
Modular Tree Automata
Deriving Modular Recursion Schemes from Tree

Automata

Patrick Bahr

University of Copenhagen,
Department of Computer Science

paba@diku.dk

11th International Conference on
Mathematics of Program Construction

Madrid, Spain, June 25 - 27, 2012

Goals

Syntax-directed computations on ASTs

program analysis

complex program transformations

compiler construction in general

Desired properties

extensibility

modularity

reusability

build complex programs by combining simple ones

Embed the solution into Haskell.

2

Goals

Syntax-directed computations on ASTs

program analysis

complex program transformations

compiler construction in general

Desired properties

extensibility

modularity

reusability

build complex programs by combining simple ones

Embed the solution into Haskell.

2

Goals

Syntax-directed computations on ASTs

program analysis

complex program transformations

compiler construction in general

Desired properties

extensibility

modularity

reusability

build complex programs by combining simple ones

Embed the solution into Haskell.

2

How do we achieve these goals?

Locality

simple syntax-directed functions are local in nature

Compositionality

syntax-directed functions can be combined and composed

Contextuality

syntax-directed functions may depend on (the result of) others

NB: This breaks locality and has to be carefully restricted!

But it is convenient/necessary for
I compositionality
I expressivity

3

How do we achieve these goals?

Locality

simple syntax-directed functions are local in nature

Compositionality

syntax-directed functions can be combined and composed

Contextuality

syntax-directed functions may depend on (the result of) others

NB: This breaks locality and has to be carefully restricted!

But it is convenient/necessary for
I compositionality
I expressivity

3

How do we achieve these goals?

Locality

simple syntax-directed functions are local in nature

Compositionality

syntax-directed functions can be combined and composed

Contextuality

syntax-directed functions may depend on (the result of) others

NB: This breaks locality and has to be carefully restricted!

But it is convenient/necessary for
I compositionality
I expressivity

3

How do we achieve these goals?

Locality

simple syntax-directed functions are local in nature

Compositionality

syntax-directed functions can be combined and composed

Contextuality

syntax-directed functions may depend on (the result of) others

NB: This breaks locality and has to be carefully restricted!

But it is convenient/necessary for
I compositionality
I expressivity

3

How do we achieve these goals?

Locality

simple syntax-directed functions are local in nature

Compositionality

syntax-directed functions can be combined and composed

Contextuality

syntax-directed functions may depend on (the result of) others

NB: This breaks locality and has to be carefully restricted!

But it is convenient/necessary for
I compositionality
I expressivity

3

Locality

Tree automata

Computation according to a set of rules.

Applicability of rules depend only on “local” information.

The effect of a rule application is locally restricted.

f

q1 q2. . .
qn

f
q

f (

q1(

x1

)

,

q2(

x2

)

, . . . ,

qn(

xn

)

) −→

q(

t[x1, x2, . . . , xn]

)

4

Locality

Tree automata

Computation according to a set of rules.

Applicability of rules depend only on “local” information.

The effect of a rule application is locally restricted.

f

q1 q2. . .
qn

f
q

f (

q1(

x1

)

,

q2(

x2

)

, . . . ,

qn(

xn

)

) −→

q(

t[x1, x2, . . . , xn]

)

4

Locality

Tree automata

Computation according to a set of rules.

Applicability of rules depend only on “local” information.

The effect of a rule application is locally restricted.

f

q1 q2. . .
qn

f
q

f (q1(x1), q2(x2), . . . , qn(xn)) −→ q(t[x1, x2, . . . , xn])

4

Compositionality
We shall compose tree automata along 3 different dimensions.

sequential composition: a.k.a. deforestation

µF1 µF2 µF3

JA1K JA2K

JA1 ◦ A2K

input signature: the type of the AST

JA1K : µF → R

JA2K : µG → R
=⇒ JA1 +A2K : µ(F + G)→ R

output type: tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µF → R × S

5

Compositionality
We shall compose tree automata along 3 different dimensions.

sequential composition: a.k.a. deforestation

µF1 µF2 µF3

JA1K JA2K

JA1 ◦ A2K

input signature: the type of the AST

JA1K : µF → R

JA2K : µG → R
=⇒ JA1 +A2K : µ(F + G)→ R

output type: tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µF → R × S

5

Compositionality
We shall compose tree automata along 3 different dimensions.

sequential composition: a.k.a. deforestation

µF1 µF2 µF3

JA1K JA2K

JA1 ◦ A2K

input signature: the type of the AST

JA1K : µF → R

JA2K : µG → R
=⇒ JA1 +A2K : µ(F + G)→ R

output type: tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µF → R × S

5

Compositionality
We shall compose tree automata along 3 different dimensions.

sequential composition: a.k.a. deforestation

µF1 µF2 µF3

JA1K JA2K

JA1 ◦ A2K

input signature: the type of the AST

JA1K : µF → R

JA2K : µG → R

=⇒ JA1 +A2K : µ(F + G)→ R

output type: tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µF → R × S

5

Compositionality
We shall compose tree automata along 3 different dimensions.

sequential composition: a.k.a. deforestation

µF1 µF2 µF3

JA1K JA2K

JA1 ◦ A2K

input signature: the type of the AST

JA1K : µF → R

JA2K : µG → R
=⇒ JA1 +A2K : µ(F + G)→ R

output type: tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µF → R × S

5

Compositionality
We shall compose tree automata along 3 different dimensions.

sequential composition: a.k.a. deforestation

µF1 µF2 µF3

JA1K JA2K

JA1 ◦ A2K

input signature: the type of the AST

JA1K : µF → R

JA2K : µG → R
=⇒ JA1 +A2K : µ(F + G)→ R

output type: tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S

=⇒ JA1 ×A2K : µF → R × S

5

Compositionality
We shall compose tree automata along 3 different dimensions.

sequential composition: a.k.a. deforestation

µF1 µF2 µF3

JA1K JA2K

JA1 ◦ A2K

input signature: the type of the AST

JA1K : µF → R

JA2K : µG → R
=⇒ JA1 +A2K : µ(F + G)→ R

output type: tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µF → R × S

5

Contextuality

tupling / product automaton construction

JA1K : µF → R

JA2K : µF → S
=⇒ JA1 ×A2K : µ(F)→ R × S

mutumorphisms / dependent product automata

A1 :

S ⇒

F → R

A2 : R ⇒ F → S
=⇒ A1 ×A2 : F → R × S

6

Contextuality

tupling / product automaton construction

J

A1

K

:

µ

F → R

J

A2

K

:

µ

F → S
=⇒

J

A1 ×A2

K

:

µ(

F

)

→ R × S

mutumorphisms / dependent product automata

A1 :

S ⇒

F → R

A2 : R ⇒ F → S
=⇒ A1 ×A2 : F → R × S

6

Contextuality

tupling / product automaton construction

J

A1

K

:

µ

F → R

J

A2

K

:

µ

F → S
=⇒

J

A1 ×A2

K

:

µ(

F

)

→ R × S

mutumorphisms / dependent product automata

A1 :

S ⇒

F → R

A2 : R ⇒ F → S

=⇒ A1 ×A2 : F → R × S

6

Contextuality

tupling / product automaton construction

J

A1

K

:

µ

F → R

J

A2

K

:

µ

F → S
=⇒

J

A1 ×A2

K

:

µ(

F

)

→ R × S

mutumorphisms / dependent product automata

A1 :

S ⇒

F → R

A2 : R ⇒ F → S
=⇒ A1 ×A2 : F → R × S

6

Contextuality

tupling / product automaton construction

J

A1

K

:

µ

F → R

J

A2

K

:

µ

F → S
=⇒

J

A1 ×A2

K

:

µ(

F

)

→ R × S

mutumorphisms / dependent product automata

A1 : S ⇒ F → R

A2 : R ⇒ F → S
=⇒ A1 ×A2 : F → R × S

6

Outline

1 Introduction

2 State Transition Functions
Composing State Spaces
Compositional Signatures

3 Tree Transducers
Bottom-Up Tree Transducers
Decomposing Tree Transducers

4 Conclusions

7

Terms in Haskell

Data types as fixed points of functors

data Term f = In (f (Term f))

Functors

class Functor f where
fmap :: (a→ b)→ f a→ f b

8

Terms in Haskell

Data types as fixed points of functors

data Term f = In (f (Term f))

Functors

class Functor f where
fmap :: (a→ b)→ f a→ f b

8

Bottom-Up State Transitions in Haskell

f

q1 q2. . .
qn

q1 q2 qn

f
q

. . .

q

Bottom-up state transition rules as algebras

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState φ (In t) = φ (fmap (runUpState φ) t)

9

Bottom-Up State Transitions in Haskell

f

q1 q2. . .
qn

q1 q2 qn

f
q

. . .

q

Bottom-up state transition rules as algebras

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState φ (In t) = φ (fmap (runUpState φ) t)

9

Bottom-Up State Transitions in Haskell

f

q1 q2. . .
qn

q1 q2 qn

f
q

. . .

q

Bottom-up state transition rules as algebras

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState φ (In t) = φ (fmap (runUpState φ) t)

9

Bottom-Up State Transitions in Haskell

f

q1 q2. . .
qn

q1 q2 qn

f
q

. . .

q

Bottom-up state transition rules as algebras

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState φ (In t) = φ (fmap (runUpState φ) t)

9

Bottom-Up State Transitions in Haskell

f

q1 q2. . .
qn

q1 q2 qn

f
q

. . .

q

Bottom-up state transition rules as algebras

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState φ (In t) = φ (fmap (runUpState φ) t)

9

Bottom-Up State Transitions in Haskell

f

q1 q2. . .
qn

q1 q2 qn

f
q

. . .

q

Bottom-up state transition rules as algebras

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState φ (In t) = φ (fmap (runUpState φ) t)

a.k.a. catamorphism / fold

9

Composing State Spaces – Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr]

The problem

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = x ++ [Store a] ++ y ++ [Add a]
where a = . . .

10

Composing State Spaces – Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr]

The problem

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = x ++ [Store a] ++ y ++ [Add a]
where a = . . .

10

Composing State Spaces – Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr]

The problem

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = x ++ [Store a] ++ y ++ [Add a]

where a = . . .

10

Composing State Spaces – Motivating Example

A simple expression language

data Sig e = Val Int | Plus e e

Task: writing a code generator

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr]

The problem

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = x ++ [Store a] ++ y ++ [Add a]

where a = . . .

Sig Code → Code

10

Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code,Addr)
codeAddrSt (Val i) = ([Acc i], 0)
codeAddrSt (Plus (x , a′) (y , a)) = (x ++ [Store a] ++ y ++ [Add a],

1 + max a a′)

Run the automaton

code :: Term Sig → (Code,Addr)
code =

fst .

runUpState codeAddrSt

11

Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code,Addr)
codeAddrSt (Val i) = ([Acc i], 0)
codeAddrSt (Plus (x , a′) (y , a)) = (x ++ [Store a] ++ y ++ [Add a],

1 + max a a′)

Run the automaton

code :: Term Sig → (Code,Addr)
code =

fst .

runUpState codeAddrSt

11

Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code,Addr)
codeAddrSt (Val i) = ([Acc i], 0)
codeAddrSt (Plus (x , a′) (y , a)) = (x ++ [Store a] ++ y ++ [Add a],

1 + max a a′)

Run the automaton

code :: Term Sig → (Code,Addr)
code = fst . runUpState codeAddrSt

11

Tupling

Tuple the code with an address counter

codeAddrSt :: UpState Sig (Code,Addr)
codeAddrSt (Val i) = ([Acc i], 0)
codeAddrSt (Plus (x , a′) (y , a)) = (x ++ [Store a] ++ y ++ [Add a],

1 + max a a′)

Run the automaton

code :: Term Sig →

(

Code

,Addr)

code = fst . runUpState codeAddrSt

11

Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q
type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)

12

Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q
type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)

12

Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q
type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)

12

Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q

type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)

12

Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q
type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)

12

Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q
type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)

12

Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q
type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)

12

Product Automata
Deriving projections

class a ∈ b where
pr :: b → a

a ∈ b iff

b is of the form (b1, (b2, ... bn)) and

a = bi for some i

For example: Addr ∈ (Code,Addr)

Dependent state transition functions

type UpState f q = f q → q
type DUpState f p q = (q ∈ p) ⇒ f p → q

Product state transition

(⊗) :: (p ∈ c , q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t, sq t)
12

Running Dependent State Transition Functions

The types

type UpState f q = f q → q
type DUpState f p q = (q ∈ p)⇒ f p → q

Running dependent state transitions

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState f = runUpState f

From state transition to dependent state transition

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap pr

13

Running Dependent State Transition Functions

The types

type UpState f q = f q → q
type DUpState f p q = (q ∈ p)⇒ f p → q

Running dependent state transitions

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState f = runUpState f

From state transition to dependent state transition

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap pr

13

Running Dependent State Transition Functions

The types

type UpState f q = f q → q
type DUpState f p q = (q ∈ p)⇒ f p → q

Running dependent state transitions

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState f = runUpState f

From state transition to dependent state transition

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap pr

13

The Code Generator Example
The code generator

codeSt :: (Int ∈ q)⇒ DUpState Sig q Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = pr x ++ [Store a] ++ pr y ++ [Add a]

where a = pr y

Generating fresh addresses

heightSt :: UpState Sig Int
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

Combining the components

code :: Term Sig → Code
code = fst . runUpState (codeSt ⊗ dUpState heightSt)

(Code ∈ q, Int ∈ q)⇒ DUpState Sig q (Code, Int)

14

The Code Generator Example
The code generator

codeSt :: (Int ∈ q)⇒ DUpState Sig q Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = pr x ++ [Store a] ++ pr y ++ [Add a]

where a = pr y

Generating fresh addresses

heightSt :: UpState Sig Int
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

Combining the components

code :: Term Sig → Code
code = fst . runUpState (codeSt ⊗ dUpState heightSt)

(Code ∈ q, Int ∈ q)⇒ DUpState Sig q (Code, Int)

14

The Code Generator Example
The code generator

codeSt :: (Int ∈ q)⇒ DUpState Sig q Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = pr x ++ [Store a] ++ pr y ++ [Add a]

where a = pr y

Generating fresh addresses

heightSt :: UpState Sig Int
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

Combining the components

code :: Term Sig → Code
code = fst . runUpState (codeSt ⊗ dUpState heightSt)

(Code ∈ q, Int ∈ q)⇒ DUpState Sig q (Code, Int)

14

The Code Generator Example
The code generator

codeSt :: (Int ∈ q)⇒ DUpState Sig q Code
codeSt (Val i) = [Acc i]
codeSt (Plus x y) = pr x ++ [Store a] ++ pr y ++ [Add a]

where a = pr y

Generating fresh addresses

heightSt :: UpState Sig Int
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

Combining the components

code :: Term Sig → Code
code = fst . runUpState (codeSt ⊗ dUpState heightSt)

(Code ∈ q, Int ∈ q)⇒ DUpState Sig q (Code, Int)

14

Outline

1 Introduction

2 State Transition Functions
Composing State Spaces
Compositional Signatures

3 Tree Transducers
Bottom-Up Tree Transducers
Decomposing Tree Transducers

4 Conclusions

15

Combining Signatures
Signatures & automata may be combined in the style of “Data types à la
carte” [Swierstra 2008].

Coproduct of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

Example

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

Subsignature type class

class f � g where
inj :: f a→ g a

For example: Inc � Sig ′

f � g iff

g = g1 ⊕ g2 ⊕ ...⊕ gn and

f = gi , 0 < i ≤ n

16

Combining Signatures
Signatures & automata may be combined in the style of “Data types à la
carte” [Swierstra 2008].

Coproduct of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

Example

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

Subsignature type class

class f � g where
inj :: f a→ g a

For example: Inc � Sig ′

f � g iff

g = g1 ⊕ g2 ⊕ ...⊕ gn and

f = gi , 0 < i ≤ n

16

Combining Signatures
Signatures & automata may be combined in the style of “Data types à la
carte” [Swierstra 2008].

Coproduct of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

Example

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

Subsignature type class

class f � g where
inj :: f a→ g a

For example: Inc � Sig ′

f � g iff

g = g1 ⊕ g2 ⊕ ...⊕ gn and

f = gi , 0 < i ≤ n

16

Combining Signatures
Signatures & automata may be combined in the style of “Data types à la
carte” [Swierstra 2008].

Coproduct of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

Example

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

Subsignature type class

class f � g where
inj :: f a→ g a

For example: Inc � Sig ′

f � g iff

g = g1 ⊕ g2 ⊕ ...⊕ gn and

f = gi , 0 < i ≤ n

16

Combining Signatures
Signatures & automata may be combined in the style of “Data types à la
carte” [Swierstra 2008].

Coproduct of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

Example

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

Subsignature type class

class f � g where
inj :: f a→ g a

For example: Inc � Sig ′

f � g iff

g = g1 ⊕ g2 ⊕ ...⊕ gn and

f = gi , 0 < i ≤ n

16

Combining Signatures
Signatures & automata may be combined in the style of “Data types à la
carte” [Swierstra 2008].

Coproduct of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

Example

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

Subsignature type class

class f � g where
inj :: f a→ g a

For example: Inc � Sig ′

f � g iff

g = g1 ⊕ g2 ⊕ ...⊕ gn and

f = gi , 0 < i ≤ n

16

Combining Automata
Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int

instance (HeightSt f ,HeightSt g)⇒ HeightSt (f ⊕ g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

Defining the height on Inc

instance HeightSt Inc where
heightSt (Inc x) = 1 + x

17

Combining Automata
Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int

instance (HeightSt f ,HeightSt g)⇒ HeightSt (f ⊕ g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

Defining the height on Inc

instance HeightSt Inc where
heightSt (Inc x) = 1 + x

17

Combining Automata
Making the height compositional

class HeightSt f where
heightSt :: DUpState f q Int

instance (HeightSt f ,HeightSt g)⇒ HeightSt (f ⊕ g) where
heightSt (Inl x) = heightSt x
heightSt (Inr x) = heightSt x

Defining the height on Sig

instance HeightSt Sig where
heightSt (Val) = 0
heightSt (Plus x y) = 1 + max x y

Defining the height on Inc

instance HeightSt Inc where
heightSt (Inc x) = 1 + x

17

Outline

1 Introduction

2 State Transition Functions
Composing State Spaces
Compositional Signatures

3 Tree Transducers
Bottom-Up Tree Transducers
Decomposing Tree Transducers

4 Conclusions

18

Bottom-Up Tree Transducers

f

q1 q2. . .
qn

f

. . .

q

From terms to contexts

data Term f = In (f (Term f))

data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g = ∀ a.f (q,a)→ (q, Context g a)

19

Bottom-Up Tree Transducers

f

q1 q2. . .
qn

f

. . .

q

From terms to contexts

data Term f = In (f (Term f))

data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g = ∀ a.f (q,a)→ (q, Context g a)

19

Bottom-Up Tree Transducers

f

q1 q2. . .
qn

f

. . .

q

From terms to contexts

data Term f = In (f (Term f))

data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g = ∀ a.f (q,a)→ (q, Context g a)

19

Bottom-Up Tree Transducers

f

q1 q2. . .
qn

f

. . .

q

From terms to contexts

data Term f = In (f (Term f))

data Context f a = In (f (Context f a)) | Hole a

type Term f = Context f Empty

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g = ∀ a.f (q,a)→ (q, Context g a)

19

Bottom-Up Tree Transducers

f

q1 q2. . .
qn

f

. . .

q

From terms to contexts

data Term f = In (f (Term f))

data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g = ∀ a.f (q,a)→ (q, Context g a)

19

Bottom-Up Tree Transducers

f

q1 q2. . .
qn

f

. . .

q

From terms to contexts

data Term f = In (f (Term f))

data Context f a = In (f (Context f a)) | Hole a

Representing transduction rules, [Hasuo et al. 2007]

type UpTrans f q g = ∀ a.f (q,a)→ (q, Context g a)

19

Tree Homomorphisms

type UpTrans f q g = ∀ a . f (q, a) → (q, Context g a)

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where

desugHom = simpCxt . inj

20

Tree Homomorphisms

type UpTrans f

q

g = ∀ a . f

(q,

a

)

→

(q,

Context g a

)

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where

desugHom = simpCxt . inj

20

Tree Homomorphisms

type Hom f

q

g = ∀ a . f

(q,

a

)

→

(q,

Context g a

)

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where

desugHom = simpCxt . inj

20

Tree Homomorphisms

type Hom f

q

g = ∀ a . f

(q,

a

)

→

(q,

Context g a

)

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where

desugHom = simpCxt . inj

20

Tree Homomorphisms

type Hom f

q

g = ∀ a . f

(q,

a

)

→

(q,

Context g a

)

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where

desugHom = simpCxt . inj

20

Tree Homomorphisms

type Hom f

q

g = ∀ a . f

(q,

a

)

→

(q,

Context g a

)

Example (Desugaring)

class DesugHom f g where
desugHom :: Hom f g

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where

desugHom = simpCxt . inj

simpCxt :: Functor g ⇒ g a→ Context g a
simpCxt t = In (fmap Hole t)

20

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q, a)→ (q,Context g a)

Making homomorphisms dependent on a state

type QHom f q g = ∀ a.

(a→ q)→

f

(q,

a

)

→ Context g a

From stateful homomorphisms to tree transducers

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g

upTrans st hom t = (q, c) where
q = st (fmap fst t)
c = fmap snd (hom fst t)

21

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q, a)→ (q,Context g a)

Making homomorphisms dependent on a state

type QHom f q g = ∀ a.

(a→ q)→

f

(q,

a

)

→ Context g a

From stateful homomorphisms to tree transducers

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g

upTrans st hom t = (q, c) where
q = st (fmap fst t)
c = fmap snd (hom fst t)

21

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q, a)→ (q,Context g a)

Making homomorphisms dependent on a state

type QHom f q g = ∀ a.

(a→ q)→

f (q, a) → Context g a

From stateful homomorphisms to tree transducers

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g

upTrans st hom t = (q, c) where
q = st (fmap fst t)
c = fmap snd (hom fst t)

21

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q, a)→ (q,Context g a)

Making homomorphisms dependent on a state

type QHom f q g = ∀ a. (a→ q)→ f

(q,

a

)

→ Context g a

From stateful homomorphisms to tree transducers

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g

upTrans st hom t = (q, c) where
q = st (fmap fst t)
c = fmap snd (hom fst t)

21

Stateful Tree Homomorphisms

Decomposing tree transducers

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q, a)→ (q,Context g a)

Making homomorphisms dependent on a state

type QHom f q g = ∀ a. (a→ q)→ f

(q,

a

)

→ Context g a

From stateful homomorphisms to tree transducers

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g

upTrans st hom t = (q, c) where
q = st (fmap fst t)
c = fmap snd (hom fst t)

21

An Example

Extending the signature with let bindings

type Name = String
data Let e = LetIn Name e e | Var Name
type LetSig = Let ⊕ Sig

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars

instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union‘ y
freeVarsSt (Val) = empty

instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v
freeVarsSt (LetIn v e s) = if v ‘member ‘ s then e ‘union‘ delete v s

else s

22

An Example

Extending the signature with let bindings

type Name = String
data Let e = LetIn Name e e | Var Name
type LetSig = Let ⊕ Sig

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars

instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union‘ y
freeVarsSt (Val) = empty

instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v
freeVarsSt (LetIn v e s) = if v ‘member ‘ s then e ‘union‘ delete v s

else s

22

An Example

Extending the signature with let bindings

type Name = String
data Let e = LetIn Name e e | Var Name
type LetSig = Let ⊕ Sig

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars

instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union‘ y
freeVarsSt (Val) = empty

instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v
freeVarsSt (LetIn v e s) = if v ‘member ‘ s then e ‘union‘ delete v s

else s

22

An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars ∈ q, Let � g ,Functor g)⇒ RemLetHom Let q g where
remLetHom qOf (LetIn v s) | ¬ (v ‘member ‘ qOf s) = Hole s
remLetHom t = simpCxt (inj t)

instance (Functor f ,Functor g , f � g)⇒ RemLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remLet :: (Functor f ,FreeVarsSt f ,RemLetHom f Vars f)
⇒ Term f → (Vars,Term f)

remLet = runUpHom freeVarsSt remLetHom

remLet :: Term LetSig → Term LetSig
remLet :: Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig)

23

An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars ∈ q, Let � g ,Functor g)⇒ RemLetHom Let q g where
remLetHom qOf (LetIn v s) | ¬ (v ‘member ‘ qOf s) = Hole s
remLetHom t = simpCxt (inj t)

instance (Functor f ,Functor g , f � g)⇒ RemLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remLet :: (Functor f ,FreeVarsSt f ,RemLetHom f Vars f)
⇒ Term f → (Vars,Term f)

remLet = runUpHom freeVarsSt remLetHom

remLet :: Term LetSig → Term LetSig
remLet :: Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig)

23

An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars ∈ q, Let � g ,Functor g)⇒ RemLetHom Let q g where
remLetHom qOf (LetIn v s) | ¬ (v ‘member ‘ qOf s) = Hole s
remLetHom t = simpCxt (inj t)

instance (Functor f ,Functor g , f � g)⇒ RemLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remLet :: (Functor f ,FreeVarsSt f ,RemLetHom f Vars f)
⇒ Term f → (Vars,Term f)

remLet = runUpHom freeVarsSt remLetHom

runUpHom :: UpState f q → QHom f q g
→ Term f → Term g

runUpHom st hom = runUpTrans (upTrans st hom)

remLet :: Term LetSig → Term LetSig
remLet :: Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig)

23

An Example (Cont’d)

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars ∈ q, Let � g ,Functor g)⇒ RemLetHom Let q g where
remLetHom qOf (LetIn v s) | ¬ (v ‘member ‘ qOf s) = Hole s
remLetHom t = simpCxt (inj t)

instance (Functor f ,Functor g , f � g)⇒ RemLetHom f q g where
remLetHom = simpCxt . inj

Combining state transition and homomorphism

remLet :: (Functor f ,FreeVarsSt f ,RemLetHom f Vars f)
⇒ Term f → (Vars,Term f)

remLet = runUpHom freeVarsSt remLetHom

remLet :: Term LetSig → Term LetSig
remLet :: Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig)

23

Beyond Bottom-Up Tree Automata

What have we seen?

Bottom-up tree acceptors (a.k.a. folds)

Bottom-up tree transducers

“dependent” versions thereof

Other Tree recursion schemes

Top-down tree acceptors

Top-down tree transducers

“dependent” versions thereof

automata with bidirectional state propagation

(restricted versions of macro tree transducers)

24

Beyond Bottom-Up Tree Automata

What have we seen?

Bottom-up tree acceptors (a.k.a. folds)

Bottom-up tree transducers

“dependent” versions thereof

Other Tree recursion schemes

Top-down tree acceptors

Top-down tree transducers

“dependent” versions thereof

automata with bidirectional state propagation

(restricted versions of macro tree transducers)

24

Beyond Bottom-Up Tree Automata

What have we seen?

Bottom-up tree acceptors (a.k.a. folds)

Bottom-up tree transducers

“dependent” versions thereof

Other Tree recursion schemes

Top-down tree acceptors

Top-down tree transducers

“dependent” versions thereof

automata with bidirectional state propagation

(restricted versions of macro tree transducers)

24

What have we gained?

Modularity & Reusability

modularity along three dimensions (signature, sequential composition,
state space)

decoupling of state propagation and tree transformation

operations on automata (beyond product & sum) allow us to
construct new automata from old ones

Interface between tree automata

dependencies between automata by constraints on the state space

modularity allows us to replace individual components

25

What have we gained?

Modularity & Reusability

modularity along three dimensions (signature, sequential composition,
state space)

decoupling of state propagation and tree transformation

operations on automata (beyond product & sum) allow us to
construct new automata from old ones

Interface between tree automata

dependencies between automata by constraints on the state space

modularity allows us to replace individual components

25

Try It Out!

This is part of the compositional data types Haskell library compdata:

> cabal install compdata

http://hackage.haskell.org/package/compdata

26

http://hackage.haskell.org/package/compdata

	Introduction
	State Transition Functions
	Composing State Spaces
	Compositional Signatures

	Tree Transducers
	Bottom-Up Tree Transducers
	Decomposing Tree Transducers

	Conclusions

