ITY OF COPENHAGEN Department of Comput:

Faculty of Science @

Parametric Compositional Data Types

Patrick Bahr Tom Hvitved

University of Copenhagen, Department of Computer Science
{ paba , hvitved }@diku.dk

Mathematically Structured Functional Programming 2012,
Tallinn, Estonia, March 25th, 2012 -

UNIVERSITY OF COPENHAGEN Department of Comput:

QOutline

@ Motivation

© Compositional Data Types

© Higher-Order Abstract Syntax

UNIVERSITY OF COPENHAGEN Department of Computer

The Issue
Implementation/Prototyping of DSLs

UNIVERSITY OF COPENHAGEN Department of Computer

The Issue
Implementation/Prototyping of DSLs

UNIVERSITY OF COPENHAGEN Department of Computer

The Issue
Implementation/Prototyping of DSLs

UNIVERSITY OF COPENHAGEN Department of Comput:

The Issue
Implementation/Prototyping of DSLs

The abstract picture

@ We have a number of
domain-specific languages.

@ Each pair of DSLs shares some
common sublanguage.

@ All of them share a common
language of values.

@ We have the same situation on
the type level!

UNIVERSITY OF COPENHAGEN Department of Campute

The Issue
Implementation/Prototyping of DSLs

The abstract picture

@ We have a number of
domain-specific languages.

@ Each pair of DSLs shares some
common sublanguage.

@ All of them share a common
language of values.

@ We have the same situation on
the type level!

How do we implement this system without duplicating code?!

UNIVERSITY OF COPENHAGEN Department of Computer

More General Application

Even with only one language to implement this issue appears!

UNIVERSITY OF COPENHAGEN Department of Computer Science

More General Application

Even with only one language to implement this issue appears!

Different stages of a compiler work on different languages.

o Desugaring: FullExp — CoreExp

o Evaluation: Exp — Value

Department of Computer Science

UNIVERSITY OF COPENHAGEN

More General Application

Even with only one language to implement this issue appears!

Different stages of a compiler work on different languages.

o Desugaring: FullExp — CoreExp
o Evaluation: Exp — Value

Manipulating/extending syntax trees

@ annotating syntax trees

@ adding/removing type annotations

UNIVERSITY OF COPENHAGEN Department of Computer

Compositional Data Types

data Exp = Lit Int
| Add Exp Exp
| Mult Exp Exp

UNIVERSITY OF COPENHAGEN Department of Computer Science

Compositional Data Types

data Exp = Lit Int
| Add Exp Exp

IS <
S | Mult Exp Exp)
S %
S <
©
° decompose
data Term f = data Sig e T ﬁ\’s d an
In (f (Term £)) | Mult e e

UNIVERSITY OF COPENHAGEN Department of Computer Science

Compositional Data Types

data Exp = Lit Int
- | Add Exp Exp -
9 | Mult Exp Exp Y
$ %
° decompose

data Sig e = Lit Int

| Add ee
combine
type Exp = Term Sig

data Term f =

In (f (Term £)) | Mult e e

UNIVERSITY OF COPENHAGEN

Compositional Data Types

data Exp = Lit Int
| Add Exp Exp
| Mult Exp Exp

decompose

data Term f = e T ;‘2 d Lni
In (f (Term f)) | Multee

combine

type Exp = Term Sig

Department of Computer

Y OF COPENHAGEN

Compositional Data Types

data Lit e = Lit Int

data Exp = Lit Int

| Add Exp Exp
data Term f =
In (f (Term f))
combine

| Mult Exp Exp
type Exp = Term Sig

data Sig e = Lit Int
| Add ee
| Mult e e

data Ops e = Add e e
| Mult ee

Department of Computer

Compositional Data Types

data Lit e = Lit Int

data Exp = Lit Int

| Add Exp Exp
data Term f =
In (f (Term f))
combine

| Mult Exp Exp
type Exp = Term Sig

data Sig e = Lit Int
| Add ee
| Mult e e

data Ops e = Add e e
| Mult e e

Department of Computer Science

PENHAGEN

Compositional Data Types

data Lit e = Lit Int

data Exp = Lit Int

| Add Exp Exp
data Term f =
In (f (Term f))
combine

| Mult Exp Exp
type Exp = Term Sig

data Sig e = Lit Int
| Add ee
| Mult e e

Lit ® Ops &...

data Ops e = Add e e
| Mult e e

UNIVERSITY OF COPENHAGEN Department of Computer Science

Compositional Data Types

data Lit e = Lit Int

data Exp = Lit Int

| Add Exp Exp
data Term f =
In (f (Term f))
combine

| Mult Exp Exp
type Exp = Term Sig

annotations

data Sig e = Lit Int
| Add ee
| Mult e e

Lit ® Ops &...

data Ops e = Add e e
| Mult e e

UNIVERSITY OF COPENHAGEN Department of Computer Science

Variable Binding
A straightforward solution

type Name = String

data Lam e = Lam Name e
data Var e = Var Name
data Appe =Appee

UNIVERSITY OF COPENHAGEN Department of Computer Science

Variable Binding

A straightforward solution

type Name = String

data Lam e = Lam Name e type Sig = Lam & Var & App
data Var e = Var Name type Lambda = Term Lam

data Appe =Appee

UNIVERSITY OF COPENHAGEN Department of Computer Science

Variable Binding

A straightforward solution

type Name = String

data Lam e = Lam Name e type Sig = Lam & Var & App
data Var e = Var Name type Lambda = Term Lam

data Appe =Appee

Issues

@ Definitions modulo a-equivalence

o Capture-avoiding substitutions

@ Implementing embedded languages

UNIVERSITY OF COPENHAGEN Department of Computer Science

Variable Binding

A straightforward solution

type Name = String

data Lam e = Lam Name e type Sig = Lam & Var & App
data Var e = Var Name type Lambda = Term Lam

data Appe =Appee

Issues
@ Definitions modulo a-equivalence
o Capture-avoiding substitutions

@ Implementing embedded languages

Goal
Use higher-order abstract syntax to leverage the variable binding
mechanism of the host language.

o
[]

Department of Computer Science

Higher-Order Abstract Syntax

Explicit Variables

type Name = String

data Lame = Lam Name e
data Var e = Var Name
data Appe =Appee

UNIVERSITY OF COPENHAGEN Department of Computer Science

Higher-Order Abstract Syntax

Explicit Variables Higher-Order Abstract Syntax

type Name = String

data Lam e = Lam Name e data Lame = Lam (e — e)
data Var e = Var Name

data Appe =Appee data Appe =Appee

UNIVERSITY OF COPENHAGEN Department of Computer Science

Higher-Order Abstract Syntax

Explicit Variables Higher-Order Abstract Syntax

type Name = String

data Lam e = Lam Name e data Lame = Lam (e — e)
data Var e = Var Name

data Appe =Appee data Appe =Appee

UNIVERSITY OF COPENHAGEN Department of Computer Science

Higher-Order Abstract Syntax

type Name = Str% /
data Lam e = Lai Name e data Lam e = Lam (e — e)

data Var e = Var Name
data Appe =Appee data Appe =Appee

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Higher-Order Abstract Syntax

type Name = Str% /
data Lam e = Lai Name e data Lam e = Lam (e — e)

data Var e = Var Name
data Appe =Appee data Appe =Appee

Issues
@ inefficient and cumbersome recursion schemes
(catamorphism needs an algebra and the inverse coalgebra)

@ Full function space allows for exotic terms

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Higher-Order Abstract Syntax

type Name = Str% /
data Lam e = Lai Name e data Lam e = Lam (e — e)

data Var e = Var Name
data Appe =Appee data Appe =Appee

Issues
@ inefficient and cumbersome recursion schemes
(catamorphism needs an algebra and the inverse coalgebra)

~~ Fegaras & Sheard (1996): parametric functions space

@ Full function space allows for exotic terms

UNIVERSITY OF COPENHAGEN Department of Computer Science

Higher-Order Abstract Syntax

TN ey Lam "x" (...Var "x"...) SEINIENY Lam (Ax — ...x...)

type Name = Str% /
data Lam e = Lai Name e data Lam e = Lam (e — e)

data Var e = Var Name
data Appe =Appee data Appe =Appee

Issues
@ inefficient and cumbersome recursion schemes
(catamorphism needs an algebra and the inverse coalgebra)

~~ Fegaras & Sheard (1996): parametric functions space
@ Full function space allows for exotic terms

~» Washburn & Weirich (2008): polymorphism & abstract type of

terms
o
[

7
s

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:
data Trm f a =In(f a(Trmf a))

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:
data Trm f a =In(f a(Trmf a))
type Term f = Va.Trmf a

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:
data Trm f a =In(fa(Trmf a)) | Vara
type Term f = Va.Trmf a

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:
data Trm f a =In(fa(Trmf a)) | Vara
newtype Term f = Term (Y a. Trm f a)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:
data Trm f a =In(fa(Trmf a)) | Vara
newtype Term f = Term (Y a. Trm f a)

Example

data Sig ae=Lam(a—e) | Appee

o

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:

data Trm f a In(f a(Trmf a)) | Var a
newtype Term f Term (Y a. Trm f a)

Example

data Sig ae=Lam(a—e) | Appee
e:: Term Sig
e= Term$ Lam (Ax — Var x ‘App' Var x)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parametric Higher-Order Abstract Syntax
[Chlipala 2008]

@ Signature for lambda bindings:

data Lam a e = Lam (a2 — e)

@ Recursive construction of terms:
data Trm f a =In(fa(Trmf a)) | Vara
newtype Term f = Term (Y a. Trm f a)

Example

data Sig ae=Lam(a—e) | Appee

e:: Term Sig e = Ax.x x

e= Term$ Lam (Ax — Var x ‘App' Var x)

©

UNIVERSITY OF COPENHAGEN Department of Computer Science

Adding Compositionality

data (f®g)ae=1Inl(fae)|Inr(gae)

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Adding Compositionality

Coproducts
data (f@g)ae=Inl(fae)|lnr(gae)

Example

data Lam ae = Lam (a — e)
data Appae =Appee

type Sig = Lam & App

UNIVERSITY OF COPENHAGEN Department of Computer Science

Recursion Schemes

Generalising functors

class Functor f where
fmap::(a—b)—>fa—fb

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

Recursion Schemes

Generalising functors to difunctors

class Difunctor f where
dimap::(a— b) > (c—d)—>fbc—fad

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

Recursion Schemes

Generalising functors to difunctors

class Difunctor f where
dimap::(a— b) > (c—d)—>fbc—fad

instance Difunctor (—) where
dimapfgh=g.h.f

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

Recursion Schemes

Generalising functors to difunctors

class Difunctor f where
dimap::(a— b) > (c—d)—>fbc—fad

instance Difunctor (—) where
dimapfgh=g.h.f

Algebras
typeAlgfc=fcc—c

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

Recursion Schemes

Generalising functors to difunctors

class Difunctor f where
dimap::(a— b) > (c—d)—>fbc—fad

instance Difunctor (—) where
dimapfgh=g.h.f

Algebras

typeAlgfc=fcc—c

Catamorphisms

cata :: Difunctor f = Alg f ¢ — Term f — ¢
cata ¢ (Term t) = cat t
where cat :: Trmf ¢ — ¢

cat (Int) = ¢ (dimap id cat t)

cat (Var x) = x

=
o

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example

Declaring a catamorphism

class Count f where

bCount - Alg f Int
count :: (Difunctor f, Count f) = Term f — Int
count = cata ¢count

11

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example

Declaring a catamorphism

class Count f where

bCount - Alg f Int
count :: (Difunctor f, Count f) = Term f — Int
count = cata ¢count

Instantiation

instance Count Lam where
¢Count (Lam f) =f1

instance Count App where
Pcount (App €1 &) = &1 + &

11

UNIVERSITY OF COPENHAGEN Department of Computer Science

Extending the Signature

Let expressions

data Let ae = Let e (a — e)
type Sig’ = Sig @ Let

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

Extending the Signature

Let expressions

data Let ae = Let e (a — e)
type Sig’ = Sig @ Let

Note: Sig < Sig’

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

Extending the Signature

Let expressions

data Let ae = Let e (a — e)
type Sig’ = Sig & Let

e :Term Sig
e= Term$ iLam (Ax — x 'iApp' x)

Note: Sig < Sig’

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

Extending the Signature

Let expressions

data Let ae = Let e (a — e)
type Sig’ = Sig & Let

e ::Term Sig’
e= Term$ iLam (Ax — x 'iApp' x)

Note: Sig < Sig’

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

Extending the Signature

Let expressions

data Let ae = Let e (a — e)
type Sig’ = Sig & Let

e, e ::Term Sig’
e= Term$ iLam (Ax — x "iApp' x)
e = Term$ ilLet (iLam (Ax — x 'iApp' x)) (Ay — y 'iApp' y)

Note: Sig < Sig’

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

Extending the Signature

Let expressions

data Let ae = Let e (a — e)
type Sig’ = Sig & Let

let y = Ax.xxinyy
el —

e :/ms; iLam (Ax — x 'iApp" x)
= Term $ iLet (iLam (Ax — x "iApp‘ x)) (A\y — y 'iApp' y)

Note: Sig < Sig’

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

Extending the Signature

Let expressions

data Let ae = Let e (a — e) Note: Sig < Sig’
type Sig’ = Sig & Let

Example

e, e ::Term Sig’

e= Term$ iLam (Ax — x "iApp' x)

e = Term$ ilLet (iLam (Ax — x 'iApp' x)) (Ay — y 'iApp' y)

Extending the variable counter

instance Count Let where
dcount (Letef)=e+ 11

UNIVERSITY OF COPENHAGEN Department of Computer Science

But Wait, There is More!

Term transformations

o functions of type Term f — Term g

@ e.g. desugaring, constant folding, type inference, annotations

o efficient recursion schemes derived from tree automata

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

But Wait, There is More!

Term transformations

o functions of type Term f — Term g

@ e.g. desugaring, constant folding, type inference, annotations

o efficient recursion schemes derived from tree automata

Monadic computations

@ functions of type Term f — mr

@ e.g. for pretty printing, evaluation with side effects

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

But Wait, There is More!

Term transformations

o functions of type Term f — Term g

@ e.g. desugaring, constant folding, type inference, annotations

o efficient recursion schemes derived from tree automata

Monadic computations

@ functions of type Term f — mr
@ e.g. for pretty printing, evaluation with side effects

Generalised Algebraic Data Types

o difunctors ~ indexed difunctors

@ algebras ~» many-sorted algebras

UNIVERSITY OF COPENHAGEN Department of Computer Science

But Wait, There is More!

Term transformations

o functions of type Term f — Term g

@ e.g. desugaring, constant folding, type inference, annotations

o efficient recursion schemes derived from tree automata

Monadic computations

@ functions of type Term f — mr
@ e.g. for pretty printing, evaluation with side effects

Generalised Algebraic Data Types

@ difunctors ~~ indexed difunctors
@ algebras ~» many-sorted algebras
e mutually recursive data types (with binders)

o for simple type systems (e.g. simply typed lambda calculus)

UNIVERSITY OF COPENHAGEN Department of Computer

Current Work

We use our library constantly. ~» We extend it constantly.

14

http://hackage.haskell.org/package/compdata

UNIVERSITY OF COPENHAGEN Department of Computer Science

Current Work

We use our library constantly. ~» We extend it constantly.

Other extensions

@ algebras with nested monadic effect

@ tree homomorphisms
@ tree transducers

@ attribute grammars

14

http://hackage.haskell.org/package/compdata

UNIVERSITY OF COPENHAGEN Department of Computer Science

Current Work

We use our library constantly. ~» We extend it constantly.

Other extensions

@ algebras with nested monadic effect
@ tree homomorphisms
@ tree transducers

@ attribute grammars

Try it yourself

@ http://hackage.haskell.org/package/compdata

@ cabal install compdata

14

http://hackage.haskell.org/package/compdata

Y OF COPENHAC

An example — Language Definition & Desugaring

data Lam a b = Lam (a — b)
data App a b =App b b

data Lit a b = Lit Int

data Plus a b =Plus b b

data Let a b = Let b (a — b)
data Err a b = Err

$(derive [smartConstructors, makeDifunctor, makeShowD, makeEqD, makeOrdD]
[’’Lam, ’’App, ’’Lit, ’’Plus, ’’Let, ’’Errl])

e :: Term (Lam :+: App :+: Lit :+: Plus :+: Let :+: Err)
e = Term (ilet (iLit 2) (Ax — (ilam (A\y — y ‘iPlus‘ x) ‘iApp‘¢ iLit 3)))

—-- * Desugaring
class Desug f g where
desugHom :: Hom f g
$(derive [liftSum] [’’Desugl) -- lift Desug to coproducts

desug :: (Difunctor f, Difunctor g, Desug f g) = Term f — Term g
desug (Term t) = Term (appHom desugHom t)

instance (Difunctor f, Difunctor g, f :<: g) = Desug f g where
desugHom = In . fmap Hole . inj -- default instance for core signatures

instance (App :<: f, Lam :<: f) = Desug Let f where
desugHom (Let el e2) = inject (Lam (Hole . e2)) ‘iApp‘ Hole el

15

Y OF COPENHAG

An example — Call-By-Value Evaluation

data Sem m = Fun (Sem m — m (Sem m)) | Int Int

class Monad m = Eval m f where
evalAlg :: Alg £ (m (Sem m))

$(derive [liftSum] [’’Evall) -- lift Eval to coproducts

eval :: (Difunctor f, Eval m f) = Term f — m (Sem m)
eval = cata evalAlg

instance Monad m = Eval m Lam where
evalAlg (Lam f) = return (Fun (f . return))

instance MonadError String m —- Eval m App where
evalAlg (App mx my) = do x <— mx
case x of Fun f — my >>=f
- — throwError "stuck"
instance Monad m => Eval m Lit where
evalAlg (Lit n) = return (Int n)

instance MonadError String m = Eval m Plus where
evalAlg (Plus mx my) = do X < mx
y < my
case (x,y) of (Int n,Int m) — return (Int (n + m))
_ — throwError "stuck"
instance MonadError String m —- Eval m Err where
evalAlg Err = throwError "error"

16

	Motivation
	Compositional Data Types
	Higher-Order Abstract Syntax

