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Goals

Syntax-directed computations on ASTs

program analysis

complex program transformations

compiler construction in general

Desired properties

extensibility

modularity

reusability

build complex programs by combining simple ones

Embed the solution into Haskell.
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How do we achieve these goals?

Locality

simple syntax-directed functions are local in nature

Compositionality

syntax-directed functions can be combined and composed

Contextuality

syntax-directed functions may depend on (the result of) others

NB: This breaks locality and has to be carefully restricted!

But it is convenient/necessary for
I compositionality
I expressivity
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Locality

Tree automata

Computation according to a set of rules.

Applicability of rules depend only on “local” information.

The effect of a rule application is locally restricted.
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Locality

Tree automata

Computation according to a set of rules.

Applicability of rules depend only on “local” information.

The effect of a rule application is locally restricted.
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f
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f (q1(x1), q2(x2), . . . , qn(xn)) −→ q(t[x1, x2, . . . , xn])
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Compositionality
We shall compose tree automata along 3 different dimensions.

sequential composition: a.k.a. deforestation

µF1 µF2 µF3

JA1K JA2K

JA1 ◦ A2K

input signature: the type of the AST

JA1K : µF → R

JA2K : µG → R
=⇒ JA1 +A2K : µ(F + G)→ R

output type: tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µF → R × S
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Contextuality

tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µ(F)→ R × S

mutumorphisms / dependent product automata

A1 :

S ⇒

F → R

A2 : R ⇒ F → S
=⇒ A1 ×A2 : F → R × S
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Outline

1 Introduction

2 State Transition Functions
Composing State Spaces
Compositional Signatures

3 Tree Transducers
Bottom-Up Tree Transducers
Decomposing Tree Transducers

4 Conclusions

7



Terms in Haskell

Data types as fixed points of functors

data Term f = In (f (Term f ))

Functors

class Functor f where
fmap :: (a→ b)→ f a→ f b

8
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Bottom-Up State Transitions in Haskell

f

q1 q2. . .
qn
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f
q
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q

Bottom-up state transition rules as algebras

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState φ (In t) = φ (fmap (runUpState φ) t)
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Bottom-Up State Transitions in Haskell
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q
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Bottom-up state transition rules as algebras

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState φ (In t) = φ (fmap (runUpState φ) t)

a.k.a. catamorphism / fold
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Composing State Spaces – Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr ]

The problem

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = x ++ [Store a ] ++ y ++ [Add a ]
where a = . . .
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type Code = [Instr ]

The problem

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = x ++ [Store a ] ++ y ++ [Add a ]

where a = . . .

Sig Code → Code
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Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code,Addr)
codeAddrSt (Val i) = ([Acc i ], 0)
codeAddrSt (Plus (x , a′) (y , a)) = (x ++ [Store a ] ++ y ++ [Add a ],

1 + max a a′)

Run the automaton

code :: Term Sig → (Code,Addr)
code =

fst .

runUpState codeAddrSt

11
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1 + max a a′)

Run the automaton

code :: Term Sig →

(

Code

,Addr)
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Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q
type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)
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Running Dependent State Transition Functions

The types

type UpState f q = f q → q
type DUpState f p q = (q ∈ p)⇒ f p → q

Running dependent state transitions

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState f = runUpState f

From state transition to dependent state transition

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap pr

13
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The Code Generator Example
The code generator

codeSt :: (Int ∈ q)⇒ DUpState Sig q Code
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = pr x ++ [Store a ] ++ pr y ++ [Add a ]

where a = pr y

Generating fresh addresses

heightSt :: UpState Sig Int
heightSt (Val ) = 0
heightSt (Plus x y) = 1 + max x y

Combining the components

code :: Term Sig → Code
code = fst . runUpState (codeSt ⊗ dUpState heightSt)

(Code ∈ q, Int ∈ q)⇒ DUpState Sig q (Code, Int)

14
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Combining Signatures
Signatures & automata may be combined in the style of “Data types à la
carte” [Swierstra 2008].

Coproduct of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

Example

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

Subsignature type class

class f � g where
inj :: f a→ g a

For example: Inc � Sig ′

f � g iff

g = g1 ⊕ g2 ⊕ ...⊕ gn and

f = gi , 0 < i ≤ n

16
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Combining Automata
Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int

instance (HeightSt f ,HeightSt g)⇒ HeightSt (f ⊕ g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where
heightSt (Val ) = 0
heightSt (Plus x y) = 1 + max x y

Defining the height on Inc

instance HeightSt Inc where
heightSt (Inc x) = 1 + x
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Bottom-Up Tree Transducers

f

q1 q2. . .
qn

f

. . .

q

From terms to contexts

data Term f = In (f (Term f ))

data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g = ∀ a.f (q,a)→ (q, Context g a)
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Tree Homomorphisms

type UpTrans f q g = ∀ a . f (q, a) → (q, Context g a)

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where

desugHom = simpCxt . inj
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desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where

desugHom = simpCxt . inj

simpCxt :: Functor g ⇒ g a→ Context g a
simpCxt t = In (fmap Hole t)
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Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q, a)→ (q,Context g a)

Making homomorphisms dependent on a state

type QHom f q g = ∀ a.

(a→ q)→

f

(q,

a

)

→ Context g a

From stateful homomorphisms to tree transducers

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g

upTrans st hom t = (q, c) where
q = st (fmap fst t)
c = fmap snd (hom fst t)
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An Example

Extending the signature with let bindings

type Name = String
data Let e = LetIn Name e e | Var Name
type LetSig = Let ⊕ Sig

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars

instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union‘ y
freeVarsSt (Val ) = empty

instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v
freeVarsSt (LetIn v e s) = if v ‘member ‘ s then e ‘union‘ delete v s

else s
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An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars ∈ q, Let � g ,Functor g)⇒ RemLetHom Let q g where
remLetHom qOf (LetIn v s) | ¬ (v ‘member ‘ qOf s) = Hole s
remLetHom t = simpCxt (inj t)

instance (Functor f ,Functor g , f � g)⇒ RemLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remLet :: (Functor f ,FreeVarsSt f ,RemLetHom f Vars f )
⇒ Term f → (Vars,Term f )

remLet = runUpHom freeVarsSt remLetHom

remLet :: Term LetSig → Term LetSig
remLet :: Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig)
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Beyond Bottom-Up Tree Automata

What have we seen?

Bottom-up tree acceptors (a.k.a. folds)

Bottom-up tree transducers

“dependent” versions thereof

Other Tree recursion schemes

Top-down tree acceptors

Top-down tree transducers

“dependent” versions thereof

automata with bidirectional state propagation

(restricted versions of macro tree transducers)
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What have we gained?

Modularity & Reusability

modularity along three dimensions (signature, sequential composition,
state space)

decoupling of state propagation and tree transformation

operations on automata (beyond product & sum) allow us to
construct new automata from old ones

Interface between tree automata

dependencies between automata by constraints on the state space

modularity allows us to replace individual components
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Try It Out!

This is part of the compositional data types Haskell library compdata:

> cabal install compdata

http://hackage.haskell.org/package/compdata

26
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