

Parametric Compositional Data Types

Patrick Bahr Tom Hvitved

University of Copenhagen, Department of Computer Science { paba , hvitred }@diku.dk

Mathematically Structured Functional Programming 2012, Tallinn, Estonia, March 25th, 2012

Outline

Motivation

- 2 Compositional Data Types
- 3 Higher-Order Abstract Syntax

Implementation/Prototyping of DSLs

ERP Runtime System

Implementation/Prototyping of DSLs

Implementation/Prototyping of DSLs

Implementation/Prototyping of DSLs

The abstract picture

- We have a number of domain-specific languages.
- Each pair of DSLs shares some common sublanguage.
- All of them share a common language of values.
- We have the same situation on the type level!

Implementation/Prototyping of DSLs

The abstract picture

- We have a number of domain-specific languages.
- Each pair of DSLs shares some common sublanguage.
- All of them share a common language of values.
- We have the same situation on the type level!

How do we implement this system without duplicating code?!

More General Application

Even with only one language to implement this issue appears!

More General Application

Even with only one language to implement this issue appears!

Different stages of a compiler work on different languages.

- Desugaring: $FullExp \rightarrow CoreExp$
- ullet Evaluation: Exp o Value

More General Application

Even with only one language to implement this issue appears!

Different stages of a compiler work on different languages.

- Desugaring: FullExp → CoreExp
- Evaluation: $Exp \rightarrow Value$

÷

Manipulating/extending syntax trees

- annotating syntax trees
- adding/removing type annotations


```
data Exp = Lit Int

| Add Exp Exp

| Mult Exp Exp
```


A straightforward solution

```
type Name = String
data Lam e = Lam Name e
data Var e = Var Name
data App e = App e e
```


A straightforward solution

```
type Name = String
data Lam e = Lam Name e
data Var e = Var Name
data App e = App e e
```

```
type Sig = Lam \oplus Var \oplus App type Lambda = Term Lam
```


A straightforward solution

```
type Name = String
data Lam \ e = Lam \ Name \ e
type Sig = Lam \oplus Var \oplus App
data Var \ e = Var \ Name
type Lambda = Term \ Lam
data App \ e = App \ e \ e
```

- Definitions modulo α -equivalence
- Capture-avoiding substitutions
- Implementing embedded languages

A straightforward solution

```
type Name = String
data Lam \ e = Lam \ Name \ e
type Sig = Lam \oplus Var \oplus App
data Var \ e = Var \ Name
type Lambda = Term \ Lam
data App \ e = App \ e \ e
```

Issues

- Definitions modulo α -equivalence
- Capture-avoiding substitutions
- Implementing embedded languages

Goal

Use higher-order abstract syntax to leverage the variable binding mechanism of the host language.

Explicit Variables

```
type Name = String
data Lam e = Lam Name e
data Var e = Var Name
data App e = App e e
```


Explicit Variables

type Name = String
data Lam e = Lam Name e
data Var e = Var Name
data App e = App e e

Higher-Order Abstract Syntax

data
$$Lam \ e = Lam \ (e \rightarrow e)$$

$$\mathbf{data}\ App\ e = App\ e\ e$$

Explicit Variables

type Name = String
data Lam e = Lam Name e
data Var e = Var Name
data App e = App e e

Higher-Order Abstract Syntax

data
$$Lam e = Lam (e \rightarrow e)$$

$$data App e = App e e$$

Explicit Variables Lam "x" (...Var "x"...) r-Order Abs: $Lam (\lambda x \rightarrow ...x...)$ type Name = String data Lam e = Lam Name e data $Lam e = Lam (e \rightarrow e)$ data Var e = Var Name data App e = App e e


```
Explicit Variables Lam "x" (... Var "x"...) ar-Order Abs: Lam (\lambda x \rightarrow ... x...)

type Name = String

data Lam e = Lam Name e

data Var e = Var Name

data App e = App e e

data App e = App e e
```

- inefficient and cumbersome recursion schemes
 (catamorphism needs an algebra and the inverse coalgebra)
- Full function space allows for exotic terms

data App e = App e e

Higher-Order Abstract Syntax

```
Explicit Variables Lam "x" (... Var "x"...) er-Order Abs: Lam (\lambda x \rightarrow ... x...)

type Name = String
data Lam e = Lam Name e
data Var e = Var Name
```

data App e = App e e

- inefficient and cumbersome recursion schemes
 (catamorphism needs an algebra and the inverse coalgebra)
 - → Fegaras & Sheard (1996): parametric functions space
- Full function space allows for exotic terms

data App e = App e e

Higher-Order Abstract Syntax

```
Explicit Variables Lam "x" (...Var "x"...) representation and Lam (x) = Lam (x) + Lam (x) +
```

data App e = App e e

- inefficient and cumbersome recursion schemes
 (catamorphism needs an algebra and the inverse coalgebra)
 - → Fegaras & Sheard (1996): parametric functions space
- Full function space allows for exotic terms
 - → Washburn & Weirich (2008): polymorphism & abstract type of terms

[Chlipala 2008]

Idea

• Signature for lambda bindings: data Lam $a = Lam(a \rightarrow e)$

[Chlipala 2008]

Idea

Signature for lambda bindings:

```
data Lam a e = Lam (a \rightarrow e)
```

Recursive construction of terms:

```
data Trm f = In (f a (Trm f a))
```


[Chlipala 2008]

Idea

• Signature for lambda bindings: data Lam $a = Lam(a \rightarrow e)$

Recursive construction of terms:

```
data Trm f a = In (f a (Trm f a))

type Term f = \forall a . Trm f a
```


[Chlipala 2008]

Idea

• Signature for lambda bindings: data Lam $a = Lam(a \rightarrow e)$

Recursive construction of terms:

```
data Trm f a = In (f a (Trm f a)) | Var a

type Term f = \forall a . Trm f a
```


[Chlipala 2008]

Idea

• Signature for lambda bindings: data Lam $a = Lam(a \rightarrow e)$

Recursive construction of terms:
 data Trm f a = In (f a (Trm f a)) | Var a
 newtype Term f = Term (∀ a . Trm f a)

[Chlipala 2008]

Idea

Signature for lambda bindings:
 data Lam a e = Lam (a → e)

Recursive construction of terms:
 data Trm f a = In (f a (Trm f a)) | Var a newtype Term f = Term (∀ a . Trm f a)

Example

data Sig a
$$e = Lam(a \rightarrow e) \mid App \ e \ e$$

[Chlipala 2008]

Idea

• Signature for lambda bindings: **data** Lam $a = Lam(a \rightarrow e)$

Recursive construction of terms:
 data Trm f a = In (f a (Trm f a)) | Var a
 newtype Term f = Term (∀ a . Trm f a)

Example

data Sig a $e = Lam(a \rightarrow e) \mid App \ e \ e$

e:: Term Sig

e = Term\$ Lam $(\lambda x \rightarrow Var \ x \ App' \ Var \ x)$

Parametric Higher-Order Abstract Syntax

[Chlipala 2008]

Idea

- Signature for lambda bindings: **data** Lam $a = Lam(a \rightarrow e)$
- Recursive construction of terms:
 data Trm f a = In (f a (Trm f a)) | Var a
 newtype Term f = Term (∀ a . Trm f a)

data Sig a
$$e = Lam(a \rightarrow e) \mid App \ e \ e$$

$$e = \lambda x.x x$$

$$e = Term$$
\$ Lam $(\lambda x \rightarrow Var \ x \ App' \ Var \ x)$

Adding Compositionality

Coproducts

 $\mathbf{data}\;(f\oplus g)\;a\;e=\mathit{Inl}\;(f\;a\;e)\;|\;\mathit{Inr}\;(g\;a\;e)$

Adding Compositionality

Coproducts

 $\mathbf{data}\;(f\oplus g)\;a\;e=\mathit{Inl}\;(f\;a\;e)\;|\;\mathit{Inr}\;(g\;a\;e)$

Example

data $Lam \ a \ e = Lam \ (a \rightarrow e)$ data $App \ a \ e = App \ e \ e$ type $Sig = Lam \oplus App$

Generalising functors

class Functor f where

$$\textit{fmap} :: (a \to b) \to f \ a \to f \ b$$

Generalising functors to difunctors

class Difunctor f where

dimap ::
$$(a \rightarrow b) \rightarrow (c \rightarrow d) \rightarrow f \ b \ c \rightarrow f \ a \ d$$

Generalising functors to difunctors

class Difunctor f where $dimap :: (a \rightarrow b) \rightarrow (c \rightarrow d) \rightarrow f \ b \ c \rightarrow f \ a \ d$ instance Difunctor (\rightarrow) where

Generalising functors to difunctors

class Difunctor f where $dimap :: (a \rightarrow b) \rightarrow (c \rightarrow d) \rightarrow f \ b \ c \rightarrow f \ a \ d$

instance Difunctor (\rightarrow) where dimap $f g h = g \cdot h \cdot f$

Algebras

type Alg
$$f c = f c c \rightarrow c$$

Generalising functors to difunctors

class Difunctor f where $dimap :: (a \rightarrow b) \rightarrow (c \rightarrow d) \rightarrow f \ b \ c \rightarrow f \ a \ d$ instance Difunctor (\rightarrow) where $dimap \ f \ g \ h = g \ . h \ . f$

Algebras

type Alg $f c = f c c \rightarrow c$

Catamorphisms

cata :: Difunctor $f \Rightarrow Alg \ f \ c \rightarrow Term \ f \rightarrow c$ cata ϕ (Term t) = cat twhere cat :: Trm $f \ c \rightarrow c$ cat (In t) = ϕ (dimap id cat t) cat (Var x) = x

Example

Declaring a catamorphism

class Count f where

 $\phi_{\mathrm{Count}} :: \mathit{Alg}\ \mathit{f}\ \mathit{Int}$

count :: (Difunctor f, Count f) \Rightarrow Term $f \rightarrow Int$

 $count = cata \phi_{Count}$

Example

Declaring a catamorphism

class Count f where

 $\phi_{\mathrm{Count}} :: \mathsf{Alg} \ \mathsf{f} \ \mathsf{Int}$

count :: (Difunctor f, Count f) \Rightarrow Term $f \rightarrow Int$

 $count = cata \phi_{Count}$

Instantiation

instance Count Lam where

$$\phi_{\text{Count}}$$
 (Lam f) = f 1

instance Count App where

$$\phi_{\mathrm{Count}}$$
 (App e_1 e_2) = $e_1 + e_2$

Let expressions

data Let
$$a e = Let e (a \rightarrow e)$$

type $Sig' = Sig \oplus Let$

Let expressions

data Let a
$$e = Let \ e \ (a \rightarrow e)$$

type $Sig' = Sig \oplus Let$

Note: $Sig \prec Sig'$

Let expressions

```
data Let a e = Let e (a \rightarrow e)
type Sig' = Sig \oplus Let
```

Note: $Sig \prec Sig'$

```
e :: Term \ Sig
e = Term \ iLam \ (\lambda x \rightarrow x \ iApp' \ x)
```


Let expressions

data Let
$$a e = Let e (a \rightarrow e)$$

type $Sig' = Sig \oplus Let$

Note: $Sig \prec Sig'$

```
e ::Term Sig'
e = Term iLam (\lambda x \rightarrow x 'iApp' x)
```


Let expressions

```
data Let a = Let \ e \ (a \rightarrow e) Note: Sig \prec Sig' type Sig' = Sig \oplus Let
```

```
e, e' :: Term Sig'

e = Term $ iLam (\lambda x \to x \text{ 'iApp' } x)

e' = Term $ iLet (iLam (\lambda x \to x \text{ 'iApp' } x)) (\lambda y \to y \text{ 'iApp' } y)
```


Let expressions

```
data Let a = Let \ e \ (a \rightarrow e) Note: Sig \prec Sig' type Sig' = Sig \oplus Let
```

```
Example let y = \lambda x.x x in y y
e = Torm iLam (\lambda x \rightarrow x 'iApp' x)
e = Torm iLam (\lambda x \rightarrow x 'iApp' x)
e' = Torm iLam (\lambda x \rightarrow x 'iApp' x)
```


Let expressions

```
data Let a = Let e (a \rightarrow e) Note: Sig \prec Sig' type Sig' = Sig \oplus Let
```

Example

```
e, e' :: Term \ Sig'
e = Term \ iLam \ (\lambda x \rightarrow x \ iApp' \ x)
e' = Term \ iLet \ (iLam \ (\lambda x \rightarrow x \ iApp' \ x)) \ (\lambda y \rightarrow y \ iApp' \ y)
```

Extending the variable counter

instance Count Let where

$$\phi_{\text{Count}}$$
 (Let $e f$) = $e + f 1$

Term transformations

- ullet functions of type $\mathit{Term}\ f \to \mathit{Term}\ g$
- e.g. desugaring, constant folding, type inference, annotations
- efficient recursion schemes derived from tree automata

Term transformations

- ullet functions of type $\mathit{Term}\ f \to \mathit{Term}\ g$
- e.g. desugaring, constant folding, type inference, annotations
- efficient recursion schemes derived from tree automata

Monadic computations

- functions of type $Term f \rightarrow m r$
- e.g. for pretty printing, evaluation with side effects

Term transformations

- ullet functions of type $\mathit{Term}\ f \to \mathit{Term}\ g$
- e.g. desugaring, constant folding, type inference, annotations
- efficient recursion schemes derived from tree automata

Monadic computations

- functions of type $Term f \rightarrow m r$
- e.g. for pretty printing, evaluation with side effects

Generalised Algebraic Data Types

- difunctors \(\sim \) indexed difunctors

Term transformations

- ullet functions of type $\mathit{Term}\ f \to \mathit{Term}\ g$
- e.g. desugaring, constant folding, type inference, annotations
- efficient recursion schemes derived from tree automata

Monadic computations

- functions of type $Term f \rightarrow m r$
- e.g. for pretty printing, evaluation with side effects

Generalised Algebraic Data Types

- difunctors ~> indexed difunctors
- mutually recursive data types (with binders)
- for simple type systems (e.g. simply typed lambda calculus)

Current Work

We use our library constantly. \leadsto We extend it constantly.

Current Work

We use our library constantly. \rightsquigarrow We extend it constantly.

Other extensions

- algebras with nested monadic effect
- tree homomorphisms
- tree transducers
- attribute grammars

Current Work

We use our library constantly. \leadsto We extend it constantly.

Other extensions

- algebras with nested monadic effect
- tree homomorphisms
- tree transducers
- attribute grammars

Try it yourself

- http://hackage.haskell.org/package/compdata
- cabal install compdata

An example – Language Definition & Desugaring

```
data Lam a b = Lam (a \rightarrow b)
data App a b = App b b
data Lit a b = Lit Int
data Plus a b = Plus b b
data Let a b = Let b (a \rightarrow b)
data Err a b = Err
$(derive [smartConstructors, makeDifunctor, makeShowD, makeEqD, makeOrdD]
          [''Lam, ''App, ''Lit, ''Plus, ''Let, ''Err])
e :: Term (Lam :+: App :+: Lit :+: Plus :+: Let :+: Err)
e = Term (iLet (iLit 2) (\lambda x \rightarrow (iLam (\lambda y \rightarrow y 'iPlus' x) 'iApp' iLit 3)))
-- * Desugaring
class Desug f g where
  desugHom :: Hom f g
$(derive [liftSum] [','Desug]) -- lift Desug to coproducts
desug :: (Difunctor f, Difunctor g, Desug f g) \Rightarrow Term f \rightarrow Term g
desug (Term t) = Term (appHom desugHom t)
instance (Difunctor f, Difunctor g, f :<: g) \Rightarrow Desug f g where
  desugHom = In , fmap Hole , inj -- default instance for core signatures
instance (App :<: f, Lam :<: f) \Rightarrow Desug Let f where
  desugHom (Let e1 e2) = inject (Lam (Hole . e2)) 'iApp' Hole e1
```


An example – Call-By-Value Evaluation

```
data Sem m = Fun (Sem m \rightarrow m (Sem m)) | Int Int
class Monad m -> Eval m f where
  evalAlg :: Alg f (m (Sem m))
$(derive [liftSum] [''Eval]) -- lift Eval to corroducts
eval :: (Difunctor f, Eval m f) \Rightarrow Term f \rightarrow m (Sem m)
eval = cata evalAlg
instance Monad m \Rightarrow Eval m Lam where
  evalAlg (Lam f) = return (Fun (f . return))
instance MonadError String m => Eval m App where
  evalAlg (App mx mv) = do x \leftarrow mx
                              case x of Fun f \rightarrow mv >>= f
                                                → throwError "stuck"
instance Monad m -> Eval m Lit where
  evalAlg (Lit n) = return (Int n)
instance MonadError String m => Eval m Plus where
  evalAlg (Plus mx mv) = do x \leftarrow mx
                               case (x,y) of (Int n,Int m) \rightarrow return (Int <math>(n+m))
                                                             → throwError "stuck"
instance MonadError String m \Rightarrow Eval m Err where
  evalAlg Err = throwError "error"
```

