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The abstract picture

@ We have a number of
domain-specific languages.

@ Each pair of DSLs shares some
common sublanguage.

@ All of them share a common
language of values.

@ We have the same situation on
the type level!

How do we implement this system without duplicating code?!
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More General Application

Even with only one language to implement this issue appears!

Different stages of a compiler work on different languages.

o Desugaring: FullExp — CoreExp
o Evaluation: Exp — Value

Manipulating/extending syntax trees

@ annotating syntax trees

@ adding/removing type annotations
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Compositional Data Types

data Lit e = Lit Int

data Exp = Lit Int

| Add Exp Exp
data Term f =
In (f (Term f))
combine

| Mult Exp Exp
type Exp = Term Sig

annotations

data Sig e = Lit Int
| Add ee
| Mult e e

Lit ® Ops &...

data Ops e = Add e e
| Mult e e
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Variable Binding

A straightforward solution

type Name = String

data Lam e = Lam Name e type Sig = Lam & Var & App
data Var e = Var Name type Lambda = Term Lam

data Appe =Appee

Issues
@ Definitions modulo a-equivalence
o Capture-avoiding substitutions

@ Implementing embedded languages

Goal
Use higher-order abstract syntax to leverage the variable binding
mechanism of the host language.

o
[ ]
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data Lam e = Lai Name e data Lam e = Lam (e — e)

data Var e = Var Name
data Appe =Appee data Appe =Appee

Issues
@ inefficient and cumbersome recursion schemes
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Higher-Order Abstract Syntax

TN ey Lam "x" (...Var "x"...) SEINIENY Lam (Ax — ...x...)

type Name = Str% /
data Lam e = Lai Name e data Lam e = Lam (e — e)

data Var e = Var Name
data Appe =Appee data Appe =Appee

Issues
@ inefficient and cumbersome recursion schemes
(catamorphism needs an algebra and the inverse coalgebra)

~~ Fegaras & Sheard (1996): parametric functions space
@ Full function space allows for exotic terms

~» Washburn & Weirich (2008): polymorphism & abstract type of

terms
o
[

7
s
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Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:
data Trm f a =In(fa(Trmf a)) | Vara
newtype Term f = Term (Y a. Trm f a)

Example

data Sig ae=Lam(a—e) | Appee
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Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:

data Trm f a In(f a(Trmf a)) | Var a
newtype Term f Term (Y a. Trm f a)

Example

data Sig ae=Lam(a—e) | Appee
e:: Term Sig
e= Term$ Lam (Ax — Var x ‘App' Var x)
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Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:
data Trm f a =In(fa(Trmf a)) | Vara
newtype Term f = Term (Y a. Trm f a)

Example

data Sig ae=Lam(a—e) | Appee

e:: Term Sig e = Ax.x x

e= Term$ Lam (Ax — Var x ‘App' Var x)

©
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Adding Compositionality

Coproducts
data (f@g)ae=Inl(fae)|lnr(gae)

Example

data Lam ae = Lam (a — e)
data Appae =Appee

type Sig = Lam & App
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Recursion Schemes

Generalising functors to difunctors

class Difunctor f where
dimap::(a— b) > (c—d)—>fbc—fad

instance Difunctor (—) where
dimapfgh=g.h.f

Algebras

typeAlgfc=fcc—c

Catamorphisms

cata :: Difunctor f = Alg f ¢ — Term f — ¢
cata ¢ (Term t) = cat t
where cat :: Trmf ¢ — ¢

cat (Int) = ¢ (dimap id cat t)

cat (Var x) = x

=
o
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Declaring a catamorphism

class Count f where

bCount - Alg f Int
count :: (Difunctor f, Count f) = Term f — Int
count = cata ¢count
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Example

Declaring a catamorphism

class Count f where

bCount - Alg f Int
count :: (Difunctor f, Count f) = Term f — Int
count = cata ¢count

Instantiation

instance Count Lam where
¢Count (Lam f) =f1

instance Count App where
Pcount (App €1 &) = &1 + &

11
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Extending the Signature

Let expressions

data Let ae = Let e (a — e)
type Sig’ = Sig & Let

e, e ::Term Sig’
e= Term$ iLam (Ax — x "iApp' x)
e = Term$ ilLet (iLam (Ax — x 'iApp' x)) (Ay — y 'iApp' y)

Note: Sig < Sig’

12
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Extending the Signature

Let expressions

data Let ae = Let e (a — e)
type Sig’ = Sig & Let

let y = Ax.xxinyy
el —

e :/ms; iLam (Ax — x 'iApp" x)
= Term $ iLet (iLam (Ax — x "iApp‘ x)) (A\y — y 'iApp' y)

Note: Sig < Sig’

12
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Extending the Signature

Let expressions

data Let ae = Let e (a — e) Note: Sig < Sig’
type Sig’ = Sig & Let

Example

e, e ::Term Sig’

e= Term$ iLam (Ax — x "iApp' x)

e = Term$ ilLet (iLam (Ax — x 'iApp' x)) (Ay — y 'iApp' y)

Extending the variable counter

instance Count Let where
dcount (Letef)=e+ 11
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But Wait, There is More!

Term transformations

o functions of type Term f — Term g

@ e.g. desugaring, constant folding, type inference, annotations

o efficient recursion schemes derived from tree automata

Monadic computations

@ functions of type Term f — mr
@ e.g. for pretty printing, evaluation with side effects

Generalised Algebraic Data Types

@ difunctors ~~ indexed difunctors
@ algebras ~» many-sorted algebras
e mutually recursive data types (with binders)

o for simple type systems (e.g. simply typed lambda calculus)
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Current Work

We use our library constantly. ~» We extend it constantly.

Other extensions

@ algebras with nested monadic effect
@ tree homomorphisms
@ tree transducers

@ attribute grammars

Try it yourself

@ http://hackage.haskell.org/package/compdata

@ cabal install compdata

14
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An example — Language Definition & Desugaring

data Lam a b = Lam (a — b)
data App a b =App b b

data Lit a b = Lit Int

data Plus a b =Plus b b

data Let a b = Let b (a — b)
data Err a b = Err

$(derive [smartConstructors, makeDifunctor, makeShowD, makeEqD, makeOrdD]
[’’Lam, ’’App, ’’Lit, ’’Plus, ’’Let, ’’Errl])

e :: Term (Lam :+: App :+: Lit :+: Plus :+: Let :+: Err)
e = Term (ilet (iLit 2) (Ax — (ilam (A\y — y ‘iPlus‘ x) ‘iApp‘¢ iLit 3)))

—-- * Desugaring
class Desug f g where
desugHom :: Hom f g
$(derive [liftSum] [’’Desugl) -- lift Desug to coproducts

desug :: (Difunctor f, Difunctor g, Desug f g) = Term f — Term g
desug (Term t) = Term (appHom desugHom t)

instance (Difunctor f, Difunctor g, f :<: g) = Desug f g where
desugHom = In . fmap Hole . inj -- default instance for core signatures

instance (App :<: f, Lam :<: f) = Desug Let f where
desugHom (Let el e2) = inject (Lam (Hole . e2)) ‘iApp‘ Hole el

15
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An example — Call-By-Value Evaluation

data Sem m = Fun (Sem m — m (Sem m)) | Int Int

class Monad m = Eval m f where
evalAlg :: Alg £ (m (Sem m))

$(derive [liftSum] [’’Evall) -- lift Eval to coproducts

eval :: (Difunctor f, Eval m f) = Term f — m (Sem m)
eval = cata evalAlg

instance Monad m = Eval m Lam where
evalAlg (Lam f) = return (Fun (f . return))

instance MonadError String m —- Eval m App where
evalAlg (App mx my) = do x <— mx
case x of Fun f — my >>=f
- — throwError "stuck"
instance Monad m => Eval m Lit where
evalAlg (Lit n) = return (Int n)

instance MonadError String m = Eval m Plus where
evalAlg (Plus mx my) = do X < mx
y < my
case (x,y) of (Int n,Int m) — return (Int (n + m))
_ — throwError "stuck"
instance MonadError String m —- Eval m Err where
evalAlg Err = throwError "error"

16
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