ng
<d]N

g
=d

Ng
<d =

{
n ∈ Ng

∣∣∣ depthg(n) < d
}

Ng
=d =

{
ni
∣∣∣n ∈ Ng

<d, 0 ≤ i < arg(n), sucgi (n) 6∈ Ng
<d

}

labτd(g)(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucτd(g)
i (n) =

{
sucgi (n) if ni 6∈ Ng

=d
ni if ni ∈ Ng

=d

One can easily show that τ is in fact a truncation function. The difference between
† and τ is that in the latter we create a fresh node ni whenever a node n has a
successor sucgi (n) that lies at the fringe, i.e. at depth d. Since this only affects
the nodes at the fringe and, therefore, only nodes at the same depth d we get the
following:

g†d ∼= h†d =⇒ τd(g) ∼= τd(h), and
τd(g) ∼= τd(h) =⇒ g†d− 1 ∼= h†d− 1.

Hence, the respectively induced similarities only differ by a constant margin of
1, i.e. we have that |sim†(g, h)− simτ (g, h)| = 1. According to Proposition 5.13,
this means that (G∞C (Σ),d†) and (G∞C (Σ),dτ) are topologically equivalent.

400

Consider another variant υ of the simple truncation function †. Given a term
graph g ∈ G∞(Σ⊥) and depth 0 < d < ω, we define the truncation υd(g) as
follows:

Nυd(g) = Ng
<d]N

g
=d

Ng
<d =

{
n ∈ Ng

∣∣∣ depthg(n) < d
}

Ng
=d =

{
ni
∣∣∣∣∣
n ∈ Ng, depthg(n) = d− 1, 0 ≤ i < arg(n)
with sucgi (n) 6∈ Ng

<d or n 6∈ Preag(sucgi (n))

}

labυd(g)(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucυd(g)(n) =
{

sucgi (n) if ni 6∈ Ng
=d

ni if ni ∈ Ng
=d

Also υ forms a truncation function as one can easily show. In addition to creating
fresh nodes ni for each successor that is not in the retained nodes Ng

<d, the
truncation function υ creates such new nodes ni for each cycle that created by a
node just above the fringe. Again, as for the truncation function τ , only the nodes
at the fringe, i.e. at depth d are affected by this change. Hence, the respectively
induced similarities of † and υ only differ by a constant margin of 1, which makes
the metric spaces (G∞C (Σ),d†) and (G∞C (Σ),dυ) topologically equivalent as well.

The robustness of the metric space (G∞C (Σ),d†) under the changes illustrated
above is due to the uniformity of the core definition of the simple truncation
which only takes into account the depth. By simply increasing the depth by a
constant number, we can compensate for changes in the way fringe nodes are
dealt with.

This is much different for the rigid truncation function g‡d that we have used
in our previous work [8] in order to derive a complete metric on term graph:

Definition 5.16 (rigid truncation of term graphs). Let g ∈ G∞(Σ⊥) and d ∈ N.

(i) Given n,m ∈ Ng, m is an acyclic predecessor of n in g if there is an acyclic
position π · 〈i〉 ∈ Pag (n) with π ∈ Pg(m). The set of acyclic predecessors of
n in g is denoted Preag(n).

(ii) The set of retained nodes of g at d, denoted Ng
<d, is the least subset M of

Ng satisfying the following conditions for all n ∈ Ng:

(T1) depthg(n) < d =⇒ n ∈M (T2) n ∈M =⇒ Preag(n) ⊆M

(iii) For each n ∈ Ng and i ∈ N, we use ni to denote a fresh node, i.e.{
ni
∣∣n ∈ Ng, i ∈ N

}
is a set of pairwise distinct nodes not occurring in Ng.

The set of fringe nodes of g at d, denoted Ng
=d, is defined as the singleton

set {rg} if d = 0, and otherwise as the set
{
ni
∣∣∣∣∣
n ∈ Ng

<d, 0 ≤ i < arg(n) with sucgi (n) 6∈ Ng
<d

or depthg(n) ≥ d− 1, n 6∈ Preag(sucgi (n))

}

401

(iv) The rigid truncation of g at d, denoted g‡d, is the term graph defined by

Ng‡d = Ng
<d]N

g
=d rg‡d = rg

labg‡d(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucg‡di (n) =
{

sucgi (n) if ni 6∈ Ng
=d

ni if ni ∈ Ng
=d

Additionally, we define g‡ω to be the term graph g itself.

The idea of this definition of truncation is that not only each node at depth
< d is kept – via the closure condition (T1) – but also every acyclic predecessor of
such a node – via (T2). In sum, every node on an acyclic path from the root to a
node at depth smaller than d is kept. The difference between the two truncation
functions † and ‡ are illustrated in Figure 3.

In contrast to the simple truncation †, the rigid truncation function ‡ is quite
vulnerable to small changes:

Example 5.17. Consider the following variant τ of the rigid truncation function
‡. Given a term graph g ∈ G∞(Σ⊥) and depth d ∈ N+, we define the truncation
τd(g) as follows: the set of retained nodes Ng

<d is defined as for the truncation
g‡d. For the rest we define

Ng
=d =

{
sucgi (n)

∣∣n ∈ Ng
<d, 0 ≤ i < arg(n), sucgi (n) 6∈ Ng

<d

}

N τd(g) = Ng
<d]N

g
=d

labτd(g)(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucτd(g)(n) =
{

sucg(n) if n ∈ Ng
<d

〈〉 if n ∈ Ng
=d

In this variant of truncation, some sharing of the retained nodes is preserved.
Instead of creating fresh nodes for each successor node that is not in the set of
retained nodes, we simply keep the successor node. Additionally loops back into
the retained nodes are not cut off. This variant of the truncation deals with its
retained nodes in essentially the same way as the simple truncation. However,
opposed the simple truncation and their variants, this truncation function yields
a topology different from the metric space (G∞C (Σ),d‡)! To see this, consider the
two families of term graphs gn and hn illustrated in Figure 4. For both families we
have that the τ -truncations at depth 2 to n+ 2 are the same, i.e. τd(gn) = τ2(gn)
and τd(hn) = τ2(hn) for all 2 ≤ d ≤ n + 2. The same holds for the truncation
function ‡. Moreover, since the two leftmost successors of the h-node are not
shared in gn, both truncation functions coincide on gn, i.e. gn‡d = τd(gn). This
is not the case for hn. In fact, they only coincide up to depth 1. In total, we can
observe that sim‡(gn, hn) = n+2 but simτ (gn, hn) = 1. This means, however, that
the sequence 〈g0, h0, g1, h1, . . .〉 converges in (G∞C (Σ),d‡) but not in (G∞C (Σ),dτ)!

A similar example can be constructed that uses the difference in the way the
two truncation functions deal with fringe nodes created by cycles back into the
set of retained nodes.

The above discussion should give a first indication why the simple metric d†
should be preferred over the rigid partial order d‡: the metric d† is not only
simpler than d‡ but also more natural in the sense that we obtain the topology

402

f

g

...

g

h

a

a

a

n
tim

es

f

g

...

g

h

a

⊥
⊥

n
tim

es

f

g

...

g

h

a

a

n
tim

es

f

g

...

g

h

a

⊥

n
tim

es

(gn) (τ2(gn) = τn+2(gn)) (hn) (τ2(hn) = τn+2(hn))

Figure 4: Variations in fringe nodes.

of the metric space (G∞C (Σ),d†) without paying too much attention to the corner
case details of the underlying truncation function. Small changes in the way we
treat these corner cases do not affect the resulting topology as we have illustrated
in Example 5.15. For the metric space (G∞C (Σ),d†), on the other hand, we have
to be very careful about how to deal with fringe nodes. As Example 5.17 shows,
even small changes yield a different topology. This is part of the reason why the
definition of the underlying rigid truncation ‡ is so convoluted.

In Section 8.3, we will give another reason to prefer the metric d† over the
metric d‡: while the former allows us to construct the set of term graphs from
the set of finite term graphs via metric completion, the latter does not. That
is, the rigid metric does not yield a representation of infinite term graphs as the
limit of a sequence of finite term graphs.

6 Infinitary Term Graph Rewriting
In the previous sections, we have constructed and investigated the necessary met-
ric and partial order structures upon which the infinitary calculus of term graph
rewriting that we shall introduce in this section is based. After describing the
framework of term graph rewriting that we consider, we will explore different
modes convergence on term graphs. In the same way that infinitary term rewrit-
ing instantiates the abstract notions of weak m- and p-convergence [6], infinitary
term graph rewriting is an instantiation of these abstract modes of convergence
to term graphs.

6.1 Term Graph Rewriting Systems
We base our infinitary term rewriting calculus on the term graph rewriting frame-
work of Barendregt et al. [10]. In order to represent placeholders in rewrite rules,
this framework uses variables – in a manner much similar to term rewrite rules.
However, instead of open graphs whose unlabelled nodes are interpreted as vari-

403

ables, we use explicit variable symbols. To this end, we consider a signature
ΣV = Σ] V that extends the signature Σ with a set V of nullary variable sym-
bols.

Definition 6.1 (term graph rewriting system).

(i) Given a signature Σ, a term graph rule ρ over Σ is a triple (g, l, r) where g
is a graph over ΣV and l, r ∈ Ng, such that all nodes in g reachable from l
or r. We write ρl respectively ρr to denote the left- respectively right-hand
side of ρ, i.e. the term graph g|l respectively g|r. Additionally, we require
that, for each variable v ∈ V, there is at most one node n in g labelled v
and n is different but still reachable from l.

(ii) A term graph rewriting system (GRS) R is a pair (Σ, R) with Σ a signature
and R a set of term graph rules over Σ.

The requirement that the root l of the left-hand side is not labelled with a
variable symbol is analogous to the requirement that the left-hand side of a term
rule is not a variable. Similarly, the restriction that nodes labelled with variable
symbols must be reachable from the root of the left-hand side corresponds to
the restriction on term rules that every variable occurring on the right-hand side
must also occur on the left-hand side.

Term graphs can be used to compactly represent terms. This representation
of terms is defined by the unravelling of term graphs. This notion can be extended
to term graph rules.

Definition 6.2 (unravelling of term graph rules). Let ρ be a term graph rule
with ρl and ρr left- respectively right-hand side term graph. The unravelling
of ρ, denoted U (ρ), is the term rule U (ρl) → U (ρr). Let R = (Σ, R) be a
GRS. The unravelling of R, denoted U (R), is the TRS (Σ,U (R)) with U (R) =
{U (ρ) | ρ ∈ G}.

Figure 5a illustrates two term graph rules that both represent the term rule
x :: y :: z → y ::x :: y :: z from Example 2.2, which they unravel to.

The application of a rewrite rule ρ (with root nodes l and r) to a term graph
g is performed in four steps: at first a suitable sub-term graph of g rooted in
some node n of g is matched against the left-hand side of ρ. This amounts to
finding a V-homomorphism φ : ρl →V g|n from the term graph rooted in l to
the sub-term graph rooted in n, the redex. The V-homomorphism φ allows to
instantiate variables in the rule with sub-term graphs of the redex. In the second
step, nodes and edges in ρ that are not reachable from l are copied into g, such
that edges pointing to nodes in the term graph rooted in l are redirected to the
image under φ. In the last two steps, all edges pointing to n are redirected to
(the copy of) r and all nodes not reachable from the root of (the now modified
version of) g are removed.

Definition 6.3 (application of a term graph rewrite rule, Barendregt et al. [10]).
Let ρ = (Nρ, labρ, sucρ, lρ, rρ) be a term graph rewrite rule in a GRS R = (Σ, R),
g ∈ G∞(Σ) and n ∈ Ng. ρ is called applicable to g at n if there is a V-
homomorphism φ : ρl →V g|n. φ is called the matching V-homomorphism of

404

the rule application, and g|n is called a ρ-redex. Next, we define the result of the
application of the rule ρ to g at n using the V-homomorphism φ. This is done by
constructing the intermediate graphs g1 and g2, and the final result g3.

(i) The graph g1 is obtained from g by adding the part of ρ not contained in
the left-hand side:

Ng1 = Ng] (Nρ \Nρl)

labg1(m) =
{

labg(m) if m ∈ Ng

labρ(m) if m ∈ Nρ \Nρl

sucg1
i (m) =

sucgi (m) if m ∈ Ng

sucρi (m) if m, sucρi (m) ∈ Nρ \Nρl

φ(sucρi (m)) if m ∈ Nρ \Nρl , sucρi (m) ∈ Nρl

(ii) Let n′ = φ(rρ) if rρ ∈ Nρl and n′ = rρ otherwise. The graph g2 is obtained
from g1 by redirecting edges ending in n to n′:

Ng2 = Ng1 labg2 = labg1 sucg2
i (m) =

{
sucg1

i (m) if sucg1
i (m) 6= n

n′ if sucg1
i (m) = n

(iii) The term graph g3 is obtained by setting the root node r′, which is r if
l = rg, and otherwise rg. That is, g3 = g2|r′ . This also means that all nodes
not reachable from r′ in g2 are removed.

The above construction induces a pre-reduction step ψ = (g, n, ρ, n′, g3) from
g to g3, written ψ : g 7→n,ρ,n′ g3. In order to indicate the underlying GRS R, we
also write ψ : g 7→R g3.

Examples for term graph (pre-)reduction steps are shown in Figure 5. We
revisit them in more detail in Example 6.8 in the next section.

Note that term graph rules do not provide a duplication mechanism. Each
variable is allowed to occur at most once. Duplication must always be simulated
by sharing, i.e. with nodes reachable via multiple paths from any of the two
roots. This means for example that a variable that should “occur” on the left-
and the right-hand side must be shared between the left- and the right-hand side
of the rule as seen in the term graph rules in Figure 5a. This sharing can be
direct as in ρ1 – the variable node has multiple ingoing edges – or indirect as
in ρ2 – the variable node is reachable from nodes with multiple ingoing edges.
Likewise, for variables that are supposed to be duplicated on the right-hand
side, e.g. the variable y in the term rule x :: y :: z → y ::x :: y :: z, we have to use
sharing in order to represent multiple occurrence of the same variable as seen
in the corresponding term graph rules in Figure 5a: in both rules, the y-node is
reachable by two distinct paths from the right-hand side root r.

The definition of term graph rewriting in the form of pre-reduction steps
is very operational in style. The result of applying a rewrite rule to a term
graph is constructed in several steps by manipulating nodes and edges explicitly.
While this is beneficial for implementing a rewriting system this problematic for

405

reasoning on term graphs up to isomorphisms, which is necessary for introducing
notions of convergence. In our case, however, this does not cause any harm since
the construction in Definition 6.3 is invariant under isomorphism:

Proposition 6.4 (pre-reduction steps). Let φ : g 7→n,ρ,m h be a pre-reduction
step in some GRS R and ψ1 : g′ ∼= g. Then there is a pre-reduction step of the
form φ′ : g′ 7→n′,ρ,m′ h′ with ψ2 : h′ ∼= h such that ψ1(n′) = n and ψ1(m′) = m.

Proof. Immediate from the construction in Definition 6.3.

This justifies the following definition of reduction steps:

Definition 6.5 (reduction steps). Let R = (Σ, R) be GRS, ρ ∈ R and g, h ∈
G∞C (Σ) with n ∈ Ng and m ∈ Nh. A tuple φ = (g, n, ρ,m, h) is called a reduction
step, written φ : g →n,ρ,m h, if there is a pre-reduction step φ′ : g′ →n′,ρ,m′ h′

with C(g′) = g, C(h′) = h, n = Pg′(n′), and m = Ph′(m′). As for pre-reduction
step, we also write φ : g →R h or simply φ : g → h for short.

In other words, a reduction step is a canonicalised pre-reduction step.

6.2 Convergence of Transfinite Reductions

In this section, we shall look at term graph reductions of potentially transfinite
length.

Definition 6.6 (reduction). Let R = (Σ, R) be a GRS. A reduction in R is
a sequence (gι →R gι+1)i<α of rewriting steps in R. If S is finite, we write
S : g0 →∗ gα.

In analogy to infinitary term rewriting, we employ the partial order ≤S
⊥ and

the metric d† for the purpose of defining convergence of transfinite term graph
reductions.

Definition 6.7 (convergence of reductions). Let R = (Σ, R) be a GRS.

(i) Let S = (gι →R gι+1)ι<α be a reduction in R. S is weakly m-continuous,
written S : g0 ↪→m R . . . , if the underlying sequence of term graphs (gι)ι<α̂
is continuous, i.e. limι→λ gι = gλ for each limit ordinal λ < α. S weakly
m-converges to g ∈ G∞C (Σ) in R, written S : g0 ↪→m R g, if it is weakly m-
continuous and limι→α̂ gι = g.

(ii) Let R⊥ be the GRS (Σ⊥, R) over the extended signature Σ⊥ and S =
(gι →R⊥ gι+1)ι<α a reduction in R⊥. S is weakly p-continuous, written
S : g0 ↪→p R g, if lim infι<λ gi = gλ for each limit ordinal λ < α. S weakly
p-converges to g ∈ G∞C (Σ⊥) in R, written S : g0 ↪→p R g, if it is weakly
p-continuous and lim infι<α̂ gi = g.

Note that we have to extend the signature of R to Σ⊥ for the definition
of weak p-convergence. Moreover, since the partial order ≤S

⊥ forms a complete
semilattice on G∞C (Σ⊥), weak p-continuity coincides with weak p-convergence

406

::l

x ::

y z

::r

::

::

(ρ1)

::l

x ::

y z

::r

(ρ2)
(a) Term graph rules that unravel to x :: y :: z → y ::x :: y :: z.

::

a ::

b c

(g)

::

b

(h)

ρ2

::

b ::

::

(h′)

ρ1

(b) A ρ2-step followed by a ρ1-step.

::

a ::

b c

(g0)

::

b ::

a ::

c

(g1)

::

a ::

b ::

::

c

(g2)

::

⊥ ::

⊥ ::

::

::

(gω)

ρ1 ρ1 ρ1

(c) A term graph reduction over ρ1 that does not weakly m-converge.

::

a ::

b c

(h0)

::

b ::

a ::

c

(h1)

::

b ::

::

a ::

c
(h2)

::

b ::

::

::

(hω)

ρ1 ρ1 ρ1

(d) A weakly m-converging term graph reduction over ρ1.

Figure 5: Term graph rules and their reductions.

407

Example 6.8. Figure 5a shows two term graph rules that both unravel to the
term rule x :: y :: z → y ::x :: y :: z from Example 2.2. The two rules differ only in
their sharing with ρ1 using “minimal sharing” and ρ2 using “maximal sharing”.

Figure 5c and Figure 5d illustrate term graph reductions that correspond to
the term reductions T respectively T ′ from Example 2.2 and 2.3. All reductions
– including the term graph reductions – start from the same term (tree) a :: b :: c.

Like the term reduction T , the corresponding term graph reduction in Fig-
ure 5c is not weakly m-convergent: as we have illustrated in Example 5.11, the
underlying sequence of term graphs is not convergent. On the other hand, the
reduction does weakly p-converge to the term graph gω, which unravels to the
term t to which the reduction T weakly p-converges to.

Similarly, also the reduction in Figure 5d follows its term rewriting counter-
part T ′ closely: It both weakly m- and p-converges to the term graph hω, which
unravels to the term t′ that T ′ weakly m- and p-converges to. Example 5.11
respectively 4.8 explain how these limits come about.

Due to its higher degree of sharing, the rule ρ2 permits to arrive at essentially
the same result by a single reduction step as seen in Figure 5b. The resulting
cyclic term graph h unravels to the same term t′ as hω. The ρ1-step that follows
illustrates the interaction of rewrite rules with cycles. In fact, if we continue ap-
plying the rule ρ1 after h′, we obtain a reduction that weakly m- and p-converges
to hω.

6.3 m-Convergence vs. p-Convergence

Recall that weak p-convergence in term rewriting is a conservative extension of
weakm-convergence (cf. Theorem 2.4). The key property that makes this possible
is that for each sequence (tι)ι<α in T ∞(Σ), we have that limι→α tι = lim infι→α tι
whenever (tι)ι<α converges, or lim infι→α tι is a total term.

Unfortunately, this is not the case for the metric space and the partial order
that we consider on term graphs. As we have shown in Example 5.11, the sequence
of term graphs depicted in Figure 2 has a total term graph as its limit inferior
although it does not converge in the metric space. In fact, since the sequence in
Figure 2 alternates between two distinct term graphs, it does not converge in any
Hausdorff space, i.e. in particular, it does not converge in any metric space.

This example shows that we cannot hope to generalise the compatibility prop-
erty that we have for terms: even if a sequence of total term graphs has a total
term graph as its limit inferior, it might not converge. However, the other direc-
tion of the compatibility does hold true:

Theorem 6.9. If (gι)ι<α converges, then limι→α gι = lim infι→α gι.

Proof. In order to prove this property, we will use the construction of the limit
respectively the limit inferior of a sequence of term graphs, which we have shown
in Theorem 5.10 respectively Corollary 4.7.

According to Theorem 5.10, we have that the canonical term graph limι→α gι

408

fl

c c

fr

c c

(ρ1)

fl

c c

fr

c

(ρ2)

Figure 6: Two term graph rules.

is given by the following labelled quotient tree (P,∼, l):

P =
⋃

β<α

⋂

β≤ι<α
P(gι) ∼ =

⋃

β<α

⋂

β≤ι<α
∼gι

l(π) = f iff ∃β < α∀β ≤ ι < α : gι(π) = f

We will show that g = lim infι→α gι induces the same labelled quotient tree.
From Corollary 4.7, we immediately obtain that P(g) ⊆ P . To show the

converse direction P(g) ⊇ P , we assume some π ∈ P . According to Corollary 4.7,
in order to show that π ∈ P(g), we have to find a β < α such that π ∈ P(gβ) and
for each π′ < π there is some f ∈ Σ⊥ such that gι(π′) = f for all β ≤ ι < α.

Because π ∈ P , there is some β1 < α such that π ∈ P(gι) for all β1 ≤ ι < α.
Since (gι)ι<α converges, it is also Cauchy. Hence, by Lemma 5.4, for each d < ω,
there is some β2 < α such that gγ†d ∼= gι†d for all β2 ≤ γ, ι < α. By specialising
this to d = |π|, we obtain some β2 < α with gγ† |π| ∼= gι† |π| for all β2 ≤ γ, ι < α.
Let β = max {β1, β2}. Then we have π ∈ P(gι) and gβ† |π| ∼= gι† |π| for each
β ≤ ι < α. Hence, for each π′ < π, the symbol f = gβ(π′) is well-defined, and,
according to Corollary 5.8, we have that gι(π′) = f for each β ≤ ι < α.

The equalities ∼ = ∼g and l = g(·) follow from Corollary 4.7 as P = P(g).

From this property, we immediately obtain the following relation between
weak m- and p-convergence:

Theorem 6.10. Let S be a reduction in a GRS R.

If S : g ↪→m R h then S : g ↪→p R h.

Proof. Follows straightforwardly from Theorem 6.9.

However, as we have indicated, weak m-convergence is not the total fragment
of weak p-convergence as it is the case for TRSs. The GRS with the two rules
depicted in Figure 6 yields the reduction sequence shown in Figure 2. This
reduction weakly p-converges to f(c, c) but is not weakly m-convergent.

Yet, if we move from the weak notions of convergence considered here to strong
convergence – in analogy to strong convergence in infinitary term rewriting [8,
22] – we do in fact regain the correspondence between metric and partial order
convergence: strong p-convergence on term graphs is a conservative extension of
strong m-convergence [9].

With the move to strong convergence it also possible to establish that in-
finitary term graph rewriting is sound and complete w.r.t. term rewriting [9].
Analysing the way in which infinitary term graph rewriting simulates infinitary

409

term rewriting becomes substantially more difficult in the setting of weak con-
vergence. That is why we only have very limited results of soundness and com-
pleteness, which are presented in the following two sections.

7 Preservation of Convergence through Unravelling

In this section, we shall show that the convergence behaviour of term graph
sequences – both in terms of metric limit and in terms of the limit inferior – is
preserved by the unravelling of term graphs to terms. As we will also show that
the metric d† and partial order ≤S

⊥ coincide with the metric d respectively the
partial order ≤⊥ if restricted to terms, the preservation of convergence will show
that both modes of convergence are sound w.r.t. the modes of convergence used
in infinitary term rewriting.

The cornerstone of the investigation of unravellings is the following charac-
terisation in terms of labelled quotient trees:

Proposition 7.1. The unravelling U (g) of a term graph g ∈ G∞(Σ) is given by
the labelled quotient tree (P(g), g(·), IP(g)).

Proof. Since IP(g) is a subrelation of ∼g, we know that (P(g), g(·), IP(g)) is a
labelled quotient tree and thus uniquely determines a term tree t. By Lemma 3.13,
there is a homomorphism from t to g. Hence, U (g) = t.

7.1 Metric Convergence

We start with a specialisation of Lemma 5.7, which provides a characterisation
of the simple truncation, to term trees:

Lemma 7.2. Let t ∈ T ∞(Σ⊥) and d ≤ ω+1. The simple truncation t†d is given
by the labelled quotient tree (P, l, IP) with

P = {π ∈ P(t) | |π| ≤ d} l(π) =
{
t(π) if |π| < d

⊥ if |π| ≥ d

Proof. Immediate from Lemma 5.7 and the fact that ∼t is the identity relation
IP(t) on P(t).

This shows that the metric d† restricted to terms coincides with the metric
d on terms. Moreover, we can use this in order to relate the metric distance
between term graphs and the metric distance between their unravellings.

Lemma 7.3. For all g, h ∈ G∞(Σ), we have that d†(g, h) ≥ d†(U (g) ,U (h)).

Proof. Let d = sim†(g, h). Hence, g†d ∼= h†d and we can assume that the cor-
responding labelled quotient trees as characterised by Lemma 5.7 coincide. We
only need to show that U (g)†d ∼= U (h)†d since then sim†(U (g) ,U (h)) ≥ d and
thus d†(U (g) ,U (h)) ≤ 2−d = d†(g, h). In order to show this, we show that

410

the labelled quotient trees of U (g)†d and U (h)†d as characterised by Lemma 7.2
coincide. For the set of positions we have the following:

π ∈ P(U (g)†d)
⇐⇒ π ∈ P(U (g)), |π| ≤ d (Lemma 7.2)
⇐⇒ π ∈ P(g), |π| ≤ d (Proposition 7.1)
⇐⇒ π ∈ P(g†d), |π| ≤ d (Corollary 5.8)
⇐⇒ π ∈ P(h†d), |π| ≤ d (g†d ∼= h†d)
⇐⇒ π ∈ P(h), |π| ≤ d (Corollary 5.8)
⇐⇒ π ∈ P(U (h)), |π| ≤ d (Proposition 7.1)
⇐⇒ π ∈ P(U (h)†d) (Lemma 7.2)

In order to show that the labellings are equal, consider some π ∈ P(U (g)†d) and
assume at first that |π| ≥ d. By Lemma 7.2, we then have (U (g)†d) (π) = ⊥ =
(U (h)†d) (π). Otherwise, if |π| < d, we obtain the following:

(U (g)†d) (π) Lem. 7.2= U (g) (π) Prop. 7.1= g(π) Cor. 5.8= g†d(π)
g†d∼=h†d= h†d(π) Cor. 5.8= h(π) Prop. 7.1= U (h) (π) Lem. 7.2= (U (h)†d) (π)

This immediately yields that Cauchy sequences are preserved by unravelling:

Lemma 7.4. If (gι)ι<α is a Cauchy sequence in (G∞C (Σ),d†), then (U (gι))ι<α is
too.

Proof. This follows immediately from Lemma 7.3.

Moreover, we obtain that limits in the metric space (G∞C (Σ),d†) are preserved
by unravelling.

Theorem 7.5. For every sequence (gι)ι<α that converges to g in (G∞C (Σ),d†),
we have that (U (gι))ι<α converges to U (g).

Proof. According to Theorem 5.10, we have that P(g) = lim infι→α P(gι), and
that g(π) = gβ(π) for some β < α with gι(π) = gβ(π) for all β ≤ ι < α.
By Proposition 7.1, we then obtain P(U (g)) = lim infι→α P(U (gι)), and that
U (g) (π) = U (gβ) (π) for some β < α with U (gι) (π) = U (gβ) (π) for all β ≤ ι <
α. Since by Lemma 7.4, (U (gι))ι<α is Cauchy, we can apply Theorem 5.10 to
obtain that limι→α U (gι) = U (g).

Since Lemma 7.2 confirms that the metric d† restricted to terms coincides
with the metric d on terms, we have that convergence on term graphs simulates
convergence on terms: if (gι)ι<α in converges to g in (G∞C (Σ),d†), then (U (gι))ι<α
converges to U (g) in (T ∞(Σ),d).

411

7.2 Partial Order Convergence

At first we derive a characterisation of the partial order ≤S
⊥ on terms by special-

ising Corollary 4.3:

Lemma 7.6. Given two terms s, t ∈ T ∞(Σ⊥), we have s ≤S
⊥ t iff s(π) = t(π)

for all π ∈ P(s) with g(π) ∈ Σ.

Proof. Immediate from Corollary 4.3.

This shows that the partial order ≤S
⊥ on term graphs generalises the partial

order ≤⊥ on terms, i.e. ≤S
⊥ restricted to T ∞(Σ⊥) coincides with ≤⊥.

From the above finding we easily obtain that the partial order ≤S
⊥ as well as

its induced limits are preserved by unravelling:

Theorem 7.7. In the partially ordered set (G∞C (Σ⊥),≤S
⊥) the following holds:

(i) Given two term graphs g, h, we have that g ≤S
⊥ h implies U (g) ≤S

⊥ U (h).

(ii) For each directed set G, we have that U
(⊔

g∈G g
)

= ⊔
g∈G U (g).

(iii) For each non-empty set G, we have that U
(d

g∈G g
)

=
d
g∈G U (g).

(iv) For each sequence (gι)ι<α, we have that U (lim infι→α gι) = lim infι→α U (gι).

Proof. (i) By Corollary 4.3, g ≤S
⊥ h implies that g(π) = h(π) for all π ∈ P(g)

with g(π) ∈ Σ. By Proposition 7.1, we then have U (g) (π) = U (h) (π) for all
π ∈ P(U (g)) with U (g) (π) ∈ Σ which, by Lemma 7.6, implies U (g) ≤S

⊥ U (h).
By a similar argument (ii) and (iii) follow from the characterisation of least

upper bounds and greatest lower bounds in Theorem 4.4 respectively Proposi-
tion 4.5 by using Proposition 7.1.

(iv) Follows from (ii) and (iii).

Since Lemma 7.6 shows that ≤S
⊥ and ≤⊥ coincide on T ∞(Σ⊥), we thus

obtain that the limit inferior on term graphs simulates the limit inferior on
terms: if lim infι→α gι = g in (G∞C (Σ⊥),≤S

⊥), then lim infι→α U (gι) = U (g) in
(T ∞(Σ⊥),≤⊥).

8 Finite Term Graphs

In this section, we want to study the simple partial order ≤S
⊥ and the simple

metric d† on finite term graphs. On terms, the partial order ≤⊥ and the metric
d allow us to reconstruct the set of (partial) terms from the set of finite (partial)
terms via ideal completion and metric completion, respectively. In the following,
we shall show that this generalises to the setting of canonical term graphs.

412

8.1 Finitary Properties
Since term graphs are finitely branching, we know that, in each term graph, there
are only a finite number of positions of a bounded length:

Lemma 8.1 (bounded positions are finite). Let g ∈ G∞(Σ) and d < ω. Then
there are only finitely many positions of length at most d in g, i.e. the set
{π ∈ P(g) | |π| ≤ d} is finite.

Proof. Straightforward induction on d.

From this we can immediately conclude that the simple truncation of a term
graph yields a finite term graph:

Proposition 8.2 (simple truncations are finite). For each g ∈ G∞(Σ⊥) and
d < ω, the simple truncation g†d is finite, i.e. g†d ∈ G(Σ⊥).

Proof. By Lemma 8.1, the set P = {π ∈ P(g) | |π| ≤ d} is finite. Since the
function f : P → Ng†d defined by f(π) = nodeg(π) is surjective, we can conclude
that Ng†d is finite.

We know that positions describe the structure of a term graph. However,
cycles cause infinite repetition of essentially the same structure of a position.
Therefore, a finite term graph may have infinitely many positions. In the follow-
ing, we want to avoid this by considering only essential positions:

Definition 8.3 (redundant/essential positions). A position π ∈ P(g) in a term
graph g ∈ G∞(Σ) is called redundant if there are π1, π2 ∈ P(g) with π1 < π2 < π
such that π1 ∼g π2. A position that is not redundant is called essential. The set
of all essential positions of g are denoted Pe(g); the set of all essential positions
of a node n in g are denoted Peg (n).

Note that a position is redundant iff one of its proper prefixes is cyclic. This
means that the set Pe(g) of essential positions is closed under prefixes.

Lemma 8.4 (decomposition of redundant positions). For each g ∈ G∞(Σ) and
π ∈ P(g), we have that π is redundant iff there are π1, π2 ∈ Pe(g) such that
π1 < π2 < π and π1 ∼g π2.

Proof. The “if” direction follows immediately from the definition of redundancy.
We will show the “only if” direction by induction on the length of π.

If π is redundant in g, then there are π1, π2 ∈ P(g) with π1 < π2 < π and
π1 ∼g π2. If π2 is essential, then also π1 is essential since it is a prefix of π2.
Otherwise, if π2 is redundant, we can apply the induction hypothesis to π2 to
obtain π′1, π′2 ∈ Pe(g) with π′1 < π′2 < π2 and π′1 ∼g π′2.

With essential positions, we have a finite representation of the structure of
term graphs even if the term graph is cyclic.

Proposition 8.5 (essential positions characterise finiteness). A term graph g ∈
G∞(Σ) is finite iff Pe(g) is finite.

413

Proof. If g is finite, then let n = |Ng|. Whenever a position π ∈ P(g) is longer
than n, then a proper prefix of π passes more than n nodes. By the pigeon hole
principle we thus know that there is a node that a proper prefix of π passes twice.
Hence, π is redundant. Therefore, we know that every essential position must be
of length at most n. Since, according to Lemma 8.1, there are only finitely many
such positions in g, we know that Pe(g) is finite.

If g is infinite, we can apply König’s Lemma to obtain an infinite acyclic path
(starting in the root of g) that does not pass a node twice. Since each finite
prefix of this path is an essential position, there are infinitely many essential
positions.

Indeed, the essential positions of a term graph are sufficient in order to char-
acterise the structure of term graphs in the form of ∆-homomorphisms:

Proposition 8.6 (essential positions characterise ∆-homomorphisms). Given
g, h ∈ G∞(Σ), there is a ∆-homomorphism φ : g →∆ h iff, for all π, π′ ∈ Pe(g),
we have

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

Proof. The “only if” direction follows immediately from Lemma 3.13. For the
converse direction, assume that both (a) and (b) hold. Define the function
φ : Ng → Nh by φ(n) = m iff Pg(n) ⊆ Ph(m) for all n ∈ Ng and m ∈ Nh. To
confirm that this is well-defined, we show at first that, for each n ∈ Ng, there is at
most one m ∈ Nh with Pg(n) ⊆ Ph(m). Suppose there is another node m′ ∈ Nh

with Pg(n) ⊆ Ph(m′). Since Pg(n) 6= ∅, this implies Ph(m)∩Ph(m′) 6= ∅. Hence,
m = m′. Secondly, we show that there is at least one such node m. We know
that each node has at least one essential position. Choose some π∗ ∈ Peg (n).
Since then π∗ ∼g π∗ and, by (a), also π∗ ∼h π∗ holds, there is some m ∈ Nh

with π∗ ∈ Ph(m). Next we show by induction on the length of π that π ∈ Pg(n)
implies π ∈ Ph(m). If π ∈ Pg(n), then π ∼g π∗. In case that π is essential
in g, we obtain π ∼h π∗ from (a) and thus π ∈ Ph(m). Otherwise, i.e. if π is
redundant in g, we can decompose π into π = π1 · π2 · π3 such that π2 and π3
are non-empty and π1 ∼g π1 · π2. By Lemma 8.4, we can assume that π1 and
π1 · π2 are essential in g. Hence, π1 ∼g π1 · π2 implies, by (a), that π1 ∼h π1 · π2.
Moreover, π1 ∼g π1 · π2 means that the prefix π1 · π2 of π can be replaced by π1
in g, i.e. π1 · π3 ∈ Pg(n). Since π1 · π3 is strictly shorter than π, we can apply
the induction hypothesis to obtain that π1 · π3 ∈ Ph(m). From this and from
π1 ∼h π1 · π2 we can then conclude that π1 · π2 · π3 ∈ Ph(m).

Using Lemma 3.12, we can see that φ is a ∆-homomorphism from g to h:
condition (a) of Lemma 3.12 follows immediately from the construction of φ and
condition (b) of Lemma 3.12 follows from (b) since each node has at least one
essential position.

Consequently, we immediately obtain a characterisation of the simple partial
order ≤S

⊥ in terms of essential positions:

Corollary 8.7 (essential positions characterise ≤S
⊥). Let g, h ∈ G∞(Σ⊥). Then

g ≤S
⊥ h iff the following conditions are met:

414

(a) π ∼g π′ =⇒ π ∼h π′ for all π, π′ ∈ Pe(g)

(b) g(π) = h(π) for all π ∈ Pe(g) with g(π) ∈ Σ.

The above characterisation allows us to prove that the lub of a finite number
of finite term graphs can only be finite as well:

Proposition 8.8 (lub of finite term graphs is finite). For each finite set G ⊆fin
GC(Σ⊥) with an upper bound in (G∞C (Σ⊥),≤S

⊥), we have ⊔G ∈ GC(Σ⊥).

Proof. Let G ⊆fin GC(Σ⊥) be a finite set with upper bound ĝ. If G is empty,
then ⊔G = ⊥ ∈ GC(Σ⊥). Otherwise, we know, by Proposition 2.1, that the
complete semilattice (G∞C (Σ⊥),≤S

⊥) is also bounded complete. Hence, G has a
least upper bound g. Since g is an upper bound of G, we find for each g ∈ G a
⊥-homomorphism φg : g →⊥ g. Let N = ⋃

g∈G Im(φg) be the combined image of
those ⊥-homomorphisms. Since each g ∈ G is finite, also their image Im(φg) is
finite and thus so is N . We conclude the proof by showing that Ng ⊆ N , which
proves that g is finite.

We show that n ∈ Ng implies n ∈ N by induction on depthg(n). If depthg(n) =
0, then n = rg. Choose some g ∈ G. Since then φg(rg) = rg, we have
that n ∈ Im(φg) ⊆ N . If depthg(n) > 0, then there is some m ∈ Ng with
depthg(m) < depthg(n) and sucgi (m) = n for some i. Hence, we can apply the
induction hypothesis which yields that m ∈ N . Since m has a successor in g,
we have that labg(m) ∈ Σ. Construct the term graph ĝ from g by relabelling m
to ⊥ and removing all its outgoing edges as well as all nodes that thus become
unreachable. The mapping φ : N ĝ → Ng given by φ(n̂) = n̂ for all n̂ ∈ N ĝ is a
⊥-homomorphism. Thus C(ĝ) <S

⊥ g. However, since g is the least upper bound
of G, C(ĝ) cannot be an upper bound of G. But, for each g ∈ G, the mapping φg
is also a ⊥-homomorphism from g to ĝ provided each m′ ∈ Ng with φg(m′) = m
is labelled ⊥ in g. Since this cannot be the case for all g ∈ G, we find some
g ∈ G,m′ ∈ Ng such that φg(m′) = m and labg(m′) ∈ Σ. Since φg is then
homomorphic in m′, we know that m′ has an i-th successor in g such that

φg(sucgi (m′)) = sucgi (φg(m′)) = sucgi (m) = n.

Hence, n ∈ Im(φg) ⊆ N .

8.2 Ideal Completion
In this section, we shall show that the set G∞C (Σ⊥) of (potentially infinite) canon-
ical term graphs can be constructed from the set GC(Σ⊥) of finite canonical term
graphs via the ideal completion of the partially ordered set (GC(Σ⊥),≤S

⊥).
Given a partially order set, its ideal completion provides an extension of the

original partially ordered set that is a cpo.

Definition 8.9 (ideal, ideal completion). Let (A,≤) be a partially ordered set
and B ⊆ A.

(i) The set B is called downward-closed if for all a ∈ A, b ∈ B with a ≤ b, we
have that a ∈ B.

415

(ii) The set B is called an ideal if it is directed and downward-closed. We write
Idl(A,≤) to denoted the set of all ideals of (A,≤).

(iii) The ideal completion of (A,≤), is the partially ordered set (Idl(A,≤),⊆).

For terms, we already know that the set of (potentially infinite) terms can
be constructed by forming the ideal completion of the partially ordered set
(T (Σ⊥),≤⊥) of finite terms.

Theorem 8.10 (ideal completion of terms, Berry and Lévy [12]). The ideal
completion of (T (Σ⊥),≤⊥) is order isomorphic to (T ∞(Σ⊥),≤⊥).

We show an analogous result for term graphs:

Theorem 8.11 (ideal completion of term graphs). The ideal completion of the
partially ordered set (GC(Σ⊥),≤S

⊥) is order isomorphic to (G∞C (Σ⊥),≤S
⊥).

Proof. Let I be the set Idl(GC(Σ⊥),≤S
⊥) of ideals in (GC(Σ⊥),≤S

⊥). To prove that
(I,⊆) and (G∞C (Σ⊥),≤S

⊥) are order isomorphic, we will construct two monotonic
functions φ : G∞C (Σ⊥)→ I and ψ : I → G∞C (Σ⊥), and show that they are inverses
of each other.

Define the function φ as follows: φ(g) =
{
h ∈ GC(Σ⊥)

∣∣∣h ≤S
⊥ g

}
for all g ∈

G∞C (Σ⊥). We have to show that φ(g) is indeed an ideal for each g ∈ GC(Σ⊥). By
definition, φ(g) is downward-closed. To show that it is directed, let h1, h2 ∈ φ(g),
i.e. h1, h2 ≤S

⊥ g. By Proposition 8.8, {h1, h2} has a least upper bound h in
GC(Σ⊥). Since g is an upper bound of {h1, h2}, we have h ≤S

⊥ g and thus h ∈ φ(g).
Monotonicity of φ follows immediately from its definition.
Define the function ψ as follows: ψ(G) = ⊔

G for all G ∈ I. Since, according
to Theorem 4.4, (G∞C (Σ⊥),≤S

⊥) is a cpo, we know that ψ is well-defined. The
monotonicity of ψ follows immediately from its definition.

Finally, we show that φ and ψ are inverses of each other. At first we show
that ψ(φ(g)) = g for all g ∈ G∞C (Σ⊥), i.e. g = ⊔

φ(g). By definition of φ, we
already know that g is an upper bound of φ(g). To show that it is the least upper
bound, we assume that g ∈ G∞C (Σ⊥) is an upper bound of φ(g) and show that
g ≤S

⊥ g. We will do that by using Corollary 4.3.
(a) Let π1 ∼g π2 and let d = max {|π1| , |π2|}. Then, according to Corol-

lary 5.8, also π1 ∼g†d π2. Moreover, by Proposition 8.2, g†d is finite and, by
Corollary 5.9, g†d ≤S

⊥ g. Hence, since g†d ∈ φ(g) and thus g†d ≤S
⊥ g. This means

that π1 ∼g†d π2 implies π1 ∼g π2, according to Corollary 4.3.
(b) Let g(π) = f ∈ Σ and let d = 1 + |π|. Then, according to Corollary 5.8,

also g†d(π) = f . As for (a), we know that g†d ≤S
⊥ g, which implies g(π) = f , by

Corollary 4.3.
Lastly, we show that φ(ψ(G)) = G for all G ∈ I. The inclusion φ(ψ(G)) ⊇ G

is easy to prove: if g ∈ G, then g ≤S
⊥
⊔
G and therefore g ∈ φ(ψ(G)). For the

converse inclusion assume that h ∈ φ(ψ(G)), i.e. h ∈ GC(Σ⊥) with h ≤S
⊥
⊔
G.

We claim that there is some ĥ ∈ G with h ≤S
⊥ ĥ. Since G is downward-closed,

this then implies h ∈ G. We conclude this proof by constructing a ĥ ∈ G with
h ≤S

⊥ ĥ.
Let g = ⊔

G. Since h ≤S
⊥ g, we have by Corollary 8.7 that π ∼h π′ implies

π ∼g π′ for all π, π′ ∈ Pe(h). In turn, π ∼g π′ implies by Theorem 4.4, that there

416

is some g ∈ G with π ∼g π′. According to Proposition 8.5, the set Pe(h) is finite
and thus there are only finitely many pairs π, π′ ∈ Pe(h). Hence, we find a finite
set H ⊆ G such that for each π, π′ ∈ Pe(h) with π ∼h π′ there is a g ∈ H with
π ∼g π′. Since H is a finite subset of the directed set G, there is some h1 ∈ G
that is an upper bound of H. Consequently, for each π, π′ ∈ Pe(h) with π ∼h π′,
we have π ∼h1 π

′ by Corollary 8.7.
By a similar argument we find some h2 ∈ G such that for each π ∈ Pe(h)

with h(π) = f ∈ Σ, we have h2(π) = f . Since G is directed, we find some ĥ ∈ G
with h1, h2 ≤S

⊥ ĥ. Hence, by Corollary 8.7, for all π, π′ ∈ Pe(h), we have that
π ∼h π′ implies π ∼

ĥ
π′ and that h(π) = f ∈ Σ implies ĥ(π) = f . According to

Corollary 8.7, this means that h ≤S
⊥ ĥ.

The above theorem show a certain completeness of the partial order ≤S
⊥ in the

sense that it allows us to canonically construct the set of term graphs G∞C (Σ⊥)
from the set of finite term graphs GC(Σ⊥). More concretely, an infinite term graph
g ∈ G∞C (Σ⊥) can be constructed by a limit construction involving only finite term
graphs, viz. g = ⊔{

h ∈ GC(Σ⊥)
∣∣∣h ≤S

⊥ g
}
. In fact, such a construction can also

be achieved by the limit inferior of a sequence of finite graphs since we have that
g = lim infd→ω g†d.

Such a representation of infinite term graphs as a lub or a limit inferior of a
sequence of finite term graphs is not possible for the rigid partial order ≤R

⊥. For
example, there is no set of finite term graphs G whose lub is the term graph hω
from Figure 5d w.r.t. the partial order ≤R

⊥. The reason is that no finite term
graph g with g ≤R

⊥ hω has a node labelled b at position 〈0〉.

8.3 Metric Completion
In this section, we shall show that the set G∞C (Σ) of (potentially infinite) canonical
term graphs can also be obtained as the metric completion of the metric space
(GC(Σ),d†) of finite term graphs endowed with the simple metric d†.

Analogous to the ideal completion of partially ordered sets, the metric com-
pletion extends a metric spaces to a complete metric space.

Definition 8.12. Let (M,d) be a metric space. The closure of a subset N ⊆M ,
denoted Cl (N), is the set {x ∈M |x is the limit of a sequence in N }. A subset
N ⊆M is called dense if Cl (N) = M . A complete metric space (M•,d•) is called
the metric completion of (M,d) if there is an isometric embedding φ from (M,d)
into (M•,d•) and if the image Im(φ) of φ is dense in (M•,d•).

The metric completion of a metric space is unique up to isometry.
Again, for terms, we already know that we can construct the set of (potentially

infinite) terms T ∞(Σ) as the metric completion of the metric space (T (Σ),d) of
finite terms.

Theorem 8.13 (metric completion of terms, Barr [11]). The metric completion
of (T (Σ),d) is the metric space (T ∞(Σ),d).

Analogously, we can show that the metric space (G∞C (Σ),d†) of (potentially in-
finite) term graphs arises as the metric completion of the metric space (GC(Σ),d†)
of finite term graphs.

417

Theorem 8.14 (metric completion of term graphs). The metric completion of
(GC(Σ),d†) is the metric space (G∞C (Σ),d†).

Proof. Since GC(Σ) is a subset of G∞C (Σ), we can define the isometric embedding
φ : GC(Σ) → G∞C (Σ) by setting φ(g) = g. It only remains to be shown that
Im(φ) = GC(Σ) is dense in (G∞C (Σ),d†). This is achieved by showing that for each
g ∈ G∞C (Σ) we find a sequence (gi)i<ω in GC(Σ) that converges to g. From its
definition it is clear that the simple truncation is idempotent, i.e. (g†d)†d = g†d.
for all d < ω. Hence, by Lemma 5.4, the sequence (g†d)d<ω converges to g in
(G∞C (Σ),d†). Moreover, according to Proposition 8.2, (g†d)d<ω is a sequence in
GC(Σ).

The above theorem shows that the metric d† is complete in the sense that it
allows us to construct the set of term graphs G∞C (Σ) from the set of finite term
graphs GC(Σ) in a canonical way. More concretely, each term graph g ∈ G∞C (Σ)
can be constructed as the limit of a sequence of finite term graphs, viz. g =
limd→ω g†d.

We cannot obtain such a completeness result for the rigid metric d‡. For
instance, consider the term graph hω from Figure 5d. For each d > 1, the rigid
truncation hω‡d of hω is equal to hω itself. Hence, there is no finite term graph
g with a similarity sim‡(g, hω) > 1, which means, according to Lemma 5.4, that
there is no sequence of finite term graphs that converges to hω in (G∞C (Σ),d‡).

9 Conclusions & Outlook
We have devised two independently defined but closely related infinitary calculi
of term graph rewriting. Whilst this is not the first proposal for infinitary term
graph rewriting calculi, we gave several arguments why the present approach is
superior to our previous approach [8]: it is more natural, simpler and less restric-
tive. Due to the findings we have obtained here, we are very confident that we
found two appropriate notions of convergence that generalise the corresponding
notions of convergence on terms. Further evidence for that can be obtained by
investigating strong notions of convergence that can be derived from the weak
notions that we have studied here [9].

There is, however, one aspect of our notion of convergence that might be in-
terpreted as an argument against its appropriateness. On term graphs, we do not
obtain the correspondence between p- and m-convergence known from infinitary
term rewriting; cf. Theorem 2.4. The underlying reason for the discrepancy is the
fact that the partial order on term graphs ≤S

⊥ does not only capture the level of
partiality – like ≤⊥ does on terms – but also the degree of sharing. However, this
discrepancy might just be a manifestation of the fundamental difference between
terms and term graphs – namely sharing. And, in fact, when turning to strong
convergence, we regain the correspondence between p- and m-convergence [9].

Unfortunately, we do not have solid soundness or completeness results apart
from the preservation of convergence under unravelling and the metric/ideal com-
pletion construction of the set of term graphs. Even establishing soundness turns
out to be difficult in the setting of weak convergence. Again the picture changes
considerably once we move to strong convergence [9].

418

Acknowledgement

The author wishes to thank Clemens Grabmayer for his remarks on an earlier
version of this paper.

Bibliography

[1] Z. Ariola and S. Blom. Skew and ω-Skew Confluence and Abstract Böhm
Semantics. In A. Middeldorp, V. van Oostrom, F. van Raamsdonk, and
R. de Vrijer, editors, Processes, Terms and Cycles: Steps on the Road to
Infinity, volume 3838 of Lecture Notes in Computer Science, pages 368–
403. Springer Berlin / Heidelberg, 2005. ISBN 978-3-540-30911-6. doi:
10.1007/11601548_19.

[2] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with
letrec. Annals of Pure and Applied Logic, 117(1-3):95–168, 2002. ISSN 0168-
0072. doi: 10.1016/S0168-0072(01)00104-X.

[3] Z. M. Ariola and J. W. Klop. Lambda Calculus with Explicit Recursion.
Information and Computation, 139(2):154–233, 1997. ISSN 0890-5401. doi:
10.1006/inco.1997.2651.

[4] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and
topological properties. Fundamenta Informaticae, 3(4):445–476, 1980.

[5] P. Bahr. Infinitary Rewriting - Theory and Applications. Master’s thesis,
Vienna University of Technology, Vienna, 2009.

[6] P. Bahr. Abstract Models of Transfinite Reductions. In C. Lynch, editor,
Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 49–66, Dagstuhl, Germany, 2010. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2010.49.

[7] P. Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees.
In C. Lynch, editor, Proceedings of the 21st International Conference
on Rewriting Techniques and Applications, volume 6 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 67–84, Dagstuhl, Ger-
many, 2010. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2010.67.

[8] P. Bahr. Modes of Convergence for Term Graph Rewriting. In
M. Schmidt-Schauß, editor, 22nd International Conference on Rewrit-
ing Techniques and Applications (RTA’11), volume 10 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 139–154, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.RTA.2011.139.

419

http://dx.doi.org/10.1007/11601548_19
http://dx.doi.org/10.1007/11601548_19
http://dx.doi.org/10.1016/S0168-0072(01)00104-X
http://dx.doi.org/10.1006/inco.1997.2651
http://dx.doi.org/10.1006/inco.1997.2651
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.139
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.139

[9] P. Bahr. Infinitary Term Graph Rewriting is Simple, Sound and Com-
plete. In A. Tiwari, editor, 23rd International Conference on Rewrit-
ing Techniques and Applications (RTA’12), volume 15 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 69–84, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2012.69.

[10] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In P. C. T. de
Bakker A. J. Nijman, editor, Parallel Architectures and Languages Europe,
Volume II: Parallel Languages, volume 259 of Lecture Notes in Computer
Science, pages 141–158. Springer Berlin / Heidelberg, 1987. doi: 10.1007/3-
540-17945-3_8.

[11] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Com-
puter Science, 114(2):299–315, 1993. ISSN 0304-3975. doi: 10.1016/0304-
3975(93)90076-6.

[12] G. Berry and J.-J. Lévy. Minimal and optimal computations of recursive
programs. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 215–226, New
York, NY, USA, 1977. ACM. doi: 10.1145/512950.512971.

[13] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, rewrite, rewrite,
rewrite, rewrite, ... Theoretical Computer Science, 83(1):71–96, 1991. ISSN
0304-3975. doi: 10.1016/0304-3975(91)90040-9.

[14] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
Algebra Semantics and Continuous Algebras. Journal of the ACM, 24(1):
68–95, 1977. ISSN 0004-5411. doi: 10.1145/321992.321997.

[15] P. Henderson and J. H. Morris Jr. A lazy evaluator. In Proceedings of
the 3rd ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pages 95–103, New York, NY, USA, 1976. ACM. doi:
10.1145/800168.811543.

[16] J. Hughes. Why Functional Programming Matters. The Computer Journal,
32(2):98–107, 1989. doi: 10.1093/comjnl/32.2.98.

[17] G. Kahn and G. D. Plotkin. Concrete domains. Theoretical Computer
Science, 121(1-2):187–277, 1993. ISSN 0304-3975. doi: 10.1016/0304-
3975(93)90090-G.

[18] J. L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics.
Springer-Verlag, 1955. ISBN 0387901256.

[19] R. Kennaway. On transfinite abstract reduction systems. Technical report,
CWI (Centre for Mathematics and Computer Science), Amsterdam, 1992.

[20] R. Kennaway and F.-J. de Vries. Infinitary Rewriting. In Terese, editor,
Term Rewriting Systems, chapter 12, pages 668–711. Cambridge University
Press, 1st edition, 2003. ISBN 9780521391153.

420

http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69
http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1016/0304-3975(93)90076-6
http://dx.doi.org/10.1016/0304-3975(93)90076-6
http://dx.doi.org/10.1145/512950.512971
http://dx.doi.org/10.1016/0304-3975(91)90040-9
http://dx.doi.org/10.1145/321992.321997
http://dx.doi.org/10.1145/800168.811543
http://dx.doi.org/10.1145/800168.811543
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1016/0304-3975(93)90090-G
http://dx.doi.org/10.1016/0304-3975(93)90090-G

[21] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. On the adequacy
of graph rewriting for simulating term rewriting. ACM Transactions on
Programming Languages and Systems, 16(3):493–523, 1994. ISSN 0164-0925.
doi: 10.1145/177492.177577.

[22] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite
Reductions in Orthogonal Term Rewriting Systems. Information and Com-
putation, 119(1):18–38, 1995. ISSN 0890-5401. doi: 10.1006/inco.1995.1075.

[23] S. Marlow. Haskell 2010 Language Report, 2010.

[24] S. Peyton-Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987. ISBN 013453333X.

[25] R. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming and
Parallel Graph Rewriting. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1993. ISBN 0201416638.

[26] D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski,
and G. Rozenberg, editors, Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 2: Applications, Languages, and Tools,
pages 3–61. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1999. ISBN 981-02-4020-1.

[27] Terese. Term Rewriting Systems. Cambridge University Press, 1st edition,
2003. ISBN 9780521391153.

421

http://dx.doi.org/10.1145/177492.177577
http://dx.doi.org/10.1006/inco.1995.1075

Infinitary Term Graph Rewriting is Simple, Sound and
Complete

Patrick Bahr

Department of Computer Science, University of Copenhagen

Abstract

Based on a simple metric and a simple partial order on term graphs, we
develop two infinitary calculi of term graph rewriting. We show that, sim-
ilarly to infinitary term rewriting, the partial order formalisation yields a
conservative extension of the metric formalisation of the calculus. By show-
ing that the resulting calculi simulate the corresponding well-established in-
finitary calculi of term rewriting in a sound and complete manner, we argue
for the appropriateness of our approach to capture the notion of infinitary
term graph rewriting.

Contents
Introduction 424

1 Infinitary Term Rewriting 425

2 Graphs and Term Graphs 427

3 Two Simple Modes of Convergence for Term Graphs 430

4 Infinitary Term Graph Rewriting 431
4.1 Reduction Contexts . 433
4.2 Strong Convergence . 434
4.3 Normalisation of Strong p-convergence 436

5 Soundness and Completeness Properties 437

6 Conclusions 441

Bibliography 442

A Proofs 444
A.1 Homomorphisms . 444
A.2 Reduction Contexts . 445

A.2.1 Proof of Lemma 4.5 . 446
A.2.2 Proof of Proposition 4.7 . 447

A.3 Strong Convergence . 449

423

A.3.1 Auxiliary Lemmas . 449
A.3.2 Proof of Lemma 4.11 . 453
A.3.3 Proof of Lemma 4.12 . 453

A.4 Normalisation of Strong p-convergence 454
A.5 Soundness of Strong p-convergence 454

Introduction
Term graph rewriting provides an efficient technique for implementing term re-
writing by avoiding duplication of terms and instead relying on pointers in order
to refer to a term several times [7]. Due to cycles, finite term graphs may rep-
resent infinite terms, and, correspondingly, finite term graph reductions may
represent transfinite term reductions. Kennaway et al. [15] showed that finite
term graph reductions simulate a restricted class of transfinite term reductions,
called rational reductions, in a sound and complete manner via the unravelling
mapping U (·) from term graphs to terms. More precisely, given a term graph
rewriting system R and a finite term graph g, we have for each finite term graph
reduction g →∗R h, a rational term reduction U (g)�U(R) U (h) (soundness), and
conversely, for each rational term reduction U (g)�U(R) t, there is a term graph
reduction g →∗R h and a rational term reduction t �U(R) U (h) (completeness).
Since term graph reduction steps may contract several term redexes simultan-
eously, the completeness result has to be formulated in this weaker form. Note,
however, that this completeness property subsumes completeness of normalising
reductions: for each rational reduction U (g) �U(R) t to a normal form t, there
is a reduction g →∗R h with U (h) = t.

In this paper, we aim to resolve the asymmetry in the comparison of term
rewriting and term graph rewriting by studying transfinite term graph reduc-
tions. To this end, we develop two infinitary calculi of term graph rewriting by
generalising the notions of strong convergence on terms, based on a metric [14]
resp. partial order [4], to term graphs. Instead of the complicated structures that
we have used in our previous approach to weak convergence on term graphs [5],
we adopt a rather simple and intuitive metric resp. partial order [6].

After summarising the basic theory of infinitary term rewriting (Section 1) and
the fundamental concepts concerning term graphs (Section 2), we present a metric
and a partial order on term graphs (Section 3). Based on these two structures,
we define the notions of strong m-convergence resp. strong p-convergence and
show that – akin to term rewriting – both coincide on total term graphs and that
strong p-convergence is normalising (Section 4).

In Section 5, we present the main result of this paper: strongly p-converging
term graph reductions are sound and complete w.r.t. strongly p-converging term
reductions in the sense of Kennaway et al. [15] explained above.

This result comes with some surprise, though, as Kennaway et al. [15] argued
that infinitary term graph rewriting cannot adequately simulate infinitary term
rewriting. In particular, they present a counterexample for the completeness of
an informally defined infinitary calculus of term graph rewriting. This counter-
example indeed shows that strongly m-converging term graph reductions are not
complete for strongly m-converging term reductions.

424

However, using the correspondence between strong p-convergence and m-
convergence, we can derive soundness of the metric calculus from the soundness
of the partial order calculus. Moreover, we prove that the metric calculus is still
complete for normalising reductions. We thus argue that strong m-convergence,
too, can be adequately simulated by term graph rewriting. In fact, in their ori-
ginal work on term graph rewriting [7], Barendregt et al. showed completeness
only for normalising reductions in order to argue for the adequacy of acyclic finite
term graph rewriting for simulating finite term rewriting.

We did not include all proofs in the main body of this paper. The missing
proofs can be found in Appendix A.

1 Infinitary Term Rewriting
We assume familiarity with the basic theory of term rewriting [18], ordinal num-
bers, orders and topological spaces [13]. Below, we give an outline of infinitary
term rewriting [4, 14].

We denote ordinal numbers by lower case Greek letters α, β, γ, λ, ι. A sequence
S of length α in a set A, written (aι)ι<α, is a function from α to A with ι 7→ aι
for all ι ∈ α. We write |S| for the length α of S. If α is a limit ordinal, S is called
open; otherwise it is called closed. Given two sequences S, T , we write S · T to
denote their concatenation and S ≤ T (resp. S < T) if S is a (proper) prefix of
T . The prefix of T of length β ≤ |T | is denoted T |β. For a set A, we write A∗ to
denote the set of finite sequences over A. For a finite sequence (ai)i<n ∈ A∗, we
also write 〈a0, a1, . . . , an−1〉. In particular, 〈〉 denotes the empty sequence.

We consider the sets T ∞(Σ) and T (Σ) of (possibly infinite) terms resp. finite
terms over a signature Σ. Each symbol f has an associated arity ar(f), and we
write Σ(n) for the set of symbols in Σ with arity n. For rewrite rules, we consider
the signature ΣV = Σ] V that extends the signature Σ with a set V of nullary
variable symbols. For terms s, t ∈ T ∞(Σ) and a position π ∈ P(t) in t, we write
t|π for the subterm of t at π, t(π) for the symbol in t at π, and t[s]π for the term
t with the subterm at π replaced by s.

A term rewriting system (TRS) R is a pair (Σ, R) consisting of a signature
Σ and a set R of term rewrite rules of the form l → r with l ∈ T ∞(ΣV) \ V and
r ∈ T ∞(ΣV) such that all variables occurring in r also occur in l. If the left-hand
side of each rule in a TRS R is finite, then R is called left-finite. Every TRS R
defines a rewrite relation →R as usual: s→R t iff there is a position π ∈ P(s), a
rule ρ : l → r ∈ R, and a substitution σ such that s|π = lσ and t = s[rσ]π. We
write s →π,ρ t in order to indicate the applied rule ρ and the position π. The
subterm s|π is called a redex and is said to be contracted to rσ.

The metric d on T ∞(Σ) that is used in the setting of infinitary term rewriting
is defined by d(s, t) = 0 if s = t and d(s, t) = 2−k if s 6= t, where k is the minimal
depth at which s and t differ. The pair (T ∞(Σ),d) is known to form a complete
ultrametric space [2].

A reduction in a term rewriting system R, is a sequence S = (tι →πι tι+1)ι<α
of reduction steps in R. The reduction S is called strongly m-continuous if
limι→λ tι = tλ and the depths of contracted redexes (|πι|)ι<λ tend to infinity, for
each limit ordinal λ < α. A reduction S is said to strongly m-converge to t,

425

written S : t0 �m R t, if it is strongly m-continuous and either S is closed with
t = tα or S is open with t = limι→α tι and the depths of contracted redexes
(|πι|)ι<α tend to infinity.

Example 1.1. Consider the rule ρ : Y x→ x (Y x) defining the fixed point com-
binator Y in an applicative language. If we use an explicit function symbol @
instead of juxtaposition to denote application, ρ reads @(Y, x) → @(x,@(Y, x)).
Given a term t, we get the reduction

S : Y t→ρ t (Y t)→ρ t (t (Y t))→ρ t (t (t (Y t)))→ρ . . .

which strongly m-converges to the infinite term t (t (. . .)).
As another example, consider the rule ρ′ : f(x) → f(g(x)) and its induced

reduction

T : h(c, f(c))→ρ′ h(c, f(g(c)))→ρ′ h(c, f(g(g(c))))→ h(c, f(g(g(g(c)))))→ρ′ . . .

Although the underlying sequence of terms converges in the metric space
(T ∞(Σ),d), viz. to the infinite term h(c, f(g(g(. . .)))), the reduction T does not
strongly m-converges since the depth of the contracted redexes does not tend to
infinity but instead stays at 1.

The partial order ≤⊥ is defined on partial terms, i.e. terms over signature
Σ⊥ = Σ] {⊥}, with ⊥ a nullary symbol. It is characterised as follows: s ≤⊥ t iff
t can be obtained from s by replacing each occurrence of ⊥ by some partial term.
The pair (T ∞(Σ⊥),≤⊥) forms a complete semilattice [12]. A partially ordered set
(A,≤) is called a complete partial order (cpo) if it has a least element and every
directed subset D of A has a least upper bound (lub) ⊔D in A. If, additionally,
every non-empty subset B of A has a greatest lower bound (glb)

d
B, then (A,≤)

is called a complete semilattice. This means that for complete semilattices the
limit inferior lim infι→α aι = ⊔

β<α

(d
β≤ι<α aι

)
of a sequence (aι)ι<α is always

defined.
In the partial order approach to infinitary rewriting, convergence is defined by

the limit inferior. Since we are considering strong convergence, the positions πι
at which reductions take place are taken into consideration as well. In particular,
we consider, for each reduction step tι →πι tι+1 at position πι, the reduction
context cι = tι[⊥]πι , i.e. the starting term with the redex at πι replaced by ⊥. To
indicate the reduction context cι of a reduction step, we also write tι →cι tι+1. A
reduction S = (tι →cι tι+1)ι<α is called strongly p-continuous if lim infι<λ cι = tλ
for each limit ordinal λ < α. The reduction S is said to strongly p-converge to a
term t, written S : t0 �p R t, if it is strongly p-continuous and either S is closed
with t = tα, or S is open with lim infι<α cι = t. If S : t0 �p R t and t as well as
all tι with ι < α are total, i.e. contained in T ∞(Σ), then we say that S strongly
p-converges to t in T ∞(Σ).

The distinguishing feature of the partial order approach is that, since the
partial order on terms forms a complete semilattice, each continuous reduction
also converges. It provides a conservative extension to strong m-convergence that
allows rewriting modulo meaningless terms [4] by rewriting terms to ⊥ if they
are divergent according to the metric calculus.

426

Example 1.2. Reconsider S and T from Example 1.1. S has the same conver-
gence behaviour in the partial order setting, viz. S : Y t �p t (t (. . .)). However,
while the reduction T does not strongly m-converge, it does strongly p-converge,
viz. T : h(c, f(c))�p h(c,⊥).

The relation between m- and p-convergence illustrated in the examples above
is characteristic: strong p-convergence is a conservative extension of strong m-
convergence.

Theorem 1.3 ([4]). For every reduction S in a TRS the following equivalence
holds:

S : s�m R t iff S : s�p R t in T ∞(Σ).

In the remainder of this paper, we shall develop a generalisation of both strong
m- and p-convergence to term graphs that maintains the above correspondence,
and additionally simulates term reductions in a sound and complete way.

2 Graphs and Term Graphs

The notion of term graphs that we employ in this paper is taken from Barendregt
et al. [7].

Definition 2.1 (graphs). Let Σ be a signature. A graph over Σ is a tuple
g = (N, lab, suc) consisting of a set N (of nodes), a labelling function lab : N → Σ,
and a successor function suc : N → N∗ such that |suc(n)| = ar(lab(n)) for each
node n ∈ N , i.e. a node labelled with a k-ary symbol has precisely k successors.
If suc(n) = 〈n0, . . . , nk−1〉, then we write suci(n) for ni. Moreover, we use the
abbreviation arg(n) for the arity ar(lab(n)) of n in g.

Definition 2.2 (paths, reachability). Let g = (N, lab, suc) be a graph and n,m ∈
N . A path in g from n to m is a finite sequence π ∈ N∗ such that either π is
empty and n = m, or π = 〈i〉 · π′ with 0 ≤ i < arg(n) and the suffix π′ is a path
in g from suci(n) to m. If there exists a path from n to m in g, we say that m is
reachable from n in g.

Definition 2.3 (term graphs). Given a signature Σ, a term graph g over Σ is
a quadruple (N, lab, suc, r) consisting of an underlying graph (N, lab, suc) over Σ
whose nodes are all reachable from the root node r ∈ N . The class of all term
graphs over Σ is denoted G∞(Σ). We use the notation Ng, labg, sucg and rg to
refer to the respective components N ,lab, suc and r of g. Given a graph or a
term graph h and a node n in h, we write h|n to denote the sub-term graph of h
rooted in n, which consists of all nodes reachable from n in h.

Paths in a graph are not absolute but relative to a starting node. In term
graphs, however, we have a distinguished root node from which each node is
reachable. Paths relative to the root node are central for dealing with term
graphs modulo isomorphism:

427

Definition 2.4 (positions, depth, trees). Let g ∈ G∞(Σ) and n ∈ Ng. A position
of n in g is a path in the underlying graph of g from rg to n. The set of all positions
in g is denoted P(g); the set of all positions of n in g is denoted Pg(n). A position
π ∈ Pg(n) is called minimal if no proper prefix π′ < π is in Pg(n). The set of
all minimal positions of n in g is denoted Pmg (n). The depth of n in g, denoted
depthg(n), is the minimum of the lengths of the positions of n in g. For a position
π ∈ P(g), we write nodeg(π) for the unique node n ∈ Ng with π ∈ Pg(n), g(π)
for its symbol labg(n), and g|π for the sub-term graph g|n. The term graph g is
called a term tree if each node in g has exactly one position.

Note that the labelling function of graphs – and thus term graphs – is total.
In contrast, Barendregt et al. [7] considered open (term) graphs with a partial
labelling function such that unlabelled nodes denote holes or variables. This par-
tiality is reflected in their notion of homomorphisms in which the homomorphism
condition is suspended for unlabelled nodes.

Instead of a partial node labelling function, we chose a syntactic approach
that is more flexible and closer to the representation in terms. Variables, holes
and “bottoms” are labelled by a distinguished set of constant symbols and the
notion of homomorphisms is parametrised by a set of constant symbols ∆ for
which the homomorphism condition is suspended:

Definition 2.5 (∆-homomorphisms). Let Σ be a signature, ∆ ⊆ Σ(0), and g, h ∈
G∞(Σ). A function φ : Ng → Nh is called homomorphic in n ∈ Ng if the following
holds:

labg(n) = labh(φ(n)) (labelling)
φ(sucgi (n)) = suchi (φ(n)) for all 0 ≤ i < arg(n) (successor)

A ∆-homomorphism φ from g to h, denoted φ : g →∆ h, is a function φ : Ng →
Nh that is homomorphic in n for all n ∈ Ng with labg(n) 6∈ ∆ and satisfies
φ(rg) = rh.

Note that, in contrast to Barendregt et al. [7], we require that root nodes are
mapped to root nodes. This additional requirement makes our generalised notion
of homomorphisms more akin to that of Barendsen [8]: for ∆ = ∅, we obtain his
notion of homomorphisms.

Nodes labelled with a symbol from ∆ can be thought of as holes in the term
graphs, which can be filled with other term graphs. For example, if we have a
distinguished set of variable symbols V ⊆ Σ(0), we can use V-homomorphisms to
formalise the matching of a term graph against a term graph rule, which requires
the instantiation of variables.

Note that ∆-homomorphisms are unique [5], i.e. there is at most one ∆-
homomorphism from one term graph to another. Consequently, whenever there
are two ∆-homomorphisms φ : g →∆ h and ψ : h →∆ g, they are inverses of
each other, i.e. ∆-isomorphisms. If two term graphs are ∆-isomorphic, we write
g ∼=∆ h.

For the two special cases ∆ = ∅ and ∆ = {σ}, we write φ : g → h resp.
φ : g →σ h instead of φ : g →∆ h and call φ a homomorphism resp. a σ-
homomorphism. The same convention applies to ∆-isomorphisms.

428

Since we are studying modes of convergence over term graphs, we want to
reason modulo isomorphism. The following notion of canonical term graphs will
allow us to do that:

Definition 2.6 (canonical term graphs). A term graph g is called canonical if
n = Pg(n) for each n ∈ Ng. The set of all canonical term graphs over Σ is
denoted G∞C (Σ).

For each term graph g, we can give a unique canonical term graph C(g)
isomorphic to g:

NC(g) = {Pg(n) |n ∈ N }
rC(g) = Pg(r)

labC(g)(Pg(n)) = lab(n)

sucC(g)i (Pg(n)) = Pg(suci(n)) for all n ∈ N, 0 ≤ i < arg(n)

As we have shown previously [5], this indeed yields a canonical representation of
term graphs, viz. g ∼= h iff C(g) = C(h) for all term graphs g, h.

Note that the set of nodes NC(g) above forms a partition of the set of positions
in g. We write ∼g for the equivalence relation on P(g) that is induced by this
partition. That is, π1 ∼g π2 iff nodeg(π1) = nodeg(π2). The structure of a
term graph g is uniquely determined by its set of positions P(g), the labelling
g(·) : π 7→ g(π), and the equivalence ∼g. We will call such a triple (P(g), g(·),∼g)
a labelled quotient tree. Labelled quotient trees uniquely represent term graphs
up to isomorphism. In other words: labelled quotient trees uniquely represent
canonical term graphs. For a more axiomatic treatment of labelled quotient tree
that studies these relationships, we refer to our previous work [5].

We can characterise ∆-homomorphisms in terms of labelled quotient trees:

Lemma 2.7 ([5]). Given g, h ∈ G∞(Σ), there is a φ : g →∆ h iff the following
holds for all π, π′ ∈ P(g):

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

Intuitively, (a) means that h has at least as much sharing of nodes as g has,
whereas (b) means that h has at least the same non-∆-symbols as g.

Given a term tree g, the equivalence ∼g is the identity relation IP(g) on P(g),
i.e. π1 ∼g π2 iff π1 = π2. There is an obvious one-to-one correspondence between
canonical term trees and terms: a term t ∈ T ∞(Σ) corresponds to the canonical
term tree given by the labelled quotient tree (P(t), t(·), IP(t)). We thus consider
the set of terms T ∞(Σ) as the subset of term trees in G∞C (Σ).

With this correspondence in mind, we define the unravelling of a term graph g,
denoted U (g), as the unique term t such that there is a homomorphism φ : t→ g.

Example 2.8. Consider the term graphs g2 and h0 illustrated in Figure 1. The
unravelling of g2 is the term @(f,@(f,@(Y, f))) whereas the unravelling of the
cyclic term graph h0 is the infinite term @(f,@(f, . . .)).

429

3 Two Simple Modes of Convergence for Term Graphs
In a previous attempt to generalise the modes of convergence of term rewriting to
term graphs, we developed a metric and a partial order on term graphs that were
both rather complicated [5]. While the resulting notions of weak convergence
have a correspondence similar to that for terms (cf. Theorem 1.3), they are also
limited as we explain below. In this paper, we shall use a much simpler and
more intuitive approach that we recently developed [6], and which we summarise
briefly below.

Like for terms, we move to a signature Σ⊥ = Σ] {⊥} to define a partial
order on term graphs. Term graphs over signature Σ⊥ are also referred to as
partial whereas term graphs over Σ are referred to as total. In order to generalise
the partial order ≤⊥ on terms to term graphs, we make use of the observation
that ⊥-homomorphisms characterise the partial order ≤⊥: given two terms s, t ∈
T ∞(Σ⊥), we have s ≤⊥ t iff there is a ⊥-homomorphism φ : s →⊥ t. In our
previous work, we have used a restricted form of ⊥-homomorphisms in order to
define a partial order on term graphs [5]. In this paper, however, we simply take
⊥-homomorphism as the definition of the partial order on term graphs. The
simple partial order ≤S

⊥ on G∞C (Σ⊥) is defined as follows: g ≤S
⊥ h iff there is

a ⊥-homomorphism φ : s →⊥ t. Hence, we get the following characterisation,
according to Lemma 2.7:

Corollary 3.1. Let g, h ∈ G∞C (Σ⊥). Then g ≤S
⊥ h iff, for all π, π′ ∈ P(g), we

have

(a) π ∼g π′ =⇒ π ∼h π′ (b) g(π) = h(π) if g(π) ∈ Σ.

With this partial order on term graphs, we indeed get a complete semilattice:

Theorem 3.2 ([6]). The pair (G∞C (Σ⊥),≤S
⊥) forms a complete semilattice. In

particular, the limit inferior of a sequence (gι)ι<α is given by the labelled quotient
tree (P,∼, l):

P =
⋃

β<α

{
π ∈ P(gβ)

∣∣ ∀π′ < π∀β ≤ ι < α : gι(π′) = gβ(π′)
}

∼ = (P × P) ∩
⋃

β<α

⋂
β≤ι<α ∼gι

l(π) =
{
gβ(π) if ∃β < α∀β ≤ ι < α : gι(π) = gβ(π)
⊥ otherwise

for all π ∈ P

In order to generalise the metric d on terms to term graphs, we need to
formalise what it means for two term graphs to be “equal” up to a certain depth.
To this end, we define for each term graph g ∈ G∞(Σ⊥) and d ∈ N the simple
truncation g†d as the term graph obtained from g by relabelling each node at
depth d with ⊥ and (thus) removing all nodes at depth greater than d. The
distance d†(g, h) between two term graphs g, h ∈ G∞(Σ) is then defined as 0 if
g ∼= h and otherwise as 2−d with d the greatest d ∈ N with g†d ∼= h†d. This
definition indeed yields a complete ultrametric space:

430

Theorem 3.3 ([6]). The pair (G∞C (Σ),d†) forms a complete ultrametric space.
In particular, the limit of each Cauchy sequence (gι)ι<α is given by the labelled
quotient tree (P, l,∼):

P = lim inf
ι→α P(gι) =

⋃

β<α

⋂

β≤ι<α
P(gι) ∼ = lim inf

ι→α ∼gι =
⋃

β<α

⋂

β≤ι<α
∼gι

l(π) = gβ(π) for some β < α with gι(π) = gβ(π) for each β ≤ ι < α

The metric space that we have previously studied [5] was similarly defined
in terms of a truncation. However, we used a much more complicated notion of
truncation that would retain certain nodes of depth greater than d.

Similarly to the corresponding modes of convergence on terms, we have the
equality limι→α gι = lim infι→α gι for any sequence of total term graphs (gι)ι<α
that converges in the metric space (G∞C (Σ⊥),d†). However, unlike in the setting
of terms, the converse is not true! That is, if lim infι→α gι is a total term graph,
then it is not necessarily equal to limι→α gι – in fact, (gι)ι<α might not even
converge at all. As a consequence, we are not able to obtain a correspondence in
the vein of Theorem 1.3 for weak convergence. In the next section, we will show
that we do, however, obtain such a correspondence for strong convergence.

Note that the more restrictive partial order and metric space that we have
studied in our previous work [5] does yield the above described correspondence
for weak convergence. However, this result comes at the expense of generality and
intuition: the convergence behaviour illustrated in Figure 1c, which is intuitively
expected and also captured by the partial order ≤S

⊥ and the metric d�, is not
possible in these more restrictive structures [6].

4 Infinitary Term Graph Rewriting
In this paper, we adopt the term graph rewriting framework of Barendregt et
al. [7]. In order to represent placeholders in rewrite rules, this framework uses
variables – in a manner much similar to term rewrite rules. To this end, we
consider a signature ΣV = Σ] V that extends the signature Σ with a set V of
nullary variable symbols.

Definition 4.1 (term graph rewriting systems).
(i) Given a signature Σ, a term graph rule ρ over Σ is a triple (g, l, r) where g

is a graph over ΣV and l, r ∈ Ng such that all nodes in g are reachable from
l or r. We write ρl resp. ρr to denote the left- resp. right-hand side of ρ, i.e.
the term graph g|l resp. g|r. Additionally, we require that for each variable
v ∈ V there is at most one node n in g labelled v and that n is different but
still reachable from l.

(ii) A term graph rewriting system (GRS) R is a pair (Σ, R) with Σ a signature
and R a set of term graph rules over Σ.

The notion of unravelling straightforwardly extends to term graph rules: let ρ
be a term graph rule with ρl and ρr its left- resp. right-hand side term graph. The
unravelling of ρ, denoted U (ρ) is the term rule U (ρl)→ U (ρr). The unravelling
of a GRS R = (Σ, R), denoted U (R), is the TRS (Σ, {U (ρ) | ρ ∈ R}).

431

@l

Y x

@r

@

Y
(ρ1)

@l

Y x

@r

(ρ2)
(a) Term graph rules that unravel to Y x → x (Y x).

@

Y f

(g0)

@

f

(h0)

ρ2

(b) A single ρ2-step.

@

Y f

(g0)

@

f @

Y

(g1)

@

f @

@

Y
(g2)

@

f @

@

(gω)

ρ1 ρ1 ρ1

(c) A strongly m-convergent term graph reduction over ρ1.

Figure 1: Implementation of the fixed point combinator as a term graph rewrite
rule.

Example 4.2. Figure 1a shows two term graph rules which both unravel to the
term rule ρ : Y x → x (Y x) from Example 1.1. Note that sharing of nodes is
used both to refer to variables in the left-hand side from the right-hand side, and
in order to simulate duplication.

Without going into all details of the construction, we describe the application
of a rewrite rule ρ with root nodes l and r to a term graph g in four steps: at
first a suitable sub-term graph of g rooted in some node n of g is matched against
the left-hand side of ρ. This matching amounts to finding a V-homomorphism φ
from the left-hand side ρl to the sub-term graph in g rooted in n, the redex. The
V-homomorphism φ allows us to instantiate variables in the rule with sub-term
graphs of the redex. In the second step, nodes and edges in ρ that are not in ρl
are copied into g, such that each edge pointing to a node m in ρl is redirected to
φ(m). In the next step, all edges pointing to the root n of the redex are redirected
to the root n′ of the contractum, which is either r or φ(r), depending on whether
r has been copied into g or not (because it is reachable from l in ρ). Finally, all
nodes not reachable from the root of (the now modified version of) g are removed.

With h the result of the above construction, this induces a pre-reduction step
ψ : g 7→n,ρ,n′ h from g to h. In order to indicate the underlying GRS R, we also
write ψ : g 7→R h.

The definition of term graph rewriting in the form of pre-reduction steps
is very operational in style. The result of applying a rewrite rule to a term
graph is constructed in several steps by manipulating nodes and edges explicitly.
While this is beneficial for implementing a rewriting system, it is problematic for
reasoning on term graphs modulo isomorphism, which is necessary for introducing
notions of convergence. In our case, however, this does not cause any harm since
the construction of the result term graph of a pre-reduction step is invariant under

432

isomorphism. This observation justifies the following definition of reduction steps:

Definition 4.3. Let R = (Σ, R) be GRS, ρ ∈ R and g, h ∈ G∞C (Σ) with n ∈ Ng

and m ∈ Nh. A tuple φ = (g, n, ρ,m, h) is called a reduction step, written
φ : g →n,ρ,m h, if there is a pre-reduction step φ′ : g′ 7→n′,ρ,m′ h

′ with C(g′) = g,
C(h′) = h, n = Pg′(n′), and m = Ph′(m′). Similarly to pre-reduction steps, we
write φ : g →R h or φ : g → h for short.

In other words, a reduction step is a canonicalised pre-reduction step. Fig-
ures 1b and 1c show various (pre-)reduction steps derived from the rules in Fig-
ure 1a.

4.1 Reduction Contexts
The idea of strong convergence is to conservatively approximate the convergence
behaviour somewhat independently from the actual rules that are applied. Strong
m-convergence in TRSs requires that the depth of the redexes tends to infinity
thereby assuming that anything at the depth of the redex or below is potentially
affected by a reduction step. Strong p-convergence, on the other hand, uses a
better approximation that only assumes that the redex is affected by a reduc-
tion step – not however other subterms at the same depth. To this end strong
p-convergence uses a notion of reduction contexts – essentially the term minus
the redex – for the formation of limits. In this section, we shall devise a corres-
ponding notion of reduction contexts on term graphs and argue for its adequacy
for formalising strong p-convergence. The following definition provides the basic
construction that we shall use:

Definition 4.4. Let g ∈ G∞(Σ⊥) and n ∈ Ng. The local truncation of g at n,
denoted g\n, is obtained from g by labelling n with ⊥ and removing all outgoing
edges from n as well as all nodes that thus become unreachable from the root.

Lemma 4.5. For each g ∈ G∞(Σ⊥) and n ∈ Ng, the local truncation g\n has
the following labelled quotient tree (P, l,∼):

P =
{
π ∈ P(g)

∣∣ ∀π′ < π : π′ 6∈ Pg(n)
}

∼ = ∼g ∩ P × P

l(π) =
{
g(π) if π 6∈ Pg(n)
⊥ if π ∈ Pg(n)

for all π ∈ P

As a corollary of Lemma 4.5 and Corollary 3.1 we obtain the following:

Corollary 4.6. For each g ∈ G∞(Σ⊥) and n ∈ Ng, we have g\n ≤S
⊥ g.

It is also possible – although cumbersome – to show that, given a reduction
step g →n h at node n, the local truncation g\n is isomorphic to the term graph
that is obtained from h by essentially relabelling the positions Pg(n) occurring in
h with⊥. For this term graph, denoted h\[Pg(n)], we then also have h\[Pg(n)] ≤S

⊥
h. By combining this with Corollary 4.6, we eventually obtain the following
fundamental property of reduction contexts:

433

Proposition 4.7. Given a reduction step g →n h, we have g\n ≤S
⊥ g, h.

This means that the local truncation at the root of the redex is preserved
by reduction steps and is therefore an adequate notion of reduction context for
strong p-convergence [3].

4.2 Strong Convergence
Now that we have an adequate notion of reduction contexts, we define strong
p-convergence on term graphs analogously to strong p-convergence on terms. For
strong m-convergence, we simply take the same notion of depth that we already
used for the definition of the simple truncation g†d and thus the simple metric
d†.

Definition 4.8. Let R = (Σ, R) be a GRS.
(i) The reduction context c of a graph reduction step φ : g →n h is the term

graph C(g\n). We write φ : g →c h to indicate the reduction context of a
graph reduction step.

(ii) Let S = (gι →nι gι+1)ι<α be a reduction in R. S is strongly m-continuous
in R if limι→λ gι = gλ and (depthgι(nι))ι<λ tends to infinity for each limit
ordinal λ < α. S strongly m-converges to g in R, denoted S : g0 �m R g, if
it is strongly m-continuous and either S is closed with g = gα or S is open
with g = limι→α gι and (depthgι(nι))ι<α tending to infinity.

(iii) Let S = (gι →cι gι+1)ι<α be a reduction in R⊥ = (Σ⊥, R). S is strongly p-
continuous in R if lim infι→λ cι = gλ for each limit ordinal λ < α. S strongly
p-converges to g in R, denoted S : g0 �p R g, if it is strongly p-continuous
and either S is closed with g = gα or S is open with g = lim infι→α cι.

Note that we have to extend the signature of R to Σ⊥ for the definition of
strong p-convergence. However, we can obtain the total fragment of strong p-
convergence if we restrict ourselves to total term graphs: a reduction (gι →R⊥
gι+1)ι<α strongly p-converging to g is called strongly p-converging to g in G∞C (Σ)
if g as well as each gι is total, i.e. an element of G∞C (Σ).

Example 4.9. Figure 1c illustrates an infinite reduction derived from the rule
ρ1 in Figure 1a. Note that the reduction rule is applied to sub-term graphs
at increasingly large depth. Since additionally, gi†(i + 1) ∼= gω†(i + 1) for all
i < ω, i.e. limi→ω gi = gω, the reduction strongly m-converges to the term graph
gω. Moreover, since each node in gω eventually appears in a reduction context
and remains stable afterwards, we have lim inf i→ω gι = gω. Consequently, the
reduction also strongly p-converges to gω.

The rest of this section is concerned with proving that the above corres-
pondence in convergence behaviour – similarly to infinitary term rewriting (cf.
Theorem 1.3) – is characteristic: strong p-convergence in G∞C (Σ) coincides with
strong m-convergence.

Since the partial order ≤S
⊥ forms a complete semilattice on G∞C (Σ⊥) accord-

ing to Theorem 3.2, we know that strong p-continuity coincides with strong p-
convergence:

434

Proposition 4.10. Each strongly p-continuous reduction in a GRS is strongly
p-convergent.

The two lemmas below form the central properties that link strong m- and
p-convergence:

Lemma 4.11. Let (gι →nι gι+1)ι<α be an open reduction in a GRS R⊥. If S
strongly p-converges to a total term graph, then (depthgι(nι))ι<α tends to infinity.

Lemma 4.12. Let (gι →nι gι+1)ι<α be an open reduction strongly p-converging
to g in a GRS R⊥. If (gι)ι<α is Cauchy and (depthgι(nι))ι<α tends to infinity,
then g ∼= limι→α gι.

The following property, which relates strong m-convergence and -continuity,
follows from the fact that our definition of strong m-convergence on term graphs
instantiates the abstract notion of strong m-convergence developed in our previ-
ous work [3]:

Lemma 4.13. Let S = (gι →nι gι+1)ι<α be an open strongly m-continuous
reduction in a GRS. If (depthgι(nι))ι<α tends to infinity, then S is strongly m-
convergent.

Proof. Special case of Proposition 5.5 from [3]; cf. [9, Thm. B.2.5] for the correct
proof.

Now we have everything in place to prove that strong p-convergence conser-
vatively extends strong m-convergence.

Theorem 4.14. Let R be a GRS and S a reduction in R⊥. We then have that

S : g �m R h iff S : g �p R h in G∞C (Σ).

Proof. Let S = (gι →nι gι+1)ι<α be a reduction in R⊥. We prove the “only if”
direction by induction on α. The case α = 0 is trivial. If α is a successor ordinal,
then the statement follows immediately from the induction hypothesis.

Let α be a limit ordinal. As S : g �m R gα, we know that S|γ : g �m R gγ
for all γ < α. Hence, we can apply the induction hypothesis to obtain that
S|γ : g �p R gγ for each γ < α. Thus, S is strongly p-continuous, which means,
by Proposition 4.10, that S strongly p-converges to some term graph h′. As S
strongly m-converges, we know that (gι)ι<α is Cauchy and that (depthgι(nι))ι<α
tends to infinity. Hence, we can apply Lemma 4.12 to obtain that h′ = limι→α gι =
h, i.e. S : g �p R h. The “in G∞C (Σ)” part follows from S : g �m R h.

We will also prove the “if” direction by induction on α: again, the case α = 0
is trivial and the case that α is a successor ordinal follows immediately from the
induction hypothesis.

Let α be a limit ordinal. As S is strongly p-convergent in G∞C (Σ), we know
that S|γ : g �p R gγ in G∞C (Σ) for all γ < α. Thus, we can apply the induction
hypothesis to obtain that S|γ : g �m R gγ for each γ < α. Hence, S is strongly
m-continuous. As S strongly p-converges in G∞C (Σ), we know from Lemma 4.11
that (depthgι(nι))ι<α tends to infinity. With the strong m-continuity of S, this
yields, according to Lemma 4.13, that S strongly m-converges to some h′. By
Lemma 4.12, we conclude that h′ = h, i.e. S : g �m R h.

435

4.3 Normalisation of Strong p-convergence
In this section we shall show that – similarly to TRSs [4] – GRSs are normalising
w.r.t. strong p-convergence. As for terms, this is a distinguishing feature of strong
p-convergence. For example, the term graph rule (that unravels to) c → c, for
some constant c, yields a system in which c has no normal form w.r.t. strong m-
convergence (or finite reduction or weak p-/m-convergence). If we consider strong
p-convergence however, repeatedly applying the rule to c yields the normalising
reduction c �p ⊥. Term graphs which can be infinitely often contracted at the
root – such as c – are called root-active:

Definition 4.15. Let R be a GRS over Σ and g ∈ G∞C (Σ⊥). Then g is called
root-active if, for each reduction g �p R g′, there is a reduction g′ �p R h to a redex
h in R. The term graph g is called root-stable if, for each reduction g �p R h, h is
not a redex in R.

Similar to the construction of Böhm normal forms [17], the strategy for re-
writing a term graph into normal form is to rewrite root-active sub-term graphs
to ⊥ and non-root-active sub-term graphs to root-stable terms. The following
lemma will allow us to do that:

Lemma 4.16. Let R be a GRS over Σ and g ∈ G∞C (Σ⊥).
(i) If g is root-active, then there is a reduction g �p R ⊥.

(ii) If g is not root-active, then there is a reduction g �p R h to a root-stable
term graph h.

(iii) If g is root-stable, then so is every term graph h with a reduction g �p R h.

In the following, we need to generalise the concatenation of sequences. To
this end, we make use of the fact that the prefix order ≤ on sequences forms a
cpo and thus has lubs for directed sets: let (Sι)ι<α be a sequence of sequences
in a common set. The concatenation of (Sι)ι<α, written

∏
ι<α Sι, is recursively

defined as the empty sequence 〈〉 if α = 0, (∏ι<α′ Sι) · Sα′ if α = α′ + 1, and⊔
γ<α

∏
ι<γ Sι if α is a limit ordinal.

The following lemma shows that we can use the reductions from Lemma 4.16
in order to turn the sub-term graphs of a term graph into root-stable form level
by level:

Lemma 4.17. Let R be a GRS over Σ, g ∈ G∞C (Σ⊥) and d < ω such that g|n
is root-stable for all n ∈ Ng with depthg(n) < d. Then there is a reduction
Sd : g �p R h such that h|n is root-stable for each n ∈ Ng with depthg(n) ≤ d.

Proof. There are only finitely many nodes in g at depth d, say, n0, n1, . . . , nk. Let
πi be a minimal position of ni in g for each i ≤ k. For each i ≤ k, we construct
a reduction Ti : gi �p R gi+1 with g0 = g. Since all sub-term graphs at depth < d
are root stable, each step in Ti takes place at depth ≥ d and thus πi+1 is still a
position in gi+1 of a node at depth d. If gi|πi is root-active, then Lemma 4.16
yields a reduction gi|πi �p R ⊥. Let Ti be the embedding of this reduction into gi
at position πi. Hence, gi+1|πi = ⊥ is root-stable. If gi|πi is not root-active, then
Lemma 4.16 yields a reduction gi|πi �p R g′i to a root-stable term graph g′i. Let

436

Ti be the embedding of this reduction into gi at position πi. Hence, gi+1|πi = g′i
is root-stable.

Define Sd : = ∏
i≤k Ti. Since, by Lemma 4.16, root-stability is preserved by

strongly p-converging reductions, we can conclude that Sd : g �p R gk+1 such that
all sub-term graphs at depth at most d in gk+1 are root-stable.

Note that the assumption that all sub-term graphs at depth < d are root-
stable is crucial. Otherwise, reductions within sub-term graphs at depth d may
take place at depth < d!

Finally, the strategy for rewriting a term graph into normal form is to simply
iterate the reductions that are given by Lemma 4.17 above.

Theorem 4.18. Every GRS R is normalising w.r.t. strongly p-converging reduc-
tions. That is, for each partial term graph g, there is a reduction g �p R h to a
normal form h in R.

Proof. Given a partial term graph g0, take the reductions Sd : gd �p gd+1 from
Lemma 4.17 for each d ∈ N and construct S = ∏

d<ω Sd. By Proposition 4.10, we
have S : g0 �p gω for some gω. As, by Lemma 4.16, root-stability is preserved by
strongly p-converging reductions, and each reduction Sd increases the depth up
to which sub-term graphs are root-stable, we know that each sub-term graph of
gω is root-stable, i.e. gω is a normal form.

The ability of strong p-convergence to normalise any term graph will be a
crucial component of the proof of completeness of infinitary term graph rewriting.

5 Soundness and Completeness Properties
In this section, we will study the relationship between GRSs and the correspond-
ing TRSs they simulate. In particular, we will show the soundness of GRSs w.r.t.
strong convergence and a restricted form of completeness. To this end we make
use of the isomorphism between terms and canonical term trees as outlined at
the end of Section 2.

Proposition 5.1. The unravelling U (g) of a term graph g ∈ G∞(Σ) is given by
the labelled quotient tree (P(g), g(·), IP(g)).

Proof. Since IP(g) is a subrelation of ∼g, we know that (P(g), g(·), IP(g)) is a
labelled quotient tree and thus uniquely determines a term t. By Lemma 2.7,
there is a homomorphism from t to g. Hence, U (g) = t.

Before we start investigating the correspondences between term rewriting and
term graph rewriting, we need to transfer the notions of left-linearity and ortho-
gonality to GRSs:

Definition 5.2. Let R = (Σ, R) be a GRS. A rule ρ ∈ R is called left-linear
resp. left-finite if its left-hand side ρl is a term tree resp. a finite term graph.
The GRS R is called left-linear resp. left-finite if all its rules are left-linear resp.
left-finite. The GRS R is called orthogonal if it is left-linear and the TRS U (R)
is non-overlapping.

437

Note that the unravelling U (R) of a GRSR is left-linear ifR is left-linear, that
U (R) is left-finite if R is left-linear and left-finite, and that U (R) is orthogonal
if R is orthogonal.

We have to single out a particular kind of redex that manifests a peculiar
behaviour:
Definition 5.3. A redex of a rule (g, l, r) is called circular if l and r are distinct
but the matching V-homomorphism φ maps them to the same node, i.e. l 6= r
but φ(l) = φ(r).

Kennaway et al. [15] show that circular redexes only reduce to themselves:
Proposition 5.4. For every circular ρ-redex g|n, we have g 7→n,ρ g.

However, contracting the unravelling of a circular redex also yields the same
term:
Lemma 5.5. For every circular ρ-redex g|n, we have U (g)→π,U(ρ) U (g) for all
π ∈ Pg(n).
Proof. Since there is a circular ρ-redex, we know that the right-hand side root
rρ is reachable but different from the left-hand side root lρ of ρ. Hence, there
is a non-empty path π̂ from lρ to rρ. Because g|n is a circular ρ-redex, the
corresponding matching V-homomorphism maps both lρ and rρ to n. Since ∆-
homomorphisms preserve paths, we thus know that π̂ is also a path from n to
itself in g. In other words, π ∈ Pg(n) implies π · π̂ ∈ Pg(n). Consequently, for
each π ∈ Pg(n), we have that U (g) |π = U (g) |π·π̂.

Since there is a path π̂ from lρ to rρ, the unravelling U (ρ) of ρ is of the
form s → s|π̂. Hence, we know that each application of U (ρ) at a position π
in some term t replaces the subterm at π with the subterm at π · π̂ in t, i.e.
t→π,U(ρ) t[t|π·π̂]π.

Combining the two findings above, we obtain that

U (g)→π,U(ρ) U (g) [U (g) |π·π̂]π = U (g) [U (g) |π]π = U (g) for all π ∈ Pg(n)

The following two properties due to Kennaway et al. [15] show how single term
graph reduction steps relate to term reductions in the corresponding unravelling.1

Proposition 5.6. Given a left-linear GRS R and a term graph g in R, it holds
that g is a normal form in R iff U (g) is a normal form in U (R).
Theorem 5.7. Let R be a left-linear, left-finite GRS with a reduction step g →n,ρ

h. Then S : U (g)�m U(R) U (h) such that the depth of every redex contracted in S
is greater or equal to depthg(n). In particular, if the ρ-redex g|n is not circular,
then S is a complete development of the set of redex occurrences Pg(n) in U (g).

In the following, we will generalise the above soundness theorem to strongly p-
converging term graph reductions. We will then use the correspondence between
strong m-convergence and strong p-convergence in G∞C (Σ) to transfer that result
to strongly m-converging reductions.

At first, we can observe that the limit inferior commutes with the unravelling:
1The original results are on finite term graphs. However, for the correspondence of normal

forms, this restriction is not necessary, and for the soundness, only the finiteness of left-hand
sides is crucial.

438

Proposition 5.8. For each sequence (gι)ι<α in (G∞C (Σ⊥),≤S
⊥), we have that

U (lim infι→α gι) = lim infι→α U (gι).

Proof. This is an immediate consequence of Theorem 3.2 and Proposition 5.1.

In order to prove soundness w.r.t. strong p-convergence, we need to turn the
statement about the depth of redexes in Theorem 5.7 into a statement about the
corresponding reduction contexts. To this end, we make use of the fact that the
semilattice structure of ≤S

⊥ admits greatest lower bounds for non-empty sets of
term graphs:

Proposition 5.9 ([6]). In the partially ordered set (G∞C (Σ⊥),≤S
⊥) every non-

empty set G has a greatest lower bound
d
G given by the following labelled quo-

tient tree (P, l,∼):

P =
{
π ∈

⋂
g∈GP(g)

∣∣∣∣ ∀π′ < π∃f ∈ Σ⊥∀g ∈ G : g(π′) = f

}

l(π) =
{
f if ∀g ∈ G : f = g(π)
⊥ otherwise

∼ =
⋂
g∈G ∼g ∩ P × P

In particular, the glb of a set of term trees is again a term tree.

We can then prove the following proposition that relates the reduction context
of a term graph reduction step with the reduction contexts of the corresponding
term reduction:

Proposition 5.10. For each reduction step g →c h in a left-linear, left-finite
GRS R, there is a non-empty reduction S = (tι →cι tι+1)ι<α with S : U (g)�p U(R)
U (h) and U (c) =

d
ι<α cι.

Proof. By Theorem 5.7, there is a reduction S : U (g) �m U(R) U (h). At first we
assume that the redex g|n contracted in g →n h is not a circular redex. Hence,
S is a complete development of the set of redex occurrences Pg(n) in U (g).
By Theorem 1.3, we then obtain S : U (g) �p U(R) U (h). From Lemma 4.5 and
Proposition 5.1 it follows that U (g\n) is obtained from U (g) by replacing each
subterm of U (g) at a position in Pmg (n), i.e. a minimal position of n, by ⊥.
Since each step tι →πι tι+1 in S contracts a redex at a position πι that has a
prefix in Pmg (n), we have, by Proposition 5.9 and Corollary 3.1, that U (g\n) ≤S

⊥d
ι<α tι[⊥]πι =

d
ι<α cι. Moreover, for each π ∈ Pmg (n) there is a step at ιπ < α

in S that takes place at π. From Proposition 5.9, it is thus clear that U (g\n) =d
π∈Pmg (n) cιπ , which means that U (g\n) ≥S

⊥
d
ι<α cι. Due to the antisymmetry

of ≤S
⊥, we thus know that U (g\n) =

d
ι<α cι. Then U (c) =

d
ι<α cι follows from

the fact that c ∼= g\n.
If the ρ-redex g|n contracted in g →ρ,n h is a circular redex, then g = h

according to Proposition 5.4. However, by Lemma 5.5, each U (ρ)-redex at po-
sitions in Pg(n) in U (g) reduces to itself as well. Hence, we get a reduction
U (g)�p U(ρ) U (h) via a complete development of the redexes at the minimal po-
sitions Pmg (n) of n in g. The equality U (c) =

d
ι<α cι then follows as for the first

case above.

439

In order to prove the soundness of strongly p-converging term graph reduc-
tions, we need the following technical lemma, which can be proved easily:

Lemma 5.11. Let (aι)ι<α be a sequence in a complete semilattice (A,≤) and
(γι)ι<δ a strictly monotone sequence in the ordinal α such that ⊔ι<δ γι = α.
Then

lim infι→α aι = lim infβ→δ
(d

γβ≤ι<γβ+1
aι
)
.

Theorem 5.12. If g �p R h in a left-linear, left-finite GRS R, then U (g)�p U(R)
U (h).

Proof. Let S = (gι →cι gι+1)ι<α be a reduction strongly p-converging to gα in
R. By Proposition 5.10, there is, for each γ < α, a reduction Tγ : U (gγ) �p U(R)
U (gγ+1) such that l

ι<|Tγ |
cι = U (cγ) (∗)

where (cι)ι<|Tγ | is the sequence of reduction contexts in Tγ .
Define for each δ ≤ α the concatenation Uδ = ∏

ι<δ Tι. We will show that
Uδ : U (g0) �p U(R) U (gδ) for each δ ≤ α by induction on δ. The theorem is then
obtained from the case δ = α.

The case δ = 0 is trivial, and the case δ = δ′ + 1 follows from the induction
hypothesis.

For the case that δ is a limit ordinal, let Uδ = (tι →c′ι tι+1)ι<β. For each γ < β
we find some δ′ < δ with Uδ|γ < Uδ′ . By induction hypothesis, we can assume that
Uδ′ is strongly p-continuous. Thus, the proper prefix Uδ|γ strongly p-converges
to tγ . This shows that each proper prefix Uδ|γ of Uδ strongly p-converges to tγ .
Hence, Uδ is strongly p-continuous.

In order to show that Uδ : U (g0) �p U(R) U (gδ), it remains to be shown
that lim infι→β c′ι = U (gδ). Since S is strongly p-converging, we know that
lim infι→δ cι = gδ. By Proposition 5.8, we thus have lim infι→δ U (cι) = U (gδ).
By (∗) and the construction of Uδ, there is a strictly monotone sequence (γι)ι<δ
with γ0 = 0 and ⊔ι<δ γι = β such that U (cι) =

d
γι≤γ<γι+1

c′γ for all ι < δ. Thus,
we can complete the proof as follows:

U (gδ) = lim infι→δ U (cι) = lim infι→δ
(d

γι≤γ<γι+1
c′γ
) Lem. 5.11= lim infι→β c′ι

By combining the soundness result above with the normalisation of strong
p-convergence, we obtain the following completeness result:

Theorem 5.13. Given an orthogonal, left-finite GRS R, we find for each reduc-
tion U (g)�p U(R) t, a reduction g �p R h such that t�p U(R) U (h).

Proof. Let U (g) �p U(R) t. By Theorem 4.18 there is a normalising reduction
g �p R h. According to Theorem 5.12, g �p R h implies U (g) �p U(R) U (h). By
Proposition 5.6, U (h) is a normal form in U (R). Since orthogonal, left-finite
TRSs are confluent w.r.t. strong p-convergence [4], the reduction U (g) �p U(R)
U (h) together with U (g)�m U(R) t yields a reduction t�p U(R) U (h).

440

The results above make strongly p-converging term graph reductions sound
and complete for strongly p-converging term reductions in the sense of adequacy
of Kennaway et al. [15].

The notion of adequacy of Kennaway et al. [15] does not only comprise sound-
ness and completeness but also demands that the unravelling U (·) is surjective
and both preserves and reflects normal forms. For infinitary term graph rewrit-
ing, surjectivity of U (·) is trivial since each term is the image of itself under U (·)
and the preservation and reflection of normal forms is given for left-linear GRSs
by Proposition 5.6.

From the soundness result for strong p-convergence, we can straightforwardly
derive a corresponding result for strong m-convergence:

Theorem 5.14. If g �m R h in a left-linear, left-finite GRS, then U (g) �m U(R)
U (h).

Proof. Given a reduction S : g �m R h, we know, by Theorem 4.14, that S : g �p R
h in G∞C (Σ). According to Theorem 5.12, we then find a reduction U (g) �p U(R)
U (h). Since, g, h are total, so are U (g) ,U (h). Hence, by Corollary 7.15 of [4],
we obtain a reduction U (g)�m U(R) U (h).

Similar to the proof of Theorem 5.13, we can derive a weakened completeness
property for strong m-convergence:

Theorem 5.15. Given an orthogonal, left-finite GRS R that is normalising
w.r.t. strongly m-converging reductions, we find for each normalising reduction
U (g)�m U(R) t a reduction g �m R h such that t = U (h).

Proof. Let U (g) �m U(R) t with t a normal form in U (R). As R is normalising
w.r.t. strongly m-converging reductions, there is a reduction g �m R h with h
a normal form in R. According to Theorem 5.14, we then find a reduction
U (g) �m U(R) U (h). By Proposition 5.6, U (h) is a normal form in U (R). Since
U (R) is left-finite and orthogonal, we know that, according to Theorem 7.15 in
[16], R has unique normal forms w.r.t. �m . Consequently, t = U (h).

While the above theorem is restricted to normalising GRSs, we conjecture
that this restriction is not needed: as soon as we have a compression lemma for
strong p-convergence, completeness of normalising strong m-convergence follows
from the completeness of strong p-convergence.

Yet, as mentioned in the in the introduction, the restriction to normalising
reductions is crucial. The counterexample that Kennaway et al. [15] give for their
informal notion of term graph convergence in fact also applies to our notion of
strong m-convergence.

6 Conclusions
By generalising the metric and partial order based notions of convergence from
terms to term graphs, we have obtained two infinitary term graph rewriting calculi
that simulate infinitary term rewriting adequately. Not only do these results show
the appropriateness of our notions of infinitary term graph rewriting. They also

441

refute the claim of Kennaway et al. [15] that infinitary term graph rewriting
cannot adequately simulate infinitary term rewriting.

Since reasoning over the rather operational style of term graph rewriting is
tedious, we tried to simplify the proofs using labelled quotient trees. In future
work, it would be helpful to characterise term graph rewriting itself in this way
or to adopt a more declarative approach to term graph rewriting [1, 10, 11].

We think that, in this context, strong p-convergence may help to bridge the
differences between the operational style of Barendregt et al. [7] and the declarat-
ive formalisms [1, 10, 11], which arise from the different way of contracting circular
redexes. While in the operational approach that we adopted here, circular redexes
are contracted to themselves, they are contracted to ⊥ in the abovementioned
declarative approaches. However, since circular redexes are root-active, they can
be rewritten to ⊥ in a strongly p-converging reduction.

Bibliography
[1] Z. M. Ariola and J. W. Klop. Equational term graph rewriting. Fundamenta

Informaticae, 26(3-4):207–240, 1996. ISSN 0169-2968. doi: 10.3233/FI-1996-
263401.

[2] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and
topological properties. Fundamenta Informaticae, 3(4):445–476, 1980.

[3] P. Bahr. Abstract Models of Transfinite Reductions. In C. Lynch, editor,
Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of Leibniz International Proceedings in Inform-
atics (LIPIcs), pages 49–66, Dagstuhl, Germany, 2010. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs.RTA.2010.49.

[4] P. Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees.
In C. Lynch, editor, Proceedings of the 21st International Conference
on Rewriting Techniques and Applications, volume 6 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 67–84, Dagstuhl, Ger-
many, 2010. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2010.67.

[5] P. Bahr. Modes of Convergence for Term Graph Rewriting. In
M. Schmidt-Schauß, editor, 22nd International Conference on Rewrit-
ing Techniques and Applications (RTA’11), volume 10 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 139–154, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.RTA.2011.139.

[6] P. Bahr. Convergence in Infinitary Term Graph Rewriting Systems is Simple.
Submitted to Math. Struct. in Comp. Science, 2012.

[7] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In P. C. T. de
Bakker A. J. Nijman, editor, Parallel Architectures and Languages Europe,

442

http://dx.doi.org/10.3233/FI-1996-263401
http://dx.doi.org/10.3233/FI-1996-263401
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.139
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.139

Volume II: Parallel Languages, volume 259 of Lecture Notes in Computer
Science, pages 141–158. Springer Berlin / Heidelberg, 1987. doi: 10.1007/3-
540-17945-3_8.

[8] E. Barendsen. Term Graph Rewriting. In Terese, editor, Term Rewriting
Systems, chapter 13, pages 712–743. Cambridge University Press, 1st edition,
2003. ISBN 9780521391153.

[9] J. Bongaerts. Topological Convergence in Infinitary Abstract Rewriting.
Master’s thesis, Utrecht University, 2011.

[10] A. Corradini and F. Drewes. Term Graph Rewriting and Parallel Term
Rewriting. In TERMGRAPH, pages 3–18, 2011. doi: 10.4204/EPTCS.48.3.

[11] A. Corradini and F. Gadducci. Rewriting on cyclic structures: Equi-
valence between the operational and the categorical description. RAIRO
- Theoretical Informatics and Applications1, 33(4):467–493, 1999. doi:
10.1051/ita:1999128.

[12] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
Algebra Semantics and Continuous Algebras. Journal of the ACM, 24(1):
68–95, 1977. ISSN 0004-5411. doi: 10.1145/321992.321997.

[13] J. L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics.
Springer-Verlag, 1955. ISBN 0387901256.

[14] R. Kennaway and F.-J. de Vries. Infinitary Rewriting. In Terese, editor,
Term Rewriting Systems, chapter 12, pages 668–711. Cambridge University
Press, 1st edition, 2003. ISBN 9780521391153.

[15] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. On the adequacy
of graph rewriting for simulating term rewriting. ACM Transactions on
Programming Languages and Systems, 16(3):493–523, 1994. ISSN 0164-0925.
doi: 10.1145/177492.177577.

[16] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite
Reductions in Orthogonal Term Rewriting Systems. Information and Com-
putation, 119(1):18–38, 1995. ISSN 0890-5401. doi: 10.1006/inco.1995.1075.

[17] R. Kennaway, V. van Oostrom, and F.-J. de Vries. Meaningless Terms in
Rewriting. Journal of Functional and Logic Programming, 1999(1):1–35,
1999.

[18] Terese. Term Rewriting Systems. Cambridge University Press, 1st edition,
2003. ISBN 9780521391153.

443

http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.4204/EPTCS.48.3
http://dx.doi.org/10.1051/ita:1999128
http://dx.doi.org/10.1051/ita:1999128
http://dx.doi.org/10.1145/321992.321997
http://dx.doi.org/10.1145/177492.177577
http://dx.doi.org/10.1006/inco.1995.1075

Appendices
A Proofs
A.1 Homomorphisms
Proposition A.1 (∆-homomorphism preorder). ∆-homomorphisms on G∞(Σ)
form a category which is a preorder. That is, there is at most one ∆-homo-
morphism from one term graph to another.

Proof. The identity ∆-homomorphism is obviously the identity mapping on the
set of nodes. Moreover, an easy equational reasoning yields that the composition
of two ∆-homomorphisms is again a ∆-homomorphism. Associativity of this
composition follows from the fact that ∆-homomorphisms are functions.

To show that this category is a preorder, assume that there are two ∆-
homomorphisms φ1, φ2 : g →∆ h. We prove that φ1 = φ2 by showing that
φ1(n) = φ2(n) for all n ∈ Ng by induction on the depth of n.

Let depthg(n) = 0, i.e. n = rg. By the root condition, we have that φ1(rg) =
rh = φ2(rg). Let depthg(n) = d > 0. Then n has a position π · 〈i〉 in g such that
depthg(n′) < d for n′ = nodeg(π). Hence, we can employ the induction hypothesis
for n′ to obtain the following:

φ1(n) = suchi (φ1(n′)) (successor condition for φ1)
= suchi (φ2(n′)) (induction hypothesis)
= φ2(n) (successor condition for φ2)

Lemma A.2 (homomorphisms are surjective). Every homomorphism φ : g → h,
with g, h ∈ G∞(Σ), is surjective.

Proof. Follows from an easy induction on the depth of the nodes in h.

Lemma A.3 (characterisation of ∆-homomorphisms). Given term graphs g, h ∈
G∞(Σ), a function φ : Ng → Nh is a ∆-homomorphism φ : g →∆ h iff the
following holds for all n ∈ Ng:

(a) Pg(n) ⊆ Ph(φ(n)), and (b) labg(n) = labh(φ(n)) whenever
labg(n) 6∈ ∆.

Proof. For the “only if” direction, assume that φ : g →∆ h. (b) is the labelling
condition and is therefore satisfied by φ. To establish (a), we show the equivalent
statement

∀π ∈ P(g). ∀n ∈ Ng. π ∈ Pg(n) =⇒ π ∈ Ph(φ(n))

We do so by induction on the length of π. If π = 〈〉, then π ∈ Pg(n) implies n = rg.
By the root condition, we have φ(rg) = rh and, therefore, π = 〈〉 ∈ φ(rg). If
π = π′ · 〈i〉, then let n′ = nodeg(π′). Consequently, π′ ∈ Pg(n′) and, by induction
hypothesis, π′ ∈ Ph(φ(n′)). Since π = π′ · 〈i〉, we have sucgi (n′) = n. By the

444

successor condition we can conclude φ(n) = suchi (φ(n′)). This and π′ ∈ Ph(φ(n′))
yields that π′ · 〈i〉 ∈ Ph(φ(n)).

For the “if” direction, we assume (a) and (b). The labelling condition follows
immediately from (b). For the root condition, observe that since 〈〉 ∈ Pg(rg),
we also have 〈〉 ∈ Ph(φ(rg)). Hence, φ(rg) = rh. In order to show the successor
condition, let n, n′ ∈ Ng and 0 ≤ i < arg(n) such that sucgi (n) = n′. Then there
is a position π ∈ Pg(n) with π · 〈i〉 ∈ Pg(n′). By (a), we can conclude that
π ∈ Ph(φ(n)) and π · 〈i〉 ∈ Ph(φ(n′)) which implies that suchi (φ(n)) = φ(n′).

Corollary A.4 (characterisation of ∆-isomorphisms). Given g, h ∈ G∞(Σ), the
following holds:

(i) φ : Ng → Nh is a ∆-isomorphism iff for all n ∈ Ng

(a) Ph(φ(n)) = Pg(n), and
(b) labg(n) = labh(φ(n)) or labg(n), labh(φ(n)) ∈ ∆.

(ii) g ∼=∆ h iff (a) ∼g = ∼h, and (b) g(π) = h(π) or g(π), h(π) ∈ ∆.

Proof. Immediate consequence of Lemma A.3 resp. Lemma 2.7 and Proposi-
tion A.1.

A.2 Reduction Contexts
We start with making the definition of local truncations – and thus reduction
contexts – more precise by expanding Definition 4.4:

Definition 4.4 (local truncation). Let g ∈ G∞(Σ⊥) and n ∈ Ng. The local
truncation of g at n, denoted g\n, is obtained from g by labelling n with ⊥
and removing all outgoing edges from n as well as all nodes that thus become
unreachable from the root:

Ng\n is the least set M satisfying
(a) rg ∈M,and

(b) m ∈M \ {n} =⇒ sucg(m) ⊆M.

rg\n = rg

labg\n =
{

labg(m) if m 6= n

⊥ if m = n

sucg\n(m) =
{

sucg(m) if m 6= n

〈〉 if m = n

The following lemma shows that local truncations only remove positions from
a term graph but do not alter them:

Lemma A.5. Let g ∈ G∞(Σ⊥), n ∈ Ng and π ∈ P(g\n). Then nodeg(π) =
nodeg\n(π).

Proof. We proceed by induction on the length of π. The case π = 〈〉 follows from
the definition rg\n = rg. If π = π′ · 〈i〉, we can use the induction hypothesis

445

to obtain that nodeg(π′) = nodeg\n(π′). As π′ · 〈i〉 ∈ P(g\n), we know that
nodeg\n(π′) 6= n. Hence:

nodeg(π) = sucgi (nodeg(π′)) = sucgi (nodeg\n(π′))

= sucg\ni (nodeg\n(π′)) = nodeg\n(π)

A.2.1 Proof of Lemma 4.5

Lemma 4.5. For each g ∈ G∞(Σ⊥) and n ∈ Ng, the local truncation g\n has
the following labelled quotient tree (P, l,∼):

P =
{
π ∈ P(g)

∣∣ ∀π′ < π : π′ 6∈ Pg(n)
}

∼ = ∼g ∩ P × P

l(π) =
{
g(π) if π 6∈ Pg(n)
⊥ if π ∈ Pg(n)

for all π ∈ P

Proof of Lemma 4.5. We will show in the following that triples (P, l,∼) and
(P(g\n), g\n(·),∼g\n) coincide.

By Lemma A.5 P(g\n) ⊆ P(g). Therefore, in order to prove that P(g\n) ⊆ P ,
we assume some π ∈ P(g\n) and show by induction on the length of π that no
proper prefix of π is a position of n in g. The case π = 〈〉 is trivial as 〈〉 has no
proper prefixes. If π = π′ · 〈i〉, we can assume by induction that π′ ∈ P since
π′ ∈ P(g\n). Consequently, no proper prefix of π′ is in Pg(n). It thus remains
to be shown that π′ itself is not in Pg(n). Since π′ · 〈i〉 ∈ P(g\n), we know that
sucg\ni (nodeg\n(π′)) is defined. Therefore, nodeg\n(π′) cannot be n, and since,
by Lemma A.5, nodeg\n(π′) = nodeg(π′), neither can nodeg(π′). In other words,
π′ 6∈ Pg(n).

For the converse direction P ⊆ P(g\n), assume some π ∈ P . We will show
by induction on the length of π, that then π ∈ P(g\n). The case π = 〈〉 is trivial.
If π = π′ · 〈i〉, then also π′ ∈ P which, by induction, implies that π′ ∈ P(g\n).
Let m = nodeg\n(π′). Since π ∈ P , we have that π′ 6∈ Pg(n). Consequently, as
Lemma A.5 implies m = nodeg(π′), we can deduce that m 6= n. That means,
according to the definition of g\n, that sucg\n(m) = sucg(m). Hence, π′ · 〈i〉 ∈
Pg\n(sucg\ni (m)) and thus π ∈ P(g\n).

For the equality ∼ = ∼g\n, assume some π1, π2 ∈ P . Since P = P(g\n), we
then have the following equivalences:

π1 ∼ π2 ⇐⇒ π1 ∼g π2

⇐⇒ nodeg(π1) = nodeg(π2)
⇐⇒ nodeg\n(π1) = nodeg\n(π2) (Lemma A.5)
⇐⇒ π1 ∼g\n π2

For the equality l = g\n(·), consider some π ∈ P(g\n). Since nodeg(π) = n
iff π ∈ Pg(n), we can reason as follows:

g\n(π) = labg\n(nodeg\n(π)) Lem. A.5= labg\n(nodeg(π)) =
{
g(π) if π 6∈ Pg(n)
⊥ if π ∈ Pg(n)

446

A.2.2 Proof of Proposition 4.7

As we have indicated in the main body of the paper, we need to consider a
positional notion of truncation:

Definition A.6 (positional truncations). Let g ∈ G∞(Σ⊥) and Q ⊆ N∗ a set of
positions.

(i) The set Q is called admissible for truncating g if, for all π1, π2 ∈ N∗ with
π1 ∼g π2 and π 6≤ π1, π2 for all π ∈ Q, we have that π1 · 〈i〉 ∈ Q implies
π2 · 〈i〉 ∈ Q for all i ∈ N.

(ii) Given that Q is admissible for truncating g, the positional truncation of
g at Q, denoted g\[Q], is the canonical term graph given by the following
labelled quotient tree (P, l,∼):

P =
{
π ∈ P(g)

∣∣ ∀π′ < π.π′ 6∈ Q}

l(π) =
{
g(π) if π 6∈ Q
⊥ if π ∈ Q

for all π ∈ P

∼ = ∼g ∩
((
Q+ ×Q+

)
∪ (Q− ×Q−)

)
, where Q+ = Q ∩ P,Q− = P \Q

In other words: π1 ∼ π2 iff π1 ∼g π2, π1, π2 ∈ P and π1 ∈ Q iff π2 ∈ Q.

The above definition yields a canonical term graph, given that the set Q is
indeed admissible for truncating the term graph g:

Proposition A.7 (well-definedness of positional truncations). Let g ∈ G∞(Σ⊥)
and Q ⊆ N∗ a set of positions admissible for truncating g. Then the triple (P, l,∼)
defined in Definition A.6 indeed constitutes a labelled quotient tree and thus the
canonical term graph g\[Q] is well-defined.

Proof. One can easily check that the triple (P, l,∼) satisfies the axioms of labelled
quotient trees; cf. [5].

As an immediate corollary of the definition of positional truncations, we ob-
tain the following:

Corollary A.8. Given a term graph g ∈ G∞(Σ⊥) and a set Q admissible for
truncating g, we have that g\[Q] ≤S

⊥ g.

Proof. According to Corollary 3.1, this follows immediately from the definition
of g\[Q].

The following two lemmas show that local truncations are only a special case
of positional truncations.

Lemma A.9. For every term graph g ∈ G∞(Σ⊥) and node n ∈ Ng, the set Pg(n)
is admissible for truncating g.

447

Proof. Let π1 ∼g π2 and π1 · 〈i〉 ∈ Pg(n). Then there is a node m ∈ Ng such that
π1, π2 ∈ Pg(m) and sucgi (m) = n. Consequently, also π2 · 〈i〉 ∈ Pg(n).

Lemma A.10. For each g ∈ G∞(Σ⊥) and n ∈ Ng, we have that g\n ∼= g\[Pg(n)].

Proof. Let (P1, l1,∼1) and (P2, l2,∼2) be the labelled quotient trees of g\n and
g\[Pg(n)] respectively. We have to show that both labelled quotient trees coin-
cide.

The equalities P1 = P2 and l1 = l2, follow immediately from the characterisa-
tions in Lemma 4.5 and Definition A.6. For the equality ∼1 = ∼2, we can reason
as follows:

π1 ∼1 π2

⇐⇒ π1 ∼g π2 and π1, π2 ∈ P1

⇐⇒ π1, π2 ∈ Pg(m) ∩ P1 for some m ∈ Ng

⇐⇒ π1, π2 ∈ Pg(n) ∩ P1 or π1, π2 ∈ Pg(m) ∩ P1 for some m ∈ Ng \ {n}
P1=P2⇐⇒ π1, π2 ∈ Pg(n) ∩ P2 or π1, π2 ∈ Pg(m) ∩ P2 for some m ∈ Ng \ {n}
⇐⇒ π1 ∼g π2 with π1, π2 ∈ Pg(n) ∩ P2 or

π1 ∼g π2 with π1, π2 ∈ P2 \ Pg(n)
⇐⇒ π1 ∼2 π2

The following two lemmas show that the positional truncation of the initial
and the result term graph of a pre-reduction step at the positions of the root of
the redex are isomorphic.

Lemma A.11. Let g 7→n h be a pre-reduction step in a GRS. Then Pg(n) is
admissible for truncating h.

Proof. Let π1 ∼h π2 such that no prefix of π1 or π2 is in Pg(n) and let π1 · 〈i〉 ∈
Pg(n). We have to show that then π2 · 〈i〉 ∈ Pg(n), too. Since no prefix of
π1 or π2 is a position of n in g, both π1 and π2 are unaffected by the pre-
reduction step and thus each of them passes the same nodes in g as it does in h.
Consequently, π1 ∼h π2 implies π1 ∼g π2. Since π1 · 〈i〉 ∈ Pg(n), this means that
also π2 · 〈i〉 ∈ Pg(n).

Lemma A.12. Let g 7→n h be a pre-reduction step. Then g\[Pg(n)] ∼= h\[Pg(n)].

Proof. Let (P1, l1,∼1) and (P2, l2,∼2) be the labelled quotient trees of g\[Pg(n)]
respectively h\[Pg(n)]. We will show that both labelled quotient trees coincide.

To show that P1 ⊆ P2, let π ∈ P1. This means that π′ 6∈ Pg(n) for all π′ < π.
Consequently, no proper prefix of π is affected by the pre-reduction step and thus
π ∈ P2. The inclusion P2 ⊆ P1 follows likewise.

Let Q = Pg(n). Due to the equality P1 = P2, the sets

Q+ = Pmg (n) and Q− =
{
π ∈ P(g)

∣∣ ∀π′ ≤ π.π′ 6∈ Pg(n)
}

are the same for both positional truncations. For the equality l1 = l2, note that
according to the argument above, none of the nodes at positions in Q− in g are

448

affected by the pre-reduction step. Hence, we have l1(π) = g(π) = h(π) = l2(π)
if π ∈ Q− and l1(π) = ⊥ = l2(π) if π ∈ Q+.

For the equality ∼1 = ∼2, assume that π1, π2 ∈ Q+ or π1, π2 ∈ Q−. In the
first case, both π1 and π2 are positions of the root of the redex and the root of the
reduct. In the second case, both π1 and π2 are unaffected by the pre-reduction
step. In either case, we have the following:

π1 ∼1 π2 ⇐⇒ π1 ∼g π2 ⇐⇒ nodeg(π1) = nodeg(π2)
⇐⇒ nodeh(π1) = nodeh(π2) ⇐⇒ π1 ∼h π2 ⇐⇒ π1 ∼2 π2

We can use the above findings to obtain that the reduction context is preserved
through reduction steps:

Lemma A.13 (preservation of reduction contexts). Given a reduction step g →n

h, we have g\n ∼= h\[Pg(n)].

Proof. Given a reduction step g →n h, there must be a pre-reduction step g′ 7→n′

h′ with g = C(g′), h = C(h′) and n = Pg′(n′). We then obtain the following
isomorphisms:

g\n
(1)∼= g\[Pg(n)]

(2)∼= g′\[Pg′(n′)
] (3)∼= h′\[Pg′(n′)

] (4)∼= h\[Pg(n)]

The well-definedness of the above positional truncations follows from Lemma A.9,
for the first two positional truncation, by Lemma A.11, for the third one, respect-
ively by the fact that h ∼= h′ and Pg(n) = Pg′(n′), for the last one. Isomorphism
(1) follows from Lemma A.10, isomorphism (2) from g ∼= g′ and Pg(n) = Pg′(n′),
Isomorphism (3) from Lemma A.12, and Isomorphism (4) from h ∼= h′ and
Pg(n) = Pg′(n′).

Finally, we can put everything together to prove Proposition 4.7.

Proposition 4.7. Given a reduction step g →n h, we have g\n ≤S
⊥ g, h.

Proof of Proposition 4.7. From Corollary 4.6, we immediately obtain the inequal-
ity g\n ≤S

⊥ g. Since, by Lemma A.13, g\n ∼= h\[Pg(n)] and, by Corollary A.8,
h\[Pg(n)] ≤S

⊥ h, we can conclude that g\n ≤S
⊥ h.

A.3 Strong Convergence
A.3.1 Auxiliary Lemmas

The following technical lemma confirms the intuition that changes during a con-
tinuous reduction must be caused by a reduction step that was applied at the
position where the difference is observed or above.

Lemma A.14. Let (gι →nι gι+1)ι<α be a strongly p-continuous reduction in a
GRS with its reduction contexts cι = C(gι\nι) such that there are β ≤ γ < α and
π ∈ P(cβ) ∩ P(cγ) with cβ(π) 6= cγ(π). Then there is a position π′ ≤ π and an
index β ≤ ι ≤ γ such that π′ ∈ Pgι(nι).

449

Proof. Given a reduction and β, γ and π as stated above, we can assume that

gι(π) = cι(π) if β ≤ ι ≤ γ and π ∈ P(cι). (∗)

If this would not be the case, then, by Lemma 4.5, π ∈ Pgι(nι), i.e. the statement
that we want to prove already holds.

We proceed with an induction on γ. The case γ = β is trivial.
Let γ = ι + 1 > β and c′ι = gγ\[Pgι(nι)]. Note that since by assumption

π ∈ P(cγ), we also have that π ∈ P(gγ), according to Lemma 4.5. Moreover,
we can assume that π ∈ P(c′ι) since otherwise π ∈ P(gγ) already implies that
π′ ∈ Pgι(nι) for some π′ < π. According to Lemma A.13, π ∈ P(c′ι) implies
that π ∈ P(cι), too. Hence, we can assume that cβ(π) = cι(π) since otherwise
the proof goal follows immediately from the induction hypothesis. We can thus
reason as follows:

c′ι(π) Lem. A.13= cι(π) = cβ(π) 6= cγ(π) (∗)= gγ(π)

From the thus obtained inequality c′ι(π) 6= gγ(π) we can derive that π ∈ Pgι(nι).
Let γ be a limit ordinal. By (∗), we know that gγ(π) = cγ(π) 6= cβ(π).

According to Theorem 3.2, the inequality gγ(π) 6= cβ(π) is only possible if there
is a β ≤ ι < γ such that cι(π) 6= cβ(π). Hence, we can invoke the induction
hypothesis, which immediately yields the proof goal.

By combining the characterisation of the limit inferior from Theorem 3.2 and
the characterisation of local truncations from Lemma 4.5, we obtain the following
characterisation of the limit of a strongly p-convergent reduction:

Lemma A.15. Let S = (gι →nι gι+1)ι<α be an open reduction in a GRS strongly
p-converging to g. Then g has the following labelled quotient tree (P, l,∼):

P =
⋃

β<α

{
π ∈ P(gβ)

∣∣ ∀π′ < π∀β ≤ ι < α : π′ 6∈ Pgι(nι)
}

∼ =

 ⋃

β<α

⋂

β≤ι<α
∼gι

 ∩ P × P

l(π) =
{
gβ(π) if ∃β < α∀β ≤ ι < α : π 6∈ Pgι(nι)
⊥ otherwise

for all π ∈ P

Proof. Let cι = C(gι\nι) for each ι < α. We will show in the following that
(P, l,∼) is equal to (P(g), g(·),∼g).

At first we show that P(g) ⊆ P . To this end let π ∈ P(g). Since g =
lim infι→α cι, this means, by Theorem 3.2, that there is some β < α such that

π ∈ P(cβ) and cι(π′) = cβ(π′) for all π′ < π and β ≤ ι < α. (1)

Since, according to Lemma 4.5, P(cβ) ⊆ P(gβ), we also have π ∈ P(gβ). In
order to prove that π ∈ P , we assume some π′ < π and β ≤ ι < α and show
that π′ 6∈ Pgι(nι). Since π′ is a proper prefix of a position in cβ, we have that
cβ(π′) ∈ Σ. By (1), also cι(π′) ∈ Σ. Hence, according to Lemma 4.5, π′ 6∈ Pgι(nι).

450

For the converse direction P ⊆ P(g), we assume some π ∈ P and show that
then π ∈ P(g). Since π ∈ P , we have that there is some β < α with

π ∈ P(gβ) and π′ 6∈ Pgι(nι) for all π′ < π and β ≤ ι < α. (2)

In particular, we have that π′ 6∈ Pgβ (nβ) for all π′ < π. Hence, by Lemma 4.5,
π ∈ P(cβ). According to Theorem 3.2, it remains to be shown that cγ(π′) = cβ(π′)
for all π′ < π and β ≤ γ < α. We will do that by an induction on γ:

The case γ = β is trivial. For γ = ι + 1 > β, let gι →nι gγ be the ι-th
reduction step, c′ι = gγ\[Pgι(nι)] and π′ < π. We can then reason as follows:

cβ(π′) ind. hyp.= cι(π′)
Lem. A.13= c′ι(π′)

(∗)= gγ(π′) Lem. 4.5= gγ\nγ(π′) = cγ(π′)

The equality (∗) above is justified by the fact that π′ < π ∈ P(cβ) and thus
cβ(π′) ∈ Σ. The application of Lemma 4.5 is justified by (2).

If γ > β is a limit ordinal, then gγ = lim infι→γ cι. Since π′ ∈ P(cβ) and, by
induction hypothesis, cι(π′′) = cβ(π′′) for all π′′ ≤ π′, β ≤ ι < γ, we obtain, by
Theorem 3.2, that gγ(π′) = cβ(π′). Since, according to (2), π′′ 6∈ Pgγ (nγ) for each
π′′ ≤ π′, we have by Lemma 4.5 that gγ(π′) = cγ(π′). Hence, cγ(π′) = cβ(π′).

The inclusion ∼g ⊆ ∼ follows from Theorem 3.2 and the equality P = P(g)
since ∼cι ⊆ ∼gι for all ι < α according to Lemma 4.5.

For the reverse inclusion ∼ ⊆ ∼g, assume that π1 ∼ π2. That is, π1, π2 ∈ P
and there is some β0 < α such that π1 ∼gι π2 for all β0 ≤ ι < α. Since
π1, π2 ∈ P = P(g), we know, by Theorem 3.2, that there are β1, β2 < α such that
πk ∈ P(cι) for all βk ≤ ι < α, k ∈ {1, 2}. Let β = max {β0, β1, β2}. For each
β ≤ ι < α, we then obtain that π1 ∼gι π2 and π1, π2 ∈ P(cι). By Lemma 4.5,
this is equivalent to π1 ∼cι π2. Applying Theorem 3.2 then yields π1 ∼g π2.

Finally, we show that l = g(·). To this end, let π ∈ P . We distinguish two
mutually exclusive cases. For the first case, we assume that

there is some β < α such that cι(π) = cβ(π) for all β ≤ ι < α. (3)

By Theorem 3.2, we know that then g(π) = cβ(π). Next, assume that there
is some β′ < α with π 6∈ Pgι(nι) for all β′ ≤ ι < α. W.l.o.g. we can assume
that β = β′. Hence, l(π) = gβ(π). Moreover, since π 6∈ Pgβ (nβ), we have that
gβ(π) = cβ(π) according to Lemma 4.5. We thus conclude that l(π) = gβ(π) =
cβ(π) = g(π). Now assume there is no such β′, i.e. for each β′ < α there is some
β′ ≤ ι < α with π ∈ Pgι(nι). Consequently, l(π) = ⊥ and, by Lemma 4.5, we
have for each β′ < α some β′ ≤ ι < α such that cι(π) = ⊥. According to (3), the
latter implies that cι(π) = ⊥ for all β ≤ ι < α. By Theorem 3.2, we thus obtain
that g(π) = ⊥ = l(π).

Next, we consider the negation of (3), i.e. that

for all β < α there is a β ≤ ι < α such that
π ∈ P(cι) ∩ P(cβ) implies cι(π) 6= cβ(π).

(4)

By Theorem 3.2, we have that g(π) = ⊥. Since π ∈ P = P(g), we can apply
Theorem 3.2 again to obtain a γ < α with π ∈ P(cι) and cι(π′) = cγ(π′) for all
π′ < π and γ ≤ ι < α. Combining this with (4) yields that for each γ ≤ β < α

451

there is a β ≤ ι < α with cι(π) 6= cβ(π). According to Lemma A.14, this can
only happen if there is a β ≤ γ′ ≤ ι and a π′ ≤ π such that π′ ∈ Pgγ′ (nγ′). Since
π has only finitely many prefixes, we can apply the infinite pigeon hole principle
to obtain a single prefix π′ ≤ π such that for each β < α there is some β ≤ ι < α
with π′ ∈ Pgι(nι). However, π′ cannot be a proper prefix of π since this would
imply that π 6∈ P . Thus we can conclude that for each β < α there is some
β ≤ ι < α such that π ∈ Pgι(nι). Hence, l(π) = ⊥ = g(π).

In order to compare strong m- and p-convergence, we consider positions
bounded by a certain depth.

Definition A.16 (bounded positions). Let g ∈ G∞(Σ) and d ∈ N. We write
P≤d(g) for the set {π ∈ P(g) | |π| ≤ d} of positions in g of length at most π.

Positional truncations do not change positions bounded by the same depth
or above:

Lemma A.17. Let g ∈ G∞(Σ⊥), Q admissible for truncating g and d ∈ N such
that d ≤ min {|π| |π ∈ Q}. Then P≤d(g\[Q]) = P≤d(g).

Proof. P≤d(g\[Q]) ⊆ P≤d(g) follows immediately from the definition of g\[Q].
For the converse inclusion, assume some π ∈ P≤d(g). Since we then have that
|π| ≤ d ≤ min {|π| |π ∈ Q}, we know for each π′ < π that |π′| < min {|π| |π ∈ Q}
and thus π′ 6∈ Q . Consequently, π is in P(g\[Q]) and, therefore, also in
P≤d(g\[Q]).

From this we immediately obtain the analogous property for local truncations:

Corollary A.18. If g ∈ G∞(Σ⊥), n ∈ NG and d ≤ depthg(n), then P≤d(g\n) =
P≤d(g).

Proof. This follows from Lemma A.17 since d ≤ depthg(n) implies that d ≤
min {|π| |π ∈ Pg(n)}, and g\n ∼= g\[Pg(n)], according to Lemma A.10.

Additionally, reductions that only contract redexes at a depth ≥ d do not
affect the positions bounded by d.

Lemma A.19. Let S = (gι →nι gι+1)ι<α be a strongly p-convergent reduction
in a GRS and d ∈ N such that depthgι(nι) ≥ d for all ι < α. Then P≤d(g0) =
P≤d(gι) for all ι ≤ α.

Proof. We prove the statement by an induction on α. The case α = 0 is trivial.
Let α = β + 1. Due to the induction hypothesis, it suffices to show that

P≤d(g0) = P≤d(gα):

P≤d(g0) ind. hyp.= P≤d(gβ) Cor. A.18= P≤d(gβ\nβ)
Lem. A.13= P≤d(gα\

[
Pgβ (nβ)

]
) Lem. A.17= P≤d(gα)

The application of Lemma A.17 is justified since we have that

d ≤ depthgβ (nβ) = min
{
|π|
∣∣∣π ∈ Pgβ (nβ)

}
.

452

Lastly, let α be a limit ordinal. By the induction hypothesis, we only need
to show P≤d(g0) = P≤d(gα). At first assume that π ∈ P≤d(gα). Hence, by
Lemma A.15, there is some β < α such that π ∈ P(gβ). Therefore, π is in
P≤d(gβ) and, by induction hypothesis, also in P≤d(g0). Conversely, assume that
π ∈ P≤d(g0). Because depthgι(nι) ≥ d for all ι < α, we have that π′ 6∈ Pgι(nι) for
all π′ < π and ι < α. According to Lemma A.15, this implies that π is in P(gα)
and thus also in P≤d(gα).

A.3.2 Proof of Lemma 4.11

Lemma 4.11. Let S = (gι →nι gι+1)ι<α be an open reduction in a GRS R⊥.
If S strongly p-converges to a total term graph, then (depthgι(nι))ι<α tends to
infinity.

Proof of Lemma 4.11. Let S be strongly p-converging to g. We will show that
whenever the sequence (depthgι(nι))ι<α does not tend to infinity, then g is not
total. If (depthgι(nι))ι<α does not tend to infinity, then there is some d ∈ N
such that for each γ < α there is a γ ≤ ι < α with depthgι(nι) ≤ d. Let d∗ be
the smallest such d. Hence, there is a β < α such that depthgι(nι) ≥ d∗ for all
β ≤ ι < α. Thus we can apply Lemma A.19 to the suffix of S starting from β
to obtain that P≤d∗(gβ) = P≤d∗(gι) for all β ≤ ι < α. Note that according to
Lemma A.15, this implies that P≤d∗(gβ) ⊆ P(g). Moreover, since we find for each
γ < α some γ ≤ ι < α with depthgι(nι) ≤ d∗, we know that for each γ < α there
is a γ ≤ ι < α and a π ∈ P≤d∗(gβ) with π ∈ Pgι(nι). Because P≤d∗(gβ) is finite,
the infinite pigeon hole principle yields a single π∗ ∈ P≤d∗(gβ) such that for each
γ < α there is a γ ≤ ι < α with π∗ ∈ Pgι(nι). Since we know that π∗ ∈ P(g),
this means, according to Lemma A.15, that g(π∗) = ⊥, i.e. g is not total.

A.3.3 Proof of Lemma 4.12

Lemma 4.12. Let S = (gι →nι gι+1)ι<α be an open reduction in a GRS R⊥
that strongly p-converges to g. If (gι)ι<α is Cauchy and (depthgι(nι))ι<α tends to
infinity, then g ∼= limι→α gι.

Proof of Lemma 4.12. Let h = limι→α gι and let (cι)ι<α be the reduction contexts
of S. We will prove that g ∼= h by showing that their respective labelled quotient
trees coincide.

For the inclusion P(g) ⊆ P(h), assume some π ∈ P(g). According to The-
orem 3.2, there is some β < α such that π ∈ P(cβ) and cι(π) = cβ(π) for all
π′ < π and β ≤ ι < α. Thus, π ∈ P(cι) for all β ≤ ι < α. Since cι ∼= gι\nι and,
therefore P(cι) ⊆ P(gι) by Lemma 4.5, we have that π ∈ P(gι) for all β ≤ ι < α.
This implies, by Theorem 3.3, that π ∈ P(h).

For the converse inclusion P(h) ⊆ P(g), assume some π ∈ P(h). According
to Theorem 3.3, there is some β < α such that π ∈ P(gι) for all β ≤ ι < α.
Since (depthgι(nι))ι<α tends to infinity, we find some β ≤ γ < α such that
depthgι(nι) ≥ |π| for all γ ≤ ι < α, i.e. π′ 6∈ Pgι(nι) for all π′ < π. This means,
by Lemma A.15, that π ∈ P(g).

By Lemma A.15 and Theorem 3.3, ∼g = ∼h follows from the equality P(g) =
P(h).

453

In order to show the equality g(·) = h(·), assume some π ∈ P(h). According
to Theorem 3.3, there is some β < α such that h(π) = gι(π) for all β ≤ ι < α.
Additionally, since (depthgι(nι))ι<α tends to infinity, there is some β ≤ γ < α
such that depthgι(nι) > |π| for all γ ≤ ι < α. As this means that π′ 6∈ Pgι(nι) for
all π′ ≤ π and γ ≤ ι < α, we obtain, by Lemma A.15, that g(π) = gγ(π). Since
h(π) = gγ(π), we can conclude that g(π) = h(π).

A.4 Normalisation of Strong p-convergence

Lemma 4.16. Let R be a GRS over Σ and g ∈ G∞C (Σ⊥).

(i) If g is root-active, then g �p R ⊥.

(ii) If g is not root-active, then there is a reduction g �p R h to a root-stable
term graph h.

(iii) If g is root-stable, then so is every h with g �p R h.

Proof of Lemma 4.16. (i) At first, we will show that, for each root-active term
graph g, we find a reduction g �p g′ and a reduction step g′ →c h with c = ⊥
and h a root-active term graph. Since g is root-active, there is a reduction
S : g �p g′ with g′ a redex. Hence, there is a reduction step φ : g′ →c h
applied at the root node rg′ . That is, c ∼= g′\rg′ ∼= ⊥. To see that h is root
active, let T : h �p h′. Then S · 〈φ〉 · T : g �p h′. Since g is root-active we
find a reduction h′ �p h′′ to a redex h′′. Hence, h is root-active.
Given a root-active term g0, we obtain with the above finding, for each
i < ω, a reduction Si : gi �p g′i and a reduction step φi : g′i →ci gi+1 with
ci = ⊥. Then the open sequence S = ∏

i<ω Si ·〈φi〉 is a strongly p-continuous
reduction starting from g0. Thus, according to Proposition 4.10, there is a
term graph gω with S : g0 �p gω. That is, if (ĉι)ι<|S| is the sequence of re-
duction contexts of S, we have gω = lim infι→|S| ĉι. Due to the construction
of S, we find, for each α < |S|, a α ≤ β < |S| with ĉβ = ⊥. Hence, gω = ⊥,
which means that S : g0 �p ⊥.

(ii) If g is not root-active, then there has to be a reduction g �p h such that
no reduction starting from h strongly p-converges to a redex. That is, h is
root-stable.

(iii) Let g be a root-stable term graph and S : g �p h. Given a reduction T : h�p
h′, we have to show that h′ is not a redex. Since g is root-stable and
S · T : g �p h′, we know that h′ is not a redex.

A.5 Soundness of Strong p-convergence

Lemma 5.11. Let (aι)ι<α be a sequence in a complete semilattice (A,≤) and
(γι)ι<δ a strictly monotone sequence in the ordinal α such that ⊔ι<δ γι = α.
Then

lim infι→α aι = lim infβ→δ
(d

γβ≤ι<γβ+1
aι
)
.

454

Proof of Lemma 5.11. At first we show that

l

β≤β′<δ

l

γβ′≤ι<γβ′+1

aι

 =

l

γβ≤ι<α
aι for all β < δ (∗)

by assuming an arbitrary ordinal β < δ and using the antisymmetry property of
the partial order ≤ on A.

Since, for all β ≤ β′ < δ, we have that
d
γβ′≤ι<γβ′+1

aι ≥
d
γβ≤ι<α aι, we

obtain that
d
β≤β′<δ

d
γβ′≤ι<γβ′+1

aι ≥
d
γβ≤ι<α aι.

On the other hand, since (γι)ι<δ is strictly monotone and ⊔ι<δ γι = α, we
find for each γβ ≤ γ < α some β ≤ β′ < δ such that γβ′ ≤ γ < γβ′+1 and, thus,d
γβ′≤ι<γβ′+1

aι ≤ aγ . Therefore, we obtain that
d
β≤β′<δ

d
γβ′≤ι<γβ′+1

aι ≤ aγ

for all γβ ≤ γ < α. Hence, we can conclude that
d
β≤β′<δ

d
γβ′≤ι<γβ′+1

aι ≤d
γβ≤ι<α aι.
With the thus obtained equation (∗), it remains to be shown that

⊔

β<α

l

β≤ι<α
aι =

⊔

β′<δ

l

γβ′≤ι<α
aι.

Again, we use the antisymmetry of ≤.
Since

d
ι<δ γι = α, we find for each β < α some β′ < δ with γβ′ ≥ β.

Consequently, we have for each β < α some β′ < δ with
d
β≤ι<α aι ≤

d
γβ′≤ι<α aι.

Hence, we know that
d
β≤ι<α aι ≤

⊔
β′<δ

d
γβ′≤ι<α aι for all β < α, which means

that ⊔β<α
d
β≤ι<α aι ≤

⊔
β′<δ

d
γβ′≤ι<α aι.

On the other hand, since for each β′ < δ there is a β < α (namely β = γβ)
with

d
β≤ι<α aι =

d
γβ′≤ι<α aι, we also have ⊔β<α

d
β≤ι<α aι ≥

d
γβ′≤ι<α aι for

all β′ < δ. Consequently, we have ⊔β<α
d
β≤ι<α aι ≥

⊔
β′<δ

d
γβ′≤ι<α aι.

455

	Introduction
	Modular Implementation of Programming Languages
	Modularity
	Modular Semantics
	Modular Implementation Techniques
	Parsing
	Typing ASTs
	Operations on ASTs
	Names and Binders

	Contributions of this Dissertation
	Conclusions and Perspectives

	A Partial-Order Approach to Infinitary Rewriting
	To Infinity and Beyond! – But Why?
	Non-Strict Evaluation
	Sharing
	Cyclic Structures

	Notions of Convergence and All That
	Metric Convergence
	Other Notions of Convergence
	Abstract Notions of Convergence

	Contributions of this Dissertation
	Overview
	Concrete Contributions

	Conclusions and Perspectives

	Bibliography
	Papers on Modular Implementation of Programming Languages
	Compositional Data Types
	Parametric Compositional Data Types
	Modular Tree Automata
	Domain-Specific Languages for Enterprise Systems

	Papers on the Partial-Order Approach to Infinitary Rewriting
	Abstract Models of Transfinite Reductions
	Partial Order Infinitary Term Rewriting
	Modes of Convergence for Term Graph Rewriting
	Convergence in Infinitary Term Graph Rewriting Systems is Simple
	Infinitary Term Graph Rewriting is Simple, Sound and Complete

