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The Issue
Implementation/Prototyping of Languages

Our setting: Implementation of domain-specific languages

We have a number of domain-specific languages.

Each pair shares some common sublanguage.

All of them share a common language of values.

We have the same situation on the type level!

How do we implement this system without duplicating code?!

Similar issues occur in general

Evaluation: Exp → Value Value ⊆ Exp

Desugaring: FullExp → CoreExp CoreExp ⊆ FullExp

Annotating: Exp → AnExp
...
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Compositional Data Types

Expression Problem [Phil Wadler]

The goal is to define a data type by cases, where one can add
new cases to the data type and new functions over the data
type, without recompiling existing code, and while retaining
static type safety.

“Data Types à la Carte” by Wouter Swierstra (2008)

A solution to the expression problem: Decoupling + Composition!

data types: decoupling of signature and term construction

functions: decoupling of pattern matching and recursion

signatures & functions defined on them can be composed

3
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Example: Evaluation Function

Example (A simple expression language)

data Exp = Const Int | Pair Exp Exp | Mult Exp Exp | Fst Exp

data Value = VConst Int | VPair Value Value

eval :: Exp → Value
eval (Const n) = VConst n
eval (Pair x y) = VPair (eval x) (eval y)
eval (Mult x y) = let VConst m = eval x

VConst n = eval y
in VConst (m ∗ n)

eval (Fst p) = let VPair x y = eval p in x
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Decoupling Signature and Term Construction

Remove recursion from data type definition

data Exp = Const Int | Pair Exp Exp | Mult Exp Exp | Fst Exp

⇓

data Sig e = Const Int | Pair e e | Mult e e | Fst e

Recursion can be added separately

data Term f = Term (f (Term f ))

Term f is the initial f -algebra (a.k.a. term algebra over f )

Term Sig ∼= Exp (modulo strictness)
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Combining Signatures

In order to extend expressions, we need a way to combine signatures.

Direct sum of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

f ⊕ g is the sum of the signatures f and g

Example

data Sig e = Const Int
| Pair e e

| Mult e e
| Fst e

 
data Val e = Const Int

| Pair e e

data Op e = Mult e e
| Fst e

Val ⊕ Op ∼= Sig
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Subsignatures
Subsignature type class

class f ≺ g where
inj :: f a → g a
proj :: g a→ Maybe (f a)

f ≺ f

f ≺ (f ⊕ g)

(f ≺ g)⇒ f ≺ (h ⊕ g)

For example: Val ≺ Val ⊕ Op︸ ︷︷ ︸
Sig

Injection and projection functions lifted to terms

inject :: (g ≺ f )⇒ g (Term f )→ Term f
inject = Term . inj

project :: (g ≺ f )⇒ Term f → Maybe (g (Term f ))
project (Term t) = proj t

Smart Constructors

Mult  iMult :: (Op ≺ f )⇒ Term f → Term f → Term f
iMult m n = inject (Mult m n)
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Separating Function Definition from Recursion

Compositional function definitions as algebras

In the same way as we defined the types:

define functions on the signatures (non-recursive): f a→ a

combine functions using type classes

apply the resulting function recursively on the term: Term f → a

Algebras

class Eval f where
evalAlg :: f (Term Val)→ Term Val

Applying a function recursively to a term

cata :: Functor f ⇒ (f a→ a)→ Term f → a
cata f (Term t) = f (fmap (cata f ) t)
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Defining Algebras

On the singleton signatures

instance Eval Val where
evalAlg = inject

instance Eval Op where
evalAlg (Mult x y) = let Just (Const m) = project x

Just (Const n) = project y
in iConst (m ∗ n)

evalAlg (Fst p) = let Just (Pair x y) = project p
in x

Forming the catamorphism

eval :: Term Sig → Term Val
eval = cata evalAlg
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Tree Homomorphisms

Term transformations: Term f → Term g

There are a lot of formalisms for term transformations

tree transducers

tree homomorphisms

term rewriting

. . .

Signature transformations

type Hom f g =

∀ a . f a→

Context

g a

Contexts (a.k.a. free monads)

data Context f a = Term (f (Context f ))
| Hole a
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Applying Tree Homomorphisms

Applying Tree Homomorphisms

appHom :: (Functor f ,Functor g)⇒ Hom f g → Term f → Term g
appHom = ...

Example (Desugaring)

data Sugar e = Neg e
type SigExt = Sugar ⊕ Sig

class (Functor f ,Functor g)⇒ Desugar f g where
desugHom :: Hom f g

desugar :: Desugar f g ⇒ Term f → Term g
desugar = appHom desugHom
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Implementing Desugaring

Simple contexts

simpCxt :: Functor f ⇒ f a→ Context f a
simpCxt = Term . fmap Hole

The trivial case

instance (Functor f ,Functor g , f ≺ g)⇒ Desugar f g where
desugHom = simpCxt . inj

The interesting case

instance (Functor f ,Op ≺ f ,Val ≺ f )⇒ Desugar Sugar f where
desugHom (Neg x) = iConst (−1) ‘iMult‘ (Hole x)
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Composition of Homomorphisms
Composition operators

(}) :: (Functor g ,Functor h)⇒ Hom g h→ Hom f g → Hom f h

(�) :: Functor g ⇒ (g a→ a)→ Hom f g → (f a→ a)

Example

evalDesug :: Term SigExt → Term Val
evalDesug = eval . desugar

Short-cut fusion!

This can be implemented as GHC rewrite rules!

cata f . appHom g  cata (f � g)
appHom f . appHom g  appHom (f } g)

...
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Other Extensions

monadic algebras: f a→ m a

monadic tree homomorphisms: f a→ m (Context g a)

coalgebras & monadic coalgebras
I generating terms  e.g. for QuickCheck

generic functions
I e.g. size, querying, unification, matching . . .

I using generalised foldl :: (a→ b → a)→ a→ [a ]→ b

generic term rewriting
I e.g. for performing program transformations

mutually recursive data types [Yakushev et al. 2009]
I by adding additional type argument to the signatures
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Runtime Comparison
This is all nice, but how does it affect runtime performance?

Slowdown factors compared to standard data types

Function hand-written random (10) random (20)

inferDesug

(3.38)

1.11

(3.45)

1.52

(3.14)

0.82
inferDesugM

(2.68)

1.38

(2.87)

1.61

(2.79)

0.84
infer 2.39 2.29 2.65
inferM 1.06 1.30 1.68
evalDesug

(6.40)

2.64

(3.13)

1.79

(4.74)

0.89
evalDesugM

(7.32)

4.34

(6.22)

3.47

(9.69)

2.98
eval 2.58 1.84 1.64
evalDirect 6.10 3.96 3.62
evalM 3.41 4.78 7.52
evalDirectM 5.72 4.90 4.56
desugHom 3.6 · 10−1 5.0 · 10−3 6.1 · 10−6

desugCata 1.8 · 10−1 4.41 · 10−3 5.3 · 10−6
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evalDesugM (7.32) 4.34 (6.22) 3.47 (9.69) 2.98
eval 2.58 1.84 1.64
evalDirect 6.10 3.96 3.62
evalM 3.41 4.78 7.52
evalDirectM 5.72 4.90 4.56

desugHom 3.6 · 10−1 5.0 · 10−3 6.1 · 10−6

desugCata 1.8 · 10−1 4.41 · 10−3 5.3 · 10−6
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Runtime Comparison
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Current Work

We use our library constantly.  We extend it constantly.

Other extensions

Support for binders via parametric higher-order abstract syntax

algebras with nested monadic effect
f (Term v)→ m (Term v)

 f (Term (m⊕v))→ Term (m⊕v)

beyond tree homomorphisms:
I attribute grammars
I modular tree transducers

Try it yourself: http://hackage.haskell.org/package/compdata
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Runtime Comparison – Generic Programming

slowdown factors compared to standard data types

Function hand-written random (10) random (20)

contVar 1.92 1.97 3.22
freeVars 1.23 1.26 1.41

contVarC 10.05 7.01 11.68
contVarU 8.24 5.64 11.21
freeVarsC 2.34 2.04 1.68
freeVarsU 2.03 1.75 1.58
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Annotating Trees

Annotate Syntax Trees, e.g. with source positions

annotations are not part of the actual language

annotations should be added separately (to the signature)

functions that are agnostic to annotations should not care about them

Constant Products on Signatures

data (f & a) e = f e & a

Example

data Val

’

e = Const Int
| Pair e e

Val ′ ∼= Val & SrcPos
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Propagating Annotations

Annotations are easily propagated through homomorphisms

propAnn :: Functor g ⇒ Hom f g → Hom (f & a) (g & a)

Example

desugar :: Term SigExt → Term Sig

desugar ′ :: Term (SigExt & SrcPos)→ Term (Sig & SrcPos)
desugar ′ = propAnn desugar
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Eliminate Boilerplate Code

Template Haskell

We use Template Haskell to eliminate boilerplate code:

instance declarations for Functor , Foldable etc.

smart constructors: iConst, iMult etc.

propagating algebras & homomorphisms to compound signatures.

Example

$(derive [makeFunctor, makeTraversable, makeFoldable,

makeEqF, makeShowF, smartConstructors]

[’’Val, ’’Op, ’’Sugar])

$(derive [liftSum] [’’Eval])

26



Eliminate Boilerplate Code

Template Haskell

We use Template Haskell to eliminate boilerplate code:

instance declarations for Functor , Foldable etc.

smart constructors: iConst, iMult etc.

propagating algebras & homomorphisms to compound signatures.

Example

$(derive [makeFunctor, makeTraversable, makeFoldable,

makeEqF, makeShowF, smartConstructors]

[’’Val, ’’Op, ’’Sugar])

$(derive [liftSum] [’’Eval])

26



Library Example
import Data.Comp
import Data.Comp.Derive
import Data.Comp.Show ()
import Data.Comp.Desugar

data Val e = Const Int | Pair e e
data Op e = Mult e e | Fst e
data Sugar e = Neg e
type Sig = Op ⊕ Val
type SigExt = Sugar ⊕ Sig

$ (derive [makeFunctor,makeFoldable,makeTraversable,makeShowF , smartConstructors ] [ ’ ’Val, ’ ’Op, ’ ’Sugar ])

class Eval f v where
evalAlg :: Alg f (Term v)

$ (derive [ liftSum ] [ ’ ’Eval ]) -- lift Eval to coproducts

eval :: (Functor f , Eval f v)⇒ Term f → Term v
eval = cata evalAlg

instance (Val ≺ v)⇒ Eval Val v where
evalAlg = inject

instance (Val ≺ v)⇒ Eval Op v where
evalAlg (Mult x y) = case (project x, project y) of (Just (Const n), Just (Const m))→ iConst $ n ∗ m
evalAlg (Fst x) = case project x of Just (Pair v )→ v

instance (Op ≺ f , Val ≺ f , Functor f )⇒ Desugar Sugar f where

desugHom′ (Neg x) = iConst (−1) ‘iMult‘ x

eval′ :: Term SigExt → Term Val

eval′ = eval . (desugar :: Term SigExt → Term Sig)

27


	Compositional Data Types
	Extensions
	Practical Considerations
	Current Work

